WO2020054665A1 - ナノ構造体、電極、電池及びナノ構造体製造方法 - Google Patents

ナノ構造体、電極、電池及びナノ構造体製造方法 Download PDF

Info

Publication number
WO2020054665A1
WO2020054665A1 PCT/JP2019/035378 JP2019035378W WO2020054665A1 WO 2020054665 A1 WO2020054665 A1 WO 2020054665A1 JP 2019035378 W JP2019035378 W JP 2019035378W WO 2020054665 A1 WO2020054665 A1 WO 2020054665A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanostructure
deposition material
nano
electrode
discharge
Prior art date
Application number
PCT/JP2019/035378
Other languages
English (en)
French (fr)
Inventor
雅章 平山
純一 畠
耕太 鈴木
了次 菅野
阿川 義昭
慶太 石川
重光 鳥巣
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Priority to JP2020546010A priority Critical patent/JP7496133B2/ja
Publication of WO2020054665A1 publication Critical patent/WO2020054665A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a nanostructure used for an electrode of a lithium ion battery or the like, an electrode, a battery, and a method for manufacturing a nanostructure.
  • Electrodes have been developed to improve the performance of lithium ion batteries used in electric vehicles. For example, in such a development, there is a case where an electrode in which Si oxide or Li—Si oxide is combined with Si is used. Conventionally, electrodes are formed by mechanically mixing Si oxide or Li-Si oxide with powdered Si or by heat treatment.
  • the cycle characteristics indicating the capacity retention rate and the like of the battery after repeated charging / discharging are better than the case where only Si is used for the electrode, but further improvement is desired.
  • the particles are broken by the strain caused by the volume change of Si and Li x Si during charge and discharge, and the electric path is cut off, thereby reducing the capacity. Will be invited.
  • the matrix component composed of Si oxide or Li—Si oxide relaxes the strain, thereby improving the capacity retention.
  • a side reaction of the matrix component occurs at the time of the first charge to reduce the reversible capacity, and that the matrix component itself does not contribute to the capacity, so that the capacity per composite decreases.
  • An object of the present invention is to solve the above-described problems, and to provide a nanostructure, an electrode, a battery, and a method for manufacturing a nanostructure, in which when used in a battery or the like, a decrease in discharge capacity due to charge and discharge is small. With the goal.
  • the nanostructure of the present invention is a nanostructure obtained by depositing nanosized particles, wherein the nanosized particles have an average A nanostructure comprising Si and Li having a particle size of 5 to 30 nm and satisfying the following condition (1).
  • Li / Si ratio y and O / Si ratio z are “0 ⁇ y, z ⁇ 4” and “0 ⁇ x ⁇ 2” ... (1)
  • the surface is in a bonding state of Li—Si—O, Si and SiOx.
  • the ratio y is 0.4 to 1.6.
  • the bulk density of the nano-sized particles is 90 to 100% of the theoretical value.
  • the nanostructure of the present invention is a nanostructure obtained by depositing nanosize particles, wherein the average size of the nanosize particles is 5 to 30 nm, and the nanosize particles are Zr, Li, Si , Cu, Nb.
  • the plurality of nano-sized particles include any combination of Li and Zr, Si and Cu, and Li and Si.
  • each of them contains a composite of the nano-sized particles SiC and SiO x .
  • the nano-sized particles are Si, and the bonding state of the surface is Si, SiC, SiOx.
  • the bulk density of the nano-sized particles is 90 to 100% of the theoretical value.
  • the electrode of the present invention comprises the above-described nanostructure of the present invention.
  • the battery of the present invention includes the above-described electrode.
  • the method for manufacturing a nanostructure according to the present invention includes a step of setting a material to be deposited in a vacuum chamber, a step of setting Si as a first deposition material in the vacuum chamber, and a method of depositing Li in a second deposition material.
  • Li / Si ratio y and O / Si ratio z are “0 ⁇ y, z ⁇ 4” and “0 ⁇ x ⁇ 2” ... (1)
  • the oxygen pressure is set to 3 ⁇ 10 ⁇ 4 to 5 Pa
  • the number of shots N (1) is set to 300 to 18000 and the number of shots N (2) is set.
  • the first discharge voltage V (1) is set to 100 to 200 V
  • the second discharge voltage V (2) is set to 100 to 150.
  • the present invention it is possible to provide a nanostructure, an electrode, a battery, and a method for manufacturing a nanostructure in which a decrease in discharge capacity due to charge and discharge is small when used in a battery or the like.
  • FIG. 4 is a diagram showing a neutron scattering long density of the nanostructure of the first embodiment of the present invention and main constituent materials predicted therefrom. It is a figure which shows the neutron scattering long density of a material.
  • 1 is a schematic view of a nanostructure manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 3 is a diagram for explaining a nanostructure manufacturing apparatus used for manufacturing the nanostructure according to the first embodiment of the present invention.
  • FIG. 6 is a diagram for describing conditions when a synthetic film is formed on a deposition target using the nanostructure manufacturing apparatus illustrated in FIG. 5.
  • FIG. 5 is a diagram showing the discharge capacity with respect to the number of cycles obtained from the constant current charge / discharge test of the battery using the nanostructure concerning the embodiment of the present invention.
  • FIG. 4 is a diagram showing a neutron scattering long density of the nanostructure of the first embodiment of the present invention and main constituent materials predicted therefrom. It is a figure which shows the neutron scattering long density of a material.
  • 1
  • FIG. 3 is a diagram by SEM for explaining a state of a film of a nanostructure obtained by using an APD method according to an embodiment of the present invention and using Zr as a deposition material.
  • FIG. 4 is a STEM diagram for explaining a state of a film of a nanostructure obtained by using an Si and Li as a deposition material by an APD method according to an embodiment of the present invention. It is a figure which shows the film state at the time of synthesize
  • FIG. 11 is a diagram showing an SEM of the surface of the nanostructure containing nanosized particles of Si shown in FIG.
  • FIG. 3 is a diagram showing an SEM of the surface of a nanostructure containing Li—Si—O and Li—CO in addition to Si nanosize particles before charge and discharge.
  • FIG. 13 is a diagram showing an SEM of the surface of the nanostructured Li—Si—O and Li—CO nanostructures shown in FIG. 12 after 425 cycles of charge / discharge in addition to the nanosized particles. It is a figure which shows the EDX mapping of the surface after 30 cycles of charge / discharge of the nanostructure containing Cu nanosize particle in addition to Si nanosize particle.
  • FIG. 3 is a diagram showing an SEM of the surface of a nanostructure containing Li—Si—O and Li—CO in addition to Si nanosize particles before charge and discharge.
  • FIG. 13 is a diagram showing an SEM of the surface of the nanostructured Li—Si—O and Li—CO nanostructures shown in FIG. 12 after 425 cycles of charge / discharge in addition to the nanosized particles. It is a figure which shows the EDX mapping of
  • FIG. 4 is a diagram showing EDX mapping of a surface of a nanostructure containing Li-Si—O and Li—CO nanosize particles in addition to Si nanosize particles after 425 cycles of charge / discharge.
  • FIG. 3 is an image diagram of charging and discharging when a nanostructure containing Li-Si—O and Li—CO nanosize particles in addition to Si nanosize particles is used as a battery electrode.
  • FIG. 4 is a diagram for explaining an atomic force microscope image of a nanostructure synthesized with 10,000 shots of Si in the embodiment of the present invention.
  • FIG. 4 is a diagram for explaining an atomic force microscope image of a nanostructure synthesized with 10,000 shots of Si in the embodiment of the present invention.
  • FIG. 4 is a diagram for explaining an atomic force microscope image of a nanostructure synthesized with 10,000 shots of Si in the embodiment of the present invention.
  • FIG. 4 is a diagram for explaining a problem that particles are broken by strain caused by volume change of Si and LixSi during charge and discharge.
  • [Purpose] Si which is a high-capacity negative electrode material, has its active material particles pulverized due to volume expansion and contraction due to Li alloying, and the conduction path of electrons and ions is interrupted, thereby reducing the capacity.
  • the cycle characteristics were improved by suppressing the volume expansion and contraction by the nanostructure (Non-Patent Documents 1 and 2) and by securing a conductive path by combining with conductive assistant carbon and ionic conductive materials (Non-Patent Documents 3 and 4). .
  • the problem is that the initial charge / discharge efficiency and the Si content per volume are reduced.
  • the initial charge / discharge efficiency and the utilization factor of Si are improved by compounding Si and Li oxide densely and with high dispersion.
  • APD arc plasma deposition
  • Si—O—C and Li—Si—O—C films were synthesized on a Cu plate or an Al 2 O 3 single crystal substrate by arc plasma deposition.
  • B-doped Si / C and Li-metal / C were used as targets, the substrate temperature was room temperature, and the oxygen pressure in the chamber was 3 ⁇ 10 ⁇ 4 Pa.
  • the discharge voltage V and the capacitor capacitance C at the time of discharging to the target were Si: 100-150 V, 360 ⁇ F, and Li: 100 V, 360 ⁇ F.
  • the number of discharges (pulses) was controlled so that the deposition rate of Li was 0.066 nm pulses- 1 and the deposition rate of Si was 0.044 nm pulses- 1 so that Li 1.4 -Si.
  • the structure of the obtained sample was evaluated by XRR, XPS, AFM, and TEM. Electrochemical characteristics were determined using a 2032 type coin cell with a counter electrode: Li, electrolyte: 1 mol dm ⁇ 3 LiPF 6 in EC: DEC (3: 7 vol.), And a discharge voltage range of 0.02 to 1.5 V ( vsLi / Li + ).
  • the charge / discharge capacity (mAh gSi -1 ) was calculated from the amount of Si contained predicted from the deposition rate.
  • FIG. 1 is a graph showing the discharge capacity with respect to the number of cycles obtained from the constant current charge / discharge test.
  • the capacity of the Si-OC film decreased to 1286 mAhgSi- 1 at the 130th cycle, while the capacity of the Li-Si-OC film maintained 2776 mAhgSi- 1 at the 425th cycle.
  • the initial charge / discharge efficiency which is the ratio between the charge capacity and the discharge capacity in the first cycle, was 62%.
  • the discharge capacity per volume of the Li—Si—O—C film was 347 ⁇ Ahcm ⁇ 2 ⁇ m ⁇ 1 at the 425th cycle, and the Li—Si film of Non-Patent Document 5 (15 ⁇ m, 40 ⁇ Ah cm ⁇ 2 ⁇ m ⁇ 1) (@ 50th).
  • Coulomb efficiency is also
  • the Si-OC film showed a high value of 99.6% at the 425th cycle. From the Ex-situ SEM-EDX, the Si film cracked throughout the film after charging and discharging, but a continuous distribution of Si was observed in Li-Si-OC even after 425 cycles.
  • the nanostructure of the present embodiment contains, for example, nanosize particles having an average particle size of 5 to 30 nm.
  • the nano-sized particles have a predetermined density.
  • the denseness of the nano-sized particles of the present embodiment is, for example, a bulk density of 90 to 100% of a theoretical value. Further, the nano-sized particles have a predetermined dispersibility.
  • the thin film obtained after the synthesis of the nanoparticles has a value of 90% or more of the theoretical density of the substance. Further, when the cross section of the thin film is observed with an electron microscope, the shading derived from the atomic distribution is dispersed to such an extent that it cannot be observed.
  • the element type contained in the nanostructure of the present embodiment is a typical metal or a transition metal, and is, for example, at least one of Zr, Li, Si, Cu, and Nb.
  • the nanostructure of the present embodiment contains, for example, a plurality of nanosize substances.
