WO2020048178A1 - 基于脉冲采样的离子迁移谱仪及嗅探装置 - Google Patents

基于脉冲采样的离子迁移谱仪及嗅探装置 Download PDF

Info

Publication number
WO2020048178A1
WO2020048178A1 PCT/CN2019/090947 CN2019090947W WO2020048178A1 WO 2020048178 A1 WO2020048178 A1 WO 2020048178A1 CN 2019090947 W CN2019090947 W CN 2019090947W WO 2020048178 A1 WO2020048178 A1 WO 2020048178A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
sampling
tube
gas path
ion mobility
Prior art date
Application number
PCT/CN2019/090947
Other languages
English (en)
French (fr)
Inventor
张清军
李元景
陈志强
李荐民
刘以农
刘耀红
严李李
曹彪
朱伟平
李鸽
马秋峰
毛祺
白楠
Original Assignee
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司 filed Critical 同方威视技术股份有限公司
Priority to US16/626,767 priority Critical patent/US11346807B2/en
Priority to DE112019004472.9T priority patent/DE112019004472B4/de
Publication of WO2020048178A1 publication Critical patent/WO2020048178A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0422Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for gaseous samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0495Vacuum locks; Valves

Definitions

  • the present disclosure relates to the field of detection technology, in particular to an ion mobility spectrometer based on pulse sampling, and a sniffer device including the above-mentioned ion mobility spectrometer.
  • Ion mobility spectrometers have many advantages such as small size, low power consumption, strong portability, fast detection speed, high sensitivity, and industrialization. They are widely used in the fields of military, national defense, industry, environment and clinical diagnosis. The external environment background entering the ion mobility spectrometer will interfere with the signal. In order to isolate the external environment background from entering the ion mobility spectrometer, the conventional ion mobility spectrometer uses a membrane sampling method. The membrane sampling methods are mainly divided into three modes: wipe sampling membrane sampling, aspirated sampling membrane sampling and direct sample thermal analysis membrane sampling.
  • the semi-permeable membrane can block the water and dust in the environmental background from the semi-permeable membrane during the injection to improve the adaptability of the ion mobility spectrometer to the environment, but at the same time, it will also block most of the samples. Outside the semi-permeable membrane, which affects the detection sensitivity of the ion mobility spectrometer.
  • the semi-permeable membrane blocks the background of the environment from entering the ion mobility meter and affects and contaminates the ion mobility spectrometer. At the same time, most of the tested samples are blocked from the semi-permeable membrane, which reduces the detection sensitivity of the ion mobility spectrometer. .
  • an ion mobility spectrometer and a sniffer device based on pulse sampling are provided to improve the detection sensitivity of the ion mobility spectrometer.
  • an ion mobility spectrometer based on pulse sampling which includes:
  • An ion migration tube which is provided with a gas inlet for sample gas and carrier gas flow, a gas outlet for gas outflow, and a migration gas inlet for migration gas inflow;
  • a sampling gas path is provided with a sampling device, the sampling device includes a sampling head and a sampling tube, an outlet of the sampling head is in communication with an inlet of the sampling tube, and the sampling gas path is configured to connect the sampling gas path
  • the sample gas collected by the sampling head is temporarily stored in the sampling tube;
  • sampling gas path two ends of the sampling gas path are in communication with a gas inlet and a gas outlet of the ion migration tube, and the sampling tube is connected in parallel with the sampling gas path, and the sampling gas path is configured as Introducing the carrier gas in the ion migration tube into the sampling tube, and loading the sample gas temporarily stored in the sampling tube into the ion migration tube;
  • a valve assembly configured to allow only gas to flow from the sampling device to the sampling tube in a sampling state, and to allow only gas to flow back from the ion migration tube to the sampling tube through the sampling tube in a sampling state Ion migration tube.
  • the valve assembly includes a first three-way valve, a first port of the first three-way valve is in communication with an outlet of the sampling device, and a second port is in communication with all The gas outlet of the ion migration tube is in communication, and the third port is in communication with the inlet of the sampling tube.
  • An ion mobility spectrometer further comprising a circulating gas path including a migrating gas circulating gas path and a sample carrier gas circulating gas path, both ends of the migrating gas circulating gas path It is respectively connected with the gas outlet and the inlet of the migration gas of the ion migration tube, and is used for introducing migration gas into the ion migration tube from the rear end; the two ends of the sample carrier gas circulation gas path are respectively connected with the ion migration tube.
  • the gas outlet is in communication with the gas inlet, and is used to introduce a carrier gas into the ion migration tube from the rear end.
  • the ion migration tube adopts an integrated dual-mode all-ceramic migration tube, and the number of the migration gas circulation gas paths is two, and the two migration gas circulation gas The outlet end of the circuit is in one-to-one correspondence with the migration gas inlets on the two ion migration tubes of the integrated dual-mode all-ceramic migration tube.
  • a first flow control valve is provided on the migrating gas circulation gas path for controlling a gas flow rate on the migrating gas circulation gas path.
  • An ion mobility spectrometer further includes a first pump disposed downstream of the ion migration tube in a gas flow direction for driving a gas flow.
  • An ion mobility spectrometer according to an embodiment of the present disclosure, further comprising a first buffer cavity connected in series to the sampling gas path and located between the ion migration tube and the first pump.
  • An ion mobility spectrometer further includes a second flow control valve connected in series to the sampling gas path and located between the ion migration tube and the first buffer cavity.
  • An ion mobility spectrometer according to an embodiment of the present disclosure, further comprising a second buffer chamber connected in series to the sampling gas path and between the first pump and the first three-way valve.
  • the inlet end of the migration gas circulation gas path and the inlet end of the sample carrier gas circulation gas path are in communication with the exhaust port of the second buffer chamber.
  • the second port of the first three-way valve is in communication with the exhaust port of the second buffer cavity.
  • the valve assembly further includes a second three-way valve, and the inlet end of the sample carrier gas circulation gas path passes through the second three-way valve and the inlet.
  • the sample gas path is communicated, and the connection is located between the second buffer chamber and the first three-way valve, and the second three-way valve is configured to allow only gas from the second buffer chamber in the injection state Flowing through a part of the sampling gas path to the sampling tube, in an internal circulation state, only gas is allowed to flow from the second buffer cavity to the ion migration tube through the sampling carrier gas circulation gas path.
  • An ion mobility spectrometer further comprising a first purification filter, the first purification filter is disposed on the sampling gas path, and is located on the first pump and the second Between the buffer chambers, it is used to filter the gas passing through the sampling gas path.
