WO2020054350A1 - 蛍光体及び発光装置 - Google Patents
蛍光体及び発光装置 Download PDFInfo
- Publication number
- WO2020054350A1 WO2020054350A1 PCT/JP2019/032907 JP2019032907W WO2020054350A1 WO 2020054350 A1 WO2020054350 A1 WO 2020054350A1 JP 2019032907 W JP2019032907 W JP 2019032907W WO 2020054350 A1 WO2020054350 A1 WO 2020054350A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phosphor
- light
- measured
- sialon
- sialon phosphor
- Prior art date
Links
- 239000000463 material Substances 0.000 title abstract description 3
- 238000007561 laser diffraction method Methods 0.000 claims abstract description 17
- 238000000790 scattering method Methods 0.000 claims abstract description 17
- 239000007864 aqueous solution Substances 0.000 claims abstract description 6
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 claims abstract description 6
- 235000019982 sodium hexametaphosphate Nutrition 0.000 claims abstract description 6
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 claims abstract description 6
- 239000006185 dispersion Substances 0.000 claims abstract description 5
- 230000010355 oscillation Effects 0.000 claims abstract description 5
- 238000005342 ion exchange Methods 0.000 claims abstract description 4
- 239000000243 solution Substances 0.000 claims abstract description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 175
- 239000002245 particle Substances 0.000 claims description 67
- 230000031700 light absorption Effects 0.000 claims description 27
- 239000007788 liquid Substances 0.000 claims description 16
- 238000004438 BET method Methods 0.000 claims description 4
- 239000000126 substance Substances 0.000 abstract description 7
- 230000000052 comparative effect Effects 0.000 description 71
- 239000000843 powder Substances 0.000 description 71
- 238000000034 method Methods 0.000 description 33
- 238000004519 manufacturing process Methods 0.000 description 27
- 238000010304 firing Methods 0.000 description 24
- 230000007547 defect Effects 0.000 description 17
- 238000010908 decantation Methods 0.000 description 16
- 238000010298 pulverizing process Methods 0.000 description 16
- 230000005284 excitation Effects 0.000 description 15
- 230000008569 process Effects 0.000 description 13
- 238000010306 acid treatment Methods 0.000 description 11
- 238000010521 absorption reaction Methods 0.000 description 10
- 238000000137 annealing Methods 0.000 description 10
- 230000004907 flux Effects 0.000 description 10
- 238000001228 spectrum Methods 0.000 description 10
- 230000007423 decrease Effects 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 238000009826 distribution Methods 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 238000001914 filtration Methods 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 230000001186 cumulative effect Effects 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 5
- 239000007858 starting material Substances 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 229920002050 silicone resin Polymers 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 229920000995 Spectralon Polymers 0.000 description 3
- 239000012190 activator Substances 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229910001940 europium oxide Inorganic materials 0.000 description 3
- AEBZCFFCDTZXHP-UHFFFAOYSA-N europium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Eu+3].[Eu+3] AEBZCFFCDTZXHP-UHFFFAOYSA-N 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000002189 fluorescence spectrum Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000013077 target material Substances 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910003564 SiAlON Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- -1 that is Substances 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/082—Compounds containing nitrogen and non-metals and optionally metals
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/64—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7728—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
- C09K11/77348—Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/851—Wavelength conversion means
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/851—Wavelength conversion means
- H10H20/8511—Wavelength conversion means characterised by their material, e.g. binder
- H10H20/8512—Wavelength conversion materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/882—Scattering means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
Definitions
- the present invention relates to a phosphor used in an LED (Light Emitting Diode) and a light emitting device using the phosphor.
- LED Light Emitting Diode
- an LED package (also simply referred to as an LED) that obtains white light by combining a blue LED with a green phosphor, a red phosphor, and the like is widely known (Patent Document 1).
- a method for producing the phosphor for example, subsequent to the step of mixing and firing the phosphor materials, at a temperature lower than the firing temperature of the firing step, in an inert atmosphere, a reducing atmosphere, or a vacuum, re-firing or annealing is performed.
- a production method is generally known (Patent Document 2).
- the re-firing or annealing treatment performed at a temperature lower than the firing temperature in the firing step improves the fluorescent characteristics of the phosphor.
- the brightness of a light emitting device can be improved by controlling the particle morphology of the phosphor (Patent Document 3).
- Liquid crystal displays are being developed to be smaller and thinner in recent years, and LEDs used for backlights of such liquid crystal displays are also required to be smaller and thinner (for example, mini LEDs, micro LEDs, etc.). Have been.
- phosphor sheets and phosphor plates containing phosphors are being developed for displays and light-emitting devices with a novel structure. (In the present invention, the above is summarized as “a thinned fluorescent light-emitting device.” May be called).
- the phosphor used therein is also required to be reduced in size, that is, to have a smaller particle diameter.
- the D50 is 10 ⁇ m or less, and the efficiency of converting the wavelength of the excitation light (for example, 455 nm monochromatic light) to the phosphor to another wavelength, that is, the internal quantum efficiency of the phosphor and the light absorption rate (the excitation light)
- the efficiency of converting the wavelength of the excitation light for example, 455 nm monochromatic light
- the light absorption rate the excitation light
- the present inventors have solved the above-mentioned problems by reducing the ratio of powder having a particularly small distribution region (hereinafter, referred to as “ultrafine powder”) in a phosphor that has been reduced in particle size to a fine powder.
- ultratrafine powder powder having a particularly small distribution region
- a ⁇ -sialon phosphor represented by the following formula 1 Regarding D10, D50, and D90 (unit: [ ⁇ m]) measured by the laser diffraction / scattering method and based on the volume frequency, D50 is 10 ⁇ m or less, and the value of D10, D50, and D90 is expressed by the following equation 2.
- the solution was put into 100 ml of an ion exchange aqueous solution mixed with 05 wt%, and this was subjected to a dispersion treatment for 3 minutes by disposing the chip in the center of the liquid using an ultrasonic homogenizer having an oscillation frequency of 19.5 ⁇ 1 kHz and an amplitude of 32 ⁇ 2 ⁇ m. This is a measured value using a liquid.
- the average particle diameter D BET [ ⁇ m] of the ⁇ -sialon phosphor calculated from the specific surface area measured by the BET method and D50 [ ⁇ m] measured by the laser diffraction / scattering method are represented by the following formula 3.
- a light emitting device having an LED or a phosphor sheet or a phosphor plate including the ⁇ -sialon phosphor according to any one of (1) to (4).
- a ⁇ -sialon phosphor having D50 of 10 ⁇ m or less but high internal quantum efficiency and high light absorption can be obtained.
- a light emitting device using the phosphor of the present invention can be provided.
- the ⁇ -sialon phosphor of the present invention can be preferably used for manufacturing a thinned fluorescent light emitting device.
- the phosphor of the present invention is generally contained in a silicone-based or epoxy-based resin, or in a transparent or visible light-transmitting ceramic. Is used by dispersing.
- the ⁇ -sialon phosphor of the present invention can be preferably used for the manufacture of a thin fluorescent light emitting device such as a micro LED having a size of about several tens ⁇ m or a phosphor sheet having a thickness of several tens ⁇ m.
- D50 based on the volume frequency measured by a laser diffraction / scattering method is 10 ⁇ m or less.
- D50 is a particle diameter at which the cumulative volume from the small particle diameter side becomes 50% in the particle diameter distribution curve, and is also referred to as a median diameter. If the D50 is larger than 10 ⁇ m, for example, when a micro LED is manufactured, the amount and the dispersion state including the phosphor are likely to vary, and the color and brightness of the LED tend to increase, so that the product yield is reduced. May drop significantly.
- the ⁇ -sialon phosphor of the present invention has D10, D50, D90 (units are [ ⁇ m], respectively, where D50 is the median diameter D50) based on volume frequency measured by a laser diffraction / scattering method. The same) must satisfy the equation of (D90 ⁇ D10) / D50 ⁇ 1.6.
