WO2020055180A1 - 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 - Google Patents
리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 Download PDFInfo
- Publication number
- WO2020055180A1 WO2020055180A1 PCT/KR2019/011857 KR2019011857W WO2020055180A1 WO 2020055180 A1 WO2020055180 A1 WO 2020055180A1 KR 2019011857 W KR2019011857 W KR 2019011857W WO 2020055180 A1 WO2020055180 A1 WO 2020055180A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- secondary battery
- lithium
- lithium secondary
- aqueous electrolyte
- electrolyte solution
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C50/00—Quinones
- C07C50/02—Quinones with monocyclic quinoid structure
- C07C50/04—Benzoquinones, i.e. C6H4O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a non-aqueous electrolyte for a lithium secondary battery and a lithium secondary battery comprising the same.
- the technology most suitable for various uses is a secondary battery-based technology.
- a secondary battery In the case of a secondary battery, it can be miniaturized to a degree that can be applied to personal IT devices, etc., and it can be applied to electric vehicles, electric power storage devices, etc.
- lithium ion batteries which are theoretically the most energy-dense battery systems, are in the spotlight and are currently applied to various devices.
- the lithium-ion battery is a positive electrode composed of a transition metal oxide containing lithium, a negative electrode made of an alloy-based material such as silicon and a carbon-based material capable of storing lithium, and an electrolyte as a medium for transferring lithium ions, and It is composed of a separator.
- the electrolyte for the lithium ion battery is known as a component that greatly affects stability and safety of the battery, and many studies have been conducted on this.
- the electrolyte is composed of a lithium salt, an organic solvent dissolving it, and a functional additive.
- the lithium salt is LiPF 6 , LiBF 4 , LiFSI (lithium fluorosulfonyl imide, LiN (SO 2 F) 2 ), LiTFSI (lithium (bis) trifluoromethanesulfonyl imide, LiN (SO 2 CF 3 ) 2 ) or LiBOB (lithium bis (oxalate) ) borate, LiB (C 2 O 4 ) 2 ), etc.
- the organic solvent a carbonate-based organic solvent, an ester-based organic solvent, an ether-based organic solvent, or the like is used.
- lithium ion batteries use a graphite-based negative electrode as a negative electrode, wherein the graphite has an operating potential of 0.3 V ( vs. Li / Li + ) or less, and an electrochemical potential window of an electrolyte used in the lithium ion battery. Lower than Therefore, the electrolyte solution is reduced and decomposed before the negative electrode, and the product thus reduced and decomposed transmits lithium ions, but forms a solid electrolyte interphase (hereinafter referred to as "SEI" film) that inhibits further decomposition of the electrolyte solution. Is done.
- SEI solid electrolyte interphase
- the electrolytic solution is further decomposed during storage, and the charged graphite self-discharges, resulting in a decrease in the potential of the entire battery.
- HF and PF 5 produced by thermal decomposition of LiPF 6 a lithium salt widely used as an electrolyte salt.
- the transition metal elution occurs at the anode, the resistance is increased, and the capacity of the redox center is lost and the capacity can be reduced.
- the electrode is electrodeposited, resulting in an increase in irreversible capacity due to the electrolysis of metal and the consumption of electrons due to additional electrolyte decomposition, resulting in a decrease in cell capacity as well as an increase in resistance and self-discharge of the graphite cathode. Can cause
- an electrolyte additive containing a double or triple bond capable of reducing decomposition is introduced, or a lithium salt generated due to heat / moisture, etc., that is, a decomposition product of LiPF 6 It can be said that an effective solution is to suppress the damage to the film by introducing an additive capable of removing phosphorus HF and PF 5 and the like.
- the present invention is to provide a non-aqueous electrolyte solution for a lithium secondary battery comprising a non-aqueous electrolyte additive having excellent HF and PF 5 removal effects.
- the present invention is to provide a lithium secondary battery comprising a non-aqueous electrolyte for the lithium secondary battery.
- Lithium salt Organic solvents; And additives,
- non-aqueous electrolyte for a lithium secondary battery comprising a compound represented by the following formula (1) as the additive.
- R 1 to R 3 are each independently a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms.
- a positive electrode comprising a positive electrode active material; A negative electrode comprising a negative electrode active material; A separator interposed between the cathode and the anode; And it provides a lithium secondary battery comprising a non-aqueous electrolyte for a lithium secondary battery according to the present invention.
- the compound represented by Chemical Formula 1 which is a Lewis base material contained in the non-aqueous electrolyte of the present invention, removes Lewis acids such as HF and PF 5 formed as decomposition products of lithium salt (LiPF 6 ) ( By scavenging) to prevent deterioration of the coating on the surface of the anode, metal elution from the anode can be suppressed. In addition, it is possible to suppress further electrolyte decomposition and increase in cathode resistance. Therefore, when the nonaqueous electrolyte solution of the present invention containing the compound represented by Chemical Formula 1 is used, a lithium secondary battery with reduced resistance and improved capacity characteristics can be realized.
- Lewis acids such as HF and PF 5 formed as decomposition products of lithium salt (LiPF 6 )
- the passivation ability of the SEI film formed by electrolytic solution decomposition on the positive / negative electrode surface is a factor influencing the high temperature storage performance.
- HF and PF 5 generated by thermal decomposition of LiPF 6 are known to be one of the factors that degrade the coating.
- transition metal elution occurs, and the surface resistance of the electrode increases due to the change in the local structure of the surface, and the theoretical capacity decreases due to the loss of the redox center. have.
- the eluted metal ions are electrodeposited to the negative electrode reacting in a strong reduction potential band, consuming electrons and breaking the film to expose the electrode surface, thereby causing additional electrolyte decomposition to increase the resistance of the negative electrode, and irreversible capacity There is a problem of continuously decreasing the capacity of the cell by increasing.
- a non-aqueous electrolyte solution containing a non-aqueous electrolyte additive a Lewis base material capable of removing PF 5 or HF generated inside the electrolyte solution, thereby preventing deterioration of the coating on the anode surface
- a Lewis base material capable of removing PF 5 or HF generated inside the electrolyte solution, thereby preventing deterioration of the coating on the anode surface
- Lithium salt Organic solvents; And additives,
- the additive provides a non-aqueous electrolyte solution for a lithium secondary battery comprising a compound represented by Formula 1 below.
- R 1 to R 3 are each independently a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms.
- the lithium salt may be used, without limitation, those which are commonly used in a lithium secondary battery electrolyte, for example, is to include Li + as the cation, and the anion F -, Cl -, Br - , I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, B 10 Cl 10 -, AlCl 4 -, AlO 4 -, PF 6 -, CF 3 SO 3 -, CH 3 CO 2 -, CF 3 CO 2 - , AsF 6 -, SbF 6 - , CH 3 SO 3 -, (CF 3 CF 2 SO 2) 2 N -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, BF 2 C 2 O 4 -, BC 4 O 8 - , PF 4 C 2 O 4 -, PF 2 C 4 O 8 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4
- the lithium salt is LiCl, LiBr, LiI, LiBF 4 , LiClO 4 , LiB 10 Cl 10 , LiAlCl 4 , LiAlO 4 , LiPF 6 , LiCF 3 SO 3 , LiCH 3 CO 2 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiCH 3 SO 3 , LiBETI (lithium bisperfluoroethanesulfonimide, LiN (SO 2 CF 2 CF 3 ) 2 , LiTFSI (lithium (bis) trifluoromethanesulfonimide, LiN (SO 2 CF 3 ) 2 ) and LiFSI (Lithium bis (fluorosulfonyl) imide, LiN (SO 2 F) 2 ) may include a single material selected from the group consisting of or a mixture of two or more.In addition to these, lithium salts commonly used in electrolytes of lithium secondary batteries may be used without limitation.
- the lithium salt may be appropriately changed within a range that can be used normally, but in order to obtain an optimal anti-corrosion film forming effect on the surface of the electrode, the concentration of 0.8 M to 3.0 M in the electrolyte solution, specifically, 1.0 M to 3.0 M concentration may be included. You can.
- the concentration of the lithium salt When the concentration of the lithium salt is less than 0.8 M, the mobility of lithium ions decreases, so the effect of improving cycle characteristics during high temperature storage is negligible.
- concentration of the lithium salt exceeds 3.0 M concentration, the viscosity of the non-aqueous electrolyte is excessively increased, resulting in non-aqueous. The impregnation property of the electrolyte solution may be lowered, and the film forming effect may be reduced.
- the organic solvent various organic solvents commonly used in lithium electrolytes can be used without limitation.
- the organic solvent may include a cyclic carbonate-based organic solvent, a linear carbonate-based organic solvent, or a mixed organic solvent thereof.
- the cyclic carbonate-based organic solvent is a high-viscosity organic solvent, and has a high dielectric constant and is an organic solvent capable of dissociating lithium salts in the electrolyte well.
- ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene It may include at least one organic solvent selected from the group consisting of carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, and vinylene carbonate, and among them, ethylene carbonate And propylene carbonate (PC).
- the linear carbonate-based organic solvent is an organic solvent having a low viscosity and low dielectric constant, and representative examples thereof include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, and ethylmethyl carbonate ( EMC), methylpropyl carbonate and at least one organic solvent selected from the group consisting of ethylpropyl carbonate may be used, and specifically, may include ethylmethyl carbonate (EMC).
- DMC dimethyl carbonate
- DEC diethyl carbonate
- EMC ethylmethyl carbonate
- EMC ethylmethyl carbonate
- the cyclic carbonate-based organic solvent and the linear carbonate-based organic solvent may be used by mixing in a volume of 2: 8 to 5: 5, specifically 2: 8 to 4: 6.
