WO2020049420A1 - 半導体装置、および半導体装置の作製方法 - Google Patents

半導体装置、および半導体装置の作製方法 Download PDF

Info

Publication number
WO2020049420A1
WO2020049420A1 PCT/IB2019/057266 IB2019057266W WO2020049420A1 WO 2020049420 A1 WO2020049420 A1 WO 2020049420A1 IB 2019057266 W IB2019057266 W IB 2019057266W WO 2020049420 A1 WO2020049420 A1 WO 2020049420A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
conductor
insulator
transistor
semiconductor device
Prior art date
Application number
PCT/IB2019/057266
Other languages
English (en)
French (fr)
Inventor
高橋正弘
奥野直樹
金川朋賢
水上翔太
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to JP2020540872A priority Critical patent/JP7287970B2/ja
Priority to KR1020217006924A priority patent/KR20210052462A/ko
Priority to US17/272,400 priority patent/US20210320209A1/en
Publication of WO2020049420A1 publication Critical patent/WO2020049420A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/70Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates the floating gate being an electrode shared by two or more components
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass

Definitions

  • One embodiment of the present invention relates to a semiconductor device and a method for manufacturing the semiconductor device.
  • one embodiment of the present invention relates to a semiconductor wafer, a module, and an electronic device.
  • a semiconductor device in this specification and the like refers to any device that can function by utilizing semiconductor characteristics.
  • a semiconductor device such as a transistor, a semiconductor circuit, an arithmetic device, and a storage device are one embodiment of a semiconductor device.
  • a display device (a liquid crystal display device, a light-emitting display device, or the like), a projection device, a lighting device, an electro-optical device, a power storage device, a storage device, a semiconductor circuit, an imaging device, an electronic device, or the like sometimes includes a semiconductor device.
  • one embodiment of the present invention is not limited to the above technical field.
  • One embodiment of the invention disclosed in this specification and the like relates to an object, a method, or a manufacturing method.
  • one embodiment of the present invention relates to a process, a machine, a manufacturer, or a composition (composition of matter).
  • ICs integrated circuits
  • LSIs and ultra-LSIs composed of ICs of higher integration
  • Such an IC is mounted on a circuit board, for example, a printed wiring board, and is used as one of components of various electronic devices constituting a computer, an information terminal, a display device, an automobile, and the like.
  • AI artificial intelligence
  • Desktop computers laptop computers, tablet computers, smartphones, mobile phones, and the like are known as computers and information terminals.
  • a silicon-based semiconductor material is widely known as a semiconductor material used for a semiconductor element, but an oxide semiconductor is attracting attention as another material.
  • a transistor including an oxide semiconductor has extremely low leakage current in a non-conductive state.
  • a low-power-consumption CPU utilizing the characteristic of a transistor including an oxide semiconductor with low leakage current has been disclosed (see Patent Document 1).
  • One object of one embodiment of the present invention is to provide a semiconductor device having favorable electric characteristics and a manufacturing method thereof. Another object of one embodiment of the present invention is to provide a highly reliable semiconductor device and a manufacturing method thereof. Another object of one embodiment of the present invention is to provide a semiconductor device which can be miniaturized or highly integrated and a manufacturing method thereof. Another object of one embodiment of the present invention is to provide a semiconductor device with high productivity and a method for manufacturing the semiconductor device.
  • Another object is to suppress change in electric characteristics and improve reliability in a semiconductor device including a transistor including an oxide semiconductor. Another object is to provide a transistor including an oxide semiconductor with high on-state current. Another object is to provide a transistor including an oxide semiconductor with low off-state current. Another object is to provide a semiconductor device with reduced power consumption. Another object is to provide a semiconductor device with an improved operating frequency.
  • Another object is to provide a novel semiconductor device. Another object is to provide a module including the semiconductor device. Another object is to provide an electronic device including the semiconductor device or the module.
  • One embodiment of the present invention is a semiconductor device including a first insulator, a first conductor over the first insulator, a second conductor, a first conductor, and a second conductor. And a second insulator on the first conductor, the second conductor, and the oxide, and a third conductor on the second insulator.
  • the side surface of the first conductor has a region in contact with one side surface of the oxide, and the side surface of the second conductor has a region in contact with the other side surface of the oxide;
  • the height of the top surface of the body, the height of the top surface of the second conductor, and the height of the top surface of the oxide are each approximately equal, and the conductivity of the first conductor is higher than the oxide, and Is a semiconductor device having higher conductivity than oxide.
  • each of the first conductor and the second conductor contains In and any one or more of Sn, W, Ti, and Si.
  • the first conductor and the second conductor may each include one or more of Zn, Ti, Ga, and Nb.
  • the oxide preferably contains In, an element M (M is Al, Ga, Y, or Sn), and Zn.
  • the carrier density of the first conductor and the second conductor is preferably higher than the carrier density of the oxide.
  • a first insulator is formed over a substrate, an oxide film is formed over the first insulator, a mask is formed over the oxide film by lithography, By removing an oxide film which does not overlap, an oxide is formed, a mask, a conductive film is formed to cover the oxide, and a part of the conductive film is isotropically etched to expose the side surface of the mask. Then, the conductive film on the mask is lifted off by removing the mask and removing the mask.
  • the conductive film is preferably formed by a sputtering method.
  • the film formation rate of the conductive film is smaller in the horizontal direction than in the vertical direction.
  • a semiconductor device having favorable electric characteristics and a manufacturing method thereof can be provided. Further, according to one embodiment of the present invention, a highly reliable semiconductor device and a manufacturing method thereof can be provided. According to one embodiment of the present invention, a semiconductor device which can be miniaturized or highly integrated and a manufacturing method thereof can be provided. According to one embodiment of the present invention, a semiconductor device with high productivity and a method for manufacturing the semiconductor device can be provided.
  • a transistor including an oxide semiconductor variation in electric characteristics can be suppressed and reliability can be improved. Further, a transistor including an oxide semiconductor with high on-state current can be provided. Further, a transistor including an oxide semiconductor with low off-state current can be provided. Further, a semiconductor device with reduced power consumption can be provided. Further, a semiconductor device with an improved operating frequency can be provided.
  • a novel semiconductor device can be provided.
  • a module including the semiconductor device can be provided.
  • an electronic device including the semiconductor device or the module can be provided.
  • FIG. 1A is a top view illustrating the semiconductor device. 1B and 1C are cross-sectional views illustrating a semiconductor device.
  • FIG. 2A is a top view illustrating the semiconductor device. 2B and 2C are cross-sectional views illustrating the semiconductor device.
  • FIG. 3A is a top view illustrating the semiconductor device. 3B and 3C are cross-sectional views illustrating the semiconductor device.
  • FIG. 4A is a top view illustrating the method for manufacturing the semiconductor device. 4B and 4C are cross-sectional views illustrating a method for manufacturing a semiconductor device.
  • FIG. 5A is a top view illustrating the method for manufacturing the semiconductor device. 5B and 5C are cross-sectional views illustrating a method for manufacturing a semiconductor device.
  • FIG. 6A is a top view illustrating the method for manufacturing the semiconductor device.
  • 6B and 6C are cross-sectional views illustrating a method for manufacturing a semiconductor device.
  • FIG. 7A is a top view illustrating the method for manufacturing the semiconductor device.
  • 7B and 7C are cross-sectional views illustrating a method for manufacturing a semiconductor device.
  • FIG. 8A is a top view illustrating the method for manufacturing the semiconductor device.
  • 8B and 8C are cross-sectional views illustrating a method for manufacturing a semiconductor device.
  • FIG. 9A is a top view illustrating the method for manufacturing the semiconductor device.
  • 9B and 9C are cross-sectional views illustrating a method for manufacturing a semiconductor device.
  • FIG. 10A is a top view illustrating the method for manufacturing the semiconductor device.
  • FIG. 10B and 10C are cross-sectional views illustrating a method for manufacturing a semiconductor device.
  • FIG. 11A is a top view illustrating the method for manufacturing the semiconductor device.
  • 11B and 11C are cross-sectional views illustrating a method for manufacturing a semiconductor device.
  • FIG. 12A is a top view illustrating the method for manufacturing the semiconductor device.
  • 12B and 12C are cross-sectional views illustrating a method for manufacturing a semiconductor device.
  • FIG. 13 illustrates an energy band structure of an oxide semiconductor.
  • FIG. 14 is a cross-sectional view illustrating a structure of a memory device according to one embodiment of the present invention.
  • FIG. 15A is a block diagram illustrating a configuration example of a storage device.
  • FIG. 15A is a block diagram illustrating a configuration example of a storage device.
  • FIG. 15B is a schematic diagram illustrating a configuration example of a storage device.
  • 16A to 16H are circuit diagrams each illustrating a configuration example of a storage device.
  • FIG. 17A is a block diagram of a semiconductor device.
  • FIG. 17B is a schematic view of the semiconductor device.
  • 18A to 18E are schematic diagrams of a storage device.
  • 19A to 19F are diagrams illustrating electronic devices.
  • FIG. 20 is a graph showing the heat treatment time dependency of the sheet resistance value of indium tin oxide.
  • ⁇ ⁇ Particular components may be omitted in a top view (also referred to as a “plan view”), a perspective view, and the like to facilitate understanding of the invention.
  • a top view also referred to as a “plan view”
  • a perspective view and the like to facilitate understanding of the invention.
  • some hidden lines and the like may be omitted.
  • ordinal numbers given as first, second, and the like are used for convenience, and do not indicate the order of steps or the order of lamination. Therefore, for example, the description can be made by appropriately replacing “first” with “second” or “third”.
  • ordinal numbers described in this specification and the like do not always coincide with ordinal numbers used for specifying one embodiment of the present invention.
  • connection relation is not limited to the predetermined connection relation, for example, the connection relation shown in the figure or the text, and it is assumed that anything other than the connection relation shown in the figure or the text is disclosed in the figure or the text.
  • X and Y are objects (for example, an apparatus, an element, a circuit, a wiring, an electrode, a terminal, a conductive film, a layer, and the like).
  • an element for example, a switch, a transistor, a capacitor, an inductor, a resistor, a diode, a display, etc.
  • an element capable of electrically connecting X and Y.
  • Elements, light emitting elements, loads, etc. are not connected between X and Y, and elements (for example, switches, transistors, capacitors, inductors, etc.) that enable electrical connection between X and Y ,
  • a resistance element, a diode, a display element, a light-emitting element, a load, etc. are connected via X and Y.
  • an element for example, a switch, a transistor, a capacitor, an inductor, a resistor, a diode, a display, etc.
  • One or more elements, light-emitting elements, loads, etc. can be connected between X and Y.
  • the switch has a function of being turned on and off. That is, the switch is in a conductive state (on state) or non-conductive state (off state), and has a function of controlling whether a current flows or not. Alternatively, the switch has a function of selecting and switching a path through which current flows.
  • the case where X and Y are electrically connected includes the case where X and Y are directly connected.
  • a circuit for example, a logic circuit (an inverter, a NAND circuit, a NOR circuit, or the like) that enables a functional connection between X and Y, a signal conversion Circuit (DA conversion circuit, AD conversion circuit, gamma correction circuit, etc.), potential level conversion circuit (power supply circuit (boost circuit, step-down circuit, etc.), level shifter circuit for changing signal potential level, etc.), voltage source, current source, switching Circuits, amplifier circuits (circuits that can increase signal amplitude or current amount, operational amplifiers, differential amplifier circuits, source follower circuits, buffer circuits, etc.), signal generation circuits, storage circuits, control circuits, etc.) One or more can be connected in between.
  • a logic circuit an inverter, a NAND circuit, a NOR circuit, or the like
  • X and Y are functionally connected. I do. Note that a case where X and Y are functionally connected includes a case where X and Y are directly connected and a case where X and Y are electrically connected.
  • a transistor is an element having at least three terminals including a gate, a drain, and a source.
  • a channel formation region is provided between the drain (drain terminal, drain region, or drain electrode) and the source (source terminal, source region, or source electrode), and between the source and the drain through the channel formation region. Current can flow through the Note that in this specification and the like, a channel formation region refers to a region through which current mainly flows.
  • the functions of the source and the drain may be switched when transistors having different polarities are used or when the direction of current changes in circuit operation. For this reason, in this specification and the like, the terms of source and drain may be used interchangeably.
  • a channel length refers to, for example, in a top view of a transistor, a region where a semiconductor (or a portion of a semiconductor in which current flows when the transistor is on) and a gate overlap with each other, or a region where a channel is formed. , The distance between the source and the drain. Note that in one transistor, the channel length does not always have the same value in all regions. That is, the channel length of one transistor may not be determined to one value. Therefore, in this specification, a channel length is any one of values, a maximum value, a minimum value, or an average value in a region where a channel is formed.
  • the channel width refers to, for example, a region where a semiconductor (or a portion of a semiconductor in which current flows when a transistor is on) and a gate overlap each other, or a region where a channel is formed, in which a source and a drain face each other.
  • the length of the part where it is located in one transistor, the channel width does not always have the same value in all regions. That is, the channel width of one transistor may not be determined to one value. Therefore, in this specification, a channel width is any one of values, a maximum value, a minimum value, or an average value in a region where a channel is formed.
  • a channel width in a region where a channel is actually formed (hereinafter, also referred to as an “effective channel width”) and a channel width shown in a top view of the transistor (hereinafter, “apparent channel width”).
  • Channel width a channel width in a region where a channel is actually formed
  • apparent channel width a channel width shown in a top view of the transistor
  • the apparent channel width may be referred to as "enclosed channel width (SCW: Surrounded Channel Width)".
  • channel width sometimes refers to an enclosed channel width or an apparent channel width.
  • a simple term “channel width” may refer to an effective channel width. Note that the values of the channel length, channel width, effective channel width, apparent channel width, enclosing channel width, and the like can be determined by analyzing a cross-sectional TEM image or the like.
  • an impurity in a semiconductor refers to, for example, elements other than the main components of the semiconductor.
  • an element having a concentration of less than 0.1 atomic% can be regarded as an impurity.
  • DOS Density of State
  • examples of the impurity that changes the characteristics of the semiconductor include a Group 1 element, a Group 2 element, a Group 13 element, a Group 14 element, a Group 15 element, and an oxide semiconductor.
  • transition metals other than the main components such as hydrogen, lithium, sodium, silicon, boron, phosphorus, carbon, and nitrogen.
  • water may function as an impurity in some cases.
  • oxygen vacancies may be formed by entry of impurities, for example.
  • the impurity that changes the characteristics of the semiconductor include a Group 1 element, a Group 2 element, a Group 13 element, and a Group 15 element other than oxygen and hydrogen.
  • a silicon oxynitride film has a higher oxygen content than nitrogen as its composition.
  • nitrogen preferably, 55 to 65 atomic% of oxygen, 1 to 20 atomic% of nitrogen, 25 to 35 atomic% of silicon, and 0.1 to 10 atomic% of hydrogen. It refers to those included in the concentration range.
  • a silicon nitride oxide film has a higher nitrogen content than oxygen as its composition.
  • nitrogen is 55 to 65 atomic%
  • oxygen is 1 to 20 atomic%
  • silicon is 25 to 35 atomic%
  • hydrogen is 0.1 to 10 atomic%. It refers to those included in the concentration range.
  • the term “film” and the term “layer” can be interchanged with each other.
  • the term “conductive layer” can be changed to the term “conductive film”.
  • the term “insulating film” may be changed to the term “insulating layer” in some cases.
  • the term “insulator” can be replaced with an insulating film or an insulating layer.
  • the term “conductor” can be referred to as a conductive film or a conductive layer.
  • the term “semiconductor” can be referred to as a semiconductor film or a semiconductor layer.
  • the transistors described in this specification and the like are field-effect transistors unless otherwise specified. Further, a transistor described in this specification and the like is an n-channel transistor unless otherwise specified. Therefore, the threshold voltage (also referred to as “Vth”) is higher than 0 V unless otherwise specified.
  • parallel refers to a state where two straight lines are arranged at an angle of ⁇ 10 ° or more and 10 ° or less. Therefore, a case where the angle is ⁇ 5 ° or more and 5 ° or less is included.
  • substantially parallel refers to a state in which two straight lines are arranged at an angle of ⁇ 30 ° or more and 30 ° or less.
  • “Vertical” means a state in which two straight lines are arranged at an angle of 80 ° or more and 100 ° or less. Therefore, a case where the angle is 85 ° or more and 95 ° or less is also included.
  • substantially perpendicular refers to a state in which two straight lines are arranged at an angle of 60 ° or more and 120 ° or less.
  • a barrier film refers to a film having a function of suppressing transmission of impurities such as hydrogen and oxygen, and is referred to as a conductive barrier film when the barrier film has conductivity. There is.
  • a metal oxide is a metal oxide in a broad sense.
  • the metal oxide is classified into an oxide insulator, an oxide conductor (including a transparent oxide conductor), an oxide semiconductor (also referred to as an oxide semiconductor or simply OS), or the like.
  • an oxide semiconductor also referred to as an oxide semiconductor or simply OS
  • the metal oxide may be referred to as an oxide semiconductor in some cases. That is, the term "OS @ FET" can be referred to as a transistor including an oxide or an oxide semiconductor.
  • FIG. 1A is a top view of a semiconductor device including the transistor 200.
  • FIG. 1B and 1C are cross-sectional views of the semiconductor device.
  • FIG. 1B is a cross-sectional view of a portion indicated by a dashed line A1-A2 in FIG. 1A, and is also a cross-sectional view of the transistor 200 in the channel length direction.
  • 1C is a cross-sectional view of a portion indicated by a dashed-dotted line A3-A4 in FIG. 1A, and is also a cross-sectional view of the transistor 200 in the channel width direction. Note that some components are not illustrated in the top view in FIG. 1A for clarity.
  • the semiconductor device of one embodiment of the present invention includes the insulator 214 over the substrate (not illustrated), the transistor 200 over the insulator 214, the insulator 280 over the transistor 200, and the insulator 281 over the insulator 280. And The insulator 214, the insulator 280, and the insulator 281 function as an interlayer film. Further, the semiconductor device includes a conductor 240 (a conductor 240a and a conductor 240b) which is electrically connected to the transistor 200 and functions as a plug. Note that the insulator 241 (the insulator 241a and the insulator 241b) is provided in contact with a side surface of the conductor 240 functioning as a plug. In addition, a conductor 246 (a conductor 246a and a conductor 246b) which is electrically connected to the conductor 240 and functions as a wiring is provided over the insulator 281 and the conductor 240.
  • An insulator 241a is provided in contact with the inner walls of the openings of the insulator 272, the insulator 280, and the insulator 281.
  • a first conductor of the conductor 240a is provided in contact with a side surface of the insulator 241a.
  • a second conductor of body 240a is provided.
  • An insulator 241b is provided in contact with the inner walls of the openings of the insulator 272, the insulator 280, and the insulator 281; a first conductor of the conductor 240b is provided in contact with a side surface thereof;
  • a second conductor of body 240b is provided.
  • the height of the upper surface of the conductor 240 and the height of the upper surface of the insulator 281 can be approximately equal.
  • the transistor 200 has a structure in which the first conductor of the conductor 240 and the second conductor of the conductor 240 are stacked, the present invention is not limited to this.
  • a structure in which the conductor 240 is provided as a single layer or a stacked structure of three or more layers may be employed.
  • ordinal numbers may be given in the order of formation to distinguish them.
  • the transistor 200 includes an insulator 216 over the insulator 214, a conductor 205 arranged to be embedded in the insulator 216, an insulator 216 over the insulator 216, and an insulator over the conductor 205. 222; an insulator 224 on the insulator 222; a conductor 242a and a conductor 242b on the insulator 224; an oxide 230 disposed between the conductor 242a and the conductor 242b; There is an insulator 250 over the conductor 242b and the oxide 230, and a conductor 260 (a conductor 260a and a conductor 260b) over the insulator 250.
  • the side surface of the conductor 242a has a region in contact with one side surface of the oxide 230
  • the side surface of the conductor 242b has a region in contact with the other side surface of the oxide 230.
  • the height of the upper surface of the conductor 242a, the height of the upper surface of the conductor 242b, and the height of the upper surface of the oxide 230 are substantially equal to each other.
  • the insulator 222, the insulator 272, and the insulator 281 preferably have a function of suppressing diffusion of hydrogen (for example, at least one of a hydrogen atom and a hydrogen molecule). Further, the insulator 222, the insulator 272, and the insulator 281 preferably have a function of suppressing diffusion of oxygen (for example, at least one of oxygen atoms and oxygen molecules). For example, each of the insulator 222, the insulator 272, and the insulator 281 preferably has lower permeability to one or both of oxygen and hydrogen than the insulator 224.
  • Each of the insulator 222, the insulator 272, and the insulator 281 preferably has lower permeability to one or both of oxygen and hydrogen than the insulator 250. It is preferable that the insulator 222, the insulator 272, and the insulator 281 each have lower permeability to one or both of oxygen and hydrogen than the insulator 280.
  • the insulator 272 includes the top and side surfaces of the conductor 260, the side surface of the insulator 250, the top and side surfaces of the conductor 242a, the top and side surfaces of the conductor 242b, and the top surface of the insulator 224. Is preferably in contact with. Accordingly, the insulator 280 is separated from the insulator 224 and the oxide 230 by the insulator 272. In addition, the insulator 272 suppresses transmission of one or both of oxygen and hydrogen from the insulator 280 to the conductor 260, whereby oxidation of the conductor 260 can be suppressed.
  • the transistor 200 has a single-layer structure of the oxide 230 in the channel formation region and in the vicinity thereof; however, the present invention is not limited to this.
  • a structure in which a two-layer structure or a stacked structure of three or more layers may be provided.
  • the conductor 260 is illustrated as having a two-layer structure; however, the present invention is not limited to this.
  • the conductor 260 may have a single-layer structure or a stacked structure of three or more layers.
  • the conductor 260 functions as a gate of the transistor 200, and the conductor 242a and the conductor 242b each function as a source or a drain.
  • a metal oxide functioning as an oxide semiconductor hereinafter, also referred to as an oxide semiconductor is preferably used for the oxide 230 including a channel formation region.
  • the transistor 200 including an oxide semiconductor in a channel formation region has extremely low leakage current (off current) in a non-conduction state; therefore, a semiconductor device with low power consumption can be provided.
  • An oxide semiconductor can be formed by a sputtering method or the like, and thus can be used for the transistor 200 included in a highly integrated semiconductor device.
  • an In-M-Zn oxide (element M is aluminum, gallium, yttrium, tin, copper, vanadium, beryllium, boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium , Neodymium, hafnium, tantalum, tungsten, or magnesium, or a plurality thereof).
  • element M aluminum, gallium, yttrium, or tin is preferably used.
  • an In—Ga oxide or an In—Zn oxide may be used as the oxide 230.
  • a transistor including an oxide semiconductor when impurities and oxygen vacancies are present in a region where a channel is formed in the oxide semiconductor, electric characteristics are likely to be changed and reliability may be deteriorated. Further, when oxygen vacancies are included in a region where a channel is formed in the oxide semiconductor, the transistor is likely to have normally-on characteristics. Therefore, it is preferable that oxygen vacancies in a region where a channel is formed be reduced as much as possible. Accordingly, it is possible to provide a transistor in which fluctuation in electric characteristics is suppressed, stable electric characteristics are improved, and reliability is improved.
  • a conductive oxide is preferably used as the conductor 242 (the conductor 242a and the conductor 242b) which is provided so as to be in contact with both side surfaces of the oxide 230 and functions as a source or a drain.
  • the conductive oxide be a conductive oxide which does not depend only on oxygen vacancies but generates carriers by a substitutional impurity donor. That is, even if oxygen vacancies in the conductor 242 are repaired by excess oxygen, a decrease in carrier density in the conductor 242 can be suppressed. Therefore, the conductive oxide is considered to generate carriers even in a state where oxygen vacancies are small, so that the transistor can have high on-state characteristics.
  • the conductor 242 preferably contains one or more of tin, tungsten, titanium, and silicon, and indium.
  • tin tin
  • indium oxide containing tungsten oxide indium oxide containing tungsten oxide
  • indium zinc oxide containing tungsten oxide indium oxide containing titanium oxide
  • indium tin oxide containing titanium oxide indium zinc oxide, and silicon were added.
  • Indium tin oxide may be used.
  • zinc oxide to which gallium is added, or titanium oxide to which niobium is added may be used.
  • the conductivity of the conductor 242 be higher than the conductivity of the oxide 230.
  • the carrier density of the conductor 242 is preferably higher than the carrier density of the oxide 230.
  • the transistor 200 of one embodiment of the present invention has a structure in which both side surfaces of the oxide 230 functioning as a channel formation region are sandwiched between conductors 242 functioning as a source or a drain as illustrated in FIG. 1B. Further, the height of the upper surface of the conductor 242 and the height of the upper surface of the oxide 230 are substantially equal. With such a structure, the shortest distance between the upper surface of the channel formation region of the oxide 230 and the conductor 260 functioning as a gate is approximately equal to the shortest distance between the conductor 242 and the conductor 260. A transistor with small parasitic capacitance can be provided.
  • the insulator 250 since a step is not formed or is small between the channel formation region of the oxide 230 and the conductor 260, the insulator 250 over the channel formation region of the oxide 230 and the conductor 242 Since the step can be provided with almost no step, the coverage of the insulator 250 is improved and the withstand voltage of the insulator 250 is improved, which is preferable.
  • the conductor 260 functioning as a gate covers the side and top surfaces of the oxide 230 in the channel formation region with the insulator 250 interposed therebetween, so that the electric field of the conductor 260 It is easy to act on the entire oxide 230 in the formation region.
  • the on-state current of the transistor 200 can be increased and frequency characteristics can be improved.
  • a semiconductor device including a transistor with a large on-state current can be provided.
  • a semiconductor device including a transistor having high frequency characteristics can be provided.
  • a semiconductor device including a transistor with low off-state current can be provided.
  • the following describes a detailed structure of a semiconductor device including the transistor 200 according to one embodiment of the present invention.
  • the conductor 205 is arranged so as to overlap with the oxide 230 and the conductor 260. It is preferable that the conductor 205 be provided so as to be embedded in the insulator 216.
  • the conductor 260 may function as a first gate (also referred to as a top gate) in some cases.
  • the conductor 205 may function as a second gate (also referred to as a bottom gate) in some cases.
  • Vth of the transistor 200 can be controlled by changing the potential applied to the conductor 205 independently of the potential applied to the conductor 260 without changing the potential.
  • Vth of the transistor 200 can be made higher than 0 V and off-state current can be reduced. Therefore, when a negative potential is applied to the conductor 205, the drain current when the potential applied to the conductor 260 is 0 V can be smaller than when no negative potential is applied.
  • the conductor 205 is preferably provided to be larger than the oxide 230 as illustrated in FIG. 1A.
  • the conductor 205 preferably extends in a region outside an end portion of the oxide 230 intersecting with the channel width direction. That is, it is preferable that the conductor 205 and the conductor 260 overlap with each other with the insulator interposed outside the side surface of the oxide 230 in the channel width direction.
  • the conductor 205 is provided to be large, local charging (called charge-up) may be moderated in a process using plasma in a manufacturing process after the conductor 205 is formed. Note that one embodiment of the present invention is not limited to this.
  • the conductor 205 may overlap with at least the oxide 230 located between the conductor 242a and the conductor 242b.
  • the channel formation region can be electrically surrounded by an electric field of the conductor 260 having a function as the first gate and an electric field of the conductor 205 having a function of the second gate.
  • a structure of a transistor that electrically surrounds a channel formation region by an electric field of a first gate and a second gate is referred to as a surrounded-channel (S-channel) structure.
  • the conductor 205 has a lower layer film of the conductor 205 formed in contact with the inner wall of the opening of the insulator 216, and an upper layer film of the conductor 205 formed inside the lower layer film of the conductor 205.
  • the height of the upper surface of the conductor 205 and the height of the upper surface of the insulator 216 can be approximately the same.
  • the lower layer film of the conductor 205 suppresses diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules (N 2 O, NO, NO 2, and the like), and copper atoms. It is preferable to use a conductive material having a function of performing the above (the above-described impurity is hardly permeated). Alternatively, it is preferable to use a conductive material which has a function of suppressing diffusion of oxygen (for example, at least one of oxygen atoms and oxygen molecules) (the above oxygen is not easily transmitted).
  • the function of suppressing the diffusion of an impurity or oxygen refers to a function of suppressing the diffusion of any one or all of the impurity or the oxygen.
  • a conductor having such a function may be referred to as a conductive barrier film.
  • the lower layer of the conductor 205 has a function of suppressing diffusion of oxygen, it is possible to prevent the upper layer of the conductor 205 from being oxidized and lowering the conductivity.
  • the conductive material having a function of suppressing diffusion of oxygen for example, titanium, titanium nitride, tantalum, tantalum nitride, ruthenium, ruthenium oxide, or the like is preferably used. Therefore, as the lower layer film of the conductor 205, the above conductive material may be a single layer or a stacked layer. Accordingly, diffusion of impurities such as hydrogen and water to the transistor 200 through the conductor 205 can be suppressed.
  • tantalum nitride and titanium nitride are used as the conductor 205a.
  • a conductive material mainly containing tungsten, copper, or aluminum be used for the upper layer film of the conductor 205.
  • tungsten is used for the upper layer of the conductor 205.
  • the oxide semiconductor, the insulator or the conductor located in the lower layer of the oxide semiconductor, and the insulator or the conductor located in the upper layer of the oxide semiconductor are formed in different films without opening to the air. It is preferable that the seeds be continuously formed because a substantially high-purity intrinsic oxide semiconductor film in which the concentration of impurities (in particular, hydrogen and water) is reduced can be formed.
  • an insulator 222, an insulator 224, and an oxide film to be the oxide 230 are sequentially formed over the insulator 216 and the conductor 205 in this order. do it.
  • the insulator 214, the insulator 272, and the insulator 281 function as barrier insulating films which prevent impurities such as water or hydrogen from entering the transistor 200 from the substrate side or from above. Therefore, the insulator 214, the insulator 272, and the insulator 281 can diffuse impurities such as a hydrogen atom, a hydrogen molecule, a water molecule, a nitrogen atom, a nitrogen molecule, a nitrogen oxide molecule (N2O, NO, NO2, and the like), and a copper atom. It is preferable to use an insulating material having a function of suppressing the above (the above-mentioned impurities are hardly permeated). Alternatively, it is preferable to use an insulating material having a function of suppressing diffusion of oxygen (for example, at least one of an oxygen atom and an oxygen molecule) (the above-described oxygen is not easily transmitted).
  • oxygen for example, at least one of an oxygen atom and an oxygen molecule
  • impurities such as water or hydrogen from the substrate side to the transistor 200 side from the insulator 214
  • diffusion of oxygen contained in the insulator 224 and the like to the substrate side of the insulator 214 can be suppressed.
  • the insulator 272 aluminum oxide or the like can be used for the insulator 272. Accordingly, diffusion of impurities such as water or hydrogen from the insulator 280 and / or the conductor 246 which are provided over the insulator 272 to the transistor 200 side can be suppressed.
  • the insulator 214 and the insulator 281 may have a stacked structure.
  • a stacked structure of an aluminum oxide film and a silicon nitride film is preferably used for the insulator 214 and the insulator 281.
  • Oxygen can be supplied below the insulator 214 with the aluminum oxide film.
  • the silicon nitride film diffusion of impurities such as hydrogen and water which diffuse from the substrate side to the transistor 200 side can be suppressed.
  • oxygen can be supplied below the insulator 281. Further, diffusion of impurities such as hydrogen and water which diffuse from the outside to the transistor 200 side can be suppressed by the silicon nitride film.
  • the insulators 216 and 280 preferably have a lower dielectric constant than the insulator 214.
  • a material having a low dielectric constant as an interlayer film, parasitic capacitance generated between wirings can be reduced.
  • silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide added with fluorine, silicon oxide added with carbon, silicon oxide added with carbon and nitrogen, or Silicon oxide or the like having holes may be used as appropriate.
  • the insulator 222 and the insulator 224 have a function as a gate insulator.
  • the insulator 224 in contact with the oxide 230 release oxygen by heating.
  • oxygen released by heating may be referred to as excess oxygen.
  • the insulator 224 may be formed using silicon oxide or silicon oxynitride as appropriate.
  • an oxide material from which part of oxygen is released by heating as the insulator 224.
  • An oxide from which oxygen is released by heating means that the amount of desorbed oxygen molecules is 1.0 ⁇ 10 18 molecules / cm 3 or more, preferably 1.0 ⁇ 10 19 molecules in TDS (Thermal Desorption Spectroscopy) analysis. / Cm 3 or more, more preferably 2.0 ⁇ 10 19 molecules / cm 3 or more, or 3.0 ⁇ 10 20 molecules / cm 3 or more.
  • the surface temperature of the film at the time of the TDS analysis is preferably in the range of 100 ° C to 700 ° C, or 100 ° C to 400 ° C.
  • the insulator 222 preferably functions as a barrier insulating film for preventing impurities such as water or hydrogen from entering the transistor 200 from the substrate side.
  • the insulator 222 preferably has lower hydrogen permeability than the insulator 224.
  • the insulator 222 have a function of suppressing diffusion of oxygen (for example, at least one of oxygen atoms and oxygen molecules) (the above-described oxygen is hardly transmitted).
  • the insulator 222 preferably has lower oxygen permeability than the insulator 224. It is preferable that the insulator 222 have a function of suppressing diffusion of oxygen and impurities because diffusion of oxygen included in the oxide 230 to a lower side than the insulator 222 can be reduced.
  • the conductor 205 can be prevented from reacting with oxygen included in the insulator 224 and the oxide 230.
  • an insulator containing an oxide of one or both of aluminum and hafnium which are insulating materials, may be used. It is preferable to use aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like as the insulator containing one or both oxides of aluminum and hafnium. In the case where the insulator 222 is formed using such a material, the insulator 222 suppresses release of oxygen from the oxide 230 and entry of impurities such as hydrogen from the periphery of the transistor 200 into the oxide 230. Functions as a layer.
  • aluminum oxide, bismuth oxide, germanium oxide, niobium oxide, silicon oxide, titanium oxide, tungsten oxide, yttrium oxide, or zirconium oxide may be added to these insulators.
  • these insulators may be nitrided. Silicon oxide, silicon oxynitride, or silicon nitride may be stacked over the above insulator.
  • the insulator 222 is made of, for example, a so-called high such as aluminum oxide, hafnium oxide, tantalum oxide, zirconium oxide, lead zirconate titanate (PZT), strontium titanate (SrTiO3), or (Ba, Sr) TiO3 (BST).
  • An insulator containing a -k material may be used in a single layer or a stacked layer.
  • a problem such as a leak current may occur due to thinning of a gate insulator.
  • a high-k material for an insulator functioning as a gate insulator With the use of a high-k material for an insulator functioning as a gate insulator, reduction in gate potential at the time of transistor operation can be performed while the physical thickness is maintained.
  • the insulator 222 and the insulator 224 may have a stacked structure of two or more layers.
  • the structure is not limited to a laminated structure made of the same material, and may be a laminated structure made of different materials.
  • a metal oxide functioning as an oxide semiconductor is preferably used.
  • the off-state current of the transistor can be reduced. With the use of such a transistor, a semiconductor device with low power consumption can be provided.
  • the electron affinity or the energy level Ec at the bottom of the conduction band can be obtained from the ionization potential Ip, which is the difference between the vacuum level Evac and the energy Ev at the top of the valence band, and the energy gap Eg. .
  • the ionization potential Ip can be measured, for example, by using an ultraviolet photoelectron spectroscopy (UPS) device (Ultraviolet @ Photoelectron @ Spectroscopy).
  • UPS ultraviolet photoelectron spectroscopy
  • the energy gap Eg can be measured using, for example, a spectroscopic ellipsometer.
  • the insulator 250 functions as a gate insulator.
  • the insulator 250 is preferably provided in contact with the upper surface of the oxide 230c.
  • silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, or silicon oxide having holes is used. be able to.
  • silicon oxide and silicon oxynitride are preferable because they are stable against heat.
  • the insulator 250 is preferably formed using an insulator from which oxygen is released by heating.
  • an insulator from which oxygen is released by heating is provided as the insulator 250 in contact with the upper surface of the oxide 230c, oxygen can be effectively supplied to a channel formation region of the oxide 230b.
  • the concentration of impurities such as water or hydrogen in the insulator 250 is preferably reduced.
  • the thickness of the insulator 250 is preferably greater than or equal to 1 nm and less than or equal to 20 nm.
  • a metal oxide may be provided between the insulator 250 and the conductor 260. It is preferable that the metal oxide suppress oxygen diffusion from the insulator 250 to the conductor 260. By providing a metal oxide that suppresses diffusion of oxygen, diffusion of oxygen from the insulator 250 to the conductor 260 is suppressed. That is, a decrease in the amount of oxygen supplied to the oxide 230 can be suppressed. Further, oxidation of the conductor 260 due to oxygen of the insulator 250 can be suppressed.
  • the metal oxide has a function as part of a gate insulator. Therefore, in the case where silicon oxide, silicon oxynitride, or the like is used for the insulator 250, it is preferable that the metal oxide be a high-k material having a high relative dielectric constant.
  • the gate insulator has a stacked structure of the insulator 250 and the metal oxide, a stacked structure which is stable against heat and has a high relative dielectric constant can be obtained. Therefore, it is possible to reduce the gate potential applied during the operation of the transistor while maintaining the physical thickness of the gate insulator. Further, the equivalent oxide thickness (EOT) of the insulator functioning as a gate insulator can be reduced.
  • EOT equivalent oxide thickness
  • hafnium, aluminum, gallium, yttrium, zirconium, tungsten, titanium, tantalum, nickel, germanium, or magnesium, or a metal oxide containing two or more kinds may be used. it can.
  • the metal oxide may function as part of a gate in some cases.
  • a conductive material containing oxygen is preferably provided on the channel formation region side.
  • a conductive material containing oxygen and a metal element contained in a metal oxide in which a channel is formed is preferably used.
  • a conductive material containing the above-described metal element and nitrogen may be used.
  • indium tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, and silicon were added.
  • Indium tin oxide may be used.
  • indium gallium zinc oxide containing nitrogen may be used.
  • the conductor 260a is formed using a conductive material having a function of suppressing diffusion of impurities such as a hydrogen atom, a hydrogen molecule, a water molecule, a nitrogen atom, a nitrogen molecule, a nitrogen oxide molecule (N2O, NO, NO2, and the like), and a copper atom. Is preferred. Alternatively, it is preferable to use a conductive material having a function of suppressing diffusion of oxygen (for example, at least one of an oxygen atom and an oxygen molecule).
  • the conductor 260a has a function of suppressing diffusion of oxygen, it is possible to prevent the conductor 260b from being oxidized by the oxygen contained in the insulator 250 and lowering the conductivity.
  • the conductive material having a function of suppressing diffusion of oxygen for example, tantalum, tantalum nitride, ruthenium, ruthenium oxide, or the like is preferably used.
  • the conductor 260b be formed using a conductive material mainly containing tungsten, copper, or aluminum. Further, since the conductor 260 also functions as a wiring, a conductor having high conductivity is preferably used. For example, a conductive material containing tungsten, copper, or aluminum as a main component can be used.
  • the conductor 260b may have a stacked structure, for example, a stacked structure of titanium, titanium nitride, and the above conductive material.
  • the insulator 280 includes, for example, silicon oxide, silicon oxynitride, silicon nitride oxide, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, or vacancies as the insulator 280. It is preferable to have silicon oxide or the like. In particular, silicon oxide and silicon oxynitride are preferable because they are thermally stable. In particular, a material such as silicon oxide, silicon oxynitride, or silicon oxide having a hole is preferable because a region containing oxygen which is released by heating can be easily formed.
  • the concentration of impurities such as water or hydrogen in the insulator 280 be reduced. Further, the upper surface of the insulator 280 may be planarized.
  • the insulator 281 preferably functions as a barrier insulating film that prevents impurities such as water or hydrogen from entering the insulator 280 from above.
  • an insulator such as aluminum oxide, silicon nitride, or silicon nitride oxide may be used, for example.
  • the conductor 240a and the conductor 240b be formed using a conductive material mainly containing tungsten, copper, or aluminum. Further, the conductor 240a and the conductor 240b may have a stacked structure.
  • a conductive material having a function of suppressing transmission of impurities such as water or hydrogen is used for the conductor in contact with the insulator 281, the insulator 280, and the insulator 272.