- the conventional ⁇ -sialon phosphor has good crystallinity and good LED brightness when the D50 of about 10 to 30 ⁇ m based on the volume frequency of the phosphor measured by the laser diffraction / scattering method is about 10 to 30 ⁇ m. It has been said that such a phosphor is also suitable for improvement, but D90 of such a phosphor is 30 to 50 ⁇ m, and D100 has a size close to 100 ⁇ m.
- a powder (particle) having a particle diameter exceeding 50 ⁇ m may be referred to as “coarse powder”.
- D10 is a particle diameter which becomes 10% in the cumulative volume from the small particle diameter side in the particle diameter distribution curve
- D90 is 90% in the cumulative volume from the small particle diameter side in the particle diameter distribution curve
- D100 is a particle diameter that becomes 100% in cumulative volume from the small particle diameter side in the particle diameter distribution curve.
- D100 based on the volume frequency measured by the laser diffraction / scattering method of the phosphor is: It is generally preferred that the size be reduced to one third or less of the inner diameter of the nozzle or the mesh opening. If it exceeds one-third, nozzle clogging and mesh clogging are likely to occur, so that it is difficult to industrially manufacture a thinned fluorescent light emitting device.
- the method for obtaining the ⁇ -sialon phosphor of the present invention is not particularly limited.
- a method of synthesizing while controlling the growth of the particle diameter of the phosphor may be used.
- a method of pulverizing the phosphor having D50 or being in a lump) using mechanical means may be used.
- the method for removing coarse powder or ultrafine powder from the ⁇ -sialon phosphor there is no particular limitation on the method for removing coarse powder or ultrafine powder from the ⁇ -sialon phosphor.
- a liquid cyclone applying a principle that the centrifugal force is different depending on a difference in particle diameter, a swirling airflow classifier using wind power, and other known devices.
- filtration may be performed with a filter paper or a membrane filter, or a dehydrator or a solid-liquid separator using centrifugal force may be applied.
- a filter paper or a membrane filter or a dehydrator or a solid-liquid separator using centrifugal force may be applied.
- the D50 of the ⁇ -sialon phosphor of the present invention is set to 10 ⁇ m or less, coarse powder which may hinder the manufacturing process of the thinned fluorescent light emitting device and the luminance of the phosphor may be affected. It is necessary to set the ⁇ -sialon phosphor of the present invention to satisfy the relationship of (D90-D10) / D50 ⁇ 1.6 from the above viewpoints. There is a need. That is, it indicates that the difference between D90 and D10 is smaller than a certain value with respect to a certain D50 value, which means that the number of particles smaller than D10 and the number of particles larger than D90 are small.
- D50 is 10 ⁇ m or less
- particles smaller than D10 are particles having a particle diameter of several ⁇ m to submicron or less.
- fine particles in this specification, particularly particles of 0.2 ⁇ m or less, which inevitably affect the characteristics of the ⁇ -sialon phosphor. (Defined as "ultrafine powder").
- the value of (D90-D10) / D50 is a value that is an index that serves as a measure of the spread of the particle size distribution, but when this value is 1.6 or more, the ratio of the ultrafine powder is overall.
- the specific surface area increases, reflection and scattering increase, and a problem arises in that the absorptance of the excitation light decreases.
- the amount of the ultrafine powder is large, there may be many defects due to pulverization, or the crystallinity may be poor, and there is a problem that the internal quantum efficiency is reduced.
- the span value is large, d10 to d50 becomes small, and the ratio of ultrafine powder becomes large.
- the LED When the LED is made, the light is scattered and reflected by the ultrafine powder, and the light is emitted inside the LED until the light is emitted outside the LED. Migrate, and the light is attenuated (changes to heat or the like) by the reflector, the resin, or the like, and the brightness of the entire LED is easily reduced. This is the same tendency in a phosphor sheet prepared by mixing a phosphor and a resin.
- the phosphor sheet When the phosphor sheet is irradiated with blue excitation light, the transmitted light of the excitation light emitted from the opposite side and the fluorescence are measured, and the ratio of the emitted fluorescence to the emitted excitation light is compared. That is, a phosphor containing a large amount of ultrafine powder has a reduced ratio of fluorescence to excitation light.
- the measured value such as D10, D50 and D90 of the ⁇ -sialon phosphor of the present invention by the laser diffraction / scattering method is measured according to JIS R1622 and R1629.
- 0.5 g of the phosphor is put into 100 ml of an ion exchange aqueous solution mixed with 0.05 wt% of sodium hexametaphosphate, and this is put into an ultrasonic homogenizer having an oscillation frequency of 19.5 ⁇ 1 kHz, a chip size of 20 ⁇ , and an amplitude of 32 ⁇ 2 ⁇ m.
- the measurement value is determined using a liquid in which the chip is placed in the center of the liquid and dispersed for 3 minutes.
- the notation of 19.5 ⁇ 1 indicates a range of 18.5 or more and 20.5 or less
- 32 ⁇ 2 indicates a range of 30 or more and 34 or less.
- the ⁇ -sialon phosphor of the present invention has a diffuse reflectance of 95% or more with respect to light having a wavelength of 800 nm, in addition to the regulation on the particle size. That is, Eu, which is an activator element of the ⁇ -sialon phosphor, does not originally absorb, for example, irradiating the phosphor with light having a wavelength of 800 nm and confirms the diffuse reflectance. It is possible to confirm the absorption of extra light by a compound other than sialon (also referred to as heterophase).
- a phosphor having a small particle diameter can be obtained by strongly performing mechanical pulverization, but at the same time, crystal defects on the surface increase.
- light having a wavelength of 800 nm is also absorbed by the defects. There was a phenomenon of dropping to less than 95%.
- the ⁇ -sialon phosphor of the present invention it is preferable that the ⁇ -sialon phosphor has a light absorptivity of 6% or less with respect to light having a wavelength of 600 nm, in addition to the regulation on the particle size.
- the ⁇ -sialon phosphor similarly to the light having a wavelength of 800 nm, light having a wavelength of 600 nm is light having a wavelength that Eu which is an activator of the phosphor does not originally absorb.
- the degree of absorptance of light having a wavelength of 600 nm it is possible to confirm the degree of absorption of extra light due to a defect of the phosphor or the like.
- the ⁇ -sialon phosphor of the present invention does not require a pulverizing treatment at the time of its production. However, if the grinding process is performed too strongly, more ultrafine powder containing a lot of crystal defects will be generated, and the brightness will decrease.Therefore, by removing the ultrafine powder having low characteristics, high brightness and high internal quantum Efficiency can be obtained. In this case, whether or not the value of the diffuse reflectance of the light having a wavelength of 800 nm is 95% or more can be a measure of the fluorescence emission characteristics of the ⁇ -sialon phosphor of the present invention.
- the absorptance of light having a wavelength of 600 nm is 6% or less, more preferably 5% or less, can be a measure of the fluorescence emission characteristics of the ⁇ -sialon phosphor of the present invention.
- D50 / DBET which is the ratio of D50 measured by the laser diffraction / scattering method, to the average particle diameter DBET calculated from the BET specific surface area
- Particles that is, particles whose average particle diameter D BET calculated from the BET specific surface area is determined to be smaller than D50 measured by the laser diffraction / scattering method, are considered to have a relatively large BET specific surface area.
- such particles may have a rough particle surface, ultrafine powder may be attached or aggregated to large particles, or particles may be aggregated. Due to the fact that ultrafine powder has many defects due to pulverization and low light emission characteristics such as internal quantum efficiency, the value of D50 / D BET which may indicate the presence of superfine powder adhered or aggregated is small. Is preferred. Therefore, in the ⁇ -sialon phosphor of the present invention, the value of D50 / DBET is preferably smaller than 2.1.
- Another embodiment of the present invention is a light emitting device having an LED or a phosphor sheet or a phosphor plate including the ⁇ -sialon phosphor of the present invention.
- a light emitting device using the ⁇ -sialon phosphor of the present invention can achieve high luminance.
