WO2020054717A1 - 立向き狭開先溶接継手の製造方法および立向き狭開先溶接継手 - Google Patents

立向き狭開先溶接継手の製造方法および立向き狭開先溶接継手 Download PDF

Info

Publication number
WO2020054717A1
WO2020054717A1 PCT/JP2019/035550 JP2019035550W WO2020054717A1 WO 2020054717 A1 WO2020054717 A1 WO 2020054717A1 JP 2019035550 W JP2019035550 W JP 2019035550W WO 2020054717 A1 WO2020054717 A1 WO 2020054717A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
narrow groove
vertical
welded joint
weaving
Prior art date
Application number
PCT/JP2019/035550
Other languages
English (en)
French (fr)
Inventor
亮 荒尾
渉平 上月
植田 圭治
早川 直哉
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2019571374A priority Critical patent/JP6881616B2/ja
Priority to KR1020217004968A priority patent/KR102425296B1/ko
Priority to CN201980049632.8A priority patent/CN112512739A/zh
Publication of WO2020054717A1 publication Critical patent/WO2020054717A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/022Welding by making use of electrode vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a method for manufacturing welded joints used in various steel structures in the field of ships, construction, civil engineering, etc.
  • the present invention relates to a method for manufacturing a vertical narrow groove welded joint and a vertical narrow groove welded joint, which improve weld toughness in a vertical narrow groove welded joint joined by a shielded arc welding method.
  • steel structures such as ships, buildings and civil engineering have become larger and larger, and the strength and thickness of steel materials used have been actively promoted. These steel structures are usually finished to a desired shape by welding. Therefore, from the viewpoint of ensuring the safety of the steel structure by welding (hereinafter also referred to as welded steel structure), the steel materials used are not only excellent in the strength and toughness of the base metal, but also It is also required that the parts have excellent strength and toughness.
  • Electroslag welding is usually applied as vertical welding.
  • electroslag welding is basically one-pass large heat input welding. Therefore, when welding a steel material having a thickness of more than 40 mm, there is a concern that the weld heat input will be excessive and the weld toughness will be reduced. Therefore, it is desired to realize a high-quality and high-efficiency welding method in which the above-described narrow groove gas shielded arc welding is applied to the vertical welding.
  • Patent Document 1 proposes a double-sided welding method.
  • the double-sided welding method proposed in Patent Document 1 is a double-sided welding method in which a double-sided U-shaped grooved joint is TIG-welded, and is formed at or near the center of the thickness of the double-sided U-shaped grooved joint. Weld the bottom of the groove to the first layer, and set the bead height from the groove bottom including the first layer welded portion to the groove depth before welding or 1/5 to 2/5 of the bisected plate thickness.
  • Front side lamination welding until it reaches, reaches the remaining groove depth in the range of 4/5 or less and 3/5 or more of the groove depth before welding, or the upper limit of groove shoulder shrinkage approaches 2 mm
  • back side lamination welding is performed from the bottom of the groove of the U-shaped groove joint on the back side to the last layer on the top of the groove, and thereafter, front side lamination welding from the remaining groove on the front side to the last layer on the top of the groove.
  • this welding method generation of slag and spatter is suppressed by using an inert gas, stacking faults can be prevented, and a low-deformation, high-quality double-sided stacked weld can be obtained.
  • Patent Document 2 proposes a narrow groove welding method.
  • an arc is formed at the tip of a wire, which protrudes from a tip inserted into a groove extending in the welding direction, and the tip of the wire is opposite to the welding progress direction.
  • Oscillate is repeated so as to draw an arc-shaped trajectory on the side, and gas shield welding is performed on the narrow groove by controlling the stop time and speed during the reversal of the oscillate.
  • a reverse first step of performing oscillation in the direction opposite to the welding progress direction to the center of the narrow groove in the width direction, starting from the vicinity of one of the open ends, and a width direction of the narrow groove A forward second step of oscillating in the welding direction from the center position to the vicinity of the other open tip, a second step of stopping the oscillate for a predetermined time near the other open tip, and the other open tip From the vicinity of the part as a starting point, the reverse second step of performing the oscillation in the direction opposite to the welding direction to the center position in the width direction of the narrow groove forms a one-cycle welding step. Then, the speed of the oscillate is such that the vertically downward oscillating speed is higher than the vertically upward oscillating speed. Thereby, it is possible to prevent or suppress spatter and poor fusion.
  • Patent Document 3 proposes a vertical welding method.
  • the vertical welding method proposed in Patent Document 3 when performing arc welding while weaving a welding torch to a base material in a vertical position in which a groove wall is positioned on the left and right, the arc welding is viewed from the welding direction of the arc welding.
  • Patent Document 4 proposes a vertical electrogas welding apparatus.
  • the vertical electrogas welding apparatus proposed in Patent Document 4 has a first electrode whose tip enters a groove, and a groove opening side of the steel plate in the thickness direction x of the steel plate with respect to the tip of the first electrode.
  • a second electrode that penetrates into a position near the groove, a truck that rises along the groove, and a vibration device that is supported by the truck and swings and drives the first and second electrodes in the thickness direction x.
  • the flux-cored wire is being supplied to the groove extending in the vertical direction z of the standing steel plate, welding is performed upward. Thereby, welding work efficiency is improved, and one-pass welding of extremely thick materials is made possible.
  • Patent Document 5 proposes a vertical narrow groove gas shielded arc welding method.
  • the vertical narrow groove gas shielded arc welding method proposed in Patent Document 5 has a groove angle of 20 ° or less, a groove gap of 20 mm or less, and weaves two thick steel materials having a plate thickness of 40 mm or more.
  • a welding wire containing 0.015 to 0.100% by mass of REM and one or two types selected from Se and Te in total of 0.005 to 0.100% by mass was used as a welding wire.
  • the welding torch angle to the horizontal direction is 10 ° or more and 75 ° or less
  • the welding heat input is 500kJ / cm or less
  • the weaving depth in the thickness direction is 15mm or more and 50mm or less
  • welding in the first layer welding is W
  • weaving of the welding torch is performed by setting the maximum weaving width in the thickness direction and the direction perpendicular to the welding line to (W-6) mm or more and Wmm or less.
  • JP 2009-61483 A JP 2010-115700 A JP 2001-205436 A Japanese Patent Laid-Open No. Hei 10-118771 Patent No. 6119948
  • TIG welding used in the welding method proposed in Patent Literature 1 is a non-consumable electrode method, and the efficiency of the welding method itself is significantly inferior to MAG welding or CO 2 welding using a steel wire as a consumable electrode. Therefore, in the double-sided welding method proposed in Patent Document 1 using TIG welding, a remarkable increase in welding efficiency cannot be expected.
  • the surface angle (groove angle) is as wide as 26.3 to 52 °, but weaving of the welding torch is also performed in the groove depth direction. Therefore, the amount of welding per pass can be relatively large.
  • the weaving amount in the groove depth direction is small and the composition of the weld metal and the welding wire is not taken into account, it is necessary to reduce the amount of welding per pass ( ⁇ heat input), and the welding depth per pass The depth becomes shallow, about 10 mm. Therefore, when this method is applied to welding of a thick steel material, it is also a multi-pass lamination welding in a small amount, and there are problems that the lamination defect such as poor penetration increases and that the welding efficiency decreases.
  • the vertical narrow groove gas shielded arc welding method proposed in Patent Document 5 is welding involving weaving. Therefore, in a welded joint of a thick high-strength steel material containing a lot of alloying elements, a portion affected by repeated heat is used. In some cases, the toughness was significantly reduced.
  • An object of the present invention is to solve the problems of the prior art and provide a method for manufacturing a vertical narrow groove welded joint having excellent weld toughness and a vertical narrow groove welded joint having excellent weld toughness.
  • “thick” refers to a case where the plate thickness (thickness) is 40 mm or more
  • “high strength” refers to a case where the yield strength is 440 MPa or more
  • “steel material” includes a steel plate, a shaped steel, a bar steel, a steel bar, and the like.
  • “narrow groove” means a case where the groove angle is 20 ° or less.
  • the narrow groove has a minimum groove width (hereinafter, also referred to as a groove gap) between steel materials to be welded, which is 50% or less of a steel sheet thickness (wall thickness) and 20 mm or less. The case is suitable.
  • the present inventors in order to achieve the above object, first, for a thick high-strength steel material having a plate thickness (wall thickness) of 40 mm or more and a yield strength of 440 MPa or more, suitable for the above-described welded steel structure
  • the composition of the steel required to secure the mechanical properties was studied.
  • C 0.03% by mass or more, C + Mn / 6 + (Cr + Mo + V) / 5 + (Cu + Ni) / 15 (Here, C, Mn, Cr, Mo, V, Cu, and Ni are the contents (% by mass) of each element, and the contents of the elements not contained are 0.)
  • the hardenability index defined by the following equation (1) 0.40 ⁇ C + Mn / 6 + (Cr + Mo + V) / 5 + (Cu + Ni) /15 ⁇ 0.50 (1) It was found that it was necessary to adjust the components to a range that satisfied the following.
  • the present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
  • (1) A method for manufacturing a vertical narrow groove welded joint in which two steel materials are butted through a narrow groove having a groove angle of 20 ° or less and joined by vertical gas shielded arc welding using weaving.
  • the steel material by mass%, C: 0.03-0.15%, Si: 0.01 to 0.10%, Mn: 1.0-2.5%, A steel material containing P: 0.02% or less and S: 0.01% or less, and satisfying the following formula (1), the balance being a component composition of Fe and unavoidable impurities, and a yield strength of 440 MPa or more.
  • the weaving is a method for manufacturing a vertical narrow groove welded joint in which a weaving pattern of a welding torch viewed from a welding line direction is a U-shape.
