WO2020053995A1 - 電力変換装置および空気調和機 - Google Patents

電力変換装置および空気調和機 Download PDF

Info

Publication number
WO2020053995A1
WO2020053995A1 PCT/JP2018/033857 JP2018033857W WO2020053995A1 WO 2020053995 A1 WO2020053995 A1 WO 2020053995A1 JP 2018033857 W JP2018033857 W JP 2018033857W WO 2020053995 A1 WO2020053995 A1 WO 2020053995A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
capacitor
main circuit
capacitors
voltage
Prior art date
Application number
PCT/JP2018/033857
Other languages
English (en)
French (fr)
Inventor
秀敏 山川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to AU2018441279A priority Critical patent/AU2018441279B2/en
Priority to CN201880097099.8A priority patent/CN112673563B/zh
Priority to DE112018007981.3T priority patent/DE112018007981B4/de
Priority to US17/256,988 priority patent/US11677310B2/en
Priority to PCT/JP2018/033857 priority patent/WO2020053995A1/ja
Priority to JP2020546604A priority patent/JP6987266B2/ja
Publication of WO2020053995A1 publication Critical patent/WO2020053995A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/85Starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/335Output power or torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/50Control logic embodiments
    • F05D2270/52Control logic embodiments by electrical means, e.g. relays or switches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/50Control logic embodiments
    • F05D2270/54Control logic embodiments by electronic means, e.g. electronic tubes, transistors or IC's within an electronic circuit