- Example 1 The ⁇ -sialon phosphor of Example 1 includes a firing step of firing a raw material powder mixed with a starting material, and a low-temperature firing step of once firing the fired product obtained in the firing step, which will be described in detail below. Annealing step), an acid treatment step for removing impurities from the low-temperature fired powder obtained after the low-temperature firing step, and a decantation step for further removing ultrafine powder from the powder after the acid treatment step.
- SN-E10 grade manufactured by Tokuyama Corporation, aluminum oxide powder (TM-DAR grade, manufactured by Daimei Chemical Co., Ltd.), and europium oxide (RU grade manufactured by Shin-Etsu Chemical Co., Ltd.) were mixed and mixed. The nitrogen content is determined when the raw materials are blended in accordance with the above molar ratio. These starting materials were mixed with a small mill mixer to sufficiently disperse and mix.
- the raw material powder was filled into a cylindrical boron nitride container (manufactured by Denka Corporation) with a lid, and baked at 1900 ° C. for 5 hours in a 0.9 MPa pressurized nitrogen atmosphere in an electric furnace of a carbon heater to obtain a baked product.
- ⁇ Low temperature firing step (annealing step)>
- the fired product obtained in the firing step was pulverized for 2 hours using a wet ball mill (zirconia ball), filtered, dried, and passed through a sieve having a nominal opening of 45 ⁇ m. This was charged into a cylindrical boron nitride container, and further kept in an electric furnace equipped with a carbon heater at 1500 ° C. for 7 hours under an argon flow atmosphere at atmospheric pressure to obtain a low-temperature fired powder.
- a wet ball mill zirconia ball
- ⁇ Acid treatment step> The low-temperature calcined powder was immersed in a mixed acid of hydrofluoric acid and nitric acid. Next, heat treatment was performed at 60 ° C. or higher for 3 hours. The low-temperature fired powder after the heat treatment was sufficiently washed with pure water, dried, and further passed through a 45 ⁇ m sieve to obtain a powder after the acid treatment step. During the firing step, a compound containing oxygen such as SiO generated by a side reaction of the raw material powder volatilizes, so that the amount of oxygen contained in the fired product obtained in the firing step is calculated based on the oxygen content contained in the raw material powder.
- a compound containing oxygen such as SiO generated by a side reaction of the raw material powder volatilizes, so that the amount of oxygen contained in the fired product obtained in the firing step is calculated based on the oxygen content contained in the raw material powder.
- ⁇ Decantation process> From the powder after the acid treatment step, in order to remove the ultrafine powder, a decantation step of removing the fine powder of the supernatant liquid in which the powder after the acid treatment step is settling is performed, and the obtained precipitate is filtered and dried. Then, the mixture was passed through a sieve having an opening of 45 ⁇ m to finally obtain a ⁇ -sialon phosphor of Example 1.
- the operation of decantation calculates the settling time of the phosphor particles from the Stokes equation with the setting of removing particles of 2 ⁇ m or less, and at the same time when the settling time has been reached from the start of sedimentation, the supernatant liquid having the specified height or more is removed.
- Example 2 In the manufacture of the phosphor of Example 2, the firing temperature and the firing time in the firing step were set to 2000 ° C. and 18 hours, and the processing time for ball mill pulverization, which is the preparation stage of the low-temperature heat treatment step (annealing step), was set to 40 hours. The other steps were carried out under the same conditions as in Example 1 to obtain the ⁇ -sialon phosphor of Example 2.
- Example 3 In the manufacture of the phosphor of Example 3, the operation was carried out under the same conditions as in Example 1 except that the firing temperature in the firing step was 1960 ° C., and the ⁇ -sialon phosphor of Example 3 was obtained.
- Comparative Example 1 In the manufacture of the phosphor of Comparative Example 1, the state where the ultrafine powder remained without removing the ultrafine powder by a decantation step, filtering, drying, and performing a 45 ⁇ m sieve was maintained, and the other steps were the same as in Example 1. The operation was proceeded to obtain a ⁇ -sialon phosphor of Comparative Example 1.
- Comparative Example 2 In the manufacture of the phosphor of Comparative Example 2, the processing time of the ball mill pulverization, which is the preparation stage of the low-temperature heat treatment step (annealing step), was set to 2 hours. The other steps were carried out under the same conditions as in Example 2, but after the decantation step, ball mill pulverization by a wet method was further performed for 40 hours, followed by filtration, drying, and passing through a 45 ⁇ m sieve to obtain ⁇ -sialon fluorescence of Comparative Example 2. I got a body.
- Comparative Example 3 In the manufacture of the phosphor of Comparative Example 3, fine particles were not removed by a decantation step after the acid treatment step, filtration, drying, and a 45 ⁇ m sieve were not performed, and a state in which ultrafine powder remained was maintained. The operation was proceeded under the same conditions as in Example 2 to obtain a ⁇ -sialon phosphor of Comparative Example 3.
- Example 4 In the production of the phosphor of Example 4, after the decantation step, ball mill pulverization by a wet method was further performed for 2 hours. The other steps were performed under the same conditions as in Comparative Example 2 to obtain a ⁇ -sialon phosphor of Example 4.
- Comparative Example 4 In the manufacture of the phosphor of Comparative Example 4, the processing time of the ball mill pulverization, which is the preparation stage of the low-temperature heat treatment step (annealing step), was set to 2 hours. The other steps were performed under the same conditions as in Comparative Example 3 to obtain a ⁇ -sialon phosphor of Comparative Example 4.
- Comparative Example 5 In the manufacture of the phosphor of Comparative Example 5, the process was performed up to the acid treatment step under the conditions of Comparative Example 4, and in the subsequent decantation step, the process was performed so as to remove particles of 10 ⁇ m or less. I got a body.
- Example 5 In the production of the phosphor of Example 5, the ⁇ -sialon phosphor of Example 1 was further pulverized by a wet ball mill for 2 hours, filtered, dried, and classified by a 45 ⁇ m sieve. After a decantation operation, filtration and drying under a setting to remove, the mixture was passed through a 45 ⁇ m sieve to obtain a ⁇ -sialon phosphor of Example 5.
- Comparative Example 6 In the manufacture of the phosphor of Comparative Example 6, the treatment was performed under the same conditions as in Example 5, but the final decantation operation and the subsequent treatment were not performed, and the ⁇ -sialon phosphor of Comparative Example 6 was obtained.
- Ube Industries SN-E10 grade Aluminum nitride powder (E grade by Tokuyama), Aluminum oxide powder (TM-DAR grade by Daimei Chemical), Europium oxide (RU grade by Shin-Etsu Chemical) and mixed
- the processing time of the ball mill pulverization which is the preparation stage of the low-temperature heat treatment step (annealing step), was set to 2 hours, and otherwise the same treatment as in Example 2 was performed to obtain the ⁇ -sialon phosphor of Example 6. .
- Comparative Example 7 In the production of the phosphor of Comparative Example 7, fine particles were not removed by a decantation process after the acid treatment process, filtration, drying, and a process of passing through a 45 ⁇ m sieve were not performed. Was treated under the same conditions as in Example 6 to obtain a ⁇ -sialon phosphor of Comparative Example 7.
- silicon nitride powder Ube, U.S.A.
- the D10, D50, D90, D99, and D100 particle diameters of the ⁇ -sialon phosphors of the examples and comparative examples were measured with a Microtrac MT3300EXII (Microtrac Bell Co., Ltd.), which is a particle size measuring apparatus for laser diffraction / scattering. did.
- a fluorescent substance to be measured is put into 100 ml of an aqueous solution of ion-exchanged water in which 0.05% by weight of sodium hexametaphosphate is mixed, and an ultrasonic homogenizer, Ultrasonic Homogenizer US-150E (Nippon Seiki Seisakusho Co., Ltd.) , Amplitude 100%, oscillation frequency 19.5 ⁇ 1 kHz, chip size 20 ⁇ , amplitude 32 ⁇ 2 ⁇ m, the chip was placed in the center of the liquid, and subjected to dispersion treatment for 3 minutes, and then the particle size was measured with the MT3300EXII.
- D50 is D10, which is 10% of the particle diameter in the cumulative volume from the small particle diameter side, D90, which is 90% in the cumulative volume from the small particle diameter side, and similarly is 99. % Of D99 and similarly 100% of D100 (unit: [ ⁇ m]).