  • a complex (composite) of Li 2 ZrO 3 , Li 4 SiO 4 , Li 2 CO 3 , etc. exists in the nanostructure.
  • inventions each include a composite of the nano-sized particles SiC and SiO x .
  • the nano-sized particles are Si, and have a bonding state of Si, SiC and SiO x on the surface of the nano structure.
  • the nanostructure of this example is a nanostructure obtained by depositing nanosized particles, and the nanosized particles are Si and Li having an average particle size of 5 to 30 nm.
  • the nanostructure satisfies the following condition (1).
  • the ratio y of Li / Si and the ratio z of O / Si are “0 ⁇ y, z ⁇ 4” and “0 ⁇ x ⁇ 2”.
  • the ratios y and z are, for example, molar ratios estimated from ICP set analysis.
  • -Li is contained-The ratio y of Li / Si is set to 4 or less. The ratio y is more preferably from 0.4 to 1.6. -The O / Si ratio z is set to 4 or less.-The nano-sized particles of Si and Li have an average particle size of 5 to 30 nm.-0 ⁇ x ⁇ 2 of SiO x .
  • the ratio y is preferably in the range of 0.4 to 1.6 is as follows.
  • the relation with the capacity is that when the ratio y is 1.6 or less, the discharge capacity at 50 cycles is 2000 mAh / Si. g-1 or more. Further, it was found that when the ratio y was 0.4 to 1.6, the capacity retention rate at 70 cycles was 50% or more.
  • FIG. 2 is a diagram showing the neutron scattering long density of the nanostructure of the first embodiment and the main constituent materials predicted therefrom.
  • FIG. 2 shows measured data obtained by changing the ratio y of Li / Si in the range of 0 ⁇ x ⁇ 4.
  • the information shown in FIG. 2 is the real component of the neutron scattering long density of the Li—Si—O structure synthesized under different Li / Si ratios and oxygen pressures in the first embodiment. This is a value analyzed from the neutron reflectivity measurement, and includes the composition information of the film. From the comparison with the data of existing substances, the upper limit is 4 for both the ratios y and z. Further, by controlling the Li / Si ratio ( ⁇ 4) and the oxygen pressure, a composite is formed to obtain intermediate composition information. In the neutron reflectivity measurement, information on the main components contained in the nanostructure can be obtained.
  • FIG. 3 is a diagram showing the neutron scattering long density of the material.
  • the following are conditions under which it has been confirmed that a nanostructure can be obtained. That is, since the nanoparticles are observed on the surface with an atomic force microscope, it is considered that a structure is obtained by the deposition.
  • Factors that greatly affect whether a nanostructure can be obtained are the oxygen pressure in the vacuum chamber 2 and the Li / Si ratio. By setting the oxygen pressure in the vacuum chamber 2 to 3 ⁇ 10 ⁇ 4 to 5 Pa, a nanostructure having excellent discharge characteristics was obtained.
  • the surface of the nanostructure of the second embodiment is in a bonding state of Li—Si—O, Si and SiOx.
  • a higher discharge capacity can be obtained as compared with the case of the bonding state of one component or two components among these.
  • the theoretical value of the bulk density of the nano-sized particles in the range of 90 to 100%, a higher discharge capacity can be obtained as compared with other cases.
  • at least one of Li—Si—O, Si, and SiOx is in a bonded state on the surface of the nanostructure of the first embodiment described above.
  • FIG. 4 is a schematic diagram of the nanostructure manufacturing apparatus 1 according to the embodiment of the present invention.
  • the nanostructure manufacturing apparatus 1 synthesizes a nanostructure film by arc plasma deposition (APD).
  • APD arc plasma deposition
  • the inventor has found that the nanostructure of the present embodiment can be synthesized by using APD under predetermined conditions.
  • the APD method is for depositing the vapor deposition material 11 ionized with a large plasma energy on the object 10 (substrate) facing the object, and is used as a coating material having high ion energy and excellent adhesion to the object 10. You.
  • the nanostructure manufacturing apparatus 1 includes a cylindrical vacuum chamber 2.
  • a material-to-be-deposited holding section 4 is rotatably provided.
  • a deposition target 10 is held on a substrate 8 in the deposition target holding unit 4.
  • the substrate 8 rotates in conjunction with the rotation of the material-to-be-deposited holding unit 4, and the nanoparticles are uniformly formed on the object 10 held by the substrate 8.
  • a coaxial vacuum arc evaporation source 5 is housed in the vacuum chamber 2.
  • the coaxial vacuum arc deposition source 5 includes a columnar or cylindrical cathode electrode 12 made of a material for producing metal nanoparticles, and a deposition material 11 fixed to the cathode electrode 12. Between a cylindrical anode electrode 23 made of stainless steel or the like, a cylindrical trigger electrode (for example, a ring-shaped trigger electrode) 13 made of stainless steel or the like, and between the vapor deposition material 11 and the trigger electrode 13 It comprises a disk-shaped or cylindrical insulator (hereinafter also referred to as a hat-shaped insulator) 14 provided to separate them, and these are mounted coaxially.
  • a disk-shaped or cylindrical insulator hereinafter also referred to as a hat-shaped insulator
  • the vapor deposition material 11 is provided to face the container 10. Although not shown, the three components of the vapor deposition material 11, the insulator 14, and the trigger electrode 13 are coaxially attached to each other by screws or the like.
  • the anode electrode 23 is attached to a vacuum flange with a support so that the angle with respect to the container 10 can be changed, and the vacuum flange is attached to the upper surface of the vacuum chamber 11.
  • the cathode electrode 12 is provided coaxially inside the anode electrode 23 at a predetermined distance from the wall surface of the anode electrode.
  • the cathode electrode 12 has the vapor deposition material 11 fixed to at least the tip (corresponding to the end of the anode electrode 23 on the opening side).
  • the deposition material 11 is a metal atom.
  • examples of the metal atom include Li, Zr, Si, Cu, and Nb.
  • the trigger electrode 13 is attached to the vapor deposition material 11 or the cathode electrode 12 with an insulator 14 made of alumina or the like interposed therebetween.
  • the insulator 14 is attached so as to insulate the vapor deposition material 11 from the trigger electrode 13, and the trigger electrode 13 may be attached to the cathode electrode 12 via an insulator. It is preferable that the anode electrode 23, the cathode electrode 12, and the trigger electrode 13 are electrically insulated from each other by the insulator 14 and the insulator.
  • the insulator 14 and the insulator may be formed integrally or separately.
  • a trigger power supply composed of a pulse transistor is connected between the cathode electrode 12 and the trigger electrode 13, and an arc power supply 34 is connected between the cathode electrode 12 and the anode electrode 23.
  • the arc power source 34 includes a DC voltage source 32 and a capacitor unit 33. Both ends of the capacitor unit 33 are connected to the cathode electrode 12 and the anode electrode 23, respectively, and the capacitor unit 33 and the DC voltage source 32 are connected in parallel. Have been.
  • the DC power supplies 31 and 32 and the capacitor unit 33 are referred to as a power supply module 6. In the coaxial vacuum arc evaporation source 5, an arc discharge occurs between the evaporation material 11 and the anode electrode 23.
  • the capacitor unit 33 is connected to one or a plurality of capacitors (one capacitor is illustrated in FIG. 4), and one of the capacitors is, for example, 2200 ⁇ F (withstand voltage 160 V), It can be charged at any time by the DC voltage source 32.
  • the trigger power supply 13 transforms the input 200V pulse voltage of ⁇ s to about 17 times, and outputs 3.4 kV (several ⁇ A) and polarity: plus.
  • the arc power supply 34 has a DC voltage source 32 having a predetermined voltage and a capacity of several A, and repeats charging and discharging of the capacitor unit 33 from the DC voltage source.
  • the DC power supply voltage Va of the DC power supply 32, the capacitor capacity C of the capacitor unit 33, the number N of shots radiating the vapor deposition material 11, and the frequency (repetition cycle of discharge) F are determined by the type of the vapor deposition material 11 and the combination thereof. Selected.
  • the positive output terminal of the trigger power supply 32 is connected to the trigger electrode 13, and the negative terminal is connected to the same potential as the negative output terminal of the DC voltage source 32 of the arc power supply 34, and is connected to the cathode electrode 12.
  • the positive terminal of the DC voltage source 32 of the arc power supply 34 is grounded to the ground potential and is connected to the anode electrode 23.
  • Both terminals of the capacitor unit 33 are connected between a plus terminal and a minus terminal of the DC voltage source 32.
  • the controller 18 is connected to a trigger power supply 32.
  • a signal is input to the trigger power supply 32 connected to the controller 18, a high voltage is output from the trigger power supply 32.
  • the controller 18 be connected to the CPU 19 and be configured so that each controller can be operated by a signal (external signal) from the CPU 19.
  • a gas introduction system 16 and a vacuum evacuation system 9 are connected to a wall surface of the vacuum chamber 2.
  • a valve 61, a mass flow controller 62, a valve 63, and an oxygen gas cylinder 64 are connected in this order by metal piping. This oxygen gas is introduced to oxidize the deposition material.
  • a valve 54, a turbo molecular pump 51, a valve 52, and a rotary pump 53 are connected in this order by a metal vacuum pipe, and the inside of the vacuum chamber 2 can be evacuated to preferably 0.1 to 1 Pa. It is configured as follows. Further, the inside of the vacuum chamber 2 is preferably kept at 20 to 100 ° C.
  • the nanostructure manufacturing apparatus 1 controls the DC power supply voltage Va and the DC power supply voltage Va of the DC power supply 32 so that the average particle size of the nanosize particles forming the nanostructure (composite) is 5 to 30 nm.
  • the capacitor capacity C of the capacitor unit 33, the number n of shots for emitting the vapor deposition material 11, and the frequency (cycle of repeating discharge) F are determined.
  • the deposition state was confirmed by the following method. It was confirmed with a transmission electron microscope and XRD. The transmission electron microscope confirmed that the nanoparticles were spherical.
  • the discharge voltage applied to the anode electrode 23 is set to 70 V or more and 1000 V or less. This is because if the discharge voltage is lower than 70 V, the plasma drifts slowly forward (10 km / s or less), and if the discharge voltage exceeds 1000 V, a discharge occurs between the cathode and the anode, causing inconvenience.
  • the capacitor capacity of the capacitor unit 33 for arc discharge between the anode electrode 23 and the deposition material is 300 ⁇ F or more. If the capacity of the capacitor is less than 300 ⁇ F, nano-sized particles cannot be formed, and the atoms fly out but cannot aggregate.
  • FIG. 5 is a diagram for explaining a nanostructure manufacturing apparatus 1 used for manufacturing the nanostructures according to the first embodiment and the second embodiment of the present invention.
  • two vapor deposition materials 11 of a first vapor deposition material 11 (Si) of Si and a second vapor deposition material 11 (Li) of Li are prepared.
  • a first coaxial vacuum arc deposition source 5 (Si) and a first power supply module 6 (Si) for depositing the first deposition material 11 (Si) and discharging it toward the surface of the deposition target 10.
  • a second coaxial vacuum arc deposition source 5 (Li) and a second power supply module 6 for depositing the second deposition material 11 (Li) and discharging the deposited material 11 toward the surface of the deposition target 10. Li).