Definitions

  • the present invention relates to a power converter and an air conditioner capable of suppressing an inrush current generated when power is turned on.
  • the inrush current prevention circuit can be realized by disposing a PTC (Positive Temperature Coefficient) thermistor whose resistance value changes with resistance or temperature between the AC power supply and the rectifier.
  • PTC Positive Temperature Coefficient
  • Patent Document 1 provides a current limiting capacitor between an AC power supply and a rectifier, and supplies current to the rectifier via the current limiting capacitor for a while after the power is turned on.
  • the rush current is supplied to charge the smoothing capacitor provided on the output side of the rectifier, thereby suppressing an inrush current.
  • the current supply path is switched so that the current flows to the rectifier bypassing the current limiting capacitor.
  • Patent Document 1 (4) The invention described in Patent Document 1 requires a separate capacitor for suppressing the rush current, and has a problem that the circuit scale is increased.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a power conversion device capable of suppressing an inrush current while avoiding an increase in circuit scale.
  • a power converter converts a first AC power supplied from an AC power supply into a DC power, and smoothes the DC power.
  • the power conversion device is configured such that the current output from the AC power supply passes through the capacitor until the voltage of the main circuit capacitor becomes a predetermined voltage after the supply of the first AC power is started.
  • the charging path of the main circuit capacitor After flowing into the main circuit capacitor and after the voltage of the main circuit capacitor reaches a predetermined voltage, the charging path of the main circuit capacitor so that the current output from the AC power supply flows into the main circuit capacitor without passing through the capacitor. And a path switching unit for switching between the two.
  • FIG. 2 is a diagram illustrating a configuration example of a power conversion device according to the first embodiment.
  • FIG. 3 is a diagram showing a first charging path of a main circuit capacitor included in the power conversion device according to the first embodiment.
  • FIG. 3 is a diagram showing a second charging path of a main circuit capacitor included in the power conversion device according to the first embodiment.
  • FIG. 4 is a diagram illustrating an example of a voltage change after power-on of a main circuit capacitor included in the power conversion device according to the first embodiment.
  • FIG. 4 is a diagram illustrating a relationship between voltages of respective capacitors included in the power conversion device according to the first embodiment.
  • FIG. 7 is a diagram illustrating a configuration example of a power conversion device according to a third embodiment. The figure which shows an example of the hardware which implement
  • FIG. 1 is a diagram illustrating a configuration example of the power conversion device according to the first embodiment of the present invention.
  • the power converter 100 is connected to a power supply 1 that is a three-phase four-wire AC power supply, and supplies first AC power supplied from the power supply 1 to a load (not shown). 2 AC power.
  • a power supply 1 that is a three-phase four-wire AC power supply
  • each phase of the three-phase AC power output from the power supply 1 may be referred to as a first phase, a second phase, and a third phase.
  • the loads that are not described include a motor that drives a compressor included in the air conditioner, a motor that drives a blower fan included in the air conditioner, and the like.
  • the power conversion device 100 includes capacitors 2 to 4, 9 to 11, 17A, 17B, resistors 5 to 7, 18A, 18B, a common coil 8, relays 13, 14, 20, a diode bridge 15, a DC reactor, 16, an inverter 19, and a control unit 21.
  • One end of the capacitor 2 and the resistor 5 is connected to the output point of the first phase of the power supply 1, and the other end is connected to the neutral point of the power supply 1.
  • One end of the capacitor 3 and the resistor 6 is connected to the output point of the second phase of the power supply 1, and the other end is connected to the neutral point of the power supply 1.
  • One end of the capacitor 4 and the resistor 7 is connected to the output point of the third phase of the power supply 1, and the other end is connected to the neutral point of the power supply 1.
  • the first-phase to third-phase AC power output from the power supply 1 is input to the diode bridge 15 via the line connected to the output point of each phase.
  • capacitors 9 to 11 for suppressing noise components are connected between the neutral points and each of the first to third phase output points of the power supply 1.
  • One end of the capacitor 9 is connected to a first line, which is a line connecting a first phase output point of the power supply 1 and a first phase input point of the diode bridge 15.
  • the other end of the capacitor 9 is connected to a neutral wire.
  • the capacitor 9 is a capacitor for suppressing a noise component on the first line.
  • One end of the capacitor 10 is connected to a second line connecting the output point of the second phase of the power supply 1 and the input point of the second phase of the diode bridge 15.
  • the other end of the capacitor 10 is connected to a neutral wire.
  • the capacitor 10 is a capacitor for suppressing a noise component on the second line.
  • One end of the capacitor 11 is connected to a third line that connects the output point of the third phase of the power supply 1 and the input point of the third phase of the diode bridge 15.
  • the other end of the capacitor 11 is connected to a neutral wire.
  • the capacitor 11 is a capacitor for suppressing a noise component on the third line.
  • a common coil 8 for suppressing common mode noise flowing through the first to third lines and the neutral line is provided between the capacitors 2 to 4 and the resistors 5 to 7 and the capacitors 9 to 11. Is provided.
  • the capacitors 2 to 4, 9 to 11, the resistors 5 to 7, and the common coil 8 shown in FIG. 1 are elements provided for the purpose of suppressing a noise component included in the AC power output from the power supply 1, and Elements similar to are also provided in a general power converter. Note that the resistors 5 to 7 also have a role of balancing the voltages applied to the capacitors 2 to 4.
  • the diode bridge 15 rectifies the AC power supplied from the power supply 1 and converts it into DC power. That is, the diode bridge 15 converts the first AC power supplied from the power supply 1 into DC power.
  • the DC power output from the diode bridge 15 is supplied to the inverter 19.
  • the inverter 19 converts the input DC power into the second AC power and supplies it to a load (not shown).
  • a DC reactor 16, capacitors 17A and 17B as main circuit capacitors, and resistors 18A and 18B are provided between the diode bridge 15 and the inverter 19.
  • DC reactor 16 and capacitors 17A and 17B are provided to smooth DC power output from diode bridge 15.
  • the resistors 18A and 18B are provided for the purpose of adjusting the balance of the voltage charged in the capacitors 17A and 17B, and for discharging the capacitors 17A and 17B.
  • One end of the DC reactor 16 is connected to an output point on the positive side of the diode bridge 15, and the other end of the DC reactor 16 is connected to an input point on the positive side of the inverter 19.
  • the other end of the DC reactor 16 is connected to one end of a capacitor 17A and one end of a resistor 18A.
  • One end of a capacitor 17B is connected to the other end of the capacitor 17A, and one end of a resistor 18B is connected to the other end of the resistor 18A.
  • the other end of the capacitor 17B and the other end of the resistor 18B are connected to an output point on the negative side of the diode bridge 15 and an input point on the negative side of the inverter 19.
  • the connection point between the capacitors 17A and 17B is short-circuited with the connection point between the resistors 18A and 18B.
  • the relay 13, which is the first relay, is provided on the second line, one end is connected to the common coil 8, and the other end is connected to one end of the diode bridge 15 and the capacitor 10. That is, the relay 13 is provided between the connection point of the common coil 8 and the capacitor 10 on the second line.
  • the relay 13 is controlled by the control unit 21.
  • the relay 14 is controlled by the control unit 21.
  • the relay 20, which is the third relay, is provided on the neutral conductor, and one end is connected to the capacitor 9 and the other end is connected to the capacitor 10. That is, the relay 20 is provided between the connection point of the capacitor 9 and the connection point of the capacitor 10 on the neutral line. When the relay 20 is turned off, the capacitors 10 and 11 are disconnected from the neutral conductor. The relay 20 is controlled by the control unit 21.
  • the control unit 21 controls each switching element (not shown) constituting the inverter 19 and controls the relays 13, 14, and 20.
  • the control unit 21 is configured to operate by receiving power supply from a power supply circuit (not shown).
  • the power supply circuit converts the power supplied from the power supply 1 into a DC voltage required by the control unit 21 and supplies the DC voltage to the control unit 21.
  • the control unit 21 configures a path switching unit that switches the charging paths of the capacitors 17A and 17B together with the relays 13, 14, and 20.
  • the relays 13, 14, and 20 are open.
  • power is supplied alternately through the paths shown in FIGS. 2 and 3 to charge the capacitors 17A and 17B. That is, in the first charging path 201 shown in FIG. 2, the current output from the power supply 1 to the first line is applied to the first phase of the three diodes provided on the positive electrode side of the diode bridge 15.
  • a second line via a corresponding diode, a DC reactor 16, capacitors 17A and 17B, and a diode corresponding to a second phase among the three diodes provided on the negative side of the diode bridge 15. After flowing into the third line via the capacitors 10 and 11, the flow returns to the power supply 1.
  • the current output from the power supply 1 to the third line flows into the second line via the capacitors 11 and 10, and furthermore, the diode bridge 15, the diode corresponding to the second phase among the three diodes provided on the positive electrode side, the DC reactor 16, the capacitors 17A and 17B, and the three diodes provided on the negative electrode side of the diode bridge 15.
  • the capacitors 17A and 17B are charged through two paths.
  • FIG. 4 is a diagram illustrating an example of a voltage change after power-on of the capacitors 17A and 17B that are main circuit capacitors included in the power conversion device 100 according to the first embodiment.
  • the voltage shown in FIG. 4 is the voltage across capacitors 17A and 17B connected in series, that is, the sum of the voltage of capacitor 17A and the voltage of capacitor 17B, and this voltage is applied to inverter 19. .
  • the initialization process includes a process of communicating with a board (not shown), a process of acquiring output information from each sensor (not shown), and checking for an abnormality in a voltage detection circuit and a current detection circuit (not shown). Processing. If the charging time until the voltages of the capacitors 17A and 17B reach the predetermined voltage is longer than the time required for the above-described initialization processing, the display unit (not shown) indicates that the apparatus is on standby. For example, the user may be notified that it takes time before the operation starts.
  • the first charging path 201 shown in FIG. 2 and the second charging path 202 shown in FIG. 3 include the capacitors 10 and 11 having smaller capacitances than the capacitors 17A and 17B. As described above, the current flowing into the capacitors 17A and 17B is limited to a value corresponding to the capacitance of the capacitors 10 and 11, so that the rush current generated when the power supply 1 is turned on is suppressed.