  • An ion mobility spectrometer further comprising a gas supplement / deflation gas path for filling gas into the ion migration tube or deflating the ion mobility spectrometer.
  • An end is in communication with the gas outlet of the ion migration tube, and a second end of the supplemental / deflated gas path is in communication with the external environment.
  • a second purification filter is provided on the supplemental / deflated gas path.
  • the valve assembly further includes a fifth three-way valve, and a first end of the supplemental / deflated gas path passes through the fifth three-way valve and the inlet valve.
  • the sample gas path communicates with the connection between the first pump and the first purification filter, and the fifth three-way valve is configured to allow only gas to flow from the first pump to the The first purification filter; only gas is allowed to flow from the first pump to the second purification filter in a deflated state; and only gas is allowed to flow from the second purification filter to the first in a supplemental state.
  • One pump is configured to allow only gas to flow from the first pump to the The first purification filter; only gas is allowed to flow from the first pump to the second purification filter in a deflated state; and only gas is allowed to flow from the second purification filter to the first in a supplemental state.
  • a water trap filter is further provided on the supplemental / deflated gas path, and the water trap filter is located between the second purification filter and the external environment. between.
  • a second pump is further provided on the sampling gas path for driving a gas flow.
  • An ion mobility spectrometer further includes a suction clean gas path, and both ends of the suction clean gas path communicate with the outlet of the second pump and the external environment, respectively, and the second A pump is disposed downstream of the sampling gas path in the gas flow direction; the valve assembly further includes a third three-way valve disposed between the second pump and the sampling tube on the suction clean gas path The third three-way valve is configured to allow only gas to flow from the sampling tube to the second pump in a suction suction cleaning state, and only allow gas to flow from the sampling tube to the ion migration tube in a sampling state.
  • a third purification filter is arranged on the suction cleaning gas path, and the suction cleaning gas path is configured to clean air flowing through the sampling gas path and filtered out by the third purification filter in the suction cleaning state.
  • An ion mobility spectrometer further includes a blow-cleaning gas path, and two ends of the blow-cleaning gas path communicate with the inlet of the sampling pump and the external environment, respectively, and the blow-gas cleaning
  • a fourth purification filter is provided on the gas path, and the air blowing cleaning gas path is configured to flow the gas filtered by the fourth purification filter to the sampling gas path to clean the sampling gas path.
  • the valve assembly further includes a fourth three-way valve located between the second pump and the third three-way valve on the sampling gas path, The fourth three-way valve is configured to allow only gas to flow from the sampling tube to the second pump in a suction cleaning state; and only allow gas to flow from the second pump to the sampling tube in a suction cleaning state .
  • the sampling device is made of a metal tube.
  • the sampling device is provided with a heater for ensuring that the internal temperature of the sampling device is not lower than a preset temperature.
  • a microporous filtering device is provided at an inlet of the sampling device for filtering impurities in a sample gas.
  • a sniffer device including the ion mobility spectrometer as described above.
  • FIG. 1 is a schematic structural diagram of an ion mobility spectrometer based on pulse sampling according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic structural diagram of the ion sampling spectrometer based on pulse sampling in FIG. 1 in an internal circulation state.
  • FIG. 3 is a schematic structural diagram of the ion sampling spectrometer based on pulse sampling in FIG. 1 in a sampling state.
  • FIG. 4 is a schematic structural diagram of the ion sampling spectrometer based on pulse sampling in the sampling state of FIG. 1.
  • FIG. 5 is a schematic structural diagram of the ion sampling spectrometer based on pulse sampling in FIG. 1 in a blown clean state.
  • An object of the present disclosure is to provide an ion mobility spectrometer based on pulse sampling, which includes an ion migration tube, a sampling gas path, a sampling gas path, and a valve assembly, wherein the ion migration tube is provided with the ion migration tube.
  • valve assembly Introduced into the sampling tube, and loaded the sample gas temporarily stored in the sampling tube into the ion migration tube; a valve assembly, the valve assembly is configured to allow only in the sampling state The body sample from said sampling device to the flow tube, in a state allowing only gas sample from the ion transfer tube through the sampling tube back into the ion transfer tube.
  • one end of the sampling tube is connected to the sampling device and the sampling gas path through a valve assembly, so that the valve assembly can be controlled so that in the sampling state, the gas sample collected by the sampling device flows into the sampling tube, and when the In the sample state, the gas in the ion migration tube enters the sampling tube through the valve assembly, and the gas sample temporarily stored in the sampling tube is loaded into the ion migration tube.
  • control valve components such as controllers
  • pulse sampling can be achieved at the fast on and off time of the sampling gas path, and the pulse sampling time can be as low as milliseconds, and the minimum sampling amount for a single pulse can be as low as 10 Micro-upgrade (if the sampling air flow is 1L / min).
  • This direct sampling method of pulse sampling can not only improve the sensitivity of trace sniffing, but also minimize the impact of harsh external detection environment on the accuracy of ion migration detection.
  • FIG. 1 is a schematic structural diagram of an ion mobility spectrometer based on pulse sampling according to an embodiment of the present disclosure.
  • the valve assembly includes a first three-way valve 105A, such as a two-position three-way solenoid valve.
  • the first port of the first three-way valve 105A is in communication with the outlet of the sampling device 111, and the second port is in communication with the ion migration tube 101.
  • the gas outlet is connected, and the third port is connected to the inlet of the sampling tube 110.
  • the valve assembly may also include a first valve (such as a first solenoid valve) and a second valve (such as a second solenoid valve).
  • the inlet of the first valve is in communication with the outlet of the sampling device 111, the outlet is in communication with the inlet of the sampling tube 110, the inlet of the second valve is in communication with the gas outlet of the ion migration tube 101, and the outlet is in communication with the inlet of the sampling tube 110.
  • a first valve such as a first solenoid valve
  • a second valve such as a second solenoid valve
  • the ion migration tube 101 is provided with a gas inlet, a gas inlet, and a migration gas inlet.
  • the gas inlet is used for a carrier gas and a gas sample to enter the ion migration tube 101
  • the gas outlet is used for gas from the ion migration tube. 101 flows out, and the migration gas inlet makes the migration gas enter the ion migration tube 101.
  • the ion migration tube 101 is divided into an ionization reaction zone and a gas migration zone by an ion gate, and a detector for detecting ions is provided at an end of the gas migration zone opposite to the ionization reaction zone.