  • a conductive material having a function of suppressing transmission of impurities such as water or hydrogen
  • a conductive material having a function of suppressing transmission of impurities such as water or hydrogen may be used in a single layer or a stacked layer.
  • oxygen added to the insulator 280 can be prevented from being absorbed by the conductor 240a and the conductor 240b. Further, entry of impurities such as water or hydrogen from above the insulator 281 into the oxide 230 through the conductor 240a and the conductor 240b can be suppressed.
  • an insulator such as aluminum oxide, silicon nitride, or silicon nitride oxide may be used, for example. Since the insulators 241a and 241b are provided in contact with the insulator 272, entry of impurities such as water or hydrogen from the insulator 280 or the like into the oxide 230 through the conductors 240a and 240b is suppressed. can do. In addition, oxygen contained in the insulator 280 can be prevented from being absorbed by the conductor 240a and the conductor 240b.
  • the conductor 246 (the conductor 246a and the conductor 246b) which functions as a wiring may be provided in contact with the upper surface of the conductor 240a and the upper surface of the conductor 240b.
  • the conductor 246 is preferably formed using a conductive material mainly containing tungsten, copper, or aluminum. Further, the conductor may have a stacked structure, for example, a stacked structure of titanium or titanium nitride and the above conductive material. Note that the conductor may be formed so as to be embedded in an opening provided in the insulator.
  • FIG. 2A is a top view of a semiconductor device including the transistor 201.
  • FIG. 2B and 2C are cross-sectional views of the semiconductor device.
  • FIG. 2B is a cross-sectional view of a portion indicated by a dashed line A1-A2 in FIG. 2A, and is also a cross-sectional view of the transistor 201 in the channel length direction.
  • 2C is a cross-sectional view of a portion indicated by a dashed-dotted line A3-A4 in FIG. 2A, and is also a cross-sectional view of the transistor 201 in the channel width direction. Note that some components are not illustrated in the top view of FIG. 2A for clarity.
  • the transistor 201 includes an insulator 216 over the insulator 214, a conductor 205 which is arranged to be embedded in the insulator 216, an insulator 222 over the insulator 216, and an insulator 222 over the conductor 205.
  • An insulator 224 over the insulator 222; a conductor 242a and a conductor 242b over the insulator 224; an oxide 230a provided between the conductor 242a and the conductor 242b; An oxide 230b disposed between the conductor 242a and the conductor 242b; an oxide 230c on the conductor 242a, the conductor 242b, and the oxide 230b; an insulator 250 on the oxide 230c; A conductor 260 over the insulator 250 (a conductor 260a and a conductor 260b).
  • the side surface of the conductor 242a has a region in contact with one side surface of the oxide 230a and the oxide 230b
  • the side surface of the conductor 242b has a region in contact with the other side surface of the oxide 230a and the oxide 230b.
  • the height of the upper surface of the conductor 242a, the height of the upper surface of the conductor 242b, and the height of the upper surface of the oxide 230b are substantially equal to each other.
  • an In-M-Zn oxide (the element M is aluminum, gallium, yttrium, tin, copper, vanadium, beryllium, boron, titanium, iron, nickel, It is preferable to use a metal oxide such as germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, or magnesium, or a plurality thereof.
  • the element M aluminum, gallium, yttrium, or tin is preferably used.
  • an In—Ga oxide or an In—Zn oxide may be used as the oxide 230.
  • a transistor including an oxide semiconductor when impurities and oxygen vacancies are present in a region where a channel is formed in the oxide semiconductor, electric characteristics are likely to be changed and reliability may be deteriorated. Further, when oxygen vacancies are included in a region where a channel is formed in the oxide semiconductor, the transistor is likely to have normally-on characteristics. Therefore, it is preferable that oxygen vacancies in a region where a channel is formed be reduced as much as possible. Accordingly, it is possible to provide a transistor in which fluctuation in electric characteristics is suppressed, stable electric characteristics are improved, and reliability is improved.
  • a conductive oxide can be used as the conductor 242 (the conductor 242a and the conductor 242b) which is provided so as to be in contact with both side surfaces of the oxide 230a and the oxide 230b and functions as a source and a drain.
  • the conductive oxide be a conductive oxide which does not depend only on oxygen vacancies but generates carriers by a substitutional impurity donor. That is, even if oxygen vacancies in the conductor 242 are repaired by excess oxygen, a decrease in carrier density in the conductor 242 can be suppressed. Therefore, the conductive oxide is considered to generate carriers even in a state where oxygen vacancies are small, so that the transistor can have high on-state characteristics.
  • the conductor 242 preferably contains one or more of tin, tungsten, titanium, and silicon, and indium.
  • tin tin
  • indium oxide containing tungsten oxide indium oxide containing tungsten oxide
  • indium zinc oxide containing tungsten oxide indium oxide containing titanium oxide
  • indium tin oxide containing titanium oxide indium zinc oxide, and silicon were added.
  • Indium tin oxide may be used.
  • zinc oxide to which gallium is added, or titanium oxide to which niobium is added may be used.
  • the conductivity of the conductor 242 is preferably higher than the conductivity of the oxide 230a and the oxide 230b.
  • the carrier density of the conductor 242 is preferably higher than the carrier densities of the oxides 230a and 230b.
  • the transistor 201 which is one embodiment of the present invention has a structure in which the oxide 230b which functions as a channel formation region is sandwiched between conductors 242 which function as sources or drains as illustrated in FIG. 2B.
  • the height of the upper surface of the conductor 242 and the height of the upper surface of the oxide 230b are substantially equal.
  • the shortest distance between the upper surface of the channel formation region of the oxide 230b and the conductor 260 functioning as a gate is approximately equal to the shortest distance between the conductor 242 and the conductor 260.
  • a transistor with small parasitic capacitance can be provided.
  • the insulator 250 since a step is not formed or is small between the channel formation region of the oxide 230b and the conductor 260, the insulator 250 over the channel formation region of the oxide 230b and the conductor 242 Since the step can be provided with almost no step, the coverage of the insulator 250 is improved and the withstand voltage of the insulator 250 is improved, which is preferable.
  • the height of the bottom surface of the conductor 260 in a region where the oxide 230a and the oxide 230b and the conductor 260 do not overlap with each other with reference to the bottom surface of the insulator 224 is the oxide 230b Is preferably located at a position lower than the height of the bottom surface of.
  • the difference between the height of the bottom surface of the conductor 260 and the height of the bottom surface of the oxide 230b in a region where the oxide 230b and the conductor 260 do not overlap with each other is 0 nm to 100 nm, preferably 3 nm to 50 nm. Or less, more preferably 5 nm or more and 20 nm or less.
  • a conductor 260 functioning as a gate is configured to cover the side surfaces of the oxides 230a and 230b in the channel formation region and the top surface of the oxide 230b with the insulator 250 interposed therebetween.
  • the electric field of the conductor 260 easily acts on the entire oxide 230a and oxide 230b in the channel formation region. Therefore, the on-state current of the transistor 201 can be increased and frequency characteristics can be improved.
  • a semiconductor device including a transistor with a large on-state current can be provided.
  • a semiconductor device including a transistor having high frequency characteristics can be provided.
  • a semiconductor device including a transistor with low off-state current can be provided.
  • the oxide 230 includes an oxide 230a, an oxide 230b over the oxide 230a, and an oxide 230c over the oxide 230b.
  • the oxide 230a is provided below the oxide 230b, diffusion of impurities from the structure formed below the oxide 230a to the oxide 230b can be suppressed.
  • the oxide 230c is provided over the oxide 230b, diffusion of impurities into the oxide 230b from a structure formed above the oxide 230c can be suppressed.
  • the oxide 230 preferably has a stacked structure of oxides having different atomic ratios of metal atoms. Specifically, in the metal oxide used for the oxide 230a, the atomic ratio of the element M in the constituent elements is larger than that in the metal oxide used for the oxide 230b. Is preferred. Further, in the metal oxide used for the oxide 230a, the atomic ratio of the element M to In is preferably larger than that in the metal oxide used for the oxide 230b. Further, in the metal oxide used for the oxide 230b, the atomic ratio of In to the element M is preferably larger than that in the metal oxide used for the oxide 230a. As the oxide 230c, a metal oxide that can be used for the oxide 230a or the oxide 230b can be used.
  • the oxide 230b preferably has crystallinity.
  • a CAAC-OS c-axis / aligned / crystalline / oxide / semiconductor
  • An oxide having crystallinity, such as a CAAC-OS has a high density of impurities and defects (such as oxygen vacancies), high crystallinity, and a dense structure. Therefore, extraction of oxygen from the oxide 230b by the source or the drain can be suppressed. Accordingly, even when heat treatment is performed, extraction of oxygen from the oxide 230b can be reduced, so that the transistor 201 is stable at a high temperature (a so-called thermal budget) in a manufacturing process.
  • the energy of the bottom of the conduction band of the oxide 230a and the oxide 230c be higher than the energy of the bottom of the conduction band of the oxide 230b.
  • the electron affinity of the oxide 230a and the oxide 230c be smaller than the electron affinity of the oxide 230b.
  • the energy level at the bottom of the conduction band changes gradually.
  • the energy level at the bottom of the conduction band at the junction of the oxide 230a, the oxide 230b, and the oxide 230c changes continuously or forms a continuous junction.
  • the defect state density of a mixed layer formed at the interface between the oxide 230a and the oxide 230b and the interface between the oxide 230b and the oxide 230c may be reduced.
  • the oxide 230c has a stacked structure
  • the main path of the carriers is the oxide 230b.
  • the density of defect states at the interface between the oxide 230a and the oxide 230b and the interface between the oxide 230b and the oxide 230c can be reduced. Therefore, influence of carrier scattering due to interface scattering is small, and the transistor 201 can have high on-state current and high frequency characteristics.
  • the oxide 230c has a stacked structure
  • a constituent element of the oxide 230c It is expected to suppress diffusion to More specifically, since the oxide 230c has a stacked structure and an oxide containing no In is located above the stacked structure, In that can diffuse to the insulator 250 side can be suppressed. Since the insulator 250 functions as a gate insulator, when In is diffused, the transistor has poor characteristics. Therefore, by forming the oxide 230c to have a stacked structure, a highly reliable semiconductor device can be provided. Note that for the structure, effects, and the like of the transistor 201, the transistor 200 can be referred to.
  • a substrate over which the transistor 200 and the transistor 201 are formed for example, an insulator substrate, a semiconductor substrate, or a conductor substrate may be used.
  • the insulator substrate include a glass substrate, a quartz substrate, a sapphire substrate, a stabilized zirconia substrate (such as a yttria-stabilized zirconia substrate), and a resin substrate.
  • the semiconductor substrate include a semiconductor substrate formed using silicon and germanium, and a compound semiconductor substrate formed using silicon carbide, silicon germanium, gallium arsenide, indium phosphide, zinc oxide, and gallium oxide.
  • a semiconductor substrate having an insulator region inside the above-described semiconductor substrate for example, an SOI (Silicon On Insulator) substrate.
  • the conductor substrate include a graphite substrate, a metal substrate, an alloy substrate, and a conductive resin substrate.
  • a substrate including a metal nitride, a substrate including a metal oxide, and the like are given.
  • a substrate provided with a conductor or a semiconductor on an insulator substrate a substrate provided with a conductor or an insulator on a semiconductor substrate, a substrate provided with a semiconductor or an insulator on a conductor substrate, and the like.
  • a substrate in which an element is provided may be used.
  • Elements provided on the substrate include a capacitor, a resistor, a switch, a light-emitting element, a storage element, and the like.
  • insulator examples include oxides, nitrides, oxynitrides, nitrided oxides, metal oxides, metal oxynitrides, and metal nitrided oxides having insulating properties.
  • a high-k material is used for an insulator functioning as a gate insulator, a voltage can be reduced during operation of a transistor while a physical thickness is maintained.
  • a material having a low relative dielectric constant for an insulator functioning as an interlayer film parasitic capacitance generated between wirings can be reduced. Therefore, a material may be selected according to the function of the insulator.
  • Examples of the insulator having a high relative dielectric constant include gallium oxide, hafnium oxide, zirconium oxide, an oxide containing aluminum and hafnium, an oxynitride containing aluminum and hafnium, an oxide containing silicon and hafnium, and silicon and hafnium. Oxynitride or nitride containing silicon and hafnium.
  • Insulators having a low relative dielectric constant include silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide added with fluorine, silicon oxide added with carbon, silicon oxide added with carbon and nitrogen, and voids. There is silicon oxide having a hole, resin, or the like.
  • a transistor including an oxide semiconductor can have stable electrical characteristics by being surrounded by an insulator having a function of suppressing transmission of impurities such as hydrogen and oxygen.
  • the insulator having a function of suppressing transmission of impurities such as hydrogen and oxygen include boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, and zirconium.
  • Lanthanum, neodymium, hafnium, or an insulator containing tantalum may be used as a single layer or a stacked layer.
  • an insulator having a function of suppressing transmission of impurities such as hydrogen and oxygen
  • a metal oxide such as tantalum oxide, or a metal nitride such as aluminum nitride, aluminum titanium nitride, titanium nitride, silicon nitride oxide, or silicon nitride can be used.
  • the insulator functioning as a gate insulator is preferably an insulator having a region containing oxygen which is released by heating.
  • the oxide 230 oxygen vacancies in the oxide 230 can be compensated.
  • ⁇ Conductor> Aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, ruthenium, iridium, strontium, lanthanum It is preferable to use a metal element selected from the above, an alloy containing the above-described metal element as a component, an alloy in which the above-described metal elements are combined, or the like.
  • tantalum nitride, titanium nitride, tungsten nitride, nitride containing titanium and aluminum, nitride containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxide containing strontium and ruthenium, oxide containing lanthanum and nickel, and the like Preferably, it is used.
  • tantalum nitride, titanium nitride, nitride containing titanium nitride and aluminum, nitride containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxide containing strontium and ruthenium, oxide containing lanthanum and nickel are oxidized.
  • a conductive material which is difficult to be used or a material which maintains conductivity even when oxygen is absorbed is preferable.
  • a semiconductor having high electric conductivity represented by polycrystalline silicon containing an impurity element such as phosphorus, or a silicide such as nickel silicide may be used.
  • a plurality of conductive layers formed using the above materials may be stacked.
  • a stacked structure in which the above-described material containing a metal element and a conductive material containing oxygen are combined may be employed.
  • a stacked structure in which the above-described material containing a metal element and a conductive material containing nitrogen are combined may be employed.
  • a stacked structure of a combination of the above-described material containing a metal element, a conductive material containing oxygen, and a conductive material containing nitrogen may be used.
  • a stacked structure in which the above-described material containing a metal element and a conductive material containing oxygen are used for a conductor functioning as a gate may be used.
  • a conductive material containing oxygen is preferably provided on the channel formation region side.
  • a conductive material containing oxygen and a metal element contained in a metal oxide in which a channel is formed is preferably used.
  • a conductive material containing the above-described metal element and nitrogen may be used.
  • a conductive material containing nitrogen such as titanium nitride or tantalum nitride may be used.
  • indium tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, and silicon were added.
  • Indium tin oxide may be used.
  • indium gallium zinc oxide containing nitrogen may be used.
  • Metal oxide As the oxide 230, a metal oxide that functions as an oxide semiconductor is preferably used. Hereinafter, metal oxides applicable to the oxide 230 according to the present invention will be described.
  • the metal oxide preferably contains at least indium or zinc. In particular, it preferably contains indium and zinc. In addition, it is preferable that aluminum, gallium, yttrium, tin, or the like be contained in addition thereto. In addition, one or more kinds selected from boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, and the like may be included.
  • the metal oxide is an In-M-Zn oxide containing indium, the element M, and zinc is considered.
  • the element M is aluminum, gallium, yttrium, tin, or the like.
  • Other elements applicable to the element M include boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, and magnesium.
  • a combination of a plurality of the aforementioned elements may be used as the element M.
  • a metal oxide containing nitrogen may be collectively referred to as a metal oxide. Further, a metal oxide containing nitrogen may be referred to as metal oxynitride.
  • An oxide semiconductor (metal oxide) is classified into a single crystal oxide semiconductor and a non-single-crystal oxide semiconductor.
  • the non-single-crystal oxide semiconductor include a CAAC-OS, a polycrystalline oxide semiconductor, an nc-OS, a pseudo-amorphous oxide semiconductor (a-like OS), and an amorphous oxide semiconductor.
  • Semiconductors include a CAAC-OS, a polycrystalline oxide semiconductor, an nc-OS, a pseudo-amorphous oxide semiconductor (a-like OS), and an amorphous oxide semiconductor.
  • the CAAC-OS has a c-axis orientation and a crystal structure in which a plurality of nanocrystals are connected in an ab plane direction and has a strain.
  • the strain refers to a region where the orientation of the lattice arrangement changes between a region where the lattice arrangement is uniform and a region where another lattice arrangement is uniform in a region where a plurality of nanocrystals are connected.
  • Nanocrystals are basically hexagonal, but are not limited to regular hexagons, and may be non-regular hexagons.
  • distortion may have a lattice arrangement such as a pentagon and a heptagon.
  • a lattice arrangement such as a pentagon and a heptagon.
  • the CAAC-OS is a layered crystal in which a layer containing indium and oxygen (hereinafter, an In layer) and a layer containing elements M, zinc, and oxygen (hereinafter, a (M, Zn) layer) are stacked. It tends to have a structure (also called a layered structure).
  • indium and the element M can be replaced with each other, and when the element M in the (M, Zn) layer is replaced with indium, it can also be referred to as an (In, M, Zn) layer.
  • indium in the In layer is replaced with the element M, it can be referred to as an (In, M) layer.
  • CAAC-OS is a metal oxide with high crystallinity.
  • the CAAC-OS it is difficult to confirm a clear crystal grain boundary; thus, it can be said that electron mobility due to the crystal grain boundary is not easily reduced.
  • the crystallinity of a metal oxide may be reduced due to entry of impurities, generation of defects, or the like; therefore, the CAAC-OS is a metal oxide with few impurities and defects (such as oxygen vacancy (VO: oxygen vacancy)). It can also be said. Therefore, a metal oxide having a CAAC-OS has stable physical properties. Therefore, the metal oxide including the CAAC-OS is resistant to heat and has high reliability.
  • the nc-OS has a periodic atomic arrangement in a minute region (for example, a region from 1 nm to 10 nm inclusive, particularly a region from 1 nm to 3 nm inclusive).
  • a minute region for example, a region from 1 nm to 10 nm inclusive, particularly a region from 1 nm to 3 nm inclusive.
  • the nc-OS may not be distinguished from an a-like @ OS or an amorphous oxide semiconductor depending on an analysis method.
  • indium-gallium-zinc oxide which is a kind of metal oxide including indium, gallium, and zinc
  • IGZO indium-gallium-zinc oxide
  • a smaller crystal for example, the above-described nanocrystal
  • a large crystal here, a crystal of several mm or a crystal of several cm.
  • it may be structurally stable.
  • ⁇ A-like ⁇ OS is a metal oxide having a structure between an nc-OS and an amorphous oxide semiconductor.
  • a-like @ OS has voids or low density regions. That is, a-like @ OS has lower crystallinity than the nc-OS and the CAAC-OS.
  • Oxide semiconductors have various structures, each having different characteristics.
  • the oxide semiconductor of one embodiment of the present invention may include two or more of an amorphous oxide semiconductor, a polycrystalline oxide semiconductor, an a-like @ OS, an nc-OS, and a CAAC-OS.
  • the concentration of an alkali metal or an alkaline earth metal in a metal oxide obtained by SIMS is set to 1 ⁇ 10 18 atoms. / Cm 3 or less, preferably 2 ⁇ 10 16 atoms / cm 3 or less.
  • ⁇ ⁇ Hydrogen contained in a metal oxide reacts with oxygen bonded to a metal atom to form water, which may form an oxygen vacancy.
  • oxygen vacancy When hydrogen enters the oxygen vacancy, electrons serving as carriers are generated in some cases. Further, part of hydrogen may bond with oxygen which is bonded to a metal atom to generate an electron serving as a carrier. Therefore, a transistor including a metal oxide containing hydrogen is likely to have normally-on characteristics.
  • the hydrogen concentration obtained by SIMS is less than 1 ⁇ 10 20 atoms / cm 3 , preferably less than 1 ⁇ 10 19 atoms / cm 3 , more preferably 5 ⁇ 10 18 atoms / cm 3. It is set to less than 3 , more preferably less than 1 ⁇ 10 18 atoms / cm 3 .
  • a thin film with high crystallinity As a metal oxide used for a semiconductor of a transistor. With the use of the thin film, stability or reliability of the transistor can be improved.
  • the thin film include a single crystal metal oxide thin film and a polycrystalline metal oxide thin film.
  • forming a thin film of a single crystal metal oxide or a thin film of a polycrystalline metal oxide on a substrate requires a high-temperature or laser heating step. Therefore, the cost of the manufacturing process increases, and the throughput also decreases.
  • FIG. 2B is a cross-sectional view corresponding to a portion indicated by a dashed-dotted line A1-A2 in FIG. 1A, and is also a cross-sectional view of the transistor 201 in the channel length direction.
  • (C) of each drawing is a cross-sectional view corresponding to a portion indicated by a dashed line A3-A4 in (A), and is also a cross-sectional view of the transistor 201 in the channel width direction. Note that some components are not illustrated in the top view of FIG.
  • a substrate (not shown) is prepared, and the insulator 214 is formed over the substrate.
  • the insulator 214 is formed by a sputtering method, a chemical vapor deposition (CVD) method, a molecular beam epitaxy (MBE) method, a pulsed laser deposition (PLD: pulsed laser deposition method), or a molecular beam epitaxy (MBE) method. (Atomic Layer Deposition) method or the like.
  • the CVD method can be classified into a plasma CVD (Plasma Enhanced CVD) method using plasma, a thermal CVD (TCVD: Thermal CVD) method using heat, an optical CVD (Photo CVD) method using light, and the like. Further, the method can be classified into a metal CVD (MCVD: Metal CVD) method and an organic metal CVD (MOCVD: Metal Organic CVD) method depending on a used raw material gas.
  • a plasma CVD Pullasma Enhanced CVD
  • TCVD Thermal CVD
  • Photo CVD Photo CVD
  • MCVD Metal CVD
  • MOCVD Metal Organic CVD
  • the thermal CVD method is a film formation method capable of reducing plasma damage to an object to be processed because plasma is not used.
  • a wiring, an electrode, an element (eg, a transistor or a capacitor) included in a semiconductor device may be charged up by receiving charge from plasma. At this time, the accumulated charges may destroy wirings, electrodes, elements, and the like included in the semiconductor device.
  • a thermal CVD method that does not use plasma, such plasma damage does not occur, so that the yield of semiconductor devices can be increased.
  • a plasma film having few defects can be obtained because plasma damage does not occur during film formation.
  • the ALD method utilizes the self-controlling property of atoms and can deposit atoms one by one, so that an extremely thin film can be formed, a film can be formed on a structure having a high aspect ratio, There are effects such as film formation with few defects such as holes, film formation with excellent coverage, and film formation at a low temperature.
  • the ALD method also includes a PEALD (Plasma Enhanced ALD) method which is a film formation method using plasma. Utilization of plasma makes it possible to form a film at a lower temperature, which is preferable in some cases.
  • Some precursors used in the ALD method contain impurities such as carbon. Therefore, a film formed by an ALD method may contain more impurities such as carbon than a film formed by another film formation method.
  • the impurities can be quantified by using X-ray photoelectron spectroscopy (XPS: X-ray @ Photoelectron @ Spectroscopy).
  • the CVD method and the ALD method are different from the film formation method in which particles emitted from a target or the like are deposited, and are film formation methods in which a film is formed by a reaction on the surface of an object to be processed. Therefore, the film formation method is less affected by the shape of the object to be processed and has good step coverage.
  • the ALD method has excellent step coverage and excellent thickness uniformity, and thus is suitable for covering the surface of an opening having a high aspect ratio.
  • the ALD method since the ALD method has a relatively low film formation rate, it may be preferable to use the ALD method in combination with another film formation method such as a CVD method with a high film formation rate.
  • the composition of the obtained film can be controlled by the flow rate ratio of the source gas.
  • a film having an arbitrary composition can be formed depending on a flow rate ratio of a source gas.
  • a film whose composition is continuously changed can be formed by changing the flow ratio of the source gas while forming the film.
  • silicon nitride is formed as the insulator 214 by a CVD method.
  • an insulator such as silicon nitride which does not easily transmit copper, as the insulator 214, even when a metal which easily diffuses, such as copper, is used as a conductor in a layer (not illustrated) below the insulator 214, Diffusion of the metal into an upper layer through the insulator 214 can be suppressed.
  • an insulator such as silicon nitride through which an impurity such as water or hydrogen does not easily pass, diffusion of an impurity such as water or hydrogen from a layer below the insulator 214 can be suppressed.
  • the insulator 214 may have a two-layer structure.
  • aluminum oxide may be formed over silicon nitride.
  • the insulator 216 is formed over the insulator 214.
  • the insulator 216 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • an opening reaching the insulator 214 is formed in the insulator 216.
  • the opening includes, for example, a groove and a slit. In some cases, a region where an opening is formed is referred to as an opening.
  • the opening may be formed by wet etching, but dry etching is more preferable for fine processing.
  • an insulator which functions as an etching stopper film when the insulator 216 is etched to form a groove is preferably selected.
  • the insulator 214 may be a silicon nitride film, an aluminum oxide film, or a hafnium oxide film.
  • a conductive film to be the conductor 205 is formed.
  • the conductive film preferably includes a conductor having a function of suppressing transmission of oxygen.
  • tantalum nitride, tungsten nitride, titanium nitride, or the like can be used.
  • a stacked film of tantalum, tungsten, titanium, molybdenum, aluminum, copper, and a molybdenum tungsten alloy can be used.
  • the conductive film to be the conductor 205 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the conductive film serving as the conductor 205 has a multilayer structure.
  • tantalum nitride is formed by a sputtering method, and titanium nitride is stacked on the tantalum nitride.
  • a conductive film over the conductive film to be the conductor 205 is formed.
  • the conductive film can be formed by a plating method, a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • a low-resistance conductive material such as copper is formed as a conductive film over the conductive film to be the conductor 205.
  • an upper layer of the conductive film to be the conductor 205 and part of a lower layer of the conductive film to be the conductor 205 are removed, so that the insulator 216 is exposed.
  • the conductive film serving as the conductor 205 remains only in the opening.
  • the conductor 205 having a flat top surface can be formed (see FIG. 4). Note that part of the insulator 216 may be removed by the CMP treatment.
  • a conductive film to be the conductor 205 is formed over the insulator 214.
  • the conductive film to be the conductor 205 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the conductive film serving as the conductor 205 can be a multilayer film. In this embodiment, tungsten is formed as a conductive film to be the conductor 205.
  • the conductive film to be the conductive material 205 is processed by lithography to form the conductive material 205.
  • a resist mask is formed by removing or leaving the exposed region using a developing solution.
  • a conductor, a semiconductor, an insulator, or the like can be processed into a desired shape.
  • a resist mask may be formed by exposing the resist using KrF excimer laser light, ArF excimer laser light, EUV (Extreme Ultraviolet) light, or the like.
  • a liquid immersion technique may be used in which a liquid (for example, water) is filled between the substrate and the projection lens to perform exposure.
  • an electron beam or an ion beam may be used instead of the above-described light.
  • the resist mask can be removed by dry etching such as ashing, wet etching, wet etching after dry etching, or dry etching after wet etching.
  • a hard mask made of an insulator or a conductor may be used instead of the resist mask.
  • an insulating film or a conductive film serving as a hard mask material is formed over the conductive film serving as the conductor 205, a resist mask is formed thereover, and the hard mask material is etched to have a desired shape.
  • a hard mask can be formed.
  • the etching of the conductive film to be the conductor 205 may be performed after removing the resist mask, or may be performed with the resist mask left. In the latter case, the resist mask may disappear during the etching.
  • the hard mask may be removed by etching.
  • the material of the hard mask does not affect the post-process or can be used in the post-process, it is not always necessary to remove the hard mask.
  • a capacitively coupled plasma (CCP) etching apparatus having parallel plate electrodes can be used.
  • the capacitively coupled plasma etching apparatus having the parallel plate type electrode may be configured to apply a high frequency power to one of the parallel plate type electrodes.
  • a configuration in which a plurality of different high-frequency power sources are applied to one of the parallel plate electrodes may be employed.
  • a configuration in which a high-frequency power source having the same frequency is applied to each of the parallel plate electrodes may be employed.
  • a configuration may be employed in which high-frequency power sources having different frequencies are applied to the respective parallel plate electrodes.
  • a dry etching apparatus having a high-density plasma source can be used.
  • an inductively coupled plasma (ICP) etching apparatus or the like can be used.
  • an insulating film to be the insulator 216 is formed over the insulator 214 and the conductor 205.
  • the insulating film to be the insulator 216 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • silicon oxide is formed by a CVD method.
  • the thickness of the insulating film serving as the insulator 216 is preferably greater than or equal to the thickness of the conductor 205.
  • the thickness of the conductor 205 is 1, the thickness of the insulating film to be the insulator 216 is 1 or more and 3 or less.
  • the thickness of the conductor 205 is 150 nm, and the thickness of the insulating film which is to be the insulator 216 is 350 nm.
  • CMP treatment is performed on the insulating film to be the insulator 216, so that part of the insulating film to be the insulator 216 is removed and the surface of the conductor 205 is exposed. As a result, the conductor 205 and the insulator 216 having a flat top surface can be formed.
  • the above is a different method for forming the conductor 205.
  • an insulator 222 is formed over the insulator 216 and the conductor 205.
  • an insulator containing an oxide of one or both of aluminum and hafnium may be formed. Note that it is preferable to use aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like as the insulator containing one or both oxides of aluminum and hafnium.
  • An insulator including an oxide of one or both of aluminum and hafnium has a barrier property to oxygen, hydrogen, and water.
  • the insulator 222 has a barrier property to hydrogen and water, diffusion of hydrogen and water contained in a structure provided around the transistor 201 to the inside of the transistor 201 through the insulator 222 is suppressed, Generation of oxygen vacancies in the oxides 230a, 230b, and 230c can be suppressed.
  • the insulator 222 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the insulator 224 is formed over the insulator 222.
  • the insulator 224 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the heat treatment may be performed at a temperature of 250 ° C to 650 ° C, preferably 300 ° C to 500 ° C, more preferably 320 ° C to 450 ° C.
  • the heat treatment is performed in a nitrogen or inert gas atmosphere or an atmosphere containing an oxidizing gas at 10 ppm or more, 1% or more, or 10% or more.
  • the heat treatment may be performed in a reduced pressure state.
  • heat treatment is performed in a nitrogen or inert gas atmosphere, and then heat treatment is performed in an atmosphere including an oxidizing gas at 10 ppm or more, 1% or more, or 10% or more to supplement desorbed oxygen. Good.
  • the treatment is continuously performed at 400 ° C. for one hour in an oxygen atmosphere.
  • impurities such as water and hydrogen contained in the insulator 224 can be removed.
  • the heat treatment may be performed after the insulator 222 is formed.
  • the above-described heat treatment conditions can be used.
  • a plasma treatment containing oxygen may be performed under reduced pressure.
  • the plasma treatment containing oxygen it is preferable to use an apparatus having a power supply for generating high-density plasma using microwaves, for example.
  • a power supply for applying RF (Radio Frequency) to the substrate side may be provided.
  • high-density plasma high-density oxygen radicals can be generated.
  • RF Radio Frequency
  • oxygen radicals generated by high-density plasma can be efficiently guided into the insulator 224. it can.
  • plasma treatment including oxygen may be performed to supplement desorbed oxygen. Note that by appropriately selecting the conditions of the plasma treatment, impurities such as water and hydrogen contained in the insulator 224 can be removed. In that case, the heat treatment may not be performed.
  • aluminum oxide may be formed over the insulator 224 by, for example, a sputtering method, and CMP may be performed until the aluminum oxide reaches the insulator 224.
  • CMP planarization of the surface of the insulator 224 and planarization of the surface of the insulator 224 can be performed.
  • the end point of the CMP can be easily detected.
  • part of the insulator 224 may be polished by CMP to reduce the thickness of the insulator 224; however, the thickness may be adjusted when the insulator 224 is formed.
  • aluminum oxide be formed over the insulator 224 by a sputtering method because oxygen can be added to the insulator 224.
  • an oxide film 230A1 and an oxide film 230B1 are sequentially formed on the insulator 224 (see FIG. 4).
  • the oxide film is preferably formed continuously without exposure to the air environment.
  • impurities or moisture from the atmospheric environment can be prevented from being attached to the oxide film 230A1 and the oxide film 230B1, and the vicinity of the interface between the oxide film 230A1 and the oxide film 230B1 can be reduced. Can be kept clean.
  • the oxide films 230A1 and 230B1 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the oxide films 230A1 and 230B1 are formed by a sputtering method
  • oxygen or a mixed gas of oxygen and a rare gas is used as a sputtering gas.
  • excess oxygen in the oxide film to be formed can be increased.
  • the above In-M-Zn oxide target can be used.
  • part of oxygen contained in a sputtering gas may be supplied to the insulator 224 when the oxide film 230A1 is formed. Therefore, the proportion of oxygen contained in the sputtering gas of the oxide film 230A1 may be 70% or more, preferably 80% or more, and more preferably 100%.
  • the oxide film 230B1 is formed by a sputtering method
  • the proportion of oxygen contained in a sputtering gas is greater than or equal to 1% and less than or equal to 30%, preferably greater than or equal to 5% and less than or equal to 20%
  • an oxygen-deficient oxide semiconductor is formed. It is formed.
  • a transistor using an oxygen-deficient oxide semiconductor for a channel formation region can have relatively high field-effect mobility.
  • the film may be formed with the proportion of oxygen contained in the sputtering gas being 70% or more, preferably 80% or more, more preferably 100%. In this case, a part of oxygen contained in the sputtering gas may be supplied to the oxide film 230A1, which is preferable.
  • heat treatment may be performed.
  • the above-described heat treatment conditions can be used.
  • impurities such as water and hydrogen in the oxide film 230A1 and the oxide film 230B1 can be removed.
  • the treatment is continuously performed at 400 ° C. for one hour in an oxygen atmosphere.
  • a film to be the hard mask 244 is formed.
  • the film to be the hard mask 244 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • a film to be the hard mask 244 a film in which the hard mask 244 is hardly etched when the oxide film 230A1 and the oxide film 230B1 are processed in a subsequent step is preferable.
  • silicon oxide, silicon oxynitride, silicon nitride, silicon nitride oxide, aluminum oxide, hafnium oxide, tungsten, molybdenum, aluminum, titanium, titanium nitride, tantalum, tantalum nitride, or the like can be used.
  • the film to be the hard mask 244 is processed by lithography to form the hard mask 244.
  • the oxide films 230A1 and 230B1 are processed to form oxides 230A2 and 230B2. Note that in this step, the thickness of a region of the insulator 224 which does not overlap with the oxide film 230A2 may be small (see FIG. 5).
  • a conductive film 242A is formed to cover the insulator 224 and the hard mask 244 (see FIG. 6).
  • the conductive film 242A can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the deposition rate in the horizontal direction is preferably lower than the deposition rate in the vertical direction. Assuming that the deposition rate in the vertical direction is 1, the deposition rate in the horizontal direction is preferably 0.5 or less.
  • the conductive film 242A is formed by, for example, a bias sputtering method in which a film is formed while applying a potential to a substrate, or a collimated sputtering in which a shield plate (a collimator) having a hole is inserted between a substrate and a target to control the film forming direction. Or a long throw sputtering method in which the distance between the substrate and the target is long.
  • the conductive film 242A preferably contains one or more of tin, tungsten, titanium, and silicon, and indium.
  • indium tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, and silicon were added.
  • Indium tin oxide may be used.
  • zinc oxide to which gallium is added or titanium oxide to which niobium is added may be used. In this embodiment mode, indium tin oxide is used.
  • a part of the conductive film 242A is isotropically etched (isotropically etched). This etching is performed so that the upper surface of the conductor 242B and the upper surface of the oxide 232B2 have substantially the same height, and the conductive film 242A on the side surface of the hard mask 244 is removed. Thus, a conductor 242B is formed over the insulator 224, and a conductor 242C is formed over the hard mask 244 (see FIG. 7).
  • a dry etching method or a wet etching method can be used.
  • the hard mask 244 is etched from the side. This etching is preferably performed under such a condition that the conductor 242B is etched at a lower speed so that the conductor 242B is hardly etched as compared with the etching rate of the hard mask 244.
  • FIG. 8 shows the hard mask 244 being etched.
  • the conductor 242C on the hard mask is lifted off by etching the entire hard mask 244.
  • the height of the upper surface of the oxide 230B2 is substantially equal to the height of the upper surface of the conductor 242B (see FIG. 9).
  • the oxide 230A2, the oxide 230B2, and the conductor 242B are processed by lithography to form the oxide 230a, the oxide 230c, the conductor 242a, and the conductor 242b.
  • the oxide 230a, the oxide 230b, the conductor 242a, and the conductor 242b are formed so that at least a part thereof overlaps with the conductor 205.
  • the thickness of a region of the insulator 224 which does not overlap with the oxide 230a may be thin.
  • the thickness of a region of the insulator 224 which does not overlap with the oxide 230a, the conductor 242a, and the conductor 242b may be small (see FIG. 10).
  • first heat treatment may be performed. It is preferable that the first heat treatment be performed in an atmosphere containing oxygen. Alternatively, the first heat treatment may be performed under reduced pressure and an oxide film to be the oxide 230c may be formed continuously without exposure to the air. By performing such a treatment, moisture and hydrogen adsorbed on the surface of the oxide 230b and the like can be removed, and the moisture concentration and the hydrogen concentration in the oxide 230a and the oxide 230b can be further reduced.
  • the temperature of the first heat treatment is preferably from 100 ° C to 400 ° C, more preferably from 150 ° C to 350 ° C. In this embodiment mode, the first heat treatment is performed at a temperature of 200 ° C and under reduced pressure.
  • an oxide film to be the oxide 230c is formed (see FIG. 11).
  • the oxide film to be the oxide 230c can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the oxide film to be the oxide 230c the atomic ratio of Ga to In is preferably larger than the atomic ratio of Ga to In in the oxide 230b.
  • the oxide film to be the oxide 230c may be stacked.
  • the proportion of oxygen contained in the sputtering gas of the oxide film to be the oxide 230c may be 70% or more, preferably 80% or more, and more preferably 100%.
  • a second heat treatment may be performed.
  • the second heat treatment may be performed under reduced pressure and an insulating film to be the insulator 250 may be continuously formed without exposure to the air.
  • moisture and hydrogen adsorbed on the surface of the oxide film to be the oxide 230c are removed, and moisture in the oxide film to be the oxides 230a, 230b, and 230c is further reduced.
  • the concentration and the hydrogen concentration can be reduced.
  • the temperature of the second heat treatment is preferably from 100 ° C to 400 ° C. In this embodiment, the temperature of the second heat treatment is set to 200 ° C.
  • an insulating film to be the insulator 250 is formed (see FIG. 11).
  • the insulating film serving as the insulator 250 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • silicon oxynitride is preferably formed by a CVD method.
  • the temperature at which the insulating film to be the insulator 250 is formed is preferably higher than or equal to 250 ° C. and lower than 450 ° C., particularly, about 350 ° C.
  • a conductive film to be the conductor 260a and the conductor 260b is formed.
  • the conductive film to be the conductor 260a and the conductor 260b can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • a CVD method it is preferable to use a CVD method.
  • a conductive film to be the conductor 260a is formed by an ALD method
  • a conductive film to be a conductor 260b is formed by a CVD method (see FIG. 11).
  • an oxide film to be the oxide 230c, an insulating film to be the insulator 250, a conductive film to be the conductor 260a, and a conductive film to be the conductor 260b are processed by lithography, so that the oxide 230c, the insulator 250, The conductor 260 (the conductor 260a and the conductor 260b) is formed.
  • the conductor 260 is formed so that at least a part thereof overlaps with the conductor 205. (See FIG. 11).
  • a third heat treatment may be performed.
  • the third heat treatment can be performed in a nitrogen atmosphere or an atmosphere containing oxygen. It is preferable that the third heat treatment be performed in an atmosphere containing nitrogen and oxygen.
  • the proportion of oxygen is preferably 5% or more and 20% or less of the total of nitrogen and oxygen.
  • the temperature of the third heat treatment is preferably from 300 ° C to 450 ° C, more preferably from 300 ° C to 400 ° C. Typically, a temperature of 350 ° C. or near it is suitable.
  • the heat treatment time is 100 hours or less, preferably 1 hour to 48 hours. Typically, a processing time of 24 hours or a time in the vicinity thereof is preferable.
  • heat treatment By performing the heat treatment, the concentration of moisture and the concentration of hydrogen in the oxide 230, the insulator 250, and the insulator 280 can be reduced, so that the carrier density of a channel formation region of the oxide 230 can be reduced.
  • heat treatment is performed at 350 ° C. for 24 hours in a nitrogen atmosphere. Note that the heat treatment is preferably performed under such a condition that the conductor 260 is not oxidized by the third heat treatment.
  • an insulator 272 is formed to cover the insulator 224, the oxide 230a, the oxide 230b, the conductor 242a, the conductor 242b, and the conductor 260 (see FIG. 11).
  • the insulator 272 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • an insulating film having a function of suppressing transmission of oxygen is preferably used.
  • aluminum oxide, silicon nitride, silicon oxide, or gallium oxide may be formed by a sputtering method or an ALD method.
  • the insulator 272 may have a two-layer structure. For example, an aluminum oxide film may be formed by a sputtering method and then an aluminum oxide film may be formed by an ALD method.