  • the control unit 21 uses the capacitors 10 and 11 used for suppressing the inrush current for the original purpose, that is, for using the capacitors 10 and 11 as noise component suppressing capacitors. Then, the relays 13, 14 and 20 are controlled. Specifically, the control unit 21 first turns on the relay 20. As shown in FIG. 5, when capacitors 17A and 17B, which are main circuit capacitors, are sufficiently charged, the voltage applied across capacitors 10 and 11 is small. By turning on the relay 20 in this state, the rush current to the capacitors 10 and 11 at the time of switching the connection is suppressed, and the use of the capacitors 10 and 11 as the noise component suppressing capacitor is started.
  • control unit 21 turns on the relays 13 and 14 so that the power of each of the first to third phases output from the power supply 1 is supplied to the diode bridge 15. That is, the charging path of capacitors 17A and 17B is switched to the third charging path that does not include capacitors 10 and 11.
  • the power conversion device 100 provides the first phase for supplying each of the three-phase AC power output from the power supply 1 that is the three-phase four-wire AC power supply to the diode bridge 15.
  • power conversion device 100 uses a capacitor provided for the purpose of suppressing a noise component as a capacitor for suppressing an inrush current to a main circuit capacitor generated when power supply 1 is turned on. Specifically, the power converter 100 controls the main circuit capacitor from when the power supply 1 is turned on until the voltage of the main circuit capacitor reaches a predetermined voltage by the control unit 21 controlling each relay. After the voltage of the main circuit capacitor reaches a predetermined voltage, the capacitors 10 and 11 are included in the charging path of the main circuit capacitor so that the capacitors 10 and 11 are not included in the charging path of the main circuit capacitor. Switch routes. This makes it possible to suppress an inrush current when the power is turned on.
  • one capacitor current limiting capacitor for suppressing an inrush current and three relays (two power switches and one current limiting switch) for switching a path through which current flows are provided.
  • the power converter 100 Is used to suppress the inrush current, whereas the power converter 100 according to the present embodiment suppresses the inrush current without separately providing a capacitor for suppressing the inrush current. Is possible. Therefore, the power converter 100 can suppress the inrush current at the time of turning on the power while avoiding an increase in the circuit scale.
  • Embodiment 2 FIG.
  • the power conversion device 100 described in the first embodiment uses the charging paths (first charging path 201 and second charging path 202) of the main circuit capacitor before the voltage of the main circuit capacitor reaches the predetermined voltage.
  • the configuration was such that no voltage balance resistor was inserted into the capacitors 10 and 11 to be formed.
  • the voltage may be biased to one of the capacitors, and the voltage of the capacitor 10 and the voltage of the capacitor 11 may be unbalanced. Therefore, when the voltage balance is biased and the voltage of the capacitor 10 or 11 exceeds the withstand voltage, a resistor for balancing the voltage may be mounted in parallel with each of the capacitors 10 and 11. Further, a resistor for balancing the power supply may be mounted in parallel with the capacitor 9 which is not used for forming the charging path of the capacitor.
  • the power converter according to the second embodiment is provided for the purpose of suppressing a noise component, and immediately after the power is turned on, the resistor for balancing the voltage of each capacitor forming the charging path of the main circuit capacitor is provided. Is provided. As a result, it is possible to prevent the voltage of one of the capacitors forming the charging path of the main circuit capacitor from becoming high immediately after power-on and exceeding the withstand voltage.
  • FIG. FIG. 6 is a diagram illustrating a configuration example of the power conversion device according to the third embodiment of the present invention.
  • the power conversion device 100 according to the first and second embodiments converts the first AC power supplied from the power supply 1 that is a three-phase four-wire AC power supply into the second AC power and supplies the second AC power to the load. Met.
  • the power converter 101 according to the third embodiment shown in FIG. 6 converts single-phase AC power supplied from the power supply 31 to second AC power and supplies the second AC power to the load.
  • single-phase AC power supplied from power supply 31 is the first AC power.
  • the power converter 101 includes capacitors 32 and 37, relays 33 and 34, a diode bridge 35, a DC reactor 36, a resistor 38, an inverter 39, and a control unit 41.
  • the capacitor 32 has one end connected to the power supply 31 and the other end connected to the relay 34.
  • the capacitor 32 is provided for the purpose of suppressing a noise component included in the first AC power.
  • the relay 33 has one end connected to a connection point between the capacitor 32 and the power supply 31 and the other end connected to the diode bridge 35.
  • the relay 34 has a first terminal, a second terminal, and a third terminal, and the capacitor 32 is connected to the first terminal.
  • the second terminal of the relay 34 is connected to the power supply 31 and the diode bridge 35.
  • the third terminal of the relay 34 is connected to the diode bridge 35.
  • the diode bridge 35 rectifies the AC power supplied from the power supply 31 and converts it into DC power. That is, the diode bridge 35 converts the first AC power supplied from the power supply 31 into DC power.
  • the DC power output from the diode bridge 35 is supplied to the inverter 39.
  • the inverter 39 converts the input DC power into second AC power, and supplies the second AC power to a load (not shown).
  • a DC reactor 36, a capacitor 37 as a main circuit capacitor, and a resistor 38 are provided between the diode bridge 35 and the inverter 39.
  • DC reactor 36 and capacitor 37 are provided to smooth DC power output from diode bridge 35.
  • the resistor 38 is provided to discharge the charge charged in the capacitor 37.
  • One end of the DC reactor 36 is connected to an output point on the positive side of the diode bridge 35, and the other end of the DC reactor 36 is connected to an input point on the positive side of the inverter 39.
  • the other end of the DC reactor 36 is connected to one end of a capacitor 37 and one end of a resistor 38.
  • the other ends of the capacitor 37 and the resistor 38 are connected to a negative output terminal of the diode bridge 35 and a negative input terminal of the inverter 39.
  • the control unit 41 controls each of the switching elements (not shown) included in the inverter 39 and controls the relays 33 and 34.
  • the control unit 41 is configured to operate by receiving power supply from a power supply circuit (not shown).
  • the power supply circuit converts the power supplied from the power supply 31 into a DC voltage required by the control unit 41 and supplies the DC voltage to the control unit 41.
  • the control unit 41 together with the relays 33 and 34, forms a path switching unit that switches the charging path of the capacitor 37.
  • the relay 33 Before the power is supplied to the power converter 101, the relay 33 is in an open state, and the relay 34 is in a state where the capacitor 32 is connected in series between the power supply 31 and the diode bridge 35. is there.
  • the capacitor 37 When power is supplied to the power converter 101 in this state, the capacitor 37 is charged through a charging path including the capacitor 32 provided for the purpose of suppressing noise components. Specifically, the capacitor 37 is charged through the following two charging paths. Of the two output points of the power supply 31, an output point to which the capacitor 32 and the relay 33 are connected is a first output point, and the remaining output points are a second output point.
  • a current is output from the first output point of the power supply 31, and the current is supplied to the capacitor 32, the relay 34, and the two diodes provided on the positive side of the diode bridge 35. Flows into the capacitor 37 via the first positive diode on one side and the DC reactor 36, and further, the first negative side on one of the two diodes provided on the negative side of the diode bridge 35. Return to the power supply 31 via the diode.
  • a current is output from the second output point of the power supply 31, and this current is the second of the two diodes provided on the positive side of the diode bridge 35.
  • the required time from when power is supplied to the power converter 101 to when the voltage of the capacitor 37 reaches a predetermined voltage, that is, the voltage required by the inverter 39, is determined by the power converter 100 according to the first embodiment. It takes several tens of seconds as in the case where the power is turned on. However, there is no problem as in the power conversion device 100 according to the first embodiment. Further, an inrush current to the capacitor 37 generated when the power is turned on is suppressed.
  • the control unit 41 controls the relays 33 and 34 in order to use the capacitor 32 used for suppressing the inrush current as a capacitor for suppressing a noise component. Specifically, the control unit 41 first switches the contact of the relay 34. Next, the control unit 41 turns on the relay 33 so that the capacitor 32 is connected in parallel with the diode bridge 35. When the capacitor 37 is sufficiently charged, the voltage applied to both ends of the capacitor 32 is small, so that the rush current to the capacitor 32 when the contact of the relay 34 is switched is suppressed.
  • the power conversion device 101 uses the capacitor 32 provided for the purpose of suppressing a noise component included in AC power output from the power supply 31 which is a single-phase AC power supply, as a power supply. It is used as a capacitor for suppressing an inrush current to the capacitor 37 which is a main circuit capacitor, which is generated when the capacitor 31 is turned on.
  • the power conversion device 101 includes the capacitor 32 in the charging path of the main circuit capacitor from when the power supply 31 is turned on until the voltage of the capacitor 37 that is the main circuit capacitor reaches a predetermined voltage. After the voltage of the main circuit capacitor reaches a predetermined voltage, the main circuit capacitor charging path is switched so that the capacitor 32 is not included in the main circuit capacitor charging path. This makes it possible to suppress an inrush current when the power is turned on, while avoiding an increase in circuit size.
  • the control unit 21 and the control unit 41 are realized by a processing circuit that is an electronic circuit.
  • the processing circuit that implements the control unit 21 and the control unit 41 may be dedicated hardware or a control circuit that includes a memory and a processor that executes a program stored in the memory.
  • the processing circuit is, for example, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination of these.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the control circuit may be, for example, a processing circuit having the configuration illustrated in FIG. 7 and including the processor 91 and the memory 92.
  • the processor 91 is a CPU (Central Processing Unit), a central processing unit, a processing device, an arithmetic unit, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), a system LSI (Large Scale Integration), or the like.
  • the memory 92 is a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable ROM), an EEPROM (registered trademark) (Electrically Erasable Programmable ROM), or the like.
  • control units 21 and 41 are realized by the control circuit having the configuration shown in FIG. 7, the control units 21 and 41 are realized by the processor 91 executing a program for operating as these units. That is, the above-described programs are stored in the memory 92 in advance, and the processors 91 read out and execute the programs from the memory 92, thereby realizing the control units 21 and 41.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