- the volume ratio of the cyclic carbonate-based organic solvent and the linear carbonate-based organic solvent may have an important effect on improving both capacity and cycle characteristics at high and normal temperatures during the production of the secondary battery, and the cyclic carbonate organic solvent and the linear ester organic solvent When the volume ratio of satisfies the above range, a synergistic effect due to mixing of two organic solvents may be expressed.
- the organic solvent further includes a linear ester-based organic solvent and / or a cyclic ester-based organic solvent in the cyclic carbonate-based organic solvent and / or a linear carbonate-based organic solvent in order to prepare a non-aqueous electrolyte having high ionic conductivity. You may.
- the linear ester-based organic solvent may be at least one of alkyl acetate or alkyl propionate.
- the alkyl acetate may include at least one of methyl acetate, ethyl acetate and propyl acetate.
- the alkyl propionate may include at least one selected from the group consisting of methyl propionate, ethyl propionate, propyl propionate and butyl propionate.
- the linear ester-based organic solvent may include alkyl propionate having higher voltage stability and thermal stability than alkyl acetate.
- the cyclic ester-based organic solvent may include at least one of ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -valerolactone, and ⁇ -caprolactone.
- the organic solvent may be used by adding, without limitation, an organic solvent that is conventionally used in the lithium secondary battery electrolyte.
- it may further include at least one organic solvent of an ether-based organic solvent, an amide-based organic solvent and a nitrile-based organic solvent.
- the non-aqueous electrolyte solution for a lithium secondary battery of the present invention may include a compound represented by the following Chemical Formula 1 as an additive.
- R 1 to R 3 are each independently a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms.
- the compound represented by Chemical Formula 1 of the present invention acts as an anion receptor inside the non-aqueous electrolyte, and prevents side reactions by lithium salt by-products, such as LiF salt, so that ion conductivity and free Li + ions It is possible to prevent the number of decreases, thereby suppressing an increase in the resistance of the battery and improving the battery capacity.
- the compound represented by Chemical Formula 1 it may serve as an oxygen scavenger to remove oxygen radicals by a chemical reaction as shown in Reaction Scheme 1 (J. Kundu et al., Mutation Research, 768 (2014) 22-34). Therefore, when it is included as an electrolyte additive, oxygen radicals generated at the anode during high temperature storage can be removed to suppress side reactions between the oxygen radical and the electrolyte. It is also possible to effectively improve the swelling phenomenon of the battery.
- R 1 and R 2 are each independently a substituted or unsubstituted alkyl group having 1 to 3 carbon atoms, and R 3 may be a substituted or unsubstituted alkyl group having 1 or 2 carbon atoms.
- the compound represented by Formula 1 may be at least one selected from the group consisting of compounds represented by the following 1a and Formula 1b.
- the compound represented by Formula 1 may be included in a range of 0.01% to 1.0% by weight, specifically 0.2% to 0.9% by weight, and more specifically 0.3 to 0.9% by weight based on the total weight of the non-aqueous electrolyte.
- a secondary battery having an improved performance by controlling the increase in the resistance of the film by decomposition of the additive is excellent, and the stabilizing effect of the SEI film or the effect of suppressing metal elution is excellent.
- the compound represented by Chemical Formula 1 is included in an amount of 0.2% to 0.9% by weight, it is possible to further improve the capacity characteristics of the battery by having a good effect of removing the thermal decomposition products of the salt and suppressing the increase in resistance of the battery.
- the non-aqueous electrolyte solution of the present invention may further include an additive for forming an SEI film, if necessary.
- an additive for forming an SEI film usable in the present invention at least one additional additive selected from the group consisting of sultone compounds, halogen substituted carbonate compounds, nitrile compounds, cyclic sulfite compounds, and cyclic carbonate compounds It can contain.
- the sultone compounds include 1,3-propane sultone (PS), 1,4-butane sultone, ethene sultone, 1,3-propene sultone (PRS), 1,4-butene sultone, and 1-methyl-1, And at least one compound selected from the group consisting of 3-propene sultone.
- the sultone-based compound may be included in an amount of 0.3% to 5% by weight, specifically 1% to 5% by weight, based on the total weight of the non-aqueous electrolyte. When the content of the sultone-based compound in the non-aqueous electrolyte solution exceeds 5% by weight, a thick film formed of excess additives may be formed, resulting in increased resistance and output deterioration.
- the halogen-substituted carbonate-based compound may include fluoroethylene carbonate (FEC), and may contain 5% by weight or less based on the total weight of the non-aqueous electrolyte.
- FEC fluoroethylene carbonate
- the content of the halogen-substituted carbonate-based compound exceeds 5% by weight, cell swelling inhibiting performance may be deteriorated.
- the nitrile-based compound is succinonitrile (SN), adiponitrile (Adn), acetonitrile, propionitrile, butyronitrile, valeronitrile, caprylonitrile, heptanenitrile, cyclopentane carbonitrile, cyclohexane With carbonitrile, 2-fluorobenzonitrile, 4-fluorobenzonitrile, difluorobenzonitrile, trifluorobenzonitrile, phenylacetonitrile, 2-fluorophenylacetonitrile, and 4-fluorophenylacetonitrile And at least one compound selected from the group consisting of.
- the nitrile-based compound may be included in an amount of 5% by weight or less based on the total weight of the non-aqueous electrolyte, and when it exceeds this, resistance increases due to an increase in the coating formed on the electrode surface, thereby deteriorating battery performance.
- the cyclic sulfite-based compounds include ethylene sulfite, methyl ethylene sulfite, ethyl ethylene sulfite, 4,5-dimethyl ethylene sulfite, 4,5-diethyl ethylene sulfite, propylene sulfite, 4,5 -Dimethyl propylene sulfite, 4,5-diethyl propylene sulfite, 4,6-dimethyl propylene sulfite, 4,6-diethyl propylene sulfite, 1,3-butylene glycol sulfite, and the like.
- It may include 5% by weight or less based on the total weight of the non-aqueous electrolyte.
- the content of the cyclic sulfite-based compound exceeds 5% by weight, a thick film formed by excess additives may be formed, resulting in increased resistance and output deterioration.
- the cyclic carbonate-based compound may include vinylene carbonate (VC) or vinyl ethylene carbonate, and may contain 3% by weight or less based on the total weight of the non-aqueous electrolyte.
- VC vinylene carbonate
- vinyl ethylene carbonate may contain 3% by weight or less based on the total weight of the non-aqueous electrolyte.
- the additives may be included in a mixture of two or more, and the total content of the additives may be 20% by weight or less, specifically 10% by weight or less based on the total weight of the non-aqueous electrolyte.
- the content of the additives exceeds 20% by weight, there is a possibility that a side reaction in the non-aqueous electrolyte is excessively generated during charging and discharging of the battery, and it is not sufficiently decomposed at a high temperature, and unreacted or precipitated in the non-aqueous electrolyte at room temperature. May exist, and thus the life or resistance characteristics of the secondary battery may deteriorate.
- a lithium secondary battery comprising a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte solution for a lithium secondary battery of the present invention.
- the lithium secondary battery of the present invention can be prepared by injecting the non-aqueous electrolyte solution of the present invention into an electrode assembly made of a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode sequentially stacked.
- the positive electrode, the negative electrode, and the separator forming the electrode assembly may be all those commonly used in manufacturing lithium secondary batteries.
- the positive electrode and the negative electrode constituting the lithium secondary battery of the present invention may be manufactured and used in a conventional manner.
- the positive electrode may be manufactured by forming a positive electrode mixture layer on a positive electrode current collector.
- the positive electrode material mixture layer may be formed by coating a positive electrode slurry containing a positive electrode active material, a binder, a conductive material, and a solvent on a positive electrode current collector, followed by drying and rolling.
- the positive electrode current collector is not particularly limited as long as it has conductivity without causing a chemical change in the battery, for example, stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon on the surface of aluminum or stainless steel. , Surface treatment with nickel, titanium, silver, or the like can be used.
- the lithium-cobalt oxide may include LiCoO 2 or the like.
- the lithium-nickel-manganese-cobalt oxide is Li (Ni 1/3 Mn 1/3 Co 1/3 ) O 2 , Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 , Li (Ni 0.5 Mn 0.3 Co 0.2 ) O 2 , Li (Ni 0.7 Mn 0.15 Co 0.15 ) O 2 and Li (Ni 0.8 Mn 0.1 Co 0.1 ) O 2 .
- the lithium-manganese oxide may include LiMn 2 O 4 .
- the positive electrode active material of the present invention in addition to lithium cobalt oxide, lithium-nickel-manganese-cobalt oxide and lithium-manganese oxide, lithium-nickel-based oxides (for example, LiNiO 2, etc.), lithium-nickel-manganese-based Oxides (for example, LiNi 1 - Y Mn Y O 2 (here, 0 ⁇ Y ⁇ 1), LiMn 2 -z Ni z O 4 (here, 0 ⁇ Z ⁇ 2), etc.), lithium-nickel- Cobalt oxide (for example, LiNi 1 -Y1 Co Y1 O 2 (here, 0 ⁇ Y1 ⁇ 1), etc.), lithium-manganese-cobalt oxide (for example, LiCo 1 -Y2 Mn Y2 O 2 ( Here, 0 ⁇ Y2 ⁇ 1), LiMn 2 - z1 Co z1 O 4 (here, 0 ⁇ Z1
- the positive electrode active material may be included in 80% to 99% by weight based on the total weight of solids in the positive electrode slurry.
- the binder is a component that assists in the bonding of the active material and the conductive material and the like to the current collector, and is usually added at 1 to 30% by weight based on the total weight of solids in the positive electrode slurry.
- binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoro Roethylene, polyethylene, polypropylene, ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluorine rubber, and various copolymers.
- PVDF polyvinylidene fluoride
- CMC carboxymethyl cellulose
- EPDM ethylene-propylene-diene monomer
- EPDM ethylene-propylene-diene monomer
- sulfonated EPDM styrene
- the conductive material is usually added in an amount of 1 to 30% by weight based on the total weight of solids in the positive electrode slurry.
- the conductive material is not particularly limited as long as it does not cause a chemical change in the battery and has conductivity.
- carbon black acetylene black (or denka black), ketjen black, channel black, furnace black, lamp black, Or carbon powder such as thermal black;
- Graphite powder such as natural graphite, artificial graphite, or graphite, which has a very developed crystal structure;
- Conductive fibers such as carbon fibers and metal fibers;
- Metal powders such as carbon fluoride powder, aluminum powder, and nickel powder;
- Conductive whiskers such as zinc oxide and potassium titanate;
- Conductive metal oxides such as titanium oxide;
- Conductive materials such as polyphenylene derivatives may be used.
- the solvent may include an organic solvent such as NMP (N-methyl-2-pyrrolidone), and may be used in an amount that becomes a desirable viscosity when the positive electrode active material and optionally a binder and a conductive material are included.
- NMP N-methyl-2-pyrrolidone
- the solid content concentration in the slurry containing the positive electrode active material and, optionally, the binder and the conductive material may be included to be 50% to 95% by weight, preferably 70% to 90% by weight.
- the negative electrode may be manufactured by forming a negative electrode mixture layer on the negative electrode current collector.
- the negative electrode mixture layer may be formed by coating a slurry containing a negative electrode active material, a binder, a conductive material, and a solvent on a negative electrode current collector, followed by drying and rolling.
- the negative electrode current collector generally has a thickness of 3 to 500 ⁇ m.
- the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
- copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, etc. on the surface, aluminum-cadmium alloy, or the like can be used.
- it is also possible to form a fine unevenness on the surface to enhance the bonding force of the negative electrode active material and may be used in various forms such as films, sheets, foils, nets, porous bodies, foams, and nonwoven fabrics.
- the negative electrode active material is capable of doping and dedoping lithium metal, a carbon-based material capable of reversibly intercalating / deintercalating lithium ions, a metal or an alloy of these metals and lithium, a metal composite oxide, and lithium. And at least one selected from the group consisting of transition metal oxides.
- any carbon-based negative electrode active material generally used in lithium ion secondary batteries may be used without particular limitation, and representative examples thereof include crystalline carbon, Amorphous carbon or these can be used together.
- the crystalline carbon include graphite such as amorphous, plate-like, flake-like, spherical or fibrous natural graphite or artificial graphite, and examples of the amorphous carbon include soft carbon (low temperature calcined carbon). Or hard carbon, mesophase pitch carbide, calcined coke, and the like.
- metal or alloys of these metals and lithium examples include Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al And a metal selected from the group consisting of Sn or an alloy of these metals and lithium.
- the metal composite oxide includes PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , Bi 2 O 5 , Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), and Sn x Me 1 -x Me ' y O z (Me: Mn, Fe , Pb, Ge; Me ': Al, B, P, Si, Group 1, 2, 3 elements of the periodic table, halogen; 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8) Any one selected from the group can be used.
- Materials capable of doping and dedoping the lithium include Si, SiO x (0 ⁇ x ⁇ 2), and Si-Y alloys (where Y is an alkali metal, alkaline earth metal, group 13 element, group 14 element, transition metal, Rare earth elements and elements selected from the group consisting of a combination thereof, not Si), Sn, SnO 2 , Sn-Y (Y is an alkali metal, alkaline earth metal, group 13 element, group 14 element, transition metal, rare earth) Element and a combination of these, and not Sn), and the like, and may be used by mixing at least one of them and SiO 2 .
- the elements Y are Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po, and combinations thereof.
- transition metal oxide examples include lithium-containing titanium composite oxide (LTO), vanadium oxide, and lithium vanadium oxide.
- the negative active material may be included in an amount of 80% to 99% by weight based on the total weight of solids in the negative electrode slurry.
- the binder is a component that assists in bonding between the conductive material, the active material, and the current collector, and is usually added in an amount of 1 to 30% by weight based on the total weight of solids in the negative electrode slurry.
- binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoro Roethylene, polyethylene, polypropylene, ethylene-propylene-diene monomer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluorine rubber, and various copolymers thereof.
- PVDF polyvinylidene fluoride
- CMC carboxymethyl cellulose
- EPDM ethylene-propylene-diene monomer
- sulfonated-EPDM styrene-butadiene rubber
- fluorine rubber
- the conductive material is a component for further improving the conductivity of the negative electrode active material, and may be added at 1 to 20% by weight based on the total weight of solids in the negative electrode slurry.
- the conductive material is not particularly limited as long as it does not cause a chemical change in the battery and has conductivity, for example, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, or thermal black.
- Carbon powder such as natural graphite, artificial graphite, or graphite, which has a very developed crystal structure
- Conductive fibers such as carbon fibers and metal fibers
- Metal powders such as carbon fluoride powder, aluminum powder, and nickel powder
- Conductive whiskers such as zinc oxide and potassium titanate
- Conductive metal oxides such as titanium oxide
- Conductive materials such as polyphenylene derivatives may be used.
- the solvent may include water or an organic solvent such as NMP and alcohol, and may be used in an amount that becomes a desirable viscosity when the negative electrode active material and optionally a binder and a conductive material are included.
- the solid content concentration in the slurry containing the negative electrode active material, and optionally the binder and the conductive material may be included to be 50% to 95% by weight, preferably 70% to 90% by weight.
- the separator serves to block internal short circuits of both electrodes and impregnate the electrolyte.
- a separator composition is prepared by mixing a polymer resin, a filler, and a solvent, and then the separator composition is directly coated on the electrode and dried. After forming a separator film or casting and drying the separator composition on a support, the separator film peeled from the support may be formed by lamination on the electrode.
- the separator is a porous polymer film commonly used, such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer.
- the polymer film may be used alone or by laminating them, or a conventional porous nonwoven fabric, for example, a high melting point glass fiber, a polyethylene terephthalate fiber, or the like may be used, but is not limited thereto.
- the pore diameter of the porous separator is generally from 0.01 to 50 ⁇ m, porosity may be 5% to 95%.
- the thickness of the porous separator may generally range from 5 to 300 ⁇ m.
- the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape, a square shape, a pouch shape or a coin shape using a can.
- EC ethylene carbonate
- EMC ethyl methyl carbonate
- EC ethylene carbonate
- EMC ethyl methyl carbonate
- EC ethylene carbonate
- EMC ethyl methyl carbonate
- EC ethylene carbonate
- EMC ethyl methyl carbonate
- a non-aqueous electrolyte solution was prepared by dissolving ethylene carbonate (EC): ethyl methyl carbonate (EMC) in a non-aqueous organic solvent LiPF 6 mixed at a volume ratio of 30:70 to be 1.2 M.
- EC ethylene carbonate
- EMC ethyl methyl carbonate
- Lithium salt Organic solvent additive Composition (volume ratio) Content (g) Chemical formula Content (g)
- Example 1 1.2 M LiPF 6 EC: EMC 30: 70 99 1a
- a cathode active material LiMn 2 O 4
- a conductive material carbon black
- a binder polyvinylidene fluoride (PVDF)
- NMP solvent N-methyl-2-pyrrolidone
- the positive electrode was added to 5 mL of the non-aqueous electrolyte prepared in Example 1 and Example 2 and the non-aqueous electrolyte prepared in Comparative Example 1, respectively, and stored at 60 ° C. in SOC 0% for 2 weeks.
- an electrolytic solution using an inductively coupled plasma atomic emission spectrophotometer (ICP-AES, inductively coupled plasma atomic emission spectrophotometer, ICPS-8100, manufactured by Shimadzu, RF source: 27.12 MHz, sample uptake rate: 0.8 ml / min)
- ICP-AES inductively coupled plasma atomic emission spectrophotometer
- ICPS-8100 inductively coupled plasma atomic emission spectrophotometer
- the non-aqueous electrolytes of Examples 1 and 2 of the present invention containing additives include HF and PF 5, which are decomposition products of lithium salts in which a compound containing a Lewis base contained as an additive is generated at a high temperature. Since it can be effectively removed, it was confirmed that the effect of suppressing metal elution from the positive electrode was significantly improved compared to the non-aqueous electrolyte solution of Comparative Example 1 without additives, and it was confirmed that less Mn ions were detected.
- the ionic conductivity of the non-aqueous electrolytes of Examples 3 and 4 was measured using a METTLER TOLEDO Seven Excellence S700 equipment. Specifically, the non-aqueous electrolyte prepared in Examples 3 and 4 and the non-aqueous electrolyte prepared in Comparative Example 2 were respectively filled in the bath so that the probe for measuring ion conductivity was submerged, and the ion conductivity was measured through the impregnated probe. It was measured. Resistance was calculated by applying the measured ion conductivity value to Equation 1 below, and the results are shown in FIG. 2.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
Abstract
본 발명은 리튬 이치전지용 비수전해액 및 이를 포함하는 리튬 이차전지에 관한 것으로, 구체적으로 리튬염; 유기용매; 및 첨가제를 포함하고, 상기 첨가제는 화학식 1로 표시되는 화합물을 포함하는 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지에 관한 것이다.
Description
관련 출원(들)과의 상호 인용
본 출원은 2018년 09월 12일자 한국 특허 출원 제2018-0108960호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지에 관한 것이다.