- V is the specific surface area [ ⁇ m 2 / g] of the measurement target material obtained by the air permeation method
- G indicates the density [g / ⁇ m 3 ] of the measurement target material.
- the monochromatic light was applied to the phosphor sample, and the fluorescence spectrum of the sample was measured using a spectrophotometer (MCPD-7000 manufactured by Otsuka Electronics Co., Ltd.). From the obtained spectrum data, the number of excited reflected light photons (Qref) and the number of fluorescent photons (Qem) were calculated. The number of photons in the excitation reflected light was calculated in the same wavelength range as the number of photons in the excitation light, and the number of fluorescent photons was calculated in the range of 465 to 800 nm.
- a standard reflector (Spectralon (registered trademark) manufactured by Labsphere) having a reflectance of 99% was attached to the opening of the integrating sphere, and the spectrum of the excitation light having a wavelength of 455 nm was measured. At that time, the number of photons (Qex) of the excitation light was calculated from the spectrum in the wavelength range of 450 to 465 nm.
- the optical absorption at 455 nm and the internal quantum efficiency of the ⁇ -sialon of the example and the comparative example were obtained by the following formulas.
- the chromaticity X of the ⁇ -sialons of Examples and Comparative Examples is based on the XYZ color system defined by JIS Z8781-3: 2016 according to JIS Z8724: 2015 from the wavelength range data of 465 nm to 780 nm of the fluorescence spectrum. And the CIE chromaticity coordinate x value (chromaticity X) was calculated.
- the peak wavelength of the ⁇ -sialon of the example and the comparative example was determined to be the wavelength showing the highest intensity in the range of 465 nm to 800 nm of the spectrum data obtained by attaching the phosphor to the opening of the integrating sphere.
- the half-value width of the ⁇ -sialon of each of Examples and Comparative Examples is a half-width of the peak wavelength, which is a spectrum that appears in the range of 465 nm to 800 nm of the spectrum data obtained by attaching the phosphor to the opening of the integrating sphere. It is assumed that the difference is the difference between the wavelength on the long wavelength side and the wavelength on the short wavelength side.
- ⁇ 800 nm diffuse reflectance of ⁇ -sialon phosphor> The diffuse reflectance of the ⁇ -SiAlON in Examples and Comparative Examples was measured by attaching an integrating sphere device (ISV-469) to an ultraviolet-visible spectrophotometer (V-550) manufactured by JASCO Corporation. Baseline correction was performed using a standard reflector (Spectralon (registered trademark)), a solid sample holder filled with phosphor powder was attached, and diffuse reflectance was measured in a wavelength range of 500 to 850 nm.
- the 800 nm diffuse reflectance referred to in the present invention is a value of the diffuse reflectance particularly at 800 nm.
- the 600 nm light absorptivity of the ⁇ -sialon of the example and the comparative example was measured by the following procedure. That is, a standard reflector (Spectralon (registered trademark) manufactured by Labsphere) having a reflectance of 99% is set in the opening of the integrating sphere, and the light is emitted from the light source (Xe lamp) to a wavelength of 600 nm in the integrating sphere. The obtained monochromatic light was introduced through an optical fiber, and the reflected light spectrum was measured with a spectrophotometer (MCPD-7000 manufactured by Otsuka Electronics Co., Ltd.). At this time, the number of incident photons (Qex (600)) was calculated from the spectrum in the wavelength range of 590 to 610 nm.
- the concave cell is filled with ⁇ -sialon phosphor so that the surface becomes smooth and set in the opening of the integrating sphere.
- monochromatic light having a wavelength of 600 nm is irradiated, and the incident reflected light spectrum is measured by a spectrophotometer.
- the number of incident reflected light photons (Qref (600)) was calculated from the obtained spectrum data.
- the number of incident reflected light photons (Qref (600)) was calculated in the same wavelength range as the number of incident light photons (Qex (600)).
- the standard sample of the ⁇ -sialon phosphor (NIMS Standard Green lot No. NSG1301, manufactured by Sialon) was measured by the above-described measurement method, the light absorption at 600 nm was 7.6%. Since the value of the 600 nm light absorptivity may fluctuate when the maker of the measuring device, the production lot number, and the like change, when the maker of the measuring device, the production lot number, and the like are changed, the standard of the ⁇ -sialon phosphor is changed. Each measured value was corrected using the measured value of the sample as a reference value.
- the LED was mounted by placing the LED on the bottom of the concave package body, wire bonding the electrode on the substrate, and then injecting a phosphor mixed with a silicone resin from a micro syringe. After mounting, the composition was cured at 120 ° C., and post-cured at 110 ° C. for 10 hours to seal.
- the LED used had an emission peak wavelength of 448 nm and a chip size of 1.0 mm ⁇ 0.5 mm.
- the total luminous flux and chromaticity Y of the prepared LED package were measured by a total luminous flux measuring device.
- the method for comparing the total luminous flux of the ⁇ -sialon phosphors with different preparation conditions is to create a graph of the chromaticity Y on the horizontal axis and the total luminous flux on the vertical axis, and calculate an approximate curve for each ⁇ -sialon phosphor with different preparation conditions. Then, the total luminous flux when the chromaticity Y was equal was calculated from the relational expression of the approximate curve, and the total luminous flux of ⁇ -sialon phosphors having different preparation conditions was compared as a relative value.
- the variation of the chromaticity Y is determined by the above-mentioned method for measuring the chromaticity Y of the LED, fixing the concentration of the ⁇ -sialon phosphor to create 20 LEDs, measuring the total luminous flux with a standard luminous flux meter, and calculating the standard deviation of the chromaticity Y. The results were compared as relative values.
- the relative value of the standard deviation of the chromaticity Y the standard deviation when the ⁇ -sialon phosphor of Example 1 is used is 100%, and the relative value of the standard deviation is 123% or more.
- the ⁇ -sialon phosphor having less than 123% was determined to have a small variation in the chromaticity Y of the LED.
- the ⁇ -sialon phosphor resorbs a short-wavelength component of fluorescence when the solid solution amount of Eu as an activator is large, and the re-absorbed light is converted into a wavelength to emit fluorescence. X rises.
- the amount of solid solution of Eu is large, the light absorption rate of 455 nm tends to increase. Therefore, the comparison between the example and the comparative example was made between the example and the comparative example having close chromaticity X.
- the 455 nm light absorption depends not only on the solid solution amount of Eu but also on the particle size.
- the embodiment and the comparative example having similar D50 values were set as comparison targets. That is, in each of Tables 1-1 to 1-4, combinations of the examples and the comparative examples having close chromaticity X and close to the value of D50 are shown for comparison with each other.
- Comparative Example 1 has a smaller value of D10, a larger value of (D90-D10) / D50, and an ultra fine powder compared to D50. It is thought that there are many. Also, the value of D50 / D BET is large. Comparative Example 1 has lower internal quantum efficiency, and Example 1 from which ultrafine powder is removed has higher internal quantum efficiency. Further, Comparative Example 1 has a higher light absorption of 600 nm, which may be due to the presence of a defect or extra phase absorbing extra light other than Eu. Example 1 also has a high 800 nm diffuse reflectance, and it is considered that there are few defects and extra phases that absorb extra light other than Eu. In addition, Example 1 has a higher 455 nm light absorption rate, which is considered to be due to a large specific surface area and a small amount of ultrafine powder that reflects and scatters light.
- Example 2 is different from Example 1 in that the particle growth is promoted by firing at a high temperature, and a phosphor having a large particle diameter is synthesized. Finally, a particle size distribution close to that of Example 1 is obtained by the removal. Defects are increased by pulverization, but defects can be reduced by a low-temperature heat treatment step (annealing step), and high internal quantum efficiency, low 600 nm light absorption, and high 800 nm diffuse reflectance can be obtained as in Example 1. .