電力変換装置(100)は、電源(1)から供給される第1の交流電力を直流電力に変換するダイオードブリッジ(15)と、直流電力を平滑化する主回路コンデンサ(コンデンサ(17A,17B))と、平滑化された後の直流電力を第2の交流電力に変換して負荷に供給するインバータ(19)と、第1の交流電力に含まれるノイズ成分を抑制するコンデンサ(10,11)と、第1の交流電力の供給が開始されてから主回路コンデンサの電圧が予め定められた電圧となるまでの間は、電源(1)から出力される電流がコンデンサ(10,11)を経由して主回路コンデンサに流れ込み、主回路コンデンサの電圧が予め定められた電圧となった後は、電源(1)から出力される電流がコンデンサ(10,11)を経由せずに主回路コンデンサに流れ込むよう、主回路コンデンサの充電経路を切り替える経路切替部(リレー(13,14,20),制御部(21))と、を備える。

Description

電力変換装置および空気調和機
 本発明は、電源投入時に発生する突入電流を抑制可能な電力変換装置および空気調和機に関する。
 空気調和機の室外機など、電力変換を行う回路を有する装置は、電源投入時に発生する突入電流により部品が破壊されるのを防止するため、突入電流を抑制する突入電流防止回路を備えている。突入電流防止回路は、抵抗、または、温度により抵抗値が変化するPTC(Positive Temperature Coefficient)サーミスタを交流電源と整流器との間に配置することで実現可能である。しかし、抵抗またはPTCサーミスタで突入電流を抑制する場合、抵抗で電力が消費されるために電力損失が発生する。この問題を解決するため、特許文献1に記載の発明は、交流電源と整流器との間に限流用コンデンサを設け、電源を投入してからしばらくの間は限流用コンデンサを介して整流器に電流を流して整流器の出力側に設けられた平滑コンデンサを充電することで突入電流を抑制する。また、平滑コンデンサの充電が終了した後は、限流用コンデンサを迂回して整流器に電流が流れるよう、電流供給経路を切り替える。
特開2008-136316号公報
 特許文献1に記載の発明は、突入電流を抑制するためのコンデンサを別途設ける必要があり、回路規模が大きくなるという問題があった。
 本発明は、上記に鑑みてなされたものであって、回路規模の大型化を回避しつつ突入電流を抑制することが可能な電力変換装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる電力変換装置は、交流電源から供給される第1の交流電力を直流電力に変換するダイオードブリッジと、直流電力を平滑化する主回路コンデンサと、主回路コンデンサで平滑化された後の直流電力を第2の交流電力に変換して負荷に供給するインバータと、第1の交流電力に含まれるノイズ成分を抑制するコンデンサと、を備える。また、電力変換装置は、第1の交流電力の供給が開始されてから主回路コンデンサの電圧が予め定められた電圧となるまでの間は、交流電源から出力される電流がコンデンサを経由して主回路コンデンサに流れ込み、主回路コンデンサの電圧が予め定められた電圧となった後は、交流電源から出力される電流がコンデンサを経由せずに主回路コンデンサに流れ込むよう、主回路コンデンサの充電経路を切り替える経路切替部を備える。
 本発明によれば、回路規模の大型化を回避しつつ突入電流を抑制することが可能な電力変換装置を実現できる、という効果を奏する。
実施の形態1にかかる電力変換装置の構成例を示す図 実施の形態1にかかる電力変換装置が備える主回路コンデンサの第1の充電経路を示す図 実施の形態1にかかる電力変換装置が備える主回路コンデンサの第2の充電経路を示す図 実施の形態1にかかる電力変換装置が備える主回路コンデンサの電源投入後の電圧変化の一例を示す図 実施の形態1にかかる電力変換装置が備える各コンデンサの電圧の関係を示す図 実施の形態3にかかる電力変換装置の構成例を示す図 各実施の形態にかかる電力変換装置が備える制御部を実現するハードウェアの一例を示す図
 以下に、本発明の実施の形態にかかる電力変換装置および空気調和機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1にかかる電力変換装置の構成例を示す図である。
 本実施の形態にかかる電力変換装置100は、3相4線式の交流電源である電源1に接続され、電源1から供給される第1の交流電力を、図示を省略した負荷に供給する第2の交流電力に変換する。以下の説明では、電源1が出力する3相交流電力のそれぞれの相を第1相、第2相および第3相と呼ぶ場合がある。図1では記載を省略している負荷としては、空気調和機が備える圧縮機を駆動させるモータ、空気調和機が備える送風ファンを駆動させるモータなどが該当する。
 電力変換装置100は、コンデンサ2~4,9~11,17A,17Bと、抵抗5~7,18A,18Bと、コモンコイル8と、リレー13,14,20と、ダイオードブリッジ15と、直流リアクトル16と、インバータ19と、制御部21とを備える。
 コンデンサ2および抵抗5は、一端が電源1の第1相の出力点に接続され、他端が電源1の中性点に接続される。コンデンサ3および抵抗6は、一端が電源1の第2相の出力点に接続され、他端が電源1の中性点に接続される。コンデンサ4および抵抗7は、一端が電源1の第3相の出力点に接続され、他端が電源1の中性点に接続される。なお、コンデンサ2および抵抗5が接続される相を第1相と呼ぶことにしたが、説明の便宜上このようにしているだけである。
 電源1が出力する第1相~第3相の交流電力は、各相の出力点に接続された線路を介してダイオードブリッジ15に入力される。また、電源1の第1相~第3相の出力点のそれぞれと中性点の間には、ノイズ成分抑制用のコンデンサ9~11が接続される。コンデンサ9の一端は、電源1の第1相の出力点とダイオードブリッジ15の第1相の入力点とを接続する線路である第1の線路に接続される。コンデンサ9の他端は、中性線に接続される。コンデンサ9は、第1の線路上のノイズ成分を抑制するためのコンデンサである。コンデンサ10の一端は、電源1の第2相の出力点とダイオードブリッジ15の第2相の入力点とを接続する線路である第2の線路に接続される。コンデンサ10の他端は、中性線に接続される。コンデンサ10は、第2の線路上のノイズ成分を抑制するためのコンデンサである。コンデンサ11の一端は、電源1の第3相の出力点とダイオードブリッジ15の第3相の入力点とを接続する線路である第3の線路に接続される。コンデンサ11の他端は、中性線に接続される。コンデンサ11は、第3の線路上のノイズ成分を抑制するためのコンデンサである。
 また、上記のコンデンサ2~4および抵抗5~7とコンデンサ9~11との間には、第1の線路~第3の線路および中性線に流れるコモンモードノイズを抑制するためのコモンコイル8が設けられる。
 図1に示したコンデンサ2~4,9~11、抵抗5~7およびコモンコイル8は、電源1から出力される交流電力に含まれるノイズ成分を抑制する目的で設けられた素子であり、これらと同様の素子は一般的な電力変換装置にも設けられている。なお、抵抗5~7は、コンデンサ2~4に印加される電圧のバランスをとる役割も兼ねている。
 ダイオードブリッジ15は、電源1から供給される交流電力を整流して直流電力に変換する。すなわち、ダイオードブリッジ15は、電源1から供給される第1の交流電力を直流電力に変換する。ダイオードブリッジ15が出力する直流電力はインバータ19に供給される。インバータ19は、入力された直流電力を第2の交流電力に変換し、図示を省略している負荷に供給する。
 ダイオードブリッジ15とインバータ19との間には、直流リアクトル16と、主回路コンデンサであるコンデンサ17A,17Bと、抵抗18A,18Bとが設けられる。直流リアクトル16およびコンデンサ17A,17Bは、ダイオードブリッジ15から出力される直流電力を平滑化するために設けられる。抵抗18A,18Bは、コンデンサ17A,17Bに充電される電圧のバランスを調整する目的、および、コンデンサ17A,17Bを放電させる目的のために設けられる。
 直流リアクトル16の一端はダイオードブリッジ15の正極側の出力点に接続され、直流リアクトル16の他端はインバータ19の正極側の入力点に接続される。また、直流リアクトル16の他端には、コンデンサ17Aの一端および抵抗18Aの一端が接続される。コンデンサ17Aの他端にはコンデンサ17Bの一端が接続され、抵抗18Aの他端には抵抗18Bの一端が接続される。コンデンサ17Bの他端および抵抗18Bの他端は、ダイオードブリッジ15の負極側の出力点およびインバータ19の負極側の入力点に接続される。また、コンデンサ17Aと17Bの接続点は抵抗18Aと18Bの接続点と短絡された状態となっている。
 第1のリレーであるリレー13は、第2の線路上に設けられ、一端がコモンコイル8に接続され、他端がダイオードブリッジ15およびコンデンサ10の一端に接続される。すなわち、リレー13は、第2の線路上のコモンコイル8とコンデンサ10の接続点との間に設けられる。リレー13は、制御部21により制御される。