정보사회의 발달로 인한 개인 IT 디바이스와 전산망이 발달되고 이에 수반하여 전반적인 사회의 전기에너지에 대한 의존도가 높아지면서, 전기 에너지를 효율적으로 저장하고 활용하기 위한 기술 개발이 요구되고 있다.
이를 위해 개발된 기술 중 여러 용도에 가장 적합한 기술이 이차전지 기반 기술이다. 이차전지의 경우 개인 IT 디바이스 등에 적용될 수 있을 정도로 소형화가 가능하며, 전기자동차, 전력 저장 장치 등에 적용될 수도 있기 때문에 이에 대한 관심이 대두되고 있다. 이차전지 기술 중에서도 이론적으로 에너지 밀도가 가장 높은 전지 시스템인 리튬 이온 전지가 각광을 받고 있으며, 현재 여러 디바이스에 적용되고 있다.
리튬 이온 전지 시스템의 경우 리튬 금속을 직접 시스템에 적용하였던 초창기와는 달리, 리튬 금속이 직접적으로 전지 내부에 사용되지 않는 시스템으로 구현되고 있다. 즉, 리튬 이온 전지는 크게 리튬을 함유하고 있는 전이금속 산화물로 구성된 양극과, 리튬을 저장할 수 있는 탄소계 소재 및 실리콘 등의 합금계 소재로 이루어진 음극, 리튬 이온을 전달하는 매개체가 되는 전해액, 및 분리막으로 구성되어 있다.
한편, 상기 리튬 이온 전지용 전해액은 전지의 안정성(stability)과 안전성(safety) 등에 많은 영향을 주는 구성 성분으로 알려지면서, 이에 대해 많은 연구가 진행되고 있다.
상기 전해액은 리튬염과 이를 용해시키는 유기용매, 그리고 기능성 첨가제 등으로 구성된다. 상기 리튬염은 LiPF6, LiBF4, LiFSI (lithium fluorosulfonyl imide, LiN(SO2F)2), LiTFSI (lithium (bis)trifluoromethanesulfonyl imide, LiN(SO2CF3)2) 또는 LiBOB (lithium bis(oxalate) borate, LiB(C2O4)2) 등이 이용되고 있다. 또한, 상기 유기용매의 경우에는 카보네이트계 유기용매, 에스터(ester)계 유기용매 또는 이터(ether)계 유기용매 등이 이용되고 있다.
한편, 리튬 이온 전지의 경우, 고온에서의 충방전 혹은 저장 시의 저항 증가와 용량 감퇴가 성능의 열화에 있어서 큰 문제점으로 제시되고 있으며, 이러한 문제의 원인 중 하나로 제시되고 있는 것이 고온에서 전해액의 열화로 발생하는 부반응, 그 중에서도 고온에서 리튬염의 분해로 인한 열화이다. 고온에서 리튬염의 부산물이 활성화 후 양극 및 음극의 표면에 형성된 피막을 분해시킬 경우, 피막의 부동태(passivation) 능력을 떨어뜨리는 문제가 야기되며, 이로 인하여 전해액의 추가적인 분해와 이에 수반된 자가 방전을 유발시키는 문제가 있다.
특히, 리튬 이온 전지는 음극으로 흑연계 음극을 사용하는 경우가 대부분인데, 이때 상기 흑연의 작동 전위는 0.3 V (vs. Li/Li+) 이하로 리튬 이온 전지에 사용되는 전해액의 전기화학적 전위창보다 낮다. 따라서, 음극보다 전해액이 먼저 환원되어 분해되고, 이렇게 환원 분해된 산물은 리튬 이온은 투과시키지만, 전해액의 추가적인 분해는 억제하는 고체 전해질 피막 (Solid electrolyte interphase, 이하 "SEI" 막"이라 칭함)을 형성하게 된다.
한편, 상기 SEI 막이 추가적인 전해액 분해를 억제시킬 수 있을 정도로 충분한 부동태 능력을 갖추지 못하면, 저장 중에 전해액이 추가적으로 분해되어 충전된 흑연이 자가 방전되면서, 결론적으로 전체 전지의 전위가 저하하는 현상이 나타나게 된다.
이러한 부동태 능력에 영향을 줄 수 있는 요소 중 하나는 전해질염으로 널리 사용되는 리튬염인 LiPF6의 열분해로 생성되는 HF와 PF5이다. 이러한 산의 공격에 의하여 피막 혹은 전극 표면이 열화 되면서, 양극에서는 전이금속 용출이 발생하여 저항이 증가되고, 레독스 센터 (redox center)를 소실하여 용량이 감퇴할 수 있다. 또한, 용출된 금속 이온의 경우 음극에 전착되어, 금속의 전착과 추가적인 전해질 분해로 인한 전자의 소모로 비가역 용량의 증가가 발생하여 셀 용량 감퇴가 발생할 뿐만 아니라, 저항 증가 및 흑연 음극의 자가 방전을 유발할 수 있다.
이에, 고온에서 SEI 막의 부동태 능력을 유지하기 위해, 환원 분해가 잘 발생할 수 있는 이중 혹은 삼중 결합을 포함하는 전해액 첨가제를 도입하거나, 또는 열/수분 등에 인하여 발생하는 리튬염, 즉 LiPF6의 분해산물인 HF 및 PF5 등을 제거할 수 있는 첨가제를 도입하여, 피막의 손상을 억제하는 것이 주효한 해결책이라 할 수 있다.
이에, 리튬염의 분해로 인해 발생하는 부산물을 제거하여, 고온에서 전지의 열화의 원인을 제거할 수 있는 첨가제의 제안과 도입이 시급한 상황이다.
상기 목적을 달성하기 위하여, 본 발명은 HF 및 PF5 제거 효과가 우수한 비수전해액 첨가제를 포함하는 리튬 이차전지용 비수전해액을 제공하고자 한다.
또한, 본 발명은 상기 리튬 이차전지용 비수전해액을 포함하는 리튬 이차전지를 제공하고자 한다.
상기의 목적을 달성하기 위한 본 발명의 일실시예에서,
리튬염; 유기용매; 및 첨가제를 포함하고,
상기 첨가제로 하기 화학식 1로 표시되는 화합물을 포함하는 리튬 이차전지용 비수전해액을 제공한다.
(화학식 1)
상기 화학식 1에서,
R1 내지 R3는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 5의 알킬기다.
또한, 본 발명의 일 실시예에서는 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 상기 음극 및 양극 사이에 개재되는 분리막; 및 본 발명에 따른 리튬 이차전지용 비수전해액을 포함하는 리튬 이차전지를 제공한다.
본 발명의 비수전해액에 포함되는 루이스(Lewis) 염기계 물질인 화학식 1로 표시되는 화합물은 리튬염(LiPF6)의 분해산물로 형성되는 HF와 PF5 등의 루이스 산(Lewis acid)을 제거(scavenging)하여 양극 표면의 피막 열화를 방지함으로써, 양극으로부터의 금속 용출을 억제할 수 있다. 또한, 이에 따른 추가적인 전해질 분해 및 음극 저항 증가를 억제할 수 있다. 따라서, 화학식 1로 표시되는 화합물을 포함하는 본 발명의 비수전해액을 사용하면, 저항이 감소하고, 용량 특성이 향상된 리튬 이차 전지를 구현할 수 있다.
본 명세서에 첨부되는 다음의 도면은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니다.
도 1은 본 발명의 실험예 1에 따른 금속 용출 억제 효과 결과를 나타낸 그래프이다.
도 2는 본 발명의 실험예 2에 따라 산출된 저항 값을 나타낸 그래프이다.
이하, 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
양/음극 표면에 전해액 분해로 형성되는 SEI 막의 부동태 능력은 고온 저장 성능에 큰 영향을 주는 요소이다. 한편, 리튬 이온 전지에 널리 사용되는 리튬염인 LiPF6의 열분해로 생성되는 HF와 PF5는 피막을 열화시키는 요소 중 하나로 알려져 있다. 이러한 산의 공격에 의하여 양극 표면이 열화되면 전이금속 용출이 발생하여 표면의 국부 구조의 변화로 전극의 표면 저항이 증가되고, 레독스 센터를 소실하여 이론 용량이 줄어들기 때문에 발현 용량이 감소할 수 있다. 또한, 용출된 금속 이온은 강한 환원 전위 대역에서 반응하는 음극에 전착되어, 전자를 소모하고, 피막을 파괴하여 전극 표면을 노출시키기 때문에, 추가적인 전해질 분해를 발생시켜 음극의 저항을 증가시키고, 비가역 용량을 증가시켜 셀의 용량을 지속적으로 저하시키는 문제가 있다.
이에, 본 발명에서는 전지의 열화를 억제하기 위하여, 전해액 내부에서 발생된 PF5나 HF을 제거할 수 있는 루이스 염기 물질을 비수전해액 첨가제를 포함하는 비수전해액을 구비함으로써, 양극 표면의 피막 열화를 방지하여, 양극으로부터의 금속 용출이 억제된 리튬 이차전지를 제공하고자 한다.
비수전해액
먼저, 본 발명의 일 실시예에서는
리튬염; 유기용매; 및 첨가제를 포함하고,
상기 첨가제는 하기 화학식 1로 표시되는 화합물을 포함하는 리튬 이차전지용 비수전해액을 제공한다.
(화학식 1)
상기 화학식 1에서,
R1 내지 R3는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 5의 알킬기다.