  • the basic structures of the first coaxial vacuum arc evaporation source 5 (Si) and the second evaporation material 11 (Li) are the same as those of the coaxial vacuum arc evaporation source 5.
  • the basic structures of the first power supply module 6 (Si) and the second power supply module 6 (Li) are the same as the power supply module 6. This is the same as the coaxial vacuum arc evaporation source 5.
  • a first cathode electrode 12 (Si) provided coaxially at a predetermined distance from a wall surface of the first anode electrode 23 (Si) is provided inside the first anode electrode 23 (Si).
  • a second cathode electrode 12 (Li) is provided coaxially at a predetermined distance from the wall surface of the second anode electrode 23 (Li). .
  • the inside of the vacuum chamber 2 is set to a high vacuum atmosphere.
  • a DC voltage is applied to the cathode electrode 12 with respect to the anode electrode 23 by the arc power supply 32.
  • the trigger power supply 31 is started, and a pulse voltage is applied to the trigger electrode 13.
  • a trigger discharge occurs on the surface of the insulator 14 by applying a voltage (approximately 1 mm) between the surface of the vapor deposition material 11 and the surface of the trigger electrode 13 for the thickness of the cylindrical portion of the insulator 14. Creepage discharge occurs. Due to the trigger discharge, the constituent material evaporates from the surface of the vapor deposition material 11 to generate vapor, ions, electrons, and the like. Also, electrons are generated from the joint between the vapor deposition material 11 and the insulator 14.
  • the charge charged in the capacitor unit 33 causes the deposition material 11 and Arc discharge occurs between the anode electrode 23 and the anode electrode 23.
  • the arc discharge is not a continuous discharge but a pulse discharge, and is performed by adjusting the number of occurrences and intervals.
  • a magnetic field is formed in the anode electrode 23 by the arc current generated by the arc discharge.
  • the magnetic field exerts a force on positively charged particles in the direction of the opening of the anode electrode 23, so that the ions emitted toward the anode electrode 23 are emitted into the vacuum chamber 2 and hold the material to be deposited. It is sprayed toward the surface of the deposition target 10 held on the substrate 8 of the unit 4. Then, a synthetic film (nanostructure) composed of nano-sized particles is formed on the surface of the deposition target 10.
  • a metal which is the vapor deposition material 11 of the coaxial vacuum arc vapor deposition source 5, becomes plasma, and collides and agglomerates the deposition target 10 at normal temperature and normal pressure to synthesize a synthetic film made of nano-sized particles ( Nanostructure) is obtained.
  • FIG. 6 is a diagram for explaining conditions when a synthetic film is formed on the deposition target 10 using the nanostructure manufacturing apparatus 1.
  • “nanostructure” indicates a synthetic film formed on the deposition target 10. Further, for each nanostructure, set values of the vapor deposition material 11, the number of shots N, the DC power supply voltage Va, the capacitor C, and the frequency F set in the nanostructure manufacturing apparatus 1 are described.
  • the case where there are two evaporation materials 11 is a case where a plurality of targets are used, and the nanostructure manufacturing apparatus 1 using a plurality of coaxial vacuum arc evaporation sources 5 shown in FIG. 1 is used.
  • the APD method since the APD method is used as described above, a large amount of ion energy is released at a stretch when reaching the deposition target 10, thereby suppressing crystal growth and obtaining nano-sized particles.
  • a nanostructure composed of multiple phases was successfully synthesized.
  • the pressure in the vacuum chamber 2 is 0.9 Pa when the nanostructure is LiZrOx, and 3 ⁇ 10 ⁇ 4 Pa otherwise. Since both Li and Si easily form oxides, it was confirmed that oxidation proceeded to some extent even at such an oxygen pressure.
  • nanostructure nanoparticle film containing nanosize particles having an average particle size of 5 to 30 nm
  • nanostructure a smooth film in which nanosize particles of 5 to 30 nm are densely packed is formed.
  • a structural metal or a metal oxide can be obtained.
  • FIG. 7 is a TEM diagram for explaining a state of a film of a nanostructure obtained by using the Si as the deposition material 11 by the APD method according to the embodiment of the present invention.
  • FIG. 8 is a TEM diagram for explaining a state of a film of a nanostructure obtained by using the Si and Li as the deposition material 11 by the APD method according to the embodiment of the present invention.
  • the film of the nanostructure obtained by the APD method of the present embodiment is shown in FIGS. 7 and 8, and the surface of the film has cracks more than the film obtained by the sputtering method. And is more uniform than the sputtering method shown in FIG.
  • the image in FIG. 9 is taken from "J. P. Maranchi, A. F. Hepp and P. N. Kumta, Electrochemical and Solid-State Letters, 2003, 6, A198-A201.”
  • the thickness of the nanostructure made of Si—OC shown in FIG. 7 is 60 nm.
  • the thickness of the nanostructure made of Li-Si-OC shown in FIG. 8 is 100 nm.
  • an oxide is obtained by the deposition target 10 taking oxygen from within the vacuum chamber 2 or from the deposition target 10 (substrate material).
  • specific elements are selectively oxidized by controlling oxygen pressure.
  • a composite of the metal / oxide composite is obtained.
  • a lithium ion battery electrode made of Si—OC, Li—Si—OC, or Si—Cu—OC is used.
  • the materials were synthesized and evaluated.
  • the film thickness at that time was 50 to 100 nm.
  • each of the lithium ion battery electrode materials showed a high charge / discharge activity of 3000 mAh / g.
  • Li-Si-OC had a high cycle maintenance rate, and a high capacity of 300 cycles or more was maintained.
  • FIG. 10 is a diagram showing an SEM of the surface of a nanostructure containing Si, Si—O, and Si—C before charge and discharge.
  • FIG. 11 is a diagram showing an SEM of the surface of the nanostructure containing Si, Si—O, and Si—C shown in FIG. 10 after 30 cycles of charge and discharge.
  • FIG. 12 is a diagram showing an SEM of the surface of a nanostructure containing Si, Li—Si—O, and Li—CO before charge and discharge.
  • FIG. 13 is a diagram showing an SEM of the surface of the nanostructure containing Si, Li—Si—O, and Li—CO shown in FIG. 12 after 425 cycles of charge and discharge.
  • Li—Si—O—C maintains the structure derived from the object to be deposited 10 (substrate material), and the nano-sized particles into which the Li component is introduced have a morphological change. Suppressed and excellent cycle characteristics are obtained.
  • the ratio y of Li / Si is preferably 1.6 or less.
  • the ratio y is a molar ratio estimated from ICP composition analysis. More preferably, the ratio y is 0.4 to 1.6.
  • the capacitor capacity, output, and cycle stability can be designed in a well-balanced manner.
  • the Li-Si-OC nanostructure is superior in cycle and output power as compared with a conventional Si-like electrode film.
  • FIG. 14 is a diagram showing EDX mapping of the surface of the nanostructure composed of Si—OC after 30 cycles of charge / discharge.
  • FIG. 15 is a diagram showing EDX mapping of the surface of the nanostructure composed of Li—Si—OC after 425 cycles of charge and discharge.
  • the nanostructure composed of Si-OC Si is present on the entire surface, irregular cracks are formed in the whole, Cu (current collector) is exposed, and finally Si becomes finer. Was confirmed. Further, the nanostructure composed of Li—Si—O—C maintains an electrode configuration that reflects the morphology of Cu (current collector) even after a long cycle, and the Li—Si—O—C is continuous. Are distributed.
  • FIG. 16 is an image diagram of charging and discharging when a nanostructure composed of Li—Si—OC is used as a battery electrode.
  • Li—Si—O Si and SiO x are charged from a state having a high density
  • Li—Si—O is used as a relaxation material against expansion of Si due to Li alloying.
  • Prevents excessive expansion of Si by showing a role or reversible electrochemical reaction. Long-term cycling is possible by suppressing the structural deterioration of Si as shown in FIG. 41 due to excessive expansion.
  • FIGS. 17 and 18 are views for explaining an atomic force microscope image of a nanostructure obtained by synthesizing Si in 10,000 shots.
  • FIG. 17 shows a case where the synthesis is performed at an oxygen pressure of 3 ⁇ 10 ⁇ 4 Pa in the vacuum chamber 2
  • FIG. 18 shows a case where the synthesis is performed at an oxygen pressure of 5 Pa. 17 and 18, it can be confirmed that particles are synthesized by depositing particles of 30 nm or less.
  • the deposition target 10 is placed on the substrate 8
  • a single crystal or foil foil deposited as a substrate (and a deposition target) may be used.
  • the type of the substrate (and the object to be vapor-deposited) is not particularly limited as long as it is a chemically stable substrate for producing a nanostructure.
  • an oxide such as Al 2 O 3 or SrTiO 3 or a metal plate such as Cu, Ti, Au, or Pt may be used.
  • FIG. 20 is a flowchart illustrating a method for manufacturing a nanostructure using the nanostructure manufacturing apparatus 1. Hereinafter, each step will be described with reference to FIG.
  • Step ST1 The substrate 8 on which the object 10 is placed is held by the material holding unit 4.
  • the timing of step ST1 is not particularly limited as long as it is before step ST3.
  • Step ST2 An evaporation material 11 is provided.
  • the timing of step ST2 is not particularly limited as long as it is before step ST4.
  • Si is provided as a first deposition material 11 (Si) in a vacuum chamber 2 and Li is deposited as a second deposition material 11 (Si). Li).
  • Step ST3 The oxygen pressure in the vacuum chamber 2 is adjusted.
  • the oxygen pressure in the vacuum chamber 2 shown in FIG. 5 is set to 3 ⁇ 10 ⁇ 4 to 5 Pa.
  • Step ST4 The number of shots N, the DC power supply voltage Va, the capacitor capacitance C, and the frequency F are set.
  • the timing of these settings is not particularly limited as long as it is before step S4.
  • the number of shots N (Si) by the first coaxial vacuum arc evaporation source 5 (Si) shown in FIG. 5 is 300 to 18000, and the second coaxial vacuum arc is used.
  • the number of shots N (Li) by the vapor deposition source 5 (Li) is set to 200 to 4800, the first discharge voltage V (Si) is set to 100 to 200 V, and the second discharge voltage V (Li) is set to 100 to 150.
  • Other values are set as shown in FIG.
  • Step ST5 The deposition material holding unit 4 is rotated.
  • Step ST6 The above-described nano-sized particle forming step is performed. That is, the deposition target 10 is irradiated with the deposition material 11 from an arc plasma deposition source, and the deposition target 10 contains nano-sized particles having an average particle diameter of 5 to 30 nm to form a nano-structure. To manufacture.
  • the invention is not limited to the embodiments described above. That is, those skilled in the art may make various changes, combinations, sub-combinations, and alternatives for the components of the above-described embodiments within the technical scope of the present invention or an equivalent scope thereof.
  • the nanostructure may be formed by a powder process.
  • the present invention is applied to a wide range of technical fields such as an automobile industry, an energy industry, a home appliance industry, and a chemical industry which handle lithium ion batteries and the like.
  • SYMBOLS 1 Metal nanoparticle manufacturing apparatus 2 ... Vacuum chamber 4 ... Material-to-be-deposited holding part 5,5 (Li), 5 (Si) ... Coaxial vacuum arc evaporation source 6,6 (Li), 6 (Si) ... Power supply module (Power supply) 8 ... Substrate 10 ... Evaporation target 11, 11 (Li), 11 (Si) ... Evaporation material 12 ... Cathode electrode 13 ... Trigger electrode 15 ... Insulator 18 ... Controller 23 ... Anode electrode 31 ... Trigger power supply 32 ... DC voltage source 33 ... Capacitor unit