- Comparing Example 2 with Comparative Example 3, Comparative Example 3 has a small D10, a large (D90-D10) / D50, an ultrafine powder remaining with respect to D50, a large D50 / D BET, and a high internal quantum efficiency. , A high light absorption of 600 nm, a low diffuse reflectance of 800 nm, a large absorption of extra light such as defects other than Eu, and a low light absorption of 455 nm.
- Comparative Example 2 did not perform any processing after the low-temperature heat treatment step (annealing step) after the last ball mill pulverization, so that defects could not be removed, the internal quantum efficiency was low, and 600 nm It is considered that the light absorption is high, the 800 nm diffuse reflectance is low, and the absorption of light such as defects other than Eu is large.
- Example 4 has a lower crushing strength, a higher D10, a smaller (D90-D10) / D50, a smaller amount of ultrafine powder than D50, a smaller D50 / D BET , and a lower internal quantum efficiency than Comparative Example 2 as compared with Comparative Example 2. This is considered to be high, the light absorption at 600 nm is relatively low, the diffuse reflectance for light at 800 nm is high, and the absorption of extra light other than Eu is small.
- Comparative Example 4 does not remove fine powder by decantation, but has a high internal quantum efficiency, a low 600 nm light absorption coefficient, and a high 800 nm diffuse reflection coefficient. It is considered that the absorption of light such as is small. It is considered that this was fired at a high temperature for a long time, and the particle growth was promoted. Therefore, the powder was not pulverized so much by ball mill pulverization, and the increase in defects near the surface due to pulverization was small. However, D50 is larger than 10 ⁇ m, which is not suitable for micro LED, mini LED, and phosphor sheet.
- the micro LED has a size of 100 ⁇ m or less, and the phosphor layer is often set to 50 ⁇ m or less. Therefore, good workability of a 50 ⁇ m thick sheet is required.
- Comparative Examples 4 and 5 have many coarse particles and poor workability of a 50 ⁇ m thick sheet. In both Comparative Examples 4 and 5, the chromaticity Y of the LED package had a large variation.
- D50 is larger than 10 ⁇ m, the effect of improving quantum efficiency and absorptance by removing ultrafine powder is small.
- Example 5 has a large D10, a small (D90-D10) / D50, a small amount of ultrafine powder relative to D50, and a small D50 / D BET.
- the internal quantum efficiency is high, the light absorption at 600 nm is low, the diffuse reflectance at 800 nm is high, and the absorption of extra light such as defects other than Eu is small.
- Example 6 and Comparative Example 7 are phosphors in which the chemical composition of the ⁇ -sialon phosphor is changed and the emission peak wavelength is made shorter.
- Example 6 has a large D10, a small (D90-D10) / D50, a small amount of ultrafine powder relative to D50, a small D50 / D BET , a high internal quantum efficiency, a low 600 nm light absorption, and a 800 nm diffuse reflectance. And the absorption of extra light other than Eu is small.
- Example 7 When Table 7 is compared with Example 7 in the same manner as in Comparative Example 8, Example 7 has a large D10, a small (D90-D10) / D50, a small amount of ultrafine powder relative to D50, and a small D50 / D.
- the BET is also small, the internal quantum efficiency is high, the light absorption at 600 nm is low, the diffuse reflectance at 800 nm is high, and the absorption of extra light other than Eu is small.
- the phosphor of the present invention, and the phosphor and the light emitting device manufactured by the manufacturing method are used as a white light emitting device and a colored light emitting device.
- the white light emitting device of the present invention is used for a liquid crystal display, a micro LED display, a mini LED display, a backlight of a liquid crystal panel, a lighting device, a signal device, and an image display device. It is also used for projector applications.
- each embodiment of the present invention provides a small-particle-diameter phosphor with high luminance that can be used in a small LED, a thin phosphor sheet, or a phosphor plate.
- a small-particle-diameter phosphor with high luminance that can be used in a small LED, a thin phosphor sheet, or a phosphor plate.
- the particle size small, dispersibility in the resin is improved, and unevenness in the density of the resin is reduced. Further, the surface roughness of the phosphor sheet or the phosphor plate is reduced.