(1)
리튬염
상기 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예를 들어 양이온으로 Li+를 포함하고, 음이온으로는 F-, Cl-, Br-, I-, NO3
-, N(CN)2
-, BF4
-, ClO4
-, B10Cl10
-, AlCl4
-, AlO4
-, PF6
-, CF3SO3
-, CH3CO2
-, CF3CO2
-, AsF6
-, SbF6
-, CH3SO3
-, (CF3CF2SO2)2N-, (CF3SO2)2N-, (FSO2)2N-, BF2C2O4
-, BC4O8
-, PF4C2O4
-, PF2C4O8
-, (CF3)2PF4
-, (CF3)3PF3
-, (CF3)4PF2
-, (CF3)5PF-, (CF3)6P-, C4F9SO3
-, CF3CF2SO3
-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, CF3(CF2)7SO3
-, 및 SCN-로 이루어진 군으로부터 선택된 적어도 어느 하나를 포함할 수 있다.
구체적으로, 상기 리튬염은 LiCl, LiBr, LiI, LiBF4, LiClO4, LiB10Cl10, LiAlCl4, LiAlO4, LiPF6, LiCF3SO3, LiCH3CO2, LiCF3CO2, LiAsF6, LiSbF6, LiCH3SO3, LiBETI (lithium bisperfluoroethanesulfonimide, LiN(SO2CF2CF3)2, LiTFSI (lithium (bis)trifluoromethanesulfonimide, LiN(SO2CF3)2) 및 LiFSI (Lithium bis(fluorosulfonyl)imide, LiN(SO2F)2)로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 포함할 수 있다. 이들 외에도 리튬 이차전지의 전해액에 통상적으로 사용되는 리튬염이 제한 없이 사용할 수 있다.
상기 리튬염은 통상적으로 사용 가능한 범위 내에서 적절히 변경할 수 있으나, 최적의 전극 표면의 부식 방지용 피막 형성 효과를 얻기 위하여, 전해액 내에 0.8 M 내지 3.0 M의 농도, 구체적으로 1.0M 내지 3.0M 농도로 포함될 수 있다.
상기 리튬염의 농도가 0.8 M 미만이면, 리튬 이온의 이동성이 감소하여 고온 저장 시 사이클 특성 개선의 효과가 미미하고, 상기 리튬염의 농도가 3.0 M 농도를 초과하면 비수 전해액의 점도가 과도하게 증가하여 비수 전해액의 함침성이 저하될 수 있고, 피막 형성 효과가 감소할 수 있다.
(2)
유기용매
상기 유기 용매로는, 리튬 전해질에 통상적으로 사용되는 다양한 유기 용매들이 제한 없이 사용될 수 있다. 예를 들어, 상기 유기 용매는 환형 카보네이트계 유기 용매, 선형 카보네이트계 유기 용매 또는 이들의 혼합 유기 용매를 포함할 수 있다.
상기 환형 카보네이트계 유기용매는 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시킬 수 있는 유기용매로서, 그 구체적인 예로 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트 및 비닐렌 카보네이트로 이루어진 군으로부터 선택되는 적어도 하나 이상의 유기용매를 포함할 수 있으며, 이 중에서도 에틸렌 카보네이트 및 프로필렌 카보네이트(PC) 중 적어도 하나 이상을 포함할 수 있다.
또한, 상기 선형 카보네이트계 유기 용매는 저점도 및 저유전율을 가지는 유기용매로서, 그 대표적인 예로 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군으로부터 선택되는 적어도 하나 이상의 유기용매를 사용할 수 있으며, 구체적으로 에틸메틸 카보네이트(EMC)를 포함할 수 있다.
상기 환형 카보네이트계 유기용매 및 선형 카보네이트계 유기용매는 2:8 내지 5:5, 구체적으로 2:8 내지 4:6 부피로 혼합하여 사용될 수 있다.
상기 환형 카보네이트계 유기용매와 선형 카보네이트계 유기용매의 부피비는 이차전지 제조 시에 고온 및 상온에서의 용량 및 사이클 특성을 모두 향상시키는데 중요한 영향을 미칠 수 있으며, 상기 환형 카보네이트 유기용매 및 선형 에스테르 유기용매의 부피 비율이 상기 범위를 만족하는 경우 두 유기 용매의 혼용에 의한 시너지 효과가 발현될 수 있다.
또한, 상기 유기용매는 높은 이온 전도율을 갖는 비수 전해액을 제조하기 위하여, 상기 환형 카보네이트계 유기용매 및/또는 선형 카보네이트계 유기용매에 선형 에스테르계 유기용매 및/또는 환형 에스테르계 유기용매를 추가로 포함할 수도 있다.
이러한 선형 에스테르계 유기용매는 알킬 아세테이트 또는 알킬 프로피오네이트 중 적어도 하나 이상일 수 있다.
상기 알킬 아세테이트는 메틸 아세테이트, 에틸 아세테이트 및 프로필 아세테이트 중 적어도 하나 이상을 포함할 수 있다. 또한, 상기 알킬 프로피오네이트는 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트 및 부틸 프로피오네이트로 이루어진 군으로부터 선택되는 적어도 하나 이상을 포함할 수 있다. 구체적으로, 상기 선형 에스테르계 유기용매는 알킬 아세테이트 보다 높은 고전압 안전성 및 열적 안정성을 가지는 알킬 프로피오네이트를 포함할 수 있다.
또한, 상기 환형 에스테르계 유기용매로는 γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤 및 ε-카프로락톤 중 적어도 하나 이상을 들 수 있다.
한편, 상기 유기용매는 필요에 따라 리튬 이차전지용 전해액에 통상적으로 사용되는 유기용매를 제한 없이 추가하여 사용할 수 있다. 예를 들면, 에테르계 유기용매, 아미드계 유기용매 및 니트릴계 유기용매 중 적어도 하나 이상의 유기용매를 추가로 포함할 수도 있다.
(3) 첨가제 (1)
본 발명의 리튬 이차전지용 비수 전해액은 첨가제로 하기 화학식 1로 표시되는 화합물을 포함할 수 있다.
(화학식 1)
상기 화학식 1에서,
R1 내지 R3는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 5의 알킬기다.
상기 화학식 1로 표시되는 화합물은 리튬염의 PF6
-와 같은 음이온의 분해를 억제할 수는 없지만, 구조 내에 루이스 염기로 기능하는 카르보닐기(C=O)를 함유하기 때문에, 리튬염의 분해로 생성되는 HF 및 PF5와 같은 루이스 산과 결합하여 이들을 제거할 수 있다. 따라서 루이스 산으로부터 기인하는 양극 표면이 피막 열화를 억제할 수 있으므로, 양극으로부터의 전이금속 용출 억제 및 양/음극 표면에 형성된 피막의 화학 반응으로 인한 열화 거동을 억제할 수 있다. 또한, 용출된 금속 이온이 음극에 전착되어 음극 표면의 피막 손상을 억제하는 것을 방지할 수 있고, 추가적인 전해액 분해를 막을 수 있다. 또한, 본 발명의 화학식 1로 표시되는 화합물은 비수전해액 내부에서 음이온 수용체(receptor)로 작용하여, 리튬염의 부산물, 예컨대 LiF 염에 의한 부반응을 방지하기 때문에, 이온전도도와 자유(free) Li+ 이온의 수가 감소하는 것을 방지하여, 전지의 저항 증가를 억제하고, 전지 용량을 개선할 수 있다. 더욱이, 상기 화학식 1로 표시되는 화합물의 경우, 하기 반응식 1과 같은 화학 반응에 의해 산소 라디칼을 제거하는 산소 제거제의 역할을 수행할 수 있다 (J. Kundu et al., Mutation Research, 768 (2014) 22-34 참고). 따라서, 이를 전해액 첨가제로 포함하는 경우, 고온 저장 시 양극에서 발생하는 산소 라디칼을 제거하여, 산소 라디칼과 전해액의 부반응을 억제할 수 있으므로, 전해액의 부반응으로 야기되는 기체 발생을 막아 고온 저장 시 리튬 이차전지의 스웰링(swelling) 현상을 효과적으로 개선할 수도 있다.
[반응식 1]
한편, 상기 화학식 1로 표시되는 화합물에서, R1 및 R2는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 3의 알킬기이고, R3는 치환 또는 비치환된 탄소수 1 또는 2의 알킬기일 수 있다.
구체적으로, 상기 화학식 1로 표시되는 화합물은 하기 1a 및 화학식 1b로 표시되는 화합물들로 이루어진 군으로부터 선택되는 적어도 어느 하나일 수 있다.
(화학식 1a)
(화학식 1b)
상기 화학식 1로 표시되는 화합물은 비수전해액 전체 중량을 기준으로 0.01 중량% 내지 1.0 중량%, 구체적으로 0.2 중량% 내지 0.9 중량%, 보다 구체적으로 0.3 내지 0.9 중량%의 범위로 포함될 수 있다.
상기 화학식 1로 표시되는 화합물이 상기 범위로 포함되는 경우, SEI 막의 안정화 효과나 금속 용출 억제 효과가 우수하고, 첨가제의 분해에 의한 피막의 저항 증가를 효과적으로 제어하여 제반 성능이 향상된 이차전지를 제조할 수 있다. 특히, 상기 화학식 1로 표시되는 화합물이 0.2 중량% 내지 0.9 중량%로 포함되는 경우, 염의 열분해 산물을 제거 효과 및 전지의 저항 증가 억제 효과가 우수하여 전지의 용량 특성을 보다 개선할 수 있다.
(4) SEI막 형성용 첨가제
한편, 본 발명의 비수전해액은 필요에 따라서 SEI막 형성용 첨가제를 더 포함할 수 있다. 본 발명에서 사용 가능한 SEI막 형성용 첨가제로는 설톤계 화합물, 할로겐 치환된 카보네이트계 화합물, 니트릴계 화합물, 환형 설파이트계 화합물, 및 환형 카보네이트계 화합물로 이루어진 군으로부터 선택된 1종 이상의 부가적 첨가제를 포함할 수 있다.