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

ナノサイズ粒子の堆積で得られる複数の物質を含有するナノ構造体であって、前記ナノサイズ粒子の平均粒径は、5~30nmである。前記ナノサイズ粒子は、金属又は金属酸化物である。前記ナノサイズ粒子は、Zr,Li,Si,Cu,Nbの少なくとも一つである。

Description

ナノ構造体、電極、電池及びナノ構造体製造方法
 本発明は、リチウムイオン電池等の電極に用いられるナノ構造体、電極、電池及びナノ構造体製造方法に関する。
 従来より、電気自動車に使用されるリチウムイオン電池を高性能化するために、電極の開発が行われている。
 例えば、このような開発において、SiにSi酸化物やLi-Si酸化物を複合化した電極を用いる事例がある。従来では、粉体のSiにSi酸化物やLi-Si酸化物を機械混合することや、熱処理することで電極を形成している。
特開2009-076372号公報 特開2014-220216号公報 国際公開WO2013-099278号公報 F. F. Cao, J. W. Deng, S. Xin, H. X. Ji, O. G. Schmidt, L. J. Wan and Y. G. Guo, Adv. Mater., 2011, 23, 4415-4420. H. Jia, P. Gao, J. Yang, J. Wang, Y. Nuli and Z. Yang, Adv. Ener, Mater., 2011, 1, 1036-1039. S. H. Ng, J. Wang, D. Wexler, S. Y. Chew and H. K. Liu, J. Phys. Chem. C, 2007, 111, 11131-11138. H. Takezawa, S. Ito, H. Yoshizawa and T. Abe, Electrochim. Acta, 2017, 229, 438-444. R. Lv, J. Yang, J. Wang and Y. NuLi, Journal of Power Sources, 2011, 196, 3868-3873.
 しかしながら、上述した従来の電極では、繰り返し充放電したりした後の電池の容量維持率等を示すサイクル特性は、Siのみを電極に用いた場合に比べると良いが、さらなる改善が望まれている。
 すなわち、Siのみからなる従来の電極では、図21に示すように、充放電時においてSiとLiSiの体積変化に起因する歪みにより、粒子が割れ、それにより電気的パスが遮断され容量低下を招いてしまう。複合体負極では、Si酸化物やLi-Si酸化物からなるマトリックス成分が歪みを緩和することで、容量維持率が向上する。しかしながら、初回充電時にマトリックス成分の副反応が生じ可逆容量が減少してしまうこと、マトリックス成分自身は容量に寄与しないため、複合体あたりの容量が減少してしまうことが課題となっている。
 本発明は、上述した課題を解決するためのものであり、電池等に用いた場合に、充放電による放電容量の低下が少ないナノ構造体、電極、電池及びナノ構造体製造方法を提供することを目的とする。
 上述した従来技術の問題点を解決し、上述した目的を達成するために、本発明のナノ構造体は、ナノサイズ粒子の堆積で得られるナノ構造体であって、前記ナノサイズ粒子は、平均粒径5~30nmのSi及びLiであり、下記(1)の条件を満たすナノ構造体。
 Li/Siの比率y及びO/Siの比率zが「0<y,z≦4」、且つ
 「0<x≦2」
                           …(1)
 好適には、表面が、Li―Si―O、Si及びSiOxの結合状態になっている。
 好適には、前記比率yは、0.4~1.6である。
 好適には、前記ナノサイズ粒子のかさ密度が理論値の90~100%である。
 本発明のナノ構造体は、ナノサイズ粒子の堆積で得られるナノ構造体であって、前記ナノサイズ粒子の平均粒径は、5~30nmであり、前記ナノサイズ粒子は、Zr,Li,Si,Cu,Nbの少なくとも一つである。
 好適には、複数の前記ナノサイズ粒子を含有する。
 好適には、前記複数のナノサイズ粒子は、LiとZr、SiとCu、LiとSiのいずれかの組み合わせを含む。
 好適には、それぞれ前記ナノサイズ粒子であるSiCと、SiOの複合体を含有する。
 好適には、前記ナノサイズ粒子は、Siであり、表面の結合状態がSi,SiC,SiOxである。
 好適には、前記ナノサイズ粒子のかさ密度が理論値の90~100%である。
 本発明の電極は、上述した本発明のナノ構造体からなる。
 本発明の電池は、上述した電極を備えている。
 本発明のナノ構造体製造方法は、真空チャンバ内に被蒸着体を設置する被蒸着材設置工程と、前記真空チャンバ内にSiを第1の蒸着材料として設置し、Liを第2の蒸着材料として設置する蒸着材料設置工程と、前記真空チャンバ内の酸素圧を調整する酸素圧調整工程と、前記第1の蒸着材料のショット数N(1)、第2の蒸着材料のショット数N(2)、前記第1の蒸着材料との間で第1のアークプラズマ放電をさせる第1のアノード電極に印加する第1の放電電圧V(1)、前記第2の蒸着材料との間で第2のアークプラズマ放電をさせる第2のアノード電極に印加する第2の放電電圧V(2)を設定する設定工程と、
 前記酸素圧調整工程で調整された酸素圧及び前記設定工程で設定された条件で、前記第1の蒸着材料及び前記第2の蒸着材料をアークプラズマ放電により前記被蒸着材に照射し、平均粒径5~30nmのSi及びLiのナノサイズ粒子を前記被蒸着体に堆積させて、下記(1)の条件を満たすナノ構造体を前記被蒸着体に形成するナノ構造体形成工程と、を有する。
 Li/Siの比率y及びO/Siの比率zが「0<y,z≦4」、且つ
 「0<x≦2」
                           …(1)
 好適には、前記酸素圧調整工程は、前記酸素圧を3×10-4~5Paに設定し、前記設定工程は、前記ショット数N(1)を300~18000、前記ショット数N(2)を200~4800、前記第1の放電電圧V(1)を100~200V,前記第2の放電電圧V(2)を100~150に設定する。
 本発明によれば、電池等に用いた場合に、充放電による放電容量の低下が少ないナノ構造体、電極、電池及びナノ構造体製造方法を提供することができる。
本発明の実施形態に係るナノ構造体を用いた電池の定電流充放電試験から得られたサイクル数に対する放電容量を示す図である。 本発明の第1実施例のナノ構造体の中性子散乱長密度と、それから予測される主要な構成材料を示す図である。 材料の中性子散乱長密度を示す図である。 本発明の実施形態に係るナノ構造体製造装置の模式図である。 本発明の第1実施例のナノ構造体を製造するために用いるナノ構造体製造装置を説明するための図である。 図5に示すナノ構造体製造装置を用いて被蒸着体に合成膜を形成する場合の条件を説明するための図である。 本発明の実施形態のAPD法により蒸着材料としてZrを用いて得られたナノ構造体の膜の状態を説明するためのSEMによる図である。 本発明の実施形態のAPD法により蒸着材料としてSi及びLiを用いて得られたナノ構造体の膜の状態を説明するためのSTEMによる図である。 スパッタリング法で合成した場合の膜状態を示す図である。 Siのナノサイズ粒子を含有するナノ構造体の充放電前における表面のSEMを示す図である。 図10に示すSiのナノサイズ粒子を含有するナノ構造体の30サイクルの充放電後における表面のSEMを示す図である。 Siのナノサイズ粒子に加えてLi-Si-OおよびLi-C-Oを含有するナノ構造体の充放電前における表面のSEMを示す図である。 図12に示すSiのナノサイズ粒子に加えてLi-Si-OおよびLi-C-Oナノ構造体の425サイクルの充放電後における表面のSEMを示す図である。 Siのナノサイズ粒子に加えてCuナノサイズ粒子を含有するナノ構造体の30サイクルの充放電後における表面のEDXマッピングを示す図である。 Siのナノサイズ粒子に加えてLi-Si-OおよびLi-C-Oナノサイズ粒子を含有するナノ構造体の425サイクルの充放電後における表面のEDXマッピングを示す図である。 Siのナノサイズ粒子に加えてLi-Si-OおよびLi-C-Oナノサイズ粒子を含有したナノ構造体を電池電極として用いた場合の充放電のイメージ図である。 本発明の実施形態において、Siを10000ショットで合成したナノ構造体の原子間力顕微鏡像を説明するための図である。 本発明の実施形態において、Siを10000ショットで合成したナノ構造体の原子間力顕微鏡像を説明するための図である。 本発明の実施形態において、Li/Siの比率y=3.6で合成したナノ構造体の原子間力顕微鏡像を説明するための図である。 ナノ構造体製造装置を用いたナノ構造体の製造方法を説明するためのフローチャートである。 充放電時においてSiとLixSiの体積変化に起因する歪みにより、粒子が割れるという問題を説明するための図である。
 以下、本発明の実施形態に係わるナノ構造体及び電極、並びにその製造方法について説明する。
 [目的]
