WO2020052251A1 - 一种利用高硫煤制备脱汞吸附剂的方法 - Google Patents

一种利用高硫煤制备脱汞吸附剂的方法 Download PDF

Info

Publication number
WO2020052251A1
WO2020052251A1 PCT/CN2019/086818 CN2019086818W WO2020052251A1 WO 2020052251 A1 WO2020052251 A1 WO 2020052251A1 CN 2019086818 W CN2019086818 W CN 2019086818W WO 2020052251 A1 WO2020052251 A1 WO 2020052251A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur coal
mercury removal
high sulfur
activation
adsorbent
Prior art date
Application number
PCT/CN2019/086818
Other languages
English (en)
French (fr)
Inventor
王建成
王雅慧
霍启煌
韩丽娜
常丽萍
鲍卫仁
Original Assignee
太原理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太原理工大学 filed Critical 太原理工大学
Publication of WO2020052251A1 publication Critical patent/WO2020052251A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0262Compounds of O, S, Se, Te
    • B01J20/0266Compounds of S
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • B01D2253/1128Metal sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character

Definitions

  • the invention belongs to the technical field of clean and efficient utilization of high sulfur coal, and particularly relates to a method for preparing a mercury removal adsorbent by using high sulfur coal.
  • coal will still be China ’s primary primary energy source in the foreseeable future, but its large-scale mining and utilization has caused a sharp reduction in high-quality coal resources, intensifying the contradiction between energy security and environmental protection. .
  • China has abundant high-sulfur coal resources. 7.80% of the nation's unified coal mines and key coal mines are high-sulfur coal, which is an important coal resource. However, the high sulfur characteristics of the high sulfur coal hinder its development and utilization.
  • High-sulfur coal can be washed to remove most of the pyrite and ash, which is conducive to improving and stabilizing the coal quality, but thermal coal washing has yet to be developed, and coal washing not only causes a large amount of water pollution, among which fine-grained dispersed iron Mine and organic sulfur cannot be removed by physical methods. Only by removing (solid) sulfur or flue gas during combustion can the purpose of reducing SO2 emissions be achieved. At present, there are many kinds of flue gas desulfurization technologies and processes developed and applied at home and abroad. The desulfurization efficiency can generally reach more than 90%, and the desulfurization (solid) efficiency during the combustion process can also reach 80% to 90%.
  • the SO2 emission is only equivalent to mining and burning ultra-low sulfur coal containing 0.3% to 0.4% sulfur.
  • the calculation of 80% desulfurization rate is also equivalent to mining and burning low-sulfur coal at 0.6% to 0.8%.
  • removing SO2 and purifying flue gas are the main ways to utilize and treat high sulfur coal.
  • Atmospheric mercury mainly exists in three forms: granular mercury (HgP), gaseous divalent mercury (Hg2 +), and elemental mercury (Hg0).
  • HgP granular mercury
  • Hg2 + gaseous divalent mercury
  • Hg0 elemental mercury
  • researchers have developed a variety of effective technologies for the prevention and control of atmospheric mercury pollution, mainly including dust removal equipment mercury removal technology, adsorbent mercury removal technology, catalytic oxidation technology, and other mercury removal technologies.
  • particulate mercury can be collected with dust removal facilities; according to the characteristics of being easily soluble in water and easy to adhere to particulate matter, gaseous divalent mercury can also be used with conventional pollutant control equipment (such as wet flue gas desulfurization devices, electrostatic precipitators (ESP), inertial dust collector and bag dust collector, etc.) to collect and remove; however, elemental mercury is difficult to dissolve in water and is highly volatile, and current pollutant control equipment cannot effectively handle it. However, if elemental mercury can be oxidized to divalent mercury ions, the problem of elemental mercury removal will also be solved.
  • pollutant control equipment such as wet flue gas desulfurization devices, electrostatic precipitators (ESP), inertial dust collector and bag dust collector, etc.
  • mercury removal equipment including bag dust collectors and electrostatic precipitators
  • adsorbent mercury removal technologies including activated carbon, fly ash, calcium-based adsorbents and minerals
  • Mercury catalytic oxidation technology is a newly emerging elemental mercury removal technology, which has very important significance for the control of mercury emissions from flue gas. This technology aims to oxidize elemental mercury to divalent mercury, thereby solving the problem of difficult removal of elemental mercury.
  • the research on this technology is still in the initial stage of exploration, and the mechanism of mercury removal is still not clear. There is very important research significance and huge research space in the prevention and control of atmospheric mercury pollution.
  • the invention aims at the environmental pollution problems caused by the use of high-sulfur coal, and the technical problems that elemental mercury is difficult to be removed by existing mercury removal agents or the removal efficiency is not high during the prevention and control of atmospheric mercury pollution.