상기 설톤계 화합물은 1,3-프로판 설톤(PS), 1,4-부탄 설톤, 에텐설톤, 1,3-프로펜 설톤(PRS), 1,4-부텐 설톤, 및 1-메틸-1,3-프로펜 설톤으로 이루어진 군으로부터 선택된 적어도 하나 이상의 화합물을 들 수 있다. 상기 설톤계 화합물은 비수성 전해액 전체 중량을 기준으로 0.3중량% 내지 5중량%, 구체적으로 1 중량% 내지 5 중량%로 포함될 수 있다. 상기 비수성 전해액 중에 설톤계 화합물의 함량이 5중량%를 초과하는 경우, 과량의 첨가제의 의한 두꺼운 피막이 형성되어 저항 증가와 출력 열화가 발생할 수 있다.
또한, 상기 할로겐 치환된 카보네이트계 화합물은 플루오로에틸렌 카보네이트(FEC)를 들 수 있으며, 비수성 전해액 전체 중량을 기준으로 5중량% 이하로 포함할 수 있다. 상기 할로겐 치환된 카보네이트계 화합물의 함량이 5중량%를 초과하는 경우, 셀 팽윤 억제 성능이 열화될 수 있다.
또한, 상기 니트릴계 화합물은 숙시노니트릴(SN), 아디포니트릴(Adn), 아세토니트릴, 프로피오니트릴, 부티로니트릴, 발레로니트릴, 카프릴로니트릴, 헵탄니트릴, 사이클로펜탄 카보니트릴, 사이클로헥산 카보니트릴, 2-플루오로벤조니트릴, 4-플루오로벤조니트릴, 다이플루오로벤조니트릴, 트리플루오로벤조니트릴, 페닐아세토니트릴, 2-플루오로페닐아세토니트릴, 및 4-플루오로페닐아세토니트릴로 이루어진 군에서 선택되는 적어도 하나 이상의 화합물을 들 수 있다.
상기 니트릴계 화합물은 비수성 전해액 전체 중량을 기준으로 5중량% 이하로 포함될 수 있으며, 이를 초과하는 경우, 전극 표면에 형성되는 피막 증가로 저항이 커져, 전지 성능이 열화될 수 있다.
또한, 상기 환형 설파이트계 화합물로는 에틸렌 설파이트, 메틸 에틸렌 설파이트, 에틸 에틸렌 설파이트, 4,5-디메틸 에틸렌 설파이트, 4,5-디에틸 에틸렌 설파이트, 프로필렌 설파이트, 4,5-디메틸 프로필렌 설파이트, 4,5-디에틸 프로필렌설파이트, 4,6-디메틸 프로필렌 설파이트, 4,6-디에틸 프로필렌 설파이트, 1,3-부틸렌 글리콜 설파이트 등을 들 수 있으며, 비수성 전해액 전체 중량을 기준으로 5중량% 이하로 포함할 수 있다. 상기 환형 설파이트계 화합물의 함량이 5중량%를 초과하는 경우, 과량의 첨가제의 의한 두꺼운 피막이 형성되어 저항 증가와 출력 열화가 발생할 수 있다.
또한, 상기 환형 카보네이트계 화합물은 비닐렌카보네이트(VC) 또는 비닐에틸렌 카보네이트를 들 수 있으며, 비수성 전해액 전체 중량을 기준으로 3중량% 이하로 포함할 수 있다. 상기 비수성 전해액 중에 환형 카보네이트계 화합물의 함량이 3중량%를 초과하는 경우, 셀 팽윤 억제 성능이 열화될 수 있다.
상기 첨가제들은 2 종 이상이 혼합되어 포함될 수 있으며, 첨가제들의 전체 함량은 비수성 전해액 전체 중량을 기준으로 20 중량% 이하, 구체적으로 10중량% 이하로 포함될 수 있다. 상기 첨가제들의 함량이 20중량%를 초과하면 전지의 충방전시 비수성 전해액 내의 부반응이 과도하게 발생할 가능성이 있을 뿐만 아니라, 고온에서 충분히 분해되지 못하여, 상온에서 비수성 전해액 내에서 미반응물 또는 석출된 채로 존재하고 있을 수 있으며, 이에 따라 이차전지의 수명 또는 저항특성이 저하될 수 있다.
리튬 이차전지
또한, 본 발명의 일 실시예에서는,
양극, 음극, 상기 양극 및 음극 사이에 개재된 분리막 및 본 발명의 리튬 이차전지용 비수전해액을 포함하는 리튬 이차전지를 제공한다.
구체적으로, 본 발명의 리튬 이차전지는 양극, 음극 및 양극과 음극 사이에 개재된 분리막이 순차적으로 적층되어 이루어진 전극조립체에 본 발명의 비수전해액을 주입하여 제조할 수 있다. 이때, 전극조립체를 이루는 양극, 음극 및 분리막은 리튬 이차전지 제조에 통상적으로 사용되던 것들이 모두 사용될 수 있다.
한편, 상기 본 발명의 리튬 이차전지를 구성하는 양극 및 음극은 통상적인 방법으로 제조되어 사용될 수 있다.
(1) 양극
먼저, 상기 양극은 양극 집전체 상에 양극 합제층을 형성하여 제조할 수 있다. 상기 양극 합제층은 양극활물질, 바인더, 도전재 및 용매 등을 포함하는 양극 슬러리를 양극 집전체 상에 코팅한 후, 건조 및 압연하여 형성할 수 있다.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
상기 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 코발트, 망간, 니켈 또는 알루미늄 중에서 선택되는 1종 이상의 금속과 리튬을 포함하는 리튬 전이금속 산화물을 포함할 수 있으며, 구체적으로는 전지의 용량 특성 및 안전성이 높은 리튬 코발트 산화물, 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(NipCoqMnr1)O2(여기에서, 0<p<1, 0<q<1, 0<r1<1, p+q+r1=1) 또는 Li(Nip1Coq1Mnr2)O4(여기에서, 0<p1<2, 0<q1<2, 0<r2<2, p1+q1+r2=2) 등) 및 리튬-망간계 산화물로 이루어진 군으로부터 선택된 적어도 하나 이상의 활물질을 포함할 수 있으며, 보다 구체적으로 리튬-망간계 산화물을 포함할 수 있다.
상기 리튬-코발트계 산화물은 LiCoO2 등을 들 수 있다. 또한, 상기 리튬-니켈-망간-코발트계 산화물은 Li(Ni1/3Mn1/3Co1/3)O2, Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2 및 Li(Ni0.8Mn0.1Co0.1)O2 를 들 수 있다. 또한, 상기 리튬-망간계 산화물은 LiMn2O4을 들 수 있다.
한편, 본 발명의 양극 활물질은 리튬 코발트 산화물, 리튬-니켈-망간-코발트계 산화물 및 리튬-망간계 산화물 외에도, 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1
-
YMnYO2(여기에서, 0<Y<1), LiMn2
-zNizO4(여기에서, 0<Z<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1
-Y1CoY1O2(여기에서, 0<Y1<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1
-Y2MnY2O2(여기에서, 0<Y2<1), LiMn2
-
z1Coz1O4(여기에서, 0<Z1<2) 등) 및 리튬-니켈-코발트-전이금속(M) 산화물(예를 들면, Li(Nip2Coq2Mnr3MS2)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군으로부터 선택되고, p2, q2, r3 및 s2는 각각 독립적인 원소들의 원자분율로서, 0<p2<1, 0<q2<1, 0<r3<1, 0<s2<1, p2+q2+r3+s2=1이다))로 이루어진 군으로부터 선택된 적어도 하나 이상의 리튬 전이금속 산화물을 더 포함할 수 있다.
상기 양극 활물질은 양극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99 중량%로 포함될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 모노머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 도전재는 통상적으로 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다.
이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 카본블랙, 아세틸렌 블랙(또는 덴카 블랙), 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 또는 서멀 블랙 등의 탄소 분말; 결정구조가 매우 발달된 천연 흑연, 인조흑연, 또는 그라파이트 등의 흑연 분말; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 용매는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 상기 양극 활물질 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 양극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 슬러리 중의 고형분 농도가 50 중량% 내지 95 중량%, 바람직하게 70 중량% 내지 90 중량%가 되도록 포함될 수 있다.
(2) 음극
또한, 상기 음극은 음극 집전체 상에 음극 합제층을 형성하여 제조할 수 있다. 상기 음극 합제층은 음극 집전체 상에 음극활물질, 바인더, 도전재 및 용매 등을 포함하는 슬러리를 코팅한 후, 건조 및 압연하여 형성할 수 있다.
상기 음극 집전체는 일반적으로 3 내지 500㎛의 두께를 가진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
또한, 상기 음극활물질은 리튬 금속, 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 탄소계 물질, 금속 또는 이들 금속과 리튬의 합금, 금속 복합 산화물, 리튬을 도프 및 탈도프할 수 있는 물질, 및 전이 금속 산화물로 이루어진 군으로부터 선택된 적어도 하나 이상을 포함할 수 있다.
상기 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 탄소 물질로는, 리튬 이온 이차전지에서 일반적으로 사용되는 탄소계 음극 활물질이라면 특별히 제한 없이 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 인편상(flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본(soft carbon: 저온 소성 탄소) 또는 하드 카본(hard carbon), 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.
상기 금속 또는 이들 금속과 리튬의 합금으로는 Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속 또는 이들 금속과 리튬의 합금이 사용될 수 있다.
상기 금속 복합 산화물로는 PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, Bi2O5, LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), 및 SnxMe1
-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 로 이루어진 군에서 선택되는 것이 사용될 수 있다.