 第2のリレーであるリレー14は、第3の線路上に設けられ、一端がコモンコイル8およびコンデンサ11の一端に接続され、他端がダイオードブリッジ15に接続される。すなわち、リレー14は、第3の線路上のコンデンサ11の接続点とダイオードブリッジ15との間に設けられる。リレー14は、制御部21により制御される。
 第3のリレーであるリレー20は、中性線上に設けられ、一端がコンデンサ9に接続され、他端がコンデンサ10に接続される。すなわち、リレー20は、中性線上のコンデンサ9の接続点とコンデンサ10の接続点との間に設けられる。リレー20がオフになると、コンデンサ10および11が中性線から切り離された状態となる。リレー20は、制御部21により制御される。
 制御部21は、インバータ19を構成する各スイッチング素子(図示せず)を制御するとともに、リレー13、14および20を制御する。制御部21は、図示を省略した電源回路から電源の供給を受けて動作する構成である。この電源回路は、電源1から供給される電力を制御部21が必要とする直流電圧に変換して制御部21に供給する。制御部21は、リレー13、14および20とともに、コンデンサ17Aおよび17Bの充電経路を切り替える経路切替部を構成する。
 次に、電力変換装置100に電源を投入する場合、すなわち、電源1から電力変換装置100に対して交流電力の供給が開始されるときの電力変換装置100の動作について説明する。
 電力変換装置100に電源が投入される前は、リレー13、14および20は開いた状態である。この状態で電力変換装置100に電源が投入されると、図2および図3に示した経路で交互に電力が供給されてコンデンサ17Aおよび17Bが充電される。すなわち、図2に示した第1の充電経路201では、電源1から第1の線路に出力される電流は、ダイオードブリッジ15の正極側に設けられた3個のダイオードの中の第1相に対応するダイオードと、直流リアクトル16と、コンデンサ17Aおよび17Bと、ダイオードブリッジ15の負極側に設けられた3個のダイオードの中の第2相に対応するダイオードと、を経由して第2の線路に流れ込み、さらに、コンデンサ10とコンデンサ11とを経由して第3の線路に流れ込んだ後、電源1に戻る。また、図3に示した第2の充電経路202では、電源1から第3の線路に出力される電流は、コンデンサ11とコンデンサ10とを経由して第2の線路に流れ込み、さらに、ダイオードブリッジ15の正極側に設けられた3個のダイオードの中の第2相に対応するダイオードと、直流リアクトル16と、コンデンサ17Aおよび17Bと、ダイオードブリッジ15の負極側に設けられた3個のダイオードの中の第1相に対応するダイオードと、を経由して第1の線路に流れ込んだ後、電源1に戻る。このように、コンデンサ17Aおよび17Bは、2つの経路で充電が行われる。
 上記2つの充電経路上に設けられているコンデンサ10,11の静電容量と、コンデンサ17A,17Bの静電容量とは、式(1)に示す関係を有するものとする。
  (コンデンサ10,11の静電容量)<<(コンデンサ17A,17Bの静電容量)…(1)
 このような条件の元で電源を投入した場合、電力変換装置100のコンデンサ17A,17Bは、コンデンサ10および11に受電される電荷分充電される。式(1)に示したように、コンデンサ10および11の静電容量はコンデンサ17Aおよび17Bの静電容量と比較して非常に小さいため、コンデンサ17Aおよび17Bに充電される電圧は小さい。そのため、電力変換装置100においては、上述した2つの充電経路を使用した充電動作を電源周期毎に繰り返すことによって、コンデンサ17Aおよび17Bが、図4に示すように、数十秒の時間をかけて充電される。図4は、実施の形態1にかかる電力変換装置100が備える主回路コンデンサであるコンデンサ17Aおよび17Bの電源投入後の電圧変化の一例を示す図である。図4に示した電圧は、直列に接続されたコンデンサ17Aおよび17Bの両端の電圧、すなわち、コンデンサ17Aの電圧とコンデンサ17Bの電圧とを合計した電圧であり、この電圧がインバータ19に印加される。
 上記の充電動作では、電源を投入してから、コンデンサ17Aおよび17Bの両端の電圧が、予め定められた電圧である、インバータ19が必要とする電圧に達するまでに時間を要する。これは、コンデンサ17Aおよび17Bに流れ込む電流が、コンデンサ10および11の容量に応じた値に制限されるためである。このように、電力変換装置100では、電源を投入してからコンデンサ17Aおよび17Bの両端の電圧が予め定められた電圧となるまでの所要時間が長くなるが、電力変換装置100が動作を開始する際に実行する初期化処理にはさらに時間がかかるため、問題とはならない。ここでの初期化処理とは、図示していない基板との通信処理、図示していない各センサーからの出力情報の取得処理、図示していない電圧検出回路および電流検出回路の異常の有無を確認する処理などである。なお、仮に、コンデンサ17Aおよび17Bの電圧が予め定められた電圧に達するまでの充電時間が上記の初期化処理の所要時間よりも長い場合、図示を省略した表示部に待機中であることを表示するなどして、動作開始となるまでに時間を要することをユーザに知らせればよい。
 また、図2に示した第1の充電経路201および図3に示した第2の充電経路202には、コンデンサ17Aおよび17Bと比較して静電容量が小さいコンデンサ10および11が含まれ、上述したように、コンデンサ17Aおよび17Bに流れ込む電流は、コンデンサ10および11の静電容量に応じた値に制限されるため、電源1を投入した際に発生する突入電流が抑制される。
 コンデンサ17Aおよび17Bの充電が終了すると、制御部21は、突入電流を抑制するために使用したコンデンサ10および11を本来の目的で使用するために、すなわち、ノイズ成分抑制用のコンデンサとして使用するために、リレー13、14および20を制御する。具体的には、制御部21は、まず、リレー20をオンさせる。図5に示したように、主回路コンデンサであるコンデンサ17Aおよび17Bが十分に充電されているとき、コンデンサ10および11の両端にかかる電圧は小さい。この状態でリレー20をONすることで、接続切り替え時のコンデンサ10および11への突入電流を抑制するとともに、ノイズ成分抑制用のコンデンサとして、コンデンサ10および11の使用を開始する。その後、制御部21は、リレー13および14をONすることにより、電源1が出力する第1相~第3相の各相の電力がダイオードブリッジ15に供給されるようになる。すなわち、コンデンサ17Aおよび17Bの充電経路が、コンデンサ10および11を含まない第3の充電経路に切り替わる。
 このように、本実施の形態にかかる電力変換装置100は、3相4線式の交流電源である電源1から出力される3相の交流電力のそれぞれをダイオードブリッジ15に供給するための第1の線路~第3の線路のそれぞれと中性線との間に接続されたノイズ成分抑制用のコンデンサであるコンデンサ9~11と、第2の線路上に設けられたリレー13と、第3の線路上に設けられたリレー14と、中性線上に設けられたリレー20と、主回路コンデンサであるコンデンサ17Aおよび17Bと、リレー13、14および20を制御する制御部21とを備える。また、電力変換装置100は、ノイズ成分を抑制する目的で設けられたコンデンサを、電源1を投入する際に発生する、主回路コンデンサへの突入電流を抑制するためのコンデンサとして使用する。具体的には、電力変換装置100は、制御部21が各リレーを制御することにより、電源1を投入してから主回路コンデンサの電圧が予め定められた電圧に達するまでの間の主回路コンデンサの充電経路にコンデンサ10および11が含まれ、主回路コンデンサの電圧が予め定められた電圧に達した後は主回路コンデンサの充電経路にコンデンサ10および11が含まれないよう、主回路コンデンサの充電経路を切り替える。これにより、電源投入時の突入電流を抑制することができる。また、特許文献1に記載の発明では、突入電流を抑制するための1つのコンデンサ(限流用コンデンサ)と、電流が流れる経路を切り替えるための3つのリレー(2つの電源スイッチと1つの限流用スイッチ)とを使用して突入電流を抑制しているのに対して、本実施の形態にかかる電力変換装置100では、突入電流を抑制するためのコンデンサを別途設けることなく、突入電流を抑制することが可能である。よって、電力変換装置100は、回路規模の大型化を回避しつつ、電源投入時の突入電流を抑制することができる。
実施の形態2.
 実施の形態1で説明した電力変換装置100は、主回路コンデンサの電圧が予め定められた電圧となる前の主回路コンデンサの充電経路(第1の充電経路201,第2の充電経路202)を形成するコンデンサ10および11に対して電圧バランス用の抵抗を挿入しない構成とした。しかし、コンデンサ10および11の静電容量比によっては、片方のコンデンサに電圧が偏り、コンデンサ10の電圧とコンデンサ11の電圧がアンバランスになる可能性がある。よって、電圧バランスが偏りコンデンサ10または11の電圧が耐圧を超えるような場合、電圧バランスをとるための抵抗をコンデンサ10および11のそれぞれに並列に実装してもよい。また、コンデンサの充電経路の形成に用いられないコンデンサ9に対しても電源バランスをとるための抵抗を並列に実装してもよい。