  • the component composition further includes, in mass%, Al: 0.005 to 0.100%, Cu: 0.01-1.00%, Ni: 0.01-1.00%, Nb: 0.003-0.030%, Ti: 0.003-0.030%, N: 0.0020-0.0100% and Ca: 0.0003-0.0030%
  • a method for producing a vertical narrow groove welded joint comprising one or more selected from the group consisting of:
  • the component composition further includes, Cr: 0.01-0.50%, Mo: 0.01-0.50%, V: 0.001-0.100%, B: 0.0003-0.0030%, Mg: 0.005 to 0.0100%, Zr: 0.0010-0.0200% and REM: 0.0005-0.0100%
  • a method for producing a vertical narrow groove welded joint comprising one or more selected from the group consisting of:
  • a vertical narrow groove welded joint obtained by joining two steel materials through a narrow groove having a groove angle of 20 ° or less The steel material is, in mass%, C: 0.03-0.15%, Si: 0.01 to 0.10%, Mn: 1.0-2.5%, P: not more than 0.02% and S: not more than 0.01%, and satisfy the following formula (1), the balance being Fe and a component composition that is an unavoidable impurity, and the yield strength is 440 MPa or more;
  • Test temperature for Charpy impact test A vertical narrow groove welded joint having a weld bond portion, having an absorbed energy E- 20 (J) at -20 ° C of 80 J or more.
  • C, Mn, Cr, Mo, V, Cu and Ni are the contents (% by mass) of the respective elements, and the contents of the non-contained elements are 0.
  • the component composition further comprises, in mass%, Al: 0.005 to 0.100%, Cu: 0.01-1.00%, Ni: 0.01-1.00%, Nb: 0.003-0.030%, Ti: 0.003-0.030%, N: 0.0020-0.0100% and Ca: 0.0003-0.0030%
  • a vertical narrow groove welded joint containing at least one member selected from the group consisting of:
  • the component composition further comprises, by mass%, Cr: 0.01-0.50%, Mo: 0.01-0.50%, V: 0.001-0.100%, B: 0.0003-0.0030%, Mg: 0.005 to 0.0100%, Zr: 0.0010-0.0200% and REM: 0.0005-0.0100%
  • a vertical narrow groove welded joint containing at least one member selected from the group consisting of:
  • the toughness of the welding heat affected zone is excellent, and a high-quality vertical narrow groove gas shield.
  • Arc welding joints can be manufactured with high efficiency, and the welding construction cost of a welded steel structure can be greatly reduced, which is extremely advantageous in industry.
  • a material to be welded for example, a thick high-strength steel material having a plate thickness of 40 mm or more and a yield strength of 440 MPa or more is used.
  • the upper limit of the thickness of the steel is 100 mm. Therefore, the thickness of the steel material is preferably set to 100 mm or less.
  • C 0.03 to 0.15%
  • C is an element having an effect of increasing the strength of steel, and in the present invention, is contained at 0.03% or more in order to secure a desired high strength.
  • the content exceeds 0.15%, island-like martensite is easily generated in the vicinity of the welded portion, and the toughness of the welded portion is reduced. For this reason, C is limited to the range of 0.03 to 0.15%.
  • the content is preferably 0.05 to 0.10%.
  • Si 0.01 to 0.10%
  • Si is an element that acts as a deoxidizing agent when smelting steel. To obtain such an effect, the content of 0.01% or more is required. On the other hand, if the content exceeds 0.10%, island-like martensite is generated in the vicinity of the welded portion, and the toughness of the welded portion is reduced. For this reason, Si was limited to the range of 0.01 to 0.10%. Note that the content is preferably 0.02 to 0.08%.
  • Mn 1.0-2.5%
  • Mn is an element having an effect of increasing the strength of steel.
  • Mn is contained in an amount of 1.0% or more in order to secure a desired base material strength.
  • the content exceeds 2.5%, the toughness in the vicinity of the weld is significantly reduced. For this reason, Mn was limited to the range of 1.0 to 2.5%.
  • the content is 1.2 to 2.2%.
  • P 0.02% or less P promotes the formation of island-like martensite in the vicinity of the weld, and an excessive content significantly reduces the toughness of the weld. For this reason, it is preferable to reduce as much as possible, but if it is 0.02% or less, it is acceptable. Therefore, in the present invention, P is limited to 0.02% or less. Preferably, it is 0.016% or less.
  • S 0.01% or less S is mainly present in steel as sulfide-based inclusions, and if contained excessively, causes a decrease in the toughness of the steel material. For this reason, it is preferable to reduce S as much as possible, but if it is 0.01% or less, it is acceptable. In addition, it is preferably 0.005% or less.
  • Composition 0.40 ⁇ C + Mn / 6 + (Cr + Mo + V) / 5 + (Cu + Ni) /15 ⁇ 0.50 (1) (However, C, Mn, Cr, Mo, V, Cu and Ni are the contents (% by mass) of each element) When the element described in the above formula (1) is not contained, the content of the element is set to zero and the formula (1) is calculated.
  • molten steel having a predetermined component composition is melted and made into a steel material (slab) by a continuous casting method, and the slab is subjected to reheating, hot rolling, and cooling to obtain a thick high strength steel having a predetermined size.
  • Steel In addition, from the viewpoint of reducing the manufacturing cost, in the present invention, a thick high-strength steel material is manufactured without performing heat treatment or the like as much as possible.
  • the content of each component of the thick-walled high-strength steel material is adjusted so that the above-mentioned hardenability index Ceq is in the range of 0.40 to 0.50. That is, if the quenchability index is less than 0.40, the quenchability is insufficient, and the desired steel material strength cannot be secured. On the other hand, when the quenchability index exceeds 0.50, the quenchability excessively increases, and the weld toughness is reduced, so that the desired weld toughness cannot be secured. Therefore, in the present invention, the component composition is adjusted so as to satisfy the above formula (1).
  • the quenchability index Ceq is 0.42 to 0.48.
  • Al 0.005 to 0.100%
  • Cu 0.01 to 1.00%
  • Ni 0.01 to 1.00%
  • Nb 0.003 to 0.003%
  • Ti 0.03 to 0.030%
  • N 0.0020 to 0.0100%
  • Ca 0.0003 to 0.0030%
  • Al 0.005 to 0.100%
  • Al is an element that acts as a deoxidizing agent for steel, and in order to obtain such an effect, it is preferable to contain 0.005% or more.
  • Al is preferably added in the range of 0.005 to 0.100%. Note that the content is more preferably 0.010 to 0.080%.
  • Cu 0.01-1.00%
  • Cu is an element that improves the hardenability and effectively contributes to securing a desired high strength (base metal strength).
  • the content is preferably 0.01% or more.
  • the content exceeds 1.00%, the above-described effects are saturated. Therefore, it is preferable that Cu is added in the range of 0.01 to 1.00%. Note that the content is more preferably 0.020 to 0.080%.
  • Ni 0.01-1.00%
  • Ni is an element having the effect of increasing the steel material strength (base metal strength) and improving the toughness.
  • the content is preferably 0.01% or more.
  • Ni is preferably added in the range of 0.01 to 1.00%.
  • Nb 0.003 to 0.030%
  • Nb is a useful element that contributes to improvement in steel material strength, and is preferably contained at 0.003% or more in order to secure desired steel material strength (base metal strength).
  • base metal strength if the content exceeds 0.030%, the toughness of the weld decreases. Therefore, Nb is preferably added in the range of 0.003 to 0.030%. Note that the content is more preferably 0.008 to 0.025%.
  • Ti is an element that effectively contributes to the improvement of the steel material strength, precipitates as nitride (TiN) at the time of solidification, suppresses the coarsening of austenite grains, and contributes to the improvement of the toughness of the steel material.
  • the content is preferably 0.003% or more.
  • Ti is preferably added in the range of 0.003 to 0.030%. Note that the content is more preferably 0.008 to 0.0025%.
  • N 0.0020-0.0100% N suppresses austenite grain growth through formation of TiN and contributes to improvement of toughness.
  • the content is preferably 0.0020% or more.
  • N is preferably added in the range of 0.0020 to 0.0100%. Note that the content is more preferably 0.0030 to 0.0090%, and still more preferably 0.0035 to 0.0085%.
  • Ca 0.0003-0.0030%
  • Ca is an element that contributes to the control of the morphology of the sulfide-based inclusions, and is an element that contributes to improving the toughness of the steel material through such an effect.
  • the content is preferably 0.0003% or more.
  • Ca is preferably added in the range of 0.0003 to 0.0030%. Note that the content is more preferably 0.0005 to 0.0025%.
  • Cr 0.01 to 0.50%
  • Mo 0.01 to 0.50%
  • V 0.001 to 0.100%
  • B 0.0003 to 0.0030%
  • Mg 0.005 to 0.0100%
  • Zr 0.0010 to 0.0200%
  • REM One or more selected from 0.0005 to 0.0100% may be contained.
  • Cr 0.01 to 0.50%
  • Mo 0.01 to 0.50%
  • V 0.001 to 0.100%
  • B 0.0003 to 0.0030%
  • Cr, Mo, V and B are all elements that contribute to an increase in the strength of the steel material, and one or more of them can be selected as necessary and contained.
  • Cr it is preferable that Cr is contained at 0.01% or more, Mo is 0.01% or more, V is 0.001% or more, and B is 0.0003% or more.
  • the Cr content exceeds 0.50%, Mo is 0.50%, V is 0.001%, and B is more than 0.0030%, the toughness may be adversely affected. For this reason, when it is contained, it is preferable that Cr: 0.01 to 0.50%, Mo: 0.01 to 0.50%, V: 0.001 to 0.100%, and B: 0.0003 to 0.0030%.
  • Mg 0.005 to 0.0100%
  • Zr 0.0010 to 0.0200%
  • REM 0.0005 to 0.0100%
  • Mg, Zr and REM are elements that disperse as oxides and have an effect of improving the toughness of the base metal and the weld.
  • Mg, Zr, and REM are useful elements that contribute to improvement in toughness through morphological control of sulfide-based inclusions, and can be contained as necessary. In order to exhibit such an effect, it is preferable that the content of Mg is 0.005% or more, the content of Zr is 0.0010% or more, and the content of REM is 0.0005% or more.
  • the content of Mg and REM exceeds 0.0100% and the content of Zr exceeds 0.0200%, the effect is only saturated. Therefore, when Mg and REM are contained, the content is preferably set to 0.0100% or less, and when Zr is contained, the content is preferably set to 0.0200% or less.
  • the balance other than the above components consists of Fe and inevitable impurities.
  • O oxygen
  • 0.0080% or less is acceptable.
  • the steel material used in the present invention is, for example, smelted molten steel in a conventional smelting furnace such as a converter or an electric furnace, and preferably further refined in a conventional secondary smelting furnace such as RH degassing.
  • the molten steel adjusted to the proper composition range is subjected to a continuous casting process or an ingot-bulking process to obtain a steel material such as a slab.
  • the steel material is reheated and subjected to hot rolling to obtain a steel material having a desired size and shape, then, a step of cooling, a step of performing an accelerated cooling treatment after the hot rolling, and a direct quenching treatment,