상기 리튬을 도프 및 탈도프할 수 있는 물질로는 Si, SiOx(0<x≤2), Si-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님), Sn, SnO2, Sn-Y(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있고, 또한 이들 중 적어도 하나와 SiO2를 혼합하여 사용할 수도 있다. 상기 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po, 및 이들의 조합으로 이루어진 군에서 선택될 수 있다.
상기 전이 금속 산화물로는 리튬 함유 티타늄 복합 산화물(LTO), 바나듐 산화물, 리튬 바나듐 산화물 등을 들 수 있다.
상기 음극 활물질은 음극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99 중량%로 포함될 수 있다.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.
상기 도전재는 음극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 20 중량%로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 또는 서멀 블랙 등의 탄소 분말; 결정구조가 매우 발달된 천연 흑연, 인조흑연, 또는 그라파이트 등의 흑연 분말; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 용매는 물 또는 NMP, 알코올 등의 유기용매를 포함할 수 있으며, 상기 음극 활물질 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 슬러리 중의 고형분 농도가 50 중량% 내지 95 중량%, 바람직하게 70 중량% 내지 90 중량%가 되도록 포함될 수 있다.
(3) 분리막
또한, 상기 분리막은 양 전극의 내부 단락을 차단하고 전해질을 함침하는 역할을 하는 것으로, 고분자 수지, 충진제 및 용매를 혼합하여 분리막 조성물을 제조한 다음, 상기 분리막 조성물을 전극 상부에 직접 코팅 및 건조하여 분리막 필름을 형성하거나, 상기 분리막 조성물을 지지체 상에 캐스팅 및 건조된 후, 상기 지지체로부터 박리된 분리막 필름을 전극 상부에 라미네이션하여 형성할 수 있다.
상기 분리막은 통상적으로 사용되는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
이때, 상기 다공성 분리막의 기공 직경은 일반적으로 0.01 내지 50㎛이고, 기공도는 5% 내지 95%일 수 있다. 또한, 상기 다공성 분리막의 두께는 일반적으로 5 내지 300㎛ 범위일 수 있다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
실시예 1.
LiPF6 1.2M가 용해된 비수성 유기용매 (에틸렌 카보네이트(EC):에틸 메틸 카보네이트(EMC)=30:70 부피비) 99g에 첨가제로 화학식 1a의 화합물 1g을 첨가하여 비수전해액을 제조하였다 (하기 표 1 참조).
실시예 2.
LiPF6 1.2M가 용해된 비수성 유기용매 (에틸렌 카보네이트(EC):에틸 메틸 카보네이트(EMC)=30:70 부피비) 99.1g에 첨가제로 화학식 1a의 화합물 0.9g을 첨가하여 비수전해액을 제조하였다 (하기 표 1 참조).
실시예 3.
LiPF6 0.3M 및 LiFSI 0.7M가 용해된 비수성 유기용매 (에틸렌 카보네이트(EC):에틸 메틸 카보네이트(EMC)=30:70 부피비) 99.5g에 첨가제로 화학식 1a의 화합물 0.5g을 첨가하여 비수전해액을 제조하였다 (하기 표 1 참조).
실시예 4.
LiPF6 0.3M 및 LiFSI 0.7M가 용해된 비수성 유기용매 (에틸렌 카보네이트(EC):에틸 메틸 카보네이트(EMC)=30:70 부피비) 98.5g에 첨가제로 화학식 1a의 화합물 1.5g을 첨가하여 비수전해액을 제조하였다 (하기 표 1 참조).
비교예 1.
에틸렌 카보네이트(EC):에틸 메틸 카보네이트(EMC)를 30:70 부피비로 혼합한 비수성 유기용매 LiPF6가 1.2M가 되도록 용해시켜 비수전해액을 제조하였다.
리튬염 | 유기용매 | 첨가제 | |||
구성 (부피비) | 함량(g) | 화학식 | 함량(g) | ||
실시예 1 | 1.2 M LiPF6 | EC:EMC=30:70 | 99 | 1a | 1 |
실시예 2 | 1.2 M LiPF6 | EC:EMC=30:70 | 99.1 | 1a | 0.9 |
실시예 3 | 0.3M LiPF6 | EC:EMC=30:70 | 99.5 | 1a | 0.5 |
0.7M LiFSI | |||||
실시예 4 | 0.3M LiPF6 | EC:EMC=30:70 | 98.5 | 1a | 1.5 |
0.7M LiFSI | |||||
비교예 1 | 1.2 M LiPF6 | EC:EMC=30:70 | 100 | - |
실험예
실험예
1.
양극 활물질(LiMn2O4), 도전재(카본 블랙) 및 바인더(폴리비닐리덴플루오라이드(PVDF))를 97.5:1:1.5 중량 비율로 용제인 N-메틸-2-피롤리돈 (NMP)에 첨가하여 양극 슬러리를 제조하였다. 상기 양극 슬러리를 두께가 20㎛인 양극 집전체 (Al foil)에 도포하고, 건조하고 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
그런 다음, 상기 양극을 실시예 1 및 실시예 2에서 제조한 비수전해액과 상기 비교예 1에서 제조한 비수전해액 5 mL에 각각 투입하고, 60℃에서 SOC 0% 상태로 2 주간 저장하였다.
이어서, 유도결합 플라즈마 방출분광기(ICP-AES, inductively coupled plasma atomic emission spectrophotometer, ICPS-8100, Shimadzu사 제조, RF source: 27.12MHz, 샘플 흡수율(sample uptake rate): 0.8ml/min)를 이용하여 전해액에 용출된 금속, 예컨대 망간(Mn)의 농도를 측정하고, 측정된 금속의 양을 하기 도 1에 나타내었다.
도 1을 참고하면, 첨가제를 포함하는 본 발명의 실시예 1 및 실시예 2의 비수전해액은, 첨가제로 포함된 루이스 염기를 함유하는 화합물이 고온에서 발생하는 리튬염의 분해 산물인 HF 및 PF5를 효과적으로 제거할 수 있기 때문에, 첨가제를 포함하지 않는 비교예 1의 비수전해액에 비하여 양극으로부터 금속 용출 억제 효과가 현저히 향상되어, Mn 이온이 적게 검출되는 것을 확인할 수 있었다.
실험예
2.
실시예 3 및 4의 비수전해액의 이온전도도를 METTLER TOLEDO 사의 Seven Excellence S700 장비를 사용하여 측정하였다. 구체적으로, 수조(bath)에 이온전도도 측정용 프로브(probe)가 잠기도록 실시예 3 및 실시예 4에서 제조된 비수전해액과 비교예 2의 비수전해액을 각각 채우고, 함침된 probe를 통해 이온전도도를 측정하였다. 측정된 이온전도도 값을 하기 식 1에 적용하여 저항을 산출하고, 그 결과를 도 2에 나타내었다.
[식 1]
R = (1/σ)(d/A)
상기 식 1에서,
R: 저항 (mΩ)
A: 리튬 이차전지의 전극 면적 (cm2)
d: 사용된 분리막의 두께 (전극간 거리, cm)
σ: 이온전도도 (mS/cm)
이때, 상기 식에서 이온전도도는 비저항의 역수이므로, 1/σ으로 표시한다.
도 2를 참고하면, 첨가제를 0.5 중량%를 포함하는 실시예 3의 비수전해액의 저항 보다, 첨가제를 1.5 중량%를 포함하는 실시예 4의 비수전해액의 저항이 더 높게 나타나는 것을 확인할 수 있다. 이러한 결과를 통해, 저항이 낮은 실시예 3의 비수전해액을 사용하는 경우, 실시예 4의 비수전해액을 사용하는 경우에 비하여 출력 특성이 향상된다는 것을 예측할 수 있다.
Claims (10)
- 청구항 1에 있어서,상기 화학식 1에서, R1 및 R2는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 3의 알킬기이고, R3는 치환 또는 비치환된 탄소수 1 또는 2의 알킬기인 것인 이차전지용 비수전해액.
- 청구항 1에 있어서,상기 화학식 1로 표시되는 화합물은 리튬 이차전지용 비수전해액 전체 중량을 기준으로 0.01 중량% 내지 1.0 중량%로 포함되는 것인 리튬 이차전지용 비수전해액.
- 청구항 4에 있어서,상기 화학식 1로 표시되는 화합물은 리튬 이차전지용 비수전해액 전체 중량을 기준으로 0.2 중량% 내지 0.9 중량%로 포함되는 것인 리튬 이차전지용 비수전해액.
- 청구항 5에 있어서,상기 화학식 1로 표시되는 화합물은 리튬 이차전지용 비수전해액 전체 중량을 기준으로 0.3 중량% 내지 0.9 중량%로 포함되는 것인 리튬 이차전지용 비수전해액.
- 양극 활물질을 포함하는 양극;음극 활물질을 포함하는 음극;상기 음극 및 양극 사이에 개재되는 분리막; 및청구항 1의 리튬 이차전지용 비수전해액을 포함하는 리튬 이차전지.
- 청구항 7에 있어서,상기 리튬 이차전지는 리튬 코발트 산화물, 리튬-니켈-망간-코발트계 산화물 및 리튬-망간계 산화물로 이루어진 군으로부터 선택된 적어도 하나 이상의 양극 활물질을 포함하는 양극을 포함하는 것인 리튬 이차전지.
- 청구항 8에 있어서,상기 양극활물질은 리튬-망간계 산화물인 것인 리튬 이차전지.