  • the ion mobility spectrometer further includes a circulation gas path, which includes a migration gas circulation gas path and a sample carrier gas circulation gas path.
  • the two ends of the migration gas circulation gas path are respectively connected to the ion migration tube 101.
  • the gas outlet is connected to the migration gas inlet for introducing migration gas from the rear end to the gas migration area of the ion migration tube 101; the two ends of the sample carrier gas circulation gas path are respectively connected to the gas outlet and gas inlet of the ion migration tube 101. Is used to introduce a carrier gas into the ionization reaction zone of the ion migration tube 101 from the rear end.
  • the ion migration tube 101 is an integrated dual-mode all-ceramic migration tube, which includes a first ion migration tube 101A and a second ion migration tube 101B.
  • the number of migration gas circulation gas paths is two, and the outlet ends of the two migration gas circulation gas paths are in one-to-one correspondence with the migration gas inlets of the two ion migration tubes 101.
  • the ion transport tube 101 may be any suitable ion transport tube 101 or may include only a single ion transport tube 101.
  • a first flow control valve 106A is provided on the migration gas circulation gas path to control the gas flow on the migration gas circulation gas path, so that the user can detect the electrophilicity of the sample according to The nature or nucleophilic nature is balanced or cut off, and the non-corresponding detection mode is selected. Simultaneous detection is selected only in negative mode, only in positive mode, or in negative and positive modes.
  • the ion mobility spectrometer further includes a first pump 103A, which is disposed downstream of the ion migration tube 101 in the gas flow direction and is used, for example, in the Drive gas flow in the sample state or in the internal circulation state.
  • the first pump 103A is a diaphragm pump.
  • the ion migration tube gas path also includes a first buffer chamber 102A connected in series to the sampling gas path and between the ion migration tube 101 and the first pump 103A, for reducing the pulsed gas flow to the ion migration spectrum of the first pump 103A. The effect of airflow in the instrument.
  • the ion mobility spectrometer further includes a second buffer chamber 102B connected in series to the sampling gas path and between the first pump 103A and the first three-way valve 105A, to further reduce the pulsed gas flow of the first pump 103A to the ions. Effects of airflow in the migration spectrometer.
  • a buffer film is disposed on at least a part of at least one surface of the first buffer cavity 102A and the second buffer cavity 102B to enhance the buffer effect.
  • the buffer film is a buffer film with good elasticity.
  • the material of the buffer film includes, but is not limited to, latex.
  • a second flow control valve 106B is provided on the sampling gas path between the ion migration tube 101 and the first buffer chamber 102A, so that the user can
  • the nuclear property is balanced or cut off, and the corresponding detection mode is selected, and the simultaneous detection is performed only in the negative mode, only in the positive mode, or in the negative and positive modes.
  • the inlet end of the migration gas circulation gas path and the inlet carrier gas circulation gas path are in communication with the exhaust port of the second buffer chamber 102B, and the second port of the first three-way valve 105A (for example, It communicates with the exhaust port of the second buffer chamber 102B via the second three-way valve 105B).
  • the valve assembly also includes a second three-way valve 105B, such as a two-position three-way solenoid valve.
  • the inlet end of the sample carrier gas circulation gas path communicates with the sample gas path through the second three-way valve 105B, and the connection is located at Between the second buffer chamber 102B and the first three-way valve 105A, the second three-way valve 105B is configured to only allow gas to flow from the second buffer chamber 102B to the sampling tube 110 through a part of the injection gas path in the sampling state. In the internal circulation state, only the gas is allowed to flow from the second buffer chamber 102B to the ion migration tube 101 through the sample carrier gas circulation gas path. That is, through the second three-way valve 105B, the sample gas path and the sample carrier gas circulation gas path can be selectively communicated.
  • the ion mobility spectrometer further includes a first purification filter 107A.
  • the first purification filter 107A is disposed on the sample gas path for filtering the gas passing through the sample gas path.
  • the first purification filter 107A is located between the first pump 103A and the second buffer chamber 102B. In this way, the gas that exits from the gas outlet of the ion migration tube 101 and enters the sampling tube 110 through the sampling gas path and is recycled to the ion migration tube 101 through the migration gas circulation gas path and the sample carrier gas circulation gas path can pass through the first buffer chamber.
  • the first purification filter 107A After 102A is buffered, it enters the first purification filter 107A, and after filtering by the first purification filter 107A, it enters the second buffer cavity 102B for buffering, thereby avoiding the need to set a purification filter and a buffer cavity again on the circulation gas path, thereby saving manufacturing costs.
  • the first purification filter 107A may also be disposed at other positions of the sampling gas path, such as the first buffer chamber 102A and the ion Between the gas outlets of the migration tube 101.
  • the ion mobility spectrometer further includes a supplemental / deflated gas path for supplementing gas in or deflating the ion migration tube 101, a first end of the supplemental / deflated gas path and the ion migration tube 101.
  • the gas outlet is connected, and the second end of the supplemental / deflated gas path is in communication with the external environment.
  • a second purifying filter 107B is provided on the supplemental / deflated gas path for purifying the gas flowing through the supplemental / deflated gas path to reduce external influence on the ion mobility spectrometer, and can Improve the service life of gas purification agents (molecular sieves, activated carbon, etc.).
  • the valve assembly also includes a fifth three-way valve 104.
  • the first end of the make-up / bleed air path communicates with the sample gas path through the fifth three-way valve 104, and the connection is located at the first pump 103A and the first purification filter.
  • the fifth three-way valve 104 is configured to allow only gas to flow from the first pump 103A to the first purification filter 107A in the injection state; and to allow only gas to flow from the first pump 103A to the external environment in the deflated state ; And only the gas is allowed to flow from the second purification filter 107B to the first pump 103A in the supplemental gas state.
  • the fifth three-way valve 104 can selectively connect the sampling gas path, the supplemental gas path, and the vented gas path.
  • a water trap filter 109 is further provided on the supplemental / deflated gas path, and the water trap filter 109 is located between the second purification filter 107B and the external environment to further reduce the influence of the external environment on the ion mobility spectrometer. .
  • a second pump 103B is further provided on the sampling gas path for driving the gas to flow in the sampling gas path.
  • the ion mobility spectrometer also includes a suction clean gas path, and both ends of the suction migration clean gas path communicate with the outlet of the second pump 103B and the external environment, respectively.