  • a tempering process a reheating quenching process followed by a tempering process, or a reheating normalizing process followed by a tempering process, etc.
  • a plate thickness of 40 mm or more and yield strength Is preferably a thick high-strength steel material of 440 MPa or more.
  • it is more preferable to change the conditions such as the accelerated cooling process and the conditions of the tempering process so as to adjust the yield strength to 440 MPa or more at a plate thickness of 40 mm or more.
  • two thick high-strength steel materials as described above were used as materials to be welded, and two thick high-strength steel materials were used to form a narrow groove having a groove angle ⁇ of 20 ° or less and a groove gap G of 20 mm or less. Through, match. Then, these thick high-strength steel materials are joined by a vertical gas shielded arc welding method using weaving to produce a single-layer or multilayer vertical narrow groove gas shielded arc welded joint.
  • the groove shape can be any of a V-shaped groove (including an I-shaped groove and a L-shaped groove) and a Y-shaped groove.
  • a multi-stage Y-shaped groove can be used.
  • FIG. 1 shows a typical groove shape.
  • reference numeral 1 denotes a steel material
  • reference numeral 2 denotes a groove surface.
  • FIG. 1A shows an example of a V-shaped groove
  • FIG. 1B shows an example of a Y-shaped groove.
  • V-shaped groove As the groove angle ⁇ of the steel material is smaller, defects such as poor fusion are more likely to occur, but highly efficient welding is possible. Therefore, in the present invention, high efficiency welding is aimed, and the groove angle is limited to 20 ° or less.
  • an I-shaped groove having a groove angle of 0 ° enables the most efficient welding, but is preferably 2 to 10 ° from the viewpoint of construction stability.
  • Groove gap G 50% or less of the steel sheet thickness and 20mm or less If the groove gap G exceeds 50% of the steel sheet thickness or exceeds 20mm, the molten metal is easily dripped and welding work becomes difficult. . Therefore, it is necessary to take measures such as keeping the welding current low, but if the welding current is kept low, welding defects such as entrapment of slag and the like are likely to occur. Therefore, it is preferable that the groove gap is 50% or less of the steel sheet thickness and 20 mm or less. In addition, it is more preferable that it is 0 mm or more and 15 mm or less from a viewpoint of construction efficiency.
  • FIG. 2 schematically shows a procedure for welding and joining by a gas shield arc welding method using a V-shaped groove.
  • reference numeral 3 denotes a backing material
  • reference numeral 4 denotes a welding torch
  • reference numeral 5 denotes a welding wire (consumable electrode wire).
  • an arc is generated between a consumable electrode wire and a material to be welded (steel material) while shielding with a shield gas, and the electrode wire and the material to be welded (steel material) are melted.
  • any of the above gas shielded arc welding methods can be applied.
  • the electrode wire used in the gas shielded arc welding method for example, a tensile strength of 60 kg class (HT-60 class) as specified in the JIS standard corresponding to the strength of the steel material to be welded. ) It is preferable to use a solid wire for steel.
  • the vertical (upward) gas shielded arc welding used in the present invention it is not necessary to particularly limit welding conditions. However, if the average welding current is too low, poor fusion, slag entrainment, and the like are likely to occur. On the other hand, if the average welding current is excessively high, dripping of molten metal, fumes, spatters, and the like will be remarkable. Therefore, it is preferable that the average welding current be 250 A or more and 400 A or less. Although the welding voltage increases with the welding current, the welding voltage may be 25 V or more and 40 V or less, and the welding speed (upward movement) may be 1 to 15 cm / min. Further, as the shielding gas to be used, any commonly used shielding gas such as carbon dioxide gas or a mixed gas of carbon dioxide gas and argon gas can be applied, and it is not necessary to particularly limit.
  • the shielding gas to be used any commonly used shielding gas such as carbon dioxide gas or a mixed gas of carbon dioxide gas and argon gas can be applied, and
  • the weaving pattern of the welding torch is not particularly limited. From the viewpoint of suppressing dripping of the molten metal and occurrence of welding defects, for example, the weaving of the welding torch viewed from the welding line direction as shown in FIG. Preferably, the pattern is U-shaped. With a U-shaped weaving pattern, the welding torch 4 can be moved in parallel along the groove surface 2, and it is possible to suppress the dripping of the molten metal and the occurrence of welding defects.
  • the weaving pattern other than the U-shape may be, for example, V-shaped, trapezoidal, or triangular as shown in FIGS. 3B to 3D.
  • the deepest point of the groove at the time of weaving (for example, the points B and C in FIG. 3A) is usually about 0 to 10 mm from the steel material back surface 1a.
  • welding is preferably performed by weaving corresponding to a desired joining depth, such as by appropriately adjusting the weaving depth L and the weaving width W according to the desired joining depth.
  • the weaving depth L in the thickness direction is preferably 15 to 50 mm. If the weaving depth in the thickness direction is less than 15 mm, it may be difficult to obtain a desired bonding depth. On the other hand, if the weaving depth in the thickness direction exceeds 50 mm, not only is it difficult to obtain the desired joining depth, but also the heat input becomes excessive, and the desired mechanical strength in the heat-affected zone of the weld metal or steel material is increased. There is a possibility that it may be difficult to secure the dynamic characteristics.
  • the weaving depth L is more preferably 20 to 40 mm for single layer welding and 25 to 40 mm for multilayer welding.
  • the stop time during weaving is preferably about 0 to 0.5 seconds. Further, it is preferable that the weaving width W is appropriately adjusted in accordance with the distance between the grooves at the plate thickness position where welding is performed so that the occurrence of poor melting can be prevented.
  • the vertical gas shielded arc welding with weaving is performed by setting the upward speed v (mm / min) of the vertical welding and the reciprocal f (s ⁇ 1 ) of the time (s) required for one cycle of the weaving. ,
  • the following equation (2) 2v / 60 / f ⁇ 9.0 ; (2)
  • one cycle of weaving is ⁇ of the time required for the minimum unit of the reciprocating motion performed by the welding torch in the cross section of the groove.
  • the time required for “A ⁇ B ⁇ C ⁇ D ⁇ C ⁇ B ⁇ A” is 1 /, and similarly, in FIG. 3 (b), “A ⁇ B ⁇ 1/2 of the time required for C ⁇ B ⁇ A, 1/2 of the time required for “A ⁇ B ⁇ C ⁇ D ⁇ A” in FIG. 3 (c), and “A ⁇ B ⁇ ” in FIG. 3 (d). It is 1/2 of the time required for "C ⁇ A".
  • the same location is often exposed to reheating several times, and particularly, once heated to 1100 ° C or higher, the temperature between the Ac 1 transformation point and the Ac 3 transformation point Reheating to the temperature range (two-phase temperature range) causes a significant decrease in toughness of the heat affected zone. This is because when the region where the austenite crystal grains are coarsened by heating to 1100 ° C or more is reheated to the two-phase temperature region, reverse transformed austenite is generated at the grain boundary, and C (carbon) is concentrated there, It is believed that this is due to the formation of a hard phase, which is a factor in lowering toughness.
  • the ascending speed v of the vertical upward welding with weaving and the reciprocal f of the required time per one cycle of weaving are adjusted so as to satisfy the above-mentioned equation (2).
  • This can prevent the region once heated to 1100 ° C. or more from being reheated to a temperature region (two-phase temperature region) from the Ac 1 transformation point to the Ac 3 transformation point, and the vertical narrow gap gas can be prevented.
  • Significant toughness degradation of a weld heat affected zone, particularly a weld bond zone, in a shielded arc welded joint can be prevented. It is not necessary to particularly limit the lower limit of 2v / 60 / f, but from the viewpoint of welding work efficiency, a larger value is desirable.
  • the upright narrow groove welded joint obtained according to the above-described manufacturing method has a weld bond toughness in which the absorbed energy E ⁇ 20 (J) at a test temperature of ⁇ 20 ° C. of ⁇ 20 ° C. is 80 J or more and a weld bond portion.
  • the “weld bond portion” refers to a position where the ratio of the weld metal to the heat-affected zone occupying the notch bottom of the Charpy impact test in the welded portion of the joint is 1: 1. Since the weld bond has the lowest toughness in the weld, if the absorbed energy E ⁇ 20 (J) at ⁇ 20 ° C. of the weld bond is 80 J or more, the toughness of the bond with the lowest toughness is obtained. Therefore, the toughness of the other welds of the weld bond is also ensured.
  • Molten steel having the component composition shown in Table 1 was melted using a high-frequency melting furnace and cast into a mold to obtain a steel ingot (150 kg). Each obtained steel ingot was heated and hot rolled into a billet (thickness: 200 mm or less). The obtained steel slab is placed in a heating furnace, heated at 1150 ° C. for 2 hours, and then subjected to hot rolling at a finishing rolling temperature of 700 to 900 ° C. to obtain a thick steel plate (sheet thickness: 40 to 100 mm). Next, accelerated cooling at a cooling rate of 3 ° C./s or more at the plate thickness 1/2 position is performed to a temperature of 350 ° C. at the plate thickness 1/2 position (cooling stop temperature), and then cooling is performed. To obtain a product plate (base material).
  • a V-notch test piece was sampled from a position 2 mm below the surface of the produced welded joint so that the notch position was the weld bond.
  • the term “weld bond” refers to a position where the ratio of the weld metal to the heat-affected zone at the notch bottom of the test piece is 1: 1.
  • a Charpy impact test was performed at a test temperature of ⁇ 20 ° C. to determine an absorbed energy vE ⁇ 20 (J). The test was performed on three pieces each, and the average of the obtained absorbed energy values was defined as the absorbed energy value (J) of the weld bond portion of the welded joint, and the weld bond portion toughness was compared. Table 4 shows the obtained results.
  • the yield strength of the base material is 440 MPa or more, and the absorbed energy vE -20 (J) of the weld bond portion at a test temperature of ⁇ 20 ° C. shows a high absorbed energy value exceeding 80 J; It is a vertical narrow groove gas shield welded joint with excellent weld bond toughness.
  • the absorbed energy vE -20 (J) of the weld bond at a test temperature of ⁇ 20 ° C. is less than 80 J, indicating that the weld toughness is reduced or the yield strength of the base metal is low.
  • it is less than 440 MPa the strength as a structure is insufficient.