 このように、実施の形態2にかかる電力変換装置は、ノイズ成分を抑制する目的で設けられ、電源投入直後には主回路コンデンサの充電経路を形成する各コンデンサの電圧のバランスをとるための抵抗を備える。これにより、電源投入直後に主回路コンデンサの充電経路を形成する各コンデンサの一方の電圧が高くなり、耐圧を超えてしまうのを防止できる。
実施の形態3.
 図6は、本発明の実施の形態3にかかる電力変換装置の構成例を示す図である。実施の形態1,2にかかる電力変換装置100は、3相4線式の交流電源である電源1から供給される第1の交流電力を第2の交流電力に変換して負荷に供給する構成であった。これに対して、図6に示した実施の形態3にかかる電力変換装置101は、電源31から供給される単相の交流電力を第2の交流電力に変換して負荷に供給する。本実施の形態においては、電源31から供給される単相の交流電力が第1の交流電力となる。
 電力変換装置101は、コンデンサ32,37と、リレー33,34と、ダイオードブリッジ35と、直流リアクトル36と、抵抗38と、インバータ39と、制御部41とを備える。
 コンデンサ32は、一端が電源31に接続され、他端がリレー34に接続される。コンデンサ32は、第1の交流電力に含まれるノイズ成分を抑制する目的で設けられている。
 リレー33は、一端がコンデンサ32と電源31との接続点に接続され、他端がダイオードブリッジ35に接続される。リレー34は、第1端子、第2端子および第3端子を備え、第1端子にコンデンサ32が接続される。リレー34の第2端子は電源31およびダイオードブリッジ35に接続される。リレー34の第3端子はダイオードブリッジ35に接続される。
 ダイオードブリッジ35は、電源31から供給される交流電力を整流して直流電力に変換する。すなわち、ダイオードブリッジ35は、電源31から供給される第1の交流電力を直流電力に変換する。ダイオードブリッジ35が出力する直流電力はインバータ39に供給される。インバータ39は、入力された直流電力を第2の交流電力に変換し、図示を省略している負荷に供給する。
 ダイオードブリッジ35とインバータ39との間には、直流リアクトル36と、主回路コンデンサであるコンデンサ37と、抵抗38とが設けられる。直流リアクトル36およびコンデンサ37は、ダイオードブリッジ35から出力される直流電力を平滑化するために設けられる。抵抗38は、コンデンサ37に充電された電荷を放電させるために設けられる。
 直流リアクトル36の一端はダイオードブリッジ35の正極側の出力点に接続され、直流リアクトル36の他端はインバータ39の正極側の入力点に接続される。また、直流リアクトル36の他端には、コンデンサ37および抵抗38の一端が接続される。コンデンサ37および抵抗38の他端は、ダイオードブリッジ35の負極側の出力点およびインバータ39の負極側の入力点に接続される。
 制御部41は、インバータ39を構成する各スイッチング素子(図示せず)を制御するとともに、リレー33および34を制御する。制御部41は、図示を省略した電源回路から電源の供給を受けて動作する構成である。この電源回路は、電源31から供給される電力を制御部41が必要とする直流電圧に変換して制御部41に供給する。制御部41は、リレー33および34とともに、コンデンサ37の充電経路を切り替える経路切替部を構成する。
 次に、電力変換装置101に電源を投入する場合、すなわち、電源31から電力変換装置101に対して交流電力の供給が開始されるときの電力変換装置101の動作について説明する。
 電力変換装置101に電源が投入される前は、リレー33は開いた状態であり、リレー34は、コンデンサ32が電源31とダイオードブリッジ35との間に直列に挿入された接続関係となる状態である。この状態で電力変換装置101に電源が投入されると、ノイズ成分を抑制する目的で設けられコンデンサ32を含んだ充電経路でコンデンサ37の充電が行われる。具体的には、コンデンサ37は、以下の2つの充電経路で充電が行われる。電源31の2つの出力点のうち、コンデンサ32およびリレー33が接続されている出力点を第1の出力点、残りの出力点を第2の出力点とする。1つめの充電経路での充電では、電源31の第1の出力点から電流が出力され、この電流は、コンデンサ32と、リレー34と、ダイオードブリッジ35の正極側に設けられた2個のダイオードの一方である第1の正極側ダイオードと、直流リアクトル36とを経由してコンデンサ37に流れ込み、さらに、ダイオードブリッジ35の負極側に設けられた2個のダイオードの一方である第1の負極側ダイオードを経由して電源31に戻る。また、2つめの充電経路での充電では、電源31の第2の出力点から電流が出力され、この電流は、ダイオードブリッジ35の正極側に設けられた2個のダイオードの他方である第2の正極側ダイオードと、直流リアクトル36とを経由してコンデンサ37に流れ込み、さらに、ダイオードブリッジ35の負極側に設けられた2個のダイオードの他方である第2の負極側ダイオードと、リレー34と、コンデンサ32とを経由して電源31に戻る。
 コンデンサ32の静電容量とコンデンサ37の静電容量とは、式(2)に示す関係を有するものとする。
  (コンデンサ32の静電容量)<<(コンデンサ37の静電容量)…(2)
 電力変換装置101に電源が投入されてからコンデンサ37の電圧が予め定められた電圧、すなわち、インバータ39が必要とする電圧に達するまでの所要時間は、実施の形態1にかかる電力変換装置100に電源が投入される場合と同様に、数十秒となる。しかし、実施の形態1にかかる電力変換装置100と同様、問題とはならない。また、電源を投入した際に発生するコンデンサ37への突入電流が抑制される。
 コンデンサ37の充電が終了すると、制御部41は、突入電流を抑制するために使用したコンデンサ32をノイズ成分抑制用のコンデンサとして使用するために、リレー33および34を制御する。具体的には、制御部41は、まず、リレー34の接点を切り替える。制御部41は、次に、リレー33をオンさせて、コンデンサ32がダイオードブリッジ35と並列に接続された状態とする。コンデンサ37が十分に充電されているとき、コンデンサ32の両端にかかる電圧は小さいため、リレー34の接点を切り替えたときのコンデンサ32への突入電流は抑制される。
 このように、本実施の形態にかかる電力変換装置101は、単相式の交流電源である電源31から出力される交流電力に含まれるノイズ成分を抑制する目的で設けられたコンデンサ32を、電源31を投入する際に発生する、主回路コンデンサであるコンデンサ37への突入電流を抑制するためのコンデンサとして使用する。具体的には、電力変換装置101は、電源31を投入してから主回路コンデンサであるコンデンサ37の電圧が予め定められた電圧に達するまでの間の主回路コンデンサの充電経路にコンデンサ32が含まれ、主回路コンデンサの電圧が予め定められた電圧に達した後は主回路コンデンサの充電経路にコンデンサ32が含まれないよう、主回路コンデンサの充電経路を切り替える。これにより、回路規模の大型化を回避しつつ、電源投入時の突入電流を抑制することができる。
 つづいて、上述した電力変換装置100の制御部21および電力変換装置101の制御部41を実現するハードウェアについて説明する。制御部21および制御部41は、電子回路である処理回路により実現される。制御部21および制御部41を実現する処理回路は、専用のハードウェアであっても、メモリおよびメモリに格納されるプログラムを実行するプロセッサを備える制御回路であってもよい。
 上記の処理回路が専用のハードウェアで実現される場合、処理回路は、例えば、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせた回路である。
 また、上記の処理回路が制御回路で実現される場合、制御回路は、例えば、図7に示す構成の、プロセッサ91およびメモリ92を備える処理回路とすることができる。プロセッサ91は、CPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSP(Digital Signal Processor)ともいう)、システムLSI(Large Scale Integration)などである。メモリ92は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically Erasable Programmable ROM)などである。
 図7に示す構成の制御回路で制御部21および41を実現する場合、制御部21および41は、これらの各部として動作するためのプログラムをプロセッサ91が実行することにより実現される。すなわち、上記のプログラムをメモリ92に予め格納しておき、プロセッサ91が、メモリ92からプログラムを読み出して実行することにより、制御部21および41が実現される。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1,31 電源、2~4,9~11,17A,17B,32,37 コンデンサ、5~7,18A,18B,38 抵抗、8 コモンコイル、13,14,20,33,34 リレー、15,35 ダイオードブリッジ、16,36 直流リアクトル、19,39 インバータ、21,41 制御部、100,101 電力変換装置、201 第1の充電経路、202 第2の充電経路。