  • the present invention abandons the current mainstream view that high-sulfur coal is used as an energy source, treats high-sulfur coal with a metal salt solution, and couples the metal with organic sulfur that is difficult to remove from the high-sulfur coal.
  • Metal sulfide carbon-based sorbents are used to remove Hg0 from the atmosphere by oxidation.
  • a method for preparing a mercury removal adsorbent by using high sulfur coal includes the following steps:
  • high-sulfur coal samples are dried and sieved to obtain high-sulfur coal particles
  • the high sulfur coal particles and the metal nitrate are weighed according to the ratio of the molar ratio of the metal in the metal nitrate to the sulfur in the high sulfur coal particles less than 1.
  • the weighed metal nitrate is mixed with ethanol to prepare a metal salt ethanol solution, wherein the volume-to-mass ratio of ethanol and high sulfur coal particles is 0.5-1 mL / 1g;
  • the weighed high-sulfur coal particles are poured into the metal salt ethanol solution prepared in the third step, and after ultrasonic mixing, the ethanol is volatilized until the ethanol no longer oozes, and then dried to obtain a prepreg;
  • the prepreg obtained in the fourth step is placed in a tube furnace for retorting and roasting to obtain a metal sulfide-containing adsorbent precursor;
  • the metal sulfide-containing adsorbent precursor obtained in the fifth step is activated to obtain a porous metal sulfide carbon-based mercury removal adsorbent.
  • the drying temperature of the high-sulfur coal sample in the first step is 80-100 ° C, the drying time is 8-11h, and the high-sulfur coal particles of 40-60 mesh are obtained by sieving.
  • the metal nitrate in the second step is a nitrate of one or more of Cu, Zn and Fe.
  • the volume-to-mass ratio of ethanol and high sulfur coal particles in the third step is 0.7 mL / 1g.
  • the drying temperature is 30-70 ° C, and the drying time is 5-10h.
  • the heating rate in the dry distillation roasting is 3-8 ° C / min, and the final temperature of the dry distillation roasting is 700-800 ° C. After reaching the final temperature, the temperature is kept constant for 3-5 hours.
  • the activation is water vapor activation or CO2 activation
  • the activation time is 2-4.5h
  • the activation temperature is 850-950 ° C.
  • the activation in the sixth step is water vapor activation.
  • the present invention abandons the current mainstream view that high-sulfur coal is used as an energy source, treats high-sulfur coal with a metal salt solution, couples the metal with organic sulfur that is difficult to remove in the high-sulfur coal, and produces metal sulfide carbon-based adsorption
  • the agent is used for oxidative removal of Hg0 in the atmosphere.
  • the preparation method of the mercury removal adsorbent according to the present invention is simple and highly feasible, and can simultaneously solve the two major problems of unreasonable utilization of high sulfur coal and difficult treatment of atmospheric mercury pollution.
  • the adsorbent prepared by the present invention is subjected to a mercury removal test in a fixed-bed mercury removal experimental device.
  • the results show that, under the condition of 150 ° C, the mercury removal adsorbent according to the present invention shows a good mercury removal activity in an N2-H2S atmosphere.
  • the mercury removal technology provides a new way for the clean utilization of high sulfur coal.
  • the use of sulfur in high-sulfur coal to achieve the removal of elemental mercury in the atmosphere is a good idea to treat waste with waste.
  • the invention uses high sulfur coal and metal salt to form a metal sulfide carbon-based mercury removal adsorbent, which not only opens a new way for the clean use of high sulfur coal, but also provides a new possibility for the prevention and control of atmospheric mercury pollution.
  • FIG. 1 is a preparation flow chart of the present invention.
  • High sulfur sulfur Linfen coal with a sulfur content > 3% by weight was dried in a blast oven at 80 ° C for 10 hours, and then pulverized to sieve out 40 to 60 mesh high sulfur coal particles for use.
  • the prepared prepreg was put into a tubular furnace with a programmed program for dry distillation roasting, the heating rate was set to 5 ° C / min, and the final roasting temperature was set to 750 ° C. After reaching the final temperature, constant temperature roasting was performed for 5h.
  • the roasted sample was subjected to activation treatment to obtain a porous copper-containing sulfide carbon-based mercury removal adsorbent.
  • the activation conditions are: the activation atmosphere is 40% by volume of water vapor (N2 is equilibrium gas), the activation time is 3 hours, and the activation temperature is 900 ° C.
  • the high-sulfur Linfen coal with a sulfur content of> 3% by weight was dried in a blast oven at 100 ° C for 8 hours, and then ground, and high-sulfur coal particles of 40 to 60 mesh were screened out for use.
  • the prepared prepreg was put into a tubular furnace with a programmed program for dry distillation roasting, the heating rate was set to 3 ° C / min, the final roasting temperature was set to 700 ° C, and the temperature was kept constant for 3 hours after reaching the final roasting temperature.
  • the roasted sample was subjected to activation treatment to obtain a porous copper-containing sulfide carbon-based mercury removal adsorbent.