Abstract

厚肉高強度鋼材を用いた、溶接部靭性に優れた立向き狭開先溶接継手の製造方法を提供する。 2枚の鋼材を、開先角度が20°以下の狭開先を介して突き合わせ、ウィービングを用いる立向きガスシールドアーク溶接により接合する際に、該立向きガスシールドアーク溶接における、立向き溶接の上進速度v(mm/min)と前記ウィービングの一周期に要する時間(s)の逆数f(s-1)とを、v/60/f≦9.0を満足する範囲に調整する。

Description

立向き狭開先溶接継手の製造方法および立向き狭開先溶接継手
 本発明は、船舶や建築・土木等の分野における各種鋼構造物で用いられる溶接継手の製造方法に係り、とくに板厚が40mm以上である厚肉の高強度鋼材同士を立向き狭開先ガスシールドアーク溶接法にて接合した、立向き狭開先溶接継手における溶接部靭性を向上する、立向き狭開先溶接継手の製造方法並びに立向き狭開先溶接継手に関する。
 近年、船舶や建築・土木などの鋼構造物はますます大型化し、使用される鋼材も高強度化や厚肉化が積極的に進められている。これら鋼構造物は、通常、溶接接合により所望の形状に仕上げられている。そのため、この溶接による鋼構造物(以下、溶接鋼構造物ともいう)の安全性を確保する観点から、使用される鋼材には、母材の強度や靱性に優れていることに加えて、溶接部の強度や靱性にも優れていることが要請されている。
 また、溶接鋼構造物の大型化や使用する鋼材の厚肉化に伴い、鋼構造物の製作過程における溶接、とくに突合せ溶接における溶着量が増大し、さらには溶接施工時間が長くなり、施工コストの増大を招いているという問題がある。このような問題に対し、例えば、板厚に対して狭い間隙の開先をアーク溶接法により溶接する、狭開先ガスシールドアーク溶接の適用が考えられる。この狭開先ガスシールドアーク溶接は、通常のガスシールドアーク溶接と比べ溶着量が少なくなり、溶接施工の高能率化や省エネルギー化が達成でき、ひいては施工コストの低減が期待される。
 さらに、溶接鋼構造物の製作に際しては、立向き溶接を必要とする場合がある。立向きの溶接としては、通常、エレクトロスラグ溶接が適用されている。しかし、エレクトロスラグ溶接は、1パス大入熱溶接が基本である。そのため、板厚が40mmを超えるような鋼材を溶接する場合には、溶接入熱が過多となる結果、溶接部靱性が低下することが懸念されている。このようなことから、立向き溶接に、上記した狭開先ガスシールドアーク溶接を適用した、高品質でかつ高能率な溶接方法を実現することが望まれている。
 このような要望に対し、例えば、特許文献1には、両側溶接方法が提案されている。特許文献1に提案された両側溶接方法は、両面U型開先継手をTIG溶接する両側溶接方法であり、両面U型開先継手の板厚中央部又はその近傍に形成されている、表側の開先底部を初層裏波溶接し、初層溶接部分を含む開先底部から溶接前開先深さ又は二等分板厚の1/5以上2/5以下の範囲である積層ビード高さに到達するか、溶接前開先深さの4/5以下3/5以上の範囲である残存開先深さに到達するか、或いは開先肩幅収縮量の上限値が2mmに接近するまで表側積層溶接し、その後に裏側のU型開先継手の開先底部から開先上部の最終層まで裏側積層溶接し、その後に表側の残り開先部分から開先上部の最終層まで表側積層溶接する。この溶接方法では、イナートガスを用いることでスラグやスパッタの発生を抑制し、積層欠陥を防ぐことができ、低変形で高品質な両側積層溶接部を得ることができるとしている。
 特許文献2には、狭開先溶接方法が提案されている。特許文献2に提案されている狭開先溶接方法では、溶接方向へ延在する開先に挿入されたチップから突出する、ワイヤの先端にアークを形成し、ワイヤの先端が溶接進行方向と反対側に円弧状軌跡を描くように反復する、オシレートを行うとともに、オシレートの反転時停止時間及び速度を制御して狭開先をガスシールド溶接する。この際、狭開先の幅方向中心位置を起点にして、一方の開先端部近傍まで溶接進行方向にオシレートを行う正進第1工程と、一方の開先端部近傍で所定時間だけオシレートを停止する進行第1工程と、一方の開先端部近傍を起点にして、狭開先の幅方向中心位置まで溶接進行方向と逆向きにオシレートを行う逆進第1工程と、狭開先の幅方向中心位置を起点にして他方の開先端部近傍まで溶接進行方向にオシレートする正進第2工程と、他方の開先端部近傍で所定時間だけオシレートを停止する進行第2工程と、他方の開先端部近傍を起点にして、狭開先の幅方向中心位置まで溶接進行方向と逆向きにオシレートを行う逆進第2工程とにより、1サイクルの溶接工程が形成される。そして、オシレートの速度は、鉛直方向下向きのオシレート速度が鉛直上向きのオシレート速度より増速されている。これにより、スパッタや融合不良を防止または抑制することができる、としている。
 特許文献3には、立向き溶接方法が提案されている。特許文献3に提案された立向き溶接方法は、開先壁を左右に位置させた立向き姿勢の母材に対し溶接トーチをウィービングさせながらアーク溶接を行うに際し、アーク溶接の溶接方向から見た運棒パターンが、左右の開先壁にそれぞれ沿った第1パターン部分と、これら第1パターン部分のルート側と開口側とを結ぶ第2パターン部分とで8の字形状にされている立向き溶接方法である。これにより、ビードの偏肉、溶け込み不良や、アンダーカットやビード外観不良等を防止できるとしている。
 特許文献4には、立向エレクトロガス溶接装置が提案されている。特許文献4に提案された立向エレクトロガス溶接装置は、開先内に先端が侵入する第1電極、開先内の、第1電極の先端よりも鋼板の板厚方向xで開先開口側に近い位置に侵入する第2電極、開先に沿って上昇する台車、および台車に支持され、第1および第2電極を板厚方向xに揺動駆動する振動手段を備え、実質上垂直に立てられた鋼板の上下方向zに延びる開先にフラックス入りワイヤを供給しつつ、上方向に溶接する。これにより、溶接作業能率が向上し、極厚材の1パス溶接を可能にするとしている。
 特許文献5には、立向き狭開先ガスシールドアーク溶接方法が提案されている。特許文献5に提案された立向き狭開先ガスシールドアーク溶接方法は、開先角度を20°以下、開先ギャップを20mm以下として、板厚が40mm以上である2枚の厚鋼材を、ウィービングを用いる一層溶接または多層溶接により接合する立向き狭開先ガスシールドアーク溶接方法である。その際、溶接ワイヤとして、REMを0.015~0.100質量%含有し、かつSeおよびTeのうちから選んだ1種または2種を合計で0.005~0.100質量%含有する溶接ワイヤを用い、初層溶接時に、溶接トーチの角度を水平方向に対し10°以上75°以下、溶接入熱を500kJ/cm以下にするとともに、板厚方向へのウィービング深さを15mm以上50mm以下とし、かつ初層溶接における溶接ビード幅をWとした場合に、板厚方向および溶接線に直角な方向へのウィービング最大幅を(W-6)mm以上Wmm以下として、溶接トーチのウィービングを行う。これにより、溶接ビード形状の安定化と溶接欠陥の発生を防止しつつ、高品質で、高靭性の溶接継手を得ることができ、さらに通常のガスシールドアーク溶接に比べ、スパッタの発生が少なく、溶接欠陥が特に少なく溶接の高能率化が達成でき、溶接施工コストの大幅な低減が可能になるとしている。
特開2009-61483号公報 特開2010-115700号公報 特開2001-205436号公報 特開平10-118771号公報 特許第6119948号公報
 特許文献1に提案された溶接方法に用いるTIG溶接は、非消耗電極方式であり、消耗電極である鋼ワイヤを用いるMAG溶接やCO溶接と比較して、溶接法そのものの能率が大きく劣る。そのため、TIG溶接を使用する特許文献1に提案された両側溶接方法では、溶接能率の顕著な増加は望めない。
 特許文献2に提案された溶接方法では、溶接トーチのウィービング方向が、開先深さ方向ではなく、鋼板表面方向であるため、溶融金属が垂れる前に溶接トーチをウィービングさせる必要があり、溶接電流を150A程度の低電流とし、1パス当たりの溶着量(≒入熱量)を抑える必要が生じる。そのため、この溶接方法を厚肉鋼材の溶接に適用する場合には、少量多パスの積層溶接となり、溶け込み不良等の積層欠陥が多くなるほか、溶接能率が大きく低下するという問題がある。
 特許文献3に提案された立向き溶接方法では、面角度(開先角度)は26.3~52°と広めではあるが、ここでの溶接トーチのウィービングは開先深さ方向に対しても行われるため、1パス当たりの溶着量を比較的多くとることが可能である。しかし、開先深さ方向のウィービング量が小さく、また溶接金属および溶接ワイヤ組成が考慮されていないため、1パス当たりの溶着量(≒入熱量)を抑える必要が生じ、1パス当たりの溶接深さは10mm程度と浅くなる。そのため、この方法を厚肉鋼材の溶接に適用する場合には、やはり少量多パスの積層溶接となって、溶け込み不良等の積層欠陥が多くなるほか、溶接能率が低下するという問題がある。
 特許文献4に提案されたエレクトロガスアーク溶接装置の使用により、板厚:70mm程度までの厚鋼材の接合が可能になるものの、入熱量が360kJ/cm程度と大幅に増加する。そのため、被溶接材(厚鋼板)への熱影響が大きくなり、強度、靭性等の溶接継手特性の低下が著しくなる。また、この2電極のエレクトロガスアーク溶接装置では、開先において、裏面側にはセラミックの裏当てを、表面(溶接機側)には水冷式の銅当金の押し付け機構を設けることが不可欠であり、溶融金属の垂れの心配が無い反面、溶接装置が複雑となる。さらに、この2電極のエレクトロガスアーク溶接装置では、1パス溶接が基本であり、多パスの積層溶接として低入熱化を図ることは困難である。
 特許文献5に提案された立向き狭開先ガスシールドアーク溶接方法は、ウィービングを伴う溶接であるため、合金元素を多く含有する厚肉高強度鋼材の溶接継手では、繰返し熱影響を受けた部位で靭性が著しく低下する場合があった。
 本発明は、かかる従来技術の問題点を解決し、溶接部靭性に優れた立向き狭開先溶接継手の製造方法および溶接部靭性に優れた立向き狭開先溶接継手を提供することを目的とする。