- phosphor sheet with thickness of about tens of ⁇ m, LED of about tens of ⁇ m size, nozzle with inner diameter of tens of ⁇ m, and application from screen printing mesh can reduce phosphor particle size. Becomes possible. Also, the yield of small LED packages increases.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Luminescent Compositions (AREA)
- Led Device Packages (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
レーザー回折・散乱法で測定して体積頻度を基準とするD10、D50、D90(単位はそれぞれ[μm])に関し、D50が10μm以下であり、D10、D50、D90の値が下記式2の関係を満たす、β型サイアロン蛍光体。
式1:Si12-aAlaObN16-b:Eux
(式中、0<a≦3;0<b≦3;0<x≦0.1)
式2:(D90-D10)/D50<1.6
(ただし、前記レーザー回折・散乱法で測定して体積頻度を基準とするD10、D50、D90(単位は、それぞれ[μm])が、測定する蛍光体0.5gを、ヘキサメタリン酸ナトリウムを0.05wt%混合したイオン交換水溶液100ml中に投入し、これを発振周波数19.5±1kHz、振幅が32±2μmの超音波ホモジナイザーを用い、チップを液の中央部に配置して3分間分散処理した液を用いた測定値である。)
式3:D50/DBET<2.1
本発明の蛍光体は、Si12-aAlaObN16-b:Eux(式中、0<a≦3;0<b≦3;0<x≦0.1)の式で表されるβ型サイアロン蛍光体である。
実施例1のβ型サイアロン蛍光体は、以下に詳述する、出発原料を混合した原料粉末を焼成する焼成工程、焼成工程で得られた焼成物を一旦粉末化した後に実施する低温焼成工程(アニール工程)、低温焼成工程後に得られた低温焼成粉末から不純物を除去する酸処理工程、酸処理工程後の粉末から、さらに超微粉を除去するデカンテーション工程の各工程を経て製造した。
実施例1の蛍光体出発原料として、各元素がモル比としてSi:Al:O:Eu=5.83:0.18:0.18:0.03となるように、窒化ケイ素粉末(宇部興産社製SN-E10グレード)、窒化アルミニウム粉末(トクヤマ社製Eグレード)、酸化アルミニウム粉末(大明化学社製TM-DARグレード)、酸化ユウロピウム(信越化学社製RUグレード)を配合して混合した。なお窒素分は上記モル比に合わせて原料を配合した際に定まる。これら各出発原料は十分分散させて混合させるために、小型ミルミキサーで混合した。その後、目開き150μmの篩を全通させて凝集物を取り除き、これを原料粉末とした。
前記原料粉末を、蓋付き円筒型窒化ホウ素製容器(デンカ社製)に充填し、カーボンヒーターの電気炉で0.9MPaの加圧窒素雰囲気中、1900℃で5時間の焼成を行い、焼成物を得た。
準備段階として前記焼成工程で得た焼成物を、湿式のボールミル(ジルコニアボール)を用いて2時間粉砕した後、ろ過、乾燥を経て、公称目開き45μmの篩に通した。これを円筒型窒化ホウ素製容器中に充填し、さらにカーボンヒーターを備える電気炉中で、大気圧のアルゴンフロー雰囲気下、1500℃で7時間保持を行い、低温焼成粉末を得た。
前記低温焼成粉末を、フッ化水素酸と硝酸との混酸中に浸した。次いで60℃以上で3時間加熱処理した。加熱処理後の低温焼成粉末は、純水で十分洗浄してから乾燥し、さらに45μm篩に通して、酸処理工程後の粉末を得た。なお、焼成工程中に、原料粉末の副反応により生成するSiOのような酸素を含む化合物が揮発することにより、原料粉末に含まれる酸素含有量より、焼成工程で得られる焼成物に含まれる酸素の含有量の方が低下する傾向となるため、焼成後にβ型サイアロン蛍光体中に固溶しなかった酸素やアルミニウム、ユウロピウムを含む、β型サイアロン蛍光体以外の化合物(異相)が生成することがある。異相のほとんど又はその一部は、酸処理工程により溶解され、除去される。
酸処理工程後の粉末から、超微粉を除去するために、酸処理工程後の粉末が沈降しつつある上澄み液の微粉を除去するデカンテーション工程を実施し、得られた沈殿物をろ過、乾燥し、更に目開き45μmの篩を通過させ、最終的に実施例1のβ型サイアロン蛍光体を得た。なおデカンテーションの操作は、ストークスの式より、2μm以下の粒子を除去する設定で蛍光体粒子の沈降時間を計算し、沈降開始から所定時間に達したと同時に、所定高さ以上の上澄み液を除去する方法で実施した。分散媒にはヘキサメタリン酸Naを0.05wt%混合したイオン交換水の水溶液を用い、円筒状容器の所定高さに吸入口を設置した管より上方の液を吸い上げて、上澄み液を除去することができるようにした装置を用いた。デカンテーションの操作は繰り返し実施した。
実施例2の蛍光体の製造では、焼成工程の焼成温度、焼成時間を2000℃、18時間とし、さらに低温熱処理工程(アニール工程)の準備段階であるボールミル粉砕の処理時間は40時間とした。他の工程は実施例1と同じ条件で操作を進め、実施例2のβ型サイアロン蛍光体を得た。
実施例3の蛍光体の製造では、焼成工程の焼成温度を1960℃とした他は、実施例1と同じ条件で操作を進め、実施例3のβ型サイアロン蛍光体を得た。
比較例1の蛍光体の製造では、デカンテーション工程による超微粉の除去、ろ過、乾燥、45μm篩を実施せずに超微粉が残った状態を維持し、他の工程は実施例1と同じ条件で操作を進め、比較例1のβ型サイアロン蛍光体を得た。
比較例2の蛍光体の製造では、低温熱処理工程(アニール工程)の準備段階であるボールミル粉砕の処理時間は2時間とした。他の工程は実施例2と同じ条件で操作を進めたが、デカンテーション工程後、さらに湿式法によるボールミル粉砕を40時間実施し、ろ過、乾燥、45μm篩を経て比較例2のβ型サイアロン蛍光体を得た。
比較例3の蛍光体の製造では、酸処理工程の後のデカンテーション工程による微粉除去、ろ過、乾燥、45μm篩を実施せず、超微粉が残った状態を維持し、他の工程は実施例2と同じ条件で操作を進め、比較例3のβ型サイアロン蛍光体を得た。
実施例4の蛍光体の製造では、デカンテーション工程後、さらに湿式法によるボールミル粉砕を2時間実施した。他の工程は比較例2と同じ条件で操作を進め、実施例4のβ型サイアロン蛍光体を得た。
比較例4の蛍光体の製造では、低温熱処理工程(アニール工程)の準備段階であるボールミル粉砕の処理時間は2時間とした。他の工程は比較例3と同じ条件で操作を進め、比較例4のβ型サイアロン蛍光体を得た。
比較例5の蛍光体の製造では、比較例4の条件で酸処理工程まで実施し、その後のデカンテーション工程では、10μm以下の粒子を除去する設定で実施し、比較例5のβ型サイアロン蛍光体を得た。
実施例5の蛍光体の製造では、実施例1のβ型サイアロン蛍光体を、さらに湿式ボールミルで2時間粉砕処理し、ろ過、乾燥、45μm篩による分級操作を実施後、2μm以下の微粉末を除去する設定でデカンテーション操作、ろ過、乾燥を経て、45μmの篩に通し、実施例5のβ型サイアロン蛍光体を得た。
比較例6の蛍光体の製造では、実施例5と同じ条件で処理を行ったが、最終のデカンテーション操作及びそれ以降の処理を行わず、比較例6のβ型サイアロン蛍光体を得た。
実施例6の蛍光体は、出発原料として、各元素がモル比としてSi:Al:O:Eu=5.97:0.03:0.03:0.013となるように、窒化ケイ素粉末(宇部興産社製SN-E10グレード)、窒化アルミニウム粉末(トクヤマ社製Eグレード)、酸化アルミニウム粉末(大明化学社製TM-DARグレード)、酸化ユウロピウム(信越化学社製RUグレード)を配合して混合し、低温熱処理工程(アニール工程)の準備段階であるボールミル粉砕の処理時間は2時間とし、それ以外は実施例2と同じ条件で処理して、実施例6のβ型サイアロン蛍光体を得た。
比較例7の蛍光体の製造では、酸処理工程後のデカンテーション工程による微粉除去、ろ過、乾燥、45μm篩を通す処理を実施せずに、超微粉が残った状態を維持し、他の工程は実施例6と同じ条件で処理して、比較例7のβ型サイアロン蛍光体を得た。
実施例7の蛍光体は、出発原料として、各元素がモル比としてSi:Al:O:Eu=5.90:0.10:0.10:0.02となるように窒化ケイ素粉末(宇部興産社製SN-E10グレード)、窒化アルミニウム粉末(トクヤマ社製Eグレード)、酸化アルミニウム粉末(大明化学社製TM-DARグレード)、酸化ユウロピウム(信越化学社製RUグレード)を配合し、他の工程は実施例1と同じ条件で処理して、実施例7のβ型サイアロン蛍光体を得た。
比較例8の蛍光体の製造では、酸処理工程後のデカンテーション工程による微粉除去、ろ過、乾燥、45μm篩を通す処理を実施せずに、超微粉が残った状態を維持し、他の工程は実施例7と同じ条件で処理して、比較例8のβ型サイアロン蛍光体を得た。
実施例、比較例の各サンプルについて、X線回折装置(株式会社リガク製UltimaIV)を用い、CuKα線を用いた粉末X線回折パターンによりその結晶構造を確認した。この結果、得られた実施例1~7、比較例1~8の各サンプルの粉末X線回折パターンに、β型サイアロン結晶と同一の回折パターンが認められ、これらはβ型サイアロン蛍光体であることが確認された。
実施例、比較例の各β型サイアロン蛍光体のD10、D50、D90、D99、D100粒子径は、レーザー回折・散乱法の粒子径測定装置であるMicrotrac MT3300EXII(マイクロトラック・ベル株式会社)により測定した。測定手順としては、ヘキサメタリン酸ナトリウムを0.05wt%混合したイオン交換水の水溶液100mlに、測定する蛍光体0.5gを投入し、超音波ホモジナイザー、Ultrasonic Homogenizer US-150E(株式会社日本精機製作所)、Amplitude100%、発振周波数19.5±1kHz、チップサイズ20φ、振幅32±2μmで、チップを液の中央部に配置して3分間分散処理した後、前記MT3300EXIIで粒度測定した。得られた蛍光体の粒度分布から、D50、小粒子径側からの体積の累積で10%の粒子径であるD10、小粒子径側からの体積の累積で90%であるD90、同様に99%であるD99、同様に100%であるD100の各粒子径(単位は[μm])を求めた。
実施例、比較例の各β型サイアロン蛍光体の、BET法で測定した比表面積から算出する平均粒子径DBET[μm]は、空気透過法で測定した比表面積から以下の式に従って算出することができる。
DBET=6/(V×G)