  • the second pump 103B is provided in the sampling gas path in the gas flow direction. Downstream; the valve assembly also includes a third three-way valve 105C, such as a two-position three-way solenoid valve, which is disposed between the second pump 103B and the sampling pipe 110 on the suction clean air path, and the third three-way valve 105C is configured at Only the gas is allowed to flow from the sampling tube 110 to the second pump 103B in the suction cleaning state, and only the gas is allowed to flow from the sampling tube 110 to the ion migration tube 101 in the sampling state.
  • a third three-way valve 105C such as a two-position three-way solenoid valve
  • the suction cleaning gas path is configured to clean air flowing through the sampling gas path and filtered out by a third purification filter in a suction suction cleaning state to clean the sampling gas path.
  • the first three-way valve 105A and the third three-way valve 105C are connected to the 0 position at the same time, the second pump 103B is continuously opened, and the clean air is passed from the sampling device 111 through the first three-way valve 105A to the sampling pipe 110 and It is discharged through the third three-way valve 105C, the second pump 103B, the third purification filter 107C, and the air resistance 108A, so as to realize the cleaning of the pipelines and valve components passing through.
  • the first three-way valve 105A, the second three-way valve 105B, and the third three-way valve 105C are connected to one position.
  • the ion migration injection carrier gas passes through the second buffer.
  • the chamber 102B enters the sampling tube 110 through the second three-way valve 105B and the first three-way valve 105A, and the gas sample temporarily stored in the sampling tube 110 is loaded into the ionization reaction zone in the ion migration tube 101 through the third three-way valve 105C. .
  • the ion mobility spectrometer also includes an air blowing clean gas path, and the two ends of the air blowing clean gas path communicate with the inlet of the second pump 103A and the external environment, respectively.
  • the resistance 108B and the fourth purification filter 107D are configured to blow the clean gas path to the sampling gas path after the gas filtered by the fourth purification filter flows to the sampling gas path in a cleaned state.
  • the ambient gas is purged and filtered by the air resistance 108B and the fourth purification filter 107D, and then discharged through the second pump 103B, the third three-way valve 105C, the sampling pipe 110, the first three-way valve 105A, and the sampling device 111. Clean pipelines and valve components.
  • the valve assembly when the ion mobility spectrometer can have both a suction clean gas path and a blow clean gas path, the valve assembly further includes a first gas path located between the second pump 103B and the third three-way valve 105C on the sampling gas path.
  • the fourth three-way valve 105D is configured to allow only gas from the sampling tube 110 to the second pump 103B in the suction cleaning state; only gas is allowed in the blowing cleaning state It flows from the second pump 103B to the sampling tube 110.
  • the first port of the fourth three-way valve 105D communicates with one port of the third three-way valve 105C
  • the second port of the fourth three-way valve 105D communicates with the inlet of the second pump 103B
  • the fourth three-way valve 105D The third port of the pump is in communication with the outlet of the second pump 103B.
  • the fourth three-way valve 105D is connected to the 0 position.
  • the first port of the fourth three-way valve 105D is in communication with the second port.
  • the gas that enters the second pump 103B under the action of the second pump 103B is discharged through the third purification filter 107C and the air resistance 108A.
  • the fourth three-way valve 105D When air cleaning is required, the fourth three-way valve 105D is connected to the first position. At this time, the fourth three The first port of the on-way valve 105D is in communication with the third port, so that the gas that has entered the second pump 103B through the air resistance 108B and the fourth purification filter 107D passes through the fourth three-way valve 105D, the third three-way valve 105C, and After entering the sampling pipe 110 and the sampling device 111, it is discharged to realize the cleaning of the pipelines and valve components passing by.
  • the sampling device 111 is a metal tube, such as a stainless steel tube, and its outer diameter does not exceed 5 mm.
  • a heater is provided on the sampling device to ensure that the internal temperature of the sampling device is not lower than a preset temperature, for example, 50 ° C, so as to facilitate storage and sampling of pulsed samples.
  • the inlet of the sampling device is provided with a microporous filter device, such as a microporous filter, for filtering impurities such as dust or particles in the sample gas to prevent dust or particles from blocking the sampling gas path during the sampling process.
  • FIG. 2 is a schematic structural diagram of the ion sampling spectrometer based on pulse sampling in the internal circulation state in FIG. 1, where arrows indicate the direction of gas flow.
  • the second three-way valve 105B is connected to the 0 position.
  • the internal gas flow of the ion migration tubes 101A and 101B passes the gas outlet to the first buffer chamber 102A, the first pump 103A, the fifth three-way valve 104, and Filtered by the first purification filter 107A to the second buffer chamber 102B, and then passed through the first flow control valve 106A and the second three-way valve 105B to enter the migration gas circulation gas path and the injection carrier gas circulation gas path, respectively, and return to the ion. Migration tube.
  • FIG. 3 is a schematic structural diagram of the ion sampling spectrometer based on pulse sampling in FIG. 1 in a sampling state, in which arrows indicate the direction of air flow.
  • the first three-way valve 105A, the third three-way valve 105C, and the fourth three-way valve 105D are all connected to the 0 position.
  • the gas sample passes through the sampling device 111 under the suction of the second pump 103B. It reaches the inside of the sampling tube 110 through the first three-way valve 105A.
  • the ion migration tube 101 is in a state of circulating in the air flow.
  • FIG. 4 is a schematic diagram of the structure of the ion sampling spectrometer based on pulse sampling in FIG. 1 in a sample-injecting state, in which arrows indicate the direction of air flow.
  • the ion migration tube 101 is switched from the internal circulation state to the injection state, that is, the second three-way valve 105B, the first three-way valve 105A, and the third three-way valve 105C are simultaneously switched from the original 0 position to the 1 position.
  • the ion migration injection carrier gas enters the sampling tube 110 through the second buffer chamber 102B, the second three-way valve 105B and the first two-way three-way valve 105A, and passes the gas sample temporarily stored in the sampling tube 110 through The third three-way valve 105C is loaded into the ionization reaction zone in the ion migration tube 101.
  • FIG. 5 is a schematic structural diagram of the ion sampling spectrometer based on pulse sampling in the state of blowing air and cleaning gas in FIG. 1, where arrows indicate the direction of air flow.
  • the through valve 105A reaches the sampling pipe 110 and is discharged through the third three-way valve 105C and the fourth three-way valve 105D, the second pump 103B, the third purification filter 107C, and the air block 108A, and cleans the pipeline and valve components passing through.
  • Air cleaning process The first three-way valve 105A and the third three-way valve 105C are connected to the 0 position, and the fourth three-way valve 105D is connected to the 1 position.