 高容量負極材料であるSiは、Li合金化による体積膨張収縮により活物質粒子が微粉化し、電子やイオンの導電経路が途切れることで容量が低下する。ナノ構造による体積膨張収縮の抑制(非特許文献1,2)、導電助剤カーボンやイオン導電性物質との複合化(非特許文献3,4)により導電経路を確保するとサイクル特性は改善さた。一方,初回充放電効率と体積あたりのSi含有量が小さくなることが課題である。本実施形態では,SiとLi酸化物を緻密かつ高分散で複合化させることで初回充放電効率とSiの利用率向上を実現した。ナノ粒子を高密度に堆積することが可能なアークプラズマ堆積(APD)法を用いてSi-O-CおよびLi-Si-O-C複合体膜を合成し、構造と電気化学特性を調べた。
 [実験]
 Cu板又はAl単結晶基板上にアークプラズマ堆積法によりSi-O-C、Li-Si-O-C膜を合成した。B-doped Si/C,Li-metal/C をターゲットに用い、基板温度は室温、チャンバー内酸素圧力3x10-4 Paとした.ターゲットへの放電時の放電電圧V、コンデンサ容量C はSi: 100-150 V、 360μF、Li: 100V、360μF とした。
 Liの堆積レート0.066nmpulses-1とし、Siの堆積レート0.044nmpulses-1として、Li1.4-Siとなるよう放電回数(pulses)を制御した。得られた試料の構造は、XRR,XPS,AFM,TEMにより評価した。電気化学特性は、2032 型コインセルを用いて、対極:Li,電解液: 1 mol dm-3 LiPF in EC:DEC(3:7 vol.)とし、放電電圧範囲0.02~1.5V(vsLi/Li+)で充放電試験した。堆積レートから予測される含有Si量から、充放電容量(mAh gSi-1)を算出した。充放電反応前後の電極構造を比較するため、サイクル後のセルをAr雰囲気グローブボックス内で分解し,SEM-EDX観察を行った。
 [結果および考察]
 XRR,AFMおよびTEMより,Si-O-CおよびLi-Si-O-C膜は厚さ60nmであり,空隙のない緻密な構造を有することがわかった。XPSスペクトルからSi-O-C膜には、Si,SiC及びSiOxが存在した。Li-Si-O-C膜では,Li-Si合金は観測されず,Si,SiOx,Li-Si-O及びLiCOからなる複合体膜であった。酸素はチャンバー内の残存酸素を取り込んだものである。
 図1は、定電流充放電試験から得られたサイクル数に対する放電容量を示すグラフである。
 Si-O-C膜は130サイクル目で1286mAhgSi-1まで容量が減少したのに対し、Li-Si-O-C膜は425サイクル目でも2776mAhgSi-1を維持した。初回サイクルの充電容量と放電容量との比率である初回充放電効率は62%を示した。
 Li-Si-O-C膜の体積あたりの放電容量は、425サイクル目で347μAhcm-2 μm-1を示し、非特許文献5のLi-Si膜(15 μm, 40 μAh cm-2 μm-1@50th)に比べて優れていた。クーロン効率についても、Li-
Si-O-C膜は425サイクル目で99.6%と高い値を示した。Ex-situ SEM-EDXから、Si膜は充放電後に膜全体に亀裂が生じたが、Li-Si-O-Cは,425サイクル後も連続的なSiの分布が観測された。
 合成時に適切な量のLi-Si-Oを含有した高密度な構造体を合成することで、Si負極の充放電効率、容量維持率,活物質利用率を増大させることが可能であることを見いだした。
 本実施形態のナノ構造体は、例えば、平均粒径が5~30nmのナノサイズ粒子を含有している。
 当該ナノサイズ粒子は、所定の緻密性を有している。本実施形態のナノサイズ粒子の緻密性は、例えば、かさ密度が理論値の90~100%である。
 また、当該ナノサイズ粒子は、所定の分散性を備えている。ナノ粒子合成後に得られる薄膜は、当該物質の理論密度の90%以上の値を有する。また、薄膜断面を電子顕微鏡観察すると、原子分布に由来する濃淡は観測できない程度に分散している。
 本実施形態のナノ構造体が含有する元素種は、典型金属または遷移金属であり、例えば、Zr,Li, Si,Cu,Nbの少なくとも一つである。
 また、本実施形態のナノ構造体は、例えば、複数のナノサイズ物質を含有する。
 これにより、ナノ構造体内では、LiZrO3,Li4SiO4,Li2CO3,等の複合体(合成物)が存在する。
 その他の実施形態は、それぞれ前記ナノサイズ粒子であるSiCと、SiOの複合体を含有する。
 また、その他の実施形態は、上記ナノサイズ粒子はSiであり、ナノ構造体の表面において、Si,SiC及びSiOxの結合状態を有する。
 本実施形態のナノ構造体のさらなる一実施例を以下に説明する。
 [第1実施例]
 本実施例のナノ構造体は、ナノサイズ粒子の堆積で得られるナノ構造体であって、当該ナノサイズ粒子が平均粒径5~30nmのSi及びLiである。
 また、当該ナノ構造体は、下記(1)の条件を満たす。
 条件(1):
 Li/Siの比率y及びO/Siの比率zが「0<y,z≦4」、且つ「0<x≦2」である。比率y,zは,例えば、ICP組分析から見積られるモル比である。
 ここで、以下の各要件を満たすようにナノ構造体を構成にすることで、当該要件を満たさい場合に比べて高い放電容量を得られることが分かった。
 ・Liを含有させる
 ・Li/Siの比率yを4以下にする。比率yは、0.4~1.6がより好ましい。
 ・O/Siの比率zを4以下にする
 ・Si及びLiのナノサイズ粒子が平均粒径5~30nmである
 ・SiOxの0<x≦2にする。
 上述した比率yが0.4~1.6の範囲が好ましい理由は、以下である。
 組成分析(ICP)からLi-Si-O-C膜の構成元素比を測定した結果、容量との関連は、比率yが1.6以下の場合に50サイクル時の容放電容量がSiあたり2000mAh g-1以上になる。また、上記比率yが0.4~1.6の場合に,70サイクル時の容量維持率が50%以上になることが分かった。
 また、図2に示すように、Li/Siが1.4の場合に高い放電容量が得られる。
 図2は、第1実施例のナノ構造体の中性子散乱長密度と、それから予測される主要な構成材料を示す図である。
 Li/Siの比率yを0<x≦4の範囲で変更した測定したデータは、図2に示すようになる。
 図2に示す情報は、第1実施例において、異なるLi/Si比,酸素圧下で合成したLi-Si-O構造体の中性子散乱長密度の実数成分.中性子反射率測定から解析された値であり,膜の組成情報を含むものである。既存物質のデータとの比較から,比率y、zともに上限は4である.またLi/Si比(≦4)、酸素圧を制御することで複合体化して中間組成情報を得る。中性子反射率測定では、ナノ構造体に含有する主成分の情報が得られる。
 図3は、材料の中性子散乱長密度を示す図である。
 以下はナノ構造体を得られることを確認している条件となる。すなわち、原子間力顕微鏡で表面にナノ粒子が観測されるため、その堆積によって構造体が得られると考えられる。ナノ構造体が得られるか否かに影響が大きい因子は真空チャンバ2内の酸素圧力とLi/Si比である。
 真空チャンバ2内の酸素圧を3×10-4~5Paに設定することで、優れた放電特性のナノ構造体が得られた。
 [第2実施例]
 当該第2実施例のナノ構造体は、上記第2実施例のナノ構造体において、表面がLi―Si―O、Si及びSiOxの結合状態になっている。
 このように、表面がLi―Si―O、Si及びSiOxの結合状態にすることで、これらのうち1成分又は2成分の結合状態の場合に比べて、高い放電容量が得られることがわかった。
 また、ナノサイズ粒子のかさ密度の理論値を90~100%の範囲にすることで、それ以外の場合に比べて高い放電容量が得られることがわかった。
 なお、上述した第1実施例のナノ構造体の表面では、Li―Si―O、Si及びSiOxの少なくとも一つが結合状態になっている。
 [ナノ構造体製造装置1]
 図4は本発明の実施形態に係るナノ構造体製造装置1の模式図である。
 ナノ構造体製造装置1は、アークプラズマ堆積法(APD)により、ナノ構造体膜を合成する。
 発明者は、APDを所定の条件で用いることで、本実施形態のナノ構造体を合成できることを見出した。
 APD法は、大きなプラズマエネルギーでイオン化した蒸着材料11を対向する被蒸着体10(基板)に堆積させるものであり、イオンエネルギーが高く、被蒸着体10との密着性に優れるコート材として利用される。
 本実施形態に係るナノ構造体製造装置1は円筒状の真空チャンバ2を備えている。
 この真空チャンバ2内には、被蒸着材料保持部4が回転自在に設けられている。
 被蒸着体保持部4には基板8上に被蒸着体10が保持されている。
 被蒸着材料保持部4の回転に連動して基板8が回転し、基板8に保持された被蒸着体10にナノ粒子が均一に形成される。
 また、図4に示すように、真空チャンバ2内には同軸型真空アーク蒸着源5が収納されている。
 図4に示すように、同軸型真空アーク蒸着源5は、金属ナノ粒子作製用材料で構成されている円柱状又は円筒状のカソード電極12と、カソード電極12に固定された蒸着材料11と、ステンレス等から構成されている円筒状のアノード電極23と、ステンレス等から構成されている円筒状のトリガ電極(例えば、リング状のトリガ電極)13と、蒸着材料11とトリガ電極13との間に両者を離間させるために設けられた円板状又は円筒状の絶縁碍子(以下、ハット型碍子とも称す)14とから構成されており、これらは同軸状に取り付けられている。
 蒸着材料11は、容器10に対向して設けられている。蒸着材料11と絶縁碍子14とトリガ電極13との3つの部品は、図示していないが、ネジ等で密着させて同軸状に取り付けられている。