 なお、ここでいう「厚肉」とは板厚(肉厚)が40mm以上である場合をいい、「高強度」とは降伏強さが440MPa以上である場合をいう。また、「鋼材」とは、鋼板、形鋼、条鋼、棒鋼等を含むものとする。また、「狭開先」とは、開先角度が20°以下である場合をいう。さらに、この狭開先には、被溶接材となる鋼材間の最小開先幅(以下、開先ギャップともいう)が、鋼材板厚(肉厚)の50%以下でありかつ20mm以下である場合が適している。
 本発明者らは、上記した目的を達成するために、まず、板厚(肉厚)が40mm以上かつ降伏強さが440MPa以上の厚肉高強度鋼材について、上記した溶接鋼構造物に適した機械的特性を確保するのに必要な、鋼の成分組成を検討した。その結果、上記した厚肉高強度鋼材を、熱間圧延と冷却とを組み合わせた常用の製造方法によって、安定して製造するためには、ある程度の合金元素の添加は必要不可欠であり、鋼材の成分組成として、C:0.03質量%以上としたうえで、
 C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15
(ここで、C、Mn、Cr、Mo、V、Cu、Ni:各元素の含有量(質量%)であり、含有されない元素の含有量は0とする。)
で定義される焼入れ性指標が、次式(1)
 0.40 ≦C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15≦ 0.50 …(1)
を満足する範囲に成分調整する必要があることを知見した。
 さらに、厚肉高強度鋼材同士を立向き狭開先ガスシールドアーク溶接にて接合して溶接継手を製造するに当り、ウィービングを伴う立向き溶接を適用することとし、ウィービングを伴う溶接の熱影響による溶接部の靭性低下について、鋭意調査した。その結果、上記したような合金元素を多量に添加した厚肉高強度鋼材に、ウィービングを伴う溶接を適用して溶接継手を作製した場合、繰り返し溶接熱影響を受ける領域、とくに、一度、1100℃以上の高温に晒された部位(領域)が再度、Ac1変態点~Ac変態点の温度領域(二相領域)に再加熱される領域では、著しく脆化した組織となる、ことを知見した。これは、粗大化した結晶粒およびその粒界に硬質層が生成することによる、と考えられる。
 そこで、上記の溶接において、一度、1100℃以上の高温に晒された部位(領域)が再度、Ac1変態点~Ac変態点の温度領域(二相領域)に再加熱されることを回避する方策について、鋭意検討した。その結果、ウィービングを伴う溶接条件を適正範囲に調整することに思い至った。すなわち、立向き上進溶接速度v(mm/min)とウィービングの一周期に要する時間の逆数f(s-1)とが、次式(2)
       2v/60/f≦9.0     ……(2)
を満足するように、ウィービングを伴う溶接条件を調整すれば、溶接部靭性の顕著な低下は認められないことを見出した。上記した式(2)を満足するように、ウィービングを伴う立向き溶接を適用すれば、一度、1100℃以上の高温に晒された領域が、ウィービングの一周期後に、再度、Ac1変態点~Ac変態点の温度領域(二相領域)に再加熱されることはない。したがって、溶接継手部靱性の著しい低下を防ぐことができる。なお、上記した式(2)は、溶接入熱量によらず、成立する。
 本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
(1)2枚の鋼材を、開先角度が20°以下の狭開先を介して突き合わせ、ウィービングを用いる立向きガスシールドアーク溶接により接合する立向き狭開先溶接継手の製造方法であって、
 前記鋼材を、質量%で、
 C:0.03~0.15%、
 Si:0.01~0.10%、
 Mn:1.0~2.5%、
 P:0.02%以下および
 S:0.01%以下
を含み、かつ、下記式(1)を満足し、残部がFeおよび不可避的不純物である成分組成を有し、降伏強さが440MPa以上である鋼材とし、
 前記立向きガスシールドアーク溶接における、立向き溶接の上進速度v(mm/min)と前記ウィービングの一周期に要する時間(s)の逆数f(s-1)とを、下記式(2)を満足する範囲に調整する立向き狭開先溶接継手の製造方法。
              記
 0.40≦C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15≦0.50 ……(1)
  ここで、C、Mn、Cr、Mo、V、CuおよびNiは各元素の含有量(質量%)であり、 含有されない元素の含有量は0とする。
 2v/60/f ≦ 9.0    ……(2)
(2)前記(1)において、前記ウィービングは、溶接線方向から見た溶接トーチのウィービングパターンがコの字形である立向き狭開先溶接継手の製造方法。
(3)前記(1)または(2)において、前記成分組成は、さらに、質量%で、
 Al:0.005~0.100%、
 Cu:0.01~1.00%、
 Ni:0.01~1.00%、
 Nb:0.003~0.030%、
 Ti:0.003~0.030%、
 N:0.0020~0.0100%および
 Ca:0.0003~0.0030%
のうちから選ばれた1種または2種以上を含有する立向き狭開先溶接継手の製造方法。
(4)前記(1)、(2)または(3)において、前記成分組成は、さらに、質量%で、
 Cr:0.01~0.50%、
 Mo:0.01~0.50%、
 V:0.001~0.100%、
 B:0.0003~0.0030%、
 Mg:0.005~0.0100%、
 Zr:0.0010~0.0200%および
 REM:0.0005~0.0100%
のうちから選ばれた1種または2種以上を含有する立向き狭開先溶接継手の製造方法。
(5)前記(1)ないし(4)のいずれかに記載の立向き狭開先溶接継手の製造方法により製造された立向き狭開先溶接継手。
(6)2枚の鋼材を、開先角度が20°以下の狭開先を介して接合された立向き狭開先溶接継手であって、
 前記鋼材は、質量%で、
 C:0.03~0.15%、
 Si:0.01~0.10%、
 Mn:1.0~2.5%、
 P:0.02%以下および
 S:0.01%以下
を含み、かつ、下記式(1)を満足し、残部がFeおよび不可避的不純物である成分組成を有し、降伏強さが440MPa以上であり、
 シャルピー衝撃試験の試験温度:-20℃における吸収エネルギーE-20(J)が80J以上である、溶接ボンド部を有する立向き狭開先溶接継手。
              記
 0.40≦C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15≦0.50 ……(1)
  ここで、C、Mn、Cr、Mo、V、CuおよびNiは各元素の含有量(質量%)であり、 含有されない元素の含有量は0とする。
(7)前記(6)において、前記成分組成は、さらに、質量%で、
 Al:0.005~0.100%、
 Cu:0.01~1.00%、
 Ni:0.01~1.00%、
 Nb:0.003~0.030%、
 Ti:0.003~0.030%、
 N:0.0020~0.0100%および
 Ca:0.0003~0.0030%
のうちから選ばれた1種または2種以上を含有する立向き狭開先溶接継手。
(8)前記(6)または(7)において、前記成分組成は、さらに、質量%で、
 Cr:0.01~0.50%、
 Mo:0.01~0.50%、
 V:0.001~0.100%、
 B:0.0003~0.0030%、
 Mg:0.005~0.0100%、
 Zr:0.0010~0.0200%および
 REM:0.0005~0.0100%
のうちから選ばれた1種または2種以上を含有する立向き狭開先溶接継手。
 本発明によれば、板厚が40mm以上でかつ降伏強さが440MPa以上の厚肉高強度鋼材であっても、溶接熱影響部の靭性に優れた、高品質な立向き狭開先ガスシールドアーク溶接継手を高能率で作製することが可能となり、溶接鋼構造物の溶接施工コストを大幅に低減でき、産業上格段の効果を奏する。
開先形状の一例を示す説明図である。 立向き狭開先ガスシールドアーク溶接継手の溶接接合の要領を模式的に示す説明図である。 ウィービングパターンを示す説明図である。
 本発明の立向き狭開先ガスシールドアーク溶接継手の製造方法では、被溶接材として、例えば板厚40mm以上の厚肉で、しかも降伏強さ440MPa以上の厚肉高強度鋼材を使用する。なお、一般の圧延鋼材では、鋼材の板厚は100mmを上限とすることが一般的である。そのため、鋼材の板厚は100mm以下とすることが好ましい。
 まず、使用する厚肉高強度鋼材の成分組成(鋼材組成)について説明する。以下、鋼材の成分組成における質量%は、単に%で記す。
 C:0.03~0.15%
 Cは、鋼の強度を高める作用を有する元素であり、所望の高強度を確保するために、本発明では、0.03%以上を含有させる。一方、0.15%を超えて含有すると、溶接部近傍で、島状マルテンサイトが生成しやすくなり、溶接部の靭性低下を招く。このため、Cは0.03~0.15%の範囲に限定した。なお、好ましくは0.05~0.10%である。
 Si:0.01~0.10%
 Siは、鋼を溶製する際の脱酸剤として作用する元素であり、このような効果を得るためには0.01%以上の含有を必要とする。一方、0.10%を超えて含有すると、溶接部近傍で島状マルテンサイトが生成し、溶接部の靱性低下を招くようになる。このため、Siは0.01~0.10%の範囲に限定した。なお、好ましくは0.02~0.08%である。
 Mn:1.0~2.5%
 Mnは、鋼の強度を高める作用を有する元素であり、本発明では、所望の母材強度を確保するために、1.0%以上含有させる。一方、2.5%を超えて含有すると、溶接部近傍の靭性が著しく低下する。このため、Mnは1.0~2.5%の範囲に限定した。なお、好ましくは、1.2~2.2%である。
 P:0.02%以下
 Pは、溶接部近傍での島状マルテンサイトの生成を促進し、過度の含有は溶接部の靭性を大きく低下させる。このため、可能な限り低減することが好ましいが、0.02%以下であれば許容できる。このため、本発明では、Pは0.02%以下に限定した。なお、好ましくは、0.016%以下である。
 S:0.01%以下