  • the ambient gas passes through the air resistance 108B and the fourth purification filter 107D. After purification and filtering, it is discharged through the second pump 103B, the fourth three-way valve 105D, the third three-way valve 105C, the sampling pipe 110, the first three-way valve 105A, and the sampling device 111, and the pipelines and valve components passing through Clean it. It should be noted that the blowing air is cleaned and filtered, so it can cope with more severe environmental conditions.
  • a sniffer device including the ion sampling spectrometer based on pulse sampling as described above.
  • the technical effect of the sniffer device corresponds to the technical effect of the above-mentioned ion mobility spectrometer. In order to avoid unnecessary repetition, details will not be repeated here.
  • the ion mobility spectrometer and the sniffer device including the ion mobility spectrometer realize the trace pulse sampling of the test sample by using a valve assembly.
  • This trace pulse sampling directly introduces the first method.
  • the detection sensitivity of the instrument can be improved.
  • the amount of sampling and injection is low, and the harsh external environment is difficult to affect the performance of the instrument.
  • the sampling gas circuit designed in this solution also has the functions of suction cleaning or blowing cleaning, which can assist equipment cleaning and improve the working efficiency of the instrument.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

一种离子迁移谱仪以及嗅探装置,离子迁移谱仪包括:离子迁移谱仪,其包括离子迁移管(101)以及设在其上的气体入口、气体出口和迁移气体入口;采样气路,其上设有采样装置(111),采样装置(111)包括采样头和采样管(110),并构造成将采样头采集的样品气体暂存在采样管(110)内;进样气路,其两端分别与离子迁移管(101)的气体入口与气体出口连通,采样管(110)并联在进样气路上,并构造成将离子迁移管(101)内的载气导入采样管(110)内,并将暂存在采样管(110)内的样品气体载入离子迁移管(101)内;和阀组件,其构造成在采样状态下仅允许气体从采样装置(111)流向采样管(110),在进样状态下仅允许气体从离子迁移管(101)经采样管(110)流回离子迁移管(101)。可以通过阀组件实现脉冲吸气取样,以提高离子迁移的检测灵敏度。

Description

基于脉冲采样的离子迁移谱仪及嗅探装置
相关申请的交叉引用
本申请主张在2018年09月06日在中国专利局提交的中国专利申请No.201811040529.0的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及探测技术领域,特别是涉及一种基于脉冲采样的离子迁移谱仪,以及包括上述离子迁移谱仪的嗅探装置。
背景技术
离子迁移谱仪具有体积小、功耗低、便携性强、检测速度快、灵敏度高及可产业化等诸多优点而被广泛应用于军事、国防、工业、环境和临床诊断等领域。外界环境本底进入离子迁移谱仪会对信号形成干扰,为了隔离外界环境本底进入离子迁移谱仪,常规离子迁移谱仪均采用膜进样方式。其中膜进样方式又主要分为擦拭取样膜进样、吸气取样膜进样以及直接取物热解析膜进样三种模式。诚然,半透膜可以在进样时将环境本底中的水、粉尘等阻挡在半透膜外以提高离子迁移谱仪对环境的适应性,但与此同时也会将大部分样品阻挡在半透膜外,从而影响离子迁移谱仪的检测灵敏度。
半透膜在阻挡环境本底进入离子迁移仪并对离子迁移谱仪产生影响及污染的同时也会将大部分的被检样品阻挡在半透膜之外,使得离子迁移谱仪的检测灵敏度降低。
发明内容
根据本公开的一些实施例的一个方面,提供一种基于脉冲采样的离子迁移谱仪以及嗅探装置,以提高离子迁移谱仪的检测灵敏度。
根据本公开一个方面的实施例,提供一种基于脉冲采样的离子迁移谱仪,其包括:
离子迁移管,所述离子迁移管上设置有供样品气体和载气流入的气体入口、供气体流出的气体出口和供迁移气体流入的迁移气体入口;
采样气路,所述采样气路上设置有采样装置,所述采样装置包括采样头和采样管,所述采样头的出口与所述采样管的入口连通,所述采样气路构造成将所述采样头所采集的样品气体暂存在所述采样管内;
进样气路,所述进样气路的两端分别与所述离子迁移管的气体入口与气体出口连通,所述采样管并联在所述进样气路上,所述进样气路构造成将所述离子迁移管内的载气导入所述采样管内,并将暂存在所述采样管内的样品气体载入所述离子迁移管内;和