  • the defect is reduced by the aluminum oxide formed by the ALD method with excellent coverage. It is preferable because it can be closed.
  • an insulating film to be the insulator 280 is formed over the insulator 272.
  • the insulating film to be the insulator 280 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • CMP treatment is performed on the insulating film to be the insulator 280, so that the insulator 280 having a flat top surface is formed (see FIG. 12).
  • a fourth heat treatment may be performed.
  • the fourth heat treatment is preferably performed under reduced pressure and an insulating film to be the insulator 281 is formed over the insulator 280 without exposure to the air.
  • Such treatment is preferable because moisture and hydrogen adsorbed on the surface of the insulator 280 and the like can be removed.
  • the insulating film to be the insulator 281 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the insulator 281 may have a two-layer structure.
  • an aluminum oxide film may be formed by a sputtering method, and then a silicon nitride film may be formed by a sputtering method.
  • a silicon nitride film may be formed by a sputtering method.
  • a fifth heat treatment may be performed.
  • treatment is performed at 400 ° C. for one hour in a nitrogen atmosphere.
  • oxygen added by the formation of the insulator 281 can be injected into the insulator 280.
  • the oxygen can be injected into the oxide 230a and the oxide 230b through the oxide 230c.
  • openings are formed in the insulator 272, the insulator 280, and the insulator 281 to reach the conductors 242a and 242b (see FIG. 2).
  • the formation of the opening may be performed using a lithography method.
  • an insulating film to be the insulator 241 is formed, and the insulating film is anisotropically etched to form the insulator 241 (see FIG. 2).
  • the conductive film can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • an insulating film having a function of suppressing transmission of oxygen is preferably used as the insulating film to be the insulator 241.
  • aluminum oxide or silicon nitride is preferably formed by an ALD method.
  • the anisotropic etching may be performed by, for example, a dry etching method.
  • a conductive film to be the conductor 240a and the conductor 240b is formed. It is preferable that the conductive film to be the conductor 240a and the conductor 240b have a stacked structure including a conductor having a function of suppressing transmission of impurities such as water and hydrogen. For example, a stack of tantalum nitride, titanium nitride, or the like and tungsten, molybdenum, copper, or the like can be used.
  • the conductive film to be the conductor 240 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • part of the conductive film to be the conductor 240a and the conductor 240b is removed, so that the insulator 281 is exposed.
  • the conductive film remains only in the opening, so that the conductor 240a and the conductor 240b having a flat top surface can be formed (see FIG. 2).
  • part of the insulator 281 may be removed by the CMP treatment.
  • the conductive film to be the conductor 246 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the conductive film serving as the conductor 246 is processed by lithography to form the conductor 246a in contact with the upper surface of the conductor 240a and the conductor 246b in contact with the upper surface of the conductor 240b (see FIG. 2).
  • a semiconductor device including the transistor 201 illustrated in FIG. 2 can be manufactured.
  • FIG. 3A is a top view of a semiconductor device including the transistor 200.
  • FIG. 3B and 3C are cross-sectional views of the semiconductor device.
  • FIG. 3B is a cross-sectional view of a portion indicated by a dashed line A1-A2 in FIG. 3A, and is also a cross-sectional view of the transistor 200 in the channel length direction.
  • 3C is a cross-sectional view of a portion indicated by a dashed-dotted line A3-A4 in FIG. 3A, and is also a cross-sectional view of the transistor 200 in the channel width direction. Note that some components are not illustrated in the top view of FIG. 3A for clarity.
  • the structure of the transistor 200 will be described with reference to FIGS. Note that also in this item, as a material for forming the transistor 200, the material described in detail in ⁇ Structural Example 1 of Semiconductor Device> can be used.
  • the transistor 200 includes an insulator 216 over the insulator 214, a conductor 205 which is arranged to be embedded in the insulator 216, an insulator 222 over the insulator 216, and an insulator 222 over the conductor 205.
  • the insulator 224 on the insulator 222; the oxide 230 on the insulator 224; the conductor 242a and the conductor 242b on the oxide 230; and the conductor 242a, the conductor 242b, and the
  • the semiconductor device includes the insulator 250 and the conductor 260 (the conductor 260a and the conductor 260b) over the insulator 250.
  • the side surface of the conductor 242a and the bottom surface of the conductor 242a have a region in contact with the oxide 230
  • the side surface of the conductor 242b and the bottom surface of the conductor 242b have a region in contact with the oxide 230.
  • the height of the upper surface of the conductor 242a, the height of the upper surface of the conductor 242b, and the height of the upper surface of the oxide 230 are substantially equal to each other.
  • the semiconductor device shown in FIG. 3 is different from the semiconductor device shown in ⁇ Structural Example 1 of Semiconductor Device> (see FIG. 1) in the shape of oxide 230.
  • the step of forming an oxide film to be the oxide 230 by a lithography method half-etching is performed without completely removing the oxide film to be the oxide 230, whereby the oxide 230 having such a shape can be formed.
  • the bottom surface of the conductor 242 functioning as a source or a drain be in contact with the oxide 230 because the short-channel effect of the transistor 200 can be suppressed in some cases.
  • the semiconductor device illustrated in FIG. 1 can be referred to.
  • FIG. 14 illustrates an example of a semiconductor device (a memory device) which is one embodiment of the present invention.
  • the semiconductor device of one embodiment of the present invention includes the transistor 200, the transistor 300, and the capacitor 100.
  • the transistor 200 is provided over the transistor 300.
  • the capacitor 100 is provided over the transistor 300 and the transistor 200. ing. Note that as the transistor 200, the transistor 200 and the transistor 201 described in the above embodiment can be used.
  • the transistor 200 is a transistor in which a channel is formed in a semiconductor layer including an oxide semiconductor. Since the off-state current of the transistor 200 is small, stored data can be held for a long time by using the transistor 200 in a memory device. That is, since the refresh operation is not required or the frequency of the refresh operation is extremely low, the power consumption of the storage device can be sufficiently reduced.
  • the wiring 1001 is electrically connected to the source of the transistor 300, and the wiring 1002 is electrically connected to the drain of the transistor 300. Further, the wiring 1003 is electrically connected to one of the source and the drain of the transistor 200, the wiring 1004 is electrically connected to the first gate of the transistor 200, and the wiring 1006 is electrically connected to the second gate of the transistor 200. It is connected to the. Further, the gate of the transistor 300 and the other of the source and the drain of the transistor 200 are electrically connected to one of the electrodes of the capacitor 100, and the wiring 1005 is electrically connected to the other of the electrodes of the capacitor 100. .
  • the memory devices illustrated in FIG. 14 can be arranged in a matrix to form a memory cell array.
  • the transistor 300 is provided over the substrate 311 and has a conductor 316 functioning as a gate, an insulator 315 functioning as a gate insulator, a semiconductor region 313 which is part of the substrate 311, and a transistor 313 functioning as a source or a drain. It has a resistance region 314a and a low resistance region 314b.
  • the transistor 300 may be either a p-channel transistor or an n-channel transistor.
  • a semiconductor region 313 (a part of the substrate 311) in which a channel is formed has a convex shape.
  • the conductor 316 is provided so as to cover the side surface and the top surface of the semiconductor region 313 with the insulator 315 interposed therebetween.
  • the conductor 316 may be formed using a material whose work function is adjusted.
  • Such a transistor 300 is also called a FIN transistor because it utilizes a projection of a semiconductor substrate.
  • an insulator may be provided in contact with an upper portion of the projection and functioning as a mask for forming the projection.
  • transistor 300 illustrated in FIG. 14 is an example, and there is no limitation on the structure, and an appropriate transistor may be used depending on a circuit configuration and a driving method.
  • the capacitor 100 is provided above the transistor 200.
  • the capacitor 100 includes a conductor 110 functioning as a first electrode, a conductor 120 functioning as a second electrode, and an insulator 130 functioning as a dielectric.
  • the conductor 112 provided over the conductor 246 and the conductor 110 can be formed at the same time.
  • the conductor 112 functions as a plug or a wiring which is electrically connected to the capacitor 100, the transistor 200, or the transistor 300.
  • the conductor 112 and the conductor 110 have a single-layer structure; however, the structure is not limited to this, and a stacked structure of two or more layers may be used.
  • a conductor having a barrier property and a conductor having high adhesion to a conductor having a high conductivity may be formed between a conductor having a barrier property and a conductor having a high conductivity.
  • the insulator 130 is formed using, for example, silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, aluminum oxide, aluminum oxynitride, aluminum nitride oxide, aluminum nitride, hafnium oxide, hafnium oxynitride, hafnium nitride oxide, or hafnium nitride. Or the like may be used, and they can be provided in a stacked or single layer.
  • the capacitor 100 has an insulator with a high dielectric constant (high-k), so that sufficient capacitance can be secured. Since the capacitor 100 has an insulator with a large dielectric strength, the dielectric strength is improved, and the capacitance is improved. Electrostatic breakdown of the element 100 can be suppressed.
  • Gallium oxide, hafnium oxide, zirconium oxide, oxides containing aluminum and hafnium, oxynitrides containing aluminum and hafnium are given as insulators of a high dielectric constant (high-k) material (a material having a high relative dielectric constant).
  • high-k high dielectric constant
  • materials having high dielectric strength include silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide added with fluorine, silicon oxide added with carbon, carbon and nitrogen. There is silicon oxide added, silicon oxide having pores, or a resin.
  • a wiring layer provided with an interlayer film, a wiring, a plug, and the like may be provided between the structures. Further, a plurality of wiring layers can be provided depending on the design.
  • a conductor having a function as a plug or a wiring may be given the same reference numeral by combining a plurality of structures.
  • a wiring and a plug that is electrically connected to the wiring may be integrated. That is, a part of the conductor functions as a wiring and a part of the conductor functions as a plug in some cases.
  • an insulator 320, an insulator 322, an insulator 324, and an insulator 326 are sequentially stacked as interlayer films.
  • a conductor 328 that is electrically connected to the capacitor 100 or the transistor 200, a conductor 330, or the like is embedded. Note that the conductor 328 and the conductor 330 function as plugs or wirings.
  • the insulator functioning as an interlayer film may also function as a flattening film that covers unevenness below the insulator.
  • the upper surface of the insulator 322 may be planarized by a planarization process using a chemical mechanical polishing (CMP) method or the like to improve planarity.
  • CMP chemical mechanical polishing
  • a wiring layer may be provided over the insulator 326 and the conductor 330.
  • an insulator 350, an insulator 352, and an insulator 354 are sequentially stacked.
  • a conductor 356 is formed over the insulator 350, the insulator 352, and the insulator 354.
  • the conductor 356 functions as a plug or a wiring.
  • the conductor 210, the conductor (the conductor 205) included in the transistor 200, and the like are embedded in the insulator 210, the insulator 212, the insulator 214, and the insulator 216.
  • the conductor 218 functions as a plug or a wiring which is electrically connected to the capacitor 100 or the transistor 300.
  • an insulator 150 is provided over the conductor 120 and the insulator 130.
  • a material having a low relative dielectric constant for an insulator functioning as an interlayer film parasitic capacitance generated between wirings can be reduced. Therefore, a material may be selected according to the function of the insulator.
  • the insulator 150, the insulator 212, the insulator 352, the insulator 354, or the like preferably includes an insulator having a low relative dielectric constant.
  • the insulator includes silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, and silicon oxide having holes.
  • the insulator is silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, or silicon oxide having holes.
  • a resin Since silicon oxide and silicon oxynitride are thermally stable, they can be combined with a resin to have a stacked structure that is thermally stable and has a low relative dielectric constant. Examples of the resin include polyester, polyolefin, polyamide (nylon, aramid, and the like), polyimide, polycarbonate, and acryl.
  • a transistor including an oxide semiconductor can have stable electrical characteristics by being surrounded by an insulator having a function of suppressing transmission of impurities such as hydrogen and oxygen. Therefore, an insulator having a function of suppressing transmission of impurities such as hydrogen and oxygen can be used for the insulator 210, the insulator 350, and the like.
  • Examples of the insulator having a function of suppressing transmission of impurities such as hydrogen and oxygen include boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, and zirconium. , Lanthanum, neodymium, hafnium, or an insulator containing tantalum may be used as a single layer or a stacked layer.
  • an insulator having a function of suppressing transmission of impurities such as hydrogen and oxygen
  • a metal oxide such as tantalum oxide, silicon nitride oxide, silicon nitride, or the like can be used.
  • Conductors that can be used for wiring and plugs include aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, and indium.
  • a material containing at least one metal element selected from ruthenium and the like can be used.
  • a semiconductor having high electric conductivity, represented by polycrystalline silicon containing an impurity element such as phosphorus, or a silicide such as nickel silicide may be used.
  • a metal material, an alloy material, a metal nitride material, a metal oxide material, or the like formed using the above materials can be given.
  • a high melting point material such as tungsten or molybdenum, which has both heat resistance and conductivity, and it is preferable to use tungsten.
  • a low-resistance conductive material such as aluminum or copper. By using a low-resistance conductive material, wiring resistance can be reduced.
  • an insulator having an excess oxygen region may be provided in the vicinity of the oxide semiconductor in some cases.
  • an insulator having a barrier property is preferably provided between the insulator having the excess oxygen region and a conductor provided in the insulator having the excess oxygen region.
  • an insulator 276 may be provided between the insulator 224 containing excess oxygen and the conductor 245.
  • the insulator 224 and the transistor 200 can have a structure in which the insulator 224 and the transistor 200 are sealed with an insulator having a barrier property.
  • provision of the insulator 276 can prevent excess oxygen included in the insulator 224 from being absorbed by the conductor 245.
  • diffusion of hydrogen which is an impurity to the transistor 200 through the conductor 245 can be suppressed.
  • an insulating material having a function of suppressing diffusion of impurities such as water or hydrogen and oxygen is preferably used.
  • impurities such as water or hydrogen and oxygen
  • a metal oxide such as magnesium oxide, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, or tantalum oxide, silicon nitride oxide, or silicon nitride can be used.
  • a transistor including an oxide as a semiconductor (hereinafter, may be referred to as an OS transistor) and a capacitor according to one embodiment of the present invention are used with reference to FIGS.
  • a storage device (hereinafter, may be referred to as an OS memory device) that is located will be described.
  • An OS memory device is a storage device including at least a capacitor and an OS transistor that controls charging and discharging of the capacitor. Since the off-state current of the OS transistor is extremely small, the OS memory device has excellent holding characteristics and can function as a nonvolatile memory.
  • FIG. 15A illustrates an example of a configuration of an OS memory device.
  • the storage device 1400 includes a peripheral circuit 1411 and a memory cell array 1470.
  • the peripheral circuit 1411 includes a row circuit 1420, a column circuit 1430, an output circuit 1440, and a control logic circuit 1460.
  • the column circuit 1430 includes, for example, a column decoder, a precharge circuit, a sense amplifier, a write circuit, and the like.
  • the precharge circuit has a function of precharging a wiring.
  • the sense amplifier has a function of amplifying a data signal read from a memory cell. Note that the above wiring is a wiring connected to a memory cell included in the memory cell array 1470, and will be described later in detail.
  • the amplified data signal is output to the outside of the storage device 1400 as a data signal RDATA via the output circuit 1440.
  • the row circuit 1420 includes, for example, a row decoder, a word line driver circuit, and the like, and can select a row to be accessed.
  • a low power supply voltage (VSS), a high power supply voltage (VDD) for the peripheral circuit 1411, and a high power supply voltage (VIL) for the memory cell array 1470 are externally supplied to the storage device 1400. Further, a control signal (CE, WE, RE), an address signal ADDR, and a data signal WDATA are externally input to the storage device 1400.
  • the address signal ADDR is input to a row decoder and a column decoder, and WDATA is input to a write circuit.
  • the control logic circuit 1460 processes an external input signal (CE, WE, RE) to generate a control signal for a row decoder and a column decoder.
  • CE is a chip enable signal
  • WE is a write enable signal
  • RE is a read enable signal.
  • the signal processed by the control logic circuit 1460 is not limited to this, and another control signal may be input as needed.
  • the memory cell array 1470 has a plurality of memory cells MC and a plurality of wirings arranged in a matrix. Note that the number of wirings connecting the memory cell array 1470 and the row circuit 1420 is determined by the configuration of the memory cells MC, the number of memory cells MC in one column, and the like. Further, the number of wirings connecting the memory cell array 1470 and the column circuit 1430 is determined by the configuration of the memory cells MC, the number of memory cells MC included in one row, and the like.
  • FIG. 15A shows an example in which the peripheral circuit 1411 and the memory cell array 1470 are formed on the same plane
  • the present embodiment is not limited to this.
  • a memory cell array 1470 may be provided so as to overlap a part of the peripheral circuit 1411.
  • a structure in which a sense amplifier is provided so as to overlap below the memory cell array 1470 may be employed.
  • FIG. 16 illustrates a configuration example of a memory cell applicable to the above-described memory cell MC.
  • [DOSRAM] 16A to 16C show circuit configuration examples of a DRAM memory cell.
  • a DRAM including a memory cell of one OS transistor and one capacitor may be referred to as a DOSRAM (Dynamic Oxide Semiconductor Random Access Memory).
  • the memory cell 1471 illustrated in FIG. 16A includes a transistor M1 and a capacitor CA. Note that the transistor M1 has a gate (sometimes called a front gate) and a back gate.
  • a first terminal of the transistor M1 is connected to a first terminal of the capacitor CA, a second terminal of the transistor M1 is connected to a wiring BIL, a gate of the transistor M1 is connected to a wiring WOL, and a back gate of the transistor M1. Are connected to the wiring BGL.
  • the second terminal of the capacitor CA is connected to the wiring CAL.
  • the wiring BIL functions as a bit line
  • the wiring WOL functions as a word line.
  • the wiring CAL functions as a wiring for applying a predetermined potential to the second terminal of the capacitor CA. It is preferable that a low-level potential be applied to the wiring CAL during data writing and data reading.
  • the wiring BGL functions as a wiring for applying a potential to the back gate of the transistor M1. By applying an arbitrary potential to the wiring BGL, the threshold voltage of the transistor M1 can be increased or decreased.
  • the memory cell MC is not limited to the memory cell 1471, and the circuit configuration can be changed.
  • the memory cell MC may have a structure in which the back gate of the transistor M1 is connected to the wiring WOL instead of the wiring BGL as in the memory cell 1472 illustrated in FIG. 16B.
  • the memory cell MC may be a single-gate transistor, that is, a memory cell including a transistor M1 without a back gate, like the memory cell 1473 illustrated in FIG. 16C.
  • the transistor 200 can be used as the transistor M1 and the capacitor 100 can be used as the capacitor CA.
  • the leakage current of the transistor M1 can be extremely low. That is, the written data can be held for a long time by the transistor M1, so that the frequency of refreshing the memory cell can be reduced. Further, the refresh operation of the memory cell can be made unnecessary. Further, since the leak current is extremely low, multi-valued data or analog data can be held in the memory cell 1471, the memory cell 1472, and the memory cell 1473.
  • [NOSRAM] 16D to 16H show circuit configuration examples of a gain cell type memory cell having two transistors and one capacitor.
  • the memory cell 1474 illustrated in FIG. 16D includes a transistor M2, a transistor M3, and a capacitor CB.
  • the transistor M2 has a front gate (which may be simply referred to as a gate) and a back gate.
  • a storage device including a gain cell memory cell including an OS transistor as the transistor M2 may be referred to as a NOSRAM (Nonvolatile Oxide Semiconductor RAM).
  • a first terminal of the transistor M2 is connected to a first terminal of the capacitor CB, a second terminal of the transistor M2 is connected to a wiring WBL, a gate of the transistor M2 is connected to a wiring WOL, and a back gate of the transistor M2.
  • the second terminal of the capacitor CB is connected to the wiring CAL.
  • a first terminal of the transistor M3 is connected to the wiring RBL, a second terminal of the transistor M3 is connected to the wiring SL, and a gate of the transistor M3 is connected to a first terminal of the capacitor CB.
  • the wiring WBL functions as a write bit line
  • the wiring RBL functions as a read bit line
  • the wiring WOL functions as a word line.
  • the wiring CAL functions as a wiring for applying a predetermined potential to the second terminal of the capacitor CB. It is preferable that a low-level potential be applied to the wiring CAL during data writing, data holding, and data reading.
  • the wiring BGL functions as a wiring for applying a potential to the back gate of the transistor M2. By applying an arbitrary potential to the wiring BGL, the threshold voltage of the transistor M2 can be increased or decreased.
  • the memory cell MC is not limited to the memory cell 1474, and the circuit configuration can be changed as appropriate.
  • the memory cell MC may have a structure in which the back gate of the transistor M2 is connected to the wiring WOL instead of the wiring BGL as in a memory cell 1475 illustrated in FIG. 16E.
  • the memory cell MC may be a single-gate transistor, that is, a memory cell including a transistor M2 without a back gate, like the memory cell 1476 illustrated in FIG. 16F.
  • the memory cell MC may have a configuration in which the wiring WBL and the wiring RBL are combined as one wiring BIL as in a memory cell 1477 illustrated in FIG. 16G.
  • the transistor 200 can be used as the transistor M2, the transistor 300 can be used as the transistor M3, and the capacitor 100 can be used as the capacitor CB.
  • the leakage current of the transistor M2 can be extremely low.
  • the written data can be held for a long time by the transistor M2, so that the frequency of refreshing the memory cell can be reduced. Further, the refresh operation of the memory cell can be made unnecessary. Further, since the leakage current is extremely low, multi-valued data or analog data can be held in the memory cell 1474. The same applies to memory cells 1475 to 1477.
  • the transistor M3 may be a transistor including silicon in a channel formation region (hereinafter, may be referred to as a Si transistor).
  • the conductivity type of the Si transistor may be an n-channel type or a p-channel type.
  • the Si transistor may have higher field-effect mobility than the OS transistor. Therefore, a Si transistor may be used as the transistor M3 functioning as a reading transistor.
  • the transistor M2 can be provided so as to be stacked over the transistor M3; therefore, the area occupied by the memory cell can be reduced and the memory device can be highly integrated.
  • the transistor M3 may be an OS transistor.
  • OS transistors are used for the transistors M2 and M3, a circuit can be formed using the memory cell array 1470 using only n-type transistors.
  • FIG. 16H shows an example of a gain cell type memory cell having three transistors and one capacitor.
  • the memory cell 1478 illustrated in FIG. 16H includes transistors M4 to M6 and a capacitor CC.
  • the capacitor CC is provided as appropriate.
  • the memory cell 1478 is electrically connected to the wirings BIL, RWL, WWL, BGL, and GNDL.
  • the wiring GNDL is a wiring that applies a low-level potential. Note that the memory cell 1478 may be electrically connected to the wirings RBL and WBL instead of the wiring BIL.
  • the transistor M4 is an OS transistor having a back gate, and the back gate is electrically connected to the wiring BGL. Note that the back gate and the gate of the transistor M4 may be electrically connected to each other. Alternatively, the transistor M4 may not have a back gate.
  • the transistors M5 and M6 may be n-channel Si transistors or p-channel Si transistors, respectively.
  • the transistors M4 to M6 may be OS transistors.
  • a circuit can be formed using the memory cell array 1470 using only n-type transistors.
  • the transistor 200 can be used as the transistor M4, the transistor 300 can be used as the transistors M5 and M6, and the capacitor 100 can be used as the capacitor CC.
  • the leakage current of the transistor M4 can be extremely low.
  • peripheral circuit 1411 the memory cell array 1470, and the like described in this embodiment are not limited to the above. Arrangement or function of these circuits and wirings, circuit elements, and the like connected to the circuits may be changed, deleted, or added as necessary.
  • FIGS. 4 An example of a chip 1200 in which the semiconductor device of the present invention is mounted is described with reference to FIGS.
  • a plurality of circuits (systems) are mounted on the chip 1200.
  • SoC system-on-chip
  • a chip 1200 includes a CPU (Central Processing Unit) 1211, a GPU (Graphics Processing Unit) 1212, one or more analog operation units 1213, one or more memory controllers 1214, one or more interfaces 1215. , One or more network circuits 1216 and the like.
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • the chip 1200 is provided with bumps (not shown), and is connected to the first surface of a printed circuit board (PCB) 1201 as shown in FIG. 17B.
  • a plurality of bumps 1202 are provided on the back surface of the first surface of the PCB 1201, and are connected to the motherboard 1203.
  • the motherboard 1203 may be provided with a storage device such as a DRAM 1221, a flash memory 1222, or the like.
  • a storage device such as a DRAM 1221, a flash memory 1222, or the like.
  • the DOSRAM described in the above embodiment can be used as the DRAM 1221.
  • the NOSRAM described in the above embodiment can be used for the flash memory 1222.
  • the CPU 1211 preferably has a plurality of CPU cores.
  • the GPU 1212 preferably has a plurality of GPU cores.
  • the CPU 1211 and the GPU 1212 may each have a memory for temporarily storing data.
  • a memory common to the CPU 1211 and the GPU 1212 may be provided in the chip 1200.
  • the above-described NOSRAM or DOSRAM can be used.
  • the GPU 1212 is suitable for parallel calculation of a large number of data, and can be used for image processing and product-sum operation. By providing the GPU 1212 with an image processing circuit or a product-sum operation circuit using the oxide semiconductor of the present invention, image processing and product-sum operation can be performed with low power consumption.
  • the CPU 1211 and the GPU 1212 are provided on the same chip, wiring between the CPU 1211 and the GPU 1212 can be shortened, data transfer from the CPU 1211 to the GPU 1212, data transfer between the memories of the CPU 1211 and the GPU 1212, After the calculation by the GPU 1212, the calculation result can be transferred from the GPU 1212 to the CPU 1211 at high speed.
  • the analog operation unit 1213 includes one or both of an A / D (analog / digital) conversion circuit and a D / A (digital / analog) conversion circuit. Further, the above-described product-sum operation circuit may be provided in the analog operation unit 1213.
  • the memory controller 1214 includes a circuit functioning as a controller of the DRAM 1221 and a circuit functioning as an interface of the flash memory 1222.
  • the interface 1215 has an interface circuit with an externally connected device such as a display device, a speaker, a microphone, a camera, and a controller.
  • the controller includes a mouse, a keyboard, a game controller, and the like.
  • USB Universal Serial Bus
  • HDMI registered trademark
  • High-Definition Multimedia Interface or the like can be used as such an interface.
  • the network circuit 1216 has a network circuit such as a LAN (Local Area Network). Further, a circuit for network security may be provided.
  • LAN Local Area Network
  • the above-described circuit (system) can be formed on the chip 1200 by the same manufacturing process. Therefore, even if the number of circuits required for the chip 1200 increases, the number of manufacturing processes does not need to be increased, and the chip 1200 can be manufactured at low cost.
  • the PCB 1201 provided with the chip 1200 having the GPU 1212, the DRAM 1221, and the motherboard 1203 provided with the flash memory 1222 can be referred to as a GPU module 1204.
  • the GPU module 1204 Since the GPU module 1204 has the chip 1200 using the SoC technology, its size can be reduced. In addition, since it is excellent in image processing, it is preferably used for portable electronic devices such as smartphones, tablet terminals, laptop PCs, and portable (portable) game machines.
  • a product-sum operation circuit using the GPU 1212 allows a deep neural network (DNN), a convolutional neural network (CNN), a recursive neural network (RNN), a self-encoder, a deep Boltzmann machine (DBM), a deep belief network ( Since operations such as DBN) can be performed, the chip 1200 can be used as an AI chip or the GPU module 1204 can be used as an AI system module.
  • DNN deep neural network
  • CNN convolutional neural network
  • RNN recursive neural network
  • DBM deep Boltzmann machine
  • DBM deep Boltzmann machine
  • the semiconductor device described in the above embodiment is, for example, a storage device of various electronic devices (for example, an information terminal, a computer, a smartphone, an electronic book terminal, a digital camera (including a video camera), a recording and playback device, and a navigation system).
  • the computer includes a tablet computer, a notebook computer, a desktop computer, and a large computer such as a server system.
  • the semiconductor device described in the above embodiment is applied to various types of removable storage devices such as a memory card (for example, an SD card), a USB memory, and an SSD (solid state drive).
  • FIG. 18 schematically illustrates some configuration examples of the removable storage device.
  • the semiconductor device described in any of the above embodiments is processed into a packaged memory chip, and used for various storage devices and removable memories.
  • FIG. 18A is a schematic view of a USB memory.
  • the USB memory 1100 includes a housing 1101, a cap 1102, a USB connector 1103, and a board 1104.
  • the substrate 1104 is housed in the housing 1101.
  • a memory chip 1105 and a controller chip 1106 are attached to the substrate 1104.
  • the semiconductor device described in the above embodiment can be incorporated in the memory chip 1105 or the like of the substrate 1104.
  • FIG. 18B is a schematic diagram of the external appearance of the SD card
  • FIG. 18C is a schematic diagram of the internal structure of the SD card.
  • the SD card 1110 has a housing 1111, a connector 1112, and a board 1113.
  • the substrate 1113 is housed in the housing 1111.
  • a memory chip 1114 and a controller chip 1115 are attached to the substrate 1113.
  • the capacity of the SD card 1110 can be increased.
  • a wireless chip having a wireless communication function may be provided over the substrate 1113.
  • data can be read from and written to the memory chip 1114 by wireless communication between the host device and the SD card 1110.
  • the semiconductor device described in the above embodiment can be incorporated in the memory chip 1114 or the like of the substrate 1113.
  • FIG. 18D is a schematic diagram of the external appearance of the SSD
  • FIG. 18E is a schematic diagram of the internal structure of the SSD.
  • the SSD 1150 includes a housing 1151, a connector 1152, and a board 1153.
  • the substrate 1153 is housed in the housing 1151.
  • a memory chip 1154, a memory chip 1155, and a controller chip 1156 are attached to the substrate 1153.
  • the memory chip 1155 is a work memory of the controller chip 1156, and for example, a DOSRAM chip may be used.
  • the capacity of the SSD 1150 can be increased.
  • the semiconductor device described in the above embodiment can be incorporated in the memory chip 1154 or the like of the substrate 1153.
  • the semiconductor device can be used for a processor such as a CPU or a GPU or a chip.
  • FIG. 19 illustrates a specific example of an electronic device including a processor or a chip such as a CPU or a GPU according to one embodiment of the present invention.
  • the GPU or the chip according to one embodiment of the present invention can be mounted on various electronic devices.
  • the electronic device include a relatively large game machine such as a television device, a desktop or notebook personal computer, a monitor for a computer, a digital signage (digital signage), and a large game machine such as a pachinko machine.
  • a digital camera, a digital video camera, a digital photo frame, a mobile phone, a portable game machine, a portable information terminal, a sound reproducing device, and the like can be given.
  • artificial intelligence can be mounted on the electronic device.
  • the electronic device of one embodiment of the present invention may include an antenna. By receiving a signal with the antenna, an image, information, or the like can be displayed on the display portion.
  • the antenna may be used for wireless power transmission.
  • the electronic device of one embodiment of the present invention includes sensors (force, displacement, position, speed, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, (Including a function of measuring voltage, power, radiation, flow rate, humidity, gradient, vibration, odor, or infrared light).
  • the electronic device of one embodiment of the present invention can have various functions. For example, a function of displaying various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function of displaying a calendar, date or time, a function of executing various software (programs), a wireless communication It can have a function, a function of reading a program or data recorded on a recording medium, and the like.
  • FIG. 19 illustrates an example of an electronic device.
  • FIG. 19A illustrates a mobile phone (smartphone), which is a type of information terminal.
  • the information terminal 5500 includes a housing 5510 and a display portion 5511.
  • a touch panel is provided in the display portion 5511 as an input interface, and buttons are provided in the housing 5510.
  • the information terminal 5500 can execute an application using artificial intelligence by applying the chip of one embodiment of the present invention.
  • the application using artificial intelligence include an application that recognizes a conversation and displays the content of the conversation on a display portion 5511, and recognizes characters, graphics, and the like input by a user on a touch panel provided in the display portion 5511, An application displayed on the display portion 5511, an application for performing biometric authentication such as a fingerprint or a voiceprint, and the like can be given.
  • FIG. 19B illustrates a desktop information terminal 5300.
  • the desktop information terminal 5300 includes a main body 5301 of the information terminal, a display 5302, and a keyboard 5303.
  • the desktop information terminal 5300 can execute an application using artificial intelligence by applying the chip of one embodiment of the present invention.
  • applications using artificial intelligence include design support software, text correction software, menu automatic generation software, and the like.
  • a new artificial intelligence can be developed.
  • the electronic device is illustrated in FIGS. 19A and 19B by taking a smartphone and a desktop information terminal as examples, but information terminals other than the smartphone and the desktop information terminal can be applied.
  • Examples of the information terminal other than the smartphone and the desktop information terminal include a PDA (Personal Digital Assistant), a notebook information terminal, and a workstation.
  • FIG. 19C shows an electric refrigerator-freezer 5800 which is an example of the electric appliance.
  • the electric refrigerator-freezer 5800 includes a housing 5801, a refrigerator door 5802, a refrigerator door 5803, and the like.
  • the electric refrigerator-freezer 5800 having artificial intelligence can be realized.
  • the electric refrigerator-freezer 5800 has a function of automatically generating menus based on the ingredients stored in the electric refrigerator-freezer 5800, the expiration date of the ingredients, and the like, and is stored in the electric refrigerator-freezer 5800. It can have a function of automatically adjusting the temperature to the food material.
  • the electric refrigerator was described as an electric appliance, but other electric appliances include, for example, a vacuum cleaner, a microwave oven, an electronic oven, a rice cooker, a water heater, an IH cooker, a water server, and an air conditioner including an air conditioner. Utensils, washing machines, dryers, audiovisual equipment and the like.
  • FIG. 19D illustrates a portable game machine 5200 which is an example of a game machine.
  • the portable game machine includes a housing 5201, a display portion 5202, a button 5203, and the like.
  • the portable game machine 5200 By applying the GPU or chip of one embodiment of the present invention to the portable game machine 5200, the portable game machine 5200 with low power consumption can be realized.
  • heat generation from a circuit can be reduced by low power consumption, so that influence of the heat generation on the circuit itself, peripheral circuits, and modules can be reduced.
  • the portable game machine 5200 having artificial intelligence can be realized.
  • the expression of the progress of the game, the behavior of the creature appearing in the game, the phenomenon occurring in the game, etc. is determined by the program of the game, but by applying artificial intelligence to the portable game machine 5200, Thus, expressions that are not limited to game programs are possible. For example, it is possible to express such a content that a player asks a question, a progress of a game, a time, a behavior of a person appearing in the game changes.
  • a game player when a game requiring a plurality of players is performed on the portable game machine 5200, a game player can be configured as an anthropomorphic person by artificial intelligence. Can play games.
  • FIG. 19D illustrates a portable game machine as an example of a game machine; however, a game machine to which the GPU or the chip of one embodiment of the present invention is applied is not limited thereto.
  • a game machine to which the GPU or the chip of one embodiment of the present invention is applied for example, a stationary game machine for home use, an arcade game machine installed in an entertainment facility (a game center, an amusement park, or the like), or a sport facility Pitching machine for batting practice.
  • the GPU or the chip of one embodiment of the present invention can be applied to an automobile which is a mobile object and a periphery of a driver's seat of the automobile.
  • FIG. 19E1 shows a car 5700 which is an example of a moving object
  • FIG. 19E2 is a diagram showing the vicinity of a windshield in the cabin of the car.
  • FIG. 19E2 illustrates a display panel 5701 attached to a pillar, in addition to a display panel 5701, a display panel 5702, and a display panel 5703 attached to a dashboard.
  • the display panels 5701 to 5703 can provide various information by displaying a speedometer, a tachometer, a mileage, a fuel gauge, a gear state, an air-conditioning setting, and the like. Further, display items, layout, and the like displayed on the display panel can be appropriately changed according to the user's preference, so that design can be improved.
  • the display panels 5701 to 5703 can also be used as lighting devices.
  • the field of view (blind spot) blocked by the pillar can be complemented. That is, by displaying an image from an imaging device provided outside the automobile 5700, blind spots can be compensated for and safety can be improved. In addition, by displaying an image that complements the invisible part, it is possible to more naturally confirm safety without a sense of incongruity.
  • the display panel 5704 can be used as a lighting device.
  • the GPU or the chip of one embodiment of the present invention can be used as a component of artificial intelligence
  • the chip or the chip can be used for an automatic driving system of an automobile 5700, for example. Further, the chip can be used in a system for performing road guidance, danger prediction, and the like.
  • the display panels 5701 to 5704 may be configured to display information such as road guidance and danger prediction.
  • a car is described as an example of a moving body, but the moving body is not limited to a car.
  • a moving object includes a train, a monorail, a ship, a flying object (a helicopter, an unmanned aerial vehicle (drone), an airplane, a rocket), and the like.
  • the chip of one embodiment of the present invention is applied to these moving objects.
  • a system using artificial intelligence can be provided.
  • the GPU or the chip of one embodiment of the present invention can be applied to a broadcast system.
  • FIG. 19F schematically shows data transmission in a broadcasting system. Specifically, FIG. 19F illustrates a path until a radio wave (broadcast signal) transmitted from the broadcast station 5680 reaches a television receiver (TV) 5600 in each home.
  • the TV 5600 includes a receiving device (not shown), and a broadcast signal received by the antenna 5650 is transmitted to the TV 5600 via the receiving device.
  • the antenna 5650 is a UHF (Ultra High Frequency) antenna, but a BS / 110 ° CS antenna, a CS antenna, or the like can be used as the antenna 5650.
  • UHF Ultra High Frequency
  • the radio waves 5675A and 5675B are broadcast signals for terrestrial broadcasting, and the radio tower 5670 amplifies the received radio wave 5675A and transmits the radio wave 5675B.
  • a terrestrial TV broadcast can be viewed on the TV 5600 by receiving the radio wave 5675B with the antenna 5650.
  • the broadcasting system is not limited to terrestrial broadcasting shown in FIG. 19F, but may be satellite broadcasting using artificial satellites, data broadcasting using an optical line, or the like.
  • the broadcast system described above may be a broadcast system using artificial intelligence by applying the chip of one embodiment of the present invention.
  • the broadcast data is transmitted from the broadcast station 5680 to the TV 5600 of each home, the broadcast data is compressed by the encoder.
  • the decoder of the receiving device included in the TV 5600 decodes the broadcast data. Restore is performed.
  • artificial intelligence for example, a display pattern included in a display image can be recognized by motion compensation prediction, which is one of the compression methods of an encoder.
  • motion compensation prediction which is one of the compression methods of an encoder.
  • an image interpolation process such as up-conversion can be performed in the restoration of the broadcast data by the decoder.
  • the above-described broadcasting system using artificial intelligence is suitable for ultra-high definition television (UHDTV: 4K, 8K) broadcasting in which the amount of broadcast data increases.
  • a recording device having artificial intelligence may be provided in the TV 5600.
  • the program that suits the user's preference can be automatically recorded by making the artificial intelligence of the recording device learn the user's preference.
  • samples A to C having the conductor 242 were manufactured, and the change in the sheet resistance of the conductor 242 due to the heat treatment was evaluated.
  • silicon oxide was formed with a thickness of 100 nm on a silicon wafer by thermal oxidation.
  • a 300-nm-thick silicon oxynitride film was formed over the silicon oxide film by a CVD method.
  • oxygen was implanted into the silicon oxynitride using an ion implantation apparatus.
  • the oxygen ion implantation conditions were an acceleration energy of 60 keV and an ion implantation amount of 2.0 ⁇ 10 16 / cm 2 .
  • indium tin oxide was formed as the conductor 242 by a sputtering method.
  • the film was formed at 2 kW at a substrate temperature of 200 ° C.
  • the thickness of sample A was 5 nm
  • the thickness of sample B was 10 nm
  • the thickness of sample C was 20 nm.
  • FIG. 20 shows a graph of the heat treatment time dependence of the sheet resistance value of indium tin oxide of Samples A, B, and C.
  • the sheet resistance value of the sample that was not subjected to the heat treatment (the heat treatment time was 0 hour) varied depending on the thickness of the indium tin oxide (5 nm, 10 nm, and 20 nm).
  • the sheet resistance value of any of the samples ( nm, 10 nm, and 20 nm) is from 1.0 ⁇ 10 3 ( ⁇ / sq.) To 2.0 ⁇ 10 3. ( ⁇ / sq.).
  • the sheet resistance value of any sample is from 2.0 ⁇ 10 3 ( ⁇ / sq.) To 4.0 ⁇ 10 3. ( ⁇ / sq.).
  • the conductors are oxidized under the influence of oxygen, and the sheet resistance of the conductor is increased.However, the indium tin oxide used in this embodiment is in contact with the lower surface of the indium tin oxide by heat treatment. It has been found that the influence of oxygen diffused from the disposed excess oxygen-containing silicon oxynitride is suppressed, and a low sheet resistance value is maintained.
  • indium tin oxide used in this example can function as a source and a drain of the transistor of one embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Semiconductor Memories (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