 アノード電極23は、図示していないが、支柱で真空フランジに容器10に対する角度が変更可能なように取り付けられ、この真空フランジは真空チャンバ11の上面に取り付けられている。
 カソード電極12は、アノード電極23の内部に同軸状にアノード電極の壁面から一定の距離だけ離して設けられている。カソード電極12は、その少なくとも先端部(アノード電極23の開口部側の端部に相当する)に蒸着材料11が固定されている
 蒸着材料11は、金属原子である。
 本実施形態では、金属原子として、Li,Zr,Si,Cu,Nb等を例示する。
 トリガ電極13は、蒸着材料11あるいはカソード電極12との間にアルミナ等から構成された絶縁碍子14を挟んで取り付けられている。
 絶縁碍子14は蒸着材料11とトリガ電極13とを絶縁するように取り付けられており、また、トリガ電極13は絶縁体を介してカソード電極12に取り付けられていてもよい。これらのアノード電極23とカソード電極12とトリガ電極13とは、絶縁碍子14及び絶縁体により電気的に絶縁が保たれていることが好ましい。この絶縁碍子14と絶縁体とは一体型に構成されたものであっても別々に構成されたものでも良い。
 カソード電極12とトリガ電極13との間にはパルストランズからなるトリガ電源が接続されており、また、カソード電極12とアノード電極23との間にはアーク電源34が接続されている。アーク電源34は直流電圧源32とコンデンサユニット33とからなり、このコンデンサユニット33の両端は、それぞれ、カソード電極12とアノード電極23とに接続され、コンデンサユニット33と直流電圧源32とは並列接続されている。
 直流電源31、32及びコンデンサユニット33を電源モジュール6と呼ぶ。
 同軸型真空アーク蒸着源5では、蒸着材料11とアノード電極23との間にアーク放電が生じる。
 コンデンサユニット33は、1つ又は複数個のコンデンサ(図4では、1個のコンデンサを例示してある)が接続したものであって、その1つの容量が例えば2200μF(耐電圧160V)であり、直流電圧源32により随時充電できるようになっている。
 トリガ電源13は、入力200Vのμsのパルス電圧を約17倍に変圧して、3.4kV(数μA)、極性:プラスを出力している。
 アーク電源34は、所定の電圧、数Aの容量の直流電圧源32を有し、この直流電圧源からコンデンサユニット33に充放電を繰り返す。
 ここで、直流電源32の直流電源電圧Va、コンデンサユニット33のコンデンサ容量C、蒸着材料11を放射するショット数N、その周波数(放電を繰り返す周期)Fは、蒸着材料11の種類及びその組み合わせによって選定される。
 トリガ電源32のプラス出力端子は、トリガ電極13に接続され、マイナス端子は、アーク電源34の直流電圧源32のマイナス側出力端子と同じ電位に接続され、カソード電極12に接続されている。アーク電源34の直流電圧源32のプラス端子は、グランド電位に接地され、アノード電極23に接続されている。コンデンサユニット33の両端子は、直流電圧源32のプラス端子及びマイナス端子間に接続されている。
 図4において、コントローラ18はトリガ電源32に接続されており、コントローラ18のスイッチをONにしてコントローラ18に接続されたトリガ電源32に信号を入力すると、このトリガ電源32から高電圧が出力されるように構成されている。また、コントローラ18は、CPU19に接続され、このCPUからの信号(外部信号)により、各コントローラを動作させることができるように構成することが好ましい。
 真空チャンバ2の壁面には、ガス導入系16及び真空排気系9が接続されている。このガス導入系16は、バルブ61、マスフローコントローラー62、バルブ63及び酸素ガスボンベ64がこの順序で金属製配管で接続されている。この酸素ガスは、蒸着材料の酸化を行うために導入する。
 真空排気系9は、バルブ54、ターボ分子ポンプ51、バルブ52及びロータリーポンプ53がこの順序で金属製真空配管で接続されており、真空チャンバ2内を好ましくは0.1~1Paに真空排気できるように構成されている。
 また、真空チャンバ2内は、好ましくは20~100℃に保たれている。
 また、ナノ構造体製造装置1は、上述したように、ナノ構造体(合成物)を形成するナノサイズ粒子の平均粒径が5~30nmとなるように、直流電源32の直流電源電圧Va、コンデンサユニット33のコンデンサ容量C、蒸着材料11を放射するショット数n、その周波数(放電を繰り返す周期)Fを決定する。
 蒸着状態は、以下の方法により確認した。透過型電子顕微鏡とXRDで確認した。透過型電子顕微鏡でナノ粒子が球形であることを確認した。
 また、アノード電極23に印加される放電電圧は70V以上、1000V以下とする。
 これは、放電電圧が70V未満であるとプラズマが前方にドリフト速度が遅く(10km/s以下)、1000Vを超えるとカソードとアノード間で放電が発生し不都合が生じるためである。
 アノード電極23と蒸着材料との間のアーク放電のためのコンデンサユニット33のコンデンサ容量は300μF以上である。コンデンサ容量が300μF未満だとナノサイズ粒子を形成できず、原子は飛び出すがそれを凝集できないためである。
 図5は、本発明の第1実施例及び第2実施例のナノ構造体を製造するために用いるナノ構造体製造装置1を説明するための図である。
 図5に示すように、Siの第1の蒸着材料11(Si)と、Liの第2の蒸着材料11(Li)との2つの蒸着材料11を用意している。
 また、第1の蒸着材料11(Si)を蒸着させて被蒸着体10の表面に向けて放出させるための第1の同軸型真空アーク蒸着源5(Si)及び第1の電源モジュール6(Si)と、第2の蒸着材料11(Li)を蒸着させて被蒸着体10の表面に向けて放出させるための第2の同軸型真空アーク蒸着源5(Li)及び第2の電源モジュール6(Li)とを備えている。
 第1の同軸型真空アーク蒸着源5(Si)及び第2の蒸着材料11(Li)の基本構造は、同軸型真空アーク蒸着源5と同じである。
 また、第1の電源モジュール6(Si)及び第2の電源モジュール6(Li)の基本構造は、電源モジュール6と同じである。
同軸型真空アーク蒸着源5と同じである。
 また、第1のアノード電極23(Si)の内部に同軸状に第1のアノード電極23(Si)の壁面から一定の距離だけ離して設けられた第1のカソード電極12(Si)が設けられている。
 第2のアノード電極23(Li)の内部に同軸状に第2のアノード電極23(Li)の壁面から一定の距離だけ離して設けられた第2のカソード電極12(Li)が設けられている。
 以下、ナノ構造体製造装置1を用いたナノ構造体の製造方法におけるナノサイズ粒子形成工程を説明する。
 まず、真空チャンバ2内を高真空雰囲気にしておく。次いで、アーク電源32により、アノード電極23に対して、カソード電極12に直流電圧を印加しておく。その状態でトリガ電源31を起動し、トリガ電極13にパルス電圧を印加する。
 すると、蒸着材料11の表面とトリガ電極13の表面との間に絶縁碍子14の円筒状部分の厚み分の距離(約1mm)を介して印加することで絶縁碍子14の表面でトリガ放電となる沿面放電が発生する。このトリガ放電によって、蒸着材料11の表面からその構成物質が蒸発し、蒸気や、イオンや電子等が発生する。また、蒸着材料11と絶縁碍子14のつなぎ目から電子が発生する。
 それらの蒸気、イオン、電子等によってアノード電極23内の圧力が上昇し、アノード電極23と蒸着材料11との間の絶縁耐圧が低下すると、コンデンサユニット33に充電された電荷よって、蒸着材料11とアノード電極23との間でアーク放電が発生する。
 アーク放電は連続放電ではなく、パルス的放電であり、発生回数と間隔を調整して行われる。
 このアーク放電により、蒸着材料11に多量の電流が流入し、ジュール熱により蒸着材料11が蒸発すると、正電荷を有する荷電微粒子である金属イオンが、蒸着材料11の側面からアノード電極23に向けて大量に放出される。
 かかるアーク放電によって生じたアーク電流により、アノード電極23内に磁場が形成される。その磁場は、正電荷を有する粒子に対し、アノード電極23の開口部方向に押しやる力を及ぼすので、アノード電極23に向けて放出されたイオンは、真空チャンバ2内に放出され、被蒸着材料保持部4の基板8上に保持された被蒸着体10の表面に向かって噴射される。そうすると被蒸着体10の表面に、ナノサイズ粒子からなる合成膜(ナノ構造体)が形成される。
 ナノ構造体製造装置1では、同軸型真空アーク蒸着源5の蒸着材料11である金属がプラズマになり、常温常圧で被蒸着体10に衝突し凝集することでナノサイズ粒子からなる合成膜(ナノ構造体)が得られる。
 図6は、ナノ構造体製造装置1を用いて被蒸着体10に合成膜を形成する場合の条件を説明するための図である。
 図6に示す表において、「ナノ構造体」は被蒸着体10に形成される合成膜を示す。
また、各ナノ構造体毎に、ナノ構造体製造装置1に設定する前述した蒸着材料11、ショット数N、直流電源電圧Va、コンデンサ容量C、周波数Fの設定値を記載している。
 なお、図6において、蒸着材料11が2つの場合は、複数のターゲットを用いた場合であり、図1に示す同軸型真空アーク蒸着源5を複数用いたナノ構造体製造装置1を用いる。