阀组件,所述阀组件构造成在采样状态下仅允许气体从所述采样装置流向所述采样管,在进样状态下仅允许气体从所述离子迁移管经所述采样管流回所述离子迁移管。
根据本公开的一种实施例的离子迁移谱仪,所述阀组件包括第一三通阀,所述第一三通阀的第一端口与所述采样装置的出口连通,第二端口与所述离子迁移管的气体出口连通,第三端口与所述采样管的入口连通。
根据本公开的一种实施例的离子迁移谱仪,还包括循环气路,所述循环气路包括迁移气循环气路和进样载气循环气路,所述迁移气循环气路的两端分别与所述离子迁移管的气体出口和迁移气体入口连通,用于从后端向所述离子迁移管内导入迁移气体;所述进样载气循环气路的两端分别与所述离子迁移管的气体出口和气体入口连通,用于从后端向所述离子迁移管内导入载气。
根据本公开的一种实施例的离子迁移谱仪,所述离子迁移管采用一体式双模式全陶瓷迁移管,所述迁移气循环气路的数量为两条,两条所述迁移气循环气路的出口端与所述一体式双模式全陶瓷迁移管的两个离子迁移管上的迁移气体入口一一对应连通。
根据本公开的一种实施例的离子迁移谱仪,所述迁移气循环气路上设置有第一流量控制阀,用于控制所述迁移气循环气路上的气体流量。
根据本公开的一种实施例的离子迁移谱仪,还包括第一泵,所述第一泵设置在气体流动方向上所述离子迁移管的下游,用于驱动气体流动。
根据本公开的一种实施例的离子迁移谱仪,还包括串联在所述进样气路上且位于所述离子迁移管和所述第一泵之间的第一缓冲腔。
根据本公开的一种实施例的离子迁移谱仪,还包括串联在所述进样气路上且位于所述离子迁移管和所述第一缓冲腔之间的第二流量控制阀。
根据本公开的一种实施例的离子迁移谱仪,还包括串联在所述进样气路上 且位于所述第一泵和所述第一三通阀之间的第二缓冲腔。
根据本公开的一种实施例的离子迁移谱仪,所述迁移气循环气路的入口端和所述进样载气循环气路的入口端均与所述第二缓冲腔的排气口连通,所述第一三通阀的第二端口与所述第二缓冲腔的排气口连通。
根据本公开的一种实施例的离子迁移谱仪,所述阀组件还包括第二三通阀,所述进样载气循环气路的入口端通过所述第二三通阀与所述进样气路连通,且连接处位于所述第二缓冲腔和所述第一三通阀之间,所述第二三通阀构造成在进样状态下仅允许气体从所述第二缓冲腔经所述进样气路的一部分流向所述采样管,在内循环状态下仅允许气体从所述第二缓冲腔经所述进样载气循环气路流向所述离子迁移管。
根据本公开的一种实施例的离子迁移谱仪,还包括第一净化过滤器,所述第一净化过滤器设置在所述进样气路上,且位于所述第一泵和所述第二缓冲腔之间,用于过滤通过所述进样气路的气体。
根据本公开的一种实施例的离子迁移谱仪,还包括用于向离子迁移管内补气或将离子迁移谱仪泄气的补气/泄气气路,所述补气/泄气气路的第一端与所述离子迁移管的气体出口连通,所述补气/泄气气路的第二端与外界环境连通。
根据本公开的一种实施例的离子迁移谱仪,在所述补气/泄气气路上设置有第二净化过滤器。
根据本公开的一种实施例的离子迁移谱仪,所述阀组件还包括第五三通阀,所述补气/泄气气路的第一端通过所述第五三通阀与所述进样气路连通,且连接处位于所述第一泵和所述第一净化过滤器之间,所述第五三通阀构造成在进样状态下仅允许气体从所述第一泵流向所述第一净化过滤器;在泄气状态下仅允许气体从所述第一泵流向所述第二净化过滤器;以及在补气状态下仅允许气体从所述第二净化过滤器流向所述第一泵。
根据本公开的一种实施例的离子迁移谱仪,所述补气/泄气气路上还设置有水阱过滤器,所述水阱过滤器位于所述第二净化过滤器和所述外界环境之间。
根据本公开的一种实施例的离子迁移谱仪,在所述采样气路上还设置有第二泵,用于驱动气体流动。
根据本公开的一种实施例的离子迁移谱仪,还包括吸气清洁气路,所述吸气清洁气路的两端分别与所述第二泵的出口和外界环境连通,所述第二泵设置在所述采样气路在气体流动方向上的下游;所述阀组件还包括设置在所述吸气 清洁气路上位于所述第二泵和所述采样管之间的第三三通阀,所述第三三通阀构造成在吸气清洁状态下仅允许气体从所述采样管流向所述第二泵,在进样状态下仅允许气体从所述采样管流向所述离子迁移管;所述吸气清洁气路上设置有第三净化过滤器,所述吸气清洁气路构造成在吸气清洁状态下清洁空气流经采样气路并经第三净化过滤器过滤后排出。
根据本公开的一种实施例的离子迁移谱仪,还包括吹气清洁气路,所述吹气清洁气路的两端分别与所述采样泵的入口和外界环境连通,所述吹气清洁气路上设置有第四净化过滤器,所述吹气清洁气路构造成在吹气清洁状态下通过第四净化过滤器过滤后的气体流向采样气路以对采样气路进行清洁。
根据本公开的一种实施例的离子迁移谱仪,,所述阀组件还包括在所述采样气路上位于所述第二泵和所述第三三通阀之间的第四三通阀,所述第四三通阀构造成在吸气清洁状态下仅允许气体从所述采样管流向所述第二泵;在吹气清洁状态下仅允许气体从所述第二泵流向所述采样管。
根据本公开的一种实施例的离子迁移谱仪,所述采样装置采用金属管制成。
根据本公开的一种实施例的离子迁移谱仪,所述采样装置上设置有加热器,用于确保所述采样装置的内部温度不低于预设温度。
根据本公开的一种实施例的离子迁移谱仪,所述采样装置的入口设置有微孔过滤装置,用于过滤样品气体中的杂质。
根据本公开另一方面的实施例,提供了一种嗅探装置,其包括如上所述的离子迁移谱仪。
附图说明
图1为本公开的一个实施例的基于脉冲采样的离子迁移谱仪的结构示意图。
图2为图1中的基于脉冲采样的离子迁移谱仪处于内循环状态下的结构示意图。
图3为图1中的基于脉冲采样的离子迁移谱仪处于采样状态下的结构示意图。
图4为图1中的基于脉冲采样的离子迁移谱仪处于进样状态下的结构示意图。
图5为图1中的基于脉冲采样的离子迁移谱仪处于吹气清洁状态下的结构示意图。
具体实施方式
尽管本公开容许各种修改和可替换的形式,但是它的具体的实施例通过例子的方式在附图中示出,并且将详细地在本文中描述。然而,应该理解,随附的附图和详细的描述不是为了将本公开限制到公开的具体形式,而是相反,是为了覆盖落入由随附的权利要求限定的本公开的精神和范围中的所有的修改、等同形式和替换形式。附图是为了示意,因而不是按比例地绘制的。
在本说明书中使用了“第一”、“第二”等术语,并不是为了排序或者表示重要性或主次关系,而是用于区分不同的部件。