ここでVは、測定対象材料の空気透過法で求めた比表面積[μm2/g]であり、Gは測定対象材料の密度[g/μm3]を示す。
実施例、比較例の各β型サイアロン蛍光体の455nm光吸収率、内部量子効率、外部量子効率、及び色度Xは、以下の手順で算出した。
即ち、測定する実施例、比較例の蛍光体を、凹型セルに表面が平滑になるように充填し、積分球の開口部に取り付けた。この積分球内に、発光光源(Xeランプ)から455nmの波長に分光した単色光を、光ファイバーを用いて蛍光体の励起光として導入した。この単色光を蛍光体試料に照射し、試料の蛍光スペクトルを分光光度計(大塚電子株式会社製MCPD-7000)を用いて測定した。得られたスペクトルデータから、励起反射光フォトン数(Qref)及び蛍光フォトン数(Qem)を算出した。励起反射光フォトン数は、励起光フォトン数と同じ波長範囲で、蛍光フォトン数は、465~800nmの範囲で算出した。
また同じ装置を用い、積分球の開口部に反射率が99%の標準反射板(Labsphere社製スペクトラロン(登録商標))を取り付けて、波長455nmの励起光のスペクトルを測定した。その際、450~465nmの波長範囲のスペクトルから励起光フォトン数(Qex)を算出した。
実施例、比較例のβ型サイアロンの455nm光吸収率、内部量子効率は、次に示す計算式によって、求めた。
455nm光吸収率=((Qex-Qref)/Qex)×100
内部量子効率=(Qem/(Qex-Qref))×100
なお、外部量子効率は、以下に示す計算式により求められた。
外部量子効率=(Qem/Qex)×100
従って、上記式より外部量子効率は以下に示す関係となる。
外部量子効率=455nm光吸収率×内部量子効率
実施例、比較例のβ型サイアロンの拡散反射率は、日本分光社製紫外可視分光光度計(V-550)に積分球装置(ISV-469)を取り付けて測定した。標準反射板(スペクトラロン(登録商標))でベースライン補正を行い、蛍光体粉末を充填した固体試料ホルダーを取り付けて、500~850nmの波長範囲で拡散反射率を測定した。本発明でいう800nm拡散反射率とは、特に800nmにおける拡散反射率の値である。
実施例、比較例のβ型サイアロンの600nm光吸収率は、以下の手順により測定した。即ち積分球の開口部に、反射率が99%の標準反射板(Labsphere社製スペクトラロン(登録商標))をセットし、この積分球内に、発光光源(Xeランプ)から600nmの波長に分光した単色光を光ファイバーにより導入し、反射光スペクトルを分光光度計(大塚電子株式会社製MCPD-7000)により測定した。その際、590~610nmの波長範囲のスペクトルから入射光フォトン数(Qex(600))を算出した。
600nm光吸収率=((Qex(600)-Qref(600))/Qex(600))×100
β型サイアロン蛍光体が3wt%となるようにβ型サイアロン蛍光体とシリコーン樹脂(東レダウコーニング株式会社OE6656)を計量し、一緒に自転公転式の混合機(株式会社シンキー製あわとり練太郎(登録商標)ARE-310)で混合した。また、同様にβ型サイアロン蛍光体が5wt%又は7wt%となるように上記のシリコーン樹脂と上記と同様に自転公転式の混合機で混合した。LEDの搭載は、凹型のパッケージ本体の底部にLEDを置いて、基板上の電極とワイヤボンディングした後、シリコーン樹脂と混合した蛍光体をマイクロシリンジから注入して行なった。搭載後、120℃で硬化させた後、110℃×10時間のポストキュアを施して封止した。LEDは、発光ピーク波長448nmで、チップ1.0mm×0.5mmの大きさのものを用いた。作成したLEDパッケージを全光束測定器で全光束、色度Yの測定を行った。作成条件が異なるβ型サイアロン蛍光体の全光束の比較方法は横軸を色度Y、縦軸を全光束のグラフを作成し、作成条件が異なるβ型サイアロン蛍光体ごとに近似曲線を計算し、近似曲線の関係式から色度Yが同等の時の全光束を計算し、作成条件の異なるβ型サイアロン蛍光体の全光束を相対値として比較を行った。色度Yのバラツキは上記のLEDの色度Yの測定方法でβ型サイアロン蛍光体の濃度を固定してLEDを20個作成し、全光束測定器で測定し、色度Yの標準偏差をとり、相対値として比較を行った。色度Yの標準偏差の相対値の比較として実施例1のβ型サイアロン蛍光体を使用した場合の標準偏差を100%として、標準偏差の相対値が123%以上となったβ型サイアロン蛍光体を、LEDの色度Yのバラツキが大きいと判定し、また123%未満となったβ型サイアロン蛍光体を、LEDの色度Yのバラツキが小さいと判定した。
まず表1-1に関し、実施例1と比較例1とを比べると、比較例1の方がD10の値は小さく、(D90-D10)/D50の値は大きく、D50に対して超微粉が多いと考えられる。また、D50/DBETの値は大きい。比較例1の方は内部量子効率が低く、超微粉を除去した実施例1の内部量子効率が高い。また、比較例1の方は600nm光吸収率が高く、Eu以外の余分な光を吸収する欠陥や異相などの存在が考えられる。800nm拡散反射率も実施例1が高く、Eu以外の余分な光を吸収する欠陥、異相などが少ないことが考えられる。また、455nm光吸収率は実施例1が高く、これは比表面積が大きく光を反射、散乱してしまう超微粉が少ないことが原因と考えられる。
Claims (5)
- 下記式1で示されるβ型サイアロン蛍光体であって、
レーザー回折・散乱法で測定して体積頻度を基準とするD10、D50、D90(単位はそれぞれ[μm])に関し、D50が10μm以下であり、D10、D50、D90の値が下記式2の関係を満たす、β型サイアロン蛍光体。
式1:Si12-aAlaObN16-b:Eux
(式中、0<a≦3;0<b≦3;0<x≦0.1)
式2:(D90-D10)/D50<1.6
(ただし、前記レーザー回折・散乱法で測定して体積頻度を基準とするD10、D50、D90(単位は、それぞれ[μm])が、測定する蛍光体0.5gを、ヘキサメタリン酸ナトリウムを0.05wt%混合したイオン交換水溶液100ml中に投入し、これを発振周波数19.5±1kHz、振幅が32±2μmの超音波ホモジナイザーを用い、チップを液の中央部に配置して3分間分散処理した液を用いた測定値である。) - 波長800nmの光に対する拡散反射率が95%以上である、請求項1に記載のβ型サイアロン蛍光体。
- 波長600nmの光に対する光吸収率が6%以下である、請求項1又は2に記載のβ型サイアロン蛍光体。
- β型サイアロン蛍光体の、BET法で測定した比表面積から算出した平均粒子径DBET[μm]と、前記レーザー回折・散乱法で測定したD50[μm]とが、下記式3の関係を満たす、請求項1~3のいずれか一項記載のβ型サイアロン蛍光体。
式3:D50/DBET<2.1 - 請求項1~4のいずれか一項記載のβ型サイアロン蛍光体を含むLED又は蛍光体シート又は蛍光体プレートを有する発光装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020217010309A KR102730188B1 (ko) | 2018-09-12 | 2019-08-22 | 형광체 및 발광 장치 |
US17/272,827 US11377594B2 (en) | 2018-09-12 | 2019-08-22 | Phosphor and light-emitting device |
CN201980059063.5A CN112739797B (zh) | 2018-09-12 | 2019-08-22 | 荧光体和发光装置 |
JP2020546806A JP7303822B2 (ja) | 2018-09-12 | 2019-08-22 | 蛍光体及び発光装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-170866 | 2018-09-12 | ||
JP2018170866 | 2018-09-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020054350A1 true WO2020054350A1 (ja) | 2020-03-19 |
Family
ID=69777953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/032907 WO2020054350A1 (ja) | 2018-09-12 | 2019-08-22 | 蛍光体及び発光装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11377594B2 (ja) |
JP (1) | JP7303822B2 (ja) |
KR (1) | KR102730188B1 (ja) |
CN (1) | CN112739797B (ja) |
TW (1) | TWI821389B (ja) |
WO (1) | WO2020054350A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021193183A1 (ja) * | 2020-03-24 | 2021-09-30 | デンカ株式会社 | 蛍光体粒子、複合体、発光装置および自発光型ディスプレイ |
WO2021193182A1 (ja) * | 2020-03-24 | 2021-09-30 | デンカ株式会社 | 蛍光体粒子、複合体、発光装置および自発光型ディスプレイ |
JP2022013281A (ja) * | 2020-07-03 | 2022-01-18 | デンカ株式会社 | β型サイアロン蛍光体の製造方法、波長変換部材の製造方法、及び発光装置の製造方法 |
WO2022024720A1 (ja) * | 2020-07-30 | 2022-02-03 | デンカ株式会社 | 蛍光体粒子、複合体、波長変換部材およびプロジェクタ |
WO2024071305A1 (ja) * | 2022-09-30 | 2024-04-04 | 三井金属鉱業株式会社 | 蛍光体粉末、蛍光体含有組成物、蛍光体、発光素子、及び発光装置 |
JP7515351B2 (ja) | 2020-09-10 | 2024-07-12 | デンカ株式会社 | ユウロピウム賦活β型サイアロン蛍光体の製造方法 |
JP7515353B2 (ja) | 2020-09-11 | 2024-07-12 | デンカ株式会社 | ユウロピウム賦活β型サイアロン蛍光体の製造方法 |
JP7515352B2 (ja) | 2020-09-11 | 2024-07-12 | デンカ株式会社 | ユウロピウム賦活β型サイアロン蛍光体の製造方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10881399B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