  • the activation conditions are: the activation atmosphere is 40% by volume of water vapor (N2 is equilibrium gas), the activation time is 3 hours, and the activation temperature is 850 ° C.
  • the high-sulfur Linfen coal with a sulfur content of> 3% by weight was dried in a blast oven at 100 ° C for 10 hours, and then ground, and high-sulfur coal particles of 40 to 60 mesh were screened out for use.
  • the prepared prepreg was put into a tubular furnace with a programmed program for dry distillation roasting, the heating rate was set to 8 ° C / min, the final roasting temperature was set to 800 ° C, and the temperature was kept constant for 4 hours after reaching the final roasting temperature.
  • the roasted sample is subjected to activation treatment to obtain a porous zinc-containing sulfide carbon-based mercury removal adsorbent.
  • the activation conditions are: the activation atmosphere is 40% by volume of water vapor (N2 is the equilibrium gas), the activation time is 4.5h, and the activation temperature is 900 ° C.
  • the high-sulfur Linfen coal with a sulfur content> 3% by weight was dried in a blast oven at 80 ° C for 11 hours, and then pulverized, and high-sulfur coal particles of 40 to 60 mesh were screened out for use.
  • the prepared prepreg was put into a tube furnace with a programmed program for dry distillation roasting, the heating rate was set to 8 ° C / min, the final baking temperature was set to 750 ° C, and the temperature was kept constant for 5 hours after reaching the final temperature.
  • the roasted sample is subjected to activation treatment to obtain a porous zinc-containing sulfide carbon-based mercury removal adsorbent.
  • the activation conditions are: the activation atmosphere is 40% by volume of water vapor (N2 is equilibrium gas), the activation time is 2.5h, and the activation temperature is 950 ° C.
  • High sulfur sulfur Linfen coal with a sulfur content > 3% by weight was dried in a blast oven at 90 ° C for 8 hours, then pulverized and sieved high sulfur coal particles of 40 to 60 mesh for use.
  • the prepared prepreg was put into a tubular furnace with a programmed program for dry distillation roasting, the heating rate was set to 5 ° C / min, the final roasting temperature was set to 800 ° C, and the temperature was maintained at a constant temperature for 5 hours after the final roasting temperature was reached.
  • the roasted sample is subjected to activation treatment to obtain a porous iron-containing sulfide carbon-based mercury removal adsorbent.
  • the activation conditions are: the activation atmosphere is 40% by volume of water vapor (N2 is equilibrium gas), the activation time is 2h, and the activation temperature is 900 ° C.
  • Example 2 For comparison, a carbon-based adsorbent without metal salts was prepared under the same firing and activation conditions as in Example 1.
  • the specific preparation method is as follows: the high-sulfur Linfen coal with a sulfur content > 3% by weight is dried in a blast oven at 80 ° C. for 10 hours, and then ground, and 40 to 60 mesh high-sulfur coal particles are sieved for use.
  • the roasted sample was subjected to activation treatment to obtain a porous carbon-based mercury removal adsorbent.
  • the activation conditions are: the activation atmosphere is 40% by volume of water vapor (N2 is equilibrium gas), the activation time is 3 hours, and the activation temperature is 900 ° C.
  • the simulated gas was introduced into the reaction tube to be in contact with the demercuration sorbent.
  • the filling amount of the demercuration sorbent was 500 ⁇ 2mg, and the particle size was 0.25-0.42mm (40-60 mesh).
  • the following methods are used to evaluate the mercury removal performance of metal sulfide carbon-based adsorbents.
  • the mercury removal performance is defined by the mercury removal efficiency of zero-valent mercury. The specific definition is as follows:
  • represents the mercury removal efficiency of the adsorbent
  • n0 and n1 respectively represent the mercury concentration at the inlet of the reactor and the mercury concentration at the outlet, and their units are ⁇ g / m3 or pp.
  • Detection method A mercury adsorption experiment was performed on a fixed-bed reactor to evaluate the performance of the mercury removal adsorbent.
  • the LUMEX 915M mercury detector was used to measure the Hg0 concentration, and data was recorded every 2 minutes.
  • Table 1 shows experimental data of mercury removal from the carbon-based adsorbent prepared by adding no metal salt only by high sulfur coalification and the adsorbent prepared by Examples 1-5 of the present invention.
  • Sample numbers are 0 # ⁇ 5 # (0 # is a carbon-based adsorbent prepared from high-sulfur coal without metal salts, and 1 # ⁇ 5 # are the adsorbents prepared in Examples 1-5 of the present invention in order) .
  • the mercury removal adsorbent prepared by the present invention has a high mercury removal activity under a simulated gas atmosphere.
  • the mercury removal adsorbent prepared in Examples 1 and 2 is under N2.
  • -H2S atmosphere has high mercury removal activity, the initial mercury removal rate can reach more than 95%, and the average two-hour mercury removal rate can also reach more than 90%.
  • 3 #, 4 # and 5 # have not high demercuration activity, compared with the adsorbent 0 # made from raw coal without adding metal salt, the demercuration performance is also improved by 8 times and 5 times of 0 #, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)

Abstract

一种利用高硫煤制备脱汞吸附剂的方法,通过将高硫煤与金属盐溶液混合、干馏焙烧以及活化等步骤制得多孔的炭基脱汞吸附剂,该脱汞吸附剂在N 2-H 2S气氛中有很好的脱汞活性。

Description

一种利用高硫煤制备脱汞吸附剂的方法 技术领域
本发明属于高硫煤的洁净高效利用技术领域,具体涉及一种利用高硫煤制备脱汞吸附剂的方法
背景技术
从我国的基本国情出发,在可预见的未来煤炭仍将是中国最主要的一次能源,但其大幅度开采和利用已引起优质煤资源的急剧减少,激化了能源安全和环境保护之间的矛盾。我国的高硫煤资源丰富,全国统配煤矿和重点煤矿中的7.80%都是高硫煤,是一种重要的煤炭资源。但高硫煤自身的高硫特点阻碍了它的开发和利用。
高硫煤经过洗选可以脱除大部分黄铁矿和灰分,有利于提高、稳定煤质,但动力煤洗选还有待发展,而且洗煤不仅造成大量水污染,其中的细粒分散状黄铁矿和有机硫是无法通过物理方法脱除,只有通过燃烧过程中脱(固)硫或烟气脱除才能达到减少SO2排放的目的。目前国内外开发应用的烟气脱硫技术和工艺种类繁多,脱硫效率一般均可达到90%以上,燃烧过程中脱(固)硫效率亦可达到80%~90%。如果燃用含硫3%~4%的高硫煤通过上述方法实现90%脱硫效率的话,那么SO2排放量仅相当于开采和燃用含硫0.3%~0.4%的特低硫煤,即使按80%的脱硫率计算,亦相当于开采和燃用0.6%~0.8%的低硫煤。目前脱除SO2、净化烟气是利用和治理高硫煤的主要途径。
众所周知,高硫煤中的硫(尤其是有机硫)不能通过物理方法进行有效的预处理,我国的高硫煤目前仍直接用于燃烧发电,这加剧了我国的环境污染状况,比如雾霾和酸雨。曾有一段时间取缔了高硫煤,但受利益驱使,相当部分的高硫煤仍流通于市场,继续污染着我们人类生存的家园。要从根本上解决高硫煤造成的环境污染问题,必须开辟新的利用途径。
另外,在环保要求日益严格的今天,汞污染问题日益突出,逐渐引起了全球各国的密切关注。美国环保局的调查结果显示,大气中约31%的汞源于燃煤电厂,是最大的排放源。作为一个煤炭大国,我国每年大约消耗20亿吨煤炭,其中约70%直接用于发电。因此,防治大气汞污染的一个关键措施就是严格控制燃煤电厂的汞排放。
大气中的汞主要以颗粒汞(HgP)、气态二价汞(Hg2+)和元素汞(Hg0)3种形式存在。针对汞的特点及大气汞污染现状,研究人员开发了多种防治大气汞污染的有效技术,主要包括除尘设备脱汞技术、吸附剂脱汞技术、催化氧化技术以及其它一些脱汞技 术。其中,颗粒态汞可以用除尘设施进行收集;根据易溶于水且易附着在颗粒物上的特点,气态二价汞也可用常规的污染物控制设备(如湿式烟气脱硫装置、静电除尘器(ESP)、惯性除尘器及布袋除尘器等)进行收集和脱除;然而元素汞难溶于水且极易挥发,目前的污染物控制设备不能对其进行有效的处理。但如果能将元素汞氧化为二价汞离子,则元素汞的脱除问题也将迎刃而解。就脱汞技术而言,除尘设备脱汞技术(包括布袋除尘器和静电除尘器)已接近顶峰,基本没有改进的空间;吸附剂脱汞技术(包括活性炭、飞灰、钙基吸附剂和矿物类吸附剂)的研究空间也不太大,研究学者在这方面的工作主要集中在改性研究上。汞催化氧化技术是新兴的一种单质汞脱除技术,对烟气汞的排放控制有着十分重要的意义。该技术旨在将元素汞氧化为二价汞,从而解决元素汞难以脱除的难题,但目前对于该脱汞技术的研究还处于初期探索阶段,脱汞机理还不甚明确,故该技术在大气汞污染防治方面有十分重要的研究意义和非常巨大的研究空间。
发明内容
本发明针对高硫煤利用造成的环境污染问题,以及大气汞污染防治工作中元素汞难以被现有脱汞剂脱除或脱除效率不高的技术问题,提供一种利用高硫煤制备脱汞吸附剂的方法,本发明摒弃了目前将高硫煤作为一种能源的主流观点,用金属盐溶液处理高硫煤,将金属与高硫煤中难以脱除的有机硫进行耦合,制得金属硫化物炭基吸附剂用来氧化脱除大气中的Hg0。
本发明采用如下技术方案:
一种利用高硫煤制备脱汞吸附剂的方法,包括如下步骤:
第一步,将高硫煤煤样烘干,过筛得到高硫煤颗粒;
第二步,按金属硝酸盐中的金属与高硫煤颗粒中的硫的摩尔比小于1的比例,分别称取高硫煤颗粒和金属硝酸盐;
第三步,将称取的金属硝酸盐与乙醇混合配制金属盐乙醇溶液,其中,乙醇与高硫煤颗粒的体积质量比为0.5-1mL/1g;
第四步,将称取的高硫煤颗粒倒入第三步配制的金属盐乙醇溶液中,经过超声震荡混合均匀且乙醇挥发至不再渗出后,干燥,得到预浸料;
第五步,将第四步得到的预浸料放入管式炉中进行干馏焙烧,得到含金属硫化物的吸附剂前体;
第六步,将第五步得到的含金属硫化物的吸附剂前体活化处理,得到多孔的金属硫化物炭基脱汞吸附剂。
第一步中所述高硫煤煤样的烘干温度为80-100℃,烘干时间为8-11h,过筛得到40-60目的高硫煤颗粒。
第二步中所述金属硝酸盐为Cu、Zn和Fe中的一种或多种的硝酸盐。
优选地,第三步中乙醇与高硫煤颗粒的体积质量比为0.7mL/1g。
第四步中干燥温度为30-70℃,干燥时间为5-10h。
第五步中干馏焙烧中的升温速率为3-8℃/min,干馏焙烧最终温度为700-800℃,达到最终温度后,恒温3-5h。
第六步中活化为水蒸气活化或CO2活化,活化时间为2-4.5h,活化温度为850-950℃。
优选地,第六步中活化为水蒸气活化。
本发明的有益效果如下:
本发明摒弃了目前将高硫煤作为一种能源的主流观点,用金属盐溶液处理高硫煤,将金属与高硫煤中难以脱除的有机硫进行耦合,制得金属硫化物炭基吸附剂用来氧化脱除大气中的Hg0。
(1)本发明所述脱汞吸附剂的制备方法简单、可行性高,而且能同时解决高硫煤无法合理利用和大气汞污染难以治理两大难题。
(2)在本发明的实施例中,在固定床脱汞实验装置中对本发明制得的吸附剂进行脱汞试验。结果显示:在150℃条件下,本发明所述脱汞吸附剂在N2-H2S气氛中显示出良好的脱汞活性。
(3)该脱汞技术为高硫煤的清洁利用提供了新的途径。本发明中利用高硫煤中的硫实现对大气中的单质汞的脱除,是一个很好的以废治废的想法。本发明利用高硫煤与金属盐耦合形成金属硫化物炭基脱汞吸附剂,既为高硫煤的清洁利用开辟了新的途径,也为大气汞污染的防治提供了新的可能。
附图说明
图1为本发明制备流程图。
具体实施方式
实施例1
将含硫量>3wt%的高硫临汾煤于80℃的鼓风烘箱中烘干10h,然后磨碎,筛分出40~60目的高硫煤颗粒备用。
用天平分别称取10g筛分出的高硫煤颗粒和1.30g的Cu(NO3)2·10H2O样品。
用移液枪量取7ml的无水乙醇溶液,将称好的Cu(NO3)2·10H2O倒入无水乙醇 溶液中,于磁力搅拌器上搅拌使硝酸铜完全溶于乙醇溶液。
再将称好的高硫煤颗粒倒入盛有硝酸铜乙醇溶液的小烧杯中,放在超声震荡器中使其混合均匀且使溶剂挥发至不再渗出,最后放入45℃烘箱中干燥8小时得到预浸料。
将制得的预浸料放入设置好程序的管式炉中进行干馏焙烧,升温速率设为5℃/min,焙烧终温设为750℃,达到终温后恒温焙烧5h。
将焙烧后的样品进行活化处理,制得多孔的含铜硫化物炭基脱汞吸附剂。活化条件为:活化气氛为体积分数为40%的水蒸气(N2是平衡气),活化时间为3h,活化温度为900℃。
实施例2
将含硫量>3wt%的高硫临汾煤于100℃的鼓风烘箱中烘干8h,然后磨碎,筛分出40~60目的高硫煤颗粒备用。
用天平分别称取20g筛分出的高硫煤颗粒和3.86g的Cu(NO3)2·10H2O样品。
用移液枪量取15ml的无水乙醇溶液,将称好的Cu(NO3)2·10H2O倒入无水乙醇溶液中,于磁力搅拌器上搅拌使硝酸铜完全溶于乙醇溶液。
再将称好的高硫煤颗粒倒入盛有硝酸铜乙醇溶液的小烧杯中,放在超声震荡器中使其混合均匀且使溶剂挥发至不再渗出,最后放入30℃烘箱中干燥10小时得到预浸料。
将制得的预浸料放入设置好程序的管式炉中进行干馏焙烧,升温速率设为3℃/min,焙烧终温设为700℃,达到焙烧终温后恒温3h。
将焙烧后的样品进行活化处理,制得多孔的含铜硫化物炭基脱汞吸附剂。活化条件为:活化气氛为体积分数为40%的水蒸气(N2是平衡气),活化时间为3h,活化温度为850℃。
实施例3
将含硫量>3wt%的高硫临汾煤于100℃的鼓风烘箱中烘干10h,然后磨碎,筛分出40~60目的高硫煤颗粒备用。
用天平分别称取10g筛分出的高硫煤颗粒和2.40g的Zn(NO3)2·6H2O样品。
用移液枪量取8ml的无水乙醇溶液,将称好的Zn(NO3)2·6H2O倒入无水乙醇溶液中,于磁力搅拌器上磁力搅拌使硝酸锌完全溶于乙醇溶液。
再将称好的高硫煤颗粒倒入盛有硝酸锌乙醇溶液的小烧杯中,放在超声震荡器中使其混合均匀且使溶剂挥发至不再渗出,最后放入60℃烘箱中干燥8小时得到预浸料。
将制得的预浸料放入设置好程序的管式炉中进行干馏焙烧,升温速率设为8℃/min,焙烧终温设为800℃,达到焙烧终温后恒温4h。
将焙烧后的样品进行活化处理,制得多孔的含锌硫化物炭基脱汞吸附剂。活化条件为:活化气氛为体积分数为40%的水蒸气(N2是平衡气),活化时间为4.5h,活化温度为900℃。
实施例4
将含硫量>3wt%的高硫临汾煤于80℃的鼓风烘箱中烘干11h,然后磨碎,筛分出40~60目的高硫煤颗粒备用。
用天平分别称取20g筛分出的高硫煤颗粒和1.56g的Zn(NO3)2·6H2O样品。
用移液枪量取10ml的无水乙醇溶液,将称好的Zn(NO3)2·6H2O倒入无水乙醇溶液中,于磁力搅拌器上磁力搅拌使硝酸锌完全溶于乙醇溶液。
再将称好的高硫煤颗粒倒入盛有硝酸锌乙醇溶液的小烧杯中,放在超声震荡器中使其混合均匀且使溶剂挥发至不再渗出,最后放入50℃烘箱中干燥10小时得到预浸料。
将制得的预浸料放入设置好程序的管式炉中进行干馏焙烧,升温速率设为8℃/min,焙烧终温设为750℃,达到终温后恒温5h。
将焙烧后的样品进行活化处理,制得多孔的含锌硫化物炭基脱汞吸附剂。活化条件为:活化气氛为体积分数为40%的水蒸气(N2是平衡气),活化时间为2.5h,活化温度为950℃。
实施例5
将含硫量>3wt%的高硫临汾煤于90℃的鼓风烘箱中烘干8h,然后磨碎,筛分出40~60目的高硫煤颗粒备用。
用天平分别称取10g筛分出的高硫煤颗粒和1.41g的Fe(NO3)3·9H2O样品。
用移液枪量取10ml的无水乙醇溶液,将称好的Fe(NO3)3·9H2O倒入无水乙醇溶液中,于磁力搅拌器上磁力搅拌使硝酸铁完全溶于乙醇溶液。
再将称好的高硫煤颗粒倒入盛有硝酸铁乙醇溶液的小烧杯中,放在超声震荡器中使其混合均匀且使溶剂挥发至不再渗出,最后放入70℃烘箱中干燥5小时得到预浸料。
将制得的预浸料放入设置好程序的管式炉中进行干馏焙烧,升温速率设为5℃/min,焙烧终温设为800℃,达到焙烧终温后恒温5h。
将焙烧后的样品进行活化处理,制得多孔的含铁硫化物炭基脱汞吸附剂。活化条件为:活化气氛为体积分数为40%的水蒸气(N2是平衡气),活化时间为2h,活化温度为900℃。
对比例1
为了进行对比,在与实施例1相同的焙烧和活化条件下制备不加金属盐的炭基吸附剂。具体制备方法如下:将含硫量>3wt%的高硫临汾煤于80℃的鼓风烘箱中烘干10h,然后磨碎,筛分出40~60目的高硫煤颗粒备用。
用天平分别称取10g筛分出的高硫煤颗粒放入设置好程序的管式炉中进行干馏焙烧,升温速率设为5℃/min,焙烧终温设为750℃,达到终温后恒温焙烧5h。
将焙烧后的样品进行活化处理,制得多孔炭基脱汞吸附剂。活化条件为:活化气氛为体积分数为40%的水蒸气(N2是平衡气),活化时间为3h,活化温度为900℃。
实施例6
将对比例1制得的不加金属盐仅通过高硫煤炭化制得的炭基吸附剂和本发明实施例1,2,3,4,5制得的金属硫化物炭基脱汞吸附剂分别置于固定床脱汞实验装置中进行连续两个小时的脱汞试验,反应条件:固定床反应温度为150℃;模拟气氛是模拟煤气,由Hg0(40μg/m3)、H2S(150~200ppm)、高纯N2载气(600ml/min)组成,总气量为1L/min(平衡气使用氮气)。将模拟气体通入反应管与脱汞吸附剂接触,脱汞吸附剂的装填量为500±2mg,粒径大小为0.25~0.42mm(40~60目)。
具体步骤:取石英棉平铺在反应管中,标定空白值作为入口汞浓度值;标定完空白值后,称取500mg的吸附剂放在反应床上,待固定床反应温度稳定后切换到主路进行吸附剂脱汞性能测试。
用以下方法评价金属硫化物炭基吸附剂的脱汞性能,其脱汞性能通过对零价汞的脱汞效率来定义,具体的定义如下:
式中,η代表吸附剂的脱汞效率,n0和n1分别代表的是反应器入口汞浓度和出口汞浓度,其单位为μg/m3或pp。
检测方法:在固定床反应器上进行汞吸附实验,评价脱汞吸附剂的性能,采用LUMEX915M测汞仪来测量Hg0的浓度,每2min记录一个数据。
表1中给出了对比例1制备的不加金属盐仅通过高硫煤炭化制得的炭基吸附剂和本发明实施例1-5制备的吸附剂的脱汞实验数据。样品编号为0#~5#(0#为不加金属盐时由高硫煤炭化制得的炭基吸附剂,1#~5#依次为本发明实施例1-5制得的吸附剂)。
表1各实施例及不添加金属盐制得的吸附剂的脱汞率
吸附剂编号 起始脱汞率/% 平均脱汞率/%
0# 4.63 8.60
1# 95.01 93.90
2# 98.00 99.80
3# 80.37 68.06
4# 59.70 43.45
5# 28.20 24.16
实验结果:在150℃的温度条件下,本发明所制得的脱汞吸附剂在模拟煤气气氛下有较高的脱汞活性,其中实施例1和实施例2制备的脱汞吸附剂在N2-H2S气氛中脱汞活性很高,起始脱汞率能达到95%以上,两小时的平均脱汞率也可达到90%以上。虽然3#、4#和5#的脱汞活性没有很高,但与不添加金属盐的原煤制得的吸附剂0#相比,脱汞性能也分别提高为0#的8倍,5倍和3倍,相信通过调变所用金属盐种类或比例,调整制备条件可以制备出脱汞性能更为优异的吸附剂。这表明本发明制得的炭基脱汞吸附剂在含H2S气氛下有较好的脱汞效果,意味着利用高硫煤制备金属硫化物炭基吸附剂是可行的,在煤气脱汞方面具有巨大的工业应用前景。

Claims (8)

  1. 一种利用高硫煤制备脱汞吸附剂的方法,其特征在于:包括如下步骤:
    第一步,将高硫煤煤样烘干,过筛得到高硫煤颗粒;
    第二步,按金属硝酸盐中的金属与高硫煤颗粒中的硫的摩尔比小于1的比例,分别称取高硫煤颗粒和金属硝酸盐;
    第三步,将称取的金属硝酸盐与乙醇混合配制金属盐乙醇溶液,其中,乙醇与高硫煤颗粒的体积质量比为0.5-1mL/1g;
    第四步,将称取的高硫煤颗粒倒入第三步配制的金属盐乙醇溶液中,经过超声震荡混合均匀且乙醇挥发至不再渗出后,干燥,得到预浸料;
    第五步,将第四步得到的预浸料放入管式炉中进行干馏焙烧,得到含金属硫化物的吸附剂前体;
    第六步,将第五步得到的含金属硫化物的吸附剂前体活化处理,得到多孔的金属硫化物炭基脱汞吸附剂。
  2. 根据权利要求1所述的一种利用高硫煤制备脱汞吸附剂的方法,其特征在于:第一步中所述高硫煤煤样的烘干温度为80-100℃,烘干时间为8-11h,过筛得到40-60目的高硫煤颗粒。
  3. 根据权利要求1所述的一种利用高硫煤制备脱汞吸附剂的方法,其特征在于:第二步中所述金属硝酸盐为Cu、Zn和Fe中的一种或多种的硝酸盐。
  4. 根据权利要求1所述的一种利用高硫煤制备脱汞吸附剂的方法,其特征在于:第三步中乙醇与高硫煤颗粒的体积质量比为0.7mL/1g。
  5. 根据权利要求1所述的一种利用高硫煤制备脱汞吸附剂的方法,其特征在于:第四步中干燥温度为30-70℃,干燥时间为5-10h。
  6. 根据权利要求1所述的一种利用高硫煤制备脱汞吸附剂的方法,其特征在于:第五步中干馏焙烧中的升温速率为3-8℃/min,干馏焙烧最终温度为700-800℃,达到最终温度后,恒温3-5h。
  7. 根据权利要求1所述的一种利用高硫煤制备脱汞吸附剂的方法,其特征在于:第六步中活化为水蒸气活化或CO2活化,活化时间为2-4.5h,活化温度为850-950℃。
  8. 根据权利要求7所述的一种利用高硫煤制备脱汞吸附剂的方法,其特征在于:第六步中活化为水蒸气活化。
PCT/CN2019/086818 2018-09-14 2019-05-14 一种利用高硫煤制备脱汞吸附剂的方法 WO2020052251A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811072656.9 2018-09-14
CN201811072656.9A CN109126698A (zh) 2018-09-14 2018-09-14 一种利用高硫煤制备脱汞吸附剂的方法

Publications (1)

Publication Number Publication Date
WO2020052251A1 true WO2020052251A1 (zh) 2020-03-19

Family

ID=64825248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086818 WO2020052251A1 (zh) 2018-09-14 2019-05-14 一种利用高硫煤制备脱汞吸附剂的方法

Country Status (2)

Country Link
CN (1) CN109126698A (zh)
WO (1) WO2020052251A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109126698A (zh) * 2018-09-14 2019-01-04 太原理工大学 一种利用高硫煤制备脱汞吸附剂的方法
CN114570341B (zh) * 2022-01-20 2023-09-08 河南理工大学 一种高硫煤的用途及利用其焙烧产物回收Au(S2O3)23-的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4708853A (en) * 1983-11-03 1987-11-24 Calgon Carbon Corporation Mercury adsorbent carbon molecular sieves and process for removing mercury vapor from gas streams
CN101687173A (zh) * 2007-05-14 2010-03-31 康宁股份有限公司 包含活性炭的吸附体、其制备方法及其应用
CN103608086A (zh) * 2011-03-25 2014-02-26 阿尔比马尔公司 将烟气汞隔离于混凝土中的组合物和方法
CN107999024A (zh) * 2017-12-13 2018-05-08 江西理工大学 一种高效抗硫铜基脱汞吸附剂的制备方法及其应用
CN109126698A (zh) * 2018-09-14 2019-01-04 太原理工大学 一种利用高硫煤制备脱汞吸附剂的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4708853A (en) * 1983-11-03 1987-11-24 Calgon Carbon Corporation Mercury adsorbent carbon molecular sieves and process for removing mercury vapor from gas streams
CN101687173A (zh) * 2007-05-14 2010-03-31 康宁股份有限公司 包含活性炭的吸附体、其制备方法及其应用
CN103608086A (zh) * 2011-03-25 2014-02-26 阿尔比马尔公司 将烟气汞隔离于混凝土中的组合物和方法
CN107999024A (zh) * 2017-12-13 2018-05-08 江西理工大学 一种高效抗硫铜基脱汞吸附剂的制备方法及其应用
CN109126698A (zh) * 2018-09-14 2019-01-04 太原理工大学 一种利用高硫煤制备脱汞吸附剂的方法

Also Published As

Publication number Publication date
CN109126698A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
Li et al. Sulfur abundant S/FeS2 for efficient removal of mercury from coal-fired power plants
CN109499533B (zh) 一种炭基载硫含铁脱汞吸附剂的制备方法
Shan et al. Preparation of microwave-activated magnetic bio-char adsorbent and study on removal of elemental mercury from flue gas
Yang et al. Development of selenized magnetite (Fe3O4− xSey) as an efficient and recyclable trap for elemental mercury sequestration from coal combustion flue gas
CA2557695C (en) Sorbent for removal of trace hazardous air pollutants from combustion flue gas and preparation method thereof
CN109012091B (zh) 一种协同脱除烟气中Hg0和废液中Hg2+的方法
Yang et al. Recyclable chalcopyrite sorbent for mercury removal from coal combustion flue gas
CN103285711B (zh) 一种净化回收尾气中汞的方法
CN104307539B (zh) 用于燃煤烟气中单质汞氧化的催化剂、其制备及再生方法
CN111330427A (zh) 一种金属硫化物脱汞剂在洗涤脱除烟气中汞方面的应用
Liu et al. Review on adsorbents in elemental mercury removal in coal combustion flue gas, smelting flue gas and natural gas
WO2020052251A1 (zh) 一种利用高硫煤制备脱汞吸附剂的方法
CN108579666B (zh) 一种利用废白土制备脱砷吸附剂的方法
CN107601570B (zh) 一种可再生循环利用的汞吸附剂及其制备与再生方法
CN104437377A (zh) 一种烟气脱汞吸附剂再生方法
CN110755999B (zh) 一种全流程流态化活性焦脱汞回收工艺及系统
CN110201637A (zh) 一种用于天然气中有机硫化物脱除吸附剂的制备方法
CN114100576B (zh) 一种二硫化钴/炭复合材料及其制备方法和应用
CN106732347B (zh) 一种用于燃煤电厂烟气脱汞sba-15基载银吸附剂的制备方法
CN111282540B (zh) 用于烟气脱汞的可再生抗硫型Fe-Mn-Ce磁性吸附剂的制备工艺
CN104874344A (zh) 一种烟气吸附剂的制备方法
CN106693882B (zh) 一种燃煤电厂烟气脱汞吸附剂及其制备方法
US20230068024A1 (en) Preparation method of mercury removal material
Meng et al. Mechanochemical activation of natural metal sulfide minerals for Vapor-Phase mercury immobilization
CN113769701B (zh) 一种磁性可再生脱汞剂的制备方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19859700

Country of ref document: EP

Kind code of ref document: A1