本公开的一个目的在于提供一种基于脉冲采样的离子迁移谱仪,其包括离子迁移管、采样气路、进样气路和阀组件,其中,离子迁移管,所述离子迁移管上设置有供样品气体和载气流入的气体入口、供气体流出的气体出口和供迁移气体流入的迁移气体入口;采样气路,所述采样气路上设置有采样装置,所述采样装置包括采样头和采样管,所述采样头的出口与所述采样管的入口连通,所述采样气路构造成将所述采样头所采集的样品气体暂存在所述采样管内;进样气路,所述进样气路的两端分别与所述离子迁移管的气体入口与气体出口连通,所述采样管并联在所述进样气路上,所述进样气路构造成将所述离子迁移管内的载气导入所述采样管内,并将暂存在所述采样管内的样品气体载入所述离子迁移管内;阀组件,所述阀组件构造成在采样状态下仅允许气体从所述采样装置流向所述采样管,在进样状态下仅允许气体从所述离子迁移管经所述采样管流回所述离子迁移管。
根据本公开,采样管的一端通过阀组件分别与采样装置和进样气路连接,从而可以通过控制阀组件,以使得在采样状态下,采样装置所采集的气体样品流向采样管内,当在进样状态下,离子迁移管内的气体经阀组件进入采样管内,并将暂存在采样管内的气体样品载入离子迁移管。通过例如控制器等控制阀组件的快速切换,在采样气路的快速接通和断开的时间可以实现脉冲采样,且脉冲采样时间可低至毫秒级,单次脉冲最小采样量可低至10微升级(如采样气流1L/min的话)。通过这种脉冲采样直接进样方式不仅能提高痕量嗅探的灵敏度且能最大限度降低苛刻的外界检测环境对离子迁移检测准确度的影响。
图1为根据本公开的一个实施例的基于脉冲采样的离子迁移谱仪的结构示意图。
在该实施例中,阀组件包括第一三通阀105A,例如两位三通电磁阀,第一三通阀105A的第一端口与采样装置111的出口连通,第二端口与离子迁移管101的气体出口连通,第三端口与采样管110的入口连通。通过采用三通阀,可以进一步提高采样气路的快速接通和断开时间的准确性,实现脉冲采样。
需要说明的是,本领域的技术人员应当理解,在本公开的其它一些实施例中,阀组件也可以包括第一阀(例如第一电磁阀)和第二阀(例如第二电磁阀),其中第一阀的入口与采样装置111的出口连通,出口与采样管110的入口连通,第二阀的入口与离子迁移管101的气体出口连通,出口与采样管110的入口连通,通过控制器来精确地控制第一阀和第二阀的快速切换,也能够实现采样气路的快速接通和断开,实现脉冲采样。
如图1至图5所示,离子迁移管101上设置有气体入口、气体进口以及迁移气体入口,气体入口用于载气和气体样品进入离子迁移管101,气体出口用于气体从离子迁移管101流出,迁移气体入口使迁移气体进入离子迁移管101。离子迁移管101由离子门分隔为离化反应区和气体迁移区,在气体迁移区的与离化反应区相反的一端设置有用于检测离子的检测器。
如图2所示,该离子迁移谱仪还包括循环气路,该循环气路包括迁移气循环气路和进样载气循环气路,迁移气循环气路的两端分别与离子迁移管101的气体出口和迁移气体入口连通,用于从后端向离子迁移管101的气体迁移区导入迁移气体;进样载气循环气路的两端分别与离子迁移管101的气体出口和气体入口连通,用于从后端向离子迁移管101的离化反应区导入载气。
具体地,在该实施例中,离子迁移管101为一体化双模式全陶瓷迁移管,其包括第一离子迁移管101A和第二离子迁移管101B。相应地,迁移气循环气路的数量为两条,两条迁移气循环气路的出口端与两个离子迁移管101的迁移气体入口一一对应连通。
需要说明的是,本领域的技术人员应当理解,在本公开的其它一些实施例中,离子迁移管101可以是任何合适的离子迁移管101,也可以仅包括一个单个的离子迁移管101。
如图1至图5所示,在一个实施例中,迁移气循环气路上设置有第一流量控制阀106A,用于控制迁移气循环气路上的气体流量,以便于用户依据检测样品的亲电性质或亲核性质平衡或切断非相应的检测模式而选择仅在负模式或仅在正模式抑或在负、正模式进行同时检测。
在该实施例中,如图1至图5所示,该离子迁移谱仪还包括第一泵103A,该第一泵103A设置在气体流动方向上离子迁移管101的下游,用于例如在进样状态下或内循环状态下驱动气体流动。在实施例中,第一泵103A为隔膜泵。此外,该离子迁移管气路还包括串联在进样气路上且位于离子迁移管101和第一泵103A之间的第一缓冲腔102A,用于降低第一泵103A的脉冲气流对离子迁移谱仪内气流的影响。进一步地,该离子迁移谱仪还包括串联在进样气路上且位于第一泵103A和第一三通阀105A之间的第二缓冲腔102B,以进一步降低第一泵103A的脉冲气流对离子迁移谱仪内气流的影响。在一个实施例中,第一缓冲腔102A、第二缓冲腔102B的至少一个面的至少一部分上设置有缓冲膜,以增强缓冲效果。在一个实施例中,该缓冲膜采用伸缩性能好的缓冲膜。该缓冲膜的材质包括但不限于乳胶。
为提高仪器对样品的选择性检测,在进样气路上且位于离子迁移管101和第一缓冲腔102A之间设置有第二流量控制阀106B,以便用户依据对检测样品的亲电性质或亲核性质平衡或切断非相应的检测模式而选择仅在负模式或仅在正模式抑或在负、正模式进行同时检测。
如图2所示,迁移气循环气路的入口端和进样载气循环气路的入口端均与第二缓冲腔102B的排气口连通,第一三通阀105A的第二端口(例如经由第二三通阀105B)与第二缓冲腔102B的排气口连通。
此外,阀组件还包括第二三通阀105B,例如两位三通电磁阀,进样载气循环气路的入口端通过该第二三通阀105B与进样气路连通,且连接处位于第二缓冲腔102B和第一三通阀105A之间,第二三通阀105B构造成在进样状态下仅允许气体从第二缓冲腔102B经进样气路的一部分流向采样管110,在内循环状态下仅允许气体从第二缓冲腔102B经进样载气循环气路流向离子迁移管101。也就是说,通过第二三通阀105B,可以将进样气路与进样载气循环气路选择性连通。
此外,该离子迁移谱仪还包括第一净化过滤器107A,该第一净化过滤器107A设置在进样气路上,用于过滤通过进样气路的气体。在该实施例中,第一净化过滤器107A位于第一泵103A和第二缓冲腔102B之间。这样从离子迁移管101的气体出口出来经进样气路进入采样管110和经迁移气循环气路和进样载气循环气路循环回到离子迁移管101的气体均可通过第一缓冲腔102A缓冲后进入第一净化过滤器107A,经第一净化过滤器107A过滤后进入第二缓冲腔102B 缓冲,从而避免在循环气路上再次设置净化过滤器和缓冲腔,从而节省了制造成本。需要说明的是,本领域的技术人员应当理解,在本公开的其它一些实施例中,第一净化过滤器107A也可以设置在进样气路的其它位置处,例如第一缓冲腔102A和离子迁移管101的气体出口之间。