電気特性が良好で、信頼性の高い半導体装置を提供する。 第1の絶縁体と、第1の絶縁体上の第1の導電体、および第2の導電体と、第1の導電体と、第2の導 電体との間に配置された酸化物と、第1の導電体上、第2の導電体上、および酸化物上の第2の絶縁体 と、第2の絶縁体上の第3の導電体と、を有し、第1の導電体の側面は、酸化物の一方の側面と接する 領域を有し、第2の導電体の側面は、酸化物の他方の側面と接する領域を有し、第1の導電体の上面の 高さ、第2の導電体の上面の高さ、および酸化物の上面の高さは、それぞれ、概ね等しく、第1の導電 体の導電率は、酸化物より高く、第2の導電体の導電率は、酸化物より高い。

Description

半導体装置、および半導体装置の作製方法
 本発明の一態様は、半導体装置、ならびに半導体装置の作製方法に関する。または、本発明の一態様は、半導体ウエハ、モジュールおよび電子機器に関する。
 なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指す。トランジスタなどの半導体素子をはじめ、半導体回路、演算装置、記憶装置は、半導体装置の一態様である。表示装置(液晶表示装置、発光表示装置など)、投影装置、照明装置、電気光学装置、蓄電装置、記憶装置、半導体回路、撮像装置および電子機器などは、半導体装置を有すると言える場合がある。
 なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。
 半導体素子を用いた集積回路(Integrated Circuit:IC)の開発がすすめられている。CPUやメモリの開発および製造には、より高い集積度のICからなるLSIや超LSIの技術が用いられている。このようなICは、回路基板、例えばプリント配線板に実装され、コンピュータ、情報端末、表示装置、自動車などを構成する、様々な電子機器の部品の一つとして用いられる。また、これらを人工知能(AI)システムに用いる研究も進められている。
 コンピュータや情報端末として、デスクトップ型コンピュータ、ラップトップ型コンピュータ、タブレット型コンピュータ、スマートフォン、携帯電話などが知られている。
 半導体素子に用いられる半導体材料としてシリコン系半導体材料が広く知られているが、その他の材料として酸化物半導体が注目されている。
 また、酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流が小さいことが知られている。例えば、酸化物半導体を用いたトランジスタのリーク電流が低いという特性を応用した低消費電力のCPUなどが開示されている(特許文献1参照)。
特開2012−257187号公報
 本発明の一態様は、良好な電気特性を有する半導体装置およびその作製方法を提供することを課題の一つとする。また、本発明の一態様は、信頼性の高い半導体装置およびその作製方法を提供することを課題の一つとする。また、本発明の一態様は、微細化または高集積化が可能な半導体装置およびその作製方法を提供することを課題の一つとする。また、本発明の一態様は、生産性の高い半導体装置およびその作製方法を提供することを課題の一つとする。
 また、酸化物半導体を有するトランジスタを用いた半導体装置において、電気特性の変動を抑制すると共に、信頼性を向上させることを課題の一つとする。また、オン電流が大きい酸化物半導体を有するトランジスタを提供することを課題の一つとする。また、オフ電流が小さい酸化物半導体を有するトランジスタを提供することを課題の一つとする。また、消費電力が低減された半導体装置を提供することを課題の一つとする。また、動作周波数が向上した半導体装置を提供することを課題の一つとする。
 また、新規な半導体装置を提供することを課題の一つとする。また、該半導体装置を有するモジュールを提供することを課題の一つとする。また、該半導体装置、または該モジュールを有する電子機器を提供することを課題の一つとする。
 なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
 本発明の一態様は、第1の絶縁体と、第1の絶縁体上の第1の導電体、および第2の導電体と、第1の導電体と、第2の導電体との間に配置された酸化物と、第1の導電体上、第2の導電体上、および酸化物上の第2の絶縁体と、第2の絶縁体上の第3の導電体と、を有し、第1の導電体の側面は、酸化物の一方の側面と接する領域を有し、第2の導電体の側面は、酸化物の他方の側面と接する領域を有し、第1の導電体の上面の高さ、第2の導電体の上面の高さ、および酸化物の上面の高さは、それぞれ、概ね等しく、第1の導電体の導電率は、酸化物より高く、第2の導電体の導電率は、酸化物より高い、半導体装置である。
 また、第1の導電体および第2の導電体は、それぞれ、Inと、Sn、W、Ti、またはSiのいずれか一、または複数を含むことが好ましい。
 また、第1の導電体および第2の導電体は、それぞれ、Zn、Ti、Ga、またはNbのいずれか一、または複数を含んでもよい。
 また、酸化物は、Inと、元素M(MはAl、Ga、Y、またはSn)と、Znと、を含むことが好ましい。
 また、第1の導電体、および第2の導電体のキャリア密度は、酸化物のキャリア密度よりも高い、ことが好ましい。
 また、本発明の一態様は、基板上に第1の絶縁体を形成し、第1の絶縁体上に酸化膜を成膜し、リソグラフィー法によって、酸化膜上にマスクを形成し、マスクと重ならない酸化膜を除去することで、酸化物を形成し、マスク、酸化物を覆って、導電膜を成膜し、導電膜の一部を等方性エッチングすることで、マスクの側面を露出させ、マスクを除去することで、マスク上の導電膜をリフトオフする、半導体装置の作製方法である。
 また、導電膜は、スパッタリング法によって成膜することが好ましい。
 また、導電膜の成膜速度が、垂直方向より、水平方向の方が小さい成膜方法を用いることが好ましい。
 本発明の一態様により、良好な電気特性を有する半導体装置およびその作製方法を提供することができる。また、本発明の一態様により、信頼性の高い半導体装置およびその作製方法を提供することができる。また、本発明の一態様により、微細化または高集積化が可能な半導体装置およびその作製方法を提供することができる。また、本発明の一態様により、生産性の高い半導体装置およびその作製方法を提供することができる。
 また、酸化物半導体を有するトランジスタを用いた半導体装置において、電気特性の変動を抑制すると共に、信頼性を向上させることができる。また、オン電流が大きい酸化物半導体を有するトランジスタを提供することができる。また、オフ電流が小さい酸化物半導体を有するトランジスタを提供することができる。また、消費電力が低減された半導体装置を提供することができる。また、動作周波数が向上した半導体装置を提供することができる。
 または、新規な半導体装置を提供することができる。または、該半導体装置を有するモジュールを提供することができる。または、該半導体装置、または該モジュールを有する電子機器を提供することができる。
 なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
図1Aは、半導体装置を示す上面図である。図1B、図1Cは、半導体装置を示す断面図である。
図2Aは、半導体装置を示す上面図である。図2B、図2Cは、半導体装置を示す断面図である。
図3Aは、半導体装置を示す上面図である。図3B、図3Cは、半導体装置を示す断面図である。
図4Aは、半導体装置の作製方法を示す上面図である。図4B、図4Cは、半導体装置の作製方法を示す断面図である。
図5Aは、半導体装置の作製方法を示す上面図である。図5B、図5Cは、半導体装置の作製方法を示す断面図である。
図6Aは、半導体装置の作製方法を示す上面図である。図6B、図6Cは、半導体装置の作製方法を示す断面図である。
図7Aは、半導体装置の作製方法を示す上面図である。図7B、図7Cは、半導体装置の作製方法を示す断面図である。
図8Aは、半導体装置の作製方法を示す上面図である。図8B、図8Cは、半導体装置の作製方法を示す断面図である。
図9Aは、半導体装置の作製方法を示す上面図である。図9B、図9Cは、半導体装置の作製方法を示す断面図である。
図10Aは、半導体装置の作製方法を示す上面図である。図10B、図10Cは、半導体装置の作製方法を示す断面図である。
図11Aは、半導体装置の作製方法を示す上面図である。図11B、図11Cは、半導体装置の作製方法を示す断面図である。
図12Aは、半導体装置の作製方法を示す上面図である。図12B、図12Cは、半導体装置の作製方法を示す断面図である。
図13は、酸化物半導体のエネルギーバンド構造を説明する図である。
図14は、本発明の一態様に係る記憶装置の構成を示す断面図である。
図15Aは、記憶装置の構成例を示すブロック図である。図15Bは、記憶装置の構成例を示す模式図である。
図16A乃至図16Hは、記憶装置の構成例を示す回路図である。
図17Aは、半導体装置のブロック図である。図17Bは、半導体装置の模式図である。
図18A乃至図18Eは、記憶装置の模式図である。
図19A乃至図19Fは、電子機器を示す図である。
図20は、インジウム錫酸化物のシート抵抗値の加熱処理時間依存性を示すグラフである。
 以下、実施の形態について図面を参照しながら説明する。但し、実施の形態は多くの異なる態様で実施することが可能であり、趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
 また、図面において、大きさ、層の厚さ、又は領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。なお図面は、理想的な例を模式的に示したものであり、図面に示す形状又は値などに限定されない。例えば、実際の製造工程において、エッチングなどの処理により層やレジストマスクなどが意図せずに目減りすることがあるが、理解を容易とするために図に反映しないことがある。また、図面において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する場合がある。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。
 また、特に上面図(「平面図」ともいう)や斜視図などにおいて、発明の理解を容易とするため、一部の構成要素の記載を省略する場合がある。また、一部の隠れ線などの記載を省略する場合がある。
 また、本明細書などにおいて、第1、第2等として付される序数詞は便宜上用いるものであり、工程順又は積層順を示すものではない。そのため、例えば、「第1の」を「第2の」又は「第3の」などと適宜置き換えて説明することができる。また、本明細書等に記載されている序数詞と、本発明の一態様を特定するために用いられる序数詞は一致しない場合がある。
 また、本明細書において、「上に」、「下に」などの配置を示す語句は、構成同士の位置関係を、図面を参照して説明するために、便宜上用いている。また、構成同士の位置関係は、各構成を描写する方向に応じて適宜変化するものである。従って、明細書で説明した語句に限定されず、状況に応じて適切に言い換えることができる。
 例えば、本明細書等において、XとYとが接続されている、と明示的に記載されている場合は、XとYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合と、XとYとが直接接続されている場合とが、本明細書等に開示されているものとする。したがって、所定の接続関係、例えば、図または文章に示された接続関係に限定されず、図または文章に示された接続関係以外のものも、図または文章に開示されているものとする。
 ここで、X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。
 XとYとが直接的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)が、XとYとの間に接続されていない場合であり、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)を介さずに、XとYとが、接続されている場合である。
 XとYとが電気的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)が、XとYとの間に1個以上接続されることが可能である。なお、スイッチは、オンオフが制御される機能を有している。つまり、スイッチは、導通状態(オン状態)、または、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有している。または、スイッチは、電流を流す経路を選択して切り替える機能を有している。なお、XとYとが電気的に接続されている場合は、XとYとが直接的に接続されている場合を含むものとする。
 XとYとが機能的に接続されている場合の一例としては、XとYとの機能的な接続を可能とする回路(例えば、論理回路(インバータ、NAND回路、NOR回路など)、信号変換回路(DA変換回路、AD変換回路、ガンマ補正回路など)、電位レベル変換回路(電源回路(昇圧回路、降圧回路など)、信号の電位レベルを変えるレベルシフタ回路など)、電圧源、電流源、切り替え回路、増幅回路(信号振幅または電流量などを大きく出来る回路、オペアンプ、差動増幅回路、ソースフォロワ回路、バッファ回路など)、信号生成回路、記憶回路、制御回路など)が、XとYとの間に1個以上接続されることが可能である。なお、一例として、XとYとの間に別の回路を挟んでいても、Xから出力された信号がYへ伝達される場合は、XとYとは機能的に接続されているものとする。なお、XとYとが機能的に接続されている場合は、XとYとが直接的に接続されている場合と、XとYとが電気的に接続されている場合とを含むものとする。
 また、本明細書等において、トランジスタとは、ゲートと、ドレインと、ソースとを含む少なくとも三つの端子を有する素子である。そして、ドレイン(ドレイン端子、ドレイン領域またはドレイン電極)とソース(ソース端子、ソース領域またはソース電極)の間にチャネル形成領域を有しており、チャネル形成領域を介して、ソースとドレインとの間に電流を流すことができるものである。なお、本明細書等において、チャネル形成領域とは、電流が主として流れる領域をいう。
 また、ソースやドレインの機能は、異なる極性のトランジスタを採用する場合や、回路動作において電流の方向が変化する場合などには入れ替わることがある。このため、本明細書等においては、ソースやドレインの用語は、入れ替えて用いることができる場合がある。
 なお、チャネル長とは、例えば、トランジスタの上面図において、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲートとが互いに重なる領域、またはチャネルが形成される領域における、ソースとドレインとの間の距離をいう。なお、一つのトランジスタにおいて、チャネル長が全ての領域で同じ値をとるとは限らない。即ち、一つのトランジスタのチャネル長は、一つの値に定まらない場合がある。そのため、本明細書では、チャネル長は、チャネルの形成される領域における、いずれか一の値、最大値、最小値または平均値とする。
 チャネル幅とは、例えば、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲートとが互いに重なる領域、またはチャネルが形成される領域における、ソースとドレインとが向かい合っている部分の長さをいう。なお、一つのトランジスタにおいて、チャネル幅がすべての領域で同じ値をとるとは限らない。即ち、一つのトランジスタのチャネル幅は、一つの値に定まらない場合がある。そのため、本明細書では、チャネル幅は、チャネルの形成される領域における、いずれか一の値、最大値、最小値または平均値とする。
 なお、トランジスタの構造によっては、実際にチャネルの形成される領域におけるチャネル幅(以下、「実効的なチャネル幅」ともいう)と、トランジスタの上面図において示されるチャネル幅(以下、「見かけ上のチャネル幅」ともいう)と、が異なる場合がある。例えば、ゲートが半導体の側面を覆う場合、実効的なチャネル幅が、見かけ上のチャネル幅よりも大きくなり、その影響が無視できなくなる場合がある。例えば、微細かつゲートが半導体の側面を覆うトランジスタでは、半導体の側面に形成されるチャネル形成領域の割合が大きくなる場合がある。その場合は、見かけ上のチャネル幅よりも、実効的なチャネル幅の方が大きくなる。
 このような場合、実効的なチャネル幅の、実測による見積もりが困難となる場合がある。例えば、設計値から実効的なチャネル幅を見積もるためには、半導体の形状が既知という仮定が必要である。したがって、半導体の形状が正確にわからない場合には、実効的なチャネル幅を正確に測定することは困難である。
 そこで、本明細書では、見かけ上のチャネル幅を、「囲い込みチャネル幅(SCW:Surrounded Channel Width)」と呼ぶ場合がある。また、本明細書では、単にチャネル幅と記載した場合には、囲い込みチャネル幅または見かけ上のチャネル幅を指す場合がある。または、本明細書では、単にチャネル幅と記載した場合には、実効的なチャネル幅を指す場合がある。なお、チャネル長、チャネル幅、実効的なチャネル幅、見かけ上のチャネル幅、囲い込みチャネル幅などは、断面TEM像などを解析することなどによって、値を決定することができる。
 なお、半導体の不純物とは、例えば、半導体を構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物と言える。不純物が含まれることにより、例えば、半導体のDOS(Density of States)が高くなることや、結晶性が低下することなどが起こる場合がある。半導体が酸化物半導体である場合、半導体の特性を変化させる不純物としては、例えば、第1族元素、第2族元素、第13族元素、第14族元素、第15族元素、および酸化物半導体の主成分以外の遷移金属などがあり、例えば、水素、リチウム、ナトリウム、シリコン、ホウ素、リン、炭素、窒素などがある。酸化物半導体の場合、水も不純物として機能する場合がある。また、酸化物半導体の場合、例えば不純物の混入によって酸素欠損を形成する場合がある。また、半導体がシリコンである場合、半導体の特性を変化させる不純物としては、例えば、酸素、水素を除く第1族元素、第2族元素、第13族元素、第15族元素などがある。
 なお、本明細書等において、酸化窒化シリコン膜とは、その組成として、窒素よりも酸素の含有量が多いものである。例えば、好ましくは酸素が55原子%以上65原子%以下、窒素が1原子%以上20原子%以下、シリコンが25原子%以上35原子%以下、水素が0.1原子%以上10原子%以下の濃度範囲で含まれるものをいう。また、窒化酸化シリコン膜とは、その組成として、酸素よりも窒素の含有量が多いものである。例えば、好ましくは窒素が55原子%以上65原子%以下、酸素が1原子%以上20原子%以下、シリコンが25原子%以上35原子%以下、水素が0.1原子%以上10原子%以下の濃度範囲で含まれるものをいう。
 また、本明細書等において、「膜」という用語と、「層」という用語とは、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能な場合がある。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能な場合がある。
 また、本明細書等において、「絶縁体」という用語を、絶縁膜または絶縁層と言い換えることができる。また、「導電体」という用語を、導電膜または導電層と言い換えることができる。また、「半導体」という用語を、半導体膜または半導体層と言い換えることができる。
 また、本明細書等に示すトランジスタは、明示されている場合を除き、電界効果トランジスタとする。また、本明細書等に示すトランジスタは、明示されている場合を除き、nチャネル型のトランジスタとする。よって、そのしきい値電圧(「Vth」ともいう)は、明示されている場合を除き、0Vよりも大きいものとする。
 また、本明細書等において、「平行」とは、二つの直線が−10°以上10°以下の角度で配置されている状態をいう。したがって、−5°以上5°以下の場合も含まれる。また、「略平行」とは、二つの直線が−30°以上30°以下の角度で配置されている状態をいう。また、「垂直」とは、二つの直線が80°以上100°以下の角度で配置されている状態をいう。したがって、85°以上95°以下の場合も含まれる。また、「略垂直」とは、二つの直線が60°以上120°以下の角度で配置されている状態をいう。
 また、本明細書において、結晶が三方晶または菱面体晶である場合、六方晶系に含まれているものとする。
 なお、本明細書において、バリア膜とは、水素などの不純物および酸素の透過を抑制する機能を有する膜のことであり、該バリア膜に導電性を有する場合は、導電性バリア膜と呼ぶことがある。
 本明細書等において、金属酸化物(metal oxide)とは、広い意味での金属の酸化物である。金属酸化物は、酸化物絶縁体、酸化物導電体(透明酸化物導電体を含む)、酸化物半導体(Oxide Semiconductorまたは単にOSともいう)などに分類される。例えば、トランジスタの活性層に金属酸化物を用いた場合、当該金属酸化物を酸化物半導体と呼称する場合がある。つまり、OS FETと記載する場合においては、酸化物または酸化物半導体を有するトランジスタと換言することができる。
(実施の形態1)
<半導体装置の構成例1>
 図1A、図1B、および図1Cは、本発明の一態様に係るトランジスタ200、およびトランジスタ200周辺の上面図および断面図である。
 図1Aは、トランジスタ200を有する半導体装置の上面図である。また、図1B、および図1Cは、当該半導体装置の断面図である。ここで、図1Bは、図1AにA1−A2の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル長方向の断面図でもある。また、図1Cは、図1AにA3−A4の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。なお、図1Aの上面図では、図の明瞭化のために一部の要素を省いている。
 本発明の一態様の半導体装置は、基板(図示せず)上の絶縁体214と、絶縁体214上のトランジスタ200と、トランジスタ200上の絶縁体280と、絶縁体280上の絶縁体281と、を有する。絶縁体214、絶縁体280、および絶縁体281は層間膜として機能する。また、トランジスタ200と電気的に接続し、プラグとして機能する導電体240(導電体240a、および導電体240b)とを有する。なお、プラグとして機能する導電体240の側面に接して絶縁体241(絶縁体241a、および絶縁体241b)が設けられる。また、絶縁体281上、および導電体240上には、導電体240と電気的に接続し、配線として機能する導電体246(導電体246a、および導電体246b)が設けられる。
 また、絶縁体272、絶縁体280、および絶縁体281の開口の内壁に接して絶縁体241aが設けられ、その側面に接して導電体240aの第1の導電体が設けられ、さらに内側に導電体240aの第2の導電体が設けられている。また、絶縁体272、絶縁体280、および絶縁体281の開口の内壁に接して絶縁体241bが設けられ、その側面に接して導電体240bの第1の導電体が設けられ、さらに内側に導電体240bの第2の導電体が設けられている。ここで、導電体240の上面の高さと、絶縁体281の上面の高さは同程度にできる。なお、トランジスタ200では、導電体240の第1の導電体および導電体240の第2の導電体を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体240を単層、または3層以上の積層構造として設ける構成にしてもよい。構造体が積層構造を有する場合、形成順に序数を付与し、区別する場合がある。
[トランジスタ200]
 図1に示すように、トランジスタ200は、絶縁体214上の絶縁体216と、絶縁体216に埋め込まれるように配置された導電体205と、絶縁体216上、および導電体205上の絶縁体222と、絶縁体222上の絶縁体224と、絶縁体224上の導電体242aおよび導電体242bと、導電体242aと導電体242bとの間に配置された酸化物230と、導電体242a、導電体242b、および酸化物230上の絶縁体250と、絶縁体250上の導電体260(導電体260a、および導電体260b)と、を有する。また、導電体242aの側面は、酸化物230の一方の側面と接する領域を有し、導電体242bの側面は、酸化物230の他方の側面と接する領域を有する。また、導電体242aの上面の高さ、導電体242bの上面の高さ、および酸化物230の上面の高さは、それぞれ、概ね等しい。
 また、絶縁体222、絶縁体272、および絶縁体281は、水素(例えば、水素原子、水素分子などの少なくとも一)の拡散を抑制する機能を有することが好ましい。また、絶縁体222、絶縁体272、および絶縁体281は、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有することが好ましい。例えば、絶縁体222、絶縁体272、および絶縁体281は、それぞれ絶縁体224よりも酸素および水素の一方または双方の透過性が低いことが好ましい。絶縁体222、絶縁体272、および絶縁体281は、それぞれ絶縁体250よりも酸素および水素の一方または双方の透過性が低いことが好ましい。絶縁体222、絶縁体272、および絶縁体281は、それぞれ絶縁体280よりも酸素および水素の一方または双方の透過性が低いことが好ましい。
 図1Bおよび図1Cに示すように絶縁体272は、導電体260の上面と側面、絶縁体250の側面、導電体242aの上面と側面、導電体242bの上面と側面、ならびに絶縁体224の上面に接することが好ましい。これにより、絶縁体280は、絶縁体272によって、絶縁体224および酸化物230と離隔される。また、絶縁体272によって、絶縁体280から導電体260へ酸素および水素の一方または双方の透過を抑制することで、導電体260の酸化を抑制できる。
 なお、トランジスタ200では、チャネル形成領域と、その近傍において、酸化物230の単層構造について示しているが、本発明はこれに限られるものではない。例えば、2層構造、または3層以上の積層構造を設ける構成にしてもよい。また、トランジスタ200では、導電体260を2層構造として示しているが、本発明はこれに限られるものではない。例えば、導電体260が、単層構造であってもよいし、3層以上の積層構造であってもよい。
 ここで、導電体260は、トランジスタ200のゲートとして機能し、導電体242aおよび導電体242bは、それぞれソースまたはドレインとして機能する。また、トランジスタ200は、チャネル形成領域を含む酸化物230に、酸化物半導体として機能する金属酸化物(以下、酸化物半導体ともいう)を用いることが好ましい。
 チャネル形成領域に酸化物半導体を用いたトランジスタ200は、非導通状態において極めてリーク電流(オフ電流)が小さいため、低消費電力の半導体装置を提供できる。また、酸化物半導体は、スパッタリング法などを用いて成膜できるため、高集積型の半導体装置を構成するトランジスタ200に用いることができる。
 例えば、酸化物230として、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、錫、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種)等の金属酸化物を用いるとよい。特に、元素Mは、アルミニウム、ガリウム、イットリウム、または錫を用いるとよい。また、酸化物230として、In−Ga酸化物、In−Zn酸化物を用いてもよい。
 また、酸化物半導体を用いたトランジスタは、酸化物半導体中のチャネルが形成される領域に不純物および酸素欠損が存在すると、電気特性が変動しやすく、信頼性が悪くなる場合がある。また、酸化物半導体中のチャネルが形成される領域に酸素欠損が含まれていると、トランジスタはノーマリーオン特性となりやすい。したがって、チャネルが形成される領域中の酸素欠損はできる限り低減されていることが好ましい。これにより、電気特性の変動を抑制し、安定した電気特性を有するとともに、信頼性を向上させたトランジスタを提供することができる。
 また、酸化物230の両側面に接するように設けられ、ソースまたはドレインとして機能する導電体242(導電体242a、および導電体242b)としては、導電性酸化物を用いることが好ましい。特に、キャリアの生成が酸素欠損のみに依存せず、置換型の不純物ドナーによってキャリアを生成する導電性酸化物であることが好ましい。つまり、導電体242中の酸素欠損が過剰酸素によって修復されても、導電体242中のキャリア密度の低下を抑制することができる。従って、導電性酸化物は、酸素欠損が少ない状態でもキャリアが生成されると考えられるので、オン特性の高いトランジスタとすることができる。導電体242としては、錫、タングステン、チタン、またはシリコンのいずれか一、または複数と、インジウムを含むことが好ましい。たとえば、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、シリコンを添加したインジウム錫酸化物を用いてもよい。
 または、ガリウムを添加した酸化亜鉛、ニオブを添加した酸化チタンを用いても良い。
 また、導電体242の導電率は、酸化物230の導電率よりも高いことが好ましい。また、導電体242のキャリア密度は、酸化物230のキャリア密度よりも高いことが好ましい。このような構成とすることで、酸化物230はチャネル形成領域として機能し、導電体242は、ソースまたはドレインとして機能することができる。
 本発明の一態様であるトランジスタ200は、図1Bに示すように、チャネル形成領域として機能する酸化物230の両側面をソースまたはドレインとして機能する導電体242で、挟む構成となっている。また、導電体242の上面の高さ、および酸化物230の上面の高さは、概ね等しい。このような構成とすることで、酸化物230のチャネル形成領域の上面とゲートとして機能する導電体260との最短距離が、導電体242と、導電体260との最短距離と概ね等しくなるので、寄生容量が小さいトランジスタを提供することができる。また、酸化物230のチャネル形成領域と、導電体260との間には段差が形成されない、または僅かであるために、酸化物230のチャネル形成領域上、および導電体242上の絶縁体250は段差をほとんど乗り越えずに設けることができるので絶縁体250の被覆性が良好となり、絶縁体250の絶縁耐圧が向上するので好ましい。
 また、図1Cに示すように、ゲートとして機能する導電体260が、チャネル形成領域の酸化物230の側面および上面を絶縁体250を介して覆う構成となっており、導電体260の電界をチャネル形成領域の酸化物230全体に作用させやすくなる。よって、トランジスタ200のオン電流を増大させ、周波数特性を向上させることができる。
 以上より、オン電流が大きいトランジスタを有する半導体装置を提供することができる。または、高い周波数特性を有するトランジスタを有する半導体装置を提供することができる。または、電気特性の変動を抑制し、安定した電気特性を有するとともに、信頼性を向上させた半導体装置を提供することができる。または、オフ電流が小さいトランジスタを有する半導体装置を提供することができる。
 以下では、本発明の一態様に係るトランジスタ200を有する半導体装置の詳細な構成について説明する。
 導電体205は、酸化物230、および導電体260と、重なるように配置する。また、導電体205は、絶縁体216に埋め込まれて設けることが好ましい。
 ここで、導電体260は、第1のゲート(トップゲートともいう)として機能する場合がある。また、導電体205は、第2のゲート(ボトムゲートともいう)として機能する場合がある。その場合、導電体205に印加する電位を、導電体260に印加する電位と、連動させず、独立して変化させることで、トランジスタ200のVthを制御することができる。特に、導電体205に負の電位を印加することにより、トランジスタ200のVthを0Vより大きくし、オフ電流を低減することが可能となる。したがって、導電体205に負の電位を印加したほうが、印加しない場合よりも、導電体260に印加する電位が0Vのときのドレイン電流を小さくすることができる。
 なお、導電体205は、図1Aに示すように、酸化物230の大きさよりも、大きく設けるとよい。特に、図1Cに示すように、導電体205は、酸化物230のチャネル幅方向と交わる端部よりも外側の領域においても、延伸していることが好ましい。つまり、酸化物230のチャネル幅方向における側面の外側において、導電体205と、導電体260とは、絶縁体を介して重畳していることが好ましい。または、導電体205を大きく設けることによって、導電体205形成以降の作製工程のプラズマを用いた処理において、局所的なチャージング(チャージアップと言う)の緩和ができる場合がある。ただし、本発明の一態様はこれに限定されない。導電体205は、少なくとも導電体242aと、導電体242bとの間に位置する酸化物230と重畳すればよい。
 上記構成を有することで、第1のゲートとしての機能を有する導電体260の電界と、第2のゲートとしての機能を有する導電体205の電界によって、チャネル形成領域を電気的に取り囲むことができる。本明細書において、第1のゲート、および第2のゲートの電界によって、チャネル形成領域を電気的に取り囲むトランジスタの構造を、surrounded channel(S−channel)構造とよぶ。
 導電体205は、絶縁体216の開口の内壁に接して導電体205の下層膜が形成され、導電体205の下層膜の内側に導電体205の上層膜が形成されている。ここで、導電体205の上面の高さと、絶縁体216の上面の高さは同程度にできる。
 ここで、導電体205の下層膜は、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい)導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい)導電性材料を用いることが好ましい。なお、本明細書において、不純物、または酸素の拡散を抑制する機能とは、上記不純物、または上記酸素のいずれか一または、すべての拡散を抑制する機能とする。本明細書中、このような機能を有する導電体を、導電性バリア膜と呼ぶことがある。
 導電体205の下層膜が酸素の拡散を抑制する機能を持つことにより、導電体205の上層膜が酸化して導電率が低下することを防ぐことができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、チタン、窒化チタン、タンタル、窒化タンタル、ルテニウムまたは酸化ルテニウムなどを用いることが好ましい。従って、導電体205の下層膜としては、上記導電性材料を単層または積層とすればよい。これにより、水素、水などの不純物が、導電体205を通じて、トランジスタ200側に拡散するのを抑制することができる。本実施の形態では、導電体205aとして、窒化タンタルおよび窒化チタンを用いる。
 また、導電体205の上層膜は、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。本実施の形態では、導電体205の上層膜として、タングステンを用いる。
 ここで、酸化物半導体と、酸化物半導体の下層に位置する絶縁体、または導電体と、酸化物半導体の上層に位置する絶縁体、または導電体とを、大気開放を行わずに、異なる膜種を連続成膜することで、不純物(特に、水素、水)の濃度が低減された、実質的に高純度真性である酸化物半導体膜を成膜することができるので好ましい。
 例えば、複数の処理チャンバーを有する成膜装置を用いて、絶縁体216、および導電体205上に配置される、絶縁体222、絶縁体224、および酸化物230となる酸化膜を順に連続成膜すればよい。
 絶縁体214、絶縁体272、および絶縁体281は、水または水素などの不純物が、基板側から、または、上方からトランジスタ200に混入するのを抑制するバリア絶縁膜として機能することが好ましい。したがって、絶縁体214、絶縁体272、および絶縁体281は、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(N2O、NO、NO2など)、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい)絶縁性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい)絶縁性材料を用いることが好ましい。
 例えば、絶縁体214、および絶縁体281として窒化シリコンなどを用いることが好ましい。これにより、水または水素などの不純物が絶縁体214よりも基板側からトランジスタ200側に拡散するのを抑制することができる。または、絶縁体224などに含まれる酸素が、絶縁体214よりも基板側に、拡散するのを抑制することができる。
また、例えば、絶縁体272として、酸化アルミニウムなどを用いることができる。これにより、水または水素などの不純物が絶縁体272よりも上方に配置されている絶縁体280、または/および導電体246などからトランジスタ200側に拡散するのを抑制することができる。
 また、絶縁体214、および絶縁体281は、積層構造であってもよい。例えば、酸化アルミニウム膜と、窒化シリコン膜との積層構造を絶縁体214、および絶縁体281に用いると好適である。酸化アルミニウム膜によって、絶縁体214の下方に酸素を供給することができる。また、窒化シリコン膜によって、基板側からトランジスタ200側に拡散する水素、水などの不純物の拡散を抑制することができる。また、絶縁体281の下方に酸素を供給することができる。また、窒化シリコン膜によって外方からトランジスタ200側に拡散する水素、水などの不純物の拡散を抑制することができる。
 また、絶縁体216、および絶縁体280は、絶縁体214よりも誘電率が低いことが好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体216、および絶縁体280として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、または空孔を有する酸化シリコンなどを適宜用いればよい。
 絶縁体222、および絶縁体224は、ゲート絶縁体としての機能を有する。
 ここで、酸化物230と接する絶縁体224は、加熱により酸素を脱離することが好ましい。本明細書では、加熱により離脱する酸素を過剰酸素と呼ぶことがある。例えば、絶縁体224は、酸化シリコンまたは酸化窒化シリコンなどを適宜用いればよい。酸素を含む絶縁体を酸化物230に接して設けることにより、酸化物230中の酸素欠損を低減し、トランジスタ200の信頼性を向上させることができる。
 絶縁体224として、具体的には、加熱により一部の酸素が脱離する酸化物材料を用いることが好ましい。加熱により酸素を脱離する酸化物とは、TDS(Thermal Desorption Spectroscopy)分析にて、酸素分子の脱離量が1.0×1018molecules/cm以上、好ましくは1.0×1019molecules/cm以上、さらに好ましくは2.0×1019molecules/cm以上、または3.0×1020molecules/cm以上である酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下、または100℃以上400℃以下の範囲が好ましい。
 絶縁体222は、水または水素などの不純物が、基板側からトランジスタ200に混入するのを抑制するバリア絶縁膜として機能することが好ましい。例えば、絶縁体222は、絶縁体224より水素透過性が低いことが好ましい。絶縁体222、および絶縁体272によって、絶縁体224および酸化物230などを囲むことにより、外方から水または水素などの不純物がトランジスタ200に侵入することを抑制することができる。
 さらに、絶縁体222は、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい)ことが好ましい。例えば、絶縁体222は、絶縁体224より酸素透過性が低いことが好ましい。絶縁体222が、酸素や不純物の拡散を抑制する機能を有することで、酸化物230が有する酸素が、絶縁体222より下側へ拡散することを低減できるので、好ましい。また、導電体205が、絶縁体224や、酸化物230が有する酸素と反応することを抑制することができる。
 絶縁体222は、絶縁性材料であるアルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を用いるとよい。アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。このような材料を用いて絶縁体222を形成した場合、絶縁体222は、酸化物230からの酸素の放出や、トランジスタ200の周辺部から酸化物230への水素等の不純物の混入を抑制する層として機能する。
 または、これらの絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理してもよい。上記の絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。
 また、絶縁体222は、例えば、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO3)または(Ba,Sr)TiO3(BST)などのいわゆるhigh−k材料を含む絶縁体を単層または積層で用いてもよい。トランジスタの微細化、および高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁体として機能する絶縁体にhigh−k材料を用いることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。
 なお、絶縁体222、および絶縁体224が、2層以上の積層構造を有していてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。
 酸化物230は、酸化物半導体として機能する金属酸化物を用いることが好ましい。例えば、エネルギーギャップが2eV以上、好ましくは2.5eV以上のものを用いることが好ましい。このように、エネルギーギャップの大きい金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。このようなトランジスタを用いることで、低消費電力の半導体装置を提供できる。
 電子親和力または伝導帯下端のエネルギー準位Ecは、図13に示すように、真空準位Evacと価電子帯上端のエネルギーEvとの差であるイオン化ポテンシャルIpと、エネルギーギャップEgから求めることができる。イオン化ポテンシャルIpは、例えば、紫外線光電子分光分析(UPS:Ultraviolet Photoelectron Spectroscopy)装置を用いて測定することができる。エネルギーギャップEgは、例えば、分光エリプソメータを用いて測定することができる。
 絶縁体250は、ゲート絶縁体として機能する。絶縁体250は、酸化物230cの上面に接して配置することが好ましい。絶縁体250は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンを用いることができる。特に、酸化シリコン、および酸化窒化シリコンは熱に対し安定であるため好ましい。
 絶縁体224と同様に、絶縁体250は、加熱により酸素が放出される絶縁体を用いて形成することが好ましい。加熱により酸素が放出される絶縁体を、絶縁体250として、酸化物230cの上面に接して設けることにより、酸化物230bのチャネル形成領域に効果的に酸素を供給することができる。また、絶縁体224と同様に、絶縁体250中の水または水素などの不純物濃度が低減されていることが好ましい。絶縁体250の膜厚は、1nm以上20nm以下とするのが好ましい。
 また、絶縁体250と導電体260との間に金属酸化物を設けてもよい。当該金属酸化物は、絶縁体250から導電体260への酸素拡散を抑制することが好ましい。酸素の拡散を抑制する金属酸化物を設けることで、絶縁体250から導電体260への酸素の拡散が抑制される。つまり、酸化物230へ供給する酸素量の減少を抑制することができる。また、絶縁体250の酸素による導電体260の酸化を抑制することができる。
 また、当該金属酸化物は、ゲート絶縁体の一部としての機能を有する場合がある。したがって、絶縁体250に酸化シリコンや酸化窒化シリコンなどを用いる場合、当該金属酸化物は、比誘電率が高いhigh−k材料である金属酸化物を用いることが好ましい。ゲート絶縁体を、絶縁体250と当該金属酸化物との積層構造とすることで、熱に対して安定、かつ比誘電率の高い積層構造とすることができる。したがって、ゲート絶縁体の物理膜厚を保持したまま、トランジスタ動作時に印加するゲート電位の低減化が可能となる。また、ゲート絶縁体として機能する絶縁体の等価酸化膜厚(EOT)の低減が可能となる。
 具体的には、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、または、マグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。特に、アルミニウム、またはハフニウムの一方または双方の酸化物を含む絶縁体である、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。
 または、当該金属酸化物は、ゲートの一部としての機能を有する場合がある。この場合は、酸素を含む導電性材料をチャネル形成領域側に設けるとよい。酸素を含む導電性材料をチャネル形成領域側に設けることで、当該導電性材料から離脱した酸素がチャネル形成領域に供給されやすくなる。
 特に、ゲートとして機能する導電体として、チャネルが形成される金属酸化物に含まれる金属元素および酸素を含む導電性材料を用いることが好ましい。また、前述した金属元素および窒素を含む導電性材料を用いてもよい。また、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、シリコンを添加したインジウム錫酸化物を用いてもよい。また、窒素を含むインジウムガリウム亜鉛酸化物を用いてもよい。このような材料を用いることで、チャネルが形成される金属酸化物に含まれる水素を捕獲することができる場合がある。または、外方の絶縁体などから混入する水素を捕獲することができる場合がある。
 導電体260aは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(N2O、NO、NO2など)、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。
 また、導電体260aが酸素の拡散を抑制する機能を持つことにより、絶縁体250に含まれる酸素により、導電体260bが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、タンタル、窒化タンタル、ルテニウム、または酸化ルテニウムなどを用いることが好ましい。
 また、導電体260bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体260は、配線としても機能するため、導電性が高い導電体を用いることが好ましい。例えば、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。また、導電体260bは積層構造としてもよく、例えば、チタン、窒化チタンと上記導電性材料との積層構造としてもよい。
 絶縁体280は、例えば、絶縁体280として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、または空孔を有する酸化シリコンなどを有することが好ましい。特に、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため好ましい。特に、酸化シリコン、酸化窒化シリコン、空孔を有する酸化シリコンなどの材料は、加熱により脱離する酸素を含む領域を容易に形成することができるため好ましい。
 絶縁体280中の水または水素などの不純物濃度が低減されていることが好ましい。また、絶縁体280の上面は、平坦化されていてもよい。
 絶縁体281は、水または水素などの不純物が、上方から絶縁体280に混入するのを抑制するバリア絶縁膜として機能することが好ましい。絶縁体281としては、例えば、酸化アルミニウム、窒化シリコン、または窒化酸化シリコンなどの絶縁体を用いればよい。
 導電体240aおよび導電体240bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体240aおよび導電体240bは積層構造としてもよい。
 また、導電体240を積層構造とする場合、絶縁体281、絶縁体280、および絶縁体272と接する導電体には、水または水素などの不純物の透過を抑制する機能を有する導電性材料を用いることが好ましい。例えば、タンタル、窒化タンタル、チタン、窒化チタン、ルテニウム、または酸化ルテニウムなどを用いることが好ましい。また、水または水素などの不純物の透過を抑制する機能を有する導電性材料は、単層または積層で用いてもよい。当該導電性材料を用いることで、絶縁体280に添加された酸素が導電体240aおよび導電体240bに吸収されるのを防ぐことができる。また、絶縁体281より上層から水または水素などの不純物が、導電体240aおよび導電体240bを通じて酸化物230に混入するのを抑制することができる。
 絶縁体241aおよび絶縁体241bとしては、例えば、酸化アルミニウム、窒化シリコン、または窒化酸化シリコンなどの絶縁体を用いればよい。絶縁体241aおよび絶縁体241bは、絶縁体272、に接して設けられるので、絶縁体280などから水または水素などの不純物が、導電体240aおよび導電体240bを通じて酸化物230に混入するのを抑制することができる。また、絶縁体280に含まれる酸素が導電体240aおよび導電体240bに吸収されるのを防ぐことができる。
 また、導電体240aの上面、および導電体240bの上面に接して配線として機能する導電体246(導電体246a、および導電体246b)を配置してもよい。導電体246は、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、当該導電体は、積層構造としてもよく、例えば、チタン、窒化チタンと上記導電性材料との積層としてもよい。なお、当該導電体は、絶縁体に設けられた開口に埋め込むように形成してもよい。
<半導体装置の構成例2>
 ここでは、トランジスタ200と異なる構成のトランジスタ201を有する半導体装置の一例について説明する。図2A、図2B、および図2Cは、本発明の一態様に係るトランジスタ201、およびトランジスタ201周辺の上面図および断面図である。
 図2Aは、トランジスタ201を有する半導体装置の上面図である。また、図2B、および図2Cは、当該半導体装置の断面図である。ここで、図2Bは、図2AにA1−A2の一点鎖線で示す部位の断面図であり、トランジスタ201のチャネル長方向の断面図でもある。また、図2Cは、図2AにA3−A4の一点鎖線で示す部位の断面図であり、トランジスタ201のチャネル幅方向の断面図でもある。なお、図2Aの上面図では、図の明瞭化のために一部の要素を省いている。
[トランジスタ201]
 図2に示すように、トランジスタ201は、絶縁体214上の絶縁体216と、絶縁体216に埋め込まれるように配置された導電体205、絶縁体216上、および導電体205上の絶縁体222と、絶縁体222上の絶縁体224と、絶縁体224上の導電体242aおよび導電体242bと、導電体242aと導電体242bとの間に配置された酸化物230aと、酸化物230a上にあって導電体242aと導電体242bとの間に配置された酸化物230bと、導電体242a、導電体242b、および酸化物230b上の酸化物230cと、酸化物230c上の絶縁体250と、絶縁体250上の導電体260(導電体260a、および導電体260b)と、を有する。また、導電体242aの側面は、酸化物230aおよび酸化物230bの一方の側面と接する領域を有し、導電体242bの側面は、酸化物230aおよび酸化物230bの他方の側面と接する領域を有する。また、導電体242aの上面の高さ、導電体242bの上面の高さ、および酸化物230bの上面の高さは、それぞれ、概ね等しい。
 例えば、酸化物230a、酸化物230b、および酸化物230cとして、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、錫、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種)等の金属酸化物を用いるとよい。特に、元素Mは、アルミニウム、ガリウム、イットリウム、または錫を用いるとよい。また、酸化物230として、In−Ga酸化物、In−Zn酸化物を用いてもよい。
 また、酸化物半導体を用いたトランジスタは、酸化物半導体中のチャネルが形成される領域に不純物および酸素欠損が存在すると、電気特性が変動しやすく、信頼性が悪くなる場合がある。また、酸化物半導体中のチャネルが形成される領域に酸素欠損が含まれていると、トランジスタはノーマリーオン特性となりやすい。したがって、チャネルが形成される領域中の酸素欠損はできる限り低減されていることが好ましい。これにより、電気特性の変動を抑制し、安定した電気特性を有するとともに、信頼性を向上させたトランジスタを提供することができる。
 また、酸化物230a、および酸化物230bの両側面に接するように設けられ、ソースやドレインとして機能する導電体242(導電体242a、および導電体242b)としては、導電性酸化物を用いることが好ましい。特に、キャリアの生成が酸素欠損のみに依存せず、置換型の不純物ドナーによってキャリアを生成する導電性酸化物であることが好ましい。つまり、導電体242中の酸素欠損が過剰酸素によって修復されても、導電体242中のキャリア密度の低下を抑制することができる。従って、導電性酸化物は、酸素欠損が少ない状態でもキャリアが生成されると考えられるので、オン特性の高いトランジスタとすることができる。導電体242としては、錫、タングステン、チタン、またはシリコンのいずれか一、または複数と、インジウムを含むことが好ましい。たとえば、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、シリコンを添加したインジウム錫酸化物を用いてもよい。
 または、ガリウムを添加した酸化亜鉛、ニオブを添加した酸化チタンを用いても良い。
 また、導電体242の導電率は、酸化物230a、および酸化物230bの導電率よりも高いことが好ましい。また、導電体242のキャリア密度は、酸化物230aおよび酸化物230bのキャリア密度よりも高いことが好ましい。このような構成とすることで、酸化物230a、および酸化物230bはチャネル形成領域として機能し、導電体242は、ソースまたはドレインとして機能することができる。
 本発明の一態様であるトランジスタ201は、図2Bに示すように、チャネル形成領域として機能する酸化物230bの両側面をソースまたはドレインとして機能する導電体242で、挟む構成となっている。また、導電体242の上面の高さ、および酸化物230bの上面の高さは、概ね等しい。このような構成とすることで、酸化物230bのチャネル形成領域の上面とゲートとして機能する導電体260との最短距離が、導電体242と、導電体260との最短距離と概ね等しくなるので、寄生容量が小さいトランジスタを提供することができる。また、酸化物230bのチャネル形成領域と、導電体260との間には段差が形成されない、または僅かであるために、酸化物230bのチャネル形成領域上、および導電体242上の絶縁体250は段差をほとんど乗り越えずに設けることができるので絶縁体250の被覆性が良好となり、絶縁体250の絶縁耐圧が向上するので好ましい。
 また、図2Cに示すように、絶縁体224の底面を基準として、酸化物230aおよび酸化物230bと、導電体260とが、重ならない領域における導電体260の底面の高さは、酸化物230bの底面の高さより低い位置に配置されていることが好ましい。また、酸化物230bと、導電体260とが、重ならない領域における導電体260の底面の高さと、酸化物230bの底面の高さと、の差は、0nm以上100nm以下、好ましくは、3nm以上50nm以下、より好ましくは、5nm以上20nm以下とする。
 また、図2Cに示すように、ゲートとして機能する導電体260が、チャネル形成領域の酸化物230aおよび酸化物230bの側面および酸化物230bの上面を絶縁体250を介して覆う構成となっており、導電体260の電界をチャネル形成領域の酸化物230aおよび酸化物230b全体に作用させやすくなる。よって、トランジスタ201のオン電流を増大させ、周波数特性を向上させることができる。
 以上より、オン電流が大きいトランジスタを有する半導体装置を提供することができる。または、高い周波数特性を有するトランジスタを有する半導体装置を提供することができる。または、電気特性の変動を抑制し、安定した電気特性を有するとともに、信頼性を向上させた半導体装置を提供することができる。または、オフ電流が小さいトランジスタを有する半導体装置を提供することができる。
 酸化物230は、酸化物230aと、酸化物230a上の酸化物230bと、酸化物230b上の酸化物230cと、を有する。酸化物230b下に酸化物230aを有することで、酸化物230aよりも下方に形成された構造物から、酸化物230bへの不純物の拡散を抑制することができる。また、酸化物230b上に酸化物230cを有することで、酸化物230cよりも上方に形成された構造物から、酸化物230bへの不純物の拡散を抑制することができる。
 なお、酸化物230は、各金属原子の原子数比が異なる酸化物により、積層構造を有することが好ましい。具体的には、酸化物230aに用いる金属酸化物において、構成元素中の元素Mの原子数比が、酸化物230bに用いる金属酸化物における、構成元素中の元素Mの原子数比より、大きいことが好ましい。また、酸化物230aに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物230bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物230bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物230aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。また、酸化物230cは、酸化物230aまたは酸化物230bに用いることができる金属酸化物を、用いることができる。
 また、酸化物230bは、結晶性を有することが好ましい。例えば、後述するCAAC−OS(c−axis aligned crystalline oxide semiconductor)を用いることが好ましい。CAAC−OSなどの結晶性を有する酸化物は、不純物や欠陥(酸素欠損など)が少なく、結晶性の高い、緻密な構造を有している。よって、ソースまたはドレインによる、酸化物230bからの酸素の引き抜きを抑制することができる。これにより、熱処理を行っても、酸化物230bから酸素が引き抜かれることを低減できるので、トランジスタ201は、製造工程における高い温度(所謂サーマルバジェット)に対して安定である。
 また、酸化物230aおよび酸化物230cの伝導帯下端のエネルギーが、酸化物230bの伝導帯下端のエネルギーより高くなることが好ましい。また、言い換えると、酸化物230aおよび酸化物230cの電子親和力が、酸化物230bの電子親和力より小さいことが好ましい。
 ここで、酸化物230a、酸化物230b、および酸化物230cの接合部において、伝導帯下端のエネルギー準位はなだらかに変化する。換言すると、酸化物230a、酸化物230b、および酸化物230cの接合部における伝導帯下端のエネルギー準位は、連続的に変化または連続接合するともいうことができる。このようにするためには、酸化物230aと酸化物230bとの界面、および酸化物230bと酸化物230cとの界面において形成される混合層の欠陥準位密度を低くするとよい。
 具体的には、酸化物230aとして、In:Ga:Zn=1:3:4[原子数比]、または1:1:0.5[原子数比]の金属酸化物を用いればよい。また、酸化物230bとして、In:Ga:Zn=4:2:3[原子数比]、または3:1:2[原子数比]の金属酸化物を用いればよい。また、酸化物230cとして、In:Ga:Zn=1:3:4[原子数比]、In:Ga:Zn=4:2:3[原子数比]、Ga:Zn=2:1[原子数比]、またはGa:Zn=2:5[原子数比]の金属酸化物を用いればよい。また、酸化物230cを積層構造とする場合の具体例としては、In:Ga:Zn=4:2:3[原子数比]と、Ga:Zn=2:1[原子数比]との積層構造、In:Ga:Zn=4:2:3[原子数比]と、Ga:Zn=2:5[原子数比]との積層構造、In:Ga:Zn=4:2:3[原子数比]と、酸化ガリウムとの積層構造などが挙げられる。
 このとき、キャリアの主たる経路は酸化物230bとなる。酸化物230a、酸化物230cを上述の構成とすることで、酸化物230aと酸化物230bとの界面、および酸化物230bと酸化物230cとの界面における欠陥準位密度を低くすることができる。そのため、界面散乱によるキャリア伝導への影響が小さくなり、トランジスタ201は高いオン電流、および高い周波数特性を得ることができる。なお、酸化物230cを積層構造とした場合、上述の酸化物230bと、酸化物230cとの界面における欠陥準位密度を低くする効果に加え、酸化物230cが有する構成元素が、絶縁体250側に拡散するのを抑制することが期待される。より具体的には、酸化物230cを積層構造とし、積層構造の上方にInを含まない酸化物を位置させるため、絶縁体250側に拡散しうるInを抑制することができる。絶縁体250は、ゲート絶縁体として機能するため、Inが拡散した場合、トランジスタの特性不良となる。したがって、酸化物230cを積層構造とすることで、信頼性の高い半導体装置を提供することが可能となる。なお、その他の、トランジスタ201の構成、および効果などについては、トランジスタ200を参酌することができる。
<半導体装置の構成材料>
 以下では、半導体装置に用いることができる構成材料について説明する。
<基板>
 トランジスタ200およびトランジスタ201を形成する基板としては、例えば、絶縁体基板、半導体基板、または導電体基板を用いればよい。絶縁体基板としては、例えば、ガラス基板、石英基板、サファイア基板、安定化ジルコニア基板(イットリア安定化ジルコニア基板など)、樹脂基板などがある。また、半導体基板としては、例えば、シリコン、ゲルマニウムを材料とした半導体基板、または炭化シリコン、シリコンゲルマニウム、ヒ化ガリウム、リン化インジウム、酸化亜鉛、酸化ガリウムからなる化合物半導体基板などがある。さらには、前述の半導体基板内部に絶縁体領域を有する半導体基板、例えば、SOI(Silicon On Insulator)基板などがある。導電体基板としては、黒鉛基板、金属基板、合金基板、導電性樹脂基板などがある。または、金属の窒化物を有する基板、金属の酸化物を有する基板などがある。さらには、絶縁体基板に導電体または半導体が設けられた基板、半導体基板に導電体または絶縁体が設けられた基板、導電体基板に半導体または絶縁体が設けられた基板などがある。または、これらの基板に素子が設けられたものを用いてもよい。基板に設けられる素子としては、容量素子、抵抗素子、スイッチ素子、発光素子、記憶素子などがある。
<絶縁体>
 絶縁体としては、絶縁性を有する酸化物、窒化物、酸化窒化物、窒化酸化物、金属酸化物、金属酸化窒化物、金属窒化酸化物などがある。
 例えば、トランジスタの微細化、および高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁体として機能する絶縁体に、high−k材料を用いることで物理膜厚を保ちながら、トランジスタ動作時の低電圧化が可能となる。一方、層間膜として機能する絶縁体には、比誘電率が低い材料を用いることで、配線間に生じる寄生容量を低減することができる。したがって、絶縁体の機能に応じて、材料を選択するとよい。
 また、比誘電率の高い絶縁体としては、酸化ガリウム、酸化ハフニウム、酸化ジルコニウム、アルミニウムおよびハフニウムを有する酸化物、アルミニウムおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する酸化物、シリコンおよびハフニウムを有する酸化窒化物、またはシリコンおよびハフニウムを有する窒化物などがある。
 また、比誘電率が低い絶縁体としては、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコン、または樹脂などがある。
 また、酸化物半導体を用いたトランジスタは、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体で囲うことによって、トランジスタの電気特性を安定にすることができる。水素などの不純物および酸素の透過を抑制する機能を有する絶縁体としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウム、またはタンタルを含む絶縁体を、単層で、または積層で用いればよい。具体的には、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体として、酸化アルミニウム、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム、または酸化タンタルなどの金属酸化物、窒化アルミニウム、窒化アルミニウムチタン、窒化チタン、窒化酸化シリコンまたは窒化シリコンなどの金属窒化物を用いることができる。
 また、ゲート絶縁体として機能する絶縁体は、加熱により脱離する酸素を含む領域を有する絶縁体であることが好ましい。例えば、加熱により脱離する酸素を含む領域を有する酸化シリコンまたは酸化窒化シリコンを酸化物230と接する構造とすることで、酸化物230が有する酸素欠損を補償することができる。
<導電体>
 導電体としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンなどから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、窒化タンタル、窒化チタン、窒化タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、窒化タンタル、窒化チタン、窒化チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。
 また、上記の材料で形成される導電層を複数積層して用いてもよい。例えば、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、酸素を含む導電性材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。
 なお、トランジスタのチャネル形成領域に酸化物を用いる場合において、ゲートとして機能する導電体には、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造を用いることが好ましい。この場合は、酸素を含む導電性材料をチャネル形成領域側に設けるとよい。酸素を含む導電性材料をチャネル形成領域側に設けることで、当該導電性材料から離脱した酸素がチャネル形成領域に供給されやすくなる。
 特に、ゲートとして機能する導電体として、チャネルが形成される金属酸化物に含まれる金属元素および酸素を含む導電性材料を用いることが好ましい。また、前述した金属元素および窒素を含む導電性材料を用いてもよい。例えば、窒化チタン、窒化タンタルなどの窒素を含む導電性材料を用いてもよい。また、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、シリコンを添加したインジウム錫酸化物を用いてもよい。また、窒素を含むインジウムガリウム亜鉛酸化物を用いてもよい。このような材料を用いることで、チャネルが形成される金属酸化物に含まれる水素を捕獲することができる場合がある。または、外方の絶縁体などから混入する水素を捕獲することができる場合がある。
<金属酸化物>
 酸化物230として、酸化物半導体として機能する金属酸化物を用いることが好ましい。以下では、本発明に係る酸化物230に適用可能な金属酸化物について説明する。
 金属酸化物は、少なくともインジウムまたは亜鉛を含むことが好ましい。特に、インジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウムまたは錫などが含まれていることが好ましい。また、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれていてもよい。
 ここでは、金属酸化物が、インジウム、元素Mおよび亜鉛を有するIn−M−Zn酸化物である場合を考える。なお、元素Mは、アルミニウム、ガリウム、イットリウム、または錫などとする。そのほかの元素Mに適用可能な元素としては、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウムなどがある。ただし、元素Mとして、前述の元素を複数組み合わせても構わない場合がある。
 なお、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸窒化物(metal oxynitride)と呼称してもよい。
[金属酸化物の構造]
 酸化物半導体(金属酸化物)は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、CAAC−OS、多結晶酸化物半導体、nc−OS、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、および非晶質酸化物半導体などがある。
 CAAC−OSは、c軸配向性を有し、かつa−b面方向において複数のナノ結晶が連結し、歪みを有した結晶構造となっている。なお、歪みとは、複数のナノ結晶が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。
 ナノ結晶は、六角形を基本とするが、正六角形状とは限らず、非正六角形状である場合がある。また、歪みにおいて、五角形、および七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリーともいう)を確認することは難しい。すなわち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないことや、金属元素が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためである。
 また、CAAC−OSは、インジウム、および酸素を有する層(以下、In層)と、元素M、亜鉛、および酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能であり、(M,Zn)層の元素Mがインジウムと置換した場合、(In,M,Zn)層と表すこともできる。また、In層のインジウムが元素Mと置換した場合、(In,M)層と表すこともできる。
 CAAC−OSは結晶性の高い金属酸化物である。一方、CAAC−OSは、明確な結晶粒界を確認することが難しいため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、金属酸化物の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物や欠陥(酸素欠損(VO:oxygen vacancyともいう)など)の少ない金属酸化物ともいえる。したがって、CAAC−OSを有する金属酸化物は、物理的性質が安定する。そのため、CAAC−OSを有する金属酸化物は熱に強く、信頼性が高い。
 nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導体と区別が付かない場合がある。
 なお、インジウムと、ガリウムと、亜鉛と、を有する金属酸化物の一種である、インジウム−ガリウム−亜鉛酸化物(以下、IGZO)は、上述のナノ結晶とすることで安定な構造をとる場合がある。特に、IGZOは、大気中では結晶成長がし難い傾向があるため、大きな結晶(ここでは、数mmの結晶、または数cmの結晶)よりも小さな結晶(例えば、上述のナノ結晶)とする方が、構造的に安定となる場合がある。
 a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する金属酸化物である。a−like OSは、鬆または低密度領域を有する。すなわち、a−like OSは、nc−OSおよびCAAC−OSと比べて、結晶性が低い。
 酸化物半導体(金属酸化物)は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
[不純物]
 ここで、金属酸化物中における各不純物の影響について説明する。
 また、金属酸化物にアルカリ金属またはアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。したがって、アルカリ金属またはアルカリ土類金属が含まれている金属酸化物をチャネル形成領域に用いたトランジスタはノーマリーオン特性となりやすい。このため、金属酸化物中のアルカリ金属またはアルカリ土類金属の濃度を低減することが好ましい。具体的には、SIMSにより得られる金属酸化物中のアルカリ金属またはアルカリ土類金属の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
 また、金属酸化物に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。当該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている金属酸化物を用いたトランジスタは、ノーマリーオン特性となりやすい。
 このため、金属酸化物中の水素はできる限り低減されていることが好ましい。具体的には、金属酸化物において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満とする。不純物が十分に低減された金属酸化物をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
 トランジスタの半導体に用いる金属酸化物として、結晶性の高い薄膜を用いることが好ましい。該薄膜を用いることで、トランジスタの安定性または信頼性を向上させることができる。該薄膜として、例えば、単結晶金属酸化物の薄膜または多結晶金属酸化物の薄膜が挙げられる。しかしながら、単結晶金属酸化物の薄膜または多結晶金属酸化物の薄膜を基板上に形成するには、高温またはレーザー加熱の工程が必要とされる。よって、製造工程のコストが増加し、さらに、スループットも低下してしまう。
<半導体装置の作製方法>
 次に、図2に示す、本発明に係るトランジスタ201を有する半導体装置について、作製方法を図4乃至図12を用いて説明する。また、図4乃至図12において、各図の(A)は上面図を示す。また、各図の(B)は、(A)に示すA1−A2の一点鎖線で示す部位に対応する断面図であり、トランジスタ201のチャネル長方向の断面図でもある。また、各図の(C)は、(A)にA3−A4の一点鎖線で示す部位に対応する断面図であり、トランジスタ201のチャネル幅方向の断面図でもある。なお、各図の(A)の上面図では、図の明瞭化のために一部の要素を省いている。
 まず、基板(図示しない)を準備し、当該基板上に絶縁体214を成膜する。絶縁体214の成膜は、スパッタリング法、化学気相成長(CVD:Chemical Vapor Deposition)法、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法、パルスレーザ堆積(PLD:Pulsed Laser Deposition)法、またはALD(Atomic Layer Deposition)法などを用いて行うことができる。
 なお、CVD法は、プラズマを利用するプラズマCVD(PECVD:Plasma Enhanced CVD)法、熱を利用する熱CVD(TCVD:Thermal CVD)法、光を利用する光CVD(Photo CVD)法などに分類できる。さらに用いる原料ガスによって金属CVD(MCVD:Metal CVD)法、有機金属CVD(MOCVD:Metal Organic CVD)法に分けることができる。
 プラズマCVD法は、比較的低温で高品質の膜が得られる。また、熱CVD法は、プラズマを用いないため、被処理物へのプラズマダメージを小さくすることが可能な成膜方法である。例えば、半導体装置に含まれる配線、電極、素子(トランジスタ、容量素子など)などは、プラズマから電荷を受け取ることでチャージアップする場合がある。このとき、蓄積した電荷によって、半導体装置に含まれる配線、電極、素子などが破壊される場合がある。一方、プラズマを用いない熱CVD法の場合、こういったプラズマダメージが生じないため、半導体装置の歩留まりを高くすることができる。また、熱CVD法では、成膜中のプラズマダメージが生じないため、欠陥の少ない膜が得られる。
 また、ALD法は、原子の性質である自己制御性を利用し、一層ずつ原子を堆積することができるので、極薄の成膜が可能、アスペクト比の高い構造への成膜が可能、ピンホールなどの欠陥の少ない成膜が可能、被覆性に優れた成膜が可能、および低温での成膜が可能、などの効果がある。また、ALD法には、プラズマを利用した成膜方法であるPEALD(Plasma Enhanced ALD)法も含まれる。プラズマを利用することで、より低温での成膜が可能となり好ましい場合がある。なお、ALD法で用いるプリカーサには炭素などの不純物を含むものがある。このため、ALD法により設けられた膜は、他の成膜法により設けられた膜と比較して、炭素などの不純物を多く含む場合がある。なお、不純物の定量は、X線光電子分光法(XPS:X−ray Photoelectron Spectroscopy)を用いて行うことができる。
 CVD法およびALD法は、ターゲットなどから放出される粒子が堆積する成膜方法とは異なり、被処理物の表面における反応により膜が形成される成膜方法である。したがって、被処理物の形状の影響を受けにくく、良好な段差被覆性を有する成膜方法である。特に、ALD法は、優れた段差被覆性と、優れた厚さの均一性を有するため、アスペクト比の高い開口部の表面を被覆する場合などに好適である。ただし、ALD法は、比較的成膜速度が遅いため、成膜速度の速いCVD法などの他の成膜方法と組み合わせて用いることが好ましい場合もある。
 CVD法およびALD法は、原料ガスの流量比によって、得られる膜の組成を制御することができる。例えば、CVD法およびALD法では、原料ガスの流量比によって、任意の組成の膜を成膜することができる。また、例えば、CVD法およびALD法では、成膜しながら原料ガスの流量比を変化させることによって、組成が連続的に変化した膜を成膜することができる。原料ガスの流量比を変化させながら成膜する場合、複数の成膜室を用いて成膜する場合と比べて、搬送や圧力調整に掛かる時間を要さない分、成膜に掛かる時間を短くすることができる。したがって、半導体装置の生産性を高めることができる場合がある。
 本実施の形態では、絶縁体214として、CVD法によって窒化シリコンを成膜する。このように、絶縁体214として、窒化シリコンなどの銅が透過しにくい絶縁体を用いることにより、絶縁体214より下層(図示せず)の導電体に銅など拡散しやすい金属を用いても、当該金属が絶縁体214を介して上の層に拡散するのを抑制することができる。また、窒化シリコンのように水または水素などの不純物が透過しにくい絶縁体を用いることにより絶縁体214より下層からの水または水素などの不純物の拡散を抑制することができる。
 また、絶縁体214は2層構造としてもよい。例えば、窒化シリコン上に酸化アルミニウムを成膜してもよい。
 次に、絶縁体214上に絶縁体216を成膜する。絶縁体216の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。
 次に、絶縁体216に絶縁体214に達する開口を形成する。開口とは、例えば、溝やスリットなども含まれる。また、開口が形成された領域を指して開口部とする場合がある。開口の形成はウェットエッチングを用いてもよいが、ドライエッチングを用いるほうが微細加工には好ましい。また、絶縁体214は、絶縁体216をエッチングして溝を形成する際のエッチングストッパ膜として機能する絶縁体を選択することが好ましい。例えば、溝を形成する絶縁体216に酸化シリコン膜を用いた場合は、絶縁体214は窒化シリコン膜、酸化アルミニウム膜、酸化ハフニウム膜を用いるとよい。
 開口の形成後に、導電体205となる導電膜を成膜する。該導電膜は、酸素の透過を抑制する機能を有する導電体を含むことが望ましい。たとえば、窒化タンタル、窒化タングステン、窒化チタンなどを用いることができる。またはタンタル、タングステン、チタン、モリブデン、アルミニウム、銅、モリブデンタングステン合金との積層膜とすることができる。導電体205となる導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。
 本実施の形態では、導電体205となる導電膜は、多層構造とする。まず、スパッタリング法によって窒化タンタルを成膜し、当該窒化タンタルの上に窒化チタンを積層する。このような金属窒化物を導電体205となる導電膜の下層に用いることにより、後述する導電体205となる導電膜の上層の導電膜として銅などの拡散しやすい金属を用いても、当該金属が導電体205から外に拡散するのを防ぐことができる。
 次に、導電体205となる導電膜の上層の導電膜を成膜する。該導電膜の成膜は、メッキ法、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。本実施の形態では、導電体205となる導電膜の上層の導電膜として、銅などの低抵抗導電性材料を成膜する。
 次に、CMP処理(Chemical Mechanical Polishing)を行うことで、導電体205となる導電膜の上層、ならびに導電体205となる導電膜の下層の一部を除去し、絶縁体216を露出する。その結果、開口部のみに、導電体205となる導電膜が残存する。これにより、上面が平坦な、導電体205を形成することができる(図4参照)。なお、当該CMP処理により、絶縁体216の一部が除去される場合がある。
 ここからは、上記と異なる導電体205の形成方法について以下に説明する。
 絶縁体214上に、導電体205となる導電膜を成膜する。導電体205となる導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。また、導電体205となる導電膜は、多層膜とすることができる。本実施の形態では、導電体205となる導電膜としてタングステンを成膜する。
 次に、リソグラフィー法を用いて、導電体205となる導電膜を加工し、導電体205を形成する。
 なお、リソグラフィー法では、まず、マスクを介してレジストを露光する。次に、露光された領域を、現像液を用いて除去または残存させてレジストマスクを形成する。次に、当該レジストマスクを介してエッチング処理することで導電体、半導体または絶縁体などを所望の形状に加工することができる。例えば、KrFエキシマレーザ光、ArFエキシマレーザ光、EUV(Extreme Ultraviolet)光などを用いて、レジストを露光することでレジストマスクを形成すればよい。また、基板と投影レンズとの間に液体(例えば水)を満たして露光する、液浸技術を用いてもよい。また、前述した光に代えて、電子ビームやイオンビームを用いてもよい。なお、電子ビームやイオンビームを用いる場合には、マスクは不要となる。なお、レジストマスクの除去には、アッシングなどのドライエッチング処理を行う、ウェットエッチング処理を行う、ドライエッチング処理後にウェットエッチング処理を行う、またはウェットエッチング処理後にドライエッチング処理を行うことができる。
 また、レジストマスクの代わりに絶縁体や導電体からなるハードマスクを用いてもよい。ハードマスクを用いる場合、導電体205となる導電膜上にハードマスク材料となる絶縁膜や導電膜を形成し、その上にレジストマスクを形成し、ハードマスク材料をエッチングすることで所望の形状のハードマスクを形成することができる。導電体205となる導電膜のエッチングは、レジストマスクを除去してから行っても良いし、レジストマスクを残したまま行っても良い。後者の場合、エッチング中にレジストマスクが消失することがある。導電体205となる導電膜のエッチング後にハードマスクをエッチングにより除去しても良い。一方、ハードマスクの材料が後工程に影響が無い、あるいは後工程で利用できる場合、必ずしもハードマスクを除去する必要は無い。
 ドライエッチング装置としては、平行平板型電極を有する容量結合型プラズマ(CCP:Capacitively Coupled Plasma)エッチング装置を用いることができる。平行平板型電極を有する容量結合型プラズマエッチング装置は、平行平板型電極の一方の電極に高周波電源を印加する構成でもよい。または平行平板型電極の一方の電極に複数の異なった高周波電源を印加する構成でもよい。または平行平板型電極それぞれに同じ周波数の高周波電源を印加する構成でもよい。または平行平板型電極それぞれに周波数の異なる高周波電源を印加する構成でもよい。または高密度プラズマ源を有するドライエッチング装置を用いることができる。高密度プラズマ源を有するドライエッチング装置は、例えば、誘導結合型プラズマ(ICP:Inductively Coupled Plasma)エッチング装置などを用いることができる。
 次に、絶縁体214上、導電体205上に絶縁体216となる絶縁膜を成膜する。絶縁体216となる絶縁膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。本実施の形態では、絶縁体216となる絶縁膜として、CVD法によって酸化シリコンを成膜する。
 ここで、絶縁体216となる絶縁膜の膜厚は、導電体205の膜厚以上とすることが好ましい。例えば、導電体205の膜厚を1とすると、絶縁体216となる絶縁膜の膜厚は、1以上3以下とする。本実施の形態では、導電体205の膜厚を150nmとし、絶縁体216となる絶縁膜の膜厚を350nmとする。
 次に、絶縁体216となる絶縁膜にCMP処理を行うことで、絶縁体216となる絶縁膜の一部を除去し、導電体205の表面を露出させる。これにより、上面が平坦な、導電体205と、絶縁体216を形成することができる。以上が、導電体205の異なる形成方法である。
 次に、絶縁体216、および導電体205上に絶縁体222を成膜する。絶縁体222として、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を成膜するとよい。なお、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体は、酸素、水素、および水に対するバリア性を有する。絶縁体222が、水素および水に対するバリア性を有することで、トランジスタ201周辺に設けられた構造体に含まれる水素、および水が、絶縁体222を通じてトランジスタ201の内側へ拡散することが抑制され、酸化物230a、酸化物230b、および酸化物230cの酸素欠損の生成を抑制することができる。
 絶縁体222の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。
 次に、絶縁体222上に絶縁体224を成膜する。絶縁体224の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。
 続いて、加熱処理を行うことが好ましい。加熱処理は、250℃以上650℃以下、好ましくは300℃以上500℃以下、さらに好ましくは320℃以上450℃以下で行えばよい。なお、加熱処理は、窒素または不活性ガス雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。また、加熱処理は減圧状態で行ってもよい。または、加熱処理は、窒素または不活性ガス雰囲気で加熱処理した後に、脱離した酸素を補うために酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理を行ってもよい。
 本実施の形態では、窒素雰囲気にて400℃の温度で1時間の処理を行った後に、連続して酸素雰囲気にて400℃の温度で1時間の処理を行う。当該加熱処理によって、絶縁体224に含まれる水、水素などの不純物を除去することができる。
 また、加熱処理は、絶縁体222の成膜後に行ってもよい。当該加熱処理は、上述した加熱処理条件を用いることができる。
 ここで、絶縁体224に過剰酸素領域を形成するために、減圧状態で酸素を含むプラズマ処理を行ってもよい。酸素を含むプラズマ処理は、例えばマイクロ波を用いた高密度プラズマを発生させる電源を有する装置を用いることが好ましい。または、基板側にRF(Radio Frequency)を印加する電源を有してもよい。高密度プラズマを用いることより、高密度の酸素ラジカルを生成することができ、基板側にRFを印加することで、高密度プラズマによって生成された酸素ラジカルを効率よく絶縁体224内に導くことができる。または、この装置を用いて不活性ガスを含むプラズマ処理を行った後に、脱離した酸素を補うために酸素を含むプラズマ処理を行ってもよい。なお、当該プラズマ処理の条件を適宜選択することにより、絶縁体224に含まれる水、水素などの不純物を除去することができる。その場合、加熱処理は行わなくてもよい。
 ここで、絶縁体224上に、例えば、スパッタリング法によって、酸化アルミニウムを成膜し、該酸化アルミニウムを絶縁体224に達するまで、CMPを行ってもよい。当該CMPを行うことで絶縁体224表面の平坦化および絶縁体224表面の平滑化を行うことができる。当該酸化アルミニウムを絶縁体224上に配置してCMPを行うことで、CMPの終点検出が容易となる。また、CMPによって、絶縁体224の一部が研磨されて、絶縁体224の膜厚が薄くなることがあるが、絶縁体224の成膜時に膜厚を調整すればよい。絶縁体224表面の平坦化および平滑化を行うことで、後に成膜する酸化物の被覆率の悪化を防止し、半導体装置の歩留りの低下を防ぐことができる場合がある。また、絶縁体224上に、スパッタリング法によって、酸化アルミニウムを成膜することにより、絶縁体224に酸素を添加することができるので好ましい。
 次に、絶縁体224上に、酸化膜230A1、酸化膜230B1を順に成膜する(図4参照)。なお、上記酸化膜は、大気環境にさらさずに連続して成膜することが好ましい。大気開放せずに成膜することで、酸化膜230A1、および酸化膜230B1上に大気環境からの不純物または水分が付着することを防ぐことができ、酸化膜230A1と酸化膜230B1との界面近傍を清浄に保つことができる。
 酸化膜230A1および、酸化膜230B1の成膜はスパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。
 例えば、酸化膜230A1、および酸化膜230B1をスパッタリング法によって成膜する場合は、スパッタリングガスとして酸素、または、酸素と希ガスの混合ガスを用いる。スパッタリングガスに含まれる酸素の割合を高めることで、成膜される酸化膜中の過剰酸素を増やすことができる。また、上記の酸化膜をスパッタリング法によって成膜する場合は、上記のIn−M−Zn酸化物ターゲットを用いることができる。
 特に、酸化膜230A1の成膜時に、スパッタリングガスに含まれる酸素の一部が絶縁体224に供給される場合がある。したがって、酸化膜230A1のスパッタリングガスに含まれる酸素の割合は70%以上、好ましくは80%以上、より好ましくは100%とすればよい。
 また、酸化膜230B1をスパッタリング法で形成する場合、スパッタリングガスに含まれる酸素の割合を1%以上30%以下、好ましくは5%以上20%以下として成膜すると、酸素欠乏型の酸化物半導体が形成される。酸素欠乏型の酸化物半導体をチャネル形成領域に用いたトランジスタは、比較的高い電界効果移動度が得られる。または、スパッタリングガスに含まれる酸素の割合が70%以上、好ましくは80%以上、より好ましくは100%として成膜してもよい。この場合、スパッタリングガスに含まれる酸素の一部が酸化膜230A1に供給される場合があり好ましい。
 本実施の形態では、酸化膜230A1として、スパッタリング法によって、In:Ga:Zn=1:1:0.5[原子数比](2:2:1[原子数比])、あるいは1:3:4[原子数比]のターゲットを用いて成膜する。また、酸化膜230B1として、スパッタリング法によって、In:Ga:Zn=4:2:4.1[原子数比]、あるいは1:1:1[原子数比]のターゲットを用いて成膜する。なお、酸化膜230A1、および酸化膜230B1は、成膜条件、および原子数比を適宜選択することで、酸化物230a、および酸化物230bに求める特性に合わせて形成するとよい。
 次に、加熱処理を行ってもよい。加熱処理は、上述した加熱処理条件を用いることができる。加熱処理によって、酸化膜230A1、および酸化膜230B1中の水、水素などの不純物を除去することができる。本実施の形態では、窒素雰囲気にて400℃の温度で1時間の処理を行った後に、連続して酸素雰囲気にて400℃の温度で1時間の処理を行う。
 次に、ハードマスク244となる膜を成膜する。ハードマスク244となる膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。ハードマスク244となる膜としては、以降の工程において、酸化膜230A1および酸化膜230B1を加工する際に、ハードマスク244がエッチングされにくい膜が好ましい。例えば、酸化シリコン、酸化窒化シリコン、窒化シリコン、窒化酸化シリコン、酸化アルミニウム、酸化ハフニウム、タングステン、モリブデン、アルミニウム、チタン、窒化チタン、タンタル、窒化タンタルなどを用いることができる。
 次に、リソグラフィー法によって、ハードマスク244となる膜を加工し、ハードマスク244を形成する。次に、ハードマスク244をエッチングマスクとして、酸化膜230A1および酸化膜230B1を加工して、酸化物230A2および酸化物230B2を形成する。なお、当該工程において、絶縁体224の酸化膜230A2と重ならない領域の膜厚が薄くなることがある(図5参照)。
 次に、絶縁体224、およびハードマスク244を覆うように導電膜242Aを成膜する(図6参照)。導電膜242Aの成膜はスパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。導電膜242Aの成膜は、垂直方向の成膜速度より、水平方向の成膜速度の方が小さいことが好ましい。垂直方向の成膜速度を1とすると水平方向の成膜速度は、0.5以下が好ましい。導電膜242Aの成膜は、例えば、基板に電位を与えながら成膜するバイアススパッタリング法、基板とターゲットの間に穴の開いたシールド版(コリメータ)を挿入し、成膜方向を制御するコリメートスパッタリング法、または、基板とターゲットとの距離が長い、ロングスロースパッタリング法などを用いることができる。
 また、導電膜242Aとしては、錫、タングステン、チタン、またはシリコンのいずれか一、または複数と、インジウムを含むことが好ましい。たとえば、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、シリコンを添加したインジウム錫酸化物を用いてもよい。または、ガリウムを添加した酸化亜鉛、ニオブを添加した酸化チタンを用いても良い。本実施の形態では、インジウム錫酸化物を用いる。
 次に、導電膜242Aの一部を等方的にエッチング(等方性エッチング)する。本エッチングは、導電体242Bの上面と、酸化物232B2の上面とが概ね同じ高さになり、ハードマスク244の側面の導電膜242Aは除去されるように行う。これによって、絶縁体224上に導電体242Bが形成され、ハードマスク244上に導電体242Cが形成される(図7参照)。本エッチングとして、ドライエッチング法または、ウェットエッチング法を用いることができる。
 次に、ハードマスク244を側面方向からエッチングを行う。本エッチングは、ハードマスク244のエッチング速度に比較して、導電体242Bのエッチングが殆どされないほど、導電体242Bエッチング速度が低い条件であることが好ましい。図8に、ハードマスク244のエッチング途中を示す。次に、ハードマスク244を全てエッチングすることで、ハードマスク上の導電体242Cはリフトオフされる。また、酸化物230B2の上面の高さと、導電体242Bの上面の高さは概ね等しい(図9参照)。
 次に、リソグラフィー法によって、酸化物230A2、酸化物230B2、および導電体242Bを加工し、酸化物230a、酸化物230c、導電体242a、および導電体242bを形成する。ここで、酸化物230a、酸化物230b、導電体242a、および導電体242bは、少なくとも一部が導電体205と重なるように形成する。また、当該工程において、絶縁体224の酸化物230a、と重ならない領域の膜厚が薄くなることがある。また、絶縁体224の酸化物230a、導電体242a、および導電体242bと重ならない領域の膜厚が薄くなることがある(図10参照)。
 次に、第1の加熱処理を行っても良い。第1の加熱処理は、酸素を含む雰囲気下で行うと好適である。または、第1の加熱処理は、減圧下で行い、大気に暴露することなく、連続して酸化物230cとなる酸化膜を成膜してもよい。このような処理を行うことによって、酸化物230bの表面などに吸着している水分および水素を除去し、さらに酸化物230aおよび酸化物230b中の水分濃度および水素濃度を低減させることができる。第1の加熱処理の温度は、100℃以上400℃以下が好ましく、さらに好ましくは150℃以上350℃以下である。本実施の形態では、第1の加熱処理の温度を200℃とし、減圧下で行う。
 次に、酸化物230cとなる酸化膜を成膜する(図11参照)。酸化物230cとなる酸化膜の成膜はスパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。酸化物230cとなる酸化膜として、Inに対するGaの原子数比が、酸化物230bのInに対するGaの原子数比より大きいことが好ましい。本実施の形態では、酸化物230cとなる酸化膜として、スパッタリング法によって、In:Ga:Zn=1:3:4[原子数比]のターゲットを用いて成膜する。
 なお、酸化物230cとなる酸化膜は、積層としてもよい。例えば、スパッタリング法によって、In:Ga:Zn=4:2:4.1[原子数比]のターゲットを用いて成膜して、連続してIn:Ga:Zn=1:3:4[原子数比]のターゲットを用いて成膜してもよい。
 特に、酸化物230cとなる酸化膜の成膜時に、スパッタリングガスに含まれる酸素の一部が酸化物230aおよび酸化物230bに供給される場合がある。したがって、酸化物230cとなる酸化膜のスパッタリングガスに含まれる酸素の割合は70%以上、好ましくは80%以上、より好ましくは100%とすればよい。
 次に、第2の加熱処理を行っても良い。第2の加熱処理は、減圧下で行い、大気に暴露することなく、連続して絶縁体250となる絶縁膜を成膜してもよい。このような処理を行うことによって、酸化物230cとなる酸化膜の表面などに吸着している水分および水素を除去し、さらに酸化物230a、酸化物230bおよび酸化物230cとなる酸化膜中の水分濃度および水素濃度を低減させることができる。第2の加熱処理の温度は、100℃以上400℃以下が好ましい。本実施の形態では、第2の加熱処理の温度を200℃とする。
 次に、絶縁体250となる絶縁膜を成膜する(図11参照)。絶縁体250となる絶縁膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて成膜することができる。絶縁体250となる絶縁膜として、CVD法により、酸化窒化シリコンを成膜することが好ましい。なお、絶縁体250となる絶縁膜を成膜する際の成膜温度は、250℃以上450℃未満、特に350℃前後とすることが好ましい。絶縁体250となる絶縁膜を、350℃で成膜することで、不純物が少ない絶縁体を成膜することができる。
 次に、導電体260aおよび導電体260bとなる導電膜を成膜する。導電体260aおよび導電体260bとなる導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。例えば、CVD法を用いることが好ましい。本実施の形態では、ALD法を用いて、導電体260aとなる導電膜を成膜し、CVD法を用いて導電体260bとなる導電膜を成膜する(図11参照)。
 次にリソグラフィー法によって、酸化物230cとなる酸化膜、絶縁体250となる絶縁膜、導電体260aとなる導電膜、および導電体260bとなる導電膜を加工し、酸化物230c、絶縁体250、導電体260(導電体260aおよび導電体260b)を形成する。ここで、導電体260は、少なくとも一部が導電体205と重なるように形成する。(図11参照)。
 次に、第3の加熱処理を行ってもよい。第3の加熱処理は、窒素雰囲気または、酸素が含まれる雰囲気で行うことができる。好ましくは、第3の加熱処理として、窒素と酸素とが含まれる雰囲気下で行うと好適である。窒素と酸素とが含まれる雰囲気下で行う場合、酸素の割合は、窒素と酸素の合計の5%以上20%以下とすることが好ましい。また、第3の加熱処理の温度は、好ましくは、300℃以上450℃以下、より好ましくは、300℃以上400℃以下である。代表的には、350℃、またはその近傍の温度が好適である。また、加熱処理時間は、100時間以下、好ましくは、1時間以上48時間以下である。代表的には、24時間、またはその近傍の処理時間が好適である。該加熱処理を行うことで、酸化物230、絶縁体250および絶縁体280中の水分濃度および水素濃度を低減させ、酸化物230のチャネル形成領域のキャリア密度を低減することができる。本実施の形態では、窒素雰囲気にて、350℃の温度で、24時間の加熱処理を行う。なお、第3の加熱処理によって、導電体260が酸化されない条件で実施するのが好ましい。
 次に絶縁体224、酸化物230a、酸化物230b、導電体242a、導電体242bおよび導電体260を覆って、絶縁体272を成膜する(図11参照)。
 絶縁体272の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。絶縁体272は、酸素の透過を抑制する機能を有する絶縁膜を用いることが好ましい。例えば、スパッタリング法またはALD法によって、酸化アルミニウム、窒化シリコン、酸化シリコン、または、酸化ガリウムを成膜してもよい。絶縁体272は2層構造としてもよい。例えば、スパッタリング法によって、酸化アルミニウムを成膜し、次に、ALD法によって酸化アルミニウムを成膜してもよい。この様な構成とすることで、スパッタリング法によって成膜された酸化アルミニウムにピンホールまたはボイドなどの欠陥が発生しても、被覆性のすぐれたALD法によって成膜された酸化アルミニウムによって、欠陥を塞ぐことができて好ましい。
 次に、絶縁体272上に、絶縁体280となる絶縁膜を成膜する。絶縁体280となる絶縁膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。次に、絶縁体280となる絶縁膜にCMP処理を行い、上面が平坦な絶縁体280を形成する(図12参照)。
 次に、第4の加熱処理を行っても良い。第4の加熱処理は、減圧下で行い、大気に暴露することなく、絶縁体280上に、絶縁体281となる絶縁膜を形成すると好ましい。このような処理を行うことによって、絶縁体280表面などに吸着している水分および水素を除去することができるので好ましい。絶縁体281となる絶縁膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。絶縁体281となる絶縁膜としては、例えば、スパッタリング法によって、酸化アルミニウムを成膜することが好ましい。また、絶縁体281は2層構造としてもよい。例えば、スパッタリング法によって、酸化アルミニウムを成膜し、次に、スパッタリング法によって、窒化シリコンを成膜してもよい。このように絶縁体281を配置することによって、外方から水または水素などの不純物が絶縁体281を介してトランジスタ201へ拡散することを抑制できる。(図12参照)。
 次に、第5の加熱処理を行ってもよい。本実施の形態では、窒素雰囲気にて400℃の温度で1時間の処理を行う。該加熱処理によって、絶縁体281の成膜によって添加された酸素を絶縁体280へ注入することができる。また、該酸素は、酸化物230cを介して、酸化物230a、および酸化物230bへ注入することができる。
 次に、絶縁体272、絶縁体280、および絶縁体281に、導電体242aおよび導電体242bに達する開口を形成する(図2参照)。当該開口の形成は、リソグラフィー法を用いて行えばよい。
 次に、絶縁体241となる絶縁膜を成膜し、当該絶縁膜を異方性エッチングして絶縁体241を形成する(図2参照)。当該導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。絶縁体241となる絶縁膜としては、酸素の透過を抑制する機能を有する絶縁膜を用いることが好ましい。例えば、ALD法によって、酸化アルミニウムまたは窒化シリコンを成膜することが好ましい。また、異方性エッチングは、例えばドライエッチング法などを行えばよい。開口の側壁部をこのような構成とすることで、外方からの酸素の透過を抑制し、次に形成する導電体240aおよび導電体240bの酸化を防止することができる。また、導電体240aおよび導電体240bから、水、水素などの不純物が外部に拡散することを防ぐことができる。
 次に、導電体240aおよび導電体240bとなる導電膜を成膜する。導電体240aおよび導電体240bとなる導電膜は、水、水素など不純物の透過を抑制する機能を有する導電体を含む積層構造とすることが望ましい。たとえば、窒化タンタル、窒化チタンなどと、タングステン、モリブデン、銅など、と、の積層とすることができる。導電体240となる導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。
 次に、CMP処理を行うことで、導電体240aおよび導電体240bとなる導電膜の一部を除去し、絶縁体281を露出する。その結果、上記開口のみに、当該導電膜が残存することで上面が平坦な導電体240aおよび導電体240bを形成することができる(図2参照)。なお、当該CMP処理により、絶縁体281の一部が除去される場合がある。
 次に、導電体246となる導電膜を成膜する。導電体246となる導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。
 次に、導電体246となる導電膜をリソグラフィー法によって加工し、導電体240aの上面と接する導電体246aおよび導電体240bの上面と接する導電体246bを形成する(図2参照)。
 以上により、図2に示すトランジスタ201を有する半導体装置を作製することができる。
<半導体装置の変形例>
 以下では、図3を用いて、先の<半導体装置の構成例1>で示したものとは異なる、本発明の一態様に係るトランジスタ200を有する半導体装置の一例について説明する。
 図3Aは、トランジスタ200を有する半導体装置の上面図である。また、図3B、および図3Cは、当該半導体装置の断面図である。ここで、図3Bは、図3AにA1−A2の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル長方向の断面図でもある。また、図3Cは、図3AにA3−A4の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。なお、図3Aの上面図では、図の明瞭化のために一部の要素を省いている。
 なお、図3に示す半導体装置において、<半導体装置の構成例1>に示した半導体装置(図1参照)を構成する構造と同機能を有する構造には、同符号を付記する。
 以下、トランジスタ200の構成について、それぞれ図3を用いて説明する。なお、本項目においても、トランジスタ200の構成材料については<半導体装置の構成例1>で詳細に説明した材料を用いることができる。
[トランジスタ200]
 図3に示すように、トランジスタ200は、絶縁体214上の絶縁体216と、絶縁体216に埋め込まれるように配置された導電体205、絶縁体216上、および導電体205上の絶縁体222と、絶縁体222上の絶縁体224と、絶縁体224上の酸化物230と、酸化物230上の導電体242aおよび導電体242bと、導電体242a、導電体242b、および酸化物230上の絶縁体250と、絶縁体250上の導電体260(導電体260a、および導電体260b)と、を有する。また、導電体242aの側面、および導電体242aの底面は、酸化物230と接する領域を有し、導電体242bの側面、および導電体242bの底面は、酸化物230と接する領域を有する。また、導電体242aの上面の高さ、導電体242bの上面の高さ、および酸化物230の上面の高さは、それぞれ、概ね等しい。
 図3に示す半導体装置は、<半導体装置の構成例1>に示した半導体装置(図1参照)とは、酸化物230の形状が異なる。酸化物230となる酸化膜をリソグラフィー法によって形成する工程において、酸化物230となる酸化膜を完全に除去せずにハーフエッチングとすることで、このような形状の酸化物230を形成できる。このように、ソースまたはドレインとして機能する導電体242の底面が酸化物230と接する構成とすることで、トランジスタ200の短チャネル効果を抑制することができる場合があるので好ましい。その他の構成、効果については、図1に示す半導体装置を参酌することができる。
 以上、本実施の形態に示す構成、構造、方法などは、他の実施の形態および他の実施例に示す構成、構造、方法などと適宜組み合わせて用いることができる。
(実施の形態2)
 本実施の形態では、半導体装置の一形態を、図14を用いて説明する。
[記憶装置]
 本発明の一態様である半導体装置(記憶装置)の一例を図14に示す。本発明の一態様の半導体装置は、トランジスタ200、トランジスタ300、および容量素子100を有し、トランジスタ200はトランジスタ300の上方に設けられ、容量素子100はトランジスタ300、およびトランジスタ200の上方に設けられている。なお、トランジスタ200として、先の実施の形態で説明したトランジスタ200、およびトランジスタ201を用いることができる。
 トランジスタ200は、酸化物半導体を有する半導体層にチャネルが形成されるトランジスタである。トランジスタ200は、オフ電流が小さいため、これを記憶装置に用いることにより長期にわたり記憶内容を保持することが可能である。つまり、リフレッシュ動作を必要としない、あるいは、リフレッシュ動作の頻度が極めて少ないため、記憶装置の消費電力を十分に低減することができる。
 図14に示す半導体装置において、配線1001はトランジスタ300のソースと電気的に接続され、配線1002はトランジスタ300のドレインと電気的に接続されている。また、配線1003はトランジスタ200のソースおよびドレインの一方と電気的に接続され、配線1004はトランジスタ200の第1のゲートと電気的に接続され、配線1006はトランジスタ200の第2のゲートと電気的に接続されている。そして、トランジスタ300のゲート、およびトランジスタ200のソースおよびドレインの他方は、容量素子100の電極の一方と電気的に接続され、配線1005は容量素子100の電極の他方と電気的に接続されている。
 また、図14に示す記憶装置は、マトリクス状に配置することで、メモリセルアレイを構成することができる。
<トランジスタ300>
 トランジスタ300は、基板311上に設けられ、ゲートとして機能する導電体316と、ゲート絶縁体として機能する絶縁体315と、基板311の一部からなる半導体領域313と、ソースまたはドレインとして機能する低抵抗領域314aおよび低抵抗領域314bと、を有する。トランジスタ300は、pチャネル型、あるいはnチャネル型のいずれでもよい。
 ここで、図14に示すトランジスタ300はチャネルが形成される半導体領域313(基板311の一部)が凸形状を有する。また、半導体領域313の側面および上面を、絶縁体315を介して、導電体316が覆うように設けられている。なお、導電体316は仕事関数を調整する材料を用いてもよい。このようなトランジスタ300は半導体基板の凸部を利用していることからFIN型トランジスタとも呼ばれる。なお、凸部の上部に接して、凸部を形成するためのマスクとして機能する絶縁体を有していてもよい。また、ここでは半導体基板の一部を加工して凸部を形成する場合を示したが、SOI基板を加工して凸形状を有する半導体膜を形成してもよい。
 なお、図14に示すトランジスタ300は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。
<容量素子100>
 容量素子100は、トランジスタ200の上方に設けられる。容量素子100は、第1の電極として機能する導電体110と、第2の電極として機能する導電体120、および誘電体として機能する絶縁体130とを有する。
 また、例えば、導電体246上に設けた導電体112と、導電体110は、同時に形成することができる。なお、導電体112は、容量素子100、トランジスタ200、またはトランジスタ300と電気的に接続するプラグ、または配線としての機能を有する。
 図14では、導電体112、および導電体110は単層構造を示したが、当該構成に限定されず、2層以上の積層構造でもよい。例えば、バリア性を有する導電体と導電性が高い導電体との間に、バリア性を有する導電体、および導電性が高い導電体に対して密着性が高い導電体を形成してもよい。
 また、絶縁体130は、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウム、酸化ハフニウム、酸化窒化ハフニウム、窒化酸化ハフニウム、窒化ハフニウムなどを用いればよく、積層または単層で設けることができる。
 例えば、絶縁体130には、酸化窒化シリコンなどの絶縁耐力が大きい材料と、高誘電率(high−k)材料との積層構造を用いることが好ましい。当該構成により、容量素子100は、高誘電率(high−k)の絶縁体を有することで、十分な容量を確保でき、絶縁耐力が大きい絶縁体を有することで、絶縁耐力が向上し、容量素子100の静電破壊を抑制することができる。
 なお、高誘電率(high−k)材料(高い比誘電率の材料)の絶縁体としては、酸化ガリウム、酸化ハフニウム、酸化ジルコニウム、アルミニウムおよびハフニウムを有する酸化物、アルミニウムおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する酸化物、シリコンおよびハフニウムを有する酸化窒化物またはシリコンおよびハフニウムを有する窒化物などがある。
 一方、絶縁耐力が大きい材料(低い比誘電率の材料)としては、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンまたは樹脂などがある。
<配線層>
 各構造体の間には、層間膜、配線、およびプラグ等が設けられた配線層が設けられていてもよい。また、配線層は、設計に応じて複数層設けることができる。ここで、プラグまたは配線としての機能を有する導電体は、複数の構造をまとめて同一の符号を付与する場合がある。また、本明細書等において、配線と、配線と電気的に接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、および導電体の一部がプラグとして機能する場合もある。
 例えば、トランジスタ300上には、層間膜として、絶縁体320、絶縁体322、絶縁体324、および絶縁体326が順に積層して設けられている。また、絶縁体320、絶縁体322、絶縁体324、および絶縁体326には容量素子100、またはトランジスタ200と電気的に接続する導電体328、および導電体330等が埋め込まれている。なお、導電体328、および導電体330はプラグ、または配線として機能する。
 また、層間膜として機能する絶縁体は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。例えば、絶縁体322の上面は、平坦性を高めるために化学機械研磨(CMP)法等を用いた平坦化処理により平坦化されていてもよい。
 絶縁体326、および導電体330上に、配線層を設けてもよい。例えば、図14において、絶縁体350、絶縁体352、及び絶縁体354が順に積層して設けられている。また、絶縁体350、絶縁体352、及び絶縁体354には、導電体356が形成されている。導電体356は、プラグ、または配線として機能する。
 同様に、絶縁体210、絶縁体212、絶縁体214、および絶縁体216には、導電体218、及びトランジスタ200を構成する導電体(導電体205)等が埋め込まれている。なお、導電体218は、容量素子100、またはトランジスタ300と電気的に接続するプラグ、または配線としての機能を有する。さらに、導電体120、および絶縁体130上には、絶縁体150が設けられている。
 層間膜として用いることができる絶縁体としては、絶縁性を有する酸化物、窒化物、酸化窒化物、窒化酸化物、金属酸化物、金属酸化窒化物、金属窒化酸化物などがある。
 例えば、層間膜として機能する絶縁体には、比誘電率が低い材料を用いることで、配線間に生じる寄生容量を低減することができる。したがって、絶縁体の機能に応じて、材料を選択するとよい。
 例えば、絶縁体150、絶縁体212、絶縁体352、および絶縁体354等には、比誘電率の低い絶縁体を有することが好ましい。例えば、当該絶縁体は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンまたは樹脂などを有することが好ましい。または、当該絶縁体は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコンまたは空孔を有する酸化シリコンと、樹脂と、の積層構造を有することが好ましい。酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため、樹脂と組み合わせることで、熱的に安定かつ比誘電率の低い積層構造とすることができる。樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネートまたはアクリルなどがある。
 また、酸化物半導体を用いたトランジスタは、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体で囲うことによって、トランジスタの電気特性を安定にすることができる。従って、絶縁体210、および絶縁体350等には、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体を用いればよい。
 水素などの不純物および酸素の透過を抑制する機能を有する絶縁体としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層で、または積層で用いればよい。具体的には、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体として、酸化アルミニウム、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウムまたは酸化タンタルなどの金属酸化物、窒化酸化シリコンまたは窒化シリコンなどを用いることができる。
 配線、プラグに用いることができる導電体としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウムなどから選ばれた金属元素を1種以上含む材料を用いることができる。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。
 例えば、導電体328、導電体330、導電体356、導電体218、および導電体112等としては、上記の材料で形成される金属材料、合金材料、金属窒化物材料、または金属酸化物材料などの導電性材料を、単層または積層して用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、タングステンを用いることが好ましい。または、アルミニウムや銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。
<酸化物半導体が設けられた層の配線、またはプラグ>
 なお、トランジスタ200に、酸化物半導体を用いる場合、酸化物半導体の近傍に過剰酸素領域を有する絶縁体が設けることがある。その場合、該過剰酸素領域を有する絶縁体と、該過剰酸素領域を有する絶縁体に設ける導電体との間に、バリア性を有する絶縁体を設けることが好ましい。
 例えば、図14では、過剰酸素を有する絶縁体224と、導電体245との間に、絶縁体276を設けるとよい。絶縁体276と、絶縁体222、および絶縁体272とが接して設けられることで、絶縁体224、およびトランジスタ200は、バリア性を有する絶縁体により、封止する構造とすることができる。さらに、絶縁体276は、絶縁体280の一部とも接することが好ましい。絶縁体276が、絶縁体280まで延在していることで、酸素や不純物の拡散を抑制することができる。
 つまり、絶縁体276を設けることで、絶縁体224が有する過剰酸素が、導電体245に吸収されることを抑制することができる。また、絶縁体276を有することで、不純物である水素が、導電体245を介して、トランジスタ200へ拡散することを抑制することができる。
 なお、絶縁体276としては、水または水素などの不純物、および酸素の拡散を抑制する機能を有する絶縁性材料を用いるとよい。例えば、酸化アルミニウムまたは酸化ハフニウムなどを用いることが好ましい。また、他にも、例えば、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジムまたは酸化タンタルなどの金属酸化物、窒化酸化シリコンまたは窒化シリコンなどを用いることができる。
 以上が構成例についての説明である。本構成を用いることで、酸化物半導体を有するトランジスタを用いた半導体装置において、電気特性の変動を抑制すると共に、信頼性を向上させることができる。または、オン電流が大きい酸化物半導体を有するトランジスタを提供することができる。または、オフ電流が小さい酸化物半導体を有するトランジスタを提供することができる。または、消費電力が低減された半導体装置を提供することができる。
 本実施の形態は、他の実施の形態および実施例などに記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態3)
 本実施の形態では、図15および図16を用いて、本発明の一態様に係る、酸化物を半導体に用いたトランジスタ(以下、OSトランジスタと呼ぶ場合がある)、および容量素子が適用されている記憶装置(以下、OSメモリ装置と呼ぶ場合がある)について説明する。OSメモリ装置は、少なくとも容量素子と、容量素子の充放電を制御するOSトランジスタを有する記憶装置である。OSトランジスタのオフ電流は極めて小さいので、OSメモリ装置は優れた保持特性をもち、不揮発性メモリとして機能させることができる。
<記憶装置の構成例>
 図15AにOSメモリ装置の構成の一例を示す。記憶装置1400は、周辺回路1411、およびメモリセルアレイ1470を有する。周辺回路1411は、行回路1420、列回路1430、出力回路1440、コントロールロジック回路1460を有する。
 列回路1430は、例えば、列デコーダ、プリチャージ回路、センスアンプ、および書き込み回路等を有する。プリチャージ回路は、配線をプリチャージする機能を有する。センスアンプは、メモリセルから読み出されたデータ信号を増幅する機能を有する。なお、上記配線は、メモリセルアレイ1470が有するメモリセルに接続されている配線であり、詳しくは後述する。増幅されたデータ信号は、出力回路1440を介して、データ信号RDATAとして記憶装置1400の外部に出力される。また、行回路1420は、例えば、行デコーダ、ワード線ドライバ回路等を有し、アクセスする行を選択することができる。
 記憶装置1400には、外部から電源電圧として低電源電圧(VSS)、周辺回路1411用の高電源電圧(VDD)、メモリセルアレイ1470用の高電源電圧(VIL)が供給される。また、記憶装置1400には、制御信号(CE、WE、RE)、アドレス信号ADDR、データ信号WDATAが外部から入力される。アドレス信号ADDRは、行デコーダおよび列デコーダに入力され、WDATAは書き込み回路に入力される。
 コントロールロジック回路1460は、外部からの入力信号(CE、WE、RE)を処理して、行デコーダ、列デコーダの制御信号を生成する。CEは、チップイネーブル信号であり、WEは、書き込みイネーブル信号であり、REは、読み出しイネーブル信号である。コントロールロジック回路1460が処理する信号は、これに限定されるものではなく、必要に応じて、他の制御信号を入力すればよい。
 メモリセルアレイ1470は、行列状に配置された、複数個のメモリセルMCと、複数の配線を有する。なお、メモリセルアレイ1470と行回路1420とを接続している配線の数は、メモリセルMCの構成、一列に有するメモリセルMCの数などによって決まる。また、メモリセルアレイ1470と列回路1430とを接続している配線の数は、メモリセルMCの構成、一行に有するメモリセルMCの数などによって決まる。
 なお、図15Aにおいて、周辺回路1411とメモリセルアレイ1470を同一平面上に形成する例について示したが、本実施の形態はこれに限られるものではない。例えば、図15Bに示すように、周辺回路1411の一部の上に、メモリセルアレイ1470が重なるように設けられてもよい。例えば、メモリセルアレイ1470の下に重なるように、センスアンプを設ける構成にしてもよい。
 図16に上述のメモリセルMCに適用できるメモリセルの構成例について説明する。
[DOSRAM]
 図16A乃至図16Cに、DRAMのメモリセルの回路構成例を示す。本明細書等において、1OSトランジスタ1容量素子型のメモリセルを用いたDRAMを、DOSRAM(Dynamic Oxide Semiconductor Random Access Memory)と呼ぶ場合がある。図16Aに示す、メモリセル1471は、トランジスタM1と、容量素子CAと、を有する。なお、トランジスタM1は、ゲート(フロントゲートと呼ぶ場合がある)、及びバックゲートを有する。
 トランジスタM1の第1端子は、容量素子CAの第1端子と接続され、トランジスタM1の第2端子は、配線BILと接続され、トランジスタM1のゲートは、配線WOLと接続され、トランジスタM1のバックゲートは、配線BGLと接続されている。容量素子CAの第2端子は、配線CALと接続されている。
 配線BILは、ビット線として機能し、配線WOLは、ワード線として機能する。配線CALは、容量素子CAの第2端子に所定の電位を印加するための配線として機能する。データの書き込み時、及び読み出し時において、配線CALには、低レベル電位を印加するのが好ましい。配線BGLは、トランジスタM1のバックゲートに電位を印加するための配線として機能する。配線BGLに任意の電位を印加することによって、トランジスタM1のしきい値電圧を増減することができる。
 また、メモリセルMCは、メモリセル1471に限定されず、回路構成の変更を行うことができる。例えば、メモリセルMCは、図16Bに示すメモリセル1472のように、トランジスタM1のバックゲートが、配線BGLでなく、配線WOLと接続される構成にしてもよい。また、例えば、メモリセルMCは、図16Cに示すメモリセル1473のように、シングルゲート構造のトランジスタ、つまりバックゲートを有さないトランジスタM1で構成されたメモリセルとしてもよい。
 上記実施の形態に示す半導体装置をメモリセル1471等に用いる場合、トランジスタM1としてトランジスタ200を用い、容量素子CAとして容量素子100を用いることができる。トランジスタM1としてOSトランジスタを用いることによって、トランジスタM1のリーク電流を非常に低くすることができる。つまり、書き込んだデータをトランジスタM1によって長時間保持することができるため、メモリセルのリフレッシュの頻度を少なくすることができる。また、メモリセルのリフレッシュ動作を不要にすることができる。また、リーク電流が非常に低いため、メモリセル1471、メモリセル1472、メモリセル1473に対して多値データ、又はアナログデータを保持することができる。
 また、DOSRAMにおいて、上記のように、メモリセルアレイ1470の下に重なるように、センスアンプを設ける構成にすると、ビット線を短くすることができる。これにより、ビット線容量が小さくなり、メモリセルの保持容量を低減することができる。
[NOSRAM]
 図16D乃至図16Hに、2トランジスタ1容量素子のゲインセル型のメモリセルの回路構成例を示す。図16Dに示す、メモリセル1474は、トランジスタM2と、トランジスタM3と、容量素子CBと、を有する。なお、トランジスタM2は、フロントゲート(単にゲートと呼ぶ場合がある)、及びバックゲートを有する。本明細書等において、トランジスタM2にOSトランジスタを用いたゲインセル型のメモリセルを有する記憶装置を、NOSRAM(Nonvolatile Oxide Semiconductor RAM)と呼ぶ場合がある。
 トランジスタM2の第1端子は、容量素子CBの第1端子と接続され、トランジスタM2の第2端子は、配線WBLと接続され、トランジスタM2のゲートは、配線WOLと接続され、トランジスタM2のバックゲートは、配線BGLと接続されている。容量素子CBの第2端子は、配線CALと接続されている。トランジスタM3の第1端子は、配線RBLと接続され、トランジスタM3の第2端子は、配線SLと接続され、トランジスタM3のゲートは、容量素子CBの第1端子と接続されている。
 配線WBLは、書き込みビット線として機能し、配線RBLは、読み出しビット線として機能し、配線WOLは、ワード線として機能する。配線CALは、容量素子CBの第2端子に所定の電位を印加するための配線として機能する。データの書き込み時、データ保持の最中、データの読み出し時において、配線CALには、低レベル電位を印加するのが好ましい。配線BGLは、トランジスタM2のバックゲートに電位を印加するための配線として機能する。配線BGLに任意の電位を印加することによって、トランジスタM2のしきい値電圧を増減することができる。
 また、メモリセルMCは、メモリセル1474に限定されず、回路の構成を適宜変更することができる。例えば、メモリセルMCは、図16Eに示すメモリセル1475のように、トランジスタM2のバックゲートが、配線BGLでなく、配線WOLと接続される構成にしてもよい。また、例えば、メモリセルMCは、図16Fに示すメモリセル1476のように、シングルゲート構造のトランジスタ、つまりバックゲートを有さないトランジスタM2で構成されたメモリセルとしてもよい。また、例えば、メモリセルMCは、図16Gに示すメモリセル1477のように、配線WBLと配線RBLを一本の配線BILとしてまとめた構成であってもよい。
 上記実施の形態に示す半導体装置をメモリセル1474等に用いる場合、トランジスタM2としてトランジスタ200を用い、トランジスタM3としてトランジスタ300を用い、容量素子CBとして容量素子100を用いることができる。トランジスタM2としてOSトランジスタを用いることによって、トランジスタM2のリーク電流を非常に低くすることができる。これにより、書き込んだデータをトランジスタM2によって長時間保持することができるため、メモリセルのリフレッシュの頻度を少なくすることができる。また、メモリセルのリフレッシュ動作を不要にすることができる。また、リーク電流が非常に低いため、メモリセル1474に多値データ、又はアナログデータを保持することができる。メモリセル1475乃至1477も同様である。
 なお、トランジスタM3は、チャネル形成領域にシリコンを有するトランジスタ(以下、Siトランジスタと呼ぶ場合がある)であってもよい。Siトランジスタの導電型は、nチャネル型としてもよいし、pチャネル型としてもよい。Siトランジスタは、OSトランジスタよりも電界効果移動度が高くなる場合がある。よって、読み出しトランジスタとして機能するトランジスタM3として、Siトランジスタを用いてもよい。また、トランジスタM3にSiトランジスタを用いることで、トランジスタM3の上に積層してトランジスタM2を設けることができるので、メモリセルの占有面積を低減し、記憶装置の高集積化を図ることができる。
 また、トランジスタM3はOSトランジスタであってもよい。トランジスタM2、M3にOSトランジスタを用いた場合、メモリセルアレイ1470をn型トランジスタのみを用いて回路を構成することができる。
 また、図16Hに3トランジスタ1容量素子のゲインセル型のメモリセルの一例を示す。図16Hに示すメモリセル1478は、トランジスタM4乃至M6、および容量素子CCを有する。容量素子CCは適宜設けられる。メモリセル1478は、配線BIL、RWL、WWL、BGL、およびGNDLに電気的に接続されている。配線GNDLは低レベル電位を与える配線である。なお、メモリセル1478を、配線BILに代えて、配線RBL、WBLに電気的に接続してもよい。
 トランジスタM4は、バックゲートを有するOSトランジスタであり、バックゲートは配線BGLに電気的に接続されている。なお、トランジスタM4のバックゲートとゲートとを互いに電気的に接続してもよい。あるいは、トランジスタM4はバックゲートを有さなくてもよい。
 なお、トランジスタM5、M6はそれぞれ、nチャネル型Siトランジスタまたはpチャネル型Siトランジスタでもよい。或いは、トランジスタM4乃至M6がOSトランジスタでもよい、この場合、メモリセルアレイ1470をn型トランジスタのみを用いて回路を構成することができる。
 上記実施の形態に示す半導体装置をメモリセル1478に用いる場合、トランジスタM4としてトランジスタ200を用い、トランジスタM5、M6としてトランジスタ300を用い、容量素子CCとして容量素子100を用いることができる。トランジスタM4としてOSトランジスタを用いることによって、トランジスタM4のリーク電流を非常に低くすることができる。
 なお、本実施の形態に示す、周辺回路1411、およびメモリセルアレイ1470等の構成は、上記に限定されるものではない。これらの回路、および当該回路に接続される配線、回路素子等の、配置または機能は、必要に応じて、変更、削除、または追加してもよい。
 本実施の形態に示す構成は、他の実施の形態および実施例などに示す構成と適宜組み合わせて用いることができる。
(実施の形態4)
 本実施の形態では、図17を用いて、本発明の半導体装置が実装されたチップ1200の一例を示す。チップ1200には、複数の回路(システム)が実装されている。このように、複数の回路(システム)を一つのチップに集積する技術を、システムオンチップ(System on Chip:SoC)と呼ぶ場合がある。
 図17Aに示すように、チップ1200は、CPU(Central Processing Unit)1211、GPU(Graphics Processing Unit)1212、一または複数のアナログ演算部1213、一または複数のメモリコントローラ1214、一または複数のインターフェース1215、一または複数のネットワーク回路1216等を有する。
 チップ1200には、バンプ(図示しない)が設けられ、図17Bに示すように、プリント基板(Printed Circuit Board:PCB)1201の第1の面と接続する。また、PCB1201の第1の面の裏面には、複数のバンプ1202が設けられており、マザーボード1203と接続する。
 マザーボード1203には、DRAM1221、フラッシュメモリ1222等の記憶装置が設けられていてもよい。例えば、DRAM1221に先の実施の形態に示すDOSRAMを用いることができる。また、例えば、フラッシュメモリ1222に先の実施の形態に示すNOSRAMを用いることができる。
 CPU1211は、複数のCPUコアを有することが好ましい。また、GPU1212は、複数のGPUコアを有することが好ましい。また、CPU1211、およびGPU1212は、それぞれ一時的にデータを格納するメモリを有していてもよい。または、CPU1211、およびGPU1212に共通のメモリが、チップ1200に設けられていてもよい。該メモリには、前述したNOSRAMや、DOSRAMを用いることができる。また、GPU1212は、多数のデータの並列計算に適しており、画像処理や積和演算に用いることができる。GPU1212に、本発明の酸化物半導体を用いた画像処理回路や、積和演算回路を設けることで、画像処理、および積和演算を低消費電力で実行することが可能になる。
 また、CPU1211、およびGPU1212が同一チップに設けられていることで、CPU1211およびGPU1212間の配線を短くすることができ、CPU1211からGPU1212へのデータ転送、CPU1211、およびGPU1212が有するメモリ間のデータ転送、およびGPU1212での演算後に、GPU1212からCPU1211への演算結果の転送を高速に行うことができる。
 アナログ演算部1213はA/D(アナログ/デジタル)変換回路、およびD/A(デジタル/アナログ)変換回路の一、または両方を有する。また、アナログ演算部1213に上記積和演算回路を設けてもよい。
 メモリコントローラ1214は、DRAM1221のコントローラとして機能する回路、およびフラッシュメモリ1222のインターフェースとして機能する回路を有する。
 インターフェース1215は、表示装置、スピーカー、マイクロフォン、カメラ、コントローラなどの外部接続機器とのインターフェース回路を有する。コントローラとは、マウス、キーボード、ゲーム用コントローラなどを含む。このようなインターフェースとして、USB(Universal Serial Bus)、HDMI(登録商標)(High−Definition Multimedia Interface)などを用いることができる。
 ネットワーク回路1216は、LAN(Local Area Network)などのネットワーク回路を有する。また、ネットワークセキュリティー用の回路を有してもよい。
 チップ1200には、上記回路(システム)を同一の製造プロセスで形成することが可能である。そのため、チップ1200に必要な回路の数が増えても、製造プロセスを増やす必要が無く、チップ1200を低コストで作製することができる。
 GPU1212を有するチップ1200が設けられたPCB1201、DRAM1221、およびフラッシュメモリ1222が設けられたマザーボード1203は、GPUモジュール1204と呼ぶことができる。
 GPUモジュール1204は、SoC技術を用いたチップ1200を有しているため、そのサイズを小さくすることができる。また、画像処理に優れていることから、スマートフォン、タブレット端末、ラップトップPC、携帯型(持ち出し可能な)ゲーム機などの携帯型電子機器に用いることが好適である。また、GPU1212を用いた積和演算回路により、ディープニューラルネットワーク(DNN)、畳み込みニューラルネットワーク(CNN)、再帰型ニューラルネットワーク(RNN)、自己符号化器、深層ボルツマンマシン(DBM)、深層信念ネットワーク(DBN)などの演算を実行することができるため、チップ1200をAIチップ、またはGPUモジュール1204をAIシステムモジュールとして用いることができる。
 本実施の形態に示す構成は、他の実施の形態および実施例などに示す構成と適宜組み合わせて用いることができる。
(実施の形態5)
 本実施の形態では、先の実施の形態に示す半導体装置を用いた記憶装置の応用例について説明する。先の実施の形態に示す半導体装置は、例えば、各種電子機器(例えば、情報端末、コンピュータ、スマートフォン、電子書籍端末、デジタルカメラ(ビデオカメラも含む)、録画再生装置、ナビゲーションシステムなど)の記憶装置に適用できる。なお、ここで、コンピュータとは、タブレット型のコンピュータや、ノート型のコンピュータや、デスクトップ型のコンピュータの他、サーバシステムのような大型のコンピュータを含むものである。または、先の実施の形態に示す半導体装置は、メモリカード(例えば、SDカード)、USBメモリ、SSD(ソリッド・ステート・ドライブ)等の各種のリムーバブル記憶装置に適用される。図18にリムーバブル記憶装置の幾つかの構成例を模式的に示す。例えば、先の実施の形態に示す半導体装置は、パッケージングされたメモリチップに加工され、様々なストレージ装置、リムーバブルメモリに用いられる。
 図18AはUSBメモリの模式図である。USBメモリ1100は、筐体1101、キャップ1102、USBコネクタ1103および基板1104を有する。基板1104は、筐体1101に収納されている。例えば、基板1104には、メモリチップ1105、コントローラチップ1106が取り付けられている。基板1104のメモリチップ1105などに先の実施の形態に示す半導体装置を組み込むことができる。
 図18BはSDカードの外観の模式図であり、図18Cは、SDカードの内部構造の模式図である。SDカード1110は、筐体1111、コネクタ1112および基板1113を有する。基板1113は筐体1111に収納されている。例えば、基板1113には、メモリチップ1114、コントローラチップ1115が取り付けられている。基板1113の裏面側にもメモリチップ1114を設けることで、SDカード1110の容量を増やすことができる。また、無線通信機能を備えた無線チップを基板1113に設けてもよい。これによって、ホスト装置とSDカード1110間の無線通信によって、メモリチップ1114のデータの読み出し、書き込みが可能となる。基板1113のメモリチップ1114などに先の実施の形態に示す半導体装置を組み込むことができる。
 図18DはSSDの外観の模式図であり、図18Eは、SSDの内部構造の模式図である。SSD1150は、筐体1151、コネクタ1152および基板1153を有する。基板1153は筐体1151に収納されている。例えば、基板1153には、メモリチップ1154、メモリチップ1155、コントローラチップ1156が取り付けられている。メモリチップ1155はコントローラチップ1156のワークメモリであり、例えばDOSRAMチップを用いればよい。基板1153の裏面側にもメモリチップ1154を設けることで、SSD1150の容量を増やすことができる。基板1153のメモリチップ1154などに先の実施の形態に示す半導体装置を組み込むことができる。
 本実施の形態は、他の実施の形態および実施例などに記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態6)
 本発明の一態様に係る半導体装置は、CPUやGPUなどのプロセッサ、またはチップに用いることができる。図19に、本発明の一態様に係るCPUやGPUなどのプロセッサ、またはチップを備えた電子機器の具体例を示す。
<電子機器・システム>
 本発明の一態様に係るGPU又はチップは、様々な電子機器に搭載することができる。電子機器の例としては、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ(Digital Signage:電子看板)、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、などが挙げられる。また、本発明の一態様に係る集積回路又はチップを電子機器に設けることにより、電子機器に人工知能を搭載することができる。
 本発明の一態様の電子機器は、アンテナを有していてもよい。アンテナで信号を受信することで、表示部で映像や情報等の表示を行うことができる。また、電子機器がアンテナ及び二次電池を有する場合、アンテナを、非接触電力伝送に用いてもよい。
 本発明の一態様の電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)を有していてもよい。
 本発明の一態様の電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。図19に、電子機器の例を示す。
[携帯電話]
 図19Aには、情報端末の一種である携帯電話(スマートフォン)が図示されている。情報端末5500は、筐体5510と、表示部5511と、を有しており、入力用インターフェースとして、タッチパネルが表示部5511に備えられ、ボタンが筐体5510に備えられている。
 情報端末5500は、本発明の一態様のチップを適用することで、人工知能を利用したアプリケーションを実行することができる。人工知能を利用したアプリケーションとしては、例えば、会話を認識してその会話内容を表示部5511に表示するアプリケーション、表示部5511に備えるタッチパネルに対してユーザが入力した文字、図形などを認識して、表示部5511に表示するアプリケーション、指紋や声紋などの生体認証を行うアプリケーションなどが挙げられる。
[情報端末1]
 図19Bには、デスクトップ型情報端末5300が図示されている。デスクトップ型情報端末5300は、情報端末の本体5301と、ディスプレイ5302と、キーボード5303と、を有する。
 デスクトップ型情報端末5300は、先述した情報端末5500と同様に、本発明の一態様のチップを適用することで、人工知能を利用したアプリケーションを実行することができる。人工知能を利用したアプリケーションとしては、例えば、設計支援ソフトウェア、文章添削ソフトウェア、献立自動生成ソフトウェアなどが挙げられる。また、デスクトップ型情報端末5300を用いることで、新規の人工知能の開発を行うことができる。
 なお、上述では、電子機器としてスマートフォン、及びデスクトップ用情報端末を例として、それぞれ図19A、図19Bに図示したが、スマートフォン、及びデスクトップ用情報端末以外の情報端末を適用することができる。スマートフォン、及びデスクトップ用情報端末以外の情報端末としては、例えば、PDA(Personal Digital Assistant)、ノート型情報端末、ワークステーションなどが挙げられる。
[電化製品]
 図19Cは、電化製品の一例である電気冷凍冷蔵庫5800を示している。電気冷凍冷蔵庫5800は、筐体5801、冷蔵室用扉5802、冷凍室用扉5803等を有する。
 電気冷凍冷蔵庫5800に本発明の一態様のチップを適用することによって、人工知能を有する電気冷凍冷蔵庫5800を実現することができる。人工知能を利用することによって電気冷凍冷蔵庫5800は、電気冷凍冷蔵庫5800に保存されている食材、その食材の消費期限などを基に献立を自動生成する機能や、電気冷凍冷蔵庫5800に保存されている食材に合わせた温度に自動的に調節する機能などを有することができる。
 本一例では、電化製品として電気冷凍冷蔵庫について説明したが、その他の電化製品としては、例えば、掃除機、電子レンジ、電子オーブン、炊飯器、湯沸かし器、IH調理器、ウォーターサーバ、エアーコンディショナーを含む冷暖房器具、洗濯機、乾燥機、オーディオビジュアル機器などが挙げられる。
[ゲーム機]
 図19Dは、ゲーム機の一例である携帯ゲーム機5200を示している。携帯ゲーム機は、筐体5201、表示部5202、ボタン5203等を有する。
 携帯ゲーム機5200に本発明の一態様のGPU又はチップを適用することによって、低消費電力の携帯ゲーム機5200を実現することができる。また、低消費電力により、回路からの発熱を低減することができるため、発熱によるその回路自体、周辺回路、及びモジュールへの影響を少なくすることができる。
 更に、携帯ゲーム機5200に本発明の一態様のGPU又はチップを適用することによって、人工知能を有する携帯ゲーム機5200を実現することができる。
 本来、ゲームの進行、ゲーム上に登場する生物の言動、ゲーム上で発生する現象などの表現は、そのゲームが有するプログラムによって定められているが、携帯ゲーム機5200に人工知能を適用することにより、ゲームのプログラムに限定されない表現が可能になる。例えば、プレイヤーが問いかける内容、ゲームの進行状況、時刻、ゲーム上に登場する人物の言動が変化するといった表現が可能となる。
 また、携帯ゲーム機5200で複数のプレイヤーが必要なゲームを行う場合、人工知能によって擬人的にゲームプレイヤーを構成することができるため、対戦相手を人工知能によるゲームプレイヤーとすることによって、1人でもゲームを行うことができる。
 図19Dでは、ゲーム機の一例として携帯ゲーム機を図示しているが、本発明の一態様のGPU又はチップを適用するゲーム機はこれに限定されない。本発明の一態様のGPU又はチップを適用するゲーム機としては、例えば、家庭用の据え置き型ゲーム機、娯楽施設(ゲームセンター、遊園地など)に設置されるアーケードゲーム機、スポーツ施設に設置されるバッティング練習用の投球マシンなどが挙げられる。
[移動体]
 本発明の一態様のGPU又はチップは、移動体である自動車、及び自動車の運転席周辺に適用することができる。
 図19E1は移動体の一例である自動車5700を示し、図19E2は、自動車の室内におけるフロントガラス周辺を示す図である。図19E2では、ダッシュボードに取り付けられた表示パネル5701、表示パネル5702、表示パネル5703の他、ピラーに取り付けられた表示パネル5704を図示している。
 表示パネル5701乃至表示パネル5703は、スピードメーターやタコメーター、走行距離、燃料計、ギア状態、空調の設定などを表示することで、様々な情報を提供することができる。また、表示パネルに表示される表示項目やレイアウトなどは、ユーザの好みに合わせて適宜変更することができ、デザイン性を高めることが可能である。表示パネル5701乃至表示パネル5703は、照明装置として用いることも可能である。
 表示パネル5704には、自動車5700に設けられた撮像装置(図示しない)からの映像を映し出すことによって、ピラーで遮られた視界(死角)を補完することができる。すなわち、自動車5700の外側に設けられた撮像装置からの画像を表示することによって、死角を補い、安全性を高めることができる。また、見えない部分を補完する映像を映すことによって、より自然に違和感なく安全確認を行うことができる。表示パネル5704は、照明装置として用いることもできる。
 本発明の一態様のGPU又はチップは人工知能の構成要素として適用できるため、例えば、当該チップを自動車5700の自動運転システムに用いることができる。また、当該チップを道路案内、危険予測などを行うシステムに用いることができる。表示パネル5701乃至表示パネル5704には、道路案内、危険予測などの情報を表示する構成としてもよい。
 なお、上述では、移動体の一例として自動車について説明しているが、移動体は自動車に限定されない。例えば、移動体としては、電車、モノレール、船、飛行体(ヘリコプター、無人航空機(ドローン)、飛行機、ロケット)なども挙げることができ、これらの移動体に本発明の一態様のチップを適用して、人工知能を利用したシステムを付与することができる。
[放送システム]
 本発明の一態様のGPU又はチップは、放送システムに適用することができる。
 図19Fは、放送システムにおけるデータ伝送を模式的に示している。具体的には、図19Fは、放送局5680から送信された電波(放送信号)が、各家庭のテレビジョン受信装置(TV)5600に届くまでの経路を示している。TV5600は、受信装置を備え(図示しない)、アンテナ5650で受信された放送信号は、当該受信装置を介して、TV5600に送信される。
 図19Fでは、アンテナ5650は、UHF(Ultra High Frequency)アンテナを図示しているが、アンテナ5650としては、BS・110°CSアンテナ、CSアンテナなども適用できる。
 電波5675A、電波5675Bは地上波放送用の放送信号であり、電波塔5670は受信した電波5675Aを増幅して、電波5675Bの送信を行う。各家庭では、アンテナ5650で電波5675Bを受信することで、TV5600で地上波TV放送を視聴することができる。なお、放送システムは、図19Fに示す地上波放送に限定せず、人工衛星を用いた衛星放送、光回線によるデータ放送などとしてもよい。
 上述した放送システムは、本発明の一態様のチップを適用して、人工知能を利用した放送システムとしてもよい。放送局5680から各家庭のTV5600に放送データを送信するとき、エンコーダによって放送データの圧縮が行われ、アンテナ5650が当該放送データを受信したとき、TV5600に含まれる受信装置のデコーダによって当該放送データの復元が行われる。人工知能を利用することによって、例えば、エンコーダの圧縮方法の一である動き補償予測によって、表示画像に含まれる表示パターンの認識を行うことができる。また、人工知能を利用したフレーム内予測などを行うこともできる。また、例えば、解像度の低い放送データを受信して、解像度の高いTV5600で当該放送データの表示を行うとき、デコーダによる放送データの復元において、アップコンバートなどの画像の補間処理を行うことができる。
 上述した人工知能を利用した放送システムは、放送データの量が増大する超高精細度テレビジョン(UHDTV:4K、8K)放送に対して好適である。
 また、TV5600側における人工知能の応用として、例えば、TV5600に人工知能を有する録画装置を設けてもよい。このような構成にすることによって、当該録画装置が有する人工知能にユーザの好みを学習させることで、ユーザの好みにあった番組を自動的に録画することができる。
 本実施の形態で説明した電子機器、その電子機器の機能、人工知能の応用例、その効果などは、他の電子機器の記載と適宜組み合わせることができる。
 本実施の形態は、他の実施の形態および実施例などに記載した構成と適宜組み合わせて実施することが可能である。
 本実施例では、導電体242を有する試料A乃至試料Cを作製し、加熱処理による導電体242のシート抵抗の変動を評価した。
 以下に、試料の作製方法について説明する。まず、シリコンウェハを用い、シリコウエハ上に熱酸化によって、酸化シリコンを100nmの膜厚で形成した。
 次に、該酸化シリコン上に、CVD法を用いて、酸化窒化シリコンを300nmの膜厚で成膜した。次に、イオン注入装置を用いて、該酸化窒化シリコンに、酸素を注入した。酸素イオンの注入条件は、加速エネルギー60keV、イオン注入量2.0×1016/cmとした。
 次に、スパッタリング法を用いて、導電体242として、インジウム錫酸化物を成膜した。インジウム錫酸化物は、In:SnO=9:1「重量比」のターゲットを用い、成膜ガスとして、Arガス40sccm、酸素ガス5sccmを用い、圧力0.4Pa、DC電力0.2kW、基板温度200℃で成膜した。ここで、試料Aの膜厚を5nm、試料Bの膜厚を10nm、試料Cの膜厚を20nmとした。
 次に、試料A、試料B、および試料Cについて、加熱処理を行った。加熱処理は、窒素雰囲気にて加熱温度400℃とし、加熱処理時間は、なし(0時間)、1時間、および4時間とした。
 次に試料A、試料B、および試料Cについて、各加熱処理時間(0時間、1時間、および4時間)後のインジウム錫酸化物のシート抵抗値を測定した。図20に試料A、試料B、および試料Cのインジウム錫酸化物のシート抵抗値の加熱処理時間依存性のグラフ示す。
 加熱処理を行っていない(加熱処理時間0時間)試料のシート抵抗値は、インジウム錫酸化物の膜厚(5nm、10nm、および20nm)によって異なる結果となった。また、加熱処理時間1時間を行うと、どの膜厚(5nm、10nm、および20nm)の試料とも、シート抵抗値は、1.0×10(Ω/sq.)から2.0×10(Ω/sq.)程度となった。また、加熱処理時間4時間を行うと、どの膜厚の試料(5nm、10nm、および20nm)とも、シート抵抗値は、2.0×10(Ω/sq.)から4.0×10(Ω/sq.)程度となった。
 導電体の多くは、酸素の影響によって酸化し、導電体のシート抵抗の上昇がみられるが、本実施例で用いたインジウム錫酸化物は、加熱処理によって、インジウム錫酸化物の下面に接して配置された過剰酸素を含む酸化窒化シリコンから拡散された酸素の影響が抑制されて、低いシート抵抗値を維持することが解った。
 以上により、本実施例で用いたインジウム錫酸化物は、本発明の一態様のトランジスタのソースおよびドレインとして機能することが可能であることを確認した。
 本実施例は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
100:容量素子、110:導電体、112:導電体、120:導電体、130:絶縁体、150:絶縁体、200:トランジスタ、201:トランジスタ、205:導電体、205a:導電体、205b:導電体、210:絶縁体、212:絶縁体、214:絶縁体、216:絶縁体、218:導電体、222:絶縁体、224:絶縁体、230:酸化物、230a:酸化物、230A1:酸化膜、230A2:酸化物、230b:酸化物、230B1:酸化膜、230B2:酸化物、230c:酸化物、232B2:酸化物、240:導電体、240a:導電体、240b:導電体、241:絶縁体、241a:絶縁体、241b:絶縁体、242:導電体、242a:導電体、242A:導電膜、242b:導電体、242B:導電体、242C:導電体、244:ハードマスク、245:導電体、246:導電体、246a:導電体、246b:導電体、250:絶縁体、260:導電体、260a:導電体、260b:導電体、272:絶縁体、276:絶縁体、280:絶縁体、281:絶縁体、300:トランジスタ、311:基板、313:半導体領域、314a:低抵抗領域、314b:低抵抗領域、315:絶縁体、316:導電体、320:絶縁体、322:絶縁体、324:絶縁体、326:絶縁体、328:導電体、330:導電体、350:絶縁体、352:絶縁体、354:絶縁体、356:導電体、1001:配線、1002:配線、1003:配線、1004:配線、1005:配線、1006:配線

Claims (8)

  1.  第1の絶縁体と、
     前記第1の絶縁体上の第1の導電体、および第2の導電体と、
     前記第1の導電体と、前記第2の導電体との間に配置された酸化物と、
     前記第1の導電体上、前記第2の導電体上、および前記酸化物上の第2の絶縁体と、
     前記第2の絶縁体上の第3の導電体と、を有し、
     前記第1の導電体の側面は、前記酸化物の一方の側面と接する領域を有し、
     前記第2の導電体の側面は、前記酸化物の他方の側面と接する領域を有し、
     前記第1の導電体の上面の高さ、前記第2の導電体の上面の高さ、および前記酸化物の上面の高さは、それぞれ、概ね等しく、
     前記第1の導電体の導電率は、前記酸化物より高く、
     前記第2の導電体の導電率は、前記酸化物より高い、
     半導体装置。
  2.  請求項1において、
     前記第1の導電体および前記第2の導電体は、それぞれ、Inと、Sn、W、Ti、またはSiのいずれか一、または複数を含む、半導体装置。
  3.  請求項1または請求項2において、
     前記第1の導電体および前記第2の導電体は、それぞれ、Zn、Ti、Ga、またはNbのいずれか一、または複数を含む、半導体装置。
  4.  請求項1乃至請求項3のいずれか一項において
     前記酸化物は、Inと、元素M(MはAl、Ga、Y、またはSn)と、Znと、を含む、半導体装置。
  5.  請求項1乃至請求項4のいずれか一項において、
     前記第1の導電体、および前記第2の導電体のキャリア密度は、前記酸化物のキャリア密度よりも高い、半導体装置。
  6.  基板上に第1の絶縁体を形成し、
     前記第1の絶縁体上に酸化膜を成膜し、
     リソグラフィー法によって、前記酸化膜上にマスクを形成し、
     前記マスクと重ならない酸化膜を除去することで、酸化物を形成し、
     前記マスク、前記酸化物を覆って、導電膜を成膜し、
     前記導電膜の一部を等方性エッチングすることで、前記マスクの側面を露出させ、
     前記マスクを除去することで、前記マスク上の前記導電膜をリフトオフする、半導体装置の作製方法。
  7.  請求項6において、
     前記導電膜は、スパッタリング法によって成膜する、半導体装置の作製方法。
  8.  請求項6または請求項7において、
     前記導電膜の成膜速度は、垂直方向より、水平方向の方が小さい、半導体装置の作製方法。
PCT/IB2019/057266 2018-09-07 2019-08-29 半導体装置、および半導体装置の作製方法 WO2020049420A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020540872A JP7287970B2 (ja) 2018-09-07 2019-08-29 半導体装置、および半導体装置の作製方法
KR1020217006924A KR20210052462A (ko) 2018-09-07 2019-08-29 반도체 장치 및 반도체 장치의 제작 방법
US17/272,400 US20210320209A1 (en) 2018-09-07 2019-08-29 Semiconductor device and method for manufacturing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018167632 2018-09-07
JP2018-167632 2018-09-07

Publications (1)

Publication Number Publication Date
WO2020049420A1 true WO2020049420A1 (ja) 2020-03-12

Family

ID=69723016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/057266 WO2020049420A1 (ja) 2018-09-07 2019-08-29 半導体装置、および半導体装置の作製方法

Country Status (4)

Country Link
US (1) US20210320209A1 (ja)
JP (2) JP7287970B2 (ja)
KR (1) KR20210052462A (ja)
WO (1) WO2020049420A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013089613A (ja) * 2011-10-13 2013-05-13 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP2015043415A (ja) * 2013-07-25 2015-03-05 株式会社半導体エネルギー研究所 半導体装置および半導体装置の作製方法
JP2015065426A (ja) * 2013-08-30 2015-04-09 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
JP2017520914A (ja) * 2014-07-14 2017-07-27 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. 薄膜トランジスタおよびその製造方法、アレイ基板、並びに表示装置
JP2018133404A (ja) * 2017-02-14 2018-08-23 株式会社ジャパンディスプレイ 半導体装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043194A1 (en) * 2009-10-09 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR102241766B1 (ko) * 2009-12-04 2021-04-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제조 방법
CN107947763B (zh) 2010-08-06 2021-12-28 株式会社半导体能源研究所 半导体集成电路
US9443987B2 (en) * 2013-08-23 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI721409B (zh) * 2013-12-19 2021-03-11 日商半導體能源研究所股份有限公司 半導體裝置
US9653613B2 (en) * 2015-02-27 2017-05-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20200119199A1 (en) * 2017-05-26 2020-04-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013089613A (ja) * 2011-10-13 2013-05-13 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP2015043415A (ja) * 2013-07-25 2015-03-05 株式会社半導体エネルギー研究所 半導体装置および半導体装置の作製方法
JP2015065426A (ja) * 2013-08-30 2015-04-09 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
JP2017520914A (ja) * 2014-07-14 2017-07-27 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. 薄膜トランジスタおよびその製造方法、アレイ基板、並びに表示装置
JP2018133404A (ja) * 2017-02-14 2018-08-23 株式会社ジャパンディスプレイ 半導体装置

Also Published As

Publication number Publication date
KR20210052462A (ko) 2021-05-10
JPWO2020049420A1 (ja) 2021-08-26
JP7287970B2 (ja) 2023-06-06
JP2023101620A (ja) 2023-07-21
US20210320209A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
JP7332480B2 (ja) 半導体装置の作製方法
US11869979B2 (en) Semiconductor device
WO2020008296A1 (ja) 半導体装置、および半導体装置の作製方法
JP7200121B2 (ja) 半導体装置
JP7420999B2 (ja) 半導体装置
JP2023063351A (ja) 半導体装置
US10978563B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP7317802B2 (ja) 半導体装置
US11183600B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP7221216B2 (ja) 半導体装置
JP7254462B2 (ja) 半導体装置の作製方法
JP7462712B2 (ja) 半導体装置
WO2020115604A1 (ja) 半導体装置、および半導体装置の作製方法
WO2019145807A1 (ja) 半導体装置、および半導体装置の作製方法
JP7287970B2 (ja) 半導体装置、および半導体装置の作製方法
US11705524B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP2020061471A (ja) 半導体装置、および半導体装置の作製方法
JPWO2019111091A1 (ja) 半導体装置、および半導体装置の作製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857650

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020540872

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19857650

Country of ref document: EP

Kind code of ref document: A1