US20220399480A1 (en) * | 2019-10-23 | 2022-12-15 | Denka Company Limited | Phosphor plate, light emitting device, and method for manufacturing phosphor plate |
US20230407171A1 (en) * | 2020-11-13 | 2023-12-21 | Denka Company Limited | Phosphor powder, light-emitting device, image display device, and illumination device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012052127A (ja) * | 2006-11-20 | 2012-03-15 | Denki Kagaku Kogyo Kk | 蛍光体及びその製造方法、並びに発光装置 |
JP2012056804A (ja) * | 2010-09-09 | 2012-03-22 | Denki Kagaku Kogyo Kk | β型サイアロン及び発光装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5644170Y2 (ja) | 1976-11-13 | 1981-10-16 | ||
JPS558817U (ja) | 1978-06-30 | 1980-01-21 | ||
JP3837588B2 (ja) * | 2003-11-26 | 2006-10-25 | 独立行政法人物質・材料研究機構 | 蛍光体と蛍光体を用いた発光器具 |
JP4769132B2 (ja) | 2005-11-30 | 2011-09-07 | シャープ株式会社 | 発光装置 |
JP5368985B2 (ja) | 2007-07-09 | 2013-12-18 | シャープ株式会社 | 蛍光体粒子群およびそれを用いた発光装置 |
JP5508817B2 (ja) | 2009-11-05 | 2014-06-04 | 電気化学工業株式会社 | β型サイアロン蛍光体の製造方法 |
KR102256593B1 (ko) * | 2014-10-08 | 2021-05-26 | 서울반도체 주식회사 | 발광 다이오드 패키지 |
EP3546544B1 (en) * | 2014-10-08 | 2024-05-01 | Seoul Semiconductor Co., Ltd. | Light emitting device |
-
2019
- 2019-08-22 JP JP2020546806A patent/JP7303822B2/ja active Active
- 2019-08-22 KR KR1020217010309A patent/KR102730188B1/ko active IP Right Grant
- 2019-08-22 WO PCT/JP2019/032907 patent/WO2020054350A1/ja active Application Filing
- 2019-08-22 CN CN201980059063.5A patent/CN112739797B/zh active Active
- 2019-08-22 US US17/272,827 patent/US11377594B2/en active Active
- 2019-09-09 TW TW108132372A patent/TWI821389B/zh active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012052127A (ja) * | 2006-11-20 | 2012-03-15 | Denki Kagaku Kogyo Kk | 蛍光体及びその製造方法、並びに発光装置 |
JP2012056804A (ja) * | 2010-09-09 | 2012-03-22 | Denki Kagaku Kogyo Kk | β型サイアロン及び発光装置 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI862811B (zh) * | 2020-03-24 | 2024-11-21 | 日商電化股份有限公司 | 螢光體粒子、複合體、發光裝置、及自發光型顯示器 |
WO2021193182A1 (ja) * | 2020-03-24 | 2021-09-30 | デンカ株式会社 | 蛍光体粒子、複合体、発光装置および自発光型ディスプレイ |
CN115397947A (zh) * | 2020-03-24 | 2022-11-25 | 电化株式会社 | 荧光体粒子、复合体、发光装置和自发光型显示器 |
JP7591560B2 (ja) | 2020-03-24 | 2024-11-28 | デンカ株式会社 | 蛍光体粒子、複合体、発光装置および自発光型ディスプレイ |
WO2021193183A1 (ja) * | 2020-03-24 | 2021-09-30 | デンカ株式会社 | 蛍光体粒子、複合体、発光装置および自発光型ディスプレイ |
JP2022013281A (ja) * | 2020-07-03 | 2022-01-18 | デンカ株式会社 | β型サイアロン蛍光体の製造方法、波長変換部材の製造方法、及び発光装置の製造方法 |
JP7507018B2 (ja) | 2020-07-03 | 2024-06-27 | デンカ株式会社 | β型サイアロン蛍光体の製造方法、波長変換部材の製造方法、及び発光装置の製造方法 |
WO2022024720A1 (ja) * | 2020-07-30 | 2022-02-03 | デンカ株式会社 | 蛍光体粒子、複合体、波長変換部材およびプロジェクタ |
CN116057149A (zh) * | 2020-07-30 | 2023-05-02 | 电化株式会社 | 荧光体粒子、复合体、波长转换部件及投影仪 |
JP7515351B2 (ja) | 2020-09-10 | 2024-07-12 | デンカ株式会社 | ユウロピウム賦活β型サイアロン蛍光体の製造方法 |
JP7515353B2 (ja) | 2020-09-11 | 2024-07-12 | デンカ株式会社 | ユウロピウム賦活β型サイアロン蛍光体の製造方法 |
JP7515352B2 (ja) | 2020-09-11 | 2024-07-12 | デンカ株式会社 | ユウロピウム賦活β型サイアロン蛍光体の製造方法 |
WO2024071305A1 (ja) * | 2022-09-30 | 2024-04-04 | 三井金属鉱業株式会社 | 蛍光体粉末、蛍光体含有組成物、蛍光体、発光素子、及び発光装置 |
Also Published As
Publication number | Publication date |
---|---|
KR20210057100A (ko) | 2021-05-20 |
CN112739797A (zh) | 2021-04-30 |
US11377594B2 (en) | 2022-07-05 |
KR102730188B1 (ko) | 2024-11-15 |
JPWO2020054350A1 (ja) | 2021-08-30 |
TWI821389B (zh) | 2023-11-11 |
JP7303822B2 (ja) | 2023-07-05 |
TW202018061A (zh) | 2020-05-16 |
CN112739797B (zh) | 2023-12-08 |
US20210189234A1 (en) | 2021-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7303822B2 (ja) | 蛍光体及び発光装置 | |
CN112739796B (zh) | 荧光体和发光装置 | |
WO2014077240A1 (ja) | 蛍光体、発光素子及び照明装置 | |
KR20120094083A (ko) | β형 사이알론, β형 사이알론의 제조 방법 및 발광 장치 | |
JP6970658B2 (ja) | 蛍光体、発光素子及び発光装置 | |
US20240002719A1 (en) | Phosphor particles and light-emitting device | |
JP7591560B2 (ja) | 蛍光体粒子、複合体、発光装置および自発光型ディスプレイ | |
WO2021193182A1 (ja) | 蛍光体粒子、複合体、発光装置および自発光型ディスプレイ | |
WO2020235297A1 (ja) | α型サイアロン蛍光体、発光部材、および発光装置 | |
JP7539811B2 (ja) | β型サイアロン蛍光体の製造方法 | |
KR20240051238A (ko) | 형광체 분말 및 발광 장치 | |
JP2024094873A (ja) | 蛍光体粉末の製造方法 | |
WO2023037728A1 (ja) | 蛍光体粉末、及び発光装置 | |
WO2024257646A1 (ja) | β型サイアロン蛍光体、発光部材、および発光装置 | |
WO2024203353A1 (ja) | 蛍光体粉末及び発光装置 | |
JP2025018510A (ja) | 蛍光体粉末の製造方法 | |
JP2024129351A (ja) | 蛍光体粉末の製造方法 | |
TW202204571A (zh) | 螢光體粒子、複合體、波長轉換構件及投影機 | |
JP2024180033A (ja) | β型サイアロン蛍光体、発光部材、および発光装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19860641 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020546806 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20217010309 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19860641 Country of ref document: EP Kind code of ref document: A1 |