Claims (6)

  1.  交流電源から供給される第1の交流電力を直流電力に変換するダイオードブリッジと、
     前記直流電力を平滑化する主回路コンデンサと、
     前記主回路コンデンサで平滑化された後の前記直流電力を第2の交流電力に変換して負荷に供給するインバータと、
     前記第1の交流電力に含まれるノイズ成分を抑制するコンデンサと、
     前記第1の交流電力の供給が開始されてから前記主回路コンデンサの電圧が予め定められた電圧となるまでの間は、前記交流電源から出力される電流が前記コンデンサを経由して前記主回路コンデンサに流れ込み、前記主回路コンデンサの電圧が前記予め定められた電圧となった後は、前記交流電源から出力される電流が前記コンデンサを経由せずに前記主回路コンデンサに流れ込むよう、前記主回路コンデンサの充電経路を切り替える経路切替部と、
     を備える電力変換装置。
  2.  前記主回路コンデンサの電圧が前記予め定められた電圧となった後に、前記コンデンサを使用して前記ノイズ成分の抑制を行う、
     請求項1に記載の電力変換装置。
  3.  前記第1の交流電力の供給が開始されてから前記主回路コンデンサの電圧が予め定められた電圧となるまでの間に前記交流電源から出力される電流が複数の前記コンデンサを経由して前記主回路コンデンサに流れ込み、
     複数の前記コンデンサの各々には、他の前記コンデンサとの間で電圧のバランスをとるための抵抗が並列に接続されている、
     請求項1または2に記載の電力変換装置。
  4.  前記第1の交流電力を3相交流電力とする、請求項1から3のいずれか1項に記載の電力変換装置。
  5.  前記第1の交流電力を単相交流電力とする、請求項1または2に記載の電力変換装置。
  6.  請求項1から5のいずれか1項に記載の電力変換装置と、
     前記第2の交流電力の供給を受けて圧縮機または送風ファンを駆動させるモータと、
     を備える空気調和機。
PCT/JP2018/033857 2018-09-12 2018-09-12 電力変換装置および空気調和機 WO2020053995A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2018441279A AU2018441279B2 (en) 2018-09-12 2018-09-12 Power converting apparatus and air conditioner
CN201880097099.8A CN112673563B (zh) 2018-09-12 2018-09-12 电力转换装置以及空调机
DE112018007981.3T DE112018007981B4 (de) 2018-09-12 2018-09-12 Energiewandlungsvorrichtung und Klimaanlage
US17/256,988 US11677310B2 (en) 2018-09-12 2018-09-12 Power converting apparatus and air conditioner
PCT/JP2018/033857 WO2020053995A1 (ja) 2018-09-12 2018-09-12 電力変換装置および空気調和機
JP2020546604A JP6987266B2 (ja) 2018-09-12 2018-09-12 電力変換装置および空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/033857 WO2020053995A1 (ja) 2018-09-12 2018-09-12 電力変換装置および空気調和機