 本実施形態では、上述したようにAPD法を用いるため、大きなイオンエネルギーが被蒸着体10に到達時に一気に放出されることで、結晶成長を抑制し、ナノサイズ粒子が得られる。複数の蒸着材料11(ターゲット)を用いて膜化することで複相からなるナノ構造体の合成に成功した。
 また、図6に示す条件において、真空チャンバ2内の圧力は、ナノ構造体がLiZrOxの場合は0.9Paであり、それ以外は、3×10-4Paである。Li,Siともに酸化物を形成しやすいため、この程度の酸素圧でもある程度酸化が進行すること確認した。
 上述したナノ構造体製造装置1を用いて、APD法で蒸着を行うことで、平均粒径が5~30nmのナノサイズ粒子を含有するナノ構造体(ナノ粒子膜)を得ることができる。当該ナノ構造体には、5~30nmのナノサイズ粒子が緻密につまった平滑膜が形成されている。
 蒸着材料11として例えば、Zr,Li,Si,Cu,Nb等の金属伝導体・高融点材料、又は高融点・低融点材料の組み合わせを用いることで、構造体金属又は金属酸化物が得られる。
 蒸着材料11として2種類以上のターゲットを用いた場合でも、数10nm粒子が凝集することなく、均一に分散することが確認された。
 図7は本発明の実施形態のAPD法により蒸着材料11としてSiを用いて得られたナノ構造体の膜の状態を説明するためのTEMによる図である。
 図8は本発明の実施形態のAPD法により蒸着材料11としてSi及びLiを用いて得られたナノ構造体の膜の状態を説明するためのTEMによる図である。
 ナノ粒子からなる膜を形成するという観点からは、本実施形態のAPD法で得られたナノ構造体の膜は、図7及び図8になり、スパッタリング法で得られた膜よりも表面にクラックがない緻密性を備えており、図9に示すスパッタリング法よりも均一である。
 図9の画像は、「J. P. Maranchi, A. F. Hepp and P. N. Kumta, Electrochemical and Solid-State Letters, 2003, 6, A198-A201.」から引用したものである。
 図7に示すSi-O-Cからなるナノ構造体の膜厚は60nmである。また、図8に示すLi-Si-O-Cからなるナノ構造体の膜厚は100nmである。
 ナノ構造体製造装置1では、被蒸着体10が真空チャンバ2内あるいは被蒸着体10(基板材)から酸素を取り込むことで、酸化物が得られる。
 複層の場合、酸素圧制御により、特定元素を選択的に酸化させる。これにより、金属/酸化物複合体の合成物が得られる。
 また、上述したナノ構造体製造装置1を用いて得られたナノ構造体を用いて、Si-O-C,Li-Si-O-C,Si-Cu-O-Cからなるリチウムイオン電池電極材料を合成し、評価した。その際の膜厚は50~100nmであった。
 評価の結果、当該リチウムイオン電池電極材料は、いずれも3000mAh/gの高い充放電活性を示した。
 そのなかでも、Li-Si-O-Cはサイクル維持率も高く、300サイクル以上の高容量が維持された。
 図10は、Si, Si-O, Si-Cを含有するナノ構造体の充放電前における表面のSEMを示す図である。
 図11は、図10に示すSi, Si-O, Si-Cを含有するナノ構造体の30サイクルの充放電後における表面のSEMを示す図である。
 図12は、Si, Li-Si-O, Li-C-Oを含有するナノ構造体の充放電前における表面のSEMを示す図である。
 図13は、図12に示すSi, Li-Si-O, Li-C-Oを含有するナノ構造体の425サイクルの充放電後における表面のSEMを示す図である。
 図10及び図11に示す断面SEM観察から、サイクル劣化するSi-O-Cは従来同様に激しい形態変化が生じる。
 一方、図12及び図13に示すように、Li-Si-O-Cは、被蒸着体10(基板材料)に由来する構造を維持し、Li成分を導入したナノサイズ粒子は、形態変化が抑制され、優れたサイクル特性が得られる。
 ここで、Li/Siの比率yは、1.6以下が好ましい。当該比率yは、ICP組成分析から見積られるモル比である。また、さらに好ましくは、上記比率yは、0.4~1.6である。これにより、キャパシタ容量、出力、サイクル安定性をバランスよく設計できる。
 Li-Si-O-Cナノ構造体は、従来のSi類極膜と比べて、サイクル及び出力に優れている。
 図14は、Si―O―Cで構成されるナノ構造体の30サイクルの充放電後の表面のEDXマッピングを示す図である。
 図15は、Li―Si―O―Cで構成されるナノ構造体の425サイクルの充放電後の表面のEDXマッピングを示す図である。
 Si―O―Cで構成されるナノ構造体は、Siが全面に存在し、全体に不規則に亀裂が入り、Cu(集電体)が露出し、最終的にはSiが微細化することが確認された。
 また、Li―Si―O―Cで構成されるナノ構造体は、長期サイクル後もCu(集電体)の形態が反映された電極形態を維持し、Li―Si―O―Cが連続的に分布している。
 図16は、Li―Si―O―Cで構成されるナノ構造体を電池電極として用いた場合の充放電のイメージ図である。
 図16に示すように、Li―Si―O、Si及びSiOxが高い緻密性を持つ状態から充電されると、Li合金化に伴うSiの膨張に対し,Li―Si―Oが緩和材の役割または可逆的な電気化学反応を示すことでSiの過剰な膨張を防ぐ.過剰な膨張による図41に示すようなSiの構造劣化を抑制することで長期サイクルが可能となる.
 以下、上述した実施例1のナノ構造体の特性について説明する。
 図17、図18は、Siを10000ショットで合成したナノ構造体の原子間力顕微鏡像を説明するための図である。
 図17は、真空チャンバ2内の酸素圧3×10-4Paにおいて合成した場合、図18は、酸素圧5Paにおいて合成した場合の図である。
 図17、図18のいずれにおいても、30nm以下の粒子の堆積によって合成されていく様子が確認できる。
 図19は、Li/Siの比率y=3.6(Si:6280ショット, Li:620ショット)で合成したナノ構造体の原子間力顕微鏡像を説明するための図である。
 図19においても、30 nm以下の粒子の堆積によって合成されていく様子が確認できる。
 上述した実施形態では、基板8の上に被蒸着体10を載せた例を例示したが、単結晶または箔箔を基板(かつ被蒸着体)として蒸着したものを用いてもよい。
 当該基板(かつ被蒸着体)の種類としては、ナノ構造体を製造するものとしては化学的に安定なものであれば特に限定されない。具体的にはAl, SrTiOなどの酸化物やCu, Ti, Au, Ptなどの金属板等でもよい。
 図20は、ナノ構造体製造装置1を用いたナノ構造体の製造方法を説明するためのフローチャートである。
 以下、図20に各ステップについて説明する。
 ステップST1:
 被蒸着体10が置かれた基板8を被蒸着材料保持部4に保持させる。
 ステップST1のタイミングは、ステップST3の前であれば特に限定されない。
 ステップST2:
 蒸着材料11を設置する。
 ステップST2のタイミングは、ステップST4の前であれば特に限定されない。
 第1実施例のナノ構造体を製造する場合は、図5に示すように、真空チャンバ2内にSiを第1の蒸着材料11(Si)として設置し、Liを第2の蒸着材料11(Li)として設置する。
 ステップST3:
 真空チャンバ2内の酸素圧を調整する。
 第1実施例のナノ構造体を製造する場合は、図5に示す真空チャンバ2内の酸素圧を3×10-4~5Paに設定する。
 ステップST4:
 ショット数N、直流電源電圧Va、コンデンサ容量C、周波数Fを設定する。
 これらの設定のタイミングは、ステップS4前であれば特に限定されない。
 第1実施例のナノ構造体を製造する場合は、図5に示す第1の同軸型真空アーク蒸着源5(Si)によるショット数N(Si)を300~18000、第2の同軸型真空アーク蒸着源5(Li)によるショット数N(Li)を200~4800、第1の放電電圧V(Si)を100~200V,第2の放電電圧V(Li)を100~150に設定する。
 また、それ以外の値は、図6に示すように設定する。このように設定することで、放電特性に優れた上述した第1実施例のナノ構造体が得られた。
 ステップST5:
 被蒸着材料保持部4を回転する。
 ステップST6:
 前述したナノサイズ粒子形成工程を実行する。
 すなわち、被蒸着体10被蒸着体に、蒸着材料11をアークプラズマ蒸着源から照射し、被蒸着体10内に、平均粒径は、5~30nmのナノサイズ粒子を含有させてナノ構造体を製造する。
 本発明は上述した実施形態には限定されない。
 すなわち、当業者は、本発明の技術的範囲またはその均等の範囲内において、上述した実施形態の構成要素に関し、様々な変更、コンビネーション、サブコンビネーション、並びに代替を行ってもよい。
 例えば、上述した実施形態では、APD法で、ナノ構造体を形成する場合を例示したが、その他、粉体プロセスで形成してもよい。
本発明はリチウムイオン電池等を取り扱う自動車産業、エネルギー産業、家電産業化学工業など広範囲な技術分野に適用される。
 1…金属ナノ粒子製造装置
 2…真空チャンバ
 4…被蒸着材料保持部
 5,5(Li),5(Si)…同軸型真空アーク蒸着源
 6,6(Li),6(Si)…電源モジュール(電源装置)
 8…基板
10…被蒸着体
11,11(Li),11(Si)…蒸着材料
12…カソード電極
13…トリガ電極
15…絶縁碍子
18…コントローラ
23…アノード電極
31…トリガ電源
32…直流電圧源
33…コンデンサユニット