- 청구항 9에 있어서,상기 리튬-망간계 산화물은 LiMn2O4인 것인 리튬 이차전지.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/056,948 US12100806B2 (en) | 2018-09-12 | 2019-09-11 | Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same |
CN201980032283.9A CN112119529B (zh) | 2018-09-12 | 2019-09-11 | 锂二次电池用非水性电解液和包含它的锂二次电池 |
EP19860402.7A EP3783722B1 (en) | 2018-09-12 | 2019-09-11 | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2018-0108960 | 2018-09-12 | ||
KR20180108960 | 2018-09-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020055180A1 true WO2020055180A1 (ko) | 2020-03-19 |
Family
ID=69778221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/011857 WO2020055180A1 (ko) | 2018-09-12 | 2019-09-11 | 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 |
Country Status (5)
Country | Link |
---|---|
US (1) | US12100806B2 (ko) |
EP (1) | EP3783722B1 (ko) |
KR (1) | KR102342258B1 (ko) |
CN (1) | CN112119529B (ko) |
WO (1) | WO2020055180A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112216869A (zh) * | 2020-10-13 | 2021-01-12 | 中国科学院成都有机化学有限公司 | 高压电解液添加剂、高压电解液及锂离子电池 |
US12100806B2 (en) | 2018-09-12 | 2024-09-24 | Lg Energy Solution, Ltd. | Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3730868A (en) * | 1970-12-21 | 1973-05-01 | Gen Electric | Carbon dioxide sensor |
JP2012182071A (ja) * | 2011-03-02 | 2012-09-20 | Sony Corp | リチウムイオン二次電池、電子機器、電動工具、電動車両および電力貯蔵システム |
JP2015149250A (ja) * | 2014-02-07 | 2015-08-20 | 日本電気株式会社 | 電解液およびそれを用いた二次電池 |
EP3163666A1 (en) * | 2014-06-27 | 2017-05-03 | LG Chem, Ltd. | Additive for electrochemical element, electrolyte comprising same, electrode, and electrochemical element |
CN106663837A (zh) * | 2014-06-16 | 2017-05-10 | 日本电气株式会社 | 电解液和二次电池 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07169505A (ja) | 1993-12-14 | 1995-07-04 | Shin Kobe Electric Mach Co Ltd | リチウム二次電池 |
JP4296620B2 (ja) * | 1998-11-18 | 2009-07-15 | ソニー株式会社 | 非水電解液電池 |
KR100527827B1 (ko) * | 2003-03-13 | 2005-11-09 | 삼성에스디아이 주식회사 | 비수성 전해질 및 이를 포함하는 리튬 이차 전지 |
KR100471973B1 (ko) * | 2003-04-03 | 2005-03-10 | 삼성에스디아이 주식회사 | 비수성 전해질 및 이를 포함하는 리튬 이차 전지 |
CN101263622A (zh) | 2005-09-14 | 2008-09-10 | 三菱化学株式会社 | 用于一次电池的非水电解液以及使用该电解液的非水电解质一次电池 |
JP5076902B2 (ja) | 2005-09-14 | 2012-11-21 | 三菱化学株式会社 | 一次電池用非水電解液及びそれを用いた非水電解液一次電池 |
KR20080047642A (ko) | 2006-11-27 | 2008-05-30 | 주식회사 엘지화학 | 향상된 작동효율의 리튬 이차전지 |
CN102082297A (zh) * | 2010-12-30 | 2011-06-01 | 东莞市杉杉电池材料有限公司 | 磷酸铁锂动力锂离子电池电解液 |
US8871385B2 (en) * | 2012-01-27 | 2014-10-28 | Battelle Energy Alliance, Llc | Electrodes including a polyphosphazene cyclomatrix, methods of forming the electrodes, and related electrochemical cells |
KR20140132227A (ko) * | 2013-05-07 | 2014-11-17 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지 |
KR20170028874A (ko) | 2014-04-15 | 2017-03-14 | 와일드캣 디스커버리 테크놀로지스 인크. | 전해질 제제 |
CN105098235A (zh) * | 2014-04-15 | 2015-11-25 | 东莞新能源科技有限公司 | 锂离子二次电池及其电解液 |
US9825323B2 (en) * | 2015-01-06 | 2017-11-21 | Toyota Motor Engineering & Manufacturing North America, Inc. | Quinone-based high energy density liquid active material for flow battery |
US20180006329A1 (en) | 2015-02-04 | 2018-01-04 | 3M Innovative Properties Company | Electrochemical cells that include lewis acid: lewis base complex electrolyte additives |
JP6594436B2 (ja) | 2015-09-10 | 2019-10-23 | 信越化学工業株式会社 | 非水電解質二次電池用負極活物質の製造方法、非水電解質二次電池の製造方法、非水電解質二次電池用負極の製造方法 |
KR102069836B1 (ko) | 2016-03-03 | 2020-01-23 | 주식회사 엘지화학 | 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지 |
US10916807B2 (en) * | 2017-11-30 | 2021-02-09 | Panasonic Intellectual Property Management Co., Ltd. | Lithium air battery that includes nonaqueous lithium ion conductor |
CN108172901A (zh) | 2017-12-21 | 2018-06-15 | 江苏理工学院 | 一种高压锂离子电池电解液的添加剂 |
US10847839B2 (en) * | 2018-08-01 | 2020-11-24 | Uchicago Argonne, Llc | Non-aqueous electrolytes for lithium batteries |
CN112119529B (zh) | 2018-09-12 | 2024-03-01 | 株式会社Lg新能源 | 锂二次电池用非水性电解液和包含它的锂二次电池 |
-
2019
- 2019-09-11 CN CN201980032283.9A patent/CN112119529B/zh active Active
- 2019-09-11 EP EP19860402.7A patent/EP3783722B1/en active Active
- 2019-09-11 US US17/056,948 patent/US12100806B2/en active Active
- 2019-09-11 WO PCT/KR2019/011857 patent/WO2020055180A1/ko unknown
- 2019-09-11 KR KR1020190112755A patent/KR102342258B1/ko active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3730868A (en) * | 1970-12-21 | 1973-05-01 | Gen Electric | Carbon dioxide sensor |
JP2012182071A (ja) * | 2011-03-02 | 2012-09-20 | Sony Corp | リチウムイオン二次電池、電子機器、電動工具、電動車両および電力貯蔵システム |
JP2015149250A (ja) * | 2014-02-07 | 2015-08-20 | 日本電気株式会社 | 電解液およびそれを用いた二次電池 |
CN106663837A (zh) * | 2014-06-16 | 2017-05-10 | 日本电气株式会社 | 电解液和二次电池 |
EP3163666A1 (en) * | 2014-06-27 | 2017-05-03 | LG Chem, Ltd. | Additive for electrochemical element, electrolyte comprising same, electrode, and electrochemical element |
Non-Patent Citations (2)
Title |
---|
J. KUNDU ET AL., MUTATION RESEARCH, vol. 768, 2014, pages 22 - 34 |
See also references of EP3783722A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12100806B2 (en) | 2018-09-12 | 2024-09-24 | Lg Energy Solution, Ltd. | Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same |
CN112216869A (zh) * | 2020-10-13 | 2021-01-12 | 中国科学院成都有机化学有限公司 | 高压电解液添加剂、高压电解液及锂离子电池 |
CN112216869B (zh) * | 2020-10-13 | 2022-08-09 | 中国科学院成都有机化学有限公司 | 高压电解液添加剂、高压电解液及锂离子电池 |
Also Published As
Publication number | Publication date |
---|---|
CN112119529B (zh) | 2024-03-01 |
KR102342258B1 (ko) | 2021-12-24 |
US12100806B2 (en) | 2024-09-24 |
KR20200030473A (ko) | 2020-03-20 |
EP3783722A4 (en) | 2021-08-18 |
CN112119529A (zh) | 2020-12-22 |
US20210184257A1 (en) | 2021-06-17 |
EP3783722B1 (en) | 2023-06-28 |
EP3783722A1 (en) | 2021-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019156539A1 (ko) | 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 | |
WO2018135889A1 (ko) | 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지 | |
WO2021167428A1 (ko) | 리튬 이차 전지용 비수 전해액 및 이를 포함하는 리튬 이차전지 | |
WO2021040388A1 (ko) | 비수 전해질 및 이를 포함하는 리튬 이차전지 | |
WO2022092688A1 (ko) | 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 | |
WO2020197278A1 (ko) | 리튬 이차 전지 | |
WO2023068807A1 (ko) | 리튬 이차전지 | |
WO2020213962A1 (ko) | 리튬 이차전지용 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지 | |
WO2021256825A1 (ko) | 리튬 이차전지용 비수 전해액 첨가제 및 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지 | |
WO2022080770A1 (ko) | 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 | |
WO2020055180A1 (ko) | 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 | |
WO2022103101A1 (ko) | 리튬 이차 전지 | |
WO2021049872A1 (ko) | 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 | |
WO2020149677A1 (ko) | 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지 | |
WO2020096411A1 (ko) | 리튬 이차전지용 비수성 전해액 및 이를 포함하는 리튬 이차전지 | |
WO2019172650A1 (ko) | 비수 전해액 및 이를 포함하는 리튬 이차 전지 | |
WO2023121028A1 (ko) | 비수 전해질용 첨가제를 포함하는 비수 전해질 및 이를 포함하는 리튬 이차전지 | |
WO2023063648A1 (ko) | 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지 | |
WO2023014174A1 (ko) | 비수 전해질용 첨가제를 포함하는 비수 전해질 및 이를 포함하는 리튬 이차전지 | |
WO2021101174A1 (ko) | 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 | |
WO2022114930A1 (ko) | 리튬 이차 전지용 비수 전해액 및 이를 포함하는 리튬 이차전지 | |
WO2020204607A1 (ko) | 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지 | |
WO2021049875A1 (ko) | 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 | |
WO2021112501A1 (ko) | 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 | |
WO2022080669A1 (ko) | 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19860402 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019860402 Country of ref document: EP Effective date: 20201119 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |