WO2020052231A1 - 射频消融导管、肺部射频消融系统、以及相应的控制方法、控制装置和计算机可读存储介质 - Google Patents

射频消融导管、肺部射频消融系统、以及相应的控制方法、控制装置和计算机可读存储介质 Download PDF

Info

Publication number
WO2020052231A1
WO2020052231A1 PCT/CN2019/082546 CN2019082546W WO2020052231A1 WO 2020052231 A1 WO2020052231 A1 WO 2020052231A1 CN 2019082546 W CN2019082546 W CN 2019082546W WO 2020052231 A1 WO2020052231 A1 WO 2020052231A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
ablation catheter
radio frequency
ablation
temperature
Prior art date
Application number
PCT/CN2019/082546
Other languages
English (en)
French (fr)
Inventor
徐宏
周华珍
王礼明
江松
苏晨晖
Original Assignee
杭州堃博生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州堃博生物科技有限公司 filed Critical 杭州堃博生物科技有限公司
Priority to EP19861079.2A priority Critical patent/EP3851060B1/en
Priority to JP2021538876A priority patent/JP7265014B2/ja
Priority to KR1020217011038A priority patent/KR102631318B1/ko
Publication of WO2020052231A1 publication Critical patent/WO2020052231A1/zh
Priority to US17/202,232 priority patent/US20210196374A1/en
Priority to JP2023065505A priority patent/JP7416998B2/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B18/1233Generators therefor with circuits for assuring patient safety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00029Cooling or heating of the probe or tissue immediately surrounding the probe with fluids open
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00059Material properties
    • A61B2018/00065Material properties porous
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00107Coatings on the energy applicator
    • A61B2018/00142Coatings on the energy applicator lubricating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00541Lung or bronchi
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00589Coagulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • A61B2018/00648Sensing and controlling the application of energy with feedback, i.e. closed loop control using more than one sensed parameter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00666Sensing and controlling the application of energy using a threshold value
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • A61B2018/00708Power or energy switching the power on or off
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00714Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00744Fluid flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00755Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • A61B2018/00797Temperature measured by multiple temperature sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • A61B2018/00815Temperature measured by a thermistor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00898Alarms or notifications created in response to an abnormal condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2218/00Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2218/001Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
    • A61B2218/002Irrigation

Definitions

  • the present application relates to the field of minimally invasive tumor ablation treatment, in particular to a radiofrequency ablation catheter, a radiofrequency ablation system and method for the lung.
  • Lung cancer is one of the most common malignancies. In clinical treatment, surgical removal is still the first choice for early lung cancer. However, for patients with lung cancer who are older, weaker, have poor cardiopulmonary function, or have complications, they are not suitable or intolerable for conventional surgical resection. Therefore, many local treatment methods such as minimally invasive tumor ablation have emerged. Lung tumor minimally invasive ablation includes radio frequency ablation (RFA), cryoablation, microwave ablation, etc., of which only radio frequency ablation is included in the National Comprehensive Cancer Network Non-Small Cell Lung Cancer Clinical Guidelines.
  • RFID radio frequency ablation
  • cryoablation cryoablation
  • microwave ablation etc.
  • radio frequency ablation is to use alternating high-frequency currents with a frequency of less than 30 MHz (usually 460-480 kHz) to cause high-speed oscillations of ions in the tumor tissue and friction with each other, transforming radio frequency energy into thermal energy, causing coagulative necrosis of tumor cells.
  • the instrument used is a radiofrequency ablation catheter, and the electrodes at the distal end of the radiofrequency ablation catheter can transmit radiofrequency energy to the cell tissue around the punctured site.
  • a radiofrequency ablation catheter is an electrode for radiofrequency energy output. It is connected to a radiofrequency generator. It is percutaneously guided under ultrasound or CT guidance and penetrates into the target tumor through the puncture point.
  • the neutral electrode plate is also connected to the RF generator, which is attached to a suitable part of the patient's body.
  • the radio frequency ablation catheter communicates with the neutral electrode plate, and high frequency current acts on the human tissue between the two, so that the electrode at the far end of the radio frequency ablation catheter contacts. Tumor cells coagulate, degenerate, and die.
  • the purpose of this application is to provide a radio frequency ablation catheter, whose electrodes can perfuse heat exchange medium into the ablation tissue, and can form a heat exchange medium protective film on the periphery of the electrode, thereby improving ablation
  • the electrical and thermal conductivity of the tissue maintains the impedance balance and maintains the impedance in a relatively stable state, so that RF energy can be continuously output.
  • a radio frequency ablation catheter of the present application includes an electrode, the electrode is provided with a heat exchange medium flow path, an equalization device is provided on the electrode, and the equalization device is provided with an infiltration hole communicating with the heat exchange medium flow path.
  • the heat exchange medium output from the heat exchange medium flow channel is distributed and flows out through the equalization device.
  • the equalization device is separated from the electrode, and the equalization device is fixedly or movably mounted on the electrode;
  • the distal end portion of the electrode extends at equal diameters or converges, and the shape converges gradually or convergently.
  • the equalization device and the electrode are an integrated structure
  • the infiltration hole is opened at the outer wall of the electrode
  • the distal end of the electrode is a tip
  • the equalization device is separated from the electrode, and an outer wall of the electrode is provided with an outflow hole communicating with the heat transfer medium flow channel.
  • the equalization device is installed in the An infiltration cover on the electrode and on the periphery of the outflow hole, the infiltration hole is opened on the infiltration cover, and the heat exchange medium output by the outflow hole is distributed and flows out through the infiltration cover.
  • the heat exchange medium flow channel is a cavity located inside the electrode, and the heat exchange medium flows out through an opening in the cavity wall.
  • the heat exchange medium flow passage includes a main flow passage and a plurality of branch flow passages communicating with the main flow passage, and the ends of each branch flow passage extend to the outer surface of the electrode.
  • At least one set of the branch flow channels is arranged along the extending direction of the main flow channel, and at least two branch flow channels of the same group are distributed radially around the main flow channel.
  • the branch flow channels in the same group are evenly distributed in the circumferential direction.
  • the number of branch flow channels in adjacent groups is the same or different, and the circumferential positions are aligned or misaligned.
  • a plurality of branch flow channels are sequentially arranged along the extending direction of the main flow channel, and are spirally distributed around the outer periphery of the main flow channel.
  • the infiltration cover is fixed on the electrode, is rotatably mounted on the electrode about the axis of the electrode, or is slidably mounted on the electrode along the axis of the electrode.
  • the radio frequency ablation catheter is further provided with a driving component connected to the infiltration cover for driving relative movement between the infiltration cover and the electrode.
  • one of the infiltration hoods is installed on the electrode, or a plurality of the infiltration hoods are installed.
  • a plurality of the infiltration hoods are installed on the electrode, and each of the infiltration hoods independently moves relative to the electrode or at least two infiltration hoods are linked with each other.
  • the infiltration cover is sheet-shaped and covers only a partial area of the outer periphery of the electrode in the circumferential direction;
  • the infiltration cover is a cylindrical structure closed in the circumferential direction, and is sleeved on the outer periphery of the electrode.
  • the infiltration cover only wraps the proximal part of the electrode
  • the infiltration cover is a cap-shaped structure, and the distal end of the cap-shaped structure is closed to wrap the distal end of the infiltration cover.
  • the infiltration cover is fixed on the electrode, a positioning step is provided on an outer periphery of the electrode, and a distal end of the infiltration cover is in a position to limit the positioning step.
  • the outer wall of the infiltration cover and the electrode are exposed at the same height as the outer wall of the infiltration cover.
  • At least a part of the infiltration cover is an infiltration area in which infiltration holes are distributed, and a part of the electrode where the outflow hole is opened corresponds to the infiltration area and is left between the wall of the infiltration area There is a gap.
  • the infiltration hole and the outflow hole are arranged offset.
  • the electrode is provided with a settlement zone on the outer wall, the outflow hole is provided in the settlement zone, the infiltration zone is located on the periphery of the settlement zone, and the inner wall of the infiltration cover and the surface of the settlement zone are left The gap.
  • the outflow hole is flared, and the flared area is used as the settlement area; the gap between the inner wall of the infiltration cover and the surface of the settlement area decreases as the distance from the outflow hole increases.
  • the gap between the inner wall of the infiltration cover and the surface of the subsidence zone increases as the distance from the outflow hole increases.
  • the settling area is one or a plurality of isolated ones, and an outflow hole is provided in the same settling area.
  • the gap between the inner wall of the infiltration cover and the surface of the settling area follows the outflow hole in the settling area The distance increases.
  • the settling area is a distribution groove extending along the electrode axis, and the outflow holes are divided into several groups in the electrode circumferential direction, and each group corresponds to the same distribution groove.
  • the distribution grooves are 2 to 10 uniformly arranged in the circumferential direction.
  • one outflow hole is opened at the bottom of the same distribution groove, and the depth of the distribution groove increases as the distance from the outflow hole increases.
  • a plurality of groups of infiltration holes are distributed along the circumferential direction on the infiltration cover, and each group of infiltration holes corresponds to a position of one of the distribution grooves.
  • the groove walls of the adjacent distribution grooves form raised ribs supporting the inner wall of the infiltration cover, and the tops of the raised ribs are in abutment with corresponding portions of the inner wall of the infiltration cover and have matching shapes.
  • the infiltration cover adopts a porous material, and a void of the porous material itself is used as the infiltration hole;
  • the wetting cover adopts a woven structure, and the gap of the woven structure itself is used as the infiltration hole;
  • the infiltration cover is a metal shell, and the infiltration hole is formed on the shell wall of the metal shell.
  • the pore diameters of all the infiltration holes are the same, or they are set correspondingly according to the heat exchange medium flow balance.
  • the distribution density of all the infiltration holes in different parts of the equalization device is the same, or correspondingly set according to the flow rate of the heat exchange medium.
  • the pore diameter of the infiltration hole increases as the distance from the outflow hole increases.
  • the infiltration holes are distributed in multiple groups in the circumferential direction of the infiltration mask.
  • the infiltration holes of the same group are sequentially arranged according to their respective extension paths, and the extension paths are straight lines, polylines or curves.
  • each set of infiltration holes corresponds to one outflow hole.
  • the infiltration cover is provided with a development logo.
  • the radio frequency ablation catheter further includes an electromagnetic navigation component capable of indicating the position of the electrode.
  • the electrode is connected with a pull wire extending proximally to drive the electrode to deflect.
  • a sheath is connected to the proximal end of the electrode, and the pull wire extends from the inside of the sheath to the proximal end to the outside of the sheath;
  • a proximal end of the electrode is provided with a connection tube that communicates with the heat exchange medium flow channel, and the connection tube extends to the inside of the sheath tube.
  • a mounting hole is provided on the electrode, and a distal end of the pull wire extends into and is fixed to the mounting hole.
  • the radiofrequency ablation catheter further includes a first pull-bend component and a second pull-bend component that can be relatively close to or away from each other, a sheath is fixed to the first pull-bend component, and the pull-wire is fixed to all The second pull-bend assembly is described.
  • first pull-bend component and the second pull-bend component are arranged in a nested sliding manner or a side-by-side sliding arrangement.
  • first stretch bending component and the second stretch bending component are both tubular, and the second stretch bending component slides into the first stretch bending component.
  • At least a part of the second pull-bend component is embedded in the first pull-bend component, and there are further defined two between the first pull-bend component and the second pull-bend component. A guide to the direction of movement.
  • the guide device includes a chute provided on either of the first pull-bend component and the second pull-bend component and a limit screw provided on the other.
  • a portion of the second pull-bend component embedded in the first pull-bend component is provided for increasing friction between the first pull-bend component and the second pull-bend component. O-ring.
  • a scale line is provided on the second pull-bend component to indicate a relative position with the first pull-bend component.
  • a plurality of temperature detection devices are sequentially arranged along the axial direction on the radio frequency ablation catheter adjacent to the distal end portion.
  • the temperature detection device includes a first temperature detection device, a second temperature detection device, and a third temperature detection device which are arranged at intervals from the distal end to the proximal end.
  • the temperature detection device includes a temperature sensor and a thermally conductive ring, the temperature sensor is connected to an ablation apparatus, the thermally conductive ring is disposed on an outer wall of a radio frequency ablation catheter, and the temperature sensor and the thermally conductive ring are thermally heated. coupling.
  • the temperature sensor is fixed on an outer wall of the thermally conductive ring, and the fixing method is selected from at least one of bonding, welding, riveting, and interference fit.
  • the temperature sensor is a thermistor
  • the thermistor is electrically connected to the ablation apparatus through a thermistor wire
  • a thermistor sleeve is sleeved on the thermistor wire.
  • the temperature sensor is connected to the ablation apparatus through a wireless communication device.
  • an outer wall of the radiofrequency ablation catheter is provided with an embedded groove
  • the temperature detection device is fixed in a corresponding embedded groove
  • a through hole is provided at the bottom of the embedded groove for passing a circuit wire.
  • the recessed groove is ring-shaped, and the temperature detection device is fixed around the corresponding recessed groove.
  • the fixing manner between the temperature detection device and the recessed groove is selected from the group consisting of bonding, welding, At least one of riveting and interference fit.
  • the thermally conductive ring has a ring structure, and the thermally conductive ring is disposed in the embedding groove.
  • the temperature detecting device has a ring-shaped structure, and the heat-conducting ring and the temperature sensor have a circumferential shape complementary to form the ring-shaped structure.
  • a sink is provided on the heat conducting ring, and the temperature sensor is fixed in the sink.
  • the fixing method between the temperature sensor and the sink is selected from bonding, welding, riveting, At least one of interference fits.
  • an outer surface of the temperature detection device and a peripheral portion are flush with each other.
  • the axial position of the at least one temperature detection device is adjustable.
  • a cooperating guide structure is provided between the radio frequency ablation catheter and the temperature detection device.
  • a traction cable is connected to the temperature detection device with adjustable axial position, and the temperature detection device is driven by the traction cable to change the axial position relative to the electrode.
  • the traction cord penetrates the inside of the radio frequency ablation catheter from the connected temperature detection device, and extends proximally through the inside of the radio frequency ablation catheter.
  • the radio frequency ablation catheter further includes a first adjustment component and a second adjustment component capable of relative movement, wherein the electrode is relatively fixed to the first adjustment component, and the traction cable is connected to the second adjustment component.
  • An adjustment component, the temperature adjustment device connected to the traction rope drive changes the axial position of the relative electrode when the first adjustment component and the second adjustment component move relative to each other.
  • the first adjustment component and the second adjustment component slide fit or rotate fit.
  • a distal end of the electrode is provided with a temperature detection probe.
  • a pressure sensor for detecting a change in the contact pressure between the electrode and the ablation tissue is further provided in the electrode 1.
  • an equalization device is provided on the electrode.
  • the equalization device can flow out the heat exchange medium, and fill the heat exchange medium between the electrode surface and the infiltrated tissue, thereby reducing the impedance in the circuit.
  • the impedance balance is maintained, and the ablation is continued until the ablation conducts a large enough volume to produce a larger and more effective coagulation necrosis.
  • the heat exchange medium can also reduce the crusts at the contact between the electrode and the ablation tissue and cause adhesion.
  • the heat exchange medium forms a protective film on the outside of the electrode, so that the electrode is just infiltrated, the impedance balance can be maintained with the minimum amount of heat exchange medium, and the excess heat exchange medium is prevented from remaining in the lungs.
  • This application also provides a radio frequency ablation method, including:
  • Step S100 Obtain a temperature parameter during the ablation process
  • Step S110 Compare the temperature parameter with a temperature threshold.
  • Step S120 When the temperature parameter and the temperature threshold meet a set relationship, send an ablation stop instruction.
  • the radio frequency ablation method of the present application is mainly directed to the temperature change during the ablation process, so it can also be regarded as a temperature monitoring method for radio frequency ablation.
  • a method for temperature monitoring of radiofrequency ablation including:
  • Step S100 Obtain a temperature parameter during the ablation process
  • Step S110 Compare the temperature parameter with a temperature threshold.
  • Step S120 When the temperature parameter and the temperature threshold meet a set relationship, send an ablation stop instruction.
  • This application also provides a method for controlling radio frequency ablation, including:
  • Step S100 Obtain a temperature parameter during the ablation process
  • Step S110 Compare the temperature parameter with a temperature threshold.
  • Step S120 When the temperature parameter and the temperature threshold meet a set relationship, send an ablation stop instruction.
  • the temperature parameter includes an edge temperature parameter, and the distance between the detection site corresponding to the edge temperature parameter and the distal end of the electrode is L; and L0 ⁇ L is satisfied, where L0 is the predicted lesion Site radius
  • the setting relationship includes that an edge temperature parameter reaches the temperature threshold and maintains a preset time interval.
  • the temperature parameter further includes a first temperature parameter, and a distance between a detection site corresponding to the first temperature parameter and a distal end of the electrode is L1; and L1 ⁇ L0 is satisfied, where L0 is Predicted lesion site radius.
  • the setting relationship further includes that the first temperature parameter reaches 60-100 degrees.
  • the edge temperature parameter includes a third temperature parameter, and the distance between the detection site corresponding to the third temperature parameter and the distal end of the electrode is L3; and L0 ⁇ L3 is satisfied, where L0 is Predicted lesion site radius.
  • the setting relationship includes that the third temperature parameter reaches the temperature threshold and maintains a preset time interval; the temperature threshold is 43-60 ° C, and the time interval is not less than 3 minutes .
  • the setting relationship further includes that the second temperature parameter reaches 60-90 degrees.
  • the temperature parameter further includes a remote temperature parameter, and a detection site corresponding to the remote temperature parameter is a distal end of the electrode.
  • the setting relationship further includes that the remote temperature parameter reaches 60-100 degrees.
  • the temperature parameters include:
  • a remote temperature parameter, the detection site corresponding to the remote temperature parameter is the distal end of the electrode
  • a first temperature parameter, and a distance between a detection site corresponding to the first temperature parameter and a distal end of the electrode is L1;
  • a second temperature parameter, the distance between the detection site corresponding to the second temperature parameter and the distal end of the electrode is L2;
  • a third temperature parameter, the distance between the detection site corresponding to the third temperature parameter and the distal end of the electrode is L3;
  • L1 ⁇ L0 L2 ⁇ L3, where L0 is the predicted radius of the lesion site.
  • the method further includes visualizing the temperature distribution around the electrode according to the temperature parameter during the ablation process.
  • the radio frequency ablation catheter described in this application is used during radio frequency ablation, and each temperature parameter is collected from a corresponding temperature detection device (the remote temperature parameter is from the temperature detection probe).
  • This application also provides a radio frequency ablation device, including:
  • a third module is configured to send a stop ablation instruction when the temperature parameter and the temperature threshold value meet a set relationship.
  • the present application also provides a radio frequency ablation control device, including:
  • a third module is configured to send a stop ablation instruction when the temperature parameter and the temperature threshold value meet a set relationship.
  • the application also provides a radio frequency ablation temperature monitoring device, including:
  • a third module is configured to send a stop ablation instruction when the temperature parameter and the temperature threshold value meet a set relationship.
  • the present application also provides a radio frequency ablation device, which includes a memory and a processor.
  • the memory stores a computer program
  • the processor implements the steps of the radio frequency ablation method when the processor executes the computer program.
  • the present application also provides a radio frequency ablation control device, which includes a memory and a processor.
  • the memory stores a computer program
  • the processor implements the steps of the radio frequency ablation control method when the processor executes the computer program.
  • the present application further provides a radio frequency ablation device, which includes a memory and a processor.
  • the memory stores a computer program
  • the processor executes the computer program to implement the steps of the radio frequency ablation temperature monitoring method.
  • the present application also provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps of the radio frequency ablation method are implemented.
  • the present application also provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps of the radio frequency ablation control method are implemented.
  • the present application also provides a computer-readable storage medium on which a computer program is stored, and the computer program is executed by a processor to implement the steps of the radio frequency ablation temperature monitoring method.
  • This application also provides a radiofrequency ablation system for the lungs, including:
  • a heat exchange medium delivery device for providing a heat exchange medium to an electrode peripheral part of the radio frequency ablation catheter
  • the control module of the heat transfer medium delivery device is driven accordingly according to the impedance information of the circuit in which the electrode is located in the radio frequency ablation catheter.
  • the electrode drive signal is maintained during the ablation process.
  • the lung radiofrequency ablation system further includes a temperature detection device that collects temperature information of the peripheral part of the electrode, and the control module is further configured to prompt or control the ablation process according to the temperature information.
  • the temperature detection device is one or more, and the position of the at least one temperature detection device is 0.5 to 3 cm from the electrode.
  • control module drives the heat exchange medium conveying device to adjust a heat exchange medium flow rate.
  • control module compares the impedance information with a threshold value, and makes the impedance information approach a steady state impedance by adjusting the flow of the heat exchange medium.
  • the method further includes pre-calibrating a steady-state impedance, and calculating the threshold according to the steady-state impedance.
  • the steady-state impedance is calibrated in such a manner that after the RF ablation catheter is in place in the body and before the electrode is powered, the heat exchange medium is output at the initial flow rate, and the impedance information is collected in real time. After the impedance information is stable, The corresponding value is recorded as the steady-state impedance.
  • the threshold value is in a range of values.
  • the control module also collects impedance information in real time and judges the change trend of the impedance information, and changes the heat exchange medium flow rate according to the change trend of the resistance information. Or select one of the upper threshold and lower threshold.
  • the application also provides a method for radiofrequency ablation of lungs, including:
  • Step S500 Receive impedance information collected from an electrode loop during ablation
  • step S510 a corresponding control instruction is generated according to the impedance information, so as to adjust the flow rate of the heat exchange medium at the periphery of the electrode.
  • the radiofrequency ablation method of the present application is mainly directed to impedance changes during the ablation process, so it can also be regarded as an impedance monitoring method for radiofrequency ablation.
  • An impedance monitoring method for radio frequency ablation including:
  • Step S500 Receive impedance information collected from an electrode loop during ablation
  • step S510 a corresponding control instruction is generated according to the impedance information, so as to adjust the flow rate of the heat exchange medium at the periphery of the electrode.
  • the present application also provides a method for controlling radiofrequency ablation of the lung, including:
  • Step S500 Receive impedance information collected from an electrode loop during ablation
  • step S510 a corresponding control instruction is generated according to the impedance information, so as to adjust the flow rate of the heat exchange medium at the periphery of the electrode.
  • step S500 further includes pre-calibrating a steady-state impedance, and calculating a threshold according to the steady-state impedance, and the threshold is used to compare with the impedance information in step S510 to generate a corresponding control instruction.
  • the steady-state impedance is calibrated in such a manner that after the RF ablation catheter is in place in the body and before the electrode is powered, the heat exchange medium is output at the initial flow rate, and impedance information is collected in real time. The corresponding value is recorded as the steady-state impedance.
  • step S510 generating a corresponding control instruction according to the impedance information specifically includes:
  • Step S511 Compare the impedance information with a threshold, and determine the increase or decrease of the flow rate according to the relationship between the impedance information and the threshold.
  • Step S512 according to the increase or decrease of the flow rate, a corresponding control instruction is generated according to a predetermined increase or decrease range.
  • the increase and decrease ranges are each independently a fixed value or a dynamic value.
  • the threshold is a range of values.
  • step S511 when it is determined to increase the flow rate, a first control instruction is generated in step S512, and the flow rate of the heat exchange medium corresponding to the first control instruction is greater than the current flow rate;
  • step S511 when it is determined to reduce the flow rate, a second control instruction is generated in step S512, and the flow rate of the heat exchange medium corresponding to the second control instruction is less than the current flow rate.
  • step S500 and step S510 are executed cyclically according to the sampling period of the impedance information
  • the impedance information is collected and compared with the impedance information of the previous sampling cycle to determine the change trend of the impedance information before the impedance information is compared with the threshold value.
  • the change trend of the impedance information correspondingly change the adjustment range of the heat exchange medium flow rate or select one of the upper threshold value and the lower threshold value for comparison.
  • the impedance information is compared with the impedance information of the previous sampling cycle before the impedance information is compared with the threshold value to determine the impedance.
  • the impedance information of the current sampling period is compared with the lower threshold.
  • the impedance information is compared with the impedance information of the previous sampling period to determine the impedance before the impedance information is compared with the threshold value.
  • the impedance information of the current sampling period is compared with the upper threshold value.
  • the method further includes prompting or controlling the ablation process using the radio frequency ablation control method described in this application.
  • the collection point of the temperature parameter is 0.5 to 3 cm away from the electrode; after the temperature parameter reaches 43 to 60 ° C. and is maintained for a preset time, an ablation stop instruction is sent.
  • This application also provides a radiofrequency ablation device for the lungs, including:
  • An acquisition module configured to receive impedance information collected from an electrode loop during an ablation process
  • An adjustment module is configured to generate a corresponding control instruction according to the impedance information, so as to adjust the flow of the heat exchange medium at the peripheral part of the electrode.
  • the present application also provides a control device for radiofrequency ablation of lungs, including:
  • An acquisition module configured to receive impedance information collected from an electrode loop during an ablation process
  • An adjustment module is configured to generate a corresponding control instruction according to the impedance information, so as to adjust the flow of the heat exchange medium at the peripheral part of the electrode.
  • This application also provides an impedance monitoring device for pulmonary radiofrequency ablation, including:
  • An acquisition module configured to receive impedance information collected from an electrode loop during an ablation process
  • An adjustment module is configured to generate a corresponding control instruction according to the impedance information, so as to adjust the flow of the heat exchange medium at the peripheral part of the electrode.
  • the present application also provides a radiofrequency ablation device for the lung, which includes a memory and a processor.
  • the memory stores a computer program
  • the processor implements the steps of the radiofrequency ablation method of the lung when the processor executes the computer program.
  • the present application also provides a control device for radiofrequency ablation of a lung, which includes a memory and a processor.
  • a computer program is stored in the memory, and the processor implements the steps of the control method of radiofrequency ablation of the lung when the processor executes the computer program.
  • the present application also provides a control device for radiofrequency ablation of a lung, which includes a memory and a processor.
  • the memory stores a computer program
  • the processor implements the steps of the impedance monitoring method for radiofrequency ablation of the lung when the processor executes the computer program.
  • the present application also provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps of the radiofrequency ablation method of the lung are implemented.
  • the present application also provides a computer-readable storage medium on which a computer program is stored.
  • a computer program is stored on which a computer program is stored.
  • the steps of the method for controlling radiofrequency ablation of a lung are described.
  • the present application also provides a computer-readable storage medium having stored thereon a computer program, the steps of the impedance monitoring method for implementing radiofrequency ablation of the lung when the computer program is executed by a processor.
  • the present application aims to solve the problems of existing radiofrequency ablation needles for lungs that form "crusts" after drying and carbonization of tissues near the electrodes during work, thereby causing ablation to stop and incomplete ablation.
  • System and method aims to solve the problems of existing radiofrequency ablation needles for lungs that form "crusts" after drying and carbonization of tissues near the electrodes during work, thereby causing ablation to stop and incomplete ablation.
  • the lung radiofrequency ablation system includes a radio frequency signal generator, an ablation catheter, an electrode plate, a sensor module, a micro-perfusion pump, a control module, and an alarm module, wherein:
  • a radio frequency signal generator connected to the control module and the ablation catheter and configured to receive a command from the control module to generate a radio frequency signal and transmit the radio frequency signal to the ablation catheter;
  • An ablation catheter is connected to the radio frequency signal generator and the microperfusion pump, and is configured to receive radio frequency signals generated by the radio frequency signal generator and transmit the radio frequency signals to the ablation tissue, and is also used to receive the microperfusion.
  • a saline solution perfused by a pump, and a liquid outlet hole is provided on the ablation catheter for perfusion of physiological saline into the ablation tissue;
  • An electrode plate connected to the radio frequency signal generator and configured to form a loop with the electrodes in the ablation catheter via the human body;
  • a sensor module is disposed on the ablation catheter and is connected to the control module.
  • the sensor module includes an impedance sensor and a temperature sensor, and is configured to detect the impedance and temperature of the contact position between the ablation catheter and the ablation tissue and send temperature information and impedance information to the ablation catheter.
  • Control module includes an impedance sensor and a temperature sensor, and is configured to detect the impedance and temperature of the contact position between the ablation catheter and the ablation tissue and send temperature information and impedance information to the ablation catheter.
  • a micro-perfusion pump connected to the control module and the ablation catheter, and configured to receive a command from the control module to perfuse physiological saline into the ablation catheter;
  • An alarm module which is connected to the control module and configured to receive an alarm command issued by the control module and alarm;
  • a control module is connected to the radio frequency signal generator, sensor module, micro-perfusion pump, and alarm module, and is used to control the radio frequency signal generator to generate radio frequency signals, and is also used to receive impedance information and temperature detected by the sensor module. Information, and based on the impedance information, control the micro-perfusion pump to infuse physiological saline into the ablation catheter, and control the alarm module to alarm based on the temperature information.
  • This application also provides a radiofrequency ablation method of the lung, which is applied to the above-mentioned pulmonary radiofrequency ablation system.
  • the radiofrequency ablation method of the lung includes:
  • a micro-perfusion pump is controlled to infuse physiological saline into the ablation catheter, and an alarm module is controlled to alarm based on the temperature information.
  • the present application also provides a method for controlling radiofrequency ablation of lungs, which is applied to the above-mentioned pulmonary radiofrequency ablation system.
  • the method for controlling radiofrequency ablation of lungs includes:
  • a micro-perfusion pump is controlled to infuse physiological saline into the ablation catheter, and an alarm module controls an alarm based on the temperature information.
  • This application relates to a method for radiofrequency ablation of lungs, which is mainly directed to changes in impedance and temperature. Therefore, it can also be regarded as a method for monitoring impedance and temperature of radiofrequency ablation of lungs. :
  • a micro-perfusion pump is controlled to infuse physiological saline into the ablation catheter, and an alarm module is controlled to alarm based on the temperature information.
  • This application uses an impedance sensor to detect the impedance change of the ablated tissue.
  • impedance sensor detects the impedance change of the ablated tissue.
  • a sharp increase in impedance is detected, it indicates that the ablated tissue near the electrode is drying and carbonizing, and scabs will be generated.
  • Temperature increase the humidity of the tissue, and fundamentally prevent the tissue from crusting due to drying and heating; meanwhile, physiological saline can improve tissue conductivity and thermal conductivity, maintain impedance balance, and maintain impedance in a relatively stable state.
  • the combination of the two ensures that the impedance is stable within a certain range during the entire ablation process, so that the RF energy can be continuously output, thereby forming a sufficiently large ablation range, generating a larger and more effective coagulation necrosis, and avoiding tissue "crusting", It also avoids the problem of "crusted” tissue and electrodes sticking together, which can damage the surrounding organs when the device is pulled out.
  • FIG. 1 is an overall structural diagram of a radio frequency ablation catheter
  • Figure 2 is a cross-sectional view of the insertion portion
  • Figure 3 is another cross-sectional view of the insertion portion
  • Figure 4 is a sectional view of the handle portion
  • 6a is an external structural diagram of a first elbow assembly
  • Figure 6b is a sectional view taken along A-A in Figure 6a;
  • 7a is an external structural diagram of a second elbow assembly
  • FIG. 7b is a cross-sectional view taken along A-A in FIG. 7a;
  • FIG. 8 is a structural diagram of an electrode (the infiltration cover and the electrode are an integrated structure);
  • FIG. 9 is a structural diagram of an electrode (the infiltration cover and the electrode are a separate structure); FIG.
  • Figure 10a is a sectional view of Figure 9;
  • 10b is a partial cross-sectional view of an electrode
  • 10c is a partial cross-sectional view of an electrode
  • Figure 10d is a partial cross-sectional view of an electrode
  • FIG. 11 is an overall structural diagram of a radio frequency ablation catheter
  • FIG. 12 is a partially enlarged view of FIG. 11;
  • FIG. 13 is a sectional view in FIG. 11;
  • FIG. 14 is a structural diagram of an electrode (infiltration cover and electrode are an integrated structure);
  • FIG. 15 is a view of the electrode in FIG. 14 from another angle;
  • FIG. 16 is a sectional view taken along A-A in FIG. 15;
  • FIG. 17 is a view of the electrode in FIG. 14 from another angle;
  • FIG. 18a is a schematic diagram of changes in temperature around an electrode during ablation
  • FIG. 18b is a schematic diagram of an installation site of a temperature detection device in a radio frequency ablation catheter
  • FIG. 18c is a schematic diagram after the heat conducting ring is omitted in FIG. 18b;
  • Figure 18d is a sectional view of a thermally conductive ring portion
  • 19a is a flowchart of a method for controlling radio frequency ablation
  • FIG. 19b is a schematic diagram of temperature distribution of a lesion site during radiofrequency ablation
  • 20 is a schematic diagram of a hardware structure of a computer device
  • 21 is a flowchart of a control method for radiofrequency ablation of a lung
  • 22 is a flowchart of a method for controlling radiofrequency ablation of a lung
  • FIG. 23 is a schematic diagram of a radiofrequency ablation system of the lungs.
  • FIG. 24 is a schematic diagram of another lung radiofrequency ablation system
  • 25 is a schematic diagram of a control method for radiofrequency ablation of a lung
  • FIG. 26 is a schematic diagram of another method for controlling radiofrequency ablation of the lungs.
  • Electrode; 101 saline connection pipe; 102, first mounting hole; 103, second mounting hole; 104, third mounting hole; 105, fourth mounting hole; 106, saline hole; 107, settlement area; 111, Connecting pipe; 112, mounting hole; 113, mounting hole; 114, tip; 115, mainstream channel; 116, branch flow channel; 117, branch flow channel; 118, branch flow channel; 119, infiltration hole; 2, sheath tube; 3, protective tube; 4, the first stretch bending component; 400, finger ring; 401, sliding chamber; 402, connection head; 403, limit screw; 5, the second stretch bending component; 500, threading cavity; 501, Sliding pipe body; 502, chute; 503, bolt hole; 504, groove; 6, saline connector; 7, ablation instrument connector; 8, electrode ring; 9, thermistor; 90, thermistor wire; 91 Temperature-controlling sleeves; 10, pull wires; 11, spring hoses; 12, saline pipes; 13, pull-wire fixing bolts
  • a component when referred to as being “connected” to another component, it may be directly connected to another component or a centered component may exist. When a component is considered to be “set on” another component, it can be directly set on another component or a centered component may exist at the same time.
  • the radio frequency ablation catheter includes an insertion portion and a handle portion as a whole, and an electrode 1 is provided at a distal end of the insertion portion.
  • An embodiment of the radio frequency ablation catheter of the present application includes an electrode 1, the electrode 1 has a heat exchange medium flow path, an equalization device is provided on the electrode 1, and an equalization device is provided with an infiltration hole communicating with the heat exchange medium flow path.
  • the heat exchange medium output from the heat medium flow channel is distributed through the equalization device and flows out.
  • the heat exchange medium that can output the heat exchange medium flow channel is further distributed by the equalization device, and a heat exchange medium protection film is formed between the electrode 1 and the lesion tissue.
  • the design idea and principle are different from ordinary ones. cool down.
  • the distribution method can use porous, slit and other methods to at least avoid outputting the heat exchange medium at the same location.
  • a relatively uniform heat exchange medium protection film can be formed on the outer surface of the electrode 1, which can reduce the temperature of the tissue and increase the tissue's Humidity fundamentally prevents the tissue from crusting due to drying and heating; at the same time, the heat exchange medium can improve the tissue conductivity and thermal conductivity, maintain impedance balance, and keep the ablation stable.
  • the equalization device is separated from the electrode, and the equalization device is fixedly or movably mounted on the electrode; or the equalization device and the electrode are an integrated structure.
  • the equalization device When the equalization device and the electrode are integrated, that is, the equalization device is a part of the electrode, and the infiltration hole is opened at the outer wall of the electrode.
  • the equalization device surrounds at least a part of the flow path of the heat exchange medium.
  • the infiltration hole on the equalization device and the The areas correspond to each other.
  • the equalization device may be a section in the axial direction of the electrode, and this section is preferably continuously distributed in the circumferential direction, that is, the infiltration holes are distributed in the circumferential direction, which makes the heat transfer medium distribution effect better, and the formed heat transfer medium protection film is more Uniform, avoiding the formation of a protective film only locally in the circumferential direction.
  • the infiltration holes can be arranged in a certain manner or path regularly on the periphery of the equalization device, or they can be randomly distributed.
  • the output heat exchange medium output from the heat exchange medium channel permeates and flows out to the outside of the equalization device through each infiltration hole, and then surrounds the electrode to form a uniform heat exchange medium protection film.
  • the specific distribution of the infiltration holes is further provided in the following. example.
  • the pore size of the infiltration hole is 0.1 to 0.3 mm.
  • the proper pore diameter is more conducive to the distribution and formation of the protective film for the heat exchange medium.
  • the shape of the infiltration hole is non-circular, it can be converted by referring to the area of the round hole to ensure the flow rate of the heat exchange medium at the infiltration hole.
  • the infiltration hole is slit-shaped.
  • the slit shape has an obvious length direction, for example, the length is more than 5 times the width, and the width of the slit can generally be set to about 0.1 mm.
  • the length direction of the slit extends along the axial or circumferential direction of the electrode, or forms a certain angle with the axial direction.
  • the equalization device is separated from the electrode.
  • the outer wall of the electrode 1 is provided with an outflow hole that communicates with the heat transfer medium flow channel.
  • the equalization device is installed on the electrode 1 and is located at The infiltration cover 20 at the periphery of the outflow hole is opened on the infiltration cover 20, and the heat exchange medium output by the outflow hole is distributed through the infiltration cover 20 and flows out.
  • the distal end is understood as the end near the lesion
  • the proximal end is understood as the end far from the lesion, that is, the end near the handle part
  • the axial direction is understood as the sheath extension direction.
  • the rest generally adopts a rotating body structure, such as a cylindrical shape, so it also has a spatial axial and radial direction, and the electrode axial direction is consistent with the sheath extension direction.
  • all the outflow holes are covered by the infiltration cover 20, but in some embodiments, some outflow holes may be exposed to the infiltration cover 20, that is, they are not covered by the infiltration cover 20.
  • the distal end portion of the electrode extends equidistantly or the shape converges, wherein the shape converges gradually or converges stepwise.
  • the shape convergence facilitates the puncture to travel in the body.
  • the diameter or outer contour gradually decreases toward the distal end, and the decreasing trend can be fixed (gradual convergence) or variable (stepwise convergence).
  • the distal part of the electrode is a cylinder, a spherical cap, a round table, a pyramid, a cone, a pyramid, or at least one surface is chamfered to the above shape (referring to a cylinder, a spherical cap, a circular table, a pyramid, a pyramid, a cone or a pyramid). ).
  • Bevel cutting means that the bevel cutting plane is not parallel or perpendicular to the electrode axis, and it cannot be beveled in parallel.
  • Vertical means the distal end of the electrode.
  • the end face is flat, such as a cylindrical or round table structure.
  • the distal end of the electrode 1 in FIG. 9 has a circular truncated cone shape.
  • the equalization device and the electrode are an integrated structure
  • the infiltration hole is opened at the outer wall of the electrode
  • the distal end of the electrode is the tip.
  • the distal end of the electrode 1 in FIG. 14 is the tip 114, which can also be regarded as being formed by oblique cutting with three facing cylinders.
  • the tip 114 is convenient for performing puncture and traveling in the body.
  • the shape of the distal end of the electrode itself can also be implemented using existing technology.
  • the heat exchange medium flow channel can communicate with the external heat exchange medium conveying device through a connecting pipe, and necessary pumps, valves, or metering devices can be provided on the pipeline as required.
  • the proximal end of the electrode 1 is provided with a connection pipe 111, and inside the electrode 1, a main channel 115 is in butt communication with the connection pipe 111 to transmit a heat exchange medium.
  • the existing technology can be used, which is mainly used for cooling and ablation and peripheral parts, but in some scenarios, it may also be used for heating, and the relationship between the temperature of the heat exchange medium and the body temperature can be adjusted as needed. .
  • the heat exchange medium needs to be input into the body, medically acceptable substances should be used.
  • it can be a gas, liquid level or solid powder with a certain fluidity, or a combination of multiple physical forms.
  • the medium may be a pure substance or a mixture, and may be applied in combination.
  • the heat exchange medium flow channel is a cavity located inside the electrode 1, and the heat exchange medium flows out through an opening in the cavity wall.
  • the shape of the cavity space can be cylindrical, spherical, spherical crown or a combination of the above shapes, etc.
  • the outer periphery of the cavity part is close to the electrode surface, that is, the cavity wall of this part is thin, which is convenient for opening, and the position of the cavity in the electrode It is suitable for the distribution area of openings.
  • the cavity space is used to transport the heat exchange medium, and the heat exchange medium can also be pre-distributed or mixed to ensure that the heat exchange medium output through different openings remains consistent in temperature and concentration, especially The effect is more prominent when the heat exchange medium is used in combination with the application.
  • the opening is an infiltration hole.
  • the opening can be regarded as an outflow hole opened on the outer wall of the electrode.
  • the heat exchange medium flow passage includes a main flow passage and a plurality of branch flow passages communicating with the main flow passage, and the ends of each branch flow passage extend to the outer surface of the electrode 1.
  • the main flow path may be provided with one or a plurality of side-by-side arrangements, preferably one is provided at the axis of the electrode and extends along the axial direction of the electrode, and the branch flow channels communicate at the same position or different positions of the main flow path.
  • a main flow channel extending along the electrode axis is connected, and a plurality of branch flow channels are connected at the same position of the main flow channel.
  • FIG. 16 there is a main flow channel 115 extending along the electrode axis, and a plurality of branch flow channels communicate at different positions of the main flow channel 115.
  • each branch flow channel extends to the infiltration hole on the outer surface of electrode 1.
  • the end of each branch flow channel extends to the outflow of the outer surface of electrode 1. hole.
  • At least one branch flow channel is arranged along the extension direction of the main flow channel, and at least two branch flow channels of the same group are distributed radially around the main flow channel.
  • the extension angle of the branch flow channel is preferably the radial direction of the electrode. Of course, it can also be arranged inclined with respect to the radial direction. The angle of inclination of each branch flow channel can be the same or different.
  • the connection position with the main stream is used as a reference.
  • one branch flow channel is arranged along the extension direction of the main flow channel, and in FIG. 16, three branch flows are arranged along the extension direction of the main flow channel.
  • the branch flow channel 116, the branch flow channel 117, and the branch flow channel can be seen in the figure. 118. Connected at different positions (axial positions) of the main stream 115.
  • the branch flow channels of the same group are distributed radially.
  • the branch flow channels in the same group are evenly distributed in the circumferential direction.
  • a uniform circumferential arrangement can be used to obtain a relatively uniform outflow.
  • the number of branch flow channels in adjacent groups is the same or different, and the circumferential positions are aligned or misaligned.
  • the number of branch flow channels in the adjacent groups is the same and the circumferential positions are aligned, that is, the branch flow channels 116, the branch flow channels 117, and the branch flow channels 118 are aligned in the circumferential direction.
  • the branch flow channels 116, the branch flow channels 117, and the branch flow channels 118 may also be arranged in an offset manner in the circumferential direction.
  • a plurality of branch flow channels are sequentially arranged along the extending direction of the main flow channel, and are spirally distributed around the outer periphery of the main flow channel.
  • the normal way of heat exchange medium can be physiological saline.
  • the corresponding outflow hole can also be called saline hole
  • the heat exchange medium flow channel can also be called The brine flow channel, and so on, but in terms of "holes", "tubes", etc., their structural characteristics are not strictly limited by the type of heat transfer medium without special instructions.
  • the radio frequency ablation catheter includes an electrode 1 electrically connected to the ablation apparatus, and one end of the electrode 1 is connected to a saline tube 12 to introduce the physiological saline into the electrode 1.
  • the electrode 1 is formed with a salt water hole 106 communicating with the inside of the salt water connection tube 101.
  • the electrode 1 is further covered with an infiltration cover 20.
  • a plurality of infiltration holes 200 are evenly arranged on the infiltration cover 20, and the salt water holes 106 flow out.
  • the normal saline can flow out from the infiltration hole 200.
  • a radiofrequency ablation catheter of one embodiment as a whole includes an insertion portion and a handle portion. among them:
  • the insertion part includes: an electrode 1, a sheath tube 2 connected to the electrode 1, and parts located inside the electrode 1 and the sheath tube 2.
  • the handle part includes a saline connector 6 and an ablation instrument connector 7.
  • the handle part is used to conduct the insertion part to the saline storage position and the ablation apparatus connected to the saline connector 6.
  • the lead 16 passes through the sheath tube 2 to connect the electrode 1 to the ablation instrument connector 7 for connecting the electrode 1 to the ablation instrument.
  • a neutral electrode plate is also connected to the ablation device. Before starting the ablation treatment, attach the neutral electrode plate to a suitable part of the human body to form a circuit between the electrode 1, the ablation device, the neutral electrode plate, and the patient. The ablation tissue contacted by the electrode 1 is thereby ablated.
  • the electrode 1 of the radiofrequency ablation catheter is guided by the bronchus, passes through the bronchoscope, and enters the lung parenchyma through the hole punctured by the bronchial wall near the lesion in advance for radiofrequency ablation.
  • the equalization device and the electrode 1 can be regarded as a separate structure, and the infiltration hole 200 is also the infiltration cover hole.
  • the equalization device may also be integrated with the electrode 1.
  • one end of the electrode 1 is fixedly connected to the sheath tube 2, and the other end is directly embedded in the ablation tissue.
  • a fixed end of the electrode 1 and the sheath tube 2 has a saline connection tube 101 extending into the body of the sheath tube 2.
  • the saline connection tube 101 is connected to the saline connector 6 through the saline tube 12 to input physiological saline into the electrode 1.
  • the electrode 1 is provided with a plurality of saline holes 106.
  • the saline solution flowing in the saline connection tube 101 can enter the saline hole 106 and flow out through the internal channel of the electrode 1 after entering the electrode 1 to flow on the surface of the electrode 1. Forms a wetting effect.
  • a layer of physiological saline film is formed on the surface of the electrode 1.
  • physiological saline is filled between the electrode 1 and the ablated tissue, so as to avoid the "cavitation" of the electrode “vacuum-wrapping" and cause the impedance to rise suddenly.
  • the saline hole 106 in FIG. 2, FIG. 3 and FIG. 8 can be regarded as an infiltration hole, and the part of the electrode 1 with the saline hole 106 can be regarded as a balancing device.
  • each infiltration hole in order to ensure the infiltration effect, there are multiple infiltration holes. It is preferable to distribute multiple groups in the electrode axis direction, for example, 2 to 4 groups. Each group of infiltration holes is distributed in the electrode circumferential direction, for example, 2 to 8 It is preferably 4 to 6.
  • one embodiment of a radio frequency ablation catheter includes an insertion portion and a handle portion as a whole. among them:
  • the insertion part includes: the electrode 1, a metal tube 21 connected to the electrode 1, and parts located inside the electrode 1 and the metal tube 21.
  • a temperature sensor 29 is provided near the electrode 1.
  • the distal end of electrode 1 converges to form a spike.
  • the metal tube 21 is similar to the sheath tube 2 in terms of structure and location, but the metal tube 21 has a certain strength. Together with the electrode 1, it can also serve as a puncture needle. For example, it can be directly penetrated through the outer wall of the thorax. Ablation of the lungs.
  • the equalization device is integrated with the electrode 1.
  • the electrode 1 is provided with a heat transfer medium flow path, such as the main flow path 115, and the branch flow path 116, the branch flow path 117, the branch flow path 118, and each branch flow path communicates. In different positions of the main road 115.
  • Each branch flow channel 116 extends to the outer surface of the electrode 1 to form an infiltration hole 109.
  • the section with the heat exchange medium flow channel and the infiltration hole 109 in the electrode 1 can be regarded as a balanced device with an integrated structure with the electrode 1.
  • the electrode 1 is provided with a mounting hole 112 and a mounting hole 113 for accommodating the temperature sensor 22 and the electrode lead 24, respectively.
  • a connection pipe 111 is provided at the proximal end of the electrode 1 to communicate with the heat transfer medium flow path inside the electrode 1, and the heat transfer medium delivery pipe 23 It is connected with the connecting pipe 111.
  • the handle part mainly includes a Y-shaped handle 25, a handle end cover 26, and a Luer joint 28.
  • the circuit part extends out of the Y-shaped handle 25 and enters the connector 27.
  • the connector 27 can be easily connected to the external circuit through a common interface form.
  • the heat exchange medium conveying pipe 23 can be connected to the heat exchange medium conveying through the Luer joint 28.
  • the device is configured to supply the electrode 1 with a heat exchange medium.
  • the corresponding parts can be connected at the proximal end of the electrode 1.
  • the sheath 2 can be used.
  • the sheath 2 has good flexibility And radial support ability, can adapt to large bending, in addition, combined with the pull wire 10 can also adjust the degree of bending and the attitude of the electrode 1.
  • a metal tube 21 with a certain rigidity is used.
  • the electrode 1 and the sheath tube 2 or the metal tube 21 can be fixedly connected by using existing methods, such as welding, bonding, riveting, or using an intermediate connecting member, etc.
  • they can be axially docked or partially nested with each other and mutually
  • the outer wall is preferably flat and smooth to avoid edges and corners.
  • the equalization device adopts a separate structure from the electrode 1, for example, an electrode 1 is also provided as an equalization device.
  • an electrode 1 is also provided as an equalization device.
  • Infiltration cover 20 A certain gap is left between the inner peripheral wall of the infiltration cover 20 and the outer peripheral wall of the electrode 1.
  • a number of small infiltration holes 200 are evenly distributed on the infiltration cover 20.
  • the physiological saline that entered the internal channel of the electrode 1 from the saline connection tube 101 flows into the gap between the electrode 1 and the infiltration cover 20 from the saline hole 106 and flows out from the infiltration hole 200 to form a thin layer on the outer surface of the infiltration cover 20 Water film, which makes the electrode surface infiltrated with physiological saline, further avoids ablation of tissue scabs, and reduces the circuit impedance. The impedance balance is maintained so that the ablation process continues until the target ablation volume is reached.
  • the processing method of the electrode 1 is often a mechanical processing method, and the size of the brine hole 106 on the electrode 1 is difficult to be made very small, while the infiltration cover 20 can be processed by other methods, and the infiltration hole 200 thereon can be made into a diameter Very small holes, so that the saline solution flowing out of the infiltration hole 200 forms a water film on the electrode surface.
  • a plurality of brine holes 106 can be processed on the electrode 1 and all the brine holes 106 can be evenly distributed on the surface of the electrode 1. In this way, the infiltration cover 20 may not be provided.
  • the infiltration cover 20 allows the cooling medium to be distributed into a film on the outer surface of the infiltration cover 20.
  • a separate structure may be adopted between the infiltration cover 20 and the electrode.
  • the infiltration cover 20 is fixed on the electrode 1, is rotatably mounted on the electrode 1 about the electrode axis, or is slidably mounted on the electrode 1 along the electrode axis.
  • the infiltration cover 20 is directly wrapped on the electrode during installation, or the infiltration cover 20 only covers a partial area of the electrode 1 and can be embedded in a predetermined area during installation.
  • the infiltration cover 20 is fixedly connected to the electrode 1, the relative position relationship with the electrode 1 can be maintained by welding, a connecting member, or a limiting structure.
  • the infiltration cover 20 can also be rotated and installed on the electrode 1 about the axis of the electrode. On the one hand, only the axial limit is required. In addition, the anisotropy of the outflow holes in the circumferential direction can be used to obtain the expected outflow direction by rotating the infiltration cover 20. , And even closed outflow holes in some areas.
  • the infiltration cover 20 is slidably mounted on the electrode 1 along the axis of the electrode.
  • the anisotropy of the outflow holes in the axial direction can be used to adjust the outflow of heat exchange medium in different parts through the movement of the infiltration cover 20, and even outflow in a closed area. hole.
  • a driving component connected to the infiltration cover 20 is further provided for driving the relative movement between the infiltration cover 20 and the electrode 1.
  • a pulling cable that can move axially relative to the sheath tube 2 or a sleeve that can rotate relative to the sheath tube 2 is used.
  • an infiltration cover 20 or a plurality of infiltration covers 20 are mounted on the electrode 1.
  • an infiltration cover 20 it can cover only a part of the outer periphery of the electrode 1 in the circumferential direction.
  • an outer wall of the electrode 1 is provided with a sink, and the outflow hole is located at the bottom of the sink.
  • the infiltration cover 20 is embedded in the sink and communicates with There is a slight gap at the bottom of the tank to facilitate the distribution of heat exchange medium.
  • each of the infiltration covers 20 can be arranged along the electrode axial direction, the circumferential direction, and the like to cover different regions of the electrode.
  • each of the infiltration covers 20 is fixedly or movably installed independently of each other, for example, a portion of the infiltration cover 20 is fixed on the electrode 1, and a portion of the infiltration cover 20 is installed on the electrode 1 by sliding or rotating.
  • a plurality of infiltration covers 20 are mounted on the electrode 1, and each of the infiltration covers 20 moves independently with respect to the electrode 1 or at least two infiltration covers are linked with each other.
  • the same infiltration cover 20 may be an integrated structure or a separate structure, and the separate infiltration cover is fixed and fastened to each other.
  • Independent settings refer to fixed or independent movements, while linkage is the movement or influence of one when the other moves.
  • the infiltration cover 20 may also be a non-closed structure in the circumferential direction.
  • the infiltration cover 20 is sheet-shaped and covers only a part of the outer periphery of the electrode 1 in the circumferential direction.
  • the sheet shape may be a flat surface or a curved surface, and is fixed to the electrode 1 in a mosaic or semi-enclosed manner.
  • the infiltration cover 20 covers at least the outflow hole portion, and of course, it can also extend to the periphery.
  • the infiltration cover 20 is a cylindrical structure closed in the circumferential direction, and is sleeved on the outer periphery of the electrode 1.
  • the infiltration cover 20 having a cylindrical structure can be sleeved on the electrode 1 in the axial direction from the proximal end side or the distal end side of the electrode during installation.
  • the circumferential closure can cause the infiltration cover 20 to surround the electrode 1 for one week, but it is not required to cover all parts of the electrode in the axial direction.
  • the infiltration cover 20 only surrounds the proximal portion of the electrode 1.
  • the infiltration cover 20 is a cap-shaped structure, and the distal end of the cap-shaped structure is closed to enclose the distal end of the infiltration cover 20.
  • the infiltration cover 20 is fixed on the electrode 1, a positioning step is provided on the outer periphery of the electrode 1, and the distal end of the infiltration cover 20 resists the positioning step to limit.
  • the outer wall of the infiltration cover 20 and the electrode 1 are exposed to the outer wall of the infiltration cover 20 at the same height. In this way, abrupt changes in local shapes or raised edges are avoided, thereby reducing potential safety hazards.
  • At least a part of the infiltration cover 20 is an infiltration area in which the infiltration holes 200 are distributed.
  • the outflow holes on the electrode correspond to the infiltration area, and a gap is left between the infiltration area and the wall of the infiltration area.
  • the gap can distribute the heat exchange medium and improve the uniformity of the protective film of the heat exchange medium.
  • the formation of the gap can be a local settlement of the outer wall of the electrode or a local uplift of the infiltration cover, or a combination of multiple methods.
  • the infiltration hole 200 and the outflow hole are arranged offset.
  • the misalignment arrangement should avoid at least one pair, and the misalignment arrangement can prevent the heat exchange medium from preferentially flowing out of the infiltration hole directly opposite the outflow hole, affecting the distribution effect of the infiltration cover 20.
  • the preferred method is that the number of the infiltration holes 200 is larger and the diameter is smaller than that of the outflow holes.
  • the outer wall of the electrode 1 is provided with a settlement region 107
  • the outflow hole is provided in the settlement region 107
  • the infiltration region of the infiltration cover 20 is on the periphery of the settlement region 107
  • the inner wall of the infiltration cover 20 and the settlement A gap is left on the surface of the region 107.
  • the heat exchange medium output from each outflow hole can be further evenly distributed through the setting of the settlement area 107, and then oozed out through the infiltration cover 20 after the distribution.
  • the size of the gap may affect the pressure or flow rate of the heat exchange medium on different parts of the infiltration cover 20.
  • a uniform heat exchange medium output on the periphery of the infiltration cover 20 for example, a uniform physiological saline film is formed, and the distance from the adjacent outflow holes is different. The gap also changes accordingly.
  • the outflow hole is flared, and the flared area is used as the settlement area; the gap between the inner wall of the infiltration cover and the surface of the settlement area decreases as the distance from the outflow hole increases.
  • the flared shape (shown as a horn opening) is for uniform output of the heat exchange medium.
  • the flared shape is for uniform output of the heat exchange medium.
  • the heat exchange medium has a fast flow rate, it is easy to spray directly from the nearest infiltration hole, so that the infiltration hole away from the outflow hole and the infiltration near the outflow hole The holes cannot output the heat exchange medium uniformly, which affects the uniformity of the heat exchange medium protective film.
  • the outflow hole of the outer wall of the electrode 1 is the opening portion of the brine hole 106, and the flared area is used as the settlement area 107.
  • the gap between the inner wall of the infiltration cover 20 and the surface of the settlement area decreases as the distance from the outflow hole increases. small.
  • the flaring form can increase the distance between the outflow hole and the infiltration hole opposite to it, and alleviate the spray phenomenon, so that the infiltration hole with a distance from the outflow hole can uniformly output and output the heat exchange medium.
  • the infiltration hole far from the outflow hole has a lower flow rate than the infiltration hole near the outflow hole due to insufficient supply. Therefore, in one embodiment, the inner wall of the infiltration cover 20 and the surface of the settlement zone The gap increases with the distance from the outflow hole.
  • the distance between the area and the outflow holes may be considered in the vicinity of the outflow holes, for example, it may be calculated according to the average distance.
  • the settlement area is one or a plurality of isolated ones, and an outflow hole is provided in the same settlement area.
  • the gap between the inner wall of the infiltration cover 20 and the surface of the settlement area varies with the distance from the outflow hole in the settlement area. Increase.
  • the corresponding saline hole 106 of the sedimentation zone 107 has a different depth from the saline hole 106, and the further away from the saline hole 106, the deeper the sedimentation zone 107.
  • the settlement area is a distribution groove extending along the axis of the electrode, and the outflow holes (such as the salt water hole 106 in the figure) are divided into several groups in the circumferential direction of the electrode, each group corresponding to the same Distribution trough.
  • the outflow holes of the same group are opened at the bottom of the same distribution groove, and the depth of the distribution groove can be regarded as the gap between the inner wall of the infiltration cover 20 and the surface of the settlement area.
  • the distribution grooves are 2 to 10 uniformly arranged in the circumferential direction.
  • the infiltration cover 20 is cylindrically wrapped around the periphery of all distribution grooves.
  • the number of outflow holes in the same group may be one or a plurality of sequentially arranged holes, for example, a salt water hole 106 is shown in the figure.
  • an outflow hole is opened at the bottom of the same distribution groove, and the depth of the distribution groove increases as the distance from the outflow hole increases.
  • a plurality of groups of infiltration holes 200 are distributed along the circumferential direction on the infiltration cover 20, and each group of infiltration holes 200 corresponds to one of the distribution groove positions.
  • the number of infiltration holes 200 corresponding to the same distribution slot can be one or more in sequence, such as 4 to 10 in the figure. If weaving or porous materials are used, the number and distribution of infiltration holes 200 are relatively complicated. Therefore, the grouping principle mainly considers the corresponding relationship with the distribution slots.
  • the groove walls of the adjacent distribution grooves form convex ribs supporting the inner wall of the infiltration cover 20, and the tops of the convex ribs are in abutment with corresponding portions of the inner wall of the infiltration cover 20 and match in shape.
  • the infiltration cover 20 is a cylinder, and the infiltration cover 20 is a curved surface, and the curvature corresponds to the infiltration cover 20, which can obtain better support and reduce unnecessary local deformation of the infiltration cover 20.
  • infiltration holes 200 distributed on the infiltration cover 20. According to different processing methods of the infiltration cover 20, the infiltration holes 200 also have corresponding distribution characteristics and shapes.
  • the infiltration cover 20 is made of a porous material, and the void of the porous material itself is used as the infiltration hole 200.
  • the porous material can be embedded in the electrode 1 or can be made into a cylindrical shape and a cap-shaped sleeve on the electrode 1 to cover at least the infiltration holes 200 of the desired location.
  • existing technologies such as foam metal can be used.
  • the wetting cover 20 adopts a braided structure, and the gap of the braided structure itself serves as the wetting hole 200.
  • weaving for example, weaving of warp and weft with a fiber material is used, and there is a gap between the warp and weft, that is, as an infiltration hole 200.
  • a fiber material for example, a nickel-titanium alloy can be used.
  • the infiltration cover 20 is a metal casing, and an infiltration hole 200 is formed on the casing wall of the metal casing.
  • the pore diameter and density distribution of the infiltration holes can be set according to the flow demand of the heat exchange medium, and as far as possible, ensure that a uniform protective film is formed on the periphery of the electrode.
  • the pore diameters of all the infiltration holes are the same, or the corresponding settings are based on the heat exchange medium flow balance.
  • the pore size of the infiltration holes in different regions can be changed to meet the needs of balanced flow.
  • the distribution density of all infiltration holes in different parts of the equalization device is the same, or correspondingly set according to the heat exchange medium flow balance.
  • the arrangement of the outlet of the heat exchange medium flow channel is mainly considered, for example, the diameter of the infiltration hole increases with the distance from the outflow hole.
  • the distribution density of the infiltration holes increases as the distance from the outflow holes increases.
  • the infiltration holes can be arranged according to expectations during processing.
  • the infiltration holes 200 are distributed in multiple groups in the circumferential direction of the infiltration cover 20.
  • each group has two or more infiltration holes, such as four to ten.
  • each group can be divided according to the arrangement trend, and it can also be based on the corresponding relationship with the heat transfer medium flow channel. Divided.
  • the infiltration holes 200 in the same group are sequentially arranged according to their respective extension paths, which are straight lines, polylines or curves.
  • a straight line it can be considered that the infiltration holes 200 of the same group are sequentially arranged in the axial direction.
  • the overall trend can be extended along the axis, and on a specific path, it can be an arc, an S-shaped curve, and so on.
  • all the infiltration holes 200 may be distributed around the electrode axis along the spiral line. Or the infiltration holes 200 are evenly distributed in an array manner.
  • the infiltration cover 20 In order to make the infiltration cover 20 have a balanced water output and form a uniform water film.
  • the pore diameter (which can be understood as the size of the cross-sectional area) of the infiltration holes 200 in the same group increases as the distance from the outflow hole increases.
  • each set of infiltration holes 200 corresponds to one outflow hole. In this case, only the outflow holes corresponding to the circumferential position can be considered for the change in the diameter of the infiltration holes 200 in the same group.
  • infiltration holes 201, infiltration holes 202, and other infiltration holes correspond to the saline holes 106 in the circumferential position.
  • the infiltration holes 202 are farther from the saline holes 106 than the infiltration holes 201, and the pore diameters of the infiltration holes 202 are correspondingly larger.
  • the diameter of the infiltration hole 201 is large.
  • the infiltration cover 20 is provided with a development logo.
  • At least a part of the infiltration cover 20 itself is a developing material or a development mark is installed on the infiltration cover 20, and the development mark can be matched with the position of the electrode 1 of the imaging device during the operation.
  • the shape of the development mark itself is not strictly limited, for example, a ring shape extending in the circumferential direction, a C shape, or a strip shape extending in a predetermined direction, and the like are used.
  • the development marks on the infiltration cover 20 are arranged in a plurality of places along the axial direction. Multiple development marks in the axial direction are more convenient to identify the spatial attitude. For example, the relative inclination with respect to the viewing angle may be determined according to the length of the development mark arrangement line, or the spatial position of the electrode may be positioned in combination with the degree of bending of the development mark arrangement line.
  • the radio frequency ablation catheter further includes an electromagnetic navigation component capable of indicating the position of the electrode.
  • An installation hole can be provided in the electrode to accommodate the electromagnetic navigation component, or the electromagnetic navigation component can be attached and fixed outside the electrode.
  • the electromagnetic can be sensed by the imaging instrument. The position of the navigation component in the body, and then the position or posture of the electrode is known to guide and monitor the ablation operation.
  • Electrode traveling in the body During the ablation operation, sometimes it is necessary to adjust the orientation or spatial posture of the electrode.
  • a pull wire is used for traction at the distal end.
  • An embodiment of the radiofrequency ablation catheter includes an electrode 1, and a pull wire 10 extending to the proximal end is connected to the electrode 1 to drive the electrode 1 to deflect.
  • the use of the pull wire 10 is more convenient for adjusting the electrode 1, and on the basis of this, the aforementioned related features (or embodiments) of the infiltration cover 20 can also be combined.
  • the inside of electrode 1 is provided with a heat exchange medium flow path
  • the outer wall of electrode 1 is provided with an outflow hole that communicates with the heat exchange medium flow path.
  • An infiltration cover 20 on the periphery of the outflow hole is installed on electrode 1 to exchange heat from the outflow hole The medium flows out through the infiltration cover 20.
  • connection pipe connected to the heat exchange medium flow channel is provided at the proximal end of the electrode 1.
  • the inside of the connection pipe can also be regarded as a part of the heat exchange medium flow channel.
  • the connection pipe and the electrode can be integrated Structure for docking with external tubing and extending proximally.
  • a sheath 2 made of an elastic material is connected to the proximal end of the electrode, and the pull wire 10 extends from the inside of the sheath 2 to the proximal end to the outside of the sheath 2;
  • a connecting pipe in which the heat medium flow channel communicates, and the connecting pipe extends to the inside of the sheath tube 2.
  • one end of the electrode 1 is connected with a sheath tube 2 made of an elastic material, and the saline connection tube 101 extends to the inside of the sheath tube 2.
  • a pull wire 10 is fixedly arranged on 1. The pull wire 10 extends from the inside of the sheath tube 2 to the outside of the sheath tube 2, so that when the pull wire 10 is pulled, the sheath tube 2 bends and deforms, thereby driving the electrode 1 to deflect.
  • the extension cord 10 extends from the inside of the sheath tube 2 to the sheath tube 2 can be understood as extending proximally inside the sheath tube 2 until it extends out of the proximal end of the sheath tube 2, of course, it can also run along the sheath near the proximal end of the sheath tube 2
  • the tube 2 penetrates the wall of the sheath tube 2 radially, that is, extends to the outside of the sheath tube 2.
  • the radiofrequency ablation catheter further includes a first pull-bend component 4 and a second pull-bend component 5 which can be relatively close to or away from each other, the sheath tube 2 is fixed to the first pull-bend component 4 and the pull-wire 10 is fixed To the second pull-bend assembly 5.
  • the handle part further includes a first pull-bend assembly 4 and a second pull-bend assembly 5 slidingly mated with the first pull-bend assembly 4.
  • the electrode 1 is controlled by the relative movement of the first pull-bend assembly 4 and the second pull-bend assembly 5.
  • the target position is deflected.
  • the first pull-bend component 4 and the second pull-bend component 5 may be a single component or a combination of multiple components, respectively, and even the two may be different parts of the same component.
  • first pull-bend component 4 and the second pull-bend component 5 are arranged in a nested manner or slide side by side. In order to improve the stability of relative motion, necessary guidance and limiting structures can be set.
  • a mounting hole is provided on the electrode 1, and the distal end of the pull wire 10 extends into and is fixed to the mounting hole.
  • the end of the cable can be prevented from being exposed and the connection strength can be improved.
  • Welding, bonding, or a combination can be used when fixing, or an anchor can be fixed at the end of the cable.
  • the anchor fits the mounting hole in an interference fit. .
  • the end of the pull wire is fixed to the electrode 1 through an intermediate connection member.
  • the opening of the mounting hole is at the proximal end of the electrode.
  • the mounting hole may extend a distance along the electrode axis toward the distal end, and the pull wire 10 may be further inserted to the bottom of the mounting hole at the distal end.
  • one end of the pull wire 10 is fixed in the second mounting hole 103 on the electrode 1, and the other end extends along the sheath tube 2 and is fixed to the second pull-bend assembly 5.
  • the first pull-bend assembly 4 and the second pull-bend are relatively moved.
  • the pull wire 10 is pulled, so that the sheath tube 2 is pulled and bent, thereby deflecting the electrode 1 at the end of the sheath tube 2.
  • a spring hose 11 is sheathed outside the pull wire 10. When the pull wire 10 is pulled, the spring hose 11 can be bent and deformed with the sheath tube 2 and returned after releasing the pull on the pull wire 10. bomb.
  • the tension wire 10 When the tension wire 10 is stressed and tensioned, other components in the most peripheral parts may exert a large pressure or even crack, and the spring hose 11 may further provide a buffering protection function.
  • the sheath tube 2 extends from one end of the electrode 1 toward the handle portion, and is fixed to the first pull-bend assembly 4.
  • the sheath tube 2 is made of a material having a certain elasticity, so that it can undergo a recoverable bending elastic deformation, so as to control the deflection of the electrode 1.
  • a protective tube 3 is sleeved and fixed on the connection head 402 of the first stretch bending component 4, and the protective tube 3 Partly extends to the outside of the sheath tube 2.
  • first stretch bending component 4 and the second stretch bending component 5 are both tubular, and the second stretch bending component 5 is slidably fitted in the first stretch bending component 4.
  • a sliding chamber 401 is formed inside the first pull-bend assembly 4, and the sliding chamber 401 is opened at one end remote from the fixed end of the sheath tube 2.
  • the second pull-bend assembly 5 is slidably connected to the slide chamber 401 from the opening.
  • a portion of the second draw-bend assembly 5 that is slidably connected to the slide chamber 401 constitutes a slide pipe body 501.
  • a wire-passing cavity 500 is formed in the slide pipe body 501, and a pull wire 10 and a wire are extended in the sheath tube 2. 16 and so on all pass through the wire cavity 500.
  • An end cap 14 is provided on the fixed end of the second pulling-bending component 5 far from the sheath tube 2.
  • a line passing through the wire cavity 500 passes through the end cap 14 and is connected to the saline connector 6 and the ablation instrument connector 7 respectively.
  • a bolt hole 503 is provided on the outer wall of the second tension bending component 5.
  • a thread fixing bolt 13 is screwed to the bolt hole 503.
  • the tension wire 10 is fixed to the second tension bending component 5 through the tension fixing bolt 13.
  • At least a part of the second pull-bend component 5 is embedded in the first pull-bend component 4, and a pair of two pairs is further defined between the first pull-bend component 4 and the second pull-bend component 5.
  • a guiding device is provided between the first stretch bending assembly 4 and the second stretch bending assembly 5 to limit the sliding tube body 501 to undergo only axial relative displacement within the sliding cavity 401 without relative rotation.
  • the guide device includes a slide groove 502 provided on any one of the first and second draw-bend assemblies 4 and 5 and a limit screw 403 provided on the other.
  • a limit screw 403 extending to the sliding chamber 401 is provided on the first pull-bend assembly 4.
  • a sliding groove 502 is provided on the outer wall of the sliding pipe body 501.
  • an O-ring 15 is provided on a portion of the second pull-bend component 5 embedded in the first pull-bend component 4 to increase friction between the first pull-bend component 4 and the second pull-bend component 5.
  • a groove 504 is formed on the outer peripheral wall of the sliding pipe body 501 to surround the sliding pipe body 501.
  • An O-ring 15 is installed in the groove 504.
  • the O-ring 15 can appropriately increase the contact friction between the sliding tube body 501 and the sliding chamber 401 to increase the hand feeling when the two draw-bend components are moved relatively.
  • the deflection angle of the electrode 1 due to Pulling the pull wire 10 requires a certain force, and it will be easier to control the distance that the pull wire 10 is pulled, thereby controlling the bending degree of the sheath tube 2 more accurately, and correspondingly controlling the deflection angle of the electrode 1 more accurately.
  • the first pull-bend assembly 4 is preferably provided with two finger rings 400, and the second pull-bend assembly 5 is also provided. Finger ring 400. An operator's finger can pass through the finger ring 400, thereby forming a fixation with any pull-bend component, so as to drive the two pull-bend components to move relatively. It is also easy to operate with one hand.
  • the second pull-bend assembly 5 is provided with an instruction to oppose the first pull-bend assembly 4 Position of the tick mark.
  • the thermistor 9 is further provided in the electrode 1 for detecting the real-time temperature of the electrode 1, and the thermistor 9 is electrically connected to the ablation apparatus through a thermistor wire 90.
  • the thermistor 9 is fixed on the electrode 1 and is used to obtain the temperature data of the ablation tissue in real time, and the temperature data is transmitted to the ablation apparatus through the thermistor wire 90 connected to the thermistor 9 to the ablation instrument connector 7.
  • the sheath tube 2 is further provided with a temperature control sleeve 91 sleeved outside the thermistor wire 90.
  • a temperature-controlling sleeve 91 is further provided outside the temperature-controlling sleeve 91 and is set on the outside of the thermistor wire 90.
  • an electrode ring 8 is provided outside the sheath tube 2.
  • a temperature sensor 19 connected to the electrode ring 8 and capable of detecting the temperature of the electrode ring 8 is provided in the sheath tube 2.
  • the temperature sensor 19 is electrically connected to the ablation apparatus.
  • An electrode ring 8 is provided on the outer wall of the sheath tube 2 at a position about 2 cm from the electrode 1.
  • the sheath tube 2 is provided at a position corresponding to the electrode ring 8, and a via hole is opened on the outer wall thereof, and the via hole communicates with the inner cavity of the sheath tube 2.
  • a bifurcated riveting tube 18 is provided in the sheath tube 2. A part of the bifurcated riveting tube 18 is welded and fixed to the electrode ring 8 through the via hole. The bifurcated riveting tube 18 is located in the inner cavity of the sheath tube 2. It is connected to the temperature sensor 19.
  • the temperature sensor 19 is electrically connected to the ablation instrument connector 7, so that the temperature sensor 19 senses the temperature of the electrode ring 8 through the bifurcated rivet 18, and transmits the temperature to the ablation instrument.
  • the temperature detected by the temperature sensor 19 reaches a preset value.
  • the ablation range has reached the preset value. 1 outputs energy, thereby stopping the ablation process.
  • the electrode ring 8 can be a closed whole ring structure or a non-closed structure in the circumferential direction, such as a C shape or a correspondingly smaller wrap angle.
  • a patch form can be used, and the shape of the patch is not strictly limited. It is fixed on the outer wall of the electrode by welding.
  • the electrode ring 8 is a thermally conductive element, and the temperature sensor 19 can also use a thermistor or the like on the circuit to sense the temperature through the change of the electrical signal.
  • an embodiment of an RF ablation catheter is sequentially distributed in the axial direction near the distal end of the RF ablation catheter. Multiple temperature detection devices.
  • Multiple temperature detection devices can collect the temperature around the electrode 1. During the ablation process, the electrode is used as the center, and the temperature around the electrode changes gradually. It is possible to know (in real-time monitoring) the temperature of the center of the ablation cell, as well as the ablation of the cell edge.
  • the plurality of temperature detection devices may be implemented separately, or may be combined with one or more of the above-mentioned pull wire 10 and the infiltration cover 20 and related features (or embodiments).
  • a pull wire 10 extending to the distal end is connected to the electrode 1 to drive the electrode 1 to deflect. By monitoring the temperature, the electrode 1 can be deflected by the pull wire 10 when necessary.
  • the inside of electrode 1 is provided with a heat exchange medium flow path
  • the outer wall of electrode 1 is provided with an outflow hole that communicates with the heat exchange medium flow path.
  • An infiltration cover 20 on the periphery of the outflow hole is installed on electrode 1 to change the output of the outflow hole.
  • the heat medium flows out through the infiltration cover 20.
  • the heat exchange medium output can be adjusted in time, and the heat exchange medium protection film is formed by the infiltration cover 20.
  • the temperature detection device can be provided with 2, 3 or more, for example, and can be displayed in a visualized manner according to the collected temperature signal to guide the ablation operation.
  • the ablation range can be effectively controlled, and the ablation effect can be directly judged or estimated during the operation.
  • the distal end of the electrode 1 is provided with a temperature detection probe.
  • the temperature of the distal end of electrode 1 can be collected, and the distal end of electrode 1 can be extended to correspond to the center position of the lesion during ablation.
  • the relative positional relationship and relative temperature relationship of other temperature detection devices are based on that of electrode 1
  • the distal end is a reference for easy visual comparison.
  • the temperature detection probe can be connected to the ablation apparatus wirelessly or by wired.
  • a mounting groove can be provided at the distal end of the electrode 1, and the temperature detection probe is embedded in the installation groove.
  • a wire channel (avoiding heat exchange medium channel) can be set up inside the electrode 1 for passing the wire between the lead and the ablation instrument.
  • the direct temperature-sensing elements (such as the electrode ring 8) in the temperature detection device should be arranged outside the electrode 1 or exposed to the electrode 1. Unless otherwise specified below, there is a temperature detection device.
  • the description of the axial relative position between the electrode and the electrode should be understood as a direct temperature-sensing element, such as a ring-shaped, sheet-shaped, column-shaped heat-conducting element.
  • the heat-conducting element is used to transfer the temperature to the temperature sensor (the circuit (Thermistors, etc.), or the temperature sensor itself can be directly exposed to electrode 1 (ie, the outside of the RF ablation catheter) as a temperature-sensing component, and its specific shape is not strictly limited. Of course, some preferred or improved ones are also provided below. Implementation.
  • the sheath 1 or the metal tube 21 is butted at the proximal end of the electrode 1, and the temperature detection device is installed outside the electrode 1, or outside the sheath 2, or outside the metal tube 21.
  • the sheet-shaped or column-shaped temperature detection device can be embedded in the outer wall of the electrode 1, and the ring-shaped temperature detection device can be wound and fixed outside the electrode 1, the sheath tube 2, or the metal tube 21.
  • the ring-shaped temperature detection device may be a ring closed in the circumferential direction, or may be non-closed (for example, C-shaped).
  • the temperature detection device can be installed either movably or fixedly. See FIG. 18c.
  • the temperature detection device includes a temperature sensor (omitted in the figure).
  • the outer wall of the RF ablation catheter 211 is provided with an embedded groove 212.
  • the sensor is fixed in the corresponding embedded slot 212, and a first through hole 213 is provided at the bottom of the slot of the embedded slot 212 for penetrating the circuit wires.
  • the fixed installation temperature detection device may be any one or more, and the above installation method is for one of them.
  • the specific installation and fixing methods may be the same or different.
  • the radio frequency ablation catheter 211 in the figure may be a part of the electrode 1, the sheath tube 2, or the metal tube 21 in the foregoing embodiments.
  • the depth of the embedded groove 212 corresponds to the radial size of the temperature sensor.
  • the shape of 212 corresponds to the temperature sensor, that is, the temperature sensor can fill and fill the recessed groove 212 to avoid unnecessary gaps.
  • the recessed groove 212 is annular, and the temperature sensor is fixed around the corresponding recessed groove 212.
  • the fixing method between the temperature sensor and the recessed groove 212 is selected from the group consisting of bonding, welding, riveting, and interference fit. At least one of.
  • the inlay groove 212 surrounds the radio frequency ablation catheter 211 once in the figure, and the corresponding temperature sensor has a ring shape, and its fixing manner is not limited to one or more.
  • the recessed groove 212 may also be a non-closed structure in the circumferential direction, such as a C shape.
  • the temperature sensor can be in the form of a patch, and itself is directly exposed as a temperature sensing element on the outer wall of the radio frequency ablation catheter 211, and the temperature signal collection is more timely and accurate.
  • the temperature detection device includes a temperature sensor (omitted in the figure) and a thermally conductive ring 214, and the temperature sensor is connected to the ablation apparatus.
  • a thermally conductive ring 214 is disposed on the outer wall of the radio frequency ablation catheter 211, and a temperature sensor is thermally coupled to the thermally conductive ring 214.
  • the way of thermal coupling can be direct contact or indirect contact, which can mainly transfer the temperature between the two.
  • the thermally conductive ring 214 itself is not strictly limited to a complete ring shape, and may be a part extending in the circumferential direction. A complete ring is closed in the circumferential direction, such as a circular ring, and a part extending in the circumferential direction is not closed in the circumferential direction, such as a C shape.
  • the temperature sensor is fixed on the outer wall of the heat conducting ring, and the fixing method is selected from at least one of bonding, welding, riveting, and interference fit.
  • the temperature sensor is a thermistor.
  • the thermistor is electrically connected to the ablation apparatus through a thermistor wire, and a temperature-controlling sleeve is sleeved on the thermistor wire.
  • the temperature-controlling sleeve can prevent the thermistor wire from being disturbed.
  • the temperature-controlling sleeve is closely attached to the thermistor wire as a whole, and is located inside the RF ablation catheter.
  • the circuit wires are omitted.
  • the temperature sensor is connected to the ablation apparatus through a wireless communication device.
  • an outer wall of the radio frequency ablation catheter 211 is provided with an embedded groove 212, and the temperature detecting device is fixed in the corresponding embedded groove 212; and a bottom of the groove of the embedded groove 212 is provided with a through hole for leading a circuit wire.
  • a first through hole 213 is provided at the bottom of the groove 212.
  • a part of the heat conducting ring 214 sinks into the first through hole 213, and a second through hole 216 is provided on the sinking part of the heat conducting ring 214.
  • the circuit wire of the temperature sensor enters the inside of the radio frequency ablation catheter 211 through the second through hole 216 and extends proximally.
  • the embedded groove 212 is ring-shaped, and the temperature detection device is fixed around the corresponding embedded groove 212; the temperature detection device and the embedded groove 212 are located there.
  • the fixing manner is selected from at least one of bonding, welding, riveting, and interference fit.
  • the heat-conducting ring 214 has a ring structure, and the heat-conducting ring 214 is disposed in the recess 212.
  • the heat conducting ring 214 has a complete ring structure, and the temperature sensor is further fixed on the inner wall or the outer wall of the heat conducting ring 214.
  • the temperature detecting device has a ring-shaped structure, and the heat-conducting ring 214 and the temperature sensor have complementary shapes in the circumferential direction to form the ring-shaped structure.
  • both the heat conducting ring 214 and the temperature sensor are spliced into a complete ring in the circumferential direction, for example, both of them are semi-circular, and the heat conducting ring 214 is C-shaped, and the temperature sensor just fills the C-shaped gap. That is complementary.
  • the heat sink 214 is provided with a sink 215, and the temperature sensor is fixed in the sink 215.
  • the fixing method between the temperature sensor and the sink 215 is selected from the group consisting of bonding, welding, riveting, and interference. At least one of the fits.
  • a part of the heat conducting ring 214 sinks into the first through hole 213, and a sink groove 215 is also formed correspondingly on the outside of the heat conducting ring 214.
  • the temperature sensor fills and fills the sink groove 215 to avoid unnecessary gaps.
  • the outer surface and the periphery of the temperature detection device are flush with each other.
  • At least one temperature detecting device is located in the middle of the electrode 1 in the axial direction.
  • a temperature field is formed with the electrode as the center, and at least one temperature detection device is located at the center of the temperature field. On the one hand, it can sense the temperature change in the area. In addition, it can cooperate with other temperature detection devices. According to the difference between them, Further calibrate and clarify the distribution of the above temperature field.
  • At least one temperature detection device is fixed around the periphery of the radio frequency ablation catheter.
  • the specific part where the temperature detection device is wound may be the outer wall of the electrode 1, the sheath tube 2, or the metal tube 21.
  • the temperature detection device includes a first temperature detection device, a second temperature detection device, and a third temperature detection device that are spaced from the distal end to the proximal end.
  • a first temperature detecting device at an end of the distal end of the electrode 1;
  • the second temperature detection device is wound and fixed outside the electrode 1, the sheath tube 2, or the metal tube 21, and is located at the distal end of the first temperature detection device;
  • the third temperature detection device is wound and fixed outside the electrode 1, the sheath tube 2, or the metal tube 21, and is located at the distal end of the second temperature detection device.
  • the first temperature detection device is a sheet or a column
  • the second temperature detection device and the third temperature detection device are both in a ring shape.
  • the patch may be fixed on the outer wall of the electrode 1, the sheath tube 2, or the metal tube 21.
  • the second temperature detection device and the third temperature detection device are located outside the sheath tube 2 or the metal tube 21; when the electrode 1 is slightly longer, the second temperature detection device The device is located outside the electrode 1, and the third temperature detection device is located outside the sheath tube 2 or the metal tube 21. When the electrode 1 is further lengthened, the second temperature detection device and the third temperature detection device are located outside the electrode 1.
  • the detection position corresponding to the temperature detection probe at the distal end of the electrode 1 is A0
  • the detection position corresponding to the first temperature detection device is A1
  • the detection position corresponding to the second temperature detection device is A2
  • the third temperature The detection position corresponding to the detection device is A3.
  • A0 can also be regarded as a heating center, that is, the part with the highest temperature, the farther away from A0, the temperature will gradually decrease.
  • the temperature in a region with a radius of R1 for example, 1cm
  • the radius of R2 for example, 1.5cm
  • the area edge temperature of can generally reach 43-60 ° C, which can still meet the needs of ablation treatment, while the area edge temperature of radius R3 (for example, 2cm) is further reduced to fail to meet the needs of ablation treatment, and is for monitoring and reference only.
  • multiple temperature detection devices can be fixed in advance, that is, different specifications of RF ablation catheters are configured according to different distances. Select the appropriate size for the volume of the lesion.
  • the shape and size of the lesion site to be ablated are different.
  • the axial position of at least one temperature detection device is adjustable.
  • Changing the position of the temperature detection device means changing the detection position relative to the distal end of the electrode, for example, the axial position of the second temperature detection device in the above embodiment is adjustable, or the axial positions of the second temperature detection device and the third temperature detection device are both Adjustable.
  • the temperature detection position or monitoring area can be changed to adapt to the size of the lesion.
  • a cooperating guide structure is provided between the radio frequency ablation catheter and the temperature detection device.
  • an outer wall of an electrode, a sheath tube, or a metal tube is provided with a chute arranged in an axial direction, and a temperature detection device surrounds the outer wall of the electrode, sheath, or metal tube, and is disposed on an inner wall of the temperature detection device.
  • a protrusion that cooperates with the chute.
  • the cooperation of the protrusion and the chute guides the movement of the temperature detection device and prevents relative rotation with the electrode.
  • the temperature detection device After the temperature detection device is in place, if it is fixed outside the body, the temperature detection device can be riveted and fixed to the electrode by using local pressure of matched pliers, and it can also be fixed by welding or other methods.
  • the adjustment method of the temperature detection device may be a traction method similar to the pull wire 10, for example, in one embodiment, a pull cable is connected to the temperature detection device with adjustable axial position. The temperature detection device is driven by the drag cable to change the axial position relative to the electrode 1.
  • the traction cord penetrates the inside of the radio frequency ablation catheter from the connected temperature detection device, and extends proximally to the end through the inside of the radio frequency ablation catheter.
  • the inside of the radio frequency ablation catheter may be the inside of an electrode, sheath, or metal tube.
  • the main part of the traction cord extends inside the radio frequency ablation catheter to avoid contact with tissues in the body and eliminate the hidden danger of cutting tissue.
  • the traction rope extends towards the proximal end, which is adjacent to the operator, which facilitates traction control.
  • An adjustment component can be configured at the proximal end of the traction rope, and the traction rope is driven by operating the adjustment component.
  • the radio frequency ablation catheter further includes a first adjustment component and a second adjustment component capable of relative movement, wherein the electrode 1 is relatively fixed to the first adjustment component, and a traction cable is connected to the second adjustment component, and the first adjustment component and The temperature detection device connected to the traction cable drive changes the axial position of the second adjusting component relative to the electrode 1 during relative movement.
  • the distance between at least a part of the area will change, which may be axial or circumferential or at least have a certain direction component.
  • the first adjustment component and the second adjustment component slide fit or rotate fit.
  • a sliding fit can be understood as an axial relative movement; a rotary fit can be understood as a relative movement at least in the circumferential direction, such as an axial limit rotation or a threaded rotation fit.
  • the first adjustment component can be combined with the aforementioned first bending component, or even the same component, and the sheath tube 2 is fixed on the distal side of the component.
  • the radio frequency ablation catheter further includes a first pull-bend component 4 and a second pull-bend component 5 that can be relatively close to or away from each other.
  • the electrode 1 is relatively fixed to the first pull-bend component 4 and the second pull-bend A pull wire 10 is connected between the component 5 and the electrode;
  • the radio frequency ablation catheter further includes a first adjustment component and a second adjustment component capable of relative movement, wherein the electrode 1 is relatively fixed to the first adjustment component, a traction cable is connected to the second adjustment component, and the first adjustment component and the second adjustment component are relatively moved.
  • the temperature detection device connected to the traction rope drive changes the axial position relative to the electrode 1 at the time;
  • the first bending component 4 and the first adjusting component are configured separately or are the same component.
  • the second adjustment component and the second pull-bend component move independently relative to the first pull-bend component, and the second adjustment component and the second pull-bend component also have independent movement forms, for example, one is sliding and the other is rotating .
  • the temperature detection device also needs to be adjusted in the body, in order to obtain the position of the temperature detection device relative to the electrode, the method of near-end calibration of the moving distance of the traction rope can be adopted, or the temperature detection device itself is a developing material, and the temperature detection device is calculated from the image. To the position of the electrode.
  • a pressure sensor 17 for detecting a change in the contact pressure between the electrode 1 and the ablation tissue is also provided in the electrode 1.
  • the pressure sensor 17 is preferably welded and fixed in the electrode 1 and connected to the ablation instrument connector 7.
  • the pressure sensor 17 senses the pressure change at the electrode 1 and transmits it to the ablation
  • the instrument under the guidance of bronchial navigation, through the bronchoscope's clamping channel, through the hole punctured by the bronchial wall near the lesion in advance to enter the ablation tissue, thereby more effectively judging the accurate position of electrode 1 and improving the positioning accuracy of electrode 1 .
  • one end of the electrode 1 facing the installation direction of the sheath tube 2 is provided with a first mounting hole 102, a second mounting hole 103, and a third mounting hole.
  • 104 and the fourth mounting hole 105, the thermistor 9, the pull wire 10, the pressure sensor 17, and the lead 16 are respectively installed in the four mounting holes.
  • a fifth mounting hole may be further provided for connecting the traction rope. When there are multiple traction ropes, a corresponding number of mounting holes are provided.
  • some embodiments of the present application further provide radio frequency ablation methods, including:
  • Step S100 Obtain a temperature parameter during the ablation process
  • Step S110 Compare the temperature parameter with a temperature threshold.
  • Step S120 When the temperature parameter and the temperature threshold meet a set relationship, send an ablation stop instruction.
  • some embodiments of the present application further provide a method for temperature monitoring of radio frequency ablation, including:
  • Step S100 Obtain a temperature parameter during the ablation process
  • Step S110 Compare the temperature parameter with a temperature threshold.
  • Step S120 When the temperature parameter and the temperature threshold meet a set relationship, send an ablation stop instruction.
  • some embodiments of the present application further provide a method for controlling radio frequency ablation, including:
  • Step S100 Obtain a temperature parameter during the ablation process
  • Step S110 Compare the temperature parameter with a temperature threshold.
  • Step S120 When the temperature parameter and the temperature threshold meet a set relationship, send an ablation stop instruction.
  • step S100 Before step S100, first locate the end of the RF ablation catheter near the tumor cell or diseased cell, and puncture into the cell. Generally, the distal end of the electrode can be made to correspond to the center of the lesion site, and then the electrode is powered to start ablation.
  • the acquired temperature parameters can be collected in real time by using the aforementioned thermistor 9 or a temperature detection device (hereinafter also collectively referred to as a temperature detection device), and the specific collection method can also be implemented in combination with other existing technologies.
  • the temperature parameter has a corresponding detection location in space, that is, the location where the temperature detection device is located.
  • the prior art also adopts a method or method for obtaining the temperature parameter, it is mostly limited to the location of the electrode.
  • the temperature parameter includes an edge temperature parameter, and the distance between the detection site corresponding to the edge temperature parameter and the distal end of the electrode is L; and L0 ⁇ L is satisfied, where L0 is the predicted lesion Site radius
  • the setting relationship includes that an edge temperature parameter reaches the temperature threshold and maintains a preset time interval.
  • the conventional ablation operation generally presets the ablation time and stops the ablation after the time is reached, but the ablation effect cannot be guaranteed.
  • determining the ablation endpoint by changing the temperature at a specified position in the temperature field can further ensure the ablation effect.
  • the temperature parameter further includes a first temperature parameter, and a distance between a detection site corresponding to the first temperature parameter and a distal end of the electrode is L1; and L1 ⁇ L0 is satisfied, where L0 is Predicted lesion site radius.
  • the setting relationship further includes that the first temperature parameter reaches 60-100 degrees.
  • the detection site corresponding to the first temperature parameter is located inside the lesion site.
  • the ablation process inside the lesion site can be reflected, for example, it can be judged whether it is close to the end point of the ablation.
  • the edge temperature parameter includes a third temperature parameter, and the distance between the detection site corresponding to the third temperature parameter and the distal end of the electrode is L3; and L0 ⁇ L3 is satisfied, where L0 is Predicted lesion site radius.
  • a radio frequency ablation catheter is directly inserted into a lesion (a mass of a diseased tissue), and the electrodes in the radio frequency ablation catheter are energized to make the temperature in the tissue exceed 60 ° C, and the cells die, resulting in a necrotic area ; If the local tissue temperature exceeds 100 °C, coagulation and necrosis of the tumor tissue and the surrounding organs occur, a large spherical coagulation necrosis area can be generated during treatment, and there is a heat treatment area of 43-60 ° C outside the coagulation necrosis area. In this area, cancer cells can be killed and normal cells can be recovered.
  • the setting relationship is that the third temperature parameter reaches the temperature threshold and maintains a preset time interval; the temperature threshold is 43-60 ° C, and the time interval is not less than 3 minutes .
  • the temperature threshold corresponding to the third temperature parameter may be set to be close to or equal to 60 ° C, for example, 55 to 60 ° C.
  • the third temperature parameter is 43-60 ° C, it means that the outer edge of the lesion site has reached this temperature, and either the stop ablation instruction can be sent immediately after reaching this temperature, or the stop ablation instruction can be sent after a predetermined time delay.
  • the setting relationship further includes that the second temperature parameter reaches 60-90 degrees.
  • the radius of the detection site corresponding to the second temperature parameter is approximately the same as the radius of the lesion site, and the temperature of the outer edge of the lesion site can be accurately known, which facilitates accurate temperature monitoring.
  • the temperature parameter further includes a remote temperature parameter, and a detection site corresponding to the remote temperature parameter is a distal end of the electrode.
  • the setting relationship further includes that the remote temperature parameter reaches 60-100 degrees.
  • the temperature parameters include:
  • a remote temperature parameter, the detection site corresponding to the remote temperature parameter is the distal end of the electrode
  • a first temperature parameter, and a distance between a detection site corresponding to the first temperature parameter and a distal end of the electrode is L1;
  • a second temperature parameter, the distance between the detection site corresponding to the second temperature parameter and the distal end of the electrode is L2;
  • a third temperature parameter, the distance between the detection site corresponding to the third temperature parameter and the distal end of the electrode is L3;
  • L1 ⁇ L0 L2 ⁇ L3, where L0 is the predicted radius of the lesion site.
  • Collecting the temperature corresponding to multiple parts can monitor the temperature field near the electrode and the area around the lesion during the ablation process.
  • the distal end of the electrode corresponds to the position of the center of the lesion
  • the peripheral temperature distribution with the center of the lesion as the origin can be obtained. Gradient changes may indicate the ablation process.
  • the radius of the lesion can be measured in advance by imaging equipment, etc., and the approximate radius can be calculated. The temperature detection of multiple parts can accurately know the progress of detection ablation, and further ensure the ablation effect.
  • the method further includes visualizing the temperature distribution around the electrode according to the temperature parameter during the ablation process.
  • various types of icons or three-dimensional shapes can be used to simulate and display the temperature field changes around the electrode's distal end.
  • the point M is the distal end of the electrode 1, and the point M is the body center of the lesion during ablation;
  • Point M is the distal end of the electrode, and what is collected from point M is the remote temperature parameter
  • the distance between the point X1 and the point M is L1, and the first temperature parameter is collected from the point X1;
  • the distance between the point X2 and the point M is L2, and the second temperature parameter is collected from the point X2;
  • the radius of the lesion site L0 L2;
  • the distance between the point X3 and the point M is L3, and the third temperature parameter is collected from the point X3;
  • the temperature field diagram as shown in Fig. 19b can be drawn and displayed according to the change of various temperature parameters. Different hatched areas mean different temperatures, and different colors can be used to distinguish them during actual display. According to the change of temperature, the display color is changed accordingly, for example, the color gradually deepens or the color changes from cool to warm as the temperature increases.
  • the first temperature parameter reaches the temperature threshold, but the second temperature parameter does not reach the temperature threshold, it may be determined that the ablation is in progress;
  • the third temperature parameter reaches the temperature threshold and can be maintained for a certain time (usually 3 minutes), and it can be determined that the ablation is completed.
  • the detection site corresponding to the third temperature parameter is located in the peripheral area of the lesion, monitoring the ablation endpoint through the third temperature parameter can ensure the ablation effect.
  • the radio frequency ablation catheter of the foregoing embodiment is used during radio frequency ablation, and the first temperature parameter, the second temperature parameter, and the third temperature parameter are collected from the first temperature detection device, the second temperature detection device, and the third temperature respectively.
  • the remote temperature parameters are collected from a temperature detection probe installed at the distal end of the electrode.
  • a temperature detection probe, a first temperature detection device, a second temperature detection device, and a third temperature detection device are installed on the radio frequency ablation catheter of the foregoing embodiment.
  • the temperature detection probe is installed at the distal end of the electrode, and the positions of the other three temperature detection devices are arranged in sequence from the distal end to the proximal end.
  • the distances between the three and the distal end of the electrode correspond to L1, L2, and L3, respectively.
  • L3 1.5cm
  • L1 one half (0.5cm) of L0.
  • the position of the adjustment electrode is then issued a second ablation instruction.
  • the position of the adjustment electrode can be performed in accordance with the pulling method of the foregoing related embodiments, or it can be directly advanced or retracted.
  • the radiofrequency ablation catheter ends the ablation procedure until the temperature parameter reaches a temperature threshold.
  • each step in the method flow is not necessarily performed sequentially in the order of description or drawings. Unless explicitly stated in this document, the execution of these steps is not strictly limited, and these steps can be performed in other orders. Moreover, at least a part of the steps may include multiple sub-steps or stages. These sub-steps or stages are not necessarily performed at the same time, but may be performed at different times. The execution order of these sub-steps or stages is not necessarily It is performed sequentially, but may be performed in turn or alternately with at least a part of other steps or sub-steps or stages of other steps.
  • Some embodiments of the present application further provide a radiofrequency ablation device, including:
  • a third module is configured to send a stop ablation instruction when the temperature parameter and the temperature threshold value meet a set relationship.
  • radio frequency ablation control device including:
  • a third module is configured to send a stop ablation instruction when the temperature parameter and the temperature threshold value meet a set relationship.
  • radio frequency ablation temperature monitoring device including:
  • a third module is configured to send a stop ablation instruction when the temperature parameter and the temperature threshold value meet a set relationship.
  • Each module in the above-mentioned radiofrequency ablation device may be implemented in whole or in part by software, hardware, and a combination thereof.
  • the above-mentioned modules may be embedded in the hardware form or independent of the processor in the computer device, or may be stored in the memory of the computer device in the form of software, so that the processor calls and performs the operations corresponding to the above modules.
  • Some embodiments of the present application further provide a computer device, such as a radio frequency ablation device, including a memory and a processor.
  • a computer device such as a radio frequency ablation device, including a memory and a processor.
  • the memory stores a computer program
  • the processor implements the steps of the radio frequency ablation method when the processor executes the computer program.
  • Step S100 Obtain a temperature parameter during the ablation process
  • Step S110 Compare the temperature parameter with a temperature threshold.
  • Step S120 When the temperature parameter and the temperature threshold meet a set relationship, send an ablation stop instruction.
  • Some embodiments of the present application further provide a computer device, such as a radio frequency ablation temperature monitoring device, including a memory and a processor.
  • the memory stores a computer program
  • the processor implements the radio frequency ablation when the computer program is executed. Steps of a temperature monitoring method. Examples include:
  • Step S100 Obtain a temperature parameter during the ablation process
  • Step S110 Compare the temperature parameter with a temperature threshold.
  • Step S120 When the temperature parameter and the temperature threshold meet a set relationship, send an ablation stop instruction.
  • Some embodiments of the present application further provide a computer device, such as a radio frequency ablation control device, including a memory and a processor.
  • a computer device such as a radio frequency ablation control device, including a memory and a processor.
  • the memory stores a computer program
  • the processor implements the radio frequency ablation control when the computer program is executed.
  • Step S100 Obtain a temperature parameter during the ablation process
  • Step S110 Compare the temperature parameter with a temperature threshold.
  • Step S120 When the temperature parameter and the temperature threshold meet a set relationship, send an ablation stop instruction.
  • radio frequency ablation devices As computer equipment, for specific definitions and related details of radio frequency ablation devices, radio frequency ablation control devices, and radio frequency ablation temperature monitoring devices, please refer to the above definitions of radio frequency ablation methods, radio frequency ablation control methods, and radio frequency ablation temperature monitoring methods. , Will not repeat them here.
  • the above computer equipment may be a terminal, and its internal structure diagram may be as shown in FIG. 20.
  • the computer equipment includes a processor, a memory, a network interface, a display screen, and an input device connected through a system bus.
  • the processor of the computer device is used to provide computing and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores an operating system and a computer program.
  • the internal memory provides an environment for running an operating system and computer programs in a non-volatile storage medium.
  • the network interface of the computer device is used to communicate with an external terminal through a network connection.
  • the display screen of the computer device may be a liquid crystal display screen or an electronic ink display screen.
  • the input device of the computer device may be a touch layer covered on the display screen, or a button, a trackball, or a touchpad provided on the computer device casing. , Or an external keyboard, trackpad, or mouse.
  • FIG. 20 is only a block diagram of a part of the structure related to the scheme of the present application, and does not constitute a limitation on the computer equipment to which the scheme of the present application is applied.
  • the specific computer equipment may be Include more or fewer parts than shown in the figure, or combine certain parts, or have a different arrangement of parts.
  • a computer-readable storage medium on which a computer program is stored.
  • the steps of the radio frequency ablation method described above are implemented. Examples include:
  • Step S100 Obtain a temperature parameter during the ablation process
  • Step S110 Compare the temperature parameter with a temperature threshold.
  • Step S120 When the temperature parameter and the temperature threshold meet a set relationship, send an ablation stop instruction.
  • a computer-readable storage medium on which a computer program is stored.
  • the steps of the above-mentioned radio frequency ablation temperature monitoring method are implemented. Examples include:
  • Step S100 Obtain a temperature parameter during the ablation process
  • Step S110 Compare the temperature parameter with a temperature threshold.
  • Step S120 When the temperature parameter and the temperature threshold meet a set relationship, send an ablation stop instruction.
  • a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps of the control method for radio frequency ablation described above are implemented. For example
  • Step S100 Obtain a temperature parameter during the ablation process
  • Step S110 Compare the temperature parameter with a temperature threshold.
  • Step S120 When the temperature parameter and the temperature threshold meet a set relationship, send an ablation stop instruction.
  • Non-volatile memory may include read-only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory can include random access memory (RAM) or external cache memory.
  • RAM is available in various forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), dual data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Synchlink DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM).
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDRSDRAM dual data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous chain Synchlink DRAM
  • Rambus direct RAM
  • DRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM
  • the radiofrequency ablation catheters of the above embodiments are preferably applied to radiofrequency ablation of the lungs, that is, it can be understood that a radiofrequency ablation catheter of the lungs, a corresponding ablation method and device, and a corresponding ablation control method and control device are preferably provided. And corresponding temperature monitoring method and temperature monitoring device.
  • One embodiment of the present application further provides a lung radiofrequency ablation system.
  • the radiofrequency ablation system of the lung can and preferably uses the radiofrequency ablation catheter of the above embodiments.
  • the radiofrequency ablation catheter of the above embodiments is used, for related structural features and method flows, reference may be made to the foregoing embodiments, which are not repeated in this embodiment.
  • a radiofrequency ablation system for lungs including:
  • Radio frequency ablation catheter (the radio frequency ablation catheter in the foregoing embodiments may be used);
  • a heat exchange medium delivery device for providing a heat exchange medium to an electrode peripheral portion of a radio frequency ablation catheter
  • the control module of the heat transfer medium delivery device is driven accordingly according to the impedance information of the circuit in which the electrode is located in the radio frequency ablation catheter.
  • the heat exchange medium can be used for protection.
  • the real-time output of the heat exchange medium can be adjusted according to the change of the electrode circuit impedance information.
  • the electrode forms a loop when it works, and the measurement and calculation of the impedance in the loop itself can be implemented by using the existing technology.
  • the heat transfer medium Corresponding control logic is established between the output and the impedance information.
  • the impedance information is a more direct electrical signal, which facilitates real-time monitoring and avoids lag.
  • the impedance information feedback is more timely, it can maintain the stable output of the electrode, that is, it is not necessary to frequently adjust the electrode drive signal according to the temperature of the lesion site, and the ablation process is stable and easy to control.
  • the electrode driving signal is maintained during the ablation process.
  • the electrode driving signal comes from the ablation apparatus and is transmitted to the electrode through a circuit.
  • the electrode driving signal itself is concerned, conventional techniques can be used, which is not the focus of improvement in this application.
  • the radiofrequency ablation system of the lung further includes a temperature detection device that collects temperature information of the peripheral part of the electrode, and the control module is further configured to prompt or control the ablation process according to the temperature information.
  • the temperature around the electrodes reflects the ablation process to a certain extent.
  • the lesion area can be deactivated after heating for a period of time.
  • the control module can output a prompt command or output a stop ablation command to stop the electrode operation.
  • the control module may output a prompt instruction for alarm.
  • the temperature detection device is one or more, and the position of the at least one temperature detection device (that is, the temperature information collection point) is 0.5 to 3 cm from the electrode. It is preferably 1 to 2 cm, such as 1.5 cm.
  • At least one temperature information collection point should be at a distance from the electrode, which can reflect the ablation process in a space with the distance as a radius.
  • the peripheral part of the electrode is in a three-dimensional space centered on the electrode, but the impedance sensor and the temperature detection device can be configured separately.
  • the preferred way is to integrate the electrode and the RF ablation catheter to maintain the relative position with the electrode.
  • the control module drives the heat exchange medium conveying device to adjust the heat exchange medium flow rate.
  • the heat transfer medium conveying device may include conventional fluid conveying devices such as containers, pipelines, pumps, valves, and flow meters. At least the device can adjust the heat transfer medium conveying amount, such as a controlled valve or pump.
  • the control module passes the corresponding The control instructions regulate the amount of heat transfer medium delivered. After the flow of the heat transfer medium changes, the impedance information collected changes accordingly.
  • control module compares the impedance information with a threshold value, and makes the impedance information approach a steady state impedance by adjusting the flow of the heat exchange medium.
  • the two are continuously compared according to a certain sampling period during operation, and the heat exchange medium flow is adjusted accordingly according to the magnitude relationship between the two to achieve closed-loop control.
  • the threshold may be a numerical point or a numerical range.
  • the impedance information is compared with the upper and lower limits of the numerical range so that the impedance information is within the numerical range.
  • the steady-state impedance is calibrated at the initial stage, and the threshold is calculated according to the steady-state impedance.
  • the impedance information may be an impedance value or other parameters related to the impedance value, and the form of the threshold value corresponds to it so as to facilitate comparison with each other. For example, if the impedance value is higher than the threshold value, it means that the flow of the heat exchange medium needs to be increased to further improve the infiltration or cooling effect, and vice versa.
  • the calibration method of the steady-state impedance is that after the radio frequency ablation catheter is in place in the body and before the electrode is powered, the heat exchange medium is output at the initial flow rate, and the impedance information is collected in real time. The value of is recorded as the steady-state impedance.
  • the initial flow rate of the initial heat exchange medium (for example, 0.5 ml / min) can be determined according to experience or historical data.
  • the impedance information will fluctuate, such as perfusion
  • the physiological saline may cause the impedance information to decrease.
  • the impedance information is collected in real time. When the impedance information no longer decreases and remains stable, the impedance information at this time is the steady-state impedance.
  • the upper and lower thresholds are the upper and lower impedances, respectively.
  • the upper and lower impedances can be calculated in conjunction with the steady-state impedance, and even the steady-state impedance itself can be used.
  • the lower-limit impedance can also be the steady-state impedance itself.
  • the specific calculation method of the upper and lower impedances can be determined according to empirical data or the personal situation of the patient.
  • the threshold value is a range of values.
  • the control module also collects impedance information in real time and judges the change trend of the impedance information, and changes the adjustment range of the heat exchange medium flow rate or Select one of the upper threshold and the lower threshold for comparison.
  • the adjustment of the heat transfer medium flow is generally adjusted according to a certain step gap. Maintaining the current flow or further changing the flow can be judged by the change trend of the impedance information.
  • the change trend of the impedance information can be up or down. For example, when increasing the flow rate of the heat exchange medium, the expected purpose is to reduce the impedance information. If the change trend of the impedance information is still rising, then the flow rate of the heat exchange medium can be further increased, which is Regarding the initial flow of the medium, the adjustment range is further increased.
  • the collected impedance information can be directly compared with the lower threshold to determine whether the flow of the heat exchange medium needs to be reduced.
  • a lung radiofrequency ablation method including:
  • Step S500 Receive impedance information collected from an electrode loop during ablation
  • step S510 a corresponding control instruction is generated according to the impedance information, so as to adjust the flow rate of the heat exchange medium at the periphery of the electrode.
  • a method for monitoring impedance of lung radiofrequency ablation including:
  • Step S500 Receive impedance information collected from an electrode loop during ablation
  • step S510 a corresponding control instruction is generated according to the impedance information, so as to adjust the flow rate of the heat exchange medium at the periphery of the electrode.
  • a method for controlling radiofrequency ablation of a lung including:
  • Step S500 Receive impedance information collected from an electrode loop during ablation
  • step S510 a corresponding control instruction is generated according to the impedance information, so as to adjust the flow rate of the heat exchange medium at the periphery of the electrode.
  • step S500 further includes pre-calibrating a steady-state impedance, and a threshold is calculated based on the steady-state impedance. The threshold is used to compare with the impedance information in step S510 to generate a corresponding control instruction.
  • the calibration method of the steady-state impedance is: after the radio frequency ablation catheter is in place in the body, and before the electrode is powered, the heat exchange medium is output at the initial flow rate, and the impedance information is collected in real time. The value is recorded as the steady-state impedance.
  • step S510 generating a corresponding control instruction according to the impedance information specifically includes:
  • Step S511 Compare the impedance information with a threshold, and determine the increase or decrease of the flow rate according to the relationship between the impedance information and the threshold.
  • Step S512 according to the increase or decrease of the flow rate, a corresponding control instruction is generated according to a predetermined increase or decrease range.
  • Determining the increase or decrease of the flow is understood as the expected change or demand of the flow, for example, to further increase the flow based on the current flow, or to further reduce the flow based on the current flow, and the increase or decrease can be preset. long.
  • the flow rate when the current flow rate is X ml / s, when the flow rate is further increased, by sending a control instruction to the heat transfer medium conveying device, the flow rate becomes X + Y ml / s, and Y can be regarded as an increase. Similarly.
  • the increase and decrease amplitudes are each independently a fixed value or a dynamic value.
  • the increase or decrease can be either a fixed value or a dynamic value, for example, it is related to the current impedance information, or the difference between the impedance information and the threshold is set to Z, and the increase or decrease is a dynamic value and related to Z. For example, the closer the current impedance information is to the threshold, the smaller the increase or decrease, so that the control is finer and the feedback lag is reduced as much as possible.
  • the relationship between the impedance information and the threshold can be a simple numerical comparison, or it can meet other functional relationships. This is related to the impedance information and the specific physical parameters, variations and even units of measurement selected for the threshold.
  • the impedance information and the threshold are both impedance values, and the unit is ohm. This makes it easy to compare and measure and calculate impedance values.
  • the threshold value is a range of values.
  • step S511 when it is determined to increase the flow rate, a first control instruction is generated in step S512, and the flow rate of the heat exchange medium corresponding to the first control instruction is greater than the current flow rate;
  • step S511 when it is determined to reduce the flow rate, a second control instruction is generated in step S512, and the flow rate of the heat exchange medium corresponding to the second control instruction is less than the current flow rate.
  • the control instruction itself can directly change the speed of the pump, the opening of the valve, etc. as an electrical signal.
  • the actions of these controlled devices also correspond to the change in the flow rate of the heat exchange medium. Therefore, the form of the control instruction itself is not strictly limited, but it can at least correspond to The flow rate of the heat transfer medium flow changes.
  • the collection of impedance information is real-time, which can also be understood as following a predetermined sampling period and continuously comparing with the threshold, these operations run through the ablation process. That is, steps S500 and S510 are cyclically operated.
  • step S500 and step S510 are executed cyclically according to the sampling period of the impedance information
  • the impedance information is collected and compared with the impedance information of the previous sampling cycle to determine the change trend of the impedance information before the impedance information is compared with the threshold value.
  • the change trend of the impedance information correspondingly change the adjustment range of the heat exchange medium flow rate or select one of the upper threshold value and the lower threshold value for comparison.
  • control instruction in the previous sampling cycle may be the first control instruction or the first control instruction.
  • different types of control instructions can choose different judgment methods in the next cycle, for example:
  • the impedance information is compared with the impedance information of the previous sampling period before the impedance information is compared with the threshold value to determine the impedance information.
  • the impedance information of the current sampling period is compared with the lower threshold.
  • the impedance information is compared with the impedance information in the previous sampling period before the impedance information is compared with the threshold value in the next period. Judging the change trend of impedance information;
  • the impedance information of the current sampling period is compared with the upper threshold value.
  • the end of the ablation process can be either at a preset time or according to the temperature of the electrode or the lesion site. In one embodiment, it also includes using the radio frequency ablation method, control method or impedance monitoring method in the foregoing embodiment to prompt or control. Ablation process.
  • Step S100 Obtain a temperature parameter during the ablation process
  • Step S110 Compare the temperature parameter with a temperature threshold.
  • Step S120 When the temperature parameter and the temperature threshold meet a set relationship, send an ablation stop instruction. Specific steps related to temperature monitoring may be combined with the foregoing related embodiments.
  • the temperature parameters collected from the peripheral part of the electrode are received in real time during the ablation process, and the ablation process is prompted or controlled according to the temperature parameters.
  • the temperature around the electrodes reflects the ablation process to a certain extent.
  • the lesion area can be deactivated after heating for a period of time.
  • the control module can output a prompt command or output a stop ablation command to stop the electrode operation.
  • the control module may output a prompt instruction for alarm.
  • the collection point of the temperature parameter is 0.5 to 3 cm away from the electrode; after the temperature parameter reaches 43 to 60 ° C. and is maintained for a preset time, an ablation stop instruction is sent.
  • the stop ablation command can either directly disconnect the electrode power, or give a prompt message, use temperature parameters to prompt or control the ablation process, and logically use impedance information to control the flow of the heat exchange medium. There is no correlation. Use impedance information to control the heat exchange medium.
  • the flow focuses on the regulation of the ablation process, and the use of temperature information to prompt or control the ablation process only involves intervention at important process nodes, for example, by stepping out of the circuit or prompting when steps S500 and S510 are performed in a loop.
  • a process of a radiofrequency ablation method or a control method of a lung includes perfusion of a heat exchange medium at an initial flow rate, and the heat exchange medium flows out of a moisturizing cover outside the electrode to form a protective film.
  • the impedance change is collected and monitored at any time. When the impedance is stable, the current impedance is the steady state impedance.
  • the electrodes start to ablate when they are energized, and the impedance information is collected in real time.
  • the obtained impedance information is continuously compared with the threshold value and a corresponding control instruction is generated to adjust the flow of the heat transfer medium.
  • the threshold value is a range, and the lower impedance can be a steady-state impedance.
  • the impedance rises.
  • a first control instruction is generated and sent, that is, the flow of the heat exchange medium is increased;
  • the impedance information of the next sampling period is compared with the impedance information of the previous sampling period to determine whether the impedance has risen. If it is still rising, the first control instruction is generated and sent again, that is, the heat exchange medium flow is further increased;
  • the impedance information in the next sampling period is compared with the impedance information in the previous sampling period to determine whether the impedance has dropped. If it is still falling, a second control command is generated and sent again, that is, to further reduce the heat transfer medium flow rate until the impedance starts rise.
  • each step in the above lung radiofrequency ablation method and control method of lung radiofrequency ablation is not necessarily performed sequentially in the order of the description or the drawings. Unless explicitly stated in this document, the execution of these steps is not strictly limited, and these steps can be performed in other orders. Moreover, at least a part of the steps may include multiple sub-steps or stages. These sub-steps or stages are not necessarily performed at the same time, but may be performed at different times. The execution order of these sub-steps or stages is not necessarily It is performed sequentially, but may be performed in turn or alternately with at least a part of other steps or sub-steps or stages of other steps.
  • this embodiment provides a lung radiofrequency ablation device, including:
  • An acquisition module configured to receive impedance information collected from an electrode loop during an ablation process
  • An adjustment module is configured to generate a corresponding control instruction according to the impedance information, so as to adjust the flow of the heat exchange medium at the peripheral part of the electrode.
  • this embodiment provides an impedance monitoring device for pulmonary radiofrequency ablation, including:
  • An acquisition module configured to receive impedance information collected from an electrode loop during an ablation process
  • An adjustment module is configured to generate a corresponding control instruction according to the impedance information, so as to adjust the flow of the heat exchange medium at the peripheral part of the electrode.
  • this embodiment provides a control apparatus for radiofrequency ablation of the lung, including:
  • An acquisition module configured to receive impedance information collected from an electrode loop during an ablation process
  • An adjustment module is configured to generate a corresponding control instruction according to the impedance information, so as to adjust the flow of the heat exchange medium at the peripheral part of the electrode.
  • each module in the above-mentioned lung radiofrequency ablation device and control device for lung radiofrequency ablation may be implemented in whole or in part by software, hardware, and a combination thereof.
  • the above-mentioned modules may be embedded in the hardware form or independent of the processor in the computer device, or may be stored in the memory of the computer device in the form of software, so that the processor calls and performs the operations corresponding to the above modules.
  • Some embodiments of the present application also provide a computer device, such as a lung radiofrequency ablation device, including a memory and a processor.
  • the memory stores a computer program
  • the processor executes the computer program to implement the radiofrequency ablation of the lung.
  • Method steps include:
  • Step S500 Receive impedance information collected from an electrode loop during ablation
  • step S510 a corresponding control instruction is generated according to the impedance information, so as to adjust the flow rate of the heat exchange medium at the periphery of the electrode.
  • Some embodiments of the present application also provide a computer device, for example, an impedance monitoring device for radiofrequency ablation of a lung, which includes a memory and a processor.
  • the memory stores a computer program
  • the processor implements the computer program when the computer program is executed. Steps of impedance monitoring method for RF ablation. Examples include:
  • Step S500 Receive impedance information collected from an electrode loop during ablation
  • step S510 a corresponding control instruction is generated according to the impedance information, so as to adjust the flow rate of the heat exchange medium at the periphery of the electrode.
  • Some embodiments of the present application further provide a computer device, for example, a control device for radiofrequency ablation of a lung, including a memory and a processor.
  • the memory stores a computer program
  • the processor implements the lung program when the computer program is executed. Steps of a radiofrequency ablation control method. Examples include:
  • Step S500 Receive impedance information collected from an electrode loop during ablation
  • step S510 a corresponding control instruction is generated according to the impedance information, so as to adjust the flow rate of the heat exchange medium at the periphery of the electrode.
  • radiofrequency ablation device for lungs As a computer device, for specific definitions and related details of a radiofrequency ablation device for lungs and a control apparatus for radiofrequency ablation of lungs, reference may be made to the definitions of the radiofrequency ablation method for lungs and the control method for radiofrequency ablation of lungs, and details are not described herein again.
  • the radiofrequency ablation device of the lung and the radiofrequency ablation control device of the lung may be a terminal, and the internal structure diagram thereof may be as shown in FIG. 20.
  • the computer equipment includes a processor, a memory, a network interface, a display screen, and an input device connected through a system bus.
  • the processor of the computer device is used to provide computing and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores an operating system and a computer program.
  • the internal memory provides an environment for running an operating system and computer programs in a non-volatile storage medium.
  • the network interface of the computer device is used to communicate with an external terminal through a network connection.
  • the computer program is executed by a processor to implement the radio frequency ablation method or the radio frequency ablation control method described above.
  • the display screen of the computer device may be a liquid crystal display screen or an electronic ink display screen.
  • the input device of the computer device may be a touch layer covered on the display screen, or a button, a trackball, or a touchpad provided on the computer device casing. , Or an external keyboard, trackpad, or mouse.
  • FIG. 20 is only a block diagram of a part of the structure related to the scheme of the present application, and does not constitute a limitation on the computer equipment to which the scheme of the present application is applied.
  • the specific computer equipment may be Include more or fewer parts than shown in the figure, or combine certain parts, or have a different arrangement of parts.
  • a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps of the radiofrequency ablation method of the lung are implemented.
  • Step S500 Receive impedance information collected from an electrode loop during ablation
  • step S510 a corresponding control instruction is generated according to the impedance information, so as to adjust the flow rate of the heat exchange medium at the periphery of the electrode.
  • a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps of the impedance monitoring method for radiofrequency ablation of the lung described above are implemented.
  • Step S500 Receive impedance information collected from an electrode loop during ablation
  • step S510 a corresponding control instruction is generated according to the impedance information, so as to adjust the flow rate of the heat exchange medium at the periphery of the electrode.
  • a computer-readable storage medium on which a computer program is stored.
  • the steps of the method for controlling radiofrequency ablation of the lungs are implemented.
  • Step S500 Receive impedance information collected from an electrode loop during ablation
  • step S510 a corresponding control instruction is generated according to the impedance information, so as to adjust the flow rate of the heat exchange medium at the periphery of the electrode.
  • Non-volatile memory may include read-only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory can include random access memory (RAM) or external cache memory.
  • RAM is available in various forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), dual data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Synchlink DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM).
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDRSDRAM dual data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous chain Synchlink DRAM
  • Rambus direct RAM
  • DRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM
  • a lung radiofrequency ablation system is also provided.
  • the lung radiofrequency ablation system includes a radio frequency signal generator 100, an ablation catheter 110, an electrode plate, The sensor module 120, the microinfusion pump 130, the control module 140, and the alarm module 150.
  • the radio frequency signal generator 100 may use the foregoing ablation apparatus (or as a part of the ablation apparatus); the ablation catheter 110 may use the radio frequency ablation catheter in the foregoing embodiments; and the heat exchange medium specifically uses physiological saline as an example.
  • the flow channel of the heat exchange medium is a transmission channel for liquid transmission; the micro-perfusion pump 130 can be understood as one of the forms or devices of the heat exchange medium delivery device; the control module 140 can adopt the radio frequency ablation device in the foregoing embodiments.
  • control module 140, the alarm module 150, and the micro-perfusion pump 130 may be partially or fully integrated in a spatial arrangement, for example, integrated into an ablation apparatus to form an entire ablation apparatus.
  • the radio frequency signal generator 100 is connected to the control module 140 and is configured to receive a command from the control module 140 to generate a radio frequency signal and transmit the radio frequency signal to the ablation catheter 110.
  • the ablation catheter 110 has an electric transmission channel for electric transmission and a transmission channel for liquid transmission.
  • the radio frequency signal generator 100 is connected to the electric transmission channel, and the liquid transmission channel is connected to the microperfusion pump 130. .
  • the ablation catheter 110 can receive the radio frequency signal generated by the radio frequency signal generator 100, and can apply the radio frequency signal to the ablation tissue when puncturing the ablation tissue, and can also receive physiological saline perfused by the microperfusion pump 130,
  • the front end of the ablation catheter 110 (the end that extends into the human body) is provided with a liquid outlet hole for infusing physiological saline into the ablation tissue when puncturing the ablation tissue.
  • the electrode 1 is provided with an infiltration cover 20, and the infiltration cover 20 is evenly provided with a plurality of infiltration holes 200.
  • the infiltration cover 20 is provided, the liquid discharge holes mentioned in this embodiment can also be understood as infiltration holes. 200.
  • the ablation catheter 110 may be provided with other structures, as long as the effect of injecting physiological saline into the ablation tissue is achieved.
  • the ablation catheter 110 has a bendable structure, and the curved structure can bend the front end of the ablation catheter 110 under control to accurately deliver the front end of the ablation catheter 110 to the site to be treated; and /
  • an operation part for controlling the curved structure may be provided outside the ablation catheter for medical personnel to operate to control the degree of bending of the curved structure.
  • the ablation catheter 110 penetrates the ablation tissue through a puncture point through a bronchoscope, and transmits the radio frequency signal to the ablation tissue.
  • the ablation catheter 110 communicates with the radio frequency signal generator 100.
  • the electrode plate that is connected and connected to the patient's body communicates with the ablation catheter 110 to form an electric field, and the ablation tissue is also in the electric field. High-frequency current acts on the human tissue between the two, so that the distal end of the radio frequency ablation catheter The tumor cells contacted by the electrodes coagulated, degenerated, and died.
  • the ablation catheter 110 is only an electrode for transmitting energy, and its temperature rise is caused by the high-speed oscillation of ions in the tumor tissue near the ablation catheter 110 and friction with each other after the loop is formed, and the radio frequency energy is converted into thermal energy. That is, the ablation catheter 110 is passively heated due to the temperature increase of nearby tissues. Tissue is dried and charred after electrification, forming a "crust" around the ablation catheter 110, and "vacuum wrapping" the ablation catheter 110. The impedance between the ablation catheter 110 and the "crusted” tissue will instantly become very large (i.e. radio frequency (E.g.
  • the ablation catheter 110 is provided with a liquid outlet hole to infuse physiological saline into the ablation tissue. Since the physiological saline is a conductor, after the infiltration of the ablation tissue, the impedance can be stabilized throughout the ablation process. In a certain range, the RF energy can be continuously output, thereby forming a sufficiently large ablation range and generating a larger and more effective coagulation necrosis.
  • the sensor module 120 is disposed on the ablation catheter 110, and the sensor module 120 is connected to the control module 140. Specifically, the sensor module 120 is disposed at an end of the ablation catheter 110 that is in contact with the ablation tissue.
  • the sensor module 120 includes an impedance sensor and a temperature sensor, which are used to detect the impedance and temperature of the contact position between the ablation catheter 110 and the ablation tissue and send the temperature information and the impedance information to the control module 140.
  • the temperature sensor may Is a thermocouple.
  • the temperature sensor may also use the thermistor 9, the electrode ring 8, or the temperature detection device configured on the radio frequency ablation catheter in the foregoing embodiments.
  • the impedance sensor can be understood as a sampling circuit or the like for obtaining impedance information of the electrode circuit.
  • the impedance information is obtained by the impedance sensor and transmitted to the control module 140.
  • the impedance information may be calculated based on voltage and current values collected by the system. Specifically, a real-time voltage and current value is obtained through measurement by a voltage and current measurement device, and is transmitted to the control module 140. The control module 140 calculates an impedance based on the real-time voltage and current value.
  • the sensor module 120 may further include other types of sensors, such as a flow sensor and a pressure sensor, for detecting the flow of physiological saline and other data such as the pressure at the contact position between the ablation catheter 110 and the ablation tissue to monitor the ablation. The situation can be handled in time when an abnormality occurs.
  • control module 140 controls the microperfusion pump 130 to increase the perfusion volume of the normal saline to avoid "crusting" of human tissues.
  • the type and number of sensors of the sensor module can be set according to the needs and actual conditions of the lung radiofrequency ablation system during operation to monitor the ablation situation.
  • the micro-perfusion pump 130 is connected to the control module 140 and the ablation catheter 110, and is configured to receive a command from the control module 140 to perfuse the saline catheter 110 with physiological saline.
  • the micro-perfusion pump 130 may receive a command from the control module 140 to infuse the ablation catheter 110 with other liquids, as long as the conductivity and thermal conductivity of the ablation tissue are improved, the impedance balance is maintained, and the impedance is maintained at Relatively stable state, it can reduce the temperature of the ablated tissue, increase the humidity of the ablated tissue, and fundamentally avoid the effect of ablation tissue crusting due to drying and heating without causing serious side effects on the human body.
  • the alarm module 150 is connected to the control module 140 and is configured to receive an alarm command from the control module 140 and give an alarm.
  • control module 140 is connected to the radio frequency signal generator 100, the sensor module 120, the micro-perfusion pump 130, and the alarm module 150. Specifically, the control module 140 is configured to control the radio frequency signal generator 100 to generate a radio frequency signal. Specifically, the control module 140 receives the impedance information and temperature information detected by the sensor module 120, and controls the microperfusion pump 130 to perfuse the saline catheter 110 with physiological saline based on the impedance information. In this embodiment, if the impedance sensor detects a sharp increase in impedance, it means that the tissue near the electrode of the ablation catheter 110 is drying and charring, which will cause scabs.
  • the control module 140 controls the microinfusion pump. 130 increase the amount of saline perfusion.
  • the control module 140 is further configured to determine whether the perfusion of the physiological saline is smooth based on the temperature information, and issue an alarm command when the normal saline is not smooth. Specifically, if it is found that the temperature rises above a certain threshold (for example, 85 degrees) during the ablation process, the control module 140 determines that the perfusion of the physiological saline is blocked, and issues an alarm command, and controls the alarm module 150 to issue an alarm signal to prompt to ensure that The ablation process went smoothly.
  • a certain threshold for example 85 degrees
  • the alarm about the limit situation during the ablation process can be monitored by temperature, impedance information, or a combination of the two. As long as one of them exceeds the acceptable upper limit, the alarm or stop the ablation.
  • the control module 140 when the sensor module 120 further includes other types of sensors such as a flow sensor and a pressure sensor, the control module 140 also receives other data information sent by the sensor module 120 to monitor the ablation situation. Send control commands for processing when an exception occurs.
  • the control module 140 may comprehensively judge the ablation condition according to data transmitted by multiple sensors, and control the microinfusion pump 130, the RF signal generator 100 and other equipment to adjust when the preset conditions are met, so as to To ensure the smooth ablation process, the preset condition can be set by the user according to the actual situation when the radiofrequency ablation system of the lung works and the setting of the sensor.
  • the impedance information may be calculated based on the voltage and current values collected by the system. Specifically, a real-time voltage and current value is obtained through measurement by a voltage and current measurement device, and is transmitted to the control module 140. The control module 140 calculates an impedance based on the real-time voltage and current value.
  • An electrode plate is connected to the radio frequency signal generator and is used to form a loop with the electrodes in the ablation catheter via the human body.
  • the electrode plate is attached to a suitable part of the patient's body.
  • the electrodes in the ablation catheter form a working circuit (that is, the circuit where the electrode is located) through the human body and the electrode plate.
  • the lesions contacted by the electrodes are coagulated, degenerated, and necrotic.
  • the electrode plate itself is a conventional part of the ablation operation, and is omitted in the figure.
  • the control module 140 controls the microperfusion pump 130 to perfuse the saline solution into the ablation catheter 110, and when the control module 140 receives the impedance sensor transmission After the information of the impedance increases sharply, the micro-perfusion pump 130 is controlled to increase the perfusion volume of normal saline.
  • the micro-perfusion pump 130 does not perfuse normal saline, and the control module 140 only controls information after receiving the information that the impedance transmitted by the impedance sensor increases sharply.
  • the microperfusion pump 130 perfusions a saline solution into the ablation catheter 110.
  • FIG. 24 is a schematic diagram of a lung radiofrequency ablation system according to another embodiment of the present application.
  • the lung radiofrequency ablation system includes a radio frequency signal generator 100, an ablation catheter 110, an electrode plate, a sensor module 120, a micro-perfusion pump 130, and a control module 140.
  • the radio frequency signal generator 100 is connected to the control module 140 and is configured to receive a command from the control module 140 to generate a radio frequency signal and transmit the radio frequency signal to the ablation catheter 110.
  • the ablation catheter 110 has an electric transmission channel for electric transmission and a transmission channel for liquid transmission.
  • the radio frequency signal generator 100 is connected to the electric transmission channel, and the liquid transmission channel is connected to the microperfusion.
  • the pump 130 is connected.
  • the ablation catheter 110 can receive the radio frequency signal generated by the radio frequency signal generator 100, and can apply the radio frequency signal to the ablation tissue when puncturing the ablation tissue, and can also receive physiological saline perfused by the microperfusion pump 130,
  • the front end of the ablation catheter 110 (the end that extends into the human body) is provided with a liquid outlet hole for infusing physiological saline into the ablation tissue when puncturing the ablation tissue.
  • the ablation catheter 110 may be provided with other structures, as long as the effect of injecting physiological saline into the ablation tissue is achieved.
  • the ablation catheter 110 has a bendable structure, and the curved structure can bend the front end of the ablation catheter 110 under control to accurately deliver the front end of the ablation catheter 110 to the site to be treated; and /
  • an operation part for controlling the curved structure may be provided outside the ablation catheter for medical personnel to operate to control the degree of bending of the curved structure.
  • the ablation catheter 110 is guided through the bronchoscope through the puncture point under the guidance of B ultrasound or CT, and transmits the radio frequency signal to the ablation tissue.
  • it is connected to the radio frequency generator 100
  • the electrode plate attached to the patient's body communicates with the ablation catheter 110 to form an electric field, and the ablation tissue is also in the electric field, and high-frequency current acts on the human tissue between the two, so that the distal end of the radio frequency ablation catheter Tumor cells contacted by the electrodes coagulate, degenerate, and die.
  • the ablation catheter 110 is only an electrode for transmitting energy, and its temperature rise is caused by the high-speed oscillation of ions in the tumor tissue near the ablation catheter 110 and friction with each other after the loop is formed, and the radio frequency energy is converted into thermal energy. That is, the ablation catheter 110 is passively heated due to the temperature increase of nearby tissues. Tissue is dried and charred after electrification, forming a "crust" around the ablation catheter 110, and "vacuum wrapping" the ablation catheter 110. The impedance between the ablation catheter 110 and the "crusted” tissue will instantly become very large (i.e. radio frequency (E.g.
  • the ablation catheter 110 is provided with a liquid outlet hole to infuse physiological saline into the ablation tissue. Since the physiological saline is a conductor, after the infiltration of the ablation tissue, the impedance can be stabilized throughout the ablation process. In a certain range, the RF energy can be continuously output, thereby forming a sufficiently large ablation range and generating a larger and more effective coagulation necrosis.
  • the sensor module 120 is disposed on the ablation catheter 110, and the sensor module 120 is connected to the control module 140. Specifically, the sensor module 120 is disposed at an end of the ablation catheter 110 that is in contact with the ablation tissue.
  • the sensor module 120 includes an impedance sensor and a temperature sensor, which are used to detect the impedance and temperature of the contact position between the ablation catheter 110 and the ablation tissue and send the temperature information and the impedance information to the control module 140.
  • the temperature sensor may Is a thermocouple.
  • the impedance information is obtained by the impedance sensor and transmitted to the control module 140. In other embodiments, the impedance information may be calculated based on voltage and current values collected by the system.
  • a real-time voltage and current value is obtained through measurement by a voltage and current measurement device, and is transmitted to the control module 140.
  • the control module 140 calculates an impedance based on the real-time voltage and current value.
  • the sensor module 120 may further include other types of sensors, such as a flow sensor and a pressure sensor, for detecting the flow of physiological saline and other data such as the pressure at the contact position between the ablation catheter 110 and the ablation tissue to monitor the ablation. The situation can be handled in time when an abnormality occurs.
  • control module 140 controls the microperfusion pump 130 to increase the perfusion volume of the normal saline to avoid "crusting" of human tissues.
  • the type and number of sensors of the sensor module can be set according to the needs and actual conditions of the lung radiofrequency ablation system during operation to monitor the ablation situation.
  • the micro-perfusion pump 130 is connected to the control module 140 and the ablation catheter 110, and is configured to receive a command from the control module 140 to perfuse the saline catheter 110 with physiological saline.
  • the micro-perfusion pump 130 may receive a command from the control module 140 to infuse the ablation catheter 110 with other liquids, as long as the conductivity and thermal conductivity of the ablation tissue are improved, the impedance balance is maintained, and the impedance is maintained at Relatively stable state, it can reduce the temperature of the ablated tissue, increase the humidity of the ablated tissue, and fundamentally avoid the effect of ablation tissue crusting due to drying and heating without causing serious side effects on the human body.
  • control module 140 is connected to the radio frequency signal generator 100, the sensor module 120, and the microinfusion pump 130. Specifically, the control module 140 is configured to control the radio frequency signal generator 100 to generate a radio frequency signal. Specifically, the control module 140 receives the impedance information and temperature information detected by the sensor module 120, and controls the microperfusion pump 130 to perfuse the saline catheter 110 with physiological saline based on the impedance information. In this embodiment, if the impedance sensor detects a sharp increase in impedance, it means that the tissue near the electrode of the ablation catheter 110 is drying and charring, which will cause scabs. After receiving the impedance information of the impedance sensor, the control module 140 controls the microinfusion pump.
  • the control module 140 is further configured to determine whether the perfusion of physiological saline is smooth based on the temperature information, so as to monitor the ablation condition.
  • the control module 140 may comprehensively judge the ablation condition according to data transmitted by multiple sensors, and control the microinfusion pump 130, the RF signal generator 100 and other equipment to adjust when the preset conditions are met, so as to To ensure the smooth ablation process, the preset condition can be set by the user according to the actual situation when the radiofrequency ablation system of the lung works and the setting of the sensor.
  • the impedance information may be calculated based on the voltage and current values collected by the system. Specifically, a real-time voltage and current value is obtained through measurement by a voltage and current measurement device, and is transmitted to the control module 140. The control module 140 calculates an impedance based on the real-time voltage and current value.
  • An electrode plate is connected to the radio frequency signal generator and is used to form a loop with the electrodes in the ablation catheter via the human body.
  • the electrode plate is attached to a suitable part of the patient's body.
  • the electrodes in the ablation catheter form a working circuit (that is, the circuit where the electrode is located) through the human body and the electrode plate.
  • the lesions contacted by the electrodes are coagulated, degenerated, and necrotic.
  • the electrode plate itself is a conventional part of the ablation operation, and is omitted in the figure.
  • the control module 140 controls the microperfusion pump 130 to perfuse the saline solution into the ablation catheter 110, and when the control module 140 receives the impedance sensor transmission After the information of the impedance increases sharply, the micro-perfusion pump 130 is controlled to increase the perfusion volume of normal saline.
  • the micro-perfusion pump 130 does not perfuse normal saline, and the control module 140 only controls information after receiving the information that the impedance transmitted by the impedance sensor increases sharply.
  • the microperfusion pump 130 perfusions a saline solution into the ablation catheter 110.
  • Radiofrequency ablation methods for lungs are also provided in different embodiments of the present application, which may be implemented by using related components, devices, or systems of the foregoing embodiments.
  • Lung radiofrequency ablation methods include:
  • a micro-perfusion pump is controlled to infuse physiological saline into the ablation catheter, and an alarm module is controlled to alarm based on the temperature information.
  • Different embodiments of the present application also provide methods for monitoring the temperature and impedance of lung radiofrequency ablation, which can be implemented by using the relevant components, devices, or systems of the foregoing embodiments.
  • Lung RF ablation temperature and impedance monitoring methods include:
  • a micro-perfusion pump is controlled to infuse physiological saline into the ablation catheter, and an alarm module is controlled to alarm based on the temperature information.
  • FIG. 25 is a schematic diagram of a method for controlling radiofrequency ablation of a lung according to an embodiment of the present application.
  • the method for controlling radiofrequency ablation of the lung includes:
  • Step 300 The radio frequency signal generator is controlled to generate a radio frequency signal and transmit the radio frequency signal to the ablation catheter.
  • control module controls the radio frequency signal generator to generate a radio frequency signal, and transmits the radio frequency signal to the ablation catheter, and the radio frequency signal is transmitted to the ablation tissue after the ablation catheter punctures into the ablation tissue, and The radio frequency signal is converted into thermal energy in the circuit, and acts on the ablation tissue, so that the tumor cells contacted by the electrode at the distal end of the ablation catheter are coagulated, degenerated, and necrotic.
  • Step 310 Obtain impedance information and temperature information of the contact position between the ablation catheter and the ablation tissue.
  • the thermal energy generated will cause the temperature of human tissues to rise, causing the human tissues near the ablation catheter to dry and carbonize, forming "crusts", and the resistance between the electrodes and "crusts" suddenly becomes It is very large, which causes ablation to stop and incomplete ablation.
  • the impedance sensor detects a sharp increase in impedance, and transmits impedance information to the control module.
  • the temperature sensor detects temperature information and transmits it to the control module.
  • the impedance information may be calculated based on the voltage and current values collected by the system. Specifically, a real-time voltage and current value is obtained through measurement by a voltage and current measuring device, and is transmitted to the control module, and the control module calculates an impedance based on the real-time voltage and current value.
  • a microinfusion pump is controlled to infuse physiological saline into the ablation catheter based on the impedance information, and an alarm module is controlled to alarm based on the temperature information.
  • control module controls the micro-perfusion pump to increase the perfusion volume of the physiological saline, and the physiological saline is perfused into the ablation catheter and perfused through the outlet hole on the ablation catheter.
  • the control module also receives the temperature information transmitted by the temperature sensor. If the temperature rise is found to exceed a certain threshold during the ablation process, the control module determines that the perfusion of physiological saline is blocked, issues an alarm command, and controls the alarm module to issue an alarm signal. Tips are provided to ensure a smooth ablation process.
  • FIG. 26 is a schematic diagram of a method for controlling radiofrequency ablation of a lung according to another embodiment of the present application.
  • the method for controlling radiofrequency ablation of the lung includes:
  • Step 400 The radio frequency signal generator is controlled to generate a radio frequency signal and transmit the radio frequency signal to the ablation catheter.
  • control module controls the radio frequency signal generator to generate a radio frequency signal, and transmits the radio frequency signal to the ablation catheter, and the radio frequency signal is transmitted to the ablation tissue after the ablation catheter punctures into the ablation tissue, and The radio frequency signal is converted into thermal energy in the circuit, and acts on the ablation tissue, so that the tumor cells contacted by the electrode at the distal end of the ablation catheter are coagulated, degenerated, and necrotic.
  • Step 410 Obtain impedance information of the contact position between the ablation catheter and the ablation tissue.
  • the thermal energy generated will cause the temperature of human tissues to rise, causing the human tissues near the ablation catheter to dry and carbonize, forming "crusts", and the resistance between the electrodes and "crusts" suddenly becomes It is very large, which causes ablation to stop and incomplete ablation.
  • the impedance sensor detects a sharp increase in impedance, and transmits impedance information to the control module.
  • the impedance information may be calculated based on the voltage and current values collected by the system. Specifically, a real-time voltage and current value is obtained through measurement by a voltage and current measuring device, and is transmitted to the control module, and the control module calculates an impedance based on the real-time voltage and current value.
  • Step 420 Control a micro-perfusion pump to perfuse a saline solution into the ablation catheter based on the impedance information.
  • control module controls the micro-perfusion pump to increase the perfusion volume of the physiological saline, and the physiological saline is perfused into the ablation catheter and perfused through the outlet hole on the ablation catheter.
  • Ablation tissue improve tissue conductivity and thermal conductivity, maintain impedance balance, maintain impedance in a relatively stable state, while reducing tissue temperature, increasing tissue humidity, and fundamentally avoid tissue scabbing due to drying and heating, making the entire ablation process Ensure that the impedance is stable in a certain range, so that the RF energy can be continuously output, thereby forming a sufficiently large ablation range and generating a larger and more effective coagulation necrosis.
  • the control module controls the radio frequency signal generator to generate radio frequency signals, and transmits the radio frequency signals to the ablation catheter. After the ablation catheter punctures into the ablation tissue, The radio frequency signal is transmitted to the ablation tissue, and the radio frequency signal is converted into thermal energy in the loop, and acts on the ablation tissue, so that the tumor cells contacted by the electrode at the distal end of the ablation catheter are coagulated, degenerated, and necrotic.
  • the thermal energy generated will cause the temperature of the human tissue to rise, making the human tissue near the ablation catheter dry and carbonized, forming a "crust", and the resistance between the electrode and the "crust" suddenly becomes very large, thus As a result, the ablation is stopped and the ablation is not complete.
  • the impedance sensor detects a sharp increase in impedance and transmits impedance information to the control module. After the control module receives the impedance information of the impedance sensor, or the control module is based on real-time After the impedance is calculated by the voltage and current information, the micro-perfusion pump is controlled to increase the amount of saline infusion.
  • the saline is perfused into the ablation catheter and perfused into the ablation tissue through the outlet hole on the ablation catheter to improve tissue conductivity and thermal conductivity and maintain impedance Balance, keep the impedance in a relatively stable state, at the same time reduce the temperature of the tissue, increase the humidity of the tissue, and fundamentally prevent the tissue from crusting due to drying and heating, so that the impedance is stable within a certain range during the entire ablation process, so that RF energy can be continuously output To form a sufficiently large ablation range, resulting in a larger, Effective coagulation necrosis.
  • the control module also receives the temperature information transmitted by the temperature sensor.
  • the control module determines that the perfusion of physiological saline is blocked, issues an alarm command, and controls the alarm module to issue an alarm signal. Tips are provided to ensure a smooth ablation process.
  • the above-mentioned lung radiofrequency ablation system and control method detect the impedance change of the ablated tissue through an impedance sensor. When a sharp increase in impedance is detected, it indicates that the ablation tissue near the electrode is drying and carbonizing, and scabs will be generated. Perfusion of normal saline lowers the temperature of the tissue, increases the humidity of the tissue, and fundamentally prevents the tissue from scabbing due to drying and heating. At the same time, normal saline can improve tissue conductivity and thermal conductivity, maintain impedance balance, and maintain impedance in a relatively stable state.
  • the combination of the two makes it possible to ensure that the impedance is stable within a certain range during the entire ablation process, so that the RF energy can be continuously output, thereby forming a sufficiently large ablation range and generating a larger and more effective coagulation necrosis.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Cardiology (AREA)
  • Surgical Instruments (AREA)

Abstract

射频消融导管、控制方法、控制装置以及肺部射频消融系统、控制方法、控制装置和计算机可读存储介质。射频消融导管包括电极(1),电极(1)内部带有换热介质流道,电极(1)上设置有均衡装置(20),均衡装置(20)上设有与换热介质流道连通的浸润孔(200),换热介质流道输出的换热介质经由均衡装置(20)分配并流出。电极(1)能够向消融组织内灌注生理盐水,从而提高消融组织的导电性和热传导性,维持阻抗平衡,保持阻抗处于相对稳定状态,使射频能量能够持续输出。

Description

射频消融导管、肺部射频消融系统、以及相应的控制方法、控制装置和计算机可读存储介质 技术领域
本申请涉及肿瘤微创消融治疗领域,特别涉及一种射频消融导管、肺部射频消融系统及方法。
背景技术
肺癌是最常见的恶性肿瘤之一。在临床治疗中,通过外科手术进行切除仍是治疗早期肺癌的首选。但是,对于年龄较大、体质偏弱、心肺功能较差或者存在并发症等情况肺癌患者,他们并不适合或者不耐受常规的手术切除疗法。因此,例如肿瘤微创消融等许多局部治疗方法应运而生。肺部的肿瘤微创消融包括射频消融(Radio Frequency Ablation,RFA)、冷冻消融、微波消融等,其中只有射频消融被美国国家综合癌症网络非小细胞肺癌临床指引列入。
射频消融的原理是应用频率小于30MHz(通常在460~480kHz)的交变高频电流使肿瘤组织内离子发生高速震荡,互相摩擦,将射频能转化为热能,使得肿瘤细胞发生凝固性坏死。在射频消融治疗中,使用的器械为射频消融导管,其远端的电极经皮穿刺后能够将射频能传递给刺入部位周围的细胞组织。在进行射频消融治疗时,射频消融导管是射频能量输出的电极,它与射频发生器连接,在B超或CT引导下,经皮穿刺,通过穿刺点穿刺入靶肿瘤中。中性电极板也与射频发生器连接,它贴附在患者身体合适部位。当射频发生器上的脚踏开关踩下时,射频消融导管与中性电极板之间连通,高频电流作用在两者之间的人体组织上,使射频消融导管远端的电极接触到的肿瘤细胞凝固、变性、坏死。
发明人发现,现有的用于肺部的射频消融导管在工作时,电极部位温度升高过快,电极附近的组织干燥和炭化后会形成“结痂”,从而导致消融停止,消融不彻底。而且“结痂”组织与电极粘连在一起,器械拔出时会损伤周围器官。
现有的应用于肺部的射频消融导管的头部大多不能弯曲,这样射频消融导管的前端电极无法便捷到达侧边的目标位置。
现有的射频消融导管也不能有效控制消融范围,无法及时判断消融范围是否适当。消融范围小了,消融不彻底,有复发的风险;消融范围大了,可能误伤周围正常组织及器官。
现有的射频消融操作即使在B超或CT的引导下,也不能有效判断射频消融导管的前端电极的准确位置。CT图片是X线扫描出来的有限数量的断面图像,在某些角度下,看起来前端电极放置到了目标部位,但实际的位置也可能是不对了,仅仅是在投影方向上重叠而已,因此前端电极的位置难以判断,定位精度不够。
发明内容
为解决背景技术中提出的至少部分问题,本申请的目的在于提供一种射频消融导管,其电极能够向消融组织内灌注换热介质,并可在电极外周形成换热介质保护膜,从而提高消融组织的导电性和热传导性,维持阻抗平衡,保持阻抗处于相对稳定状态,使射频能量能够持续输出。
本申请一种射频消融导管,包括电极,所述电极带有换热介质流道,所述电极上设置有均衡装置,所述均衡装置上设有与所述换热介质流道连通的浸润孔,所述换热介质流道输出的换热介质经由所述均衡装置分配并流出。
以下还提供了若干可选方式,但并不作为对上述总体方案的额外限定,仅仅是进一步的增补或优选,在没有技术或逻辑矛盾的前提下,各可选方式可单独针对上述总体方案进行组合,还可以是多个可选方式之间进行组合。
在其中一个实施例中,所述均衡装置与所述电极之间为分体结构,所述均衡装置固定或活动的安装在所述电极上;
或所述均衡装置与所述电极之间为一体结构。
在其中一个实施例中,所述浸润孔为多个、用以在电极外部形成均匀的换热介质保护膜。
在其中一个实施例中,所述电极的远端部位等径延伸或形状收敛,其中所述形状收敛为逐渐收敛或阶梯式收敛。
在其中一个实施例中,所述均衡装置与所述电极之间为一体结构,所述浸润孔开设在电极外壁处,所述电极的远端为尖端。
在其中一个实施例中,所述均衡装置与所述电极之间为分体结构,所述电极的外壁开设有与所述换热介质流道连通的流出孔,所述均衡装置为安装在所述电极上且处在所述流出孔外围的浸润罩,所述浸润孔开设在该浸润罩上,所述流出孔输出的换热介质经所述浸润罩分配并流出。
在其中一个实施例中,所述换热介质流道为位于电极内部的腔体,换热介质经由腔壁的开孔流出。
在其中一个实施例中,所述换热介质流道包括主流道以及多条与所述主流道连通的分支流道,各分支流道的末端延伸至电极的外表面。
在其中一个实施例中,所述分支流道沿所述主流道的延伸方向布置至少一组,同组分支流道至少为两条,呈辐射状分布于所述主流道外周。
在其中一个实施例中,同组分支流道在周向上均布布置。
在其中一个实施例中,相邻组分支流道的数量相同或不同,周向上位置对齐或错位布置。
在其中一个实施例中,多条分支流道沿主流道的延伸方向依次布置,且螺旋分布于主流道外周。
在其中一个实施例中,所述浸润罩固定在所述电极上、绕电极轴线转动安装在所述电极 上、或沿电极轴向滑动安装在所述电极上。
在其中一个实施例中,所述射频消融导管还设置与所述浸润罩相连的驱动部件,用于带动所述浸润罩与所述电极之间的相对运动。
在其中一个实施例中,所述电极上安装一个所述浸润罩,或安装多个所述浸润罩。
在其中一个实施例中,所述电极上安装多个所述浸润罩,各浸润罩相对于所述电极独立运动或至少两个浸润罩相互联动。
在其中一个实施例中,所述浸润罩为片状,在周向上仅遮盖电极外周的局部区域;
在其中一个实施例中,所述浸润罩为周向封闭的筒状结构,套设在电极外周。
在其中一个实施例中,所述浸润罩仅包裹所述电极的近端部位;
或所述浸润罩为帽状结构,帽状结构的远端封闭包裹浸润罩的远端端头。
在其中一个实施例中,所述浸润罩固定在所述电极上,所述电极的外周设有定位台阶,所述浸润罩的远端与所述定位台阶相抵限位。
在其中一个实施例中,所述浸润罩的外壁与所述电极暴露于浸润罩的外壁等高拼接。
在其中一个实施例中,所述浸润罩的至少一部分为分布有浸润孔的渗透区,所述电极上开设所述流出孔的部位与所述渗透区相对应,且与渗透区内壁之间留有间隙。
在其中一个实施例中,所述浸润孔与所述流出孔错位布置。
在其中一个实施例中,所述电极的外壁设置有沉降区,所述流出孔设置在所述沉降区,所述渗透区处在所述沉降区外周、且浸润罩内壁与沉降区表面留有所述间隙。
在其中一个实施例中,所述流出孔为扩口状,扩口区域作为所述沉降区;浸润罩内壁与沉降区表面的间隙随与流出孔距离的增加而减小。
在其中一个实施例中,浸润罩内壁与沉降区表面的间隙随与流出孔距离的增加而增加。
在其中一个实施例中,所述沉降区为一个或相互隔离的多个,同一沉降区设置一个流出孔,同一沉降区中,浸润罩内壁与沉降区表面的间隙随与该沉降区内流出孔距离的增加而增加。
在其中一个实施例中,所述沉降区为沿电极轴向延伸的分布槽,所述流出孔在电极周向分为若干组,每一组对应同一分布槽。
在其中一个实施例中,所述分布槽为周向均匀布置的2~10条。
在其中一个实施例中,同一分布槽的槽底开设一个所述流出孔,所述分布槽的深度随与该流出孔距离的增加而增加。
在其中一个实施例中,所述浸润罩上沿周向分布多组浸润孔,每组浸润孔与其中一分布槽位置相应。
在其中一个实施例中,相邻分布槽的槽壁形成支撑浸润罩内壁的凸棱,凸棱顶部与浸润罩内壁的相应部位相抵且形状匹配。
在其中一个实施例中,所述浸润罩采用多孔材料,多孔材料自身的空隙作为所述浸润孔;
或所述浸润罩采用编织结构,编织结构自身的空隙作为所述浸润孔;
或所述浸润罩为金属壳体,金属壳体的壳壁上加工形成所述浸润孔。
在其中一个实施例中,所有浸润孔的孔径相同,或依据换热介质流量均衡相应设置。
在其中一个实施例中,所有浸润孔在均衡装置不同部位的分布密度相同,或依据换热介质流量均衡相应设置。
在其中一个实施例中,所述浸润孔的孔径随与流出孔距离的增加而增加。
在其中一个实施例中,所述浸润孔在所述浸润罩周向上分布多组。
在其中一个实施例中,同组浸润孔按各自的延伸路径依次排布,所述延伸路径为直线,折线或曲线。
在其中一个实施例中,每组浸润孔对应一个流出孔。
在其中一个实施例中,所述浸润罩上带有显影标识。
在其中一个实施例中,所述射频消融导管还包括可指示电极位置的电磁导航部件。
在其中一个实施例中,所述电极上连接有向近端延伸的拉线,用以带动电极偏转。
在其中一个实施例中,所述电极的近端连接有鞘管,所述拉线自鞘管的内部向近端延伸至鞘管外部;
所述电极的近端设有与换热介质流道连通的连接管,该连接管延伸至鞘管内部。
在其中一个实施例中,所述电极上设置安装孔,所述拉线的远端伸入并固定于该安装孔。
在其中一个实施例中,所述射频消融导管进一步包括能够相对靠近或远离的第一拉弯组件和第二拉弯组件,鞘管固定至所述第一拉弯组件,所述拉线固定至所述第二拉弯组件。
在其中一个实施例中,所述第一拉弯组件与所述第二拉弯组件之间相互嵌套滑动或并排滑动布置。
在其中一个实施例中,所述第一拉弯组件和所述第二拉弯组件均为管状,且所述第二拉弯组件滑动配合在所述第一拉弯组件内。
在其中一个实施例中,所述第二拉弯组件的至少部分嵌入所述第一拉弯组件内,所述第一拉弯组件与所述第二拉弯组件之间进一步设置有限定两者对移动方向的导向装置。
在其中一个实施例中,所述导向装置包括设置于所述第一拉弯组件和所述第二拉弯组件任一者上的滑槽和设置于另一者上的限位螺钉。
在其中一个实施例中,所述第二拉弯组件上嵌入所述第一拉弯组件内的部分上设置有用于增加所述第一拉弯组件与所述第二拉弯组件之间摩擦力的O型圈。
在其中一个实施例中,所述第二拉弯组件上设置有指示与所述第一拉弯组件相对位置的刻度线。
在其中一个实施例中,在所述射频消融导管上在邻近远端部位沿轴向依次分布多个温度 检测装置。
在其中一个实施例中,所述温度检测装置包括由远端至近端间隔布置的第一温度检测装置、第二温度检测装置和第三温度检测装置。
在其中一个实施例中,所述温度检测装置包括温度传感器以及导热环,所述温度传感器与消融仪相连接,所述导热环设置于射频消融导管外壁,所述温度传感器与所述导热环热耦合。
在其中一个实施例中,所述温度传感器固定在所述导热环的外壁,固定方式选自粘结、焊接、铆接、过盈配合中的至少一种。
在其中一个实施例中,所述温度传感器为热敏电阻,所述热敏电阻通过热敏电阻电线电连接至消融仪,所述热敏电阻电线上套设有温控套管。
在其中一个实施例中,所述温度传感器通过无线通信装置与消融仪相连。
在其中一个实施例中,射频消融导管外壁设有嵌槽,所述温度检测装置固定在位置相应的嵌槽中,且所述嵌槽的槽底部位设有用于穿引电路导线的通孔。
在其中一个实施例中,所述嵌槽为环形,所述温度检测装置环绕固定在位置相应的嵌槽中,所述温度检测装置与所在嵌槽之间的固定方式选自粘接、焊接、铆接、过盈配合中的至少一种。
在其中一个实施例中,所述导热环呈环形结构,所述导热环设置于所述嵌槽中。
在其中一个实施例中,所述温度检测装置呈环形结构,所述导热环以及温度传感器周向上形状互补围成所述环形结构。
在其中一个实施例中,所述导热环上开设有沉槽,所述温度传感器固定在该沉槽中,所述温度传感器与所在沉槽之间的固定方式选自粘结、焊接、铆接、过盈配合中的至少一种。
在其中一个实施例中,所述温度检测装置的外表面与周边部位的相互平齐。
在其中一个实施例中,至少一个温度检测装置的轴向位置可调。
在其中一个实施例中,射频消融导管与温度检测装置之间设有相互配合的导向结构。
在其中一个实施例中,轴向位置可调的温度检测装置上连接有牵引索,通过所述牵引索驱动温度检测装置相对于所述电极改变轴向位置。
在其中一个实施例中,所述牵引索由所连接的温度检测装置处穿入射频消融导管的内部,经由射频消融导管的内部向近端延伸。
在其中一个实施例中,所述射频消融导管进一步包括能够相对运动的第一调节组件和第二调节组件,其中所述电极相对固定于第一调节组件,所述牵引索连接至所述第二调节组件,所述第一调节组件和所述第二调节组件相对运动时所述牵引索驱动所连接的温度检测装置相对电极改变轴向位置。
在其中一个实施例中,所述第一调节组件和所述第二调节组件滑动配合或转动配合。
在其中一个实施例中,所述电极的远端端部设有温度探测探头。
在其中一个实施例中,所述电极1内还设置有用于检测电极与消融组织接触压力变化的压力传感器。
上述的射频消融导管中,电极上设置有均衡装置,在消融操作时,该均衡装置能向外流出换热介质,在电极表面与浸润组织之间填充换热介质,从而降低回路中的阻抗,维持阻抗平衡,使消融持续,直至消融导足够大的体积,产生更大更有效的凝固坏死灶,同时,换热介质还可以减少电极与消融组织接触处结痂导致黏连。换热介质在电极外形成一层保护膜,将电极刚好浸润,可以以最少的换热介质量维持阻抗平衡,避免换热介质过量在肺部残余。
本申请还提供一种射频消融方法,包括:
步骤S100、消融过程中获取温度参数;
步骤S110、将温度参数与温度阈值相比;
步骤S120、当温度参数与温度阈值符合设定关系时,发送停止消融指令。
本申请射频消融方法,主要针对消融过程中的温度变化,因此也可视为一种射频消融的温度监测方法。即一种射频消融的温度监测方法,包括:
步骤S100、消融过程中获取温度参数;
步骤S110、将温度参数与温度阈值相比;
步骤S120、当温度参数与温度阈值符合设定关系时,发送停止消融指令。
本申请还提供一种射频消融的控制方法,包括:
步骤S100、消融过程中获取温度参数;
步骤S110、将温度参数与温度阈值相比;
步骤S120、当温度参数与温度阈值符合设定关系时,发送停止消融指令。
在其中一个实施例中,所述温度参数包括边缘温度参数,该边缘温度参数所对应的检测部位与电极远端端部的距离为L;且满足L0≤L,其中所述L0为预测的病灶部位半径;
所述的设定关系包括边缘温度参数到达所述温度阈值并保持预设的时间间隔。
在其中一个实施例中,所述温度参数还包括第一温度参数,该第一温度参数所对应的检测部位与电极远端端部的距离为L1;且满足L1<L0,其中所述L0为预测的病灶部位半径。
在其中一个实施例中,所述设定关系还包括第一温度参数达到60-100度。在其中一个实施例中,所述边缘温度参数包括第三温度参数,该第三温度参数所对应的检测部位与电极远端端部的距离为L3;且满足L0<L3,其中所述L0为预测的病灶部位半径。
在其中一个实施例中,所述的设定关系包括第三温度参数到达所述温度阈值并保持预设的时间间隔;所述温度阈值为43~60℃,所述时间间隔不少于3分钟。
在其中一个实施例中,所述边缘温度参数还包括第二温度参数,该第二温度参数所对应的检测部位与电极远端端部的距离为L2;且满足L2=L0,其中所述L0为预测的病灶部位半 径。
在其中一个实施例中,所述设定关系还包括第二温度参数达到60-90度。
在其中一个实施例中,所述温度参数还包括远端温度参数,该远端温度参数所对应的检测部位为电极的远端端部。
在其中一个实施例中,所述设定关系还包括远端温度参数达到60-100度。在其中一个实施例中,所述温度参数包括:
远端温度参数,该远端温度参数所对应的检测部位为电极的远端端部;
第一温度参数,该第一温度参数所对应的检测部位与电极远端端部的距离为L1;
第二温度参数,该第二温度参数所对应的检测部位与电极远端端部的距离为L2;
第三温度参数,该第三温度参数所对应的检测部位与电极远端端部的距离为L3;
且满足L1<L0=L2<L3,其中所述L0为预测的病灶部位半径。
在其中一个实施例中,还包括消融过程中依照所述温度参数可视化显示电极周边的温度分布。
在其中一个实施例中,射频消融时采用本申请所述的射频消融导管,各温度参数分别采集自对应的温度检测装置(远端温度参数来自所述温度探测探头)。
本申请还提供一种射频消融装置,包括:
第一模块、用于消融过程中获取温度参数;
第二模块、用于将温度参数与温度阈值相比;
第三模块、用于当温度参数与温度阈值符合设定关系时,发送停止消融指令。
本申请还提供一种射频消融的控制装置,包括:
第一模块、用于消融过程中获取温度参数;
第二模块、用于将温度参数与温度阈值相比;
第三模块、用于当温度参数与温度阈值符合设定关系时,发送停止消融指令。
本申请还提供一种射频消融的温度监测装置,包括:
第一模块、用于消融过程中获取温度参数;
第二模块、用于将温度参数与温度阈值相比;
第三模块、用于当温度参数与温度阈值符合设定关系时,发送停止消融指令。
本申请还提供一种射频消融装置,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现所述的射频消融方法的步骤。
本申请还提供一种射频消融的控制装置,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现所述的射频消融的控制方法的步骤。
本申请还提供一种射频消融装置,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现所述的射频消融的温度监测方法的步骤。
本申请还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现所述的射频消融方法的步骤。
本申请还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现所述的射频消融的控制方法的步骤。
本申请还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现所述的射频消融的温度监测方法的步骤。
本申请还提供一种肺部射频消融系统,包括:
本申请所述的射频消融导管;
用于向所述射频消融导管的电极周边部位提供换热介质的换热介质输送装置;
依据所述射频消融导管中电极所在回路的阻抗信息相应驱动所述换热介质输送装置的控制模块。
在其中一个实施例中,消融过程中保持电极驱动信号不变。
在其中一个实施例中,所述肺部射频消融系统还包括采集电极周边部位的温度信息的温度检测装置,所述控制模块还用于依据所述温度信息提示或控制消融进程。
在其中一个实施例中,所述温度检测装置为一个或多个,且至少一个温度检测装置的位置的距离电极0.5~3cm。
在其中一个实施例中,所述控制模块驱动所述换热介质输送装置调节换热介质流量。
在其中一个实施例中,所述控制模块将所述阻抗信息与阈值相比较,并通过调节的换热介质流量使所述阻抗信息趋近于稳态阻抗。
在其中一个实施例中,还包括预先标定稳态阻抗,依据该稳态阻抗计算所述阈值。
在其中一个实施例中,所述稳态阻抗的标定方式为,射频消融导管在体内就位后,且在电极通电前以初始流量输出换热介质、且实时采集阻抗信息,当阻抗信息稳定后所对应的数值记为稳态阻抗。
在其中一个实施例中,所述阈值为数值范围;调节的换热介质流量过程中,所述控制模块还实时采集阻抗信息以及判断阻抗信息变化趋势,根据抗信息变化趋势相应改变换热介质流量的调节幅度或选择阈值上限、阈值下限中的一者相比较。
本申请还提供一种肺部射频消融方法,包括:
步骤S500,消融过程中接收采集自电极回路的阻抗信息;
步骤S510,依据所述阻抗信息生成相应的控制指令,以调节在电极周边部位的换热介质流量。
本申请肺部射频消融方法,主要针对消融过程中的阻抗变化,因此也可视为一种射频消融的阻抗监测方法。即一种射频消融的阻抗监测方法,包括:
步骤S500,消融过程中接收采集自电极回路的阻抗信息;
步骤S510,依据所述阻抗信息生成相应的控制指令,以调节在电极周边部位的换热介质流量。
本申请还提供一种肺部射频消融的控制方法,包括:
步骤S500,消融过程中接收采集自电极回路的阻抗信息;
步骤S510,依据所述阻抗信息生成相应的控制指令,以调节在电极周边部位的换热介质流量。
在其中一个实施例中,步骤S500中还包括预先标定稳态阻抗,依据该稳态阻抗计算阈值,该阈值用于在步骤S510中与所述阻抗信息相比较,以生成相应的控制指令。
在其中一个实施例中,所述稳态阻抗的标定方式为,射频消融导管在体内就位后,且在电极通电前以初始流量输出换热介质、且实时采集阻抗信息,当阻抗信息稳定后所对应的数值记为稳态阻抗。
在其中一个实施例中,步骤S510中,依据所述阻抗信息生成相应的控制指令,具体包括:
步骤S511,将所述阻抗信息与阈值相比较,根据所述阻抗信息与阈值的关系,判定流量的增减;
步骤S512,根据流量的增减,按照预定的增、减幅度生成相应的控制指令。
在其中一个实施例中,所述增、减幅度各自独立的为固定值或动态值。
在其中一个实施例中,所述阈值为数值范围,步骤S511中,根据所述阻抗信息与阈值的关系,判断流量的增减,具体包括:
当阻抗信息大于阈值上限时,判定为增加流量;
当阻抗信息小于阈值下限时,判定为减小流量;
当阻抗信息处在阈值范围内时,维持当前流量;
步骤S511中,判定为增加流量时,步骤S512中生成第一控制指令,第一控制指令所对应的换热介质流量大于当前流量;
步骤S511中,判定为减小流量时,步骤S512中生成第二控制指令,第二控制指令所对应的换热介质流量小于当前流量。
在其中一个实施例中,按阻抗信息的采样周期,循环执行步骤S500和步骤S510;
上一采样周期生成并输出控制指令后,在下一周期中,采集阻抗信息后在与阈值相比较之前,先与上一采样周期的阻抗信息相比,判断阻抗信息的变化趋势;
根据阻抗信息的变化趋势,相应改变换热介质流量的调节幅度或选择阈值上限、阈值下限中的一者相比较。
在其中一个实施例中,上一采样周期生成并输出第一控制指令后,在下一周期中,将阻抗信息后在与阈值相比较之前,先与上一采样周期的阻抗信息相比,判断阻抗信息的变化趋势;
阻抗信息的变化趋势为上升时,加大换热介质流量的调节幅度;
阻抗信息的变化趋势为下降时,将当前采样周期的阻抗信息与阈值下限相比较。
在其中一个实施例中,上一采样周期生成并输出第二控制指令后,在下一周期中,将阻抗信息后在与阈值相比较之前,先与上一采样周期的阻抗信息相比,判断阻抗信息的变化趋势;
阻抗信息的变化趋势为下降时,加大换热介质流量的调节幅度;
阻抗信息的变化趋势为上升时,将当前采样周期的阻抗信息与阈值上限相比较。
在其中一个实施例中,还包括利用本申请所述的射频消融的控制方法提示或控制消融进程。
在其中一个实施例中,所述温度参数的采集点的距离电极0.5~3cm;温度参数达到43~60℃并维持预设时间后,发送停止消融指令。
本申请还提供一种肺部射频消融装置,包括:
采集模块,用于消融过程中接收采集自电极回路的阻抗信息;
调节模块,用于依据所述阻抗信息生成相应的控制指令,以调节在电极周边部位的换热介质流量。
本申请还提供一种肺部射频消融的控制装置,包括:
采集模块,用于消融过程中接收采集自电极回路的阻抗信息;
调节模块,用于依据所述阻抗信息生成相应的控制指令,以调节在电极周边部位的换热介质流量。
本申请还提供一种肺部射频消融的阻抗监测装置,包括:
采集模块,用于消融过程中接收采集自电极回路的阻抗信息;
调节模块,用于依据所述阻抗信息生成相应的控制指令,以调节在电极周边部位的换热介质流量。
本申请还提供一种肺部射频消融装置,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现所述的肺部射频消融方法的步骤。
本申请还提供一种肺部射频消融的控制装置,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现所述的肺部射频消融的控制方法的步骤。
本申请还提供一种肺部射频消融的控制装置,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现所述的肺部射频消融的阻抗监测方法的步骤。
本申请还提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现所述的肺部射频消融方法的步骤。
本申请还提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现所述的肺部射频消融的控制方法的步骤。
本申请还提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现所述的肺部射频消融的阻抗监测方法的步骤。
本申请针对现有的用于肺部的射频消融针在工作时电极附近的组织干燥和炭化后会形成“结痂”,从而导致消融停止,消融不彻底的问题,提供一种肺部射频消融系统及方法。
一种肺部射频消融系统,所述肺部射频消融系统包括射频信号发生器、消融导管、电极板、传感器模块、微量灌注泵、控制模块和报警模块,其中:
射频信号发生器,与所述控制模块及所述消融导管相连,用于接收控制模块的命令以产生射频信号,并将射频信号传送给所述消融导管;
消融导管,与所述射频信号发生器及所述微量灌注泵相连,用于接收所述射频信号发生器产生的射频信号并将所述射频信号传递给消融组织,还用于接收所述微量灌注泵灌注的生理盐水,所述消融导管上开设有出液孔,用于将生理盐水灌注进消融组织内;
电极板,与所述射频信号发生器相连,用于经由人体与消融导管中的电极形成回路;
传感器模块,设置于所述消融导管上,与所述控制模块相连,包括阻抗传感器和温度传感器,用于检测消融导管与消融组织接触位置的阻抗和温度并将温度信息和阻抗信息发送给所述控制模块;
微量灌注泵,与所述控制模块及所述消融导管相连,用于接收控制模块的命令以向所述消融导管灌注生理盐水;
报警模块,与所述控制模块相连,用于接收所述控制模块发出的报警命令并报警;
控制模块,与所述射频信号发生器、传感器模块、微量灌注泵、报警模块相连,用于控制所述射频信号发生器产生射频信号,还用于接收所述传感器模块检测到的阻抗信息和温度信息,并基于所述阻抗信息控制所述微量灌注泵向所述消融导管灌注生理盐水,基于所述温度信息控制所述报警模块报警。
本申请还提供一种肺部射频消融方法,应用于上述肺部射频消融系统,所述肺部射频消融方法包括:
控制射频信号发生器产生射频信号并将射频信号传送给消融导管;
获取消融导管与消融组织接触位置的阻抗信息和温度信息;
基于所述阻抗信息控制微量灌注泵向所述消融导管灌注生理盐水,基于所述温度信息控制报警模块报警。
本申请还提供一种肺部射频消融的控制方法,应用于上述肺部射频消融系统,所述肺部射频消融的控制方法包括:
控制射频信号发生器产生射频信号并将射频信号传送给消融导管;
获取消融导管与消融组织接触位置的阻抗信息和温度信息;
基于所述阻抗信息控制微量灌注泵向所述消融导管灌注生理盐水,基于所述温度信息控 制报警模块报警。
本申请一种肺部射频消融方法,主要针对阻抗和温度的变化,因此也可视为一种肺部射频消融的阻抗和温度监控方法,即一种肺部射频消融的阻抗和温度监控方法包括:
控制射频信号发生器产生射频信号并将射频信号传送给消融导管;
获取消融导管与消融组织接触位置的阻抗信息和温度信息;
基于所述阻抗信息控制微量灌注泵向所述消融导管灌注生理盐水,基于所述温度信息控制报警模块报警。
本申请通过阻抗传感器检测消融组织的阻抗变化,当检测到阻抗急剧升高,说明电极附近的消融组织正在干燥和炭化,将产生结痂,此时控制向消融组织内灌注生理盐水,降低组织的温度,增加组织的湿度,从根本上避免组织因为干燥升温而结痂;同时生理盐水能够提高组织导电性和热传导性,维持阻抗平衡,保持阻抗处于相对稳定状态。两者结合,使得整个消融过程中确保阻抗稳定在一定范围,使射频能量能够持续输出,从而形成足够大的消融范围,产生更大、更有效的凝固坏死灶,同时避免组织“结痂”,也避免了“结痂”组织与电极粘连在一起,器械拔出时会损伤周围器官的问题。
本申请的其他有益效果将在具体实施方式中予以进一步阐述。
附图说明
图1为射频消融导管的整体结构图;
图2为插入部分的一个剖面视图;
图3为插入部分的另一个剖面视图;
图4为手柄部分的一个剖面视图;
图5为手柄部分的另一个剖面视图;
图6a为第一弯管组件的外部结构图;
图6b为图6a中A-A剖面图;
图7a为第二弯管组件的外部结构图;
图7b为图7a中A-A剖面图;
图8为电极(浸润罩与电极为一体结构)的结构图;
图9为电极(浸润罩与电极为分体结构)的结构图;
图10a为图9的剖面视图;
图10b为电极的局部剖面视图;
图10c为电极的局部剖面视图;
图10d为电极的局部剖面视图;
图11为射频消融导管的整体结构图;
图12为图11中的局部放大图;
图13为图11中的剖面视图;
图14是电极(浸润罩与电极为一体结构)的结构图;
图15为图14中电极另一角度的视图;
图16为图15中A-A剖面图;
图17为图14中电极另一角度的视图;
图18a为消融时电极周边温度变化示意图;
图18b为射频消融导管中,温度检测装置的安装部位示意图;
图18c为图18b中省略导热环后的示意图;
图18d为导热环部位的剖面图;
图19a为射频消融的控制方法的流程图;
图19b为射频消融时病灶部位温度分布示意图;
图20为计算机设备的硬件结构示意图;
图21为肺部射频消融的控制方法的流程图;
图22为肺部射频消融的控制方法的流程图;
图23为肺部射频消融系统的示意图;
图24为另一肺部射频消融系统的示意图;
图25为肺部射频消融的控制方法的示意图;
图26为另一肺部射频消融的控制方法的示意图。
附图标记说明:
1、电极;101、盐水连接管;102、第一安装孔;103、第二安装孔;104、第三安装孔;105、第四安装孔;106、盐水孔;107、沉降区;111、连接管;112、安装孔;113、安装孔;114、尖端;115、主流道;116、分支流道;117、分支流道;118、分支流道;119、浸润孔;2、鞘管;3、护管;4、第一拉弯组件;400、指环;401、滑动腔室;402、连接头;403、限位螺钉;5、第二拉弯组件;500、过线腔;501、滑动管体;502、滑槽;503、螺栓孔;504、凹槽;6、盐水接头;7、消融仪连接器;8、电极环;9、热敏电阻;90、热敏电阻电线;91、温控套管;10、拉线;11、弹簧软管;12、盐水管;13、拉线固定螺栓;14、端盖;15、O型圈;16、导线;17、压力传感器;18、分叉铆管;19、温度传感器;20、浸润罩;200、浸润孔;201、浸润孔;202、浸润孔;21、金属管;22、温度传感器;23、换热介质输送管;24、电极导线;25、Y型手柄;26、手柄端盖;27、连接器;28、鲁尔接头;29、温度传感器;211、射频消融导管;212、嵌槽;213、第一通孔;214、导热环;215、沉槽;216、第二通孔;100、射频信号发生器;110、消融导管;120、传感器模块;130、微量灌注泵;140、控制模块;150、报警模块。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为了更好地描述和说明本申请的实施例,可参考一幅或多幅附图,但用于描述附图的附加细节或示例不应当被认为是对本申请的发明创造、目前所描述的实施例或优选方式中任何一者的范围的限制。
需要说明的是,当组件被称为与另一个组件“连接”时,它可以直接与另一个组件连接或者也可以存在居中的组件。当一个组件被认为是“设置于”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
如图1至图18a中所示,射频消融导管整体上包括插入部分和手柄部分,其中插入部分的远端设有电极1。
本申请一种实施方式的射频消融导管,包括电极1,电极1带有换热介质流道,电极1上设置有均衡装置,均衡装置上设有与换热介质流道连通的浸润孔,换热介质流道输出的换热介质经由均衡装置分配并流出。
本实施例中,通过均衡装置对可对换热介质流道输出的换热介质进一步的分配,在电极1与病灶组织之间形成换热介质保护膜,其设计思路和原理并不同于普通的冷却。分配的方式可以利用多孔、狭缝等方式,至少避免在同一部位输出换热介质,通过分配可在电极1的外表面形成比较均匀的换热介质保护膜,可以降低组织的温度,增加组织的湿度,从根本上避免组织因为干燥升温而结痂;同时换热介质能够提高组织导电性和热传导性,维持阻抗平衡,保持消融的稳定进行。
在其中一个实施例中,均衡装置与电极之间为分体结构,均衡装置固定或活动的安装在电极上;或均衡装置与电极之间为一体结构。
均衡装置与电极之间为一体结构时,即均衡装置作为电极的一部分,浸润孔则开设在电极的外壁处,均衡装置至少包围换热介质流道的一部分区域,均衡装置上的浸润孔与该区域相对应即连通。均衡装置可以是电极轴向上的一段,且该段优选在周向上连续分布,即浸润孔为沿周向分布的多个,使得换热介质分配效果更好,形成的换热介质保护膜更加均匀,避 免仅仅在周向的局部形成保护膜。
在其中一个实施例中,浸润孔为多个、用以在电极外部形成均匀的换热介质保护膜。
浸润孔为多个,更有利于换热介质的均衡分布,浸润孔可以在均衡装置的外周按一定方式或路径规则排布,也可以是无规分布。换热介质流道输出的输出的换热介质经由各浸润孔渗透流出至均衡装置外部,继而包围电极形成均匀的换热介质保护膜,关于浸润孔的具体分布在后续还提供了进一步优选的实施例。
浸润孔的孔径为0.1~0.3mm。合适的孔径更加有利于换热介质保护膜的分布和形成,当浸润孔形状为非圆形时,可参照圆孔的面积进行换算,以保证浸润孔部位的换热介质流量。
在其中一个实施例中,浸润孔为狭缝状。相对于一般形状,狭缝状具有明显的长度方向,例如长度是宽度的5倍以上,狭缝的宽度一般可设置为0.1mm左右。狭缝的长度方向沿电极轴向或周向延伸,或与轴向呈一定夹角。
本申请一种实施方式的射频消融导管,均衡装置与电极之间为分体结构,电极1的外壁开设有与换热介质流道连通的流出孔,均衡装置为安装在电极1上且处在流出孔外围的浸润罩20,浸润孔开设在浸润罩20上,流出孔输出的换热介质经浸润罩20分配并流出。
本申请中,远端理解为靠近病灶的一端,近端理解为远离病灶即靠近手柄部分的一端,轴向理解为鞘管延伸方向,尽管鞘管可局部折弯,但可结合折弯前状态辅助理解。
作为电极本身而言,除了最远端部位以外,其余部分一般采用旋转体结构,例如圆柱状,因此也具有空间上的轴向和径向,电极轴向与鞘管延伸方向一致。
优选的实施例中,所有流出孔均被浸润罩20覆盖,但某些实施例中部分流出孔也可以暴露于浸润罩20,即没有被浸润罩20覆盖。
在其中一个实施例中,电极的远端部位等径延伸或形状收敛,其中形状收敛为逐渐收敛或阶梯式收敛。
形状收敛便于实施穿刺在体内行进,收敛时直径或外轮廓朝远端逐渐变小,且变小的趋势可以是固定(逐渐收敛)或变化的(阶梯式收敛)。
在其中一个实施例中,电极的远端部位为圆柱、球冠、圆台、棱台、圆锥、棱锥或利用至少一个面斜切上述形状(指圆柱、球冠、圆台、棱台、圆锥或棱锥)。
利用一个面或多个面进行斜切,可使电极远端形状有更多变化,斜切指斜切面不与电极轴向平行或垂直,平行无法斜切,而垂直则意味者电极的远端端面为平面,例如圆柱或圆台结构。
例如图9中电极1的远端为圆台状。
在其中一个实施例中,均衡装置与电极之间为一体结构,浸润孔开设在电极外壁处,电极的远端为尖端。例如图14中电极1的远端为尖端114,具体也可视为利用三个面对圆柱进行斜切形成,尖端114便于实施穿刺在体内行进。
尽管以上提供了一些优选的方式,但就电极远端形状本身而言也可以利用现有技术实施。
本实施例中换热介质流道可通过连接管与外部的换热介质输送装置连通,在管路上根据需要可设置必要泵、阀或计量器件等。例如图16中电极1的近端带有连接管111,而在电极1内部则是主流道115与连接管111对接连通用以传输换热介质。
就换热介质本身而言可利用现有技术,主要用于冷却消融以及周边部位,但在某些场景下,也可能用以加热,根据需要调节换热介质温度和体温之间的关系即可。
由于换热介质需要输入体内,因此应选用医学上人体可接纳的物质,在物理形态上,可以是气体、液位或具有一定流动性的固态粉末,也可是多种物理形态相结合,换热介质可以是纯净物或混合物等多种方式,并可以结合施药。
在其中一个实施例中,换热介质流道为位于电极1内部的腔体,换热介质经由腔壁的开孔流出。
腔体空间形状可为圆柱状、球状、球冠或上述形状的组合体等,腔体局部的外周接近电极外表,即该部位的腔壁较薄,便于开孔,腔体在电极内的位置与开孔的分布区域相适应,利用腔体空间一方面输送换热介质,还可以对换热介质进行预分布或混合,保证经由不同开孔输出的换热介质在温度、浓度保持一致,尤其利用换热介质结合施药时效果更为突出。
均衡装置与电极一体结构时,开孔即浸润孔,均衡装置与电极之间为分体结构时,开孔可视为开设在电极外壁上的流出孔。
在其中一个实施例中,换热介质流道包括主流道以及多条与主流道连通的分支流道,各分支流道的末端延伸至电极1的外表面。
主流道可设置一条或并排布置的多条,优选一条设置在电极的轴线部位且沿电极的轴向延伸,各分支流道连通在主流道的相同位置或不同位置。
例如图10a中为一条沿电极轴线延伸的主流道,多条分支流道连通在主流道的同一位置。
图16中,为一条沿电极轴线延伸的主流道115,多条分支流道连通在主流道115的不同位置。
均衡装置与电极一体结构时,各分支流道的末端延伸至电极1外表面的浸润孔,均衡装置与电极之间为分体结构时,各分支流道的末端延伸至电极1外表面的流出孔。
在其中一个实施例中,分支流道沿主流道的延伸方向布置至少一组,同组分支流道至少为两条,呈辐射状分布于主流道外周。
为了便于加工,分支流道的延伸角度优选为电极的径向,当然也可以相对于径向倾斜布置,各分支流道倾斜角度可以相同或不同,在考量各分支流道的轴向位置时,以与主流道的连通位置作为基准。
例如图10a中分支流道沿主流道的延伸方向布置一组,而图16中分支流道沿主流道的延伸方向布置三组,图中可见分支流道116、分支流道117、分支流道118、连通在主流道115 的不同位置(轴向位置)。同属一组的分支流道呈辐射状分布。
在其中一个实施例中,同组分支流道在周向上均布布置。
呈辐射状分布时,周向均布布置可用以获得相对均匀的流出。
在其中一个实施例中,相邻组分支流道的数量相同或不同,周向上位置对齐或错位布置。
例如图16中相邻组分支流道的数量相同,且周向上位置对齐,即图中的分支流道116、分支流道117、分支流道118周向上位置对齐,当然在其他实施方式中分支流道116、分支流道117、分支流道118周向上还可以是错位布置。
在其中一个实施例中,多条分支流道沿主流道的延伸方向依次布置,且螺旋分布于主流道外周。换热介质比较常用的方式可选用生理盐水,下文中为便于表述和理解,部分实施例中以生理盐水为例,相应的流出孔也可称为盐水孔,换热介质流道也可称为盐水流道,以此类推,但就“孔”,“管”等本身而言,在没有特殊说明时其结构特点并不严格受换热介质种类的限制。
若换热介质以生理盐水为例,则在其中一个实施例中,射频消融导管,包括电连接至消融仪的电极1,电极1的一端具有连接至盐水管12以向电极1内引入生理盐水的盐水连接管101,电极1上形成有连通盐水连接管101内部的盐水孔106,电极1外进一步套设有浸润罩20,浸润罩20上均匀布置有多个浸润孔200,盐水孔106流出的生理盐水能够自浸润孔200流出。如图1至图10c中所示,一种实施方式的射频消融导管整体上包括插入部分和手柄部分。其中:
插入部分包括:电极1、与电极1相连的鞘管2,以及位于电极1和鞘管2内部的零件。
手柄部分包括:盐水接头6以及消融仪连接器7。手柄部分用于将插入部分导通至盐水接头6所连接的生理盐水存储位置和消融仪上。
导线16穿过鞘管2将电极1连接至消融仪连接器7上,用于将电极1与消融仪连接。消融仪上还连接有中性电极板,消融治疗开始前,将该中性电极板贴附于人体的合适部位,即可在电极1、消融仪、中性电极板以及患者之间形成回路,从而对电极1所接触的消融组织进行消融。使用中,射频消融导管的电极1在支气管导航的引导下,经过支气管镜的钳道,通过预先在病灶附近的支气管壁所穿刺的孔进入肺实质进行射频消融。
采用浸润罩20时,可视为均衡装置与电极1为分体结构,浸润孔200也即浸润罩孔。
当然均衡装置也可以与电极1为一体结构,例如图2、图3和图8中所示,电极1的一端与鞘管2连接固定、另一端直接嵌入消融组织内。电极1与鞘管2固定的一端具有伸入鞘管2管体内部的盐水连接管101,该盐水连接管101通过盐水管12连接至盐水接头6上,以向电极1内输入生理盐水。如图8中所示,电极1上开设有若干盐水孔106,盐水连接管101内流入的生理盐水能够在进入电极1后通过电极1内部的孔道进入盐水孔106并流出,以在电极1表面形成浸润效果。电极1表面形成一层生理盐水膜,在消融过程中,生理盐水填充 于电极1和消融组织之间,避免“结痂”将电极“真空包裹”导致阻抗突然升高。
图2、图3和图8中的盐水孔106可视为浸润孔,而电极1带有盐水孔106的局部则相应的可视为均衡装置。
一体结构时,为了保证浸润效果,浸润孔有多个,优选在电极轴向上分布多组,例如2~4组,每组中的浸润孔沿电极周向分布多个,例如2~8个,优选4~6个。
如图11至图17中所示,其中一种实施方式的射频消融导管,整体上包括插入部分和手柄部分。其中:
插入部分包括:电极1、与电极1相连的金属管21,以及位于电极1和金属管21内部的零件,另外在邻近电极1部位还设置温度传感器29。
电极1远端形状收敛形成尖刺,金属管21从结构和位置上看类似于鞘管2,但金属管21具有一定强度,连同电极1可兼做穿刺针,例如可经由胸腔外壁直接穿刺进入肺部实施消融。
本实施例中均衡装置与电极1为一体结构,电极1内部带有换热介质流道,例如主流道115,以及分支流道116、分支流道117、分支流道118、各分支流道连通在主流道115的不同位置。
各分支流道116延伸至电极1的外表面形成浸润孔109,电极1中带有换热介质流道以及浸润孔109这一段可视为与电极1一体结构的均衡装置。
电极1上带有安装孔112和安装孔113分别用于容纳温度传感器22和电极导线24,电极1近端设置连接管111与电极1内部的换热介质流道连通,换热介质输送管23与连接管111对接。
手柄部分主要包括Y型手柄25、手柄端盖26、和鲁尔接头28。
电路部分延伸出Y型手柄25后进入连接器27,连接器27可通过常用的接口形式以便于同外部电路的插拔连接,换热介质输送管23可经由鲁尔接头28连接换热介质输送装置以向电极1供应接换热介质。
根据电极1在体内行进路径的长度,在电极1的近端可对接相应性能的部件,例如在体内路径较长需要转折,则可以采用鞘管2的方式,鞘管2具有较好的柔顺性和径向支撑能力,可适应较大的弯折,另外结合拉线10还可调节弯曲程度以及电极1的姿态。又例如在体内路径较短,或者需要穿刺进入,则采用具有一定刚度的金属管21。
电极1与鞘管2或金属管21之间可采用现有手段固定连接,例如焊接、粘结、铆接或利用中间连接件等方式,在连接部位处可以轴向对接或局部相互嵌套,相互嵌套时优选外壁平整光滑,避免棱角。
结合图9~图10d所示,为了进一步优化消融过程中对于电极1的浸润效果,在一些实施方式中,均衡装置采用与电极1分体结构,例如电极1外还套设有作为均衡装置的浸润罩20。浸润罩20的内周壁与电极1的外周壁之间存留一定的间隙。
浸润罩20上均匀分布有若干细小的浸润孔200。自盐水连接管101进入电极1内部孔道的生理盐水自盐水孔106流入电极1与浸润罩20之间的间隙内,并自浸润孔200流出,在浸润罩20的外表面形成一层薄薄的水膜,这样使得电极表面被生理盐水浸润,进一步避免消融组织结痂,并降低回路阻抗。维持阻抗平衡,使消融过程持续进行,直至达到目标的消融体积。
可以理解的,电极1的加工方式往往为机械加工的方式,其上的盐水孔106的尺寸难以做的很小,而浸润罩20可以采用其他方式加工,其上的浸润孔200可以做成直径很小的孔,从而使浸润孔200流出的生理盐水在电极表面形成一层水膜。在不考虑电极1的加工难度的情况下,可以通过在电极1上加工多个盐水孔106,并使全部的盐水孔106在电极1的表面均布,这样,也可以不设置浸润罩20。
浸润罩20可使得冷却介质在浸润罩20的外表面分布成膜,为了便于加工和安装,浸润罩20与电极之间可采用分体结构。
在其中一个实施例中,浸润罩20固定在电极1上、绕电极轴线转动安装在电极1上、或沿电极轴向滑动安装在电极1上。
浸润罩20安装时直接包裹在电极上,又或浸润罩20仅覆盖电极1的局部区域,安装时可嵌装在预定区域。浸润罩20与电极1固定连接时可采用焊接、连接件或限位结构等方式保持与电极1的相对位置关系。
浸润罩20还可以绕电极轴线转动安装在电极1上,一方面仅需轴向限位即可,另外利用流出孔在周向上分布的各向异性,通过转动浸润罩20可以获得预期的流出方向,甚至封闭部分区域的流出孔。
浸润罩20沿电极轴向滑动安装在电极1上,可以利用流出孔在轴向上分布的各向异性,通过浸润罩20的运动调节不同部位的换热介质流出量,甚至封闭部分区域的流出孔。
为了控制浸润罩20相对于电极1的运动,在其中一个实施例中,还设置与浸润罩20相连的驱动部件,用于带动浸润罩20与电极1之间的相对运动。例如采用可相对鞘管2轴向运动的牵引索或可相对相对鞘管2转动的套管等方式。
在其中一个实施例中,电极1上安装一个浸润罩20,或安装多个浸润罩20。
就一浸润罩20而言,其在周向上可以仅遮盖电极1外周的局部区域,例如电极1外壁设置沉槽,流出孔位于沉槽槽底,而浸润罩20嵌装在沉槽中且与槽底部位略有间隙,便于换热介质的分配。
在多个浸润罩20的方案中,各浸润罩20可沿电极轴向、周向等方式排布,遮盖电极的不同区域。安装多个浸润罩20时,各浸润罩20相互独立的固定或活动安装,例如部分浸润罩20固定在电极1上,部分浸润罩20滑动或转动的安装在电极1上。
在其中一个实施例中,电极1上安装多个浸润罩20,各浸润罩20相对于电极1独立运 动或至少两个浸润罩相互联动。
同一浸润罩20可以是一体结构或分体结构,分体时采用相互扣合固定等方式。独立设置指在固定或独立运动,而联动则是其中一者运动时会带动或影响另一者。
浸润罩20也可以是周向的非封闭结构,在其中一个实施例中,浸润罩20为片状,在周向上仅遮盖电极1外周的局部区域。
片状既可以为平面也可以为曲面,镶嵌或半包围方式固定于电极1上。相对于电极1而言,浸润罩20至少遮盖流出孔部位,当然也可以进一步向周边延伸。在其中一个实施例中,浸润罩20为周向封闭的筒状结构,套设在电极1外周。
筒状结构的浸润罩20在安装时可从电极近端侧或远端侧沿轴向套在电极1上。周向封闭可以使浸润罩20包裹电极1一周,但并不要求在在轴向上包裹电极的所有部分,例如,在其中一个实施例中,浸润罩20仅包裹电极1的近端部位。
在其中一个实施例中,浸润罩20为帽状结构,帽状结构的远端封闭包裹浸润罩20的远端端头。
为了便于浸润罩20的定位和安装,在其中一个实施例中,浸润罩20固定在电极1上,电极1的外周设有定位台阶,浸润罩20的远端与定位台阶相抵限位。
为了使射频消融导管远端部位的外壁光滑平顺,在其中一个实施例中,浸润罩20外壁与电极1暴露于浸润罩20的外壁等高拼接。这样了避免局部形状的突变或产生凸棱等,减少安全隐患。
浸润罩20的至少一部分为分布有浸润孔200的渗透区,电极上开设流出孔的部位与渗透区相对应,且与渗透区内壁之间留有间隙。
该间隙可对换热介质进行分布,提高换热介质保护膜的均匀性,间隙的形成可以是电极外壁的局部沉降或浸润罩局部的隆起,或多种方式的结合。
在其中一个实施例中,浸润孔200与流出孔错位布置。
错位布置至少应避免一一对正,错位布置可以避免换热介质优先从与流出孔正对的浸润孔流出,影响浸润罩20的分配效果。同理优选的方式是浸润孔200数量较多且相对于流出孔孔径较小。
结合图10b,在其中一个实施例中,电极1的外壁设置有沉降区107,流出孔设置在沉降区107,浸润罩20的渗透区处在在沉降区107外周、且浸润罩20内壁与沉降区107表面留有间隙。
通过沉降区107的设置可进一步均匀分配各流出孔输出的换热介质,分配后再经由浸润罩20向外渗出。上述间隙的大小可影响浸润罩20不同部位上换热介质的压力或流量,为了在浸润罩20外周获得均匀的换热介质输出,例如形成均匀的生理盐水膜,离相邻流出孔的距离不同,间隙也相应变化。
结合图10d,在其中一个实施例中,所述流出孔为扩口状,扩口区域作为沉降区;浸润罩内壁与沉降区表面的间隙随与流出孔距离的增加而减小。
扩口状(呈喇叭开口)是为了均匀输出换热介质,例如当换热介质流速较快时,很容易直接由最近的浸润孔喷出,使得远离流出孔的浸润孔与靠近流出孔的浸润孔不能均匀输出换热介质,影响换热介质保护膜的均匀性。
图10d中,电极1外壁的流出孔即盐水孔106的开口部位采用扩口形式,扩口区域即作为沉降区107,浸润罩20内壁与沉降区表面的间隙随与流出孔距离的增加而减小。扩口形式可以增加流出孔与所正对的浸润孔之间的距离,缓解喷射现象,使得与流出孔距离不同的浸润孔均匀的输出输出换热介质。又例如当换热介质流速相对较慢时,远离流出孔的浸润孔因供量不足导致比靠近流出孔的浸润孔流量小,因此在其中一个实施例中,浸润罩20内壁与沉降区表面的间隙随与流出孔距离的增加而增加。
流出孔输送出的换热介质在沉降区中经过分配后,由于远离流出孔部位的间隙较大,可以保证有足够的换热介质供应,使得整体上各个浸润孔流量相对平衡,形成均匀的换热介质保护膜。
浸润罩20内壁与沉降区表面之间的某一区域周边如果有多个流出孔时,则该区域与流出孔距离可考虑邻近的多个流出孔,例如可按照平均距离计算。
在其中一个实施例中,沉降区为一个或相互隔离的多个,同一沉降区设置一个流出孔,同一沉降区中,浸润罩20内壁与沉降区表面的间隙随与该沉降区内流出孔距离的增加而增加。
结合图10b,例如沉降区107的对应盐水孔106,与盐水孔106距离不同的区域上,沉降区107深度是不同的,离盐水孔106越远,沉降区107越深。
为了便于计算和加工,在其中一个实施例中,沉降区为沿电极轴向延伸的分布槽,流出孔(例如图中的盐水孔106)在电极周向分为若干组,每一组对应同一分布槽。
即同组的流出孔开设在同一分布槽的槽底部位,分布槽的深度可视为浸润罩20内壁与沉降区表面的间隙大小。
结合附图,在其中一个实施例中,分布槽为周向均匀布置的2~10条。例如4、6、8条等,浸润罩20为筒状包裹在所有分布槽的外围。
同组流出孔的数量可是一个或依次排布的多个,例如图中为一个盐水孔106。
在其中一个实施例中,同一分布槽的槽底开设一个流出孔,分布槽的深度随与该流出孔距离的增加而增加。
在其中一个实施例中,浸润罩20上沿周向分布多组浸润孔200,每组浸润孔200与其中一分布槽位置相应。
采用机械加工方式时,对应同一分布槽的浸润孔200可是依次排布的一个多个,例如图 中的4~10个,若采用编织或多孔材料方式,浸润孔200的数量与分布则相对复杂,因此分组原则主要考虑与分布槽的对应关系。
相邻分布槽的槽壁形成支撑浸润罩20内壁的凸棱,凸棱顶部与浸润罩20内壁的相应部位相抵且形状匹配。
例如浸润罩20为圆筒,浸润罩20则为弧面,且曲率与浸润罩20相应,可以获得较好的支撑,减少浸润罩20不必要的局部形变。
浸润罩20上分布有浸润孔200,根据浸润罩20加工方式的不同,浸润孔200也具有相应的分布特点和形状。
在其中一个实施例中,浸润罩20采用多孔材料,多孔材料自身的空隙作为所述浸润孔200。
多孔材料可以嵌装在电极1局部或制成筒状、帽状套在电极1上,至少覆盖预期部位的浸润孔200,就多孔材料本身而言可采用现有技术,例如泡沫金属等。
在其中一个实施例中,浸润罩20采用编织结构,编织结构自身的空隙作为浸润孔200。
编织时例如采用纤维材料经纬交错编织,在经纬之间则存在空隙,即作为浸润孔200。纤维材料例如可采用镍钛合金等。
在其中一个实施例中,浸润罩20为金属壳体,金属壳体的壳壁上加工形成浸润孔200。
浸润孔的孔径以及密度分布可根据换热介质的流量需求设置,尽可能保证在电极外周形成均匀的保护膜,例如所有浸润孔的孔径相同,或依据换热介质流量均衡相应设置。
即不同区域的浸润孔的孔径是可以变化的,以适应均衡流量的需求。同理所有浸润孔在均衡装置不同部位的分布密度相同,或依据换热介质流量均衡相应设置。
依据换热介质流量均衡相应设置时,主要考虑换热介质流道出口的布置方式,例如所述浸润孔的孔径随与流出孔距离的增加而增加。
同理例如浸润孔的分布密度随与流出孔距离的增加而增加。
浸润孔在加工时可以根据预期排布,例如在其中一个实施例中,浸润孔200在浸润罩20周向上分布多组。
例如2~6组等,每组浸润孔个数2个或更多,例如4~10个,各组之间一方面可以依照排布趋势划分,还可以依照与换热介质流道的对应关系划分。
同组浸润孔200按各自的延伸路径依次排布,所述延伸路径为直线,折线或曲线。为直线时可视为同组浸润孔200沿轴向依次排布。为曲线时整体趋势可以是沿轴线向延伸,在具体路径上可以是弧线,S形曲线等。
在其他实施例中,还可以是所有的浸润孔200沿螺旋线绕电极轴线分布等方式。或浸润孔200采用阵列方式均匀分布。
为了使得浸润罩20为均衡出水,且能形成均匀的水膜。在其中一个实施例中,同组浸润 孔200的孔径(可理解为截面积的大小)随与流出孔距离的增加而增加。
同组浸润孔200中各浸润孔200周边如果有多个流出孔时,可只考虑最接近的流出孔或按照平均距离计算。在其中一个实施例中,每组浸润孔200对应一个流出孔。此情况下,同组浸润孔200的孔径变化可只考虑周向位置相应的流出孔。
参见图10,例如浸润孔201、浸润孔202等多个浸润孔在周向位置上均对应盐水孔106,浸润孔202比浸润孔201更远离盐水孔106,浸润孔202的孔径也相应的比浸润孔201的孔径大。
在其中一个实施例中,浸润罩20上带有显影标识。
浸润罩20自身的至少一部分为显影材料或在浸润罩20上安装有显影标识,显影标识可在术中配合影像设备显示电极1的位置。
显影标识自身形状没有严格限制,例如采用沿周向延伸的环形,C形或沿预定方向延伸的条形等。
在其中一个实施例中,浸润罩20上的显影标识为沿轴向依次布置的多处。显影标识沿轴向依次多处更便于识别空间姿态。例如可以根据显影标识排列线的长度确定与视角的相对倾斜程度,或结合显影标识排列线弯曲程度定位电极的空间位置等。
在其中一个实施例中,所述射频消融导管还包括可指示电极位置的电磁导航部件。
就电磁导航部件本身而言可采用现有技术,电极内可开设安装孔容置电磁导航部件,或将电磁导航部件依附固定在电极外部等方式,介入以及消融过程中,通过成像仪器可感知电磁导航部件在体内的位置,进而获知电极位置或姿态,以指导和监控消融操作。
电极在体内行进在消融操作过程中,有时会需要调节电极的朝向或空间姿态,一般利用拉线在远端进行牵引。
一种实施方式的射频消融导管,包括电极1,电极1上连接有向近端延伸的拉线10,用以带动电极1偏转。
利用拉线10更利于调节电极1,在此基础上还可以结合前述的浸润罩20等相关特征(或实施方式)。例如电极1内部带有换热介质流道,电极1外壁开设有与换热介质流道连通的流出孔,在电极1上安装有处在流出孔外围的浸润罩20,流出孔输出的换热介质经浸润罩20流出。
为了向电极1内引入换热介质,电极1的近端设有与换热介质流道连通的连接管,连接管内部也可视为换热介质流道的一部分,连接管与电极可为一体结构,用于与外部管路对接向近端延伸。
在其中一个实施例中,电极的近端连接有由弹性材料制成的鞘管2,拉线10自鞘管2的内部向近端延伸至鞘管2外部;电极1的近端设有与换热介质流道连通的连接管,该连接管延伸至鞘管2内部。
为了安装拉线10,以便于对于电极1的操控,在其中一个实施例中,电极1的一端连接有由弹性材料制成的鞘管2,盐水连接管101延伸至所述鞘管2内部,电极1上固定设置拉线10,拉线10自鞘管2的内部延伸至鞘管2外部,以使得拉线10被牵动时,鞘管2弯曲变形,从而带动电极1偏转。
拉线10自鞘管2的内部延伸至鞘管2可以理解为在鞘管2内部向近端延伸,直至延伸出鞘管2的近端,当然也可以在鞘管2的邻近近端部位沿鞘管2径向贯穿鞘管2的管壁,即延伸至鞘管2外部。
在其中一个实施例中,射频消融导管进一步包括能够相对靠近或远离的第一拉弯组件4和第二拉弯组件5,鞘管2固定至所述第一拉弯组件4,且拉线10固定至所述第二拉弯组件5。
即手柄部分还包括第一拉弯组件4、与第一拉弯组件4滑动配合的第二拉弯组件5,通过第一拉弯组件4与第二拉弯组件5的相对移动控制电极1朝向目标位置偏转。
第一拉弯组件4与第二拉弯组件5分别可以是单个部件或多个部件的组合,甚至两者还可以是同一部件的不同部位。
其中一个实施例中,第一拉弯组件4与第二拉弯组件5之间相互嵌套滑动或并排滑动布置。为提高相对运动的稳定性可设置必要的导向以及限位结构。
为了固定拉线10的近端,在其中一个实施例中,电极1上设置安装孔,拉线10的远端伸入并固定于该安装孔。通过安装孔的形式可避免拉线端头外露,提高连接强度,固定时可采用焊接、粘结或相结合,也可以在拉线端头固定一锚定件,该锚定件与安装孔过盈配合。或拉线端头通过中间连接件与电极1相固定。
安装孔的开口部位处在电极近端,为了提高连接强度,安装孔可沿电极轴向朝远端延伸一段距离,拉线10可进一步向远端插至安装孔的底部。
图中拉线10的一端固定于电极1上的第二安装孔103内、另一端沿鞘管2延伸固定至第二拉弯组件5上,在相对移动第一拉弯组件4和第二拉弯组件5时,拉线10被牵拉,使得鞘管2被拉而发生弯曲,从而使鞘管2端部的电极1发生偏转。在一些实施方式中,拉线10外还套设有弹簧软管11,拉线10被牵拉时,弹簧软管11能够随鞘管2发生弯曲变形,且在松开对拉线10的牵拉后回弹。
拉线10受力绷紧时有可能最周边的其他部件施加较大的压强甚至割裂,弹簧软管11可进一步起到缓冲的保护作用。
如图4至图7中所示,鞘管2自电极1的一端朝向手柄部分延伸,并与第一拉弯组件4固定。鞘管2采用具有一定弹性的材料制成,以使得其能够发生可恢复的弯曲弹性变形,从而控制电极1偏转。
在一些实施方式中,为了加强鞘管2与第一拉弯组件4之间的连接,在第一拉弯组件4 的连接头402上套接固定有护管3,且所述护管3的部分延伸至鞘管2的外部。
在其中一个实施例中,第一拉弯组件4和第二拉弯组件5均为管状,且第二拉弯组件5滑动配合在第一拉弯组件4内。
第一拉弯组件4的内部形成有滑动腔室401,所述滑动腔室401上远离鞘管2固定的一端开口设置,第二拉弯组件5自该开口滑动连接至所述滑动腔室401内。第二拉弯组件5上滑动连接至所述滑动腔室401内的部分构成滑动管体501,所述滑动管体501内形成有过线腔500,鞘管2内伸出的拉线10、导线16等均自所述过线腔500穿过。第二拉弯组件5上远离鞘管2固定的一端设置有端盖14,自过线腔500穿出的线路穿出端盖14,并分别连接至盐水接头6和消融仪连接器7。
第二拉弯组件5的外壁上开设有螺栓孔503,该螺栓孔503上螺接有拉线固定螺栓13,拉线10通过所述拉线固定螺栓13固定至第二拉弯组件5上,这样,当滑动管体501在滑动腔室401内滑动时,拉线10远离电极1的一端随滑动管体501移动,从而牵引鞘管2弯曲,并带动安装于鞘管2端部的电极1偏转。
在一些实施方式中,第二拉弯组件5的至少部分嵌入第一拉弯组件4内,所述第一拉弯组件4与所述第二拉弯组件5之间进一步设置有限定两者对移动方向的导向装置。
第一拉弯组件4与第二拉弯组件5之间设置有导向装置,以限定滑动管体501在滑动腔室401内仅发生轴向相对位移,而不发生相对转动。
在一些实施方式中,导向装置包括设置于第一拉弯组件4和第二拉弯组件5任一者上的滑槽502和设置于另一者上的限位螺钉403。
具体地,第一拉弯组件4上设置有延伸至滑动腔室401的限位螺钉403。滑动管体501的外壁上开设有滑槽502,当第二拉弯组件5滑动连接至第一拉弯组件4上的滑动腔室401内时,限位螺钉403至少部分位于所述滑槽502内,这样,通过滑槽502对于限位螺钉403的滑动限位作用,限定第一拉弯组件4与第二拉弯组件5的相对移动方向。滑槽502的长度也限定了鞘管2的最大弯曲程度。
本领域技术人员可以理解的是,限定第一拉弯组件4和第二拉弯组件5相对移动方向的方式有很多,并不局限于上述的限位螺钉403和滑槽502配合的形式。
在一些实施方式中,第二拉弯组件5上嵌入第一拉弯组件4内的部分上设置有用于增加第一拉弯组件4与第二拉弯组件5之间摩擦力的O型圈15。
例如滑动管体501的外周壁上开设有环绕滑动管体501一周的凹槽504,该凹槽504内安装有O型圈15,这样,在第一拉弯组件4与第二拉弯组件5相对滑动时,O型圈15可以适当增加滑动管体501与滑动腔室401之间接触摩擦,以增加两个拉弯组件相对移动时的手感,这样,在控制电极1的偏转角度时,由于牵动拉线10需要一定的力,控制拉线10被牵拉的距离时会更加容易,从而更加精确地控制鞘管2的弯曲程度,对应地更精确地控制电极 1的偏转角度。
为了进一步提高驱动第一拉弯组件4与第二拉弯组件5之间相对移动的便捷性,第一拉弯组件4上优选设置有两个指环400,第二拉弯组件5上也设置有指环400,操作者的手指可以穿过指环400,从而形成与任一拉弯组件的固定,以便于驱动两个拉弯组件相对移动。也便于单手操作。
为了进一步提高驱动第一拉弯组件4与第二拉弯组件5之间相对移动的精准性,在其中一实施方式中,第二拉弯组件5上设置有指示与第一拉弯组件4相对位置的刻度线。
在其中一个实施例中,电极1内还设置有用于检测电极1的实时温度的热敏电阻9,热敏电阻9通过热敏电阻电线90电连接至消融仪。
热敏电阻9固定于电极1上,用于实时获取消融组织的温度数据,并通过连接于热敏电阻9至消融仪连接器7的热敏电阻电线90将温度数据输送至消融仪。
在其中一个实施例中,鞘管2内还设置有套设于热敏电阻电线90外的温控套管91。
即为了避免热敏电阻电线90受到干扰,其外部还设置有温控套管91,温控套管91套设于所述热敏电阻电线90外部。
在其中一个实施例中,鞘管2外还设置有电极环8,鞘管2内设置有连接至电极环8并能够检测电极环8温度的温度传感器19,温度传感器19电连接至消融仪。
鞘管2的外壁上在距离电极1约2cm的位置处设置有电极环8。鞘管2上对应于电极环8设置处,其外壁上开设有一过孔,所述过孔连通至鞘管2内腔。鞘管2内设置有一分叉铆管18,所述分叉铆管18的部分穿过所述过孔与所述电极环8焊接固定,分叉铆管18的位于鞘管2内腔的部分连接至温度传感器19上。温度传感器19电连接至消融仪连接器7,如此,温度传感器19通过分叉铆管18感测电极环8的温度,并将该温度传输至消融仪上。在消融过程中,当消融范围到达电极环8时(一般消融直径为2cm),温度传感器19检测的温度达到预设值,此时可以判断消融范围达到预设值,可以通过消融仪停止向电极1输出能量,从而停止消融过程。本领域技术人员可以理解的是,依据实际需要,沿鞘管2移动电极环8的位置,并相应更改预设温度,就可以控制消融半径,从而有效地控制消融区域的大小。
电极环8在周向上可以是封闭的整环结构,也可以是非封闭结构,例如C形或对应更小的包角,为了便于安装电极环8可采用贴片形式,贴片形状并没有严格限制,采用焊接等方式固定在电极外壁。电极环8作为一导热元件,温度传感器19在电路上亦可采用热敏电阻等方式,通过电信号的变化感知温度。
现有技术中消融效果难以直接判断,大多通过手术评估,缺少术中判断或评估方式,本申请中,一种实施方式的射频消融导管,在射频消融导管上邻近远端部位沿轴向依次分布多个温度检测装置。
多个温度检测装置,可采集电极1周边温度,消融过程中以电极为中心,呈现周边温度 呈梯度变化。既可以获悉(实时监测)消融细胞中心的温度,还可以获知细胞边缘消融的情况。
多个温度检测装置既可以单独实施,还可以结合上述的拉线10和浸润罩20中的一个或多个以及相关的特征(或实施方式)。例如电极1上连接有向远端延伸的拉线10,用以带动电极1偏转。通过对温度的监控,可在必要时通过拉线10带动电极1偏转。
又例如电极1内部带有换热介质流道,电极1外壁开设有与换热介质流道连通的流出孔,在电极1上安装有处在流出孔外围的浸润罩20,流出孔输出的换热介质经浸润罩20流出。通过对温度的监控,可及时调节换热介质输出,并通过浸润罩20形成换热介质保护膜。
温度检测装置例如可设置2、3或大于3个,并可依据采集的温度信号通过可视化方式实时显示以指导消融操作,可有效控制消融范围,术中直接判断或预估消融效果。
在其中一个实施例中,电极1的远端端部设有温度探测探头。可采集电极1的远端端部温度,消融时可将电极1的远端端部伸入至与病灶中心位置相对应,其他温度检测装置的相对位置关系,以及相对温度关系都以电极1的远端端部为参照,便于直观对比。
温度探测探头可采用无线或有线的方式与消融仪相连,例如可在电极1的远端端部设置安装槽,温度探测探头嵌装在安装槽内。
有线连接时,电极1内部可以开设导线通道(避让换热介质通道)用于穿引与消融仪之间的导线。
为了便于安装温度检测装置以及检测温度,温度检测装置中直接感温的元件(例如电极环8)应布置在电极1外部或裸露于电极1,下文在没有特殊说明情况下,有关于温度检测装置之间以及与电极之间轴向相对位置的描述应理解为直接感温的元件,例如环状、片状、柱状等形式的导热元件,利用该导热元件将温度传递至温度传感器(电路上可采用热敏电阻等方式),还可以是温度传感器本身直接作为感温的元件暴露于电极1(即射频消融导管外部),其具体形状并没有严格限制,当然下文也提供了优选或改进的一些实施方式。
在其中一个实施例中,电极1的近端对接有鞘管2或金属管21,温度检测装置安装位置在电极1外部,或鞘管2外部,或金属管21外部。
针对片状、柱状的温度检测装置可嵌装在电极1的外壁,针对环状的温度检测装置可绕置固定在电极1、鞘管2或金属管21外部。环状的温度检测装置可以是周向封闭的环形,也可以是非封闭的(例如C形)。
温度检测装置既可以活动安装也可以固定安装,参见图18c,固定安装时在其中一个实施例中,温度检测装置包括温度传感器(图中省略),射频消融导管211外壁设有嵌槽212,温度传感器固定在位置相应的嵌槽212中,且嵌槽212的槽底部位设有用于穿引电路导线的第一通孔213。
固定安装的温度检测装置可以是任意一个或多个,以上安装方式是针对其中一者而言, 多个温度检测装置采用固定安装时,具体安装和固定方式既可以相同也可以不同。
根据温度检测装置位置的不同,图中射频消融导管211可能是前述各实施例中电极1、鞘管2或金属管21的其中一部分,嵌槽212深度与温度传感器的径向尺寸相应,嵌槽212的形状与温度传感器相应,即温度传感器可填充且填满嵌槽212,避免不必要的间隙。
在其中一个实施例中,嵌槽212为环形,温度传感器环绕固定在位置相应的嵌槽212中,温度传感器与所在嵌槽212之间的固定方式选自粘结、焊接、铆接、过盈配合中的至少一种。例如图中嵌槽212绕射频消融导管211一周,相应的温度传感器为环形,其固定方式不限于一种或多种。当然嵌槽212在周向上也可是非封闭结构,例如C形。
温度传感器可采用贴片形式,且自身直接作为感温元件暴露在射频消融导管211外壁处,温度信号的采集更加及时和精准。
当温度传感器面积或体积较小时,为了便于安装,结合图18b~图18d,在其中一个实施例中,温度检测装置包括温度传感器(图中省略)以及导热环214,温度传感器与消融仪相连接,导热环214设置于射频消融导管211外壁,温度传感器与所述导热环214热耦合。
热耦合的方式可以是直接接触或间接接触,主要可在两者之间传递温度。导热环214自身并不严格限制为完整的环形,可以是周向上延伸的一部分。完整的环形即周向封闭,例如圆环形等,而周向上延伸的一部分即周向封闭上并不封闭,例如C形等。
其中一个实施例中,温度传感器固定在导热环的外壁,固定方式选自粘结、焊接、铆接、过盈配合中的至少一种。
在其中一个实施例中,温度传感器为热敏电阻,热敏电阻通过热敏电阻电线电连接至消融仪,热敏电阻电线上套设有温控套管。温控套管可以避免热敏电阻电线受到干扰,温控套管整体上紧贴热敏电阻电线,且处在射频消融导管内部。
为了便于传输,省略电路导线,在其中一个实施例中,温度传感器通过无线通信装置与消融仪相连。
在其中一个实施例中,射频消融导管211外壁设有嵌槽212,温度检测装置固定在位置相应的嵌槽212中;且嵌槽212的槽底部位设有用于穿引电路导线的通孔。
嵌槽212的槽底部位设有第一通孔213,温度检测装置中,导热环214的一部分沉入该第一通孔213,导热环214的沉入部分上设有第二通孔216,温度传感器的电路导线经由第二通孔216进入射频消融导管211内部并向近端延伸。
为了便于导热环214的定位,防止旋转或轴向错位,在其中一个实施例中,嵌槽212为环形,温度检测装置环绕固定在位置相应的嵌槽212中;温度检测装置与所在嵌槽212之间的固定方式选自粘结、焊接、铆接、过盈配合中的至少一种。
在其中一个实施例中,导热环214呈环形结构,导热环214设置于嵌槽212中。导热环214呈完整的环形结构,温度传感器进一步固定在导热环214的内壁或外壁。
在其中一个实施例中,温度检测装置呈环形结构,导热环214以及温度传感器周向上形状互补围成所述环形结构。本实施例中导热环214以及温度传感器两者在周向上相互拼接为完整的环形,例如两者均为半圆环状,又例如导热环214为C形,而温度传感器恰填充C形的缺口,即形成互补。
在其中一个实施例中,导热环214上开设有沉槽215,温度传感器固定在该沉槽215中,温度传感器与所在沉槽215之间的固定方式选自粘结、焊接、铆接、过盈配合中的至少一种。
导热环214的一部分沉入第一通孔213,该部分在导热环214外侧也相应的形成了沉槽215,温度传感器填充且填满沉槽215,避免不必要的间隙。
为了使电极1和鞘管2的外表面光滑,避免出现凸棱,在其中一个实施例中,温度检测装置的外表面与周边相互平齐。
在其中一个实施例中,至少一个温度检测装置处在电极1轴向的中部。
消融时,以电极为中心形成一温度场,至少一温度检测装置处在温度场中心,一方面可感知该区域的温度变化,另外与其他温度检测装置相配合,可以根据之间的差值,进一步标定和明确上述温度场的分布情况。
在其中一个实施例中,至少一个温度检测装置绕置固定在射频消融导管的外周。
温度检测装置绕置的具体部位可以是电极1、鞘管2或金属管21外壁。
在其中一个实施例中,温度检测装置包括由远端至近端间隔布置的第一温度检测装置、第二温度检测装置和第三温度检测装置。
其中:
第一温度检测装置,处在电极1远端的端部;
第二温度检测装置,绕置固定在电极1、鞘管2或金属管21的外部,且处在第一温度检测装置远端;
第三温度检测装置,绕置固定在电极1、鞘管2或金属管21的外部,且处在第二温度检测装置远端。
例如第一温度检测装置为片状或柱状,第二温度检测装置、第三温度检测装置均为环形,片状结构时可采用贴片形式固定在电极1、鞘管2或金属管21外壁。
根据电极1的轴向长度不同,当电极1较短时,第二温度检测装置、第三温度检测装置均处在鞘管2或金属管21的外部;电极1略长时,第二温度检测装置处在电极1外部,而第三温度检测装置处在鞘管2或金属管21的外部;电极1进一步加长时,第二温度检测装置、第三温度检测装置均处在电极1外部。
参见图18a,处在电极1远端端部的温度探测探头对应的检测位置为A0,第一温度检测装置对应的检测位置为A1,第二温度检测装置对应的检测位置为A2,第三温度检测装置对应的检测位置为A3。
A0也可视为发热中心,即温度最高的部位,与A0距离越远,温度会逐渐降低,例如半径为R1(例如1cm)的区域内温度可达100℃,而半径为R2(例如1.5cm)的区域边缘温度一般可达43~60℃,仍可以满足消融治疗的需求,而半径为R3(例如2cm)的区域边缘温度进一步降低,以无法满足消融治疗的需求,仅供监测和参考。
为了将温度场与病灶部位的体积相匹配,采用多个温度检测装置时,可预先将多个温度检测装置固定,即根据间距的不同配置不同规格的射频消融导管,实际应用时根据预先获知的病灶部位体积,选取适宜的规格。
待消融的病灶部位形状和尺寸各不相同,为例如提高通用性,在其中一个实施例中,至少一个温度检测装置的轴向位置可调。
改变温度检测装置的位置即改变相对于电极远端的检测位置,例如上述实施例中的第二温度检测装置轴向位置可调,或第二温度检测装置和第三温度检测装置轴向位置均可调。
结合图18a,第二温度检测装置轴向位置变化时,即A1和A2距离改变,即R2改变,第三温度检测装置轴向位置变化时同理。通过温度检测装置的位置改变可使温度检测位置或监测区域改变,以适应病灶部位的尺寸。
为了便于温度检测装置移动,在其中一个实施例中,射频消融导管与温度检测装置之间设有相互配合的导向结构。
例如在其中一个实施例中,电极、鞘管或金属管的外壁设置沿轴向布置的滑槽,温度检测装置环绕在电极、鞘管或金属管的外壁上,且在温度检测装置的内壁设置与滑槽相配合的凸起。
通过凸起与滑槽的配合引导温度检测装置运动,并防止与电极之间的相对转动。
温度检测装置就位后,若在体外固定,则可利用尺寸匹配的钳子局部施压将温度检测装置铆接固定在电极上,还可以采用焊接等方式进行固定。
若温度检测装置在体内也需要位置调节,则温度检测装置的调节方式可采用类似于拉线10的牵引方式,例如其中一个实施例中,轴向位置可调的温度检测装置上连接有牵引索,通过牵引索驱动温度检测装置相对于电极1改变轴向位置。
其中一个实施例中,牵引索由所连接的温度检测装置处穿入射频消融导管的内部,经由射频消融导管的内部向近端延伸直至延伸。
射频消融导管的内部可以是电极、鞘管或金属管的内部。牵引索的主要部分在射频消融导管的内部延伸,避免与体内组织接触,消除割伤组织的安全隐患。
牵引索朝近端延伸即延伸邻近操作者,便于牵引控制。牵引索近端可配置调节组件,通过操作调节组件带动牵引索。其中一个实施例中,射频消融导管进一步包括能够相对运动的第一调节组件和第二调节组件,其中电极1相对固定于第一调节组件,牵引索连接至第二调节组件,第一调节组件和第二调节组件相对运动时牵引索驱动所连接的温度检测装置相对电 极1改变轴向位置。
第一调节组件和第二调节组件相对运动时,两者上至少有部分区域的间距会发生变化,既可以是轴向也可是周向或至少具有某方向的分量,利用上述的间距变化则可驱动牵引索带动温度检测装置。
其中一个实施例中,第一调节组件和第二调节组件滑动配合或转动配合。
滑动配合可理解为轴向的相对运动;转动配合可理解为至少在周向上的相对运动,例如轴向限位的转动或螺纹方式的转动配合。
由于电极1相对固定于第一调节组件,因此第一调节组件可与前述的第一拉弯组件相结合,甚至为同一组件,鞘管2固定于该组件远端侧。
例如,在其中一个实施例中,射频消融导管进一步包括能够相对靠近或远离的第一拉弯组件4和第二拉弯组件5,电极1相对固定于第一拉弯组件4,第二拉弯组件5与电极之间连接有拉线10;
射频消融导管进一步包括能够相对运动的第一调节组件和第二调节组件,其中电极1相对固定于第一调节组件,牵引索连接至第二调节组件,第一调节组件和第二调节组件相对运动时牵引索驱动所连接的温度检测装置相对电极1改变轴向位置;
其中第一拉弯组件4和第一调节组件单独配置或为同一组件。
第二调节组件以及第二拉弯组件各自独立的相对于第一拉弯组件运动,第二调节组件以及第二拉弯组件的运动形式也是各自独立,例如一者为滑动,另一者为转动。
若温度检测装置在体内也需要位置调节,为了获取温度检测装置相对于电极的位置,可采用近端标定牵引索运动距离的方式,或温度检测装置自身为显影材料,通过影像计算温度检测装置相对于电极的位置。
在其中一个实施例中,电极1内还设置有用于检测电极1与消融组织接触压力变化的压力传感器17。
压力传感器17优选地焊接固定于电极1内,并连接至消融仪连接器7,当电极1接触消融组织而无法进一步前进时,压力传感器17感受电极1处的压力变化,并将其传输至消融仪上,在支气管导航的引导下,经过支气管镜的钳道,通过预先在病灶附近的支气管壁所穿刺的孔进入消融组织,从而更有效地判断电极1的准确位置,提高电极1的定位精度。
结合图8,为了安装热敏电阻9、拉线10、压力传感器17和导线16,电极1的朝向鞘管2安装方向的一端开设有第一安装孔102、第二安装孔103、第三安装孔104和第四安装孔105,四个安装孔内分别安装有热敏电阻9、拉线10、压力传感器17和导线16。另外还可以进一步设置第五安装孔,用于连接牵引索。当牵引索有多根时,则设置相应数量的安装孔。
基于上述各实施方式,结合图19a,本申请的一些实施方式中还提供了射频消融方法,包括:
步骤S100、消融过程中获取温度参数;
步骤S110、将温度参数与温度阈值相比;
步骤S120、当温度参数与温度阈值符合设定关系时,发送停止消融指令。
射频消融方法的流程以及具体步骤还可以参见下述射频消融的控制方法中的相关描述。
同样,基于上述各实施方式,结合图19a,本申请的一些实施方式中还提供了射频消融的温度监测方法,包括:
步骤S100、消融过程中获取温度参数;
步骤S110、将温度参数与温度阈值相比;
步骤S120、当温度参数与温度阈值符合设定关系时,发送停止消融指令。
同样,基于上述各实施方式,结合图19a,本申请的一些实施方式中还提供了射频消融的控制方法,包括:
步骤S100、消融过程中获取温度参数;
步骤S110、将温度参数与温度阈值相比;
步骤S120、当温度参数与温度阈值符合设定关系时,发送停止消融指令。
步骤S100前首先将射频消融导管的端部定位到肿瘤细胞或病变细胞附近,穿刺进入细胞内,一般情况下可使电极的远端端部与病灶部位中心相对应,而后电极通电开始消融,实时获取的温度参数可利用前述的热敏电阻9或温度检测装置(以下也统称温度检测装置)等方式实时采集,具体采集方式也可结合其他现有技术实施。
温度参数在空间上有对应的检测部位,即温度检测装置所在的位置,尽管现有技术中也有采取获取温度参数的手段或方式,但大多限于电极所在位置。
在其中一个实施例中,所述温度参数包括边缘温度参数,该边缘温度参数所对应的检测部位与电极远端端部的距离为L;且满足L0≤L,其中所述L0为预测的病灶部位半径;
所述的设定关系包括边缘温度参数到达所述温度阈值并保持预设的时间间隔。
常规的消融操作一般是预设消融时间,到达时间后停止消融,但消融效果无法保证,本实施例中通过在温度场中指定位置的温度变化来确定消融终点可进一步保证消融效果。
在其中一个实施例中,所述温度参数还包括第一温度参数,该第一温度参数所对应的检测部位与电极远端端部的距离为L1;且满足L1<L0,其中所述L0为预测的病灶部位半径。
在其中一个实施例中,设定关系还包括第一温度参数达到60-100度。
第一温度参数所对应的检测部位处在病灶部位内部,通过监测第一温度参数的变化可以反映病灶部位内部的消融进程,例如可判断是否邻近消融终点。
在其中一个实施例中,所述边缘温度参数包括第三温度参数,该第三温度参数所对应的检测部位与电极远端端部的距离为L3;且满足L0<L3,其中所述L0为预测的病灶部位半径。
现有技术中消融时在B超或CT的引导下将射频消融导管直接刺入病灶部位(病变组织 肿块),射频消融导管中电极通电可使组织内温度超过60℃,细胞死亡,产生坏死区域;如局部的组织温度超过100℃,肿瘤组织和围绕器官的实质发生凝固坏死,治疗时可产生一个很大的球形凝固坏死区,凝固坏死区之外还有43~60℃的热疗区,在此区域内,癌细胞可被杀死,而正常细胞可恢复。
在其中一个实施例中,所述的设定关系为第三温度参数到达所述温度阈值并保持预设的时间间隔;所述温度阈值为43~60℃,所述时间间隔不少于3分钟。
为保证消融效果,例如可将第三温度参数对应的温度阈值设置为接近或等于60℃,例如55~60℃。
若第三温度参数为43~60℃时,意味着病灶部位的外边缘达到此温度,达到此温度既可以马上发送停止消融指令,也可以延时预定时间后发送停止消融指令。
在其中一个实施例中,所述边缘温度参数还包括第二温度参数,该第二温度参数所对应的检测部位与电极远端端部的距离为L2;且满足L2=L0,其中所述L0为预测的病灶部位半径。
在其中一个实施例中,设定关系还包括第二温度参数达到60-90度。
第二温度参数所对应的检测部位与病灶部位半径大致相同,可准确获知病灶部位外缘的温度情况,有利温度的精准监测。
在其中一个实施例中,温度参数还包括远端温度参数,该远端温度参数所对应的检测部位为电极的远端端部。
在其中一个实施例中,设定关系还包括远端温度参数达到60-100度。
在其中一个实施例中,所述温度参数包括:
远端温度参数,该远端温度参数所对应的检测部位为电极的远端端部;
第一温度参数,该第一温度参数所对应的检测部位与电极远端端部的距离为L1;
第二温度参数,该第二温度参数所对应的检测部位与电极远端端部的距离为L2;
第三温度参数,该第三温度参数所对应的检测部位与电极远端端部的距离为L3;
且满足L1<L0=L2<L3,其中所述L0为预测的病灶部位半径。
采集多个部位对应的温度可在消融过程中监测电极附近以及病灶周边区域的温度场,当电极的远端端部与病灶中心位置相应时,可获得病灶中心为原点的周边温度分布,根据温度梯度变化可指示消融进程。病灶部位半径可通过影像设备等预先测量尺寸,并计算大致的半径范围。通过多个部位的温度检测能准确获知检测消融的进度,进一步确保消融效果。
在其中一个实施例中,还包括消融过程中依照所述温度参数可视化显示电极周边的温度分布。
可视化过程中,可以通过各类型的图标或三维形状模拟显示以电极远端为中心的温度场变化。
参见图19b,设点M为电极1的远端端部,消融过程中点M即病灶部位的体中心;
点M为电极的远端端部,采集自点M的为远端温度参数;
点X1与点M的距离为L1,采集自点X1的为第一温度参数;
点X2与点M的距离为L2,采集自点X2的为第二温度参数;
病灶部位的半径L0=L2;
点X3与点M的距离为L3,采集自点X3的为第三温度参数;
消融过程中可根据各温度参数的变化,实施绘制并显示如图19b的温度场示意图。不同剖面线区域意味着温度不同,实际显示时可利用不同颜色等方式进行区分。并根据温度的变化,相应的改变显示颜色,例如随着温度的升高颜色逐渐加深或由冷色变为暖色等。
在结合温度场示意图判定消融进程时,例如:
第一温度参数达到温度阈值,但第二温度参数未达到温度阈值时,可判定消融进行中;
第二温度参数达到温度阈值,但第三温度参数未达到温度阈值时,可判定消融即将完成;
第三温度参数达到温度阈值且能够维持一定时间(通常为3分钟),可判定消融完成。
由于第三温度参数所对应的检测部位处在病灶的外围区域,因此通过第三温度参数监测消融终点可确保消融效果。
在其中一个实施例中,射频消融时采用前述实施例的射频消融导管,第一温度参数、第二温度参数和第三温度参数分别采集自第一温度检测装置、第二温度检测装置和第三温度检测装置。远端温度参数采集自安装在电极的远端端部的温度探测探头。
前述实施例的射频消融导管上安装有温度探测探头、第一温度检测装置、第二温度检测装置和第三温度检测装置。
温度探测探头安装在电极的远端端部,其余三个温度检测装置的位置由远端至近端依次排布,三者与电极远端端部的距离分别对应L1,L2,L3。
由于不同情况下的L0不尽相同,因此可根据需要预先调整三个温度检测装置的位置,以满足L1<L0=L2<L3。
例如结合参见肺部肿瘤细胞或病变细胞尺寸(一般半径一厘米左右),当然也考虑到体内环境的温度传导,可选择L3为1.5cm,L1为L0的二分之一(0.5cm)。
消融操作一段时间后,若温度参数始终未达到温度阈值,则调整电极的位置再发出二次消融指令,调整电极的位置可依照前述相关实施例的拉线方式进行,还可以直接整体推进或回撤射频消融导管,直至温度参数达到温度阈值结束消融手术。
在本申请各实施例中,方法流程中的各个步骤并不是必然按照叙述或附图的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的 执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
本申请的一些实施方式中还提供了射频消融装置,包括:
第一模块、用于消融过程中获取温度参数;
第二模块、用于将温度参数与温度阈值相比;
第三模块、用于当温度参数与温度阈值符合设定关系时,发送停止消融指令。
同理,本申请的一些实施方式中还提供了射频消融的控制装置,包括:
第一模块、用于消融过程中获取温度参数;
第二模块、用于将温度参数与温度阈值相比;
第三模块、用于当温度参数与温度阈值符合设定关系时,发送停止消融指令。
同理,本申请的一些实施方式中还提供了射频消融的温度监测装置,包括:
第一模块、用于消融过程中获取温度参数;
第二模块、用于将温度参数与温度阈值相比;
第三模块、用于当温度参数与温度阈值符合设定关系时,发送停止消融指令。
射频消融装置、射频消融的控制装置以及射频消融的温度监测装置的具体限定和相关细节可以参见上文中对于射频消融方法以及射频消融的控制方法的限定,在此不再赘述。上述射频消融装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
本申请的一些实施方式中还提供了一种计算机设备,例如一种射频消融装置,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现上述射频消融方法的步骤。例如包括
步骤S100、消融过程中获取温度参数;
步骤S110、将温度参数与温度阈值相比;
步骤S120、当温度参数与温度阈值符合设定关系时,发送停止消融指令。
本申请的一些实施方式中还提供了一种计算机设备,例如一种射频消融的温度监测装置,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现上述射频消融的温度监测方法的步骤。例如包括:
步骤S100、消融过程中获取温度参数;
步骤S110、将温度参数与温度阈值相比;
步骤S120、当温度参数与温度阈值符合设定关系时,发送停止消融指令。
本申请的一些实施方式中还提供了一种计算机设备,例如一种射频消融的控制装置,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现上述射频 消融的控制方法的步骤。例如包括
步骤S100、消融过程中获取温度参数;
步骤S110、将温度参数与温度阈值相比;
步骤S120、当温度参数与温度阈值符合设定关系时,发送停止消融指令。
作为计算机设备,关于射频消融装置、射频消融的控制装置以及射频消融的温度监测装置的具体限定和相关细节可以参见上文中对于射频消融方法、射频消融的控制方法以及射频消融的温度监测方法的限定,在此不再赘述。
上述计算机设备可以是终端,其内部结构图可以如图20所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口、显示屏和输入装置。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现上述射频消融方法、射频消融的控制方法以及射频消融的温度监测方法。该计算机设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图20中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述射频消融方法的步骤。例如包括:
步骤S100、消融过程中获取温度参数;
步骤S110、将温度参数与温度阈值相比;
步骤S120、当温度参数与温度阈值符合设定关系时,发送停止消融指令。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述射频消融的温度监测方法的步骤。例如包括:
步骤S100、消融过程中获取温度参数;
步骤S110、将温度参数与温度阈值相比;
步骤S120、当温度参数与温度阈值符合设定关系时,发送停止消融指令。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述射频消融的控制方法的步骤。例如包括
步骤S100、消融过程中获取温度参数;
步骤S110、将温度参数与温度阈值相比;
步骤S120、当温度参数与温度阈值符合设定关系时,发送停止消融指令。
其他具体限定和相关细节可以参见上文中对于射频消融方法以及射频消融的控制方法的限定,在此不再赘述。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上各实施例的射频消融导管优选应用在肺部射频消融中,即可理解为优选提供了一种肺部射频消融导管,以及相应的消融方法和装置,以及相应的消融控制方法和控制装置,以及相应的温度监测方法和温度监测装置。
本申请其中一个实施例中还提供了一种肺部射频消融系统,该肺部射频消融系统中可以、且优选采用以上各实施例的射频消融导管,采用以上各实施例的射频消融导管时,相关结构特征以及方法流程可参见以上各实施例,本实施例中不再赘述。
一种肺部射频消融系统,包括:
射频消融导管(可采用前述各实施例中的射频消融导管);
用于向射频消融导管的电极周边部位提供换热介质的换热介质输送装置;
依据射频消融导管中电极所在回路的阻抗信息相应驱动所述换热介质输送装置的控制模块。
射频消融导管的电极通电后,周边温度升高,为避免周边组织干燥、炭化,可利用换热介质实施保护,换热介质的实时输出量,则可依据电极回路阻抗信息变化进行调控。电极工作时形成回路,就该回路中阻抗的测量和计算本身可利用现有技术实施。
若仅依照温度控制电极驱动信号(例如施加的电压信号),一般会有信号反馈的滞后,因为温度的传导与体内环境以及相关器件的导热性能相关,而本实施例中,则在换热介质输出量与阻抗信息之间建立相应的控制逻辑关联,阻抗信息是更为直接的电信号,有利于即时监控,避免滞后。
由于阻抗信息反馈更加及时,可保持电极的稳定输出,即不需要依照病灶部位的温度频 繁调节电极驱动信号,消融进程稳定而且便于控制。
在其中一优选的实施例中,消融过程中保持电极驱动信号不变。
电极驱动信号来自于消融仪,通过电路传递至电极,就该电极驱动信号本身而言可采用常规技术,并非本申请改进重点。
在其中一个实施例中,肺部射频消融系统还包括采集电极周边部位的温度信息的温度检测装置,控制模块还用于依据所述温度信息提示或控制消融进程。
电极周边部位的温度在一定程度上反应消融进程,例如病灶部位在一定温度下,加热一端时间后即可失活,此时控制模块可输出提示指令,或输出停止消融指令停止电极工作。又例如当温度过高时,可能是换热介质输出异常,控制模块可输出提示指令用以进行报警。
在其中一个实施例中,所述温度检测装置为一个或多个,且至少一个温度检测装置的位置(即温度信息的采集点)的距离电极0.5~3cm。优选1~2cm,例如1.5cm。
结合前述相关实施例,由于电极一般在使用时处在病灶部位的中心区域,因此至少一温度信息的采集点应与电极有一定距离,可以反映以该距离为半径的空间内的消融进程。
电极周边部位既以电极为中心的三维空间中,但就阻抗传感器和温度检测装置本身而言可以单独配置,优选的方式是集成安装在射频消融导管上,以便于保持与电极的相对位置。
在其中一个实施例中,控制模块驱动所述换热介质输送装置调节换热介质流量。换热介质输送装置可以包括容器、管路、泵、阀、流量计等常规的流体输送器件,其中至少器件可调节换热介质的输送量,例如受控的阀或泵等,控制模块通过相应的控制指令调节换热介质的输送量。换热介质流量变化后,所采集的阻抗信息也相应改变。
为了维持稳定的消融过程,在其中一个实施例中,控制模块将所述阻抗信息与阈值相比较,并通过调节的换热介质流量使所述阻抗信息趋近于稳态阻抗。
为了使所述阻抗信息趋近于阈值,在操作中按一定的采样周期不断比较两者,根据两者的大小关系相应调节换热介质流量,实现闭环控制。
阈值可以是一数值点,也可以是一数值范围,为数值范围时,则比较阻抗信息与该数值范围的上下限,以使阻抗信息处在数值范围内。
由于不同患者体内环境或病灶部位情况不尽相同,在其中一个实施例中,在初始阶段先标定稳态阻抗,依据该稳态阻抗计算所述阈值。
阻抗信息可以是阻抗值或与阻抗值相关的其他参数,而阈值的形式与其相应,以便于相互比较。例如阻抗值高于阈值,则意味着需要加大换热介质流量,进一步改善浸润或冷却效果,反之同理。
在其中一个实施例中,稳态阻抗的标定方式为,射频消融导管在体内就位后,且在电极通电前以初始流量输出换热介质、且实时采集阻抗信息,当阻抗信息稳定后所对应的数值记为稳态阻抗。
射频消融导管在体内就位后,可依照经验或历史数据确定初始换热介质的初始流量(例如0.5ml/min),在此阶段由于换热介质的灌入,阻抗信息会有波动,例如灌注生理盐水可能导致阻抗信息下降,实时采集阻抗信息,当阻抗信息不再下降保持稳定时,此时的阻抗信息即为稳态阻抗。
阈值为数值范围时,阈值上、下限分别为上限阻抗和下限阻抗,上限阻抗和下限阻抗可以结合稳态阻抗计算得出,甚至采用稳态阻抗本身,例如下限阻抗也可以采用稳态阻抗本身。上限阻抗和下限阻抗的具体计算方式可以依照经验数据或患者个人情况确定。
在其中一个实施例中,阈值为数值范围;调节的换热介质流量过程中,控制模块还实时采集阻抗信息以及判断阻抗信息变化趋势,根据抗信息变化趋势相应改变换热介质流量的调节幅度或选择阈值上限、阈值下限中的一者相比较。
换热介质流量的调节一般是按照一定步长间隙调节的,保持当前流量或进一步改变流量可以通过阻抗信息变化趋势来判断。阻抗信息变化趋势可以是上升或下降,例如在增加换热介质流量时,预期的目的是降低阻抗信息,如果阻抗信息变化趋势仍然上升那么则可以进一步加大换热介质流量,即相对于换热介质初始流量而言,调节幅度进一步加大。
如果阻抗信息变化趋势为下降,说明已经符合预期,则此时可以直接将采集到的阻抗信息与阈值下限相比,以确定是否需要减小换热介质流量。
参见图21,基于前述的肺部射频消融系统,在其中一个实施例中,还提供一种肺部射频消融方法,包括:
步骤S500,消融过程中接收采集自电极回路的阻抗信息;
步骤S510,依据所述阻抗信息生成相应的控制指令,以调节在电极周边部位的换热介质流量。
肺部射频消融方法的具体流程和细节还可参见一下关于肺部射频消融的控制方法的描述。
同样参见图21,基于前述的肺部射频消融系统,在其中一个实施例中,还提供一种肺部射频消融的阻抗监测方法,包括:
步骤S500,消融过程中接收采集自电极回路的阻抗信息;
步骤S510,依据所述阻抗信息生成相应的控制指令,以调节在电极周边部位的换热介质流量。
同样参见图21,基于前述的肺部射频消融系统,在其中一个实施例中,还提供一种肺部射频消融的控制方法,包括:
步骤S500,消融过程中接收采集自电极回路的阻抗信息;
步骤S510,依据所述阻抗信息生成相应的控制指令,以调节在电极周边部位的换热介质流量。
实施消融、采集阻抗信息以及输出换热介质等都可以结合之前各实施例中的射频消融导管或相关的设备以及系统,相关的具体结构不再赘述。
其中一个实施例中,步骤S500中还包括预先标定稳态阻抗,依据该稳态阻抗计算阈值,该阈值用于在步骤S510中与所述阻抗信息相比较,以生成相应的控制指令。
其中一个实施例中,稳态阻抗的标定方式为,射频消融导管在体内就位后,且在电极通电前以初始流量输出换热介质、且实时采集阻抗信息,当阻抗信息稳定后所对应的数值记为稳态阻抗。
步骤S510中,依据所述阻抗信息生成相应的控制指令,具体包括:
步骤S511,将所述阻抗信息与阈值相比较,根据所述阻抗信息与阈值的关系,判定流量的增减;
步骤S512,根据流量的增减,按照预定的增、减幅度生成相应的控制指令。
判定流量的增减,理解为预期的流量变化或需求,例如在当前流量的基础上,进一步增加流量,或在当前流量的基础上,进一步减小流量,而增幅或减幅则可预设步长。
例如当前流量为X ml/s,进一步增加流量时,通过向换热介质输送装置发送控制指令,是流量变为X+Y ml/s,而Y则可视为增幅,需要进一步减小流量时同理。
其中一个实施例中,所述增、减幅度各自独立的为固定值或动态值。
增幅或减幅既可以是固定值,也可以设置为动态值,例如与当前阻抗信息相关,或设置阻抗信息与阈值的差为Z,而增幅或减幅为动态值且与Z相关。例如当前阻抗信息越接近阈值,则增幅或减幅越小,这样控制更加精细,尽可能减少反馈的滞后。
阻抗信息与阈值的关系既可以是简单的数值大小相比,也可以符合其他函数关系,这一点与阻抗信息以及阈值选取的具体物理参数,变化形式甚至计量单位有关。
其中一个实施例中,阻抗信息与阈值均为阻抗值,单位为欧。这样便于比较,就阻抗值的测量与计算
所述阈值为数值范围,步骤S511中,根据所述阻抗信息与阈值的关系,判断流量的增减,具体包括:
当阻抗信息大于阈值上限时,判定为增加流量;
当阻抗信息小于阈值下限时,判定为减小流量;
当阻抗信息处在阈值范围内时,维持当前流量;
步骤S511中,判定为增加流量时,步骤S512中生成第一控制指令,第一控制指令所对应的换热介质流量大于当前流量;
步骤S511中,判定为减小流量时,步骤S512中生成第二控制指令,第二控制指令所对应的换热介质流量小于当前流量。
控制指令本身作为电信号可以直接改变泵的转速,阀的开度等,这些受控器件的动作也 对应了换热介质流量的变化,因此控制指令本身的形式并没有严格限制,但至少可对应换热介质流量的流量变化。
阻抗信息的采集是实时的,也可理解为按照预定的采样周期,并不断的与阈值相比,这些操作贯穿在消融作的过程中。即循环操作步骤S500和步骤S510。
其中一个实施例中,按阻抗信息的采样周期,循环执行步骤S500和步骤S510;
上一采样周期生成并输出控制指令后,在下一周期中,采集阻抗信息后在与阈值相比较之前,先与上一采样周期的阻抗信息相比,判断阻抗信息的变化趋势;
根据阻抗信息的变化趋势,相应改变换热介质流量的调节幅度或选择阈值上限、阈值下限中的一者相比较。
上一采样周期的控制指令可能是第一控制指令,还可能是第一控制指令,那么不同类型的控制指令,可以在下一周期选择不同的判断方式,例如:
其中一个实施例中,上一采样周期生成并输出第一控制指令后,在下一周期中,将阻抗信息后在与阈值相比较之前,先与上一采样周期的阻抗信息相比,判断阻抗信息的变化趋势;
阻抗信息的变化趋势为上升时,加大换热介质流量的调节幅度;
阻抗信息的变化趋势为下降时,将当前采样周期的阻抗信息与阈值下限相比较。
又例如:其中一个实施例中,上一采样周期生成并输出第二控制指令后,在下一周期中,将阻抗信息后在与阈值相比较之前,先与上一采样周期的阻抗信息相比,判断阻抗信息的变化趋势;
阻抗信息的变化趋势为下降时,加大换热介质流量的调节幅度;
阻抗信息的变化趋势为上升时,将当前采样周期的阻抗信息与阈值上限相比较。
消融过程的结束既可以按照预设的时间,也可以依照电极或病灶部位的温度,在其中一个实施例中,还包括利用前述实施例中射频消融方法、控制方法或阻抗监测方法来提示或控制消融进程。
例如在实时监测阻抗信息的同时还执行:
步骤S100、消融过程中获取温度参数;
步骤S110、将温度参数与温度阈值相比;
步骤S120、当温度参数与温度阈值符合设定关系时,发送停止消融指令。有关温度监控的具体步骤可结合前述相关实施例。
本实施例中消融过程中实时接收采集自电极周边部位的温度参数,依据所述温度参数提示或控制消融进程。
电极周边部位的温度在一定程度上反应消融进程,例如病灶部位在一定温度下,加热一端时间后即可失活,此时控制模块可输出提示指令,或输出停止消融指令停止电极工作。又例如当温度过高时,可能是换热介质输出异常,控制模块可输出提示指令用以进行报警。
在其中一个实施例中,温度参数的采集点的距离电极0.5~3cm;温度参数达到43~60℃并维持预设时间后,发送停止消融指令。
停止消融指令既可以是直接断开电极电源,也可以给出提示信息,利用温度参数提示或控制消融进程,在逻辑上可以利用阻抗信息控制换热介质流量没有关联,利用阻抗信息控制换热介质流量侧重消融过程的调控,而利用温度信息提示或控制消融进程仅仅是在重要的进程节点上介入,例如在循环执行步骤S500和步骤S510时通过断开电路或提示跳出。
参见图22,在其中一个实施例中,一种肺部射频消融方法或控制方法的流程包括先以初始流量进行换热介质的灌注,换热介质经电极外部的清润罩流出形成保护膜,此时采集并监控阻抗变化,当阻抗稳定后,当前阻抗即为稳态阻抗。
电极通电开始消融,并实时采集阻抗信息,获得的阻抗信息不断与阈值相比并生成相应的控制指令调节换热介质流量,其中阈值为一范围,其中下限阻抗可采用稳态阻抗。
随着消融进行,阻抗上升,当阻抗信息大于设定的上限阻抗时,生成并发送第一控制指令,即增加换热介质流量;
随后下一采样周期的阻抗信息与前一采样周期的阻抗信息相比,判断阻抗是否上升,若仍在上升则再次生成并发送第一控制指令,即进一步增加换热介质流量;
若阻抗不在上升而开始下降,则与下限阻抗相比,当阻抗信息小于设定的下限阻抗时,生成并发送第二控制指令,即减小换热介质流量;
随后下一采样周期的阻抗信息与前一采样周期的阻抗信息相比,判断阻抗是否下降,若仍在下降则再次生成并发送第二控制指令,即进一步减小换热介质流量,直至阻抗开始上升。
基于以上循环不断的在消融过程中监控阻抗信息,以及调节换热介质流量,满足预设的条件时,例如计算时间或监控温度等方式,来提示或终止消融。
以上肺部射频消融方法以及肺部射频消融的控制方法中的各个步骤并不是必然按照叙述或附图的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
基于前述的肺部射频消融方法,本实施例提供一种肺部射频消融装置,包括:
采集模块,用于消融过程中接收采集自电极回路的阻抗信息;
调节模块,用于依据所述阻抗信息生成相应的控制指令,以调节在电极周边部位的换热介质流量。
同理,基于前述的肺部射频消融的阻抗监测方法,本实施例提供一种肺部射频消融的阻抗监测装置,包括:
采集模块,用于消融过程中接收采集自电极回路的阻抗信息;
调节模块,用于依据所述阻抗信息生成相应的控制指令,以调节在电极周边部位的换热介质流量。
同理,基于前述的肺部射频消融的控制方法,本实施例提供一种肺部射频消融的控制装置,包括:
采集模块,用于消融过程中接收采集自电极回路的阻抗信息;
调节模块,用于依据所述阻抗信息生成相应的控制指令,以调节在电极周边部位的换热介质流量。
本实施例肺部射频消融装置,以及肺部射频消融的控制装置、阻抗监测装置的具体限定和相关细节可以参见上文中对于肺部射频消融方法以及肺部射频消融的控制方法、阻抗监测方法的限定,在此不再赘述。上述肺部射频消融装置以及肺部射频消融的控制装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
本申请的一些实施方式中还提供了一种计算机设备,例如一种肺部射频消融装置,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现上述肺部射频消融方法的步骤。例如包括:
步骤S500,消融过程中接收采集自电极回路的阻抗信息;
步骤S510,依据所述阻抗信息生成相应的控制指令,以调节在电极周边部位的换热介质流量。
本申请的一些实施方式中还提供了一种计算机设备,例如一种肺部射频消融的阻抗监测装置,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现上述肺部射频消融的阻抗监测方法的步骤。例如包括:
步骤S500,消融过程中接收采集自电极回路的阻抗信息;
步骤S510,依据所述阻抗信息生成相应的控制指令,以调节在电极周边部位的换热介质流量。
本申请的一些实施方式中还提供了一种计算机设备,例如一种肺部射频消融的控制装置,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现上述肺部射频消融的控制方法的步骤。例如包括:
步骤S500,消融过程中接收采集自电极回路的阻抗信息;
步骤S510,依据所述阻抗信息生成相应的控制指令,以调节在电极周边部位的换热介质流量。
作为计算机设备,肺部射频消融装置以及肺部射频消融的控制装置的具体限定和相关细 节可以参见上文中对于肺部射频消融方法以及肺部射频消融的控制方法的限定,在此不再赘述。
作为计算机设备,肺部射频消融装置以及肺部射频消融的控制装置可以是终端,其内部结构图可以如图20所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口、显示屏和输入装置。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现上述的射频消融方法或射频消融的控制方法。该计算机设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图20中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述肺部射频消融方法的步骤。例如包括
步骤S500,消融过程中接收采集自电极回路的阻抗信息;
步骤S510,依据所述阻抗信息生成相应的控制指令,以调节在电极周边部位的换热介质流量。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述肺部射频消融的阻抗监测方法的步骤。例如包括
步骤S500,消融过程中接收采集自电极回路的阻抗信息;
步骤S510,依据所述阻抗信息生成相应的控制指令,以调节在电极周边部位的换热介质流量。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述肺部射频消融的控制方法的步骤。例如包括
步骤S500,消融过程中接收采集自电极回路的阻抗信息;
步骤S510,依据所述阻抗信息生成相应的控制指令,以调节在电极周边部位的换热介质流量。
其他具体限定和相关细节可以参见上文中对于肺部射频消融方法以及肺部射频消融的控制方法的限定,在此不再赘述。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存 储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
本申请其中一个实施例中,还提供了一种肺部射频消融系统,结合图23,在本实施例中,所述肺部射频消融系统包括射频信号发生器100、消融导管110、电极板、传感器模块120、微量灌注泵130、控制模块140和报警模块150。
在本实施例中,射频信号发生器100可采用前述的消融仪(或作为消融仪的一部分);消融导管110可采用前述各实施例中的射频消融导管;换热介质具体以生理盐水为例,而换热介质流道即液体传输的传输通道;微量灌注泵130可理解为换热介质输送装置的形式或器件之一;控制模块140可采用前述各实施例中的射频消融装置。
另外控制模块140、报警模块150、微量灌注泵130在空间布置上可以进行部分或全部集成,例如集成至消融仪形成一消融仪整机。
在本实施例中,所述射频信号发生器100与所述控制模块140相连,用于接收控制模块140的命令以产生射频信号,并将射频信号传送给所述消融导管110。
在本实施例中消融导管110具有电传输的电传输通道以及液体传输的传输通道,所述射频信号发生器100与所述电传输通道连接,所述液体传输通道与所述微量灌注泵130相连。
所述消融导管110能够接收所述射频信号发生器100产生的射频信号,并在穿刺入消融组织时将所述射频信号作用于消融组织,还能够接收所述微量灌注泵130灌注的生理盐水,所述消融导管110的前端(伸入人体的一端)开设有出液孔,用于在穿刺入消融组织时将生理盐水灌注进消融组织内。
前述相关实施例中,电极1外套设有浸润罩20,浸润罩20上均匀布置有多个浸润孔200,在设置浸润罩20时,本实施例提及的出液孔也可理解为浸润孔200。
在其它实施例中,所述消融导管110上可以设置有其它结构,只需达到将生理盐水灌注进消融组织内的效果即可。例如,所述消融导管110具有可弯曲结构,所述弯曲结构可在控制下使所述消融导管110的前端弯曲,以将所述所述消融导管110的前端准确送入待治疗部位;及/或,所述消融导管外部可以设置控制所述弯曲结构的操作部,供医护人员操作以控制所述弯曲结构的弯曲程度。
具体地,所述消融导管110在B超或CT引导下,经由支气管镜通过穿刺点穿刺入消融组织中,并将所述射频信号传送给消融组织,此时,与所述射频信号发生器100相连且与患者身体贴附的电极板与所述消融导管110之间连通,形成电场,消融组织也在电场中,高频电流作用在两者之间的人体组织上,使射频消融导管远端的电极接触到的肿瘤细胞凝固、变性、坏死。其中,所述消融导管110只是传递能量的电极,其温度的升高是由于形成回路后,消融导管110附近的肿瘤组织内离子发生高速震荡,互相摩擦,射频能转化为热能而造成的。也就是说,消融导管110是因附近组织升温而被动升温的。组织通电后会干燥和炭化,在消融导管110周围形成“结痂”,将消融导管110“真空包裹”,消融导管110与“结痂”组织之间的阻抗会瞬间变得很大(即射频消融时的热沉降和高阻抗等效应),从而导致消融停止,形成消融不彻底,消融范围不够大的问题。在本实施例中,所述消融导管110上开设有出液孔以将生理盐水灌注进消融组织内,由于生理盐水为导体,在浸润所述消融组织后,可以使得整个消融过程中确保阻抗稳定在一定范围,使射频能量能够持续输出,从而形成足够大的消融范围,产生更大、更有效的凝固坏死灶。
在本实施例中,所述传感器模块120设置于所述消融导管110上,所述传感器模块120与所述控制模块140相连。具体地,所述传感器模块120设置于所述消融导管110与所述消融组织接触的一端。所述传感器模块120包括阻抗传感器和温度传感器,用于检测消融导管110与消融组织接触位置的阻抗和温度并将温度信息和阻抗信息发送给所述控制模块140;具体地,所述温度传感器可以为热电偶。
温度传感器还可以采用前述各实施例中射频消融导管上所配置的热敏电阻9、电极环8或温度检测装置等。阻抗传感器可理解为采样电路等方式,用于获取电极回路的阻抗信息。
在本实施例中,所述阻抗信息由所述阻抗传感器获取并传送给所述控制模块140,在其它实施例中,所述阻抗信息可以基于系统采集得到的电压电流数值计算得到。具体地,通过电压电流测量设备测量得到实时电压电流值,并传送给所述控制模块140,所述控制模块140基于所述实时电压电流值计算得到阻抗。在其它实施例中,所述传感器模块120还可以包括流量传感器、压力传感器等其它类型的传感器,用于检测生理盐水的流量以及消融导管110与消融组织接触位置的压力等其它数据,以监测消融情况,能够在出现异常时及时进行处理。例如,当所述流量传感器传送的生理盐水的流量信息低于某个阈值时,所述控制模块140控制所述微量灌注泵130加大生理盐水的灌注量以避免人体组织“结痂”。在其它实施例中,所述传感器模块的传感器类型与数量可以根据所述肺部射频消融系统工作时的需求与实际情况进行设置以监测消融情况。
在本实施例中,所述微量灌注泵130与所述控制模块140及所述消融导管110相连,用于接收控制模块140的命令以向所述消融导管110灌注生理盐水。在其它实施例中,所述微量灌注泵130可以接收所述控制模块140的命令向所述消融导管110灌注其它液体,只需达 到提高消融组织导电性和热传导性,维持阻抗平衡,保持阻抗处于相对稳定状态,降低消融组织的温度,增加消融组织的湿度,从根本上避免消融组织因为干燥升温而结痂的效果且不对人体产生严重副作用即可。
在本实施例中,所述报警模块150与所述控制模块140相连,用于接收所述控制模块140发出的报警命令并报警。
在本实施例中,所述控制模块140与所述射频信号发生器100、传感器模块120、微量灌注泵130、报警模块150相连。具体地,所述控制模块140用于控制所述射频信号发生器100产生射频信号。具体地,所述控制模块140接收所述传感器模块120检测到的阻抗信息和温度信息,并基于所述阻抗信息控制所述微量灌注泵130向所述消融导管110灌注生理盐水。在本实施例中,如果阻抗传感器检测到阻抗急剧升高,说明消融导管110电极附近的组织正在干燥和炭化,将产生结痂,控制模块140收到阻抗传感器的阻抗信息后,控制微量灌注泵130加大生理盐水的灌注量。在本实施例中,所述控制模块140还用于基于所述温度信息判断生理盐水的灌注是否通畅,并在不通畅时发出报警命令。具体地,如果消融过程中发现温度升高超过一定阀值(例如85度),控制模块140判定生理盐水的灌注出现堵塞,发出报警命令,控制所述报警模块150发出报警信号进行提示,以保证消融过程顺利进行。
关于消融过程中极限情况的报警既可以通过温度监控,也可以通过阻抗信息监控,或两者结合,只要一者超出可接受的上限,即实施报警或停止消融。
在其它实施例中,当所述传感器模块120还包括流量传感器、压力传感器等其它类型的传感器时,所述控制模块140还接收所述传感器模块120发送的其它数据信息,以监测消融情况,在出现异常时及时发送控制命令以进行处理。在其它实施例中,所述控制模块140可以根据多个传感器传送的数据对消融情况进行综合判断,并在满足预设条件时控制微量灌注泵130、射频信号发生器100等设备进行调节,以保证消融过程顺利进行,所述预设条件可以由用户根据所述肺部射频消融系统工作时的实际情况和传感器的设置情况进行设置。在其它实施例中,所述阻抗信息可以基于系统采集得到的电压电流数值计算得到。具体地,通过电压电流测量设备测量得到实时电压电流值,并传送给所述控制模块140,所述控制模块140基于所述实时电压电流值计算得到阻抗。
电极板,与所述射频信号发生器相连,用于经由人体与消融导管中的电极形成回路。
电极板贴附在患者身体合适部位,消融操作时,消融导管中的电极,经由人体与电极板形成工作回路(即前述提及的电极所在回路),高频电流作用在两者之间的人体组织上,使电极接触到的病灶部位凝固、变性、坏死。电极板本身为消融操作的常规部件,图中省略。
在本实施例中,在所述肺部射频消融系统开始工作时,所述控制模块140即控制所述微量灌注泵130向所述消融导管110灌注生理盐水,当控制模块140收到阻抗传感器传送的阻抗急剧增大的信息后,控制微量灌注泵130加大生理盐水的灌注量。在其它实施例中,在所 述肺部射频消融系统开始工作时,所述微量灌注泵130不灌注生理盐水,当控制模块140收到阻抗传感器传送的阻抗急剧增大的信息后,才控制所述微量灌注泵130向所述消融导管110灌注生理盐水。
请参阅图24,图24为本申请另一实施例的肺部射频消融系统的示意图。
在本实施例中,所述肺部射频消融系统包括射频信号发生器100、消融导管110、电极板、传感器模块120、微量灌注泵130和控制模块140。
在本实施例中,所述射频信号发生器100与所述控制模块140相连,用于接收控制模块140的命令以产生射频信号,并将射频信号传送给所述消融导管110。
在本实施例中,所述消融导管110具有电传输的电传输通道以及液体传输的传输通道,所述射频信号发生器100与所述电传输通道连接,所述液体传输通道与所述微量灌注泵130相连。所述消融导管110能够接收所述射频信号发生器100产生的射频信号,并在穿刺入消融组织时将所述射频信号作用于消融组织,还能够接收所述微量灌注泵130灌注的生理盐水,所述消融导管110的前端(伸入人体的一端)开设有出液孔,用于在穿刺入消融组织时将生理盐水灌注进消融组织内。在其它实施例中,所述消融导管110上可以设置有其它结构,只需达到将生理盐水灌注进消融组织内的效果即可。例如,所述消融导管110具有可弯曲结构,所述弯曲结构可在控制下使所述消融导管110的前端弯曲,以将所述所述消融导管110的前端准确送入待治疗部位;及/或,所述消融导管外部可以设置控制所述弯曲结构的操作部,供医护人员操作以控制所述弯曲结构的弯曲程度。
具体地,所述消融导管110在B超或CT引导下,经由支气管镜通过穿刺点穿刺入消融组织中,并将所述射频信号传送给消融组织,此时,与所述射频发生器100相连且与患者身体贴附的电极板与所述消融导管110之间连通,形成电场,消融组织也在电场中,高频电流作用在两者之间的人体组织上,使射频消融导管远端的电极接触到的肿瘤细胞凝固、变性、坏死。其中,所述消融导管110只是传递能量的电极,其温度的升高是由于形成回路后,消融导管110附近的肿瘤组织内离子发生高速震荡,互相摩擦,射频能转化为热能而造成的。也就是说,消融导管110是因附近组织升温而被动升温的。组织通电后会干燥和炭化,在消融导管110周围形成“结痂”,将消融导管110“真空包裹”,消融导管110与“结痂”组织之间的阻抗会瞬间变得很大(即射频消融时的热沉降和高阻抗等效应),从而导致消融停止,形成消融不彻底,消融范围不够大的问题。在本实施例中,所述消融导管110上开设有出液孔以将生理盐水灌注进消融组织内,由于生理盐水为导体,在浸润所述消融组织后,可以使得整个消融过程中确保阻抗稳定在一定范围,使射频能量能够持续输出,从而形成足够大的消融范围,产生更大、更有效的凝固坏死灶。
在本实施例中,所述传感器模块120设置于所述消融导管110上,所述传感器模块120与所述控制模块140相连。具体地,所述传感器模块120设置于所述消融导管110与所述消 融组织接触的一端。所述传感器模块120包括阻抗传感器和温度传感器,用于检测消融导管110与消融组织接触位置的阻抗和温度并将温度信息和阻抗信息发送给所述控制模块140;具体地,所述温度传感器可以为热电偶。在本实施例中,所述阻抗信息由所述阻抗传感器获取并传送给所述控制模块140,在其它实施例中,所述阻抗信息可以基于系统采集得到的电压电流数值计算得到。具体地,通过电压电流测量设备测量得到实时电压电流值,并传送给所述控制模块140,所述控制模块140基于所述实时电压电流值计算得到阻抗。在其它实施例中,所述传感器模块120还可以包括流量传感器、压力传感器等其它类型的传感器,用于检测生理盐水的流量以及消融导管110与消融组织接触位置的压力等其它数据,以监测消融情况,能够在出现异常时及时进行处理。例如,当所述流量传感器传送的生理盐水的流量信息低于某个阈值时,所述控制模块140控制所述微量灌注泵130加大生理盐水的灌注量以避免人体组织“结痂”。在其它实施例中,所述传感器模块的传感器类型与数量可以根据所述肺部射频消融系统工作时的需求与实际情况进行设置以监测消融情况。
在本实施例中,所述微量灌注泵130与所述控制模块140及所述消融导管110相连,用于接收控制模块140的命令以向所述消融导管110灌注生理盐水。在其它实施例中,所述微量灌注泵130可以接收所述控制模块140的命令向所述消融导管110灌注其它液体,只需达到提高消融组织导电性和热传导性,维持阻抗平衡,保持阻抗处于相对稳定状态,降低消融组织的温度,增加消融组织的湿度,从根本上避免消融组织因为干燥升温而结痂的效果且不对人体产生严重副作用即可。
在本实施例中,所述控制模块140与所述射频信号发生器100、传感器模块120和微量灌注泵130相连。具体地,所述控制模块140用于控制所述射频信号发生器100产生射频信号。具体地,所述控制模块140接收所述传感器模块120检测到的阻抗信息和温度信息,并基于所述阻抗信息控制所述微量灌注泵130向所述消融导管110灌注生理盐水。在本实施例中,如果阻抗传感器检测到阻抗急剧升高,说明消融导管110电极附近的组织正在干燥和炭化,将产生结痂,控制模块140收到阻抗传感器的阻抗信息后,控制微量灌注泵130加大生理盐水的灌注量。在本实施例中,所述控制模块140还用于基于所述温度信息判断生理盐水的灌注是否通畅,以监测消融情况。在其它实施例中,所述控制模块140可以根据多个传感器传送的数据对消融情况进行综合判断,并在满足预设条件时控制微量灌注泵130、射频信号发生器100等设备进行调节,以保证消融过程顺利进行,所述预设条件可以由用户根据所述肺部射频消融系统工作时的实际情况和传感器的设置情况进行设置。在其它实施例中,所述阻抗信息可以基于系统采集得到的电压电流数值计算得到。具体地,通过电压电流测量设备测量得到实时电压电流值,并传送给所述控制模块140,所述控制模块140基于所述实时电压电流值计算得到阻抗。
电极板,与所述射频信号发生器相连,用于经由人体与消融导管中的电极形成回路。
电极板贴附在患者身体合适部位,消融操作时,消融导管中的电极,经由人体与电极板形成工作回路(即前述提及的电极所在回路),高频电流作用在两者之间的人体组织上,使电极接触到的病灶部位凝固、变性、坏死。电极板本身为消融操作的常规部件,图中省略。
在本实施例中,在所述肺部射频消融系统开始工作时,所述控制模块140即控制所述微量灌注泵130向所述消融导管110灌注生理盐水,当控制模块140收到阻抗传感器传送的阻抗急剧增大的信息后,控制微量灌注泵130加大生理盐水的灌注量。在其它实施例中,在所述肺部射频消融系统开始工作时,所述微量灌注泵130不灌注生理盐水,当控制模块140收到阻抗传感器传送的阻抗急剧增大的信息后,才控制所述微量灌注泵130向所述消融导管110灌注生理盐水。
请参阅图25,图26,本申请不同实施例中还提供了肺部射频消融方法,可利用前述各实施例的相关部件、装置或系统实施。
肺部射频消融方法包括:
控制射频信号发生器产生射频信号并将射频信号传送给消融导管;
获取消融导管与消融组织接触位置的阻抗信息和温度信息;
基于所述阻抗信息控制微量灌注泵向所述消融导管灌注生理盐水,基于所述温度信息控制报警模块报警。
肺部射频消融方法的具体流程和细节还可参见以下关于肺部射频消融的控制方法的描述。
请参阅图25,图26,本申请不同实施例中还提供了肺部射频消融的温度和阻抗监测方法,可利用前述各实施例的相关部件、装置或系统实施。
肺部射频消融温度和阻抗监测方法包括:
控制射频信号发生器产生射频信号并将射频信号传送给消融导管;
获取消融导管与消融组织接触位置的阻抗信息和温度信息;
基于所述阻抗信息控制微量灌注泵向所述消融导管灌注生理盐水,基于所述温度信息控制报警模块报警。
肺部射频消融温度和阻抗监测方法的具体流程和细节还可参见以下关于肺部射频消融的控制方法的描述。
同样请参阅图25,图25为本申请一个实施例的肺部射频消融的控制方法的示意图。
在本实施例中,所述肺部射频消融的控制方法包括:
步骤300,控制射频信号发生器产生射频信号并将射频信号传送给消融导管。
具体地,所述控制模块控制所述射频信号发生器产生射频信号,并将射频信号传送给所述消融导管,所述消融导管穿刺进入消融组织后将所述射频信号传送给消融组织,所述射频信号在回路中转化为热能,作用在消融组织上,使消融导管远端的电极接触到的肿瘤细胞凝 固、变性、坏死。
步骤310,获取消融导管与消融组织接触位置的阻抗信息和温度信息。
具体地,在射频消融的同时,产生的热能会导致人体组织温度升高,使得消融导管附近的人体组织干燥、炭化,形成“结痂”,电极与“结痂”之间的电阻突然变得很大,从而导致消融停止,消融不彻底,此时阻抗传感器检测到阻抗急剧升高,将阻抗信息传送给所述控制模块,温度传感器检测温度信息并传送给所述控制模块。
在其它实施例中,所述阻抗信息可以基于系统采集得到的电压电流数值计算得到。具体地,通过电压电流测量设备测量得到实时电压电流值,并传送给所述控制模块,所述控制模块基于所述实时电压电流值计算得到阻抗。
步骤320,基于所述阻抗信息控制微量灌注泵向所述消融导管灌注生理盐水,基于所述温度信息控制报警模块报警。
具体地,所述控制模块收到阻抗传感器传送的阻抗急剧增大的信息后,控制微量灌注泵加大生理盐水的灌注量,生理盐水灌注进入消融导管并通过消融导管上的出液孔灌注进入消融组织,提高组织导电性和热传导性,维持阻抗平衡,保持阻抗处于相对稳定状态,同时降低组织的温度,增加组织的湿度,从根本上避免组织因为干燥升温而结痂,使得整个消融过程中确保阻抗稳定在一定范围,使射频能量能够持续输出,从而形成足够大的消融范围,产生更大、更有效的凝固坏死灶。另外,所述控制模块还接收温度传感器传送的温度信息,如果消融过程中发现温度升高超过一定阀值,控制模块判定生理盐水的灌注出现堵塞,发出报警命令,控制所述报警模块发出报警信号进行提示,以保证消融过程顺利进行。
请参阅图26,图26为本申请另一实施例的肺部射频消融的控制方法的示意图。
在本实施例中,所述肺部射频消融的控制方法包括:
步骤400,控制射频信号发生器产生射频信号并将射频信号传送给消融导管。
具体地,所述控制模块控制所述射频信号发生器产生射频信号,并将射频信号传送给所述消融导管,所述消融导管穿刺进入消融组织后将所述射频信号传送给消融组织,所述射频信号在回路中转化为热能,作用在消融组织上,使消融导管远端的电极接触到的肿瘤细胞凝固、变性、坏死。
步骤410,获取消融导管与消融组织接触位置的阻抗信息。
具体地,在射频消融的同时,产生的热能会导致人体组织温度升高,使得消融导管附近的人体组织干燥、炭化,形成“结痂”,电极与“结痂”之间的电阻突然变得很大,从而导致消融停止,消融不彻底,此时阻抗传感器检测到阻抗急剧升高,将阻抗信息传送给所述控制模块。
在其它实施例中,所述阻抗信息可以基于系统采集得到的电压电流数值计算得到。具体地,通过电压电流测量设备测量得到实时电压电流值,并传送给所述控制模块,所述控制模 块基于所述实时电压电流值计算得到阻抗。
步骤420,基于所述阻抗信息控制微量灌注泵向所述消融导管灌注生理盐水。
具体地,所述控制模块收到阻抗传感器传送的阻抗急剧增大的信息后,控制微量灌注泵加大生理盐水的灌注量,生理盐水灌注进入消融导管并通过消融导管上的出液孔灌注进入消融组织,提高组织导电性和热传导性,维持阻抗平衡,保持阻抗处于相对稳定状态,同时降低组织的温度,增加组织的湿度,从根本上避免组织因为干燥升温而结痂,使得整个消融过程中确保阻抗稳定在一定范围,使射频能量能够持续输出,从而形成足够大的消融范围,产生更大、更有效的凝固坏死灶。
示例性的,在所述肺部射频消融系统工作时,所述控制模块控制所述射频信号发生器产生射频信号,并将射频信号传送给所述消融导管,所述消融导管穿刺进入消融组织后将所述射频信号传送给消融组织,所述射频信号在回路中转化为热能,作用在消融组织上,使消融导管远端的电极接触到的肿瘤细胞凝固、变性、坏死。在消融的同时,产生的热能会导致人体组织温度升高,使得消融导管附近的人体组织干燥、炭化,形成“结痂”,电极与“结痂”之间的电阻突然变得很大,从而导致消融停止,消融不彻底,此时阻抗传感器检测到阻抗急剧升高,将阻抗信息传送给所述控制模块,所述控制模块收到阻抗传感器的阻抗信息后,或,所述控制模块基于实时电压电流信息计算得到阻抗后,控制微量灌注泵加大生理盐水的灌注量,生理盐水灌注进入消融导管并通过消融导管上的出液孔灌注进入消融组织,提高组织导电性和热传导性,维持阻抗平衡,保持阻抗处于相对稳定状态,同时降低组织的温度,增加组织的湿度,从根本上避免组织因为干燥升温而结痂,使得整个消融过程中确保阻抗稳定在一定范围,使射频能量能够持续输出,从而形成足够大的消融范围,产生更大、更有效的凝固坏死灶。另外,所述控制模块还接收温度传感器传送的温度信息,如果消融过程中发现温度升高超过一定阀值,控制模块判定生理盐水的灌注出现堵塞,发出报警命令,控制所述报警模块发出报警信号进行提示,以保证消融过程顺利进行。
上述肺部射频消融系统及控制方法通过阻抗传感器检测消融组织的阻抗变化,当检测到阻抗急剧升高,说明电极附近的消融组织正在干燥和炭化,将产生结痂,此时控制向消融组织内灌注生理盐水,降低组织的温度,增加组织的湿度,从根本上避免组织因为干燥升温而结痂;同时生理盐水能够提高组织导电性和热传导性,维持阻抗平衡,保持阻抗处于相对稳定状态。两者结合,使得整个消融过程中确保阻抗稳定在一定范围,使射频能量能够持续输出,从而形成足够大的消融范围,产生更大、更有效的凝固坏死灶。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (110)

  1. 一种射频消融导管,包括电极,其特征在于,所述电极带有换热介质流道,所述电极上设置有均衡装置,所述均衡装置上设有与所述换热介质流道连通的浸润孔,所述换热介质流道输出的换热介质经由所述均衡装置分配并流出。
  2. 如权利要求1所述的射频消融导管,其特征在于,所述均衡装置与所述电极之间为分体结构,所述均衡装置固定或活动的安装在所述电极上;
    或所述均衡装置与所述电极之间为一体结构。
  3. 如权利要求1所述的射频消融导管,其特征在于,所述浸润孔为多个、用以在电极外部形成均匀的换热介质保护膜。
  4. 如权利要求1所述的射频消融导管,其特征在于,所述电极的远端部位等径延伸或形状收敛,其中所述形状收敛为逐渐收敛或阶梯式收敛。
  5. 如权利要求3所述的射频消融导管,其特征在于,所述均衡装置与所述电极之间为一体结构,所述浸润孔开设在电极外壁处,所述电极的远端为尖端。
  6. 如权利要求3所述的射频消融导管,其特征在于,所述均衡装置与所述电极之间为分体结构,所述电极的外壁开设有与所述换热介质流道连通的流出孔,所述均衡装置为安装在所述电极上且处在所述流出孔外围的浸润罩,所述浸润孔开设在该浸润罩上,所述流出孔输出的换热介质经所述浸润罩分配并流出。
  7. 如权利要求1所述的射频消融导管,其特征在于,所述换热介质流道为位于电极内部的腔体,换热介质经由腔壁的开孔流出。
  8. 如权利要求1所述的射频消融导管,其特征在于,所述换热介质流道包括主流道以及多条与所述主流道连通的分支流道,各分支流道的末端延伸至电极的外表面。
  9. 如权利要求8所述的射频消融导管,其特征在于,所述分支流道沿所述主流道的延伸方向布置至少一组,同组分支流道至少为两条,呈辐射状分布于所述主流道外周。
  10. 如权利要求9所述的射频消融导管,其特征在于,同组分支流道在周向上均布布置。
  11. 如权利要求10所述的射频消融导管,其特征在于,相邻组分支流道的数量相同或不同,周向上位置对齐或错位布置。
  12. 如权利要求8所述的射频消融导管,其特征在于,多条分支流道沿主流道的延伸方向依次布置,且螺旋分布于主流道外周。
  13. 如权利要求6所述的射频消融导管,其特征在于,所述浸润罩固定在所述电极上、绕电极轴线转动安装在所述电极上、或沿电极轴向滑动安装在所述电极上。
  14. 如权利要求6所述的射频消融导管,其特征在于,所述射频消融导管还设置与所述浸润罩相连的驱动部件,用于带动所述浸润罩与所述电极之间的相对运动。
  15. 如权利要求6所述的射频消融导管,其特征在于,所述电极上安装一个所述浸润罩, 或安装多个所述浸润罩。
  16. 如权利要求6所述的射频消融导管,其特征在于,所述电极上安装多个所述浸润罩,各浸润罩相对于所述电极独立运动或至少两个浸润罩相互联动。
  17. 如权利要求6所述的射频消融导管,其特征在于,所述浸润罩为片状,在周向上仅遮盖电极外周的局部区域。
  18. 如权利要求6所述的射频消融导管,其特征在于,所述浸润罩为周向封闭的筒状结构,套设在电极外周。
  19. 如权利要求6所述的射频消融导管,其特征在于,所述浸润罩仅包裹所述电极的近端部位;
    或所述浸润罩为帽状结构,帽状结构的远端封闭包裹浸润罩的远端端头。
  20. 如权利要求6所述的射频消融导管,其特征在于,所述浸润罩固定在所述电极上,所述电极的外周设有定位台阶,所述浸润罩的远端与所述定位台阶相抵限位。
  21. 如权利要求20所述的射频消融导管,其特征在于,所述浸润罩的外壁与所述电极暴露于浸润罩的外壁等高拼接。
  22. 如权利要求6所述的射频消融导管,其特征在于,所述浸润罩的至少一部分为分布有浸润孔的渗透区,所述电极上开设所述流出孔的部位与所述渗透区相对应,且与渗透区内壁之间留有间隙。
  23. 如权利要求22所述的射频消融导管,其特征在于,所述浸润孔与所述流出孔错位布置。
  24. 如权利要求22所述的射频消融导管,其特征在于,所述电极的外壁设置有沉降区,所述流出孔设置在所述沉降区,所述渗透区处在所述沉降区外周、且浸润罩内壁与沉降区表面留有所述间隙。
  25. 如权利要求24所述的射频消融导管,其特征在于,所述流出孔为扩口状,扩口区域作为所述沉降区;浸润罩内壁与沉降区表面的间隙随与流出孔距离的增加而减小。
  26. 如权利要求24所述的射频消融导管,其特征在于,浸润罩内壁与沉降区表面的间隙随与流出孔距离的增加而增加。
  27. 如权利要求26所述的射频消融导管,其特征在于,所述沉降区为一个或相互隔离的多个,同一沉降区设置一个流出孔,同一沉降区中,浸润罩内壁与沉降区表面的间隙随与该沉降区内流出孔距离的增加而增加。
  28. 如权利要求24所述的射频消融导管,其特征在于,所述沉降区为沿电极轴向延伸的分布槽,所述流出孔在电极周向分为若干组,每一组对应同一分布槽。
  29. 如权利要求28所述的射频消融导管,其特征在于,所述分布槽为周向均匀布置的2~10条。
  30. 如权利要求28所述的射频消融导管,其特征在于,同一分布槽的槽底开设一个所述流出孔,所述分布槽的深度随与该流出孔距离的增加而增加。
  31. 如权利要求30所述的射频消融导管,其特征在于,所述浸润罩上沿周向分布多组浸润孔,每组浸润孔与其中一分布槽位置相应。
  32. 如权利要求29所述的射频消融导管,其特征在于,相邻分布槽的槽壁形成支撑浸润罩内壁的凸棱,凸棱顶部与浸润罩内壁的相应部位相抵且形状匹配。
  33. 如权利要求6所述的射频消融导管,其特征在于,所述浸润罩采用多孔材料,多孔材料自身的空隙作为所述浸润孔;
    或所述浸润罩采用编织结构,编织结构自身的空隙作为所述浸润孔;
    或所述浸润罩为金属壳体,金属壳体的壳壁上加工形成所述浸润孔。
  34. 如权利要求3所述的射频消融导管,其特征在于,所有浸润孔的孔径相同,或依据换热介质流量均衡相应设置。
  35. 如权利要求3所述的射频消融导管,其特征在于,所有浸润孔在均衡装置不同部位的分布密度相同,或依据换热介质流量均衡相应设置。
  36. 如权利要求6所述的射频消融导管,其特征在于,所述浸润孔的孔径随与流出孔距离的增加而增加。
  37. 如权利要求36所述的射频消融导管,其特征在于,所述浸润孔在所述浸润罩周向上分布多组。
  38. 如权利要求3所述的射频消融导管,其特征在于,同组浸润孔按各自的延伸路径依次排布,所述延伸路径为直线,折线或曲线。
  39. 如权利要求8所述的射频消融导管,其特征在于,每组浸润孔对应一个流出孔。
  40. 如权利要求6所述的射频消融导管,其特征在于,所述浸润罩上带有显影标识。
  41. 如权利要求1所述的射频消融导管,其特征在于,所述射频消融导管还包括可指示电极位置的电磁导航部件。
  42. 如权利要求1所述的射频消融导管,其特征在于,所述电极上连接有向近端延伸的拉线,用以带动电极偏转。
  43. 如权利要求42所述的射频消融导管,其特征在于,所述电极的近端连接有鞘管,所述拉线自鞘管的内部向近端延伸至鞘管外部;
    所述电极的近端设有与换热介质流道连通的连接管,该连接管延伸至鞘管内部。
  44. 如权利要求42所述的射频消融导管,其特征在于,所述电极上设置安装孔,所述拉线的远端伸入并固定于该安装孔。
  45. 如权利要求42所述的射频消融导管,其特征在于,所述射频消融导管进一步包括能够相对靠近或远离的第一拉弯组件和第二拉弯组件,鞘管固定至所述第一拉弯组件,所述拉 线固定至所述第二拉弯组件。
  46. 如权利要求45所述的射频消融导管,其特征在于,所述第一拉弯组件与所述第二拉弯组件之间相互嵌套滑动或并排滑动布置。
  47. 如权利要求46所述的射频消融导管,其特征在于,所述第一拉弯组件和所述第二拉弯组件均为管状,且所述第二拉弯组件滑动配合在所述第一拉弯组件内。
  48. 如权利要求45所述的射频消融导管,其特征在于,所述第二拉弯组件的至少部分嵌入所述第一拉弯组件内,所述第一拉弯组件与所述第二拉弯组件之间进一步设置有限定两者对移动方向的导向装置。
  49. 如权利要求48所述的射频消融导管,其特征在于,所述导向装置包括设置于所述第一拉弯组件和所述第二拉弯组件任一者上的滑槽和设置于另一者上的限位螺钉。
  50. 如权利要求48所述的射频消融导管,其特征在于,所述第二拉弯组件上嵌入所述第一拉弯组件内的部分上设置有用于增加所述第一拉弯组件与所述第二拉弯组件之间摩擦力的O型圈。
  51. 如权利要求45所述的射频消融导管,其特征在于,所述第二拉弯组件上设置有指示与所述第一拉弯组件相对位置的刻度线。
  52. 如权利要求1所述的射频消融导管,其特征在于,在所述射频消融导管上在邻近远端部位沿轴向依次分布多个温度检测装置。
  53. 如权利要求52所述的射频消融导管,其特征在于,所述温度检测装置包括由远端至近端间隔布置的第一温度检测装置、第二温度检测装置和第三温度检测装置。
  54. 如权利要求52所述的射频消融导管,其特征在于,所述温度检测装置包括温度传感器以及导热环,所述温度传感器与消融仪相连接,所述导热环设置于射频消融导管外壁,所述温度传感器与所述导热环热耦合。
  55. 如权利要求54所述的射频消融导管,其特征在于,所述温度传感器固定在所述导热环的外壁,固定方式选自粘结、焊接、铆接、过盈配合中的至少一种。
  56. 如权利要求54所述的射频消融导管,其特征在于,所述温度传感器为热敏电阻,所述热敏电阻通过热敏电阻电线电连接至消融仪,所述热敏电阻电线上套设有温控套管。
  57. 如权利要求54所述的射频消融导管,其特征在于,所述温度传感器通过无线通信装置与消融仪相连。
  58. 如权利要求54所述的射频消融导管,其特征在于,射频消融导管外壁设有嵌槽,所述温度检测装置固定在位置相应的嵌槽中,且所述嵌槽的槽底部位设有用于穿引电路导线的通孔。
  59. 如权利要求58所述的射频消融导管,其特征在于,所述嵌槽为环形,所述温度检测装置环绕固定在位置相应的嵌槽中,所述温度检测装置与所在嵌槽之间的固定方式选自粘接、 焊接、铆接、过盈配合中的至少一种。
  60. 如权利要求58所述的射频消融导管,其特征在于,所述导热环呈环形结构,所述导热环设置于所述嵌槽中。
  61. 如权利要求58所述的射频消融导管,其特征在于,所述温度检测装置呈环形结构,所述导热环以及温度传感器周向上形状互补围成所述环形结构。
  62. 如权利要求59所述的射频消融导管,其特征在于,所述导热环上开设有沉槽,所述温度传感器固定在该沉槽中,所述温度传感器与所在沉槽之间的固定方式选自粘结、焊接、铆接、过盈配合中的至少一种。
  63. 如权利要求58所述的射频消融导管,其特征在于,所述温度检测装置的外表面与周边部位的相互平齐。
  64. 如权利要求52所述的射频消融导管,其特征在于,至少一个温度检测装置的轴向位置可调。
  65. 如权利要求64所述的射频消融导管,其特征在于,射频消融导管与温度检测装置之间设有相互配合的导向结构。
  66. 如权利要求64所述的射频消融导管,其特征在于,轴向位置可调的温度检测装置上连接有牵引索,通过所述牵引索驱动温度检测装置相对于所述电极改变轴向位置。
  67. 如权利要求66所述的射频消融导管,其特征在于,所述牵引索由所连接的温度检测装置处穿入射频消融导管的内部,经由射频消融导管的内部向近端延伸。
  68. 如权利要求67所述的射频消融导管,其特征在于,所述射频消融导管进一步包括能够相对运动的第一调节组件和第二调节组件,其中所述电极相对固定于第一调节组件,所述牵引索连接至所述第二调节组件,所述第一调节组件和所述第二调节组件相对运动时所述牵引索驱动所连接的温度检测装置相对电极改变轴向位置。
  69. 如权利要求68所述的射频消融导管,其特征在于,所述第一调节组件和所述第二调节组件滑动配合或转动配合。
  70. 如权利要求1所述的射频消融导管,其特征在于,所述电极的远端端部设有温度探测探头。
  71. 如权利要求1所述的射频消融导管,其特征在于,所述电极1内还设置有用于检测电极与消融组织接触压力变化的压力传感器。
  72. 一种射频消融的控制方法,其特征在于,包括:
    步骤S100、消融过程中获取温度参数;
    步骤S110、将温度参数与温度阈值相比;
    步骤S120、当温度参数与温度阈值符合设定关系时,发送停止消融指令。
  73. 如权利要求72所述的射频消融的控制方法,其特征在于,所述温度参数包括边缘温 度参数,该边缘温度参数所对应的检测部位与电极远端端部的距离为L;且满足L0≤L,其中所述L0为预测的病灶部位半径;
    所述的设定关系包括边缘温度参数到达所述温度阈值并保持预设的时间间隔。
  74. 如权利要求73所述的射频消融的控制方法,其特征在于,所述温度参数还包括第一温度参数,该第一温度参数所对应的检测部位与电极远端端部的距离为L1;且满足L1<L0,其中所述L0为预测的病灶部位半径。
  75. 如权利要求74所述的射频消融的控制方法,其特征在于,所述设定关系还包括第一温度参数达到60-100度。
  76. 如权利要求73所述的射频消融的控制方法,其特征在于,所述边缘温度参数包括第三温度参数,该第三温度参数所对应的检测部位与电极远端端部的距离为L3;且满足L0<L3,其中所述L0为预测的病灶部位半径。
  77. 如权利要求76所述的射频消融的控制方法,其特征在于,所述的设定关系包括第三温度参数到达所述温度阈值并保持预设的时间间隔;所述温度阈值为43~60℃,所述时间间隔不少于3分钟。
  78. 如权利要求76所述的射频消融的控制方法,其特征在于,所述边缘温度参数还包括第二温度参数,该第二温度参数所对应的检测部位与电极远端端部的距离为L2;且满足L2=L0,其中所述L0为预测的病灶部位半径。
  79. 如权利要求78所述的射频消融的控制方法,其特征在于,所述设定关系还包括第二温度参数达到60-90度。
  80. 如权利要求73所述的射频消融的控制方法,其特征在于,所述温度参数还包括远端温度参数,该远端温度参数所对应的检测部位为电极的远端端部。
  81. 如权利要求80所述的射频消融的控制方法,其特征在于,所述设定关系还包括远端温度参数达到60-100度。
  82. 如权利要求72所述的射频消融的控制方法,其特征在于,还包括消融过程中依照所述温度参数可视化显示电极周边的温度分布。
  83. 一种射频消融的控制装置,其特征在于,包括:
    第一模块、用于消融过程中获取温度参数;
    第二模块、用于将温度参数与温度阈值相比;
    第三模块、用于当温度参数与温度阈值符合设定关系时,发送停止消融指令。
  84. 一种射频消融的控制装置,包括存储器和处理器,存储器中存储有计算机程序,其特征在于,该处理器执行计算机程序时实现如权利要求72~82任一项所述的射频消融方法的步骤。
  85. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被 处理器执行时实现如权利要求72~82任一项所述的射频消融的控制方法的步骤。
  86. 一种肺部射频消融系统,其特征在于,包括:
    权利要求1~71任一项所述的射频消融导管;
    用于向所述射频消融导管的电极周边部位提供换热介质的换热介质输送装置;
    依据所述射频消融导管中电极所在回路的阻抗信息相应驱动所述换热介质输送装置的控制模块。
  87. 如权利要求86所述的肺部射频消融系统,其特征在于,消融过程中保持电极驱动信号不变。
  88. 如权利要求86所述的肺部射频消融系统,其特征在于,所述肺部射频消融系统还包括采集电极周边部位的温度信息的温度检测装置,所述控制模块还用于依据所述温度信息提示或控制消融进程。
  89. 如权利要求88所述的肺部射频消融系统,其特征在于,所述温度检测装置为一个或多个,且至少一个温度检测装置的位置的距离电极0.5~3cm。
  90. 如权利要求86所述的肺部射频消融系统,其特征在于,所述控制模块驱动所述换热介质输送装置调节换热介质流量。
  91. 如权利要求86所述的肺部射频消融系统,其特征在于,所述控制模块将所述阻抗信息与阈值相比较,并通过调节的换热介质流量使所述阻抗信息趋近于稳态阻抗。
  92. 如权利要求91所述的肺部射频消融系统,其特征在于,还包括预先标定稳态阻抗,依据该稳态阻抗计算所述阈值。
  93. 如权利要求92所述的肺部射频消融系统,其特征在于,所述稳态阻抗的标定方式为,射频消融导管在体内就位后,且在电极通电前以初始流量输出换热介质、且实时采集阻抗信息,当阻抗信息稳定后所对应的数值记为稳态阻抗。
  94. 如权利要求92所述的肺部射频消融系统,其特征在于,所述阈值为数值范围;调节的换热介质流量过程中,所述控制模块还实时采集阻抗信息以及判断阻抗信息变化趋势,根据抗信息变化趋势相应改变换热介质流量的调节幅度或选择阈值上限、阈值下限中的一者相比较。
  95. 一种肺部射频消融的控制方法,其特征在于,包括:
    步骤S500,消融过程中接收采集自电极回路的阻抗信息;
    步骤S510,依据所述阻抗信息生成相应的控制指令,以调节在电极周边部位的换热介质流量。
  96. 如权利要求95所述的肺部射频消融的控制方法,其特征在于,步骤S500中还包括预先标定稳态阻抗,依据该稳态阻抗计算阈值,该阈值用于在步骤S510中与所述阻抗信息相比较,以生成相应的控制指令。
  97. 如权利要求96所述的肺部射频消融的控制方法,其特征在于,所述稳态阻抗的标定方式为,射频消融导管在体内就位后,且在电极通电前以初始流量输出换热介质、且实时采集阻抗信息,当阻抗信息稳定后所对应的数值记为稳态阻抗。
  98. 如权利要求97所述的肺部射频消融的控制方法,其特征在于,步骤S510中,依据所述阻抗信息生成相应的控制指令,具体包括:
    步骤S511,将所述阻抗信息与阈值相比较,根据所述阻抗信息与阈值的关系,判定流量的增减;
    步骤S512,根据流量的增减,按照预定的增、减幅度生成相应的控制指令。
  99. 如权利要求98所述的肺部射频消融的控制方法,其特征在于,所述增、减幅度各自独立的为固定值或动态值。
  100. 如权利要求98所述的肺部射频消融的控制方法,其特征在于,所述阈值为数值范围,步骤S511中,根据所述阻抗信息与阈值的关系,判断流量的增减,具体包括:
    当阻抗信息大于阈值上限时,判定为增加流量;
    当阻抗信息小于阈值下限时,判定为减小流量;
    当阻抗信息处在阈值范围内时,维持当前流量;
    步骤S511中,判定为增加流量时,步骤S512中生成第一控制指令,第一控制指令所对应的换热介质流量大于当前流量;
    步骤S511中,判定为减小流量时,步骤S512中生成第二控制指令,第二控制指令所对应的换热介质流量小于当前流量。
  101. 如权利要求100所述的肺部射频消融的控制方法,其特征在于,按阻抗信息的采样周期,循环执行步骤S500和步骤S510;
    上一采样周期生成并输出控制指令后,在下一周期中,采集阻抗信息后在与阈值相比较之前,先与上一采样周期的阻抗信息相比,判断阻抗信息的变化趋势;
    根据阻抗信息的变化趋势,相应改变换热介质流量的调节幅度或选择阈值上限、阈值下限中的一者相比较。
  102. 如权利要求101所述的肺部射频消融的控制方法,其特征在于,上一采样周期生成并输出第一控制指令后,在下一周期中,将阻抗信息后在与阈值相比较之前,先与上一采样周期的阻抗信息相比,判断阻抗信息的变化趋势;
    阻抗信息的变化趋势为上升时,加大换热介质流量的调节幅度;
    阻抗信息的变化趋势为下降时,将当前采样周期的阻抗信息与阈值下限相比较。
  103. 如权利要求101所述的肺部射频消融的控制方法,其特征在于,上一采样周期生成并输出第二控制指令后,在下一周期中,将阻抗信息后在与阈值相比较之前,先与上一采样周期的阻抗信息相比,判断阻抗信息的变化趋势;
    阻抗信息的变化趋势为下降时,加大换热介质流量的调节幅度;
    阻抗信息的变化趋势为上升时,将当前采样周期的阻抗信息与阈值上限相比较。
  104. 如权利要求95所述的肺部射频消融的控制方法,其特征在于,还包括利用权利要求72~82任一项所述的射频消融的控制方法提示或控制消融进程。
  105. 如权利要求104所述的肺部射频消融的控制方法,其特征在于,所述温度参数的采集点的距离电极0.5~3cm;温度参数达到43~60℃并维持预设时间后,发送停止消融指令。
  106. 一种肺部射频消融的控制装置,其特征在于,包括:
    采集模块,用于消融过程中接收采集自电极回路的阻抗信息;
    调节模块,用于依据所述阻抗信息生成相应的控制指令,以调节在电极周边部位的换热介质流量。
  107. 一种肺部射频消融的控制装置,包括存储器和处理器,存储器中存储有计算机程序,其特征在于,该处理器执行计算机程序时实现如权利要求95~105任一项所述的肺部射频消融的控制方法的步骤。
  108. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,计算机程序被处理器执行时实现如权利要求95~105任一项所述的肺部射频消融的控制方法的步骤。
  109. 一种肺部射频消融系统,其特征在于,所述肺部射频消融系统包括射频信号发生器、消融导管、电极板、传感器模块、微量灌注泵、控制模块和报警模块,其中:
    射频信号发生器,与所述控制模块及所述消融导管相连,用于接收控制模块的命令以产生射频信号,并将射频信号传送给所述消融导管;
    消融导管,与所述射频信号发生器及所述微量灌注泵相连,用于接收所述射频信号发生器产生的射频信号并将所述射频信号传递给消融组织,还用于接收所述微量灌注泵灌注的生理盐水,所述消融导管上开设有出液孔,用于将生理盐水灌注进消融组织内;
    电极板,与所述射频信号发生器相连,用于经由人体与消融导管中的电极形成回路;
    传感器模块,设置于所述消融导管上,与所述控制模块相连,包括阻抗传感器和温度传感器,用于检测消融导管与消融组织接触位置的阻抗和温度并将温度信息和阻抗信息发送给所述控制模块;
    微量灌注泵,与所述控制模块及所述消融导管相连,用于接收控制模块的命令以向所述消融导管灌注生理盐水;
    报警模块,与所述控制模块相连,用于接收所述控制模块发出的报警命令并报警;
    控制模块,与所述射频信号发生器、传感器模块、微量灌注泵、报警模块相连,用于控制所述射频信号发生器产生射频信号,还用于接收所述传感器模块检测到的阻抗信息和温度信息,并基于所述阻抗信息控制所述微量灌注泵向所述消融导管灌注生理盐水,基于所述温度信息控制所述报警模块报警。
  110. 一种肺部射频消融的控制方法,应用于权利要求109所述的肺部射频消融系统,其特征在于,所述肺部射频消融的控制方法包括:
    控制射频信号发生器产生射频信号并将射频信号传送给消融导管;
    获取消融导管与消融组织接触位置的阻抗信息和温度信息;
    基于所述阻抗信息控制微量灌注泵向所述消融导管灌注生理盐水,基于所述温度信息控制报警模块报警。
PCT/CN2019/082546 2018-09-14 2019-04-12 射频消融导管、肺部射频消融系统、以及相应的控制方法、控制装置和计算机可读存储介质 WO2020052231A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19861079.2A EP3851060B1 (en) 2018-09-14 2019-04-12 Radio frequency ablation catheter, radio frequency ablation system for lungs
JP2021538876A JP7265014B2 (ja) 2018-09-14 2019-04-12 高周波アブレーションカテーテル、肺部高周波アブレーションシステム、それに対応する制御方法、制御装置およびコンピュータ読み取り可能な記憶媒体
KR1020217011038A KR102631318B1 (ko) 2018-09-14 2019-04-12 고주파 어블레이션 카테터, 폐부 고주파 어블레이션 시스템, 이에 대응하는 제어방법, 제어 장치 및 컴퓨터 판독이 가능한 기억매체
US17/202,232 US20210196374A1 (en) 2018-09-14 2021-03-15 Radio frequency ablation catheter, radio frequency ablation system for lungs, corresponding control methods and control apparatuses therefor, and computer-readable storage medium
JP2023065505A JP7416998B2 (ja) 2018-09-14 2023-04-13 肺部高周波アブレーションシステム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811075817 2018-09-14
CN201811076707.5 2018-09-14
CN201811075817.X 2018-09-14
CN201811076707 2018-09-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/202,232 Continuation US20210196374A1 (en) 2018-09-14 2021-03-15 Radio frequency ablation catheter, radio frequency ablation system for lungs, corresponding control methods and control apparatuses therefor, and computer-readable storage medium

Publications (1)

Publication Number Publication Date
WO2020052231A1 true WO2020052231A1 (zh) 2020-03-19

Family

ID=67414813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082546 WO2020052231A1 (zh) 2018-09-14 2019-04-12 射频消融导管、肺部射频消融系统、以及相应的控制方法、控制装置和计算机可读存储介质

Country Status (6)

Country Link
US (1) US20210196374A1 (zh)
EP (1) EP3851060B1 (zh)
JP (2) JP7265014B2 (zh)
KR (1) KR102631318B1 (zh)
CN (9) CN110074860B (zh)
WO (1) WO2020052231A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022067146A3 (en) * 2020-09-28 2022-05-12 Zidan Medical, Inc. Systems, devices and methods for treating lung tumors with a robotically delivered catheter
CN116570363A (zh) * 2023-07-14 2023-08-11 北京先瑞达医疗科技有限公司 一种射频导管
EP4119079A4 (en) * 2020-12-31 2024-03-13 Hangzhou Broncus Medical Co., Ltd. DATA ADJUSTMENT PROCESS IN RADIO FREQUENCY OPERATION AND RADIO FREQUENCY HOST

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102631318B1 (ko) * 2018-09-14 2024-01-30 항저우 브론쿠스 메디컬 컴퍼니 리미티드 고주파 어블레이션 카테터, 폐부 고주파 어블레이션 시스템, 이에 대응하는 제어방법, 제어 장치 및 컴퓨터 판독이 가능한 기억매체
DE102019121365A1 (de) * 2019-08-07 2021-02-11 Aesculap Ag Vorrichtung und Verfahren zur Gewebeerkennung
CN110897710B (zh) * 2019-11-30 2021-08-31 杭州堃博生物科技有限公司 肺部神经消融系统的控制方法、系统以及计算机介质
CN112712884B (zh) * 2020-12-31 2021-09-28 杭州堃博生物科技有限公司 动态调整射频参数的方法、装置和射频主机
CN110960314B (zh) * 2019-12-31 2021-06-15 杭州堃博生物科技有限公司 检测机构、射频消融导管及射频消融系统
CN111796613B (zh) * 2020-06-30 2021-06-04 深圳半岛医疗有限公司 射频减脂设备的控制方法、射频减脂设备及可读存储介质
CN112043373A (zh) * 2020-09-17 2020-12-08 中国科学院长春光学精密机械与物理研究所 一种智能调温医用双极电凝器
CN112790858B (zh) * 2020-12-31 2021-11-09 杭州堃博生物科技有限公司 消融参数配置方法、装置、系统及计算机可读存储介质
CN112741681B (zh) * 2020-12-31 2022-07-12 杭州堃博生物科技有限公司 电子装置、射频操作提示系统及存储介质
CN112821898B (zh) * 2020-12-31 2022-08-12 杭州堃博生物科技有限公司 射频主机和功率调整电路
CN112716594B (zh) * 2020-12-31 2022-08-12 杭州堃博生物科技有限公司 射频操作对象数据异常的保护方法、射频主机和存储介质
CN112791262B (zh) * 2020-12-31 2023-02-03 杭州堃博生物科技有限公司 射频操作数据调控方法、装置及注射泵
CN112773497B (zh) * 2020-12-31 2022-04-12 杭州堃博生物科技有限公司 射频操作中的数据调整方法和射频主机
CN113476136B (zh) * 2021-06-29 2022-09-20 苏州心岭迈德医疗科技有限公司 一种脉冲场消融控制方法及系统
CN113855220B (zh) * 2021-11-01 2022-05-24 北京博莱德光电技术开发有限公司 一种射频消融方法、系统、存储介质及智能终端
CN114343833A (zh) * 2021-11-29 2022-04-15 苏州艾科脉医疗技术有限公司 消融导管
CN114343822B (zh) * 2021-12-16 2022-09-30 上海玮启医疗器械有限公司 可变阻力的消融控制手柄及消融导管
CN114469311B (zh) * 2021-12-30 2022-10-28 心诺普医疗技术(北京)有限公司 具有温度限制功能的冷冻消融系统
WO2023125927A1 (zh) * 2021-12-31 2023-07-06 杭州诺沁医疗器械有限公司 一种用于心肌消融的消融针、消融装置及消融系统
CN114533247A (zh) * 2022-01-12 2022-05-27 康达洲际医疗器械有限公司 一种基于光声成像引导的三维磁热控制方法与系统
CN115253016B (zh) * 2022-07-11 2024-02-06 苏州朗开医疗技术有限公司 一种可双向调控导管鞘
US20240138905A1 (en) * 2022-10-27 2024-05-02 Biosense Webster (Israel) Ltd. Irrigation tubing with regulated fluid emission
CN116077170B (zh) * 2023-01-08 2024-02-06 天津市鹰泰利安康医疗科技有限责任公司 一种消融调节控制方法及系统
CN115965629B (zh) * 2023-03-17 2023-07-25 杭州堃博生物科技有限公司 消融区域确定方法、装置、设备及非易失性存储介质
CN116392236B (zh) * 2023-06-09 2023-09-19 浙江伽奈维医疗科技有限公司 一种组织消融装置及其控制方法
CN117243689B (zh) * 2023-09-15 2024-04-19 南京康友医疗科技有限公司 一种防止组织碳化的微波消融系统
CN117958956B (zh) * 2024-04-01 2024-06-18 四川大学华西医院 一种射频消融导管及用于射频消融导管的混合控制系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030004506A1 (en) * 2001-06-28 2003-01-02 Scimed Life Systems, Inc. Catheter with an irrigated composite tip electrode
CN1631327A (zh) * 2004-12-23 2005-06-29 上海交通大学 水冷式射频肿瘤消融治疗系统的智能化控制方法
CN1777396A (zh) * 2003-04-24 2006-05-24 全明基 用于射频组织消融的电极
CN1897885A (zh) * 2003-10-29 2007-01-17 乌德勒支大学医学中心 消融术或类似技术的导管及其使用方法
CN202892082U (zh) * 2012-08-10 2013-04-24 乐普(北京)医疗器械股份有限公司 一种冷盐水灌注消融导管大头电极的固定装置
WO2015089377A1 (en) * 2013-12-12 2015-06-18 Holaira, Inc. Catheter and handle assembly, systems, and methods
CN105997234A (zh) * 2016-05-05 2016-10-12 江苏省肿瘤医院 用于支气管镜下治疗肺癌的磁导航射频消融导管
CN106073891A (zh) * 2016-08-09 2016-11-09 常州市第人民医院 冷离子灌注冷循环自体回收集束射频消融系统

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5334193A (en) * 1992-11-13 1994-08-02 American Cardiac Ablation Co., Inc. Fluid cooled ablation catheter
US5540684A (en) * 1994-07-28 1996-07-30 Hassler, Jr.; William L. Method and apparatus for electrosurgically treating tissue
US6080151A (en) * 1997-07-21 2000-06-27 Daig Corporation Ablation catheter
US6251107B1 (en) * 1998-06-25 2001-06-26 Cardima, Inc. Ep catheter
US6210406B1 (en) * 1998-12-03 2001-04-03 Cordis Webster, Inc. Split tip electrode catheter and signal processing RF ablation system
CN2543497Y (zh) * 2002-04-26 2003-04-09 河南华南医疗电子仪器有限公司 温控射频消融治疗仪
AU2002952663A0 (en) * 2002-11-14 2002-11-28 Western Sydney Area Health Service An intramural needle-tipped surgical device
US7104989B2 (en) * 2003-09-05 2006-09-12 Medtronic, Inc. RF ablation catheter including a virtual electrode assembly
US7347859B2 (en) * 2003-12-18 2008-03-25 Boston Scientific, Scimed, Inc. Tissue treatment system and method for tissue perfusion using feedback control
US7771420B2 (en) * 2004-03-05 2010-08-10 Medelec-Minimeca S.A. Saline-enhanced catheter for radiofrequency tumor ablation
JP2007289674A (ja) 2006-03-28 2007-11-08 Shinshu Univ 肺癌治療カテーテル
CN200942123Y (zh) * 2006-03-30 2007-09-05 迈德医疗科技(上海)有限公司 用于射频消融治疗的射频产生及控制装置
US7824406B2 (en) * 2006-12-28 2010-11-02 St. Jude Medical, Atrial Fibrillation Division, Inc. Irrigated ablation catheter having a valve to prevent backflow
US20090031785A1 (en) * 2007-07-31 2009-02-05 Caviton, Inc. Capacitively coupled dielectric barrier discharge detector
CN101224137A (zh) * 2007-10-30 2008-07-23 南京康友微波能应用研究所 用于915MHz的聚能微波消融针
US8273082B2 (en) * 2007-12-21 2012-09-25 St. Jude Medical, Atrial Fibrillation Division, Inc. Irrigated ablation catheter assembly having a flow member to create parallel external flow
US8333762B2 (en) * 2007-12-28 2012-12-18 Biosense Webster, Inc. Irrigated catheter with improved irrigation flow
US8882761B2 (en) * 2008-07-15 2014-11-11 Catheffects, Inc. Catheter and method for improved ablation
CN201356648Y (zh) * 2009-03-04 2009-12-09 微创医疗器械(上海)有限公司 盐水灌注射频消融导管
US8568401B2 (en) * 2009-10-27 2013-10-29 Covidien Lp System for monitoring ablation size
US20110160726A1 (en) * 2009-12-30 2011-06-30 Frank Ingle Apparatus and methods for fluid cooled electrophysiology procedures
US9943363B2 (en) * 2010-04-28 2018-04-17 Biosense Webster, Inc. Irrigated ablation catheter with improved fluid flow
CN102266245B (zh) * 2010-06-04 2015-08-26 心诺普医疗技术(北京)有限公司 灌注式射频消融导管
AU2011288972B2 (en) * 2010-08-13 2015-08-13 Cathrx Ltd An irrigation catheter
US9445861B2 (en) * 2011-04-12 2016-09-20 Thermedical, Inc. Methods and devices for controlling ablation therapy
CN103237515B (zh) * 2011-06-16 2016-11-02 圣犹达医疗用品电生理部门有限公司 用于柔性电极的冲洗液分配系统
EP2537479B1 (de) * 2011-06-20 2014-04-16 Erbe Elektromedizin GmbH Steuerung eines medizinischen Geräts in Abhängigkeit von der Neutralektrodenimpedanz
US11103296B2 (en) * 2011-07-14 2021-08-31 Afreeze Gmbh Ablation applicator with a matrix filled with particles
CN103315808A (zh) * 2012-03-23 2013-09-25 心诺普医疗技术(北京)有限公司 一种消融电极及采用该电极的灌注型电极导管
EP2830523B1 (en) * 2012-03-27 2021-12-22 Dfine, Inc. Systems for use in controlling tissue ablation volume by temperature monitoring
CN102631240A (zh) * 2012-04-13 2012-08-15 上海微创电生理医疗科技有限公司 冷盐水灌注型射频消融导管
US9717555B2 (en) * 2012-05-14 2017-08-01 Biosense Webster (Israel), Ltd. Catheter with helical end section for vessel ablation
CN203059897U (zh) * 2012-06-19 2013-07-17 深圳市惠泰医疗器械有限公司 肾动脉轨道射频消融电极导管
CA2878253A1 (en) 2012-09-26 2014-04-03 Boston Scientific Scimed, Inc. Systems and methods for controlling energy application
WO2014121664A1 (zh) * 2013-02-07 2014-08-14 上海魅丽纬叶医疗科技有限公司 射频消融方法、系统及其射频消融设备
US9101344B2 (en) * 2013-03-15 2015-08-11 Covidien Lp Recirculating cooling system for energy delivery device
KR101459940B1 (ko) * 2013-08-23 2014-11-07 고려대학교 산학협력단 맵핑 및 절제 카테터
CN203970535U (zh) * 2014-04-08 2014-12-03 北京维迈康科技有限公司 新型射频消融装置
CN103919606B (zh) * 2014-04-14 2016-02-03 乐普(北京)医疗器械股份有限公司 磁导航冷盐水灌注射频消融导管
CN105286986B (zh) * 2014-07-30 2018-07-10 上海微创电生理医疗科技股份有限公司 导管消融装置及其电极射频消融导管
JP2016059739A (ja) * 2014-09-22 2016-04-25 富士フイルム株式会社 携帯型コンソール、携帯型コンソールの制御方法、携帯型コンソール用プログラム、及び放射線撮影システム
CN107148249B (zh) * 2014-11-19 2022-02-22 Epix 疗法公司 使用高分辨率电极组件的消融装置、系统和方法
US10342611B2 (en) 2015-04-29 2019-07-09 Innoblative Designs, Inc. Cavitary tissue ablation
US10492858B2 (en) * 2016-01-21 2019-12-03 Boaz Avitall Assessment of tissue contact in tissue ablation
CN107157573A (zh) * 2016-03-07 2017-09-15 四川锦江电子科技有限公司 一种极间放电的标测消融导管及消融装置及装置使用方法
CN107440788A (zh) * 2016-06-01 2017-12-08 四川锦江电子科技有限公司 一种具有极间放电功能的消融导管及消融装置
CN106344150A (zh) * 2016-11-23 2017-01-25 常州朗合医疗器械有限公司 射频消融导管及系统
CN107961071A (zh) * 2018-01-04 2018-04-27 科塞尔医疗科技(苏州)有限公司 一种射频消融导管
KR102631318B1 (ko) * 2018-09-14 2024-01-30 항저우 브론쿠스 메디컬 컴퍼니 리미티드 고주파 어블레이션 카테터, 폐부 고주파 어블레이션 시스템, 이에 대응하는 제어방법, 제어 장치 및 컴퓨터 판독이 가능한 기억매체

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030004506A1 (en) * 2001-06-28 2003-01-02 Scimed Life Systems, Inc. Catheter with an irrigated composite tip electrode
CN1777396A (zh) * 2003-04-24 2006-05-24 全明基 用于射频组织消融的电极
CN1897885A (zh) * 2003-10-29 2007-01-17 乌德勒支大学医学中心 消融术或类似技术的导管及其使用方法
CN1631327A (zh) * 2004-12-23 2005-06-29 上海交通大学 水冷式射频肿瘤消融治疗系统的智能化控制方法
CN202892082U (zh) * 2012-08-10 2013-04-24 乐普(北京)医疗器械股份有限公司 一种冷盐水灌注消融导管大头电极的固定装置
WO2015089377A1 (en) * 2013-12-12 2015-06-18 Holaira, Inc. Catheter and handle assembly, systems, and methods
CN105997234A (zh) * 2016-05-05 2016-10-12 江苏省肿瘤医院 用于支气管镜下治疗肺癌的磁导航射频消融导管
CN106073891A (zh) * 2016-08-09 2016-11-09 常州市第人民医院 冷离子灌注冷循环自体回收集束射频消融系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022067146A3 (en) * 2020-09-28 2022-05-12 Zidan Medical, Inc. Systems, devices and methods for treating lung tumors with a robotically delivered catheter
EP4119079A4 (en) * 2020-12-31 2024-03-13 Hangzhou Broncus Medical Co., Ltd. DATA ADJUSTMENT PROCESS IN RADIO FREQUENCY OPERATION AND RADIO FREQUENCY HOST
CN116570363A (zh) * 2023-07-14 2023-08-11 北京先瑞达医疗科技有限公司 一种射频导管
CN116570363B (zh) * 2023-07-14 2024-04-02 北京先瑞达医疗科技有限公司 一种射频导管

Also Published As

Publication number Publication date
JP2021536346A (ja) 2021-12-27
CN110074860B (zh) 2024-02-27
CN110074861B (zh) 2024-05-07
CN210673430U (zh) 2020-06-05
CN210811484U (zh) 2020-06-23
EP3851060B1 (en) 2023-08-09
CN210673431U (zh) 2020-06-05
JP2023085552A (ja) 2023-06-20
CN110074857A (zh) 2019-08-02
US20210196374A1 (en) 2021-07-01
CN114259294A (zh) 2022-04-01
CN110074856A (zh) 2019-08-02
JP7416998B2 (ja) 2024-01-17
CN110074861A (zh) 2019-08-02
KR102631318B1 (ko) 2024-01-30
EP3851060A1 (en) 2021-07-21
EP3851060A4 (en) 2022-05-25
JP7265014B2 (ja) 2023-04-25
CN110074860A (zh) 2019-08-02
EP3851060C0 (en) 2023-08-09
CN110074857B (zh) 2021-05-14
CN210673432U (zh) 2020-06-05
KR20210061378A (ko) 2021-05-27

Similar Documents

Publication Publication Date Title
WO2020052231A1 (zh) 射频消融导管、肺部射频消融系统、以及相应的控制方法、控制装置和计算机可读存储介质
US20220323147A1 (en) Irrigated ablation catheter with multiple segmented ablation electrodes
CN110809448B (zh) 确定导管尖端与组织之间接触的性质
US11399889B2 (en) Ablation electrode assemblies and methods for using same
US11179197B2 (en) Methods of determining catheter orientation
EP1772109B1 (en) System for performing cardiac ablation
US20080287944A1 (en) Tissue ablation apparatus and method
EP2937053A1 (en) Ablation systems including pulse rate detector and feedback mechanism and methods of use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19861079

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021538876

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217011038

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019861079

Country of ref document: EP

Effective date: 20210414