 Sは、主として硫化物系介在物として鋼中に存在し、過度に含有すると鋼材の靭性低下を招く。このため、Sは可能な限り低減することが好ましいが、0.01%以下であれば許容できる。なお、好ましくは0.005%以下である。
 本発明では、上記した成分を上記した含有量にて、かつ焼入れ性指標(=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15)が、次式(1)を満足する範囲に調整した成分組成とする。
 0.40≦C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15≦0.50   ……(1)
(ただし、C、Mn、Cr、Mo、V、CuおよびNiは各元素の含有量(質量%))
 なお、上式(1)に記載された元素を含有しない場合には、当該元素の含有量を零として(1)式を算出するものとする。
 本発明では、所定の成分組成を有する溶鋼を溶製し、連続鋳造法で鋼素材(スラブ)とし、該スラブに、再加熱、熱間圧延、冷却を施して、所定寸法の厚肉高強度鋼材とする。なお、製造コストを低減するという観点から、本発明では、熱処理などを可能な限り施すことなく、厚肉高強度鋼材を製造する。このために、上記の焼入れ性指標Ceq(=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15)を所定の範囲内に調整した鋼材の成分組成とすることとした。
 本発明では、上記焼入れ性指標Ceqが0.40~0.50の範囲内となるように、厚肉高強度鋼材の各成分の含有量を調整する。すなわち、焼入れ性指標が0.40未満では、焼入れ性が不足し、所望の鋼材強度を確保できない。一方、焼入れ性指標が0.50を超えると、焼入れ性が過度に増加しすぎて、溶接部靭性が低下し、所望の溶接部靭性を確保できなくなる。このため、本発明では、上式(1)を満足するように、成分組成を調整することとした。なお、好ましくは焼入れ性指標Ceqが0.42~0.48である。
 上記した成分組成が基本であるが、本発明では、上記した基本の成分組成に加えてさらに、Al:0.005~0.100%、Cu:0.01~1.00%、Ni:0.01~1.00%、Nb:0.003~0.030%、Ti:0.003~0.030%、N:0.0020~0.0100%およびCa:0.0003~0.0030%のうちから選ばれた1種または2種以上を含有することができる。各元素の好適添加量並びに添加理由は、次の通りである。
 Al:0.005~0.100%
 Alは、鋼の脱酸剤として作用する元素であり、このような効果を得るためには、0.005%以上の含有とすることが好ましい。一方、0.100%を超えて含有すると、母材靱性のみならず、溶接金属靱性をも低下させる。このため、Alは0.005~0.100%の範囲で添加することが好ましい。なお、より好ましくは0.010~0.080%である。
 Cu:0.01~1.00%
 Cuは、焼入れ性を向上させ、所望の高強度(母材強度)確保に有効に寄与する元素である。このような効果を得るためには、0.01%以上の含有とすることが好ましい。一方、1.00%を超えて含有すると、上記した効果が飽和する。このため、Cuは0.01~1.00%の範囲で添加することが好ましい。なお、より好ましくは0.020~0.080%である。
 Ni:0.01~1.00%
 Niは、鋼材強度(母材強度)を高めるとともに、靭性を向上させる作用を有する元素である。このような効果を得るためには、0.01%以上の含有とすることが好ましい。一方、1.00%を超えて含有しても、効果が飽和する。このため、Niは0.01~1.00%の範囲で添加することが好ましい。なお、より好ましくは0.01%超1.00%以下である。さらに好ましくは、0.20~0.80%である。
 Nb:0.003~0.030%
 Nbは、鋼材強度の向上に寄与する有用な元素であり、所望の鋼材強度(母材強度)を確保するためには、0.003%以上の含有とすることが好ましい。一方、0.030%を超えて含有すると、溶接部の靱性が低下する。このため、Nbは0.003~0.030%の範囲で添加することが好ましい。なお、より好ましくは0.008~0.025%である。
 Ti:0.003~0.030%
 Tiは、鋼材強度の向上に有効に寄与するとともに、凝固時に窒化物(TiN)として析出し、オーステナイト粒の粗大化を抑制し、鋼材の靭性向上に寄与する元素である。このような効果を得るためには、0.003%以上の含有とすることが好ましい。一方、0.030%を超えて含有すると、析出したTiNが粗大化し、却って上記した効果が得られなくなる、おそれがある。このため、Tiは、0.003~0.030%の範囲で添加することが好ましい。なお、より好ましくは0.008~0.0025%である。
 N:0.0020~0.0100%
 Nは、TiNの形成を介してオーステナイトの粒成長を抑制し、靱性の向上に寄与する。このような効果を得るために、0.0020%以上の含有とすることが好ましい。一方、0.0100%を超える含有は、溶接時の熱で、TiNが溶解し、固溶N量が増大して靭性を低下させる、おそれがある。このため、Nは0.0020~0.0100%の範囲で添加することが好ましい。なお、より好ましくは0.0030~0.0090%で、さらに好ましくは0.0035~0.0085%である。
 Ca:0.0003~0.0030%、
 Caは、硫化物系介在物の形態制御に寄与する元素であり、このような効果を介して鋼材の靱性向上に寄与する元素である。このような効果を得るためには、0.0003%以上の含有とすることが好ましい。一方、0.0030%を超える含有は、清浄度の低下を招き、靭性が劣化する、おそれがある。このようなことから、Caは0.0003~0.0030%の範囲で添加することが好ましい。なお、より好ましくは0.0005~0.0025%である。
 さらに、必要に応じて、Cr:0.01~0.50%、Mo:0.01~0.50%、V:0.001~0.100%、B:0.0003~0.0030%、Mg:0.005~0.0100%、Zr:0.0010~0.0200%およびREM:0.0005~0.0100%のうちから選ばれた1種または2種以上を含有してもよい。
 Cr:0.01~0.50%、Mo:0.01~0.50%、V:0.001~0.100%およびB:0.0003~0.0030%
 Cr、Mo、VおよびBは、いずれも、鋼材の強度増加に寄与する元素であり、必要に応じて選択して1種または2種以上含有することができる。
 このような効果を得るためには、Crは0.01%以上、Moは0.01%以上、Vは0.001%以上、Bは0.0003%以上、の含有とすることが好ましい。一方、Crが0.50%、Moが0.50%、Vが0.001%、Bが0.0030%、をそれぞれ超えて多量に含有すると、靭性に悪影響を及ぼす、おそれがある。このため、含有する場合には、Cr:0.01~0.50%、Mo:0.01~0.50%、V:0.001~0.100%、B:0.0003~0.0030%の範囲とすることが好ましい。
 Mg:0.005~0.0100%、Zr:0.0010~0.0200%およびREM:0.0005~0.0100%
 Mg、ZrおよびREMは、酸化物として分散し、母材および溶接部の靱性を改善する作用を有する元素である。また、Mg、ZrおよびREMは、硫化物系介在物の形態制御を介して、靭性向上に寄与する有用な元素であり、必要に応じて含有できる。このような効果を発現させるには、Mgは0.005%以上、Zrは0.0010%以上、REMは0.0005%以上の含有とすることが好ましい。一方、MgおよびREMは0.0100%を超えて、Zrは0.0200%を超えて含有しても、その効果は飽和するだけである。このため、MgおよびREMを含有する場合はそれぞれ0.0100%以下、Zrを含有する場合は0.0200%以下の範囲にすることが好ましい。
 上記した成分以外の残部は、Feおよび不可避的不純物からなる。なお、不可避的不純物としては、O(酸素):0.0080%以下が許容できる。
 つぎに、本発明で使用する厚肉高強度鋼材の好ましい製造方法について説明する。
 本発明で使用する鋼材は、例えば、転炉や電気炉等の常用の溶製炉で溶鋼を溶製し、好ましくはさらにRH脱ガス等の常用の二次精練炉で二次精錬し、上記した適正な組成範囲に調整した溶鋼を、連続鋳造工程または造塊-分塊工程を経てスラブ等の鋼素材とする。ついで、該鋼素材を再加熱し、熱間圧延を施して所望の寸法形状の鋼材とした後、放冷する工程、熱間圧延後に加速冷却処理を施す工程、直接焼入れ処理を施したのち焼戻処理を施す工程、再加熱焼入れ処理を施したのち焼戻処理を施す工程、あるいは再加熱焼準処理を施したのち焼戻処理を施す工程、等を経て、板厚40mm以上かつ降伏強さが440MPa以上の厚肉高強度鋼材とすることが好ましい。とくに、加速冷却処理等の条件や焼戻処理の条件を変更して、板厚40mm以上で降伏強さが440MPa以上となるように調整することがより好ましい。
 次いで、上記した厚肉高強度鋼材の2枚を、被溶接材として、2枚の厚肉高強度鋼材を、開先角度θが20°以下および開先ギャップGが20mm以下の狭開先を介して、突き合わせる。そして、これらの厚肉高強度鋼材同士を、ウィービングを用いる立向きガスシールドアーク溶接法により接合し、一層又は多層の立向き狭開先ガスシールドアーク溶接継手を製造する。
 ここで、開先形状は、V形開先(I形開先およびレ形開先を含む)およびY形開先のいずれとすることも可能である。また、Y形開先では、多数段のY形開先とすることも可能である。代表的な開先形状を図1に示す。図1において、符号1は鋼材および同2は開先面であり、図1(a)はV形開先、図1(b)はY形開先の例である。
 以下、V形開先を例に、本発明について説明する。なお、Y形開先を用いた場合でも同様である。
 開先角度θ: 20°以下
 鋼材の開先角度θが小さいほど、融合不良等の欠陥を生じやすいが、高能率溶接が可能となる。そこで、本発明では、高能率溶接を指向し、開先角度を20°以下に限定した。V形開先では開先角度が0°の、I形開先が、最も効率的な溶接が可能となるが、施工安定性の観点からは、2~10°とすることが好ましい。
 開先ギャップG:鋼材板厚の50%以下かつ20mm以下
 開先ギャップGが鋼材板厚の50%を超えるか、或いは20mmを超えて大きくなると、溶融金属が垂れ易くなり、溶接施工が難しくなる。そのため、溶接電流を低く抑えるなどの対策が必要となるが、溶接電流を低く抑えると、スラグ等の巻き込みなどの溶接欠陥が発生しやすくなる。そのため、開先ギャップは鋼材板厚の50%以下かつ20mm以下とすることが好ましい。なお、施工能率の観点から、より好ましくは0mm以上15mm以下であることが好ましい。
 本発明では、被溶接材である鋼材1,1を、ウィービングを用いる立向き(上進)のガスシールドアーク溶接法で一層または多層盛溶接して、接合する。図2に、V形開先を用いてガスシールドアーク溶接法で溶接接合する際の、要領を模式的に示す。ここで、図2において、符号3は裏当て材、同4は溶接トーチ、同5は溶接ワイヤ(消耗電極ワイヤ)である。適用するガスシールドアーク溶接法では、シールドガスでシールドしながら、消耗電極ワイヤと被溶接材(鋼材)との間にアークを発生させ、電極ワイヤと被溶接材(鋼材)とを溶融させる、常用のガスシールドアーク溶接法のいずれをも、適用できる。なお、ガスシールドアーク溶接法で使用する電極ワイヤとしては、被溶接材である鋼材の強度に対応した、例えば、JIS規格に規定されているような、引張強さ60キロ級(HT-60級)鋼材向けソリッドワイヤとすることが好ましい。
 本発明で使用する立向き(上進)ガスシールドアーク溶接では、溶接条件について、とくに限定する必要がない。しかし、平均溶接電流が低すぎると、融合不良やスラグ巻込み等が生じやすくなる。一方、平均溶接電流が過剰に高すぎると、溶融金属の垂れや、ヒューム、スパッタ等の発生が顕著となる。このため、平均溶接電流は、250A以上400A以下とすることが好ましい。なお、溶接電圧は、溶接電流とともに上昇するが、溶接電圧は25V以上40V以下、溶接速度(上進)は1~15cm/min、とすればよい。また、使用するシールドガスは、炭酸ガス、または炭酸ガスとアルゴンガスとの混合ガスなど、常用のシールドガスがいずれも適用でき、とくに限定する必要はない。
 また、本発明で使用する立向き(上進)のガスシールドアーク溶接法では、ウィービングを用いる立向き溶接とする。溶接トーチのウィービングパターンは、とくに限定されないが、溶融金属の垂れ落ち、溶接欠陥の発生を抑制するという観点から、例えば図3(a)に示すような、溶接線方向から見た溶接トーチのウィービングパターンはコ字形ことが好ましい。コ字形のウィービングパターンであれば、開先面2に沿って平行に溶接トーチ4を移動させることができ、溶融金属の垂れ落ち、溶接欠陥の発生を抑制することができる。なお、コ字型以外のウィービングパターンとしては、例えば、図3(b)~(d)に示すような、V字形、台形、三角形としてもよい。ウィービング時の開先最深点(例えば、図3(a)におけるB点、C点)は、鋼材裏面1aからの距離で通常、0~10mm程度である。
 なお、本発明で使用する立向き狭開先溶接では、図3に示す、板厚方向のウィービング深さLや、板厚方向および溶接線に垂直な方向へのウィービング幅Wを限定する必要はないが、所望の接合深さに応じて、ウィービング深さLや、ウィービング幅Wを適宜調整するなど、所望の接合深さに対応したウィービングを行って溶接することが好ましい。
 ここで、板厚方向のウィービング深さLとしては、15~50mmとすることが好ましい。なぜなら、板厚方向のウィービング深さが15mm未満では、所望する接合深さを得ることが困難となる、おそれがある。一方、板厚方向のウィービング深さが50mmを超えると、所望する接合深さを得ることが困難となるだけでなく、溶接入熱量が過多となり、溶接金属や鋼材の熱影響部において所望の機械的特性を確保することが困難となる、おそれがある。なお、ウィービング深さLは、一層溶接の場合には20~40mm、多層溶接の場合には、25~40mmとすることがより好ましい。また、ウィービング時の停止時間(ウィービングパターンにおけるA点、B点等各点における停止時間)は、0~0.5秒程度とすることが好ましい。さらに、ウィービング幅Wは、溶接を行う板厚位置における開先間の距離に合わせて溶融不良の発生を防止できるように適宜調整することが好ましい。
 本発明では、ウィービングを伴う立向きガスシールドアーク溶接を、立向き溶接の上進速度v(mm/min)と、ウィービングの一周期に要する時間(s)の逆数f(s-1)とを、次式(2)
 2v/60/f≦ 9.0    ……(2)
を満足する範囲に調整して、立向きガスシールドアーク溶接継手を製造する。
 ここで、ウィービングの一周期とは、開先の断面内において、溶接トーチが行う往復運動の最小単位に要する時間の1/2である。具体的には、図3(a)において「A→B→C→D→C→B→A」に要する時間の1/2であり、同様に、図3(b)において「A→B→C→B→A」に要する時間の1/2、図3(c)において「A→B→C→D→A」に要する時間の1/2、図3(d)において「A→B→C→A」に要する時間の1/2である。
 通常、ウィービングを伴う溶接では、同一箇所で複数回の再加熱に晒される場合が頻発し、とくに、一度、1100℃以上に加熱された領域が、Ac1変態点以上Ac3変態点以下の温度域(二相温度領域)に再加熱されると、溶接熱影響部の著しい靭性低下を引き起こす。これは、1100℃以上に加熱されオーステナイト結晶粒が粗大化した領域が、二相温度領域に再加熱されると、粒界に逆変態オーステナイトが生成し、そこにC(炭素)が濃縮し、靱性低下の要因である硬質相が生成するためである、と考えられている。
 本発明では、ウィービングを伴う立向き上進溶接の上進速度vとウィービングの1周期あたりの所要時間の逆数fとを、上記した(2)式を満足するように調整する。これにより、一度、1100℃以上に加熱された領域が、Ac1変態点以上Ac3変態点以下の温度域(二相温度領域)に再加熱されるのを防止でき、立向き狭開先ガスシールドアーク溶接継手における溶接熱影響部、とくに、溶接ボンド部の著しい靭性劣化を防止することができる。
 なお、2v/60/fの下限については特に限定する必要はないが、溶接施工効率の観点からは、値が大きい事が望ましい。
 以上の製造方法に従って得られる立向き狭開先溶接継手は、シャルピー衝撃試験の試験温度:-20℃における吸収エネルギーE-20(J)が80J以上である、溶接ボンド部を有する、溶接部靭性に優れる継手となる。ここで、「溶接ボンド部」とは、継手の溶接部におけるシャルピー衝撃試験のノッチ底に占める溶接金属と熱影響部との割合が1:1になる位置を指す。この溶接ボンド部は、溶接部において最も靱性が低い部分になることから、溶接ボンド部の-20℃における吸収エネルギーE-20(J)が80J以上であれば、最も靱性が低いボンド部の靱性は確保され、従って溶接ボンド部の他の溶接部分の靱性も保障される。
 以下、実施例に基づき、さらに本発明について説明する。
 表1に示す成分組成の溶鋼を、高周波溶解炉を用いて溶製し、鋳型に鋳造して鋼塊(150kg)とした。得られた各鋼塊を加熱し、熱間圧延により、鋼片(厚さ:200mm以下)とした。得られた鋼片を、加熱炉に装入し、加熱温度:1150℃で2時間保持したのち、仕上圧延温度:700~900℃とする熱間圧延を施し、厚鋼板(板厚:40~100mm)とした。ついで、板厚1/2位置における冷却速度で3℃/s以上となる加速冷却を、板厚1/2位置における温度で350℃となる温度(冷却停止温度)まで施し、その後、放冷して、製品板(母材)とした。
Figure JPOXMLDOC01-appb-T000001
 得られた製品板(母材)について、板厚1/4位置から試験片長手方向が圧延方向と垂直方向となるように、JIS 4号試験片を採取し、JIS Z 2241の規定に準拠して引張試験を実施し、鋼材の引張特性(降伏強さYS、引張強さTS)を測定した。また、板厚1/4位置から試験片長手方向が圧延方向と平行となるように、Vノッチ試験片を採取し、JIS Z 2242-2005の規定に準拠して、試験温度:-40℃でシャルピー衝撃試験を実施し、母材の吸収エネルギーvE-40(J)を求めた。得られた結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 また、得られた製品板(母材)から、各2枚の被溶接材を採取し、表3に示す狭開先形状となるように突き合わせて、表3に示す溶接条件で、ウィービングを伴う立向き(上進)ガスシールド溶接を行い、立向き狭開先溶接継手を作製した。なお、立向きガスシールド溶接では、溶接ワイヤとして、引張強さ60キロ級鋼材向けの1.2mmφのソリッドワイヤ(KC-500)を用いた。また、シールドガスとしては炭酸ガスとした。また、被溶接材の開先加工はガス切断を用いて行い、研削等の開先面の加工は行わなかった。
Figure JPOXMLDOC01-appb-T000003
 作製した溶接継手の表面下2mm位置から、ノッチ位置が溶接ボンド部となるように、Vノッチ試験片を採取した。なお、ここでいう「溶接ボンド部」とは、試験片のノッチ底に占める溶接金属と熱影響部の割合が1:1になる位置を指す。そして、試験温度:-20℃で、シャルピー衝撃試験を実施し、吸収エネルギーvE-20(J)を求めた。なお、試験は各3本とし、得られた吸収エネルギー値の平均を当該溶接継手の溶接ボンド部の吸収エネルギー値(J)とし、溶接ボンド部靭性を比較した。
 得られた結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 本発明例はいずれも、母材の降伏強さが440MPa以上であり、かつ試験温度:-20℃における溶接ボンド部の吸収エネルギーvE-20(J)が80Jを超える高い吸収エネルギー値を示し、溶接ボンド部靭性に優れた立向き狭開先ガスシールド溶接継手となっている。一方、本発明の範囲を外れる比較例では、試験温度:-20℃における溶接ボンド部の吸収エネルギーvE-20(J)が80J未満と溶接部靭性が低下しているか、或いは母材の降伏強さが440MPa未満と構造物としての強度が不足している。
1 鋼材(被溶接材)
2 開先面
3 裏当て材
4 溶接トーチ
5 溶接ワイヤ