Claims (14)

  1.  ナノサイズ粒子の堆積で得られるナノ構造体であって、    
     前記ナノサイズ粒子は、平均粒径5~30nmのSi及びLiであり、
     下記(1)の条件を満たす
     ナノ構造体。
     Li/Siの比率y及びO/Siの比率zが「0<y,z≦4」、且つ
     「0<x≦2」
                               …(1)
  2.  表面が、Li―Si―O、Si及びSiOxの結合状態になっている
     請求項1に記載のナノ構造体。
  3.  前記比率yは、0.4~1.6である
     請求項1に記載のナノ構造体。
  4.  前記ナノサイズ粒子のかさ密度が理論値の90~100%である
     請求項1に記載のナノ構造体。
  5.  ナノサイズ粒子の堆積で得られるナノ構造体であって、    
     前記ナノサイズ粒子の平均粒径は、5~30nmであり、
     前記ナノサイズ粒子は、Zr,Li,Si,Cu,Nbの少なくとも一つである
     ナノ構造体。
  6.  複数の前記ナノサイズ粒子を含有する
     請求項5に記載のナノ構造体。
  7.  前記複数のナノサイズ粒子は、
     LiとZr、SiとCu、LiとSiのいずれかの組み合わせを含む
     請求項6に記載のナノ構造体。
  8.  それぞれ前記ナノサイズ粒子であるSiCと、SiOの複合体を含有する
     請求項5に記載のナノ構造体。
  9.  前記ナノサイズ粒子は、Siであり、
     表面の結合状態がSi,SiC,SiOxである
     請求項5に記載のナノ構造体。
  10.  前記ナノサイズ粒子のかさ密度が理論値の90~100%である
     請求項5に記載のナノ構造体。
  11.  請求項1~10のいずれかのナノ構造体からなる電極。
  12.  請求項11に記載の電極
     を備えた電池。
  13.  真空チャンバ内に被蒸着体を設置する被蒸着材設置工程と、
     前記真空チャンバ内にSiを第1の蒸着材料として設置し、Liを第2の蒸着材料として設置する蒸着材料設置工程と、
     前記真空チャンバ内の酸素圧を調整する酸素圧調整工程と、
     前記第1の蒸着材料のショット数N(1)、第2の蒸着材料のショット数N(2)、前記第1の蒸着材料との間で第1のアークプラズマ放電をさせる第1のアノード電極に印加する第1の放電電圧V(1)、前記第2の蒸着材料との間で第2のアークプラズマ放電をさせる第2のアノード電極に印加する第2の放電電圧V(2)を設定する設定工程と、
     前記酸素圧調整工程で調整された酸素圧及び前記設定工程で設定された条件で、前記第1の蒸着材料及び前記第2の蒸着材料をアークプラズマ放電により前記被蒸着材に照射し、平均粒径5~30nmのSi及びLiのナノサイズ粒子を前記被蒸着体に堆積させて、下記(1)の条件を満たすナノ構造体を前記被蒸着体に形成するナノ構造体形成工程と、
     を有するナノ構造体製造方法。
     Li/Siの比率y及びO/Siの比率zが「0<y,z≦4」、且つ
     「0<x≦2」
                               …(1)
  14.  前記酸素圧調整工程は、前記酸素圧を3×10-4~5Paに設定し、
     前記設定工程は、
     前記ショット数N(1)を300~18000、前記ショット数N(2)を200~4800、前記第1の放電電圧V(1)を100~200V,前記第2の放電電圧V(2)を100~150に設定する
     請求項13に記載のナノ構造体製造方法。
     
PCT/JP2019/035378 2018-09-10 2019-09-09 ナノ構造体、電極、電池及びナノ構造体製造方法 WO2020054665A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020546010A JP7496133B2 (ja) 2018-09-10 2019-09-09 ナノ構造体、電極及び電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-168866 2018-09-10
JP2018168866 2018-09-10

Publications (1)

Publication Number Publication Date
WO2020054665A1 true WO2020054665A1 (ja) 2020-03-19

Family

ID=69778088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035378 WO2020054665A1 (ja) 2018-09-10 2019-09-09 ナノ構造体、電極、電池及びナノ構造体製造方法

Country Status (2)

Country Link
JP (1) JP7496133B2 (ja)
WO (1) WO2020054665A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004148673A (ja) * 2002-10-30 2004-05-27 Central Glass Co Ltd 透明ガスバリア膜、透明ガスバリア膜付き基体およびその製造方法
JP2009046741A (ja) * 2007-08-22 2009-03-05 Ulvac Japan Ltd 微粒子膜の形成方法
JP2012057198A (ja) * 2010-09-07 2012-03-22 Ulvac-Riko Inc 微粒子形成装置およびその方法
JP2013235682A (ja) * 2012-05-07 2013-11-21 Furukawa Electric Co Ltd:The リチウムイオン二次電池用負極材料およびその製造方法、並びにそれを用いたリチウムイオン二次電池
JP2014070226A (ja) * 2012-09-27 2014-04-21 Ulvac-Riko Inc 蒸着源および微粒子形成装置
JP2014534592A (ja) * 2011-11-02 2014-12-18 アイ テン 全固体薄膜電池の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004148673A (ja) * 2002-10-30 2004-05-27 Central Glass Co Ltd 透明ガスバリア膜、透明ガスバリア膜付き基体およびその製造方法
JP2009046741A (ja) * 2007-08-22 2009-03-05 Ulvac Japan Ltd 微粒子膜の形成方法
JP2012057198A (ja) * 2010-09-07 2012-03-22 Ulvac-Riko Inc 微粒子形成装置およびその方法
JP2014534592A (ja) * 2011-11-02 2014-12-18 アイ テン 全固体薄膜電池の製造方法
JP2013235682A (ja) * 2012-05-07 2013-11-21 Furukawa Electric Co Ltd:The リチウムイオン二次電池用負極材料およびその製造方法、並びにそれを用いたリチウムイオン二次電池
JP2014070226A (ja) * 2012-09-27 2014-04-21 Ulvac-Riko Inc 蒸着源および微粒子形成装置

Also Published As

Publication number Publication date
JPWO2020054665A1 (ja) 2021-08-30
JP7496133B2 (ja) 2024-06-06

Similar Documents

Publication Publication Date Title
Demirkan et al. Cycling performance of density modulated multilayer silicon thin film anodes in Li-ion batteries
US8221918B2 (en) Anode for lithium ion secondary battery, production method thereof, and lithium ion secondary battery using the same
JP2022544754A (ja) バッテリーアノードとして使用するためのケイ素組成物材料
Li et al. Self-assembled growth of Sn@ CNTs on vertically aligned graphene for binder-free high Li-storage and excellent stability
Demirkan et al. Low-density silicon thin films for lithium-ion battery anodes
Forney et al. High performance silicon free-standing anodes fabricated by low-pressure and plasma-enhanced chemical vapor deposition onto carbon nanotube electrodes
US20130189577A1 (en) Apparatus and method for hot coating electrodes of lithium-ion batteries
KR100855842B1 (ko) 리튬이온 이차전지용 음극, 그 제조 방법 및 이것을 이용한리튬이온 이차전지
US11111576B2 (en) Method for producing nanostructured layers
TWI416783B (zh) A negative electrode material for a lithium ion secondary battery, a method for manufacturing the same, and a lithium ion secondary battery
WO2015146315A1 (ja) 全固体電池
Polat et al. The effect of copper coating on nanocolumnar silicon anodes for lithium ion batteries
JPH1131509A (ja) リチウムイオン2次電池用負極材料とその電極
Cevher et al. Electrochemical Performance of SnO₂ and SnO₂/MWCNT/Graphene Composite Anodes for Li-Ion Batteries
WO2020054665A1 (ja) ナノ構造体、電極、電池及びナノ構造体製造方法
JP7433816B2 (ja) ナノ構造体製造方法及びその装置
Varghese et al. Cobalt oxide thin films for high capacity and stable Li-ion battery anode
Zhang et al. Multi‐Component Lithiophilic Alloy Film Modified Cu Current Collector for Long‐Life Lithium Metal Batteries by a Novel FCVA Co‐Deposition System
Xiong et al. Synthesis and characterization of TiO2/C by a simple thermal decomposition method
Aslan et al. Nano crystalline TiO2 thin films as negative electrodes for lithium ion batteries
TWI416784B (zh) Lithium ion battery anode material, and its manufacturing method, and lithium ion battery
WO2014014376A1 (ru) Литий-ионная батарея на основе многослойного трехмерного наноструктурированного материала
KR20090079347A (ko) 전도성 카본 코팅장치 및 방법
WO2022255027A1 (ja) 被覆活物質、正極材料、正極および電池
Polat et al. Nanocolumnar-Architectured, Layered Cu/Si Film as Anodes for Rechargeable LIB

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860112

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020546010

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19860112

Country of ref document: EP

Kind code of ref document: A1