Publications (1)

Publication Number Publication Date
WO2020053995A1 true WO2020053995A1 (ja) 2020-03-19

Family

ID=69776856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033857 WO2020053995A1 (ja) 2018-09-12 2018-09-12 電力変換装置および空気調和機

Country Status (6)

Country Link
US (1) US11677310B2 (ja)
JP (1) JP6987266B2 (ja)
CN (1) CN112673563B (ja)
AU (1) AU2018441279B2 (ja)
DE (1) DE112018007981B4 (ja)
WO (1) WO2020053995A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7398667B2 (ja) * 2020-03-11 2023-12-15 パナソニックIpマネジメント株式会社 スイッチング装置、スイッチング電源装置、及び車両

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000060147A (ja) * 1998-08-14 2000-02-25 Matsushita Electric Works Ltd 電源装置
JP2008136316A (ja) * 2006-11-29 2008-06-12 Daikin Ind Ltd 電源装置の充電装置及び電源装置の充電方法
JP2017135763A (ja) * 2014-06-13 2017-08-03 東芝キヤリア株式会社 電力変換装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001037290A (ja) 1999-07-26 2001-02-09 Mitsubishi Electric Corp Dcモータ
US6804127B2 (en) * 2002-11-19 2004-10-12 Wilcon Inc. Reduced capacitance AC/DC/AC power converter
JP2005073404A (ja) * 2003-08-25 2005-03-17 Sony Corp 突入電流抑制回路
CN101785176B (zh) 2007-08-21 2012-08-29 三菱电机株式会社 感应加热装置、电力变换电路以及电力处理装置
JP2012197998A (ja) * 2011-03-23 2012-10-18 Panasonic Corp 空気調和機
JP5392582B2 (ja) * 2011-06-08 2014-01-22 株式会社安川電機 モータ制御装置
JP2013162591A (ja) 2012-02-03 2013-08-19 Sekisui Chem Co Ltd 電源回路および電子装置
EP2680421B2 (de) * 2012-06-29 2018-08-08 Siemens Aktiengesellschaft Frequenzumrichter mit Zwischenkreiskondensator und Verfahren zum Vorladen desselben
EP2858195B1 (en) 2013-10-07 2017-08-02 ABB Technology Oy Converter circuit
GB2515587B (en) 2013-11-26 2017-08-09 Keymed (Medical & Ind Equipment) Ltd Inrush current limiter
JP6173231B2 (ja) * 2014-02-05 2017-08-02 三菱電機株式会社 電力変換装置および空気調和装置
US10355585B2 (en) * 2015-03-12 2019-07-16 Eaton Intelligent Power Limited Variable frequency drive circuit with overvoltage protection
JP6567930B2 (ja) * 2015-09-11 2019-08-28 シャープ株式会社 空気調和機
US10218262B1 (en) * 2017-09-25 2019-02-26 Otis Elevator Company Hybrid direct current link system for a regenerative drive

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000060147A (ja) * 1998-08-14 2000-02-25 Matsushita Electric Works Ltd 電源装置
JP2008136316A (ja) * 2006-11-29 2008-06-12 Daikin Ind Ltd 電源装置の充電装置及び電源装置の充電方法
JP2017135763A (ja) * 2014-06-13 2017-08-03 東芝キヤリア株式会社 電力変換装置

Also Published As

Publication number Publication date
CN112673563B (zh) 2024-04-19
DE112018007981B4 (de) 2024-04-25
US20210143727A1 (en) 2021-05-13
JP6987266B2 (ja) 2021-12-22
DE112018007981T5 (de) 2021-05-27
JPWO2020053995A1 (ja) 2021-03-11
CN112673563A (zh) 2021-04-16
AU2018441279A1 (en) 2021-02-04
US11677310B2 (en) 2023-06-13
AU2018441279B2 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
JP6643678B2 (ja) スイッチング電源装置
JP5955484B1 (ja) コンバータユニットシステム及びコンバータユニット
CN107979265B (zh) 交错式电源及对应的控制方法
US9337721B2 (en) Correction circuit limiting inrush current
JP2012165509A (ja) 電力供給装置の突入電流防止回路
WO2020053995A1 (ja) 電力変換装置および空気調和機
US20200052606A1 (en) Switching power supply device
EP1755209B1 (en) Three-phase rectifier with inrush current limiting circuit
JP5814009B2 (ja) インバータ装置の電圧バランス回路
JPH0919154A (ja) 電源装置の突入電流制限装置
JP6346702B1 (ja) Dcモータ駆動装置、及びdcモータ装置
JP3055461B2 (ja) 電力供給装置における限流装置
JP2016195520A (ja) 突入電流保護回路、モータ及び送風装置
JP5234771B2 (ja) スイッチング電源装置
JP7181075B2 (ja) 電源装置
JP6513320B1 (ja) モータ制御装置および機械装置
JP6682003B2 (ja) 電力変換装置
JP6633402B2 (ja) インバータ装置
JP2016092929A (ja) インバータ回路
JPH11285253A (ja) 電源装置
JP2727177B2 (ja) 直流電源装置及びこれを利用した急速充電装置
WO2017200027A1 (ja) 制御装置及び空気調和機
JP2003018841A (ja) 電源装置に対する三相入力方法およびこれに用いる電源装置ならびに電源モジュール
KR101668641B1 (ko) 필터 커패시터 초기 충전 회로
JP2023124269A (ja) 突入電流抑制回路及び電源回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933291

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020546604

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018441279

Country of ref document: AU

Date of ref document: 20180912

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2101001251

Country of ref document: TH

122 Ep: pct application non-entry in european phase

Ref document number: 18933291

Country of ref document: EP

Kind code of ref document: A1