Claims (8)

  1.  2枚の鋼材を、開先角度が20°以下の狭開先を介して突き合わせ、ウィービングを用いる立向きガスシールドアーク溶接により接合する立向き狭開先溶接継手の製造方法であって、
     前記鋼材を、質量%で、
     C:0.03~0.15%、
     Si:0.01~0.10%、
     Mn:1.0~2.5%、
     P:0.02%以下および
     S:0.01%以下
    を含み、かつ、下記式(1)を満足し、残部がFeおよび不可避的不純物である成分組成を有し、降伏強さが440MPa以上である鋼材とし、
     前記立向きガスシールドアーク溶接における、立向き溶接の上進速度v(mm/min)と前記ウィービングの一周期に要する時間(s)の逆数f(s-1)とを、下記式(2)を満足する範囲に調整する立向き狭開先溶接継手の形成方法。
                  記
     0.40≦(C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15)≦0.50   ……(1)
      ここで、C、Mn、Cr、Mo、V、CuおよびNiは各元素の含有量(質量%)であり、 含有されない元素の含有量は0とする。
     2v/60/f ≦ 9.0    ……(2)
     
  2.  請求項1において、前記ウィービングは、溶接線方向から見た溶接トーチのウィービングパターンがコの字形である立向き狭開先溶接継手の製造方法。
     
  3.  請求項1または2において、前記成分組成は、さらに、質量%で、
     Al:0.005~0.100%、
     Cu:0.01~1.00%、
     Ni:0.01~1.00%、
     Nb:0.003~0.030%、
     Ti:0.003~0.030%、
     N:0.0020~0.0100%および
     Ca:0.0003~0.0030%
    のうちから選ばれた1種または2種以上を含有する立向き狭開先溶接継手の製造方法。
  4.  請求項1、2または3において、前記成分組成は、さらに、質量%で、
     Cr:0.01~0.50%、
     Mo:0.01~0.50%、
     V:0.001~0.100%、
     B:0.0003~0.0030%、
     Mg:0.005~0.0100%、
     Zr:0.0010~0.0200%および
     REM:0.0005~0.0100%
    のうちから選ばれた1種または2種以上を含有する立向き狭開先溶接継手の製造方法。
  5.  請求項1ないし4のいずれかに記載の立向き狭開先溶接継手の製造方法により製造された立向き狭開先溶接継手。
  6.  2枚の鋼材を、開先角度が20°以下の狭開先を介して接合された立向き狭開先溶接継手であって、
     前記鋼材は、質量%で、
     C:0.03~0.15%、
     Si:0.01~0.10%、
     Mn:1.0~2.5%、
     P:0.02%以下および
     S:0.01%以下
    を含み、かつ、下記式(1)を満足し、残部がFeおよび不可避的不純物である成分組成を有し、降伏強さが440MPa以上であり、
     シャルピー衝撃試験の試験温度:-20℃における吸収エネルギーE-20(J)が80J以上である、溶接ボンド部を有する立向き狭開先溶接継手。
                  記
     0.40≦(C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15)≦0.50   ……(1)
      ここで、C、Mn、Cr、Mo、V、CuおよびNiは各元素の含有量(質量%)であり、 含有されない元素の含有量は0とする。
  7.  請求項6において、前記成分組成は、さらに、質量%で、
     Al:0.005~0.100%、
     Cu:0.01~1.00%、
     Ni:0.01~1.00%、
     Nb:0.003~0.030%、
     Ti:0.003~0.030%、
     N:0.0020~0.0100%および
     Ca:0.0003~0.0030%
    のうちから選ばれた1種または2種以上を含有する立向き狭開先溶接継手。
  8.  請求項6または7において、前記成分組成は、さらに、質量%で、
     Cr:0.01~0.50%、
     Mo:0.01~0.50%、
     V:0.001~0.100%、
     B:0.0003~0.0030%、
     Mg:0.005~0.0100%、
     Zr:0.0010~0.0200%および
     REM:0.0005~0.0100%
    のうちから選ばれた1種または2種以上を含有する立向き狭開先溶接継手。
     
     
PCT/JP2019/035550 2018-09-10 2019-09-10 立向き狭開先溶接継手の製造方法および立向き狭開先溶接継手 WO2020054717A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019571374A JP6881616B2 (ja) 2018-09-10 2019-09-10 立向き狭開先溶接継手の製造方法および立向き狭開先溶接継手
KR1020217004968A KR102425296B1 (ko) 2018-09-10 2019-09-10 수직 방향 협개선 용접 조인트의 제조 방법 및 수직 방향 협개선 용접 조인트
CN201980049632.8A CN112512739A (zh) 2018-09-10 2019-09-10 立向窄坡口焊接接头的制造方法和立向窄坡口焊接接头

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018168610 2018-09-10
JP2018-168610 2018-09-10

Publications (1)

Publication Number Publication Date
WO2020054717A1 true WO2020054717A1 (ja) 2020-03-19

Family

ID=69776824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035550 WO2020054717A1 (ja) 2018-09-10 2019-09-10 立向き狭開先溶接継手の製造方法および立向き狭開先溶接継手

Country Status (4)

Country Link
JP (1) JP6881616B2 (ja)
KR (1) KR102425296B1 (ja)
CN (1) CN112512739A (ja)
WO (1) WO2020054717A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205436A (ja) * 2000-01-18 2001-07-31 Kobe Steel Ltd 立向溶接方法
JP2010115700A (ja) * 2008-11-14 2010-05-27 Mitsubishi Heavy Ind Ltd 狭開先溶接方法及び狭開先溶接装置
WO2015186544A1 (ja) * 2014-06-02 2015-12-10 Jfeスチール株式会社 立向き狭開先ガスシールドアーク溶接方法
JP6119948B1 (ja) * 2015-12-09 2017-04-26 Jfeスチール株式会社 立向き狭開先ガスシールドアーク溶接方法
JP6264520B1 (ja) * 2017-04-04 2018-01-24 新日鐵住金株式会社 縦シーム溶接鋼管
WO2018037754A1 (ja) * 2016-08-24 2018-03-01 Jfeスチール株式会社 立向き狭開先ガスシールドアーク溶接方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535661A (en) 1976-07-03 1978-01-19 Nippon Soken Ultrasonic transmitting*receiving device
JPH06119948A (ja) * 1992-10-07 1994-04-28 Sumitomo Wiring Syst Ltd コネクタ
JP3582811B2 (ja) 1996-10-17 2004-10-27 日鐵住金溶接工業株式会社 立向エレクトロガス溶接装置
JP5251089B2 (ja) * 2006-12-04 2013-07-31 新日鐵住金株式会社 低温靱性に優れた高強度厚肉ラインパイプ用溶接鋼管及びその製造方法
JP4976905B2 (ja) * 2007-04-09 2012-07-18 株式会社神戸製鋼所 Haz靭性および母材靭性に優れた厚鋼板
JP4951448B2 (ja) 2007-09-07 2012-06-13 日立Geニュークリア・エナジー株式会社 両側溶接方法及び両側溶接構造物
EP2567776B1 (en) * 2010-06-07 2015-01-21 Nippon Steel & Sumitomo Metal Corporation Ultra high-strength welded joint and method for producing same
EP2929973B1 (en) * 2012-12-04 2019-05-29 JFE Steel Corporation Method of narrow-groove gas-shielded arc welding
CN108367376B (zh) * 2015-12-09 2020-07-17 杰富意钢铁株式会社 立式窄坡口气体保护弧焊方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205436A (ja) * 2000-01-18 2001-07-31 Kobe Steel Ltd 立向溶接方法
JP2010115700A (ja) * 2008-11-14 2010-05-27 Mitsubishi Heavy Ind Ltd 狭開先溶接方法及び狭開先溶接装置
WO2015186544A1 (ja) * 2014-06-02 2015-12-10 Jfeスチール株式会社 立向き狭開先ガスシールドアーク溶接方法
JP6119948B1 (ja) * 2015-12-09 2017-04-26 Jfeスチール株式会社 立向き狭開先ガスシールドアーク溶接方法
WO2018037754A1 (ja) * 2016-08-24 2018-03-01 Jfeスチール株式会社 立向き狭開先ガスシールドアーク溶接方法
JP6264520B1 (ja) * 2017-04-04 2018-01-24 新日鐵住金株式会社 縦シーム溶接鋼管

Also Published As

Publication number Publication date
KR20210031511A (ko) 2021-03-19
JPWO2020054717A1 (ja) 2020-10-22
KR102425296B1 (ko) 2022-07-25
JP6881616B2 (ja) 2021-06-02
CN112512739A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
JP4857015B2 (ja) ガスシールドアーク溶接フラックス入りワイヤ及び溶接方法
JP5884209B1 (ja) 立向き狭開先ガスシールドアーク溶接方法
WO2018061526A1 (ja) レーザ溶接継手の製造方法、レーザ溶接継手および自動車用骨格部品
JP5472244B2 (ja) 厚鋼板の狭開先突合せ溶接方法
JP2008290116A (ja) 隅肉溶接継手および溶接方法
US20030189034A1 (en) Steel wire for MAG welding and MAG welding method using the same
JP5104037B2 (ja) 隅肉溶接方法および隅肉溶接継手
JP4930048B2 (ja) 重ね隅肉溶接継手の継手疲労強度を向上するプラズマアークハイブリッド溶接方法
CN114340828B (zh) 气体保护电弧焊用钢丝、气体保护电弧焊方法及气体保护电弧焊接头的制造方法
JP4830308B2 (ja) 厚鋼板の多層炭酸ガスシールドアーク溶接方法
JP6661516B2 (ja) 非消耗ノズル式エレクトロスラグ溶接方法及びエレクトロスラグ溶接継手の製造方法
WO2020054717A1 (ja) 立向き狭開先溶接継手の製造方法および立向き狭開先溶接継手
JP5080748B2 (ja) タンデムアーク溶接方法
JP2020157315A (ja) エレクトロガスアーク溶接用フラックス入りワイヤ
JP2018144077A (ja) 重ねすみ肉溶接継手及び重ねすみ肉溶接継手の製造方法
WO2017094578A1 (ja) 立向き狭開先ガスシールドアーク溶接方法
JP2005329460A (ja) 溶接部の耐脆性破壊発生特性に優れたエレクトロガスアーク溶接方法
JPH08309428A (ja) 溶接鋼管の製造方法
JP5280060B2 (ja) ガスシールドアーク溶接方法
JP2005219062A (ja) Yagレーザアークハイブリッド溶接方法
JP7272471B2 (ja) 鋼板
JP2005288504A (ja) 疲労強度に優れた溶接継手およびその溶接方法
JP7279870B1 (ja) レーザー・アークハイブリッド溶接継手の製造方法
JP5078264B2 (ja) 鋼板のアーク溶接法
JP2005271032A (ja) エレクトロスラグ溶接用フラックス入りワイヤ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019571374

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19858844

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217004968

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19858844

Country of ref document: EP

Kind code of ref document: A1