进一步地,该离子迁移谱仪还包括用于向离子迁移管101内补气或将离子迁移管101泄气的补气/泄气气路,补气/泄气气路的第一端与离子迁移管101的气体出口连通,补气/泄气气路的第二端与外界环境连通。通过设置补气/泄气气路可以使得离子迁移管101可依据环境、微量采样以及离子迁移管101自身温度等的变化进行自动的补气及泄气,从而实现快速采样。
在一个实施例中,在补气/泄气气路上设置有第二净化过滤器107B,用于对流经补气/泄气气路上的气体进行净化,以降低外界对离子迁移谱仪的影响,且能提高气体净化剂(分子筛、活性碳等)的使用寿命。
此外,阀组件还包括第五三通阀104,补气/泄气气路的第一端通过第五三通阀104与进样气路连通,且连接处位于第一泵103A和第一净化过滤器107A之间,该第五三通阀104构造成在进样状态下仅允许气体从第一泵103A流向第一净化过滤器107A;在泄气状态下仅允许气体从第一泵103A流向外界环境;以及在补气状态下仅允许气体从第二净化过滤器107B流向第一泵103A。通过上述第五三通阀104,可以选择性连通进样气路、补气气路和泄气气路。
根据本实施例,在补气/泄气气路上还设置有水阱过滤器109,水阱过滤器109位于第二净化过滤器107B和外界环境之间,以进一步降低外界对离子迁移谱仪的影响。
如图1和图5所示,在采样气路上还设置有第二泵103B,用于驱动气体在采样气路中流动。
该离子迁移谱仪还包括吸气清洁气路,该吸气清洁气路的两端分别与第二泵103B的出口和外界环境连通,第二泵103B设置在采样气路在气体流动方向上的下游;阀组件还包括设置在吸气清洁气路上位于第二泵103B和采样管110之间的第三三通阀105C,例如两位三通电磁阀,该第三三通阀105C构造成在吸气清洁状态下仅允许气体从采样管110流向第二泵103B,在进样状态下仅允许气体从采样管110流向离子迁移管101;吸气清洁气路上沿气体流动方向依次设置有第三净化过滤器107C和气阻108A,该吸气清洁气路构造成在吸气清洁状态下清洁空气流经采样气路并经第三净化过滤器过滤后排出,以实现对采样 气路的清洁。在吸气清洁状态下,第一三通阀105A和第三三通阀105C同时接0位,第二泵103B持续开启,清洁空气由采样装置111经第一三通阀105A到达采样管110并经第三三通阀105C、第二泵103B、第三净化过滤器107C和气阻108A排出,以实现对所经管道及阀组件进行清洁。在进样状态下,第一三通阀105A、第二三通阀105B、和第三三通阀105C接1位,在第一泵103A的作用下,离子迁移进样载气经第二缓冲腔102B经第二三通阀105B和第一三通阀105A进入采样管110,将暂存在采样管110内的气体样品经第三三通阀105C载入离子迁移管101内的离化反应区。
此外,该离子迁移谱仪还包括吹气清洁气路,该吹气清洁气路的两端分别与第二泵103A的入口和外界环境连通,吹气清洁气路上沿气体流动方向依次设置有气阻108B和第四净化过滤器107D,吹气清洁气路构造成在吹气清洁状态下通过第四净化过滤器过滤后的气体流向采样气路以对采样气路进行清洁。环境气体经气阻108B并经第四净化过滤器107D净化过滤后再经第二泵103B、第三三通阀105C、采样管110、第一三通阀105A和采样装置111后排出,并对所经管道及阀组件进行清洁。
在一个实施例中,当离子迁移谱仪可同时具有吸气清洁气路和吹气清洁气路,阀组件还包括在采样气路上位于第二泵103B和第三三通阀105C之间的第四三通阀105D,例如两位三通电磁阀,第四三通阀105D构造成在吸气清洁状态下仅允许气体从采样管110流向第二泵103B;在吹气清洁状态下仅允许气体从第二泵103B流向采样管110。具体地,第四三通阀105D的第一端口与第三三通阀105C的一个端口连通,第四三通阀105D的第二端口与第二泵103B的入口连通,第四三通阀105D的第三端口与第二泵103B的出口连通,当处于吸气清洁状态下,第四三通阀105D接0位,此时第四三通阀105D的第一端口与第二端口连通,以使得在第二泵103B的作用下进入第二泵103B的气体经第三净化过滤器107C和气阻108A排出,需要吹气清洁时,将第四三通阀105D接1位,此时第四三通阀105D的第一端口与第三端口连通,以使得经气阻108B和第四净化过滤器107D进入第二泵103B的气体吹气经过第四三通阀105D、第三三通阀105C并进入采样管110和采样装置111后排出,实现对所经管道及阀组件的清洁。
在一个实施例中,采样装置111采用金属管,例如不锈钢管,其外径不超过5mm。采样装置上设置有加热器,用于确保采样装置的内部温度不低于预设温度,例如50℃,以便于脉冲样品存储及进样。采样装置的入口设置有微孔过 滤装置,例如微孔滤网,用于过滤样品气体中的灰尘或颗粒等杂质,以防止采样过程中灰尘或颗粒堵塞采样气路。
图2为图1中的基于脉冲采样的离子迁移谱仪处于内循环状态下的结构示意图,其中箭头标示着气体流动的方向。第二三通阀105B接0位,在第一泵103A的作用下,离子迁移管101A、101B内部气流经气体出口至第一缓冲腔102A、第一泵103A、第五三通阀104、并经第一净化过滤器107A过滤到第二缓冲腔102B,再分别经第一流量控制阀106A和第二三通阀105B分别进入迁移气循环气路和进样载气循环气路后回到离子迁移管。
图3为图1中的基于脉冲采样的离子迁移谱仪处于采样状态下的结构示意图,其中箭头标示着气流的方向。将采样装置111靠近被检样品,第一三通阀105A、第三三通阀105C、第四三通阀105D全部接0位,在第二泵103B的吸气作用下气体样品经采样装置111通过第一三通阀105A到达采样管110内。在脉冲采样时,离子迁移管101处于气流内循环状态。
图4为图1中的基于脉冲采样的离子迁移谱仪处于进样状态下的结构示意图,其中箭头标示着气流的方向。将离子迁移管101由气流内循环状态切换至进样状态,即将第二三通阀105B、第一三通阀105A和第三三通阀105C同时由原先的0位切换至1位,在第一泵103A的作用下,离子迁移进样载气经第二缓冲腔102B经第二三通阀105B和第一二三通阀105A进入采样管110,将暂存在采样管110内的气体样品经第三三通阀105C载入离子迁移管101内的离化反应区。
图5为图1中的基于脉冲采样的离子迁移谱仪处于吹气洁气状态下的结构示意图,其中箭头标示着气流的方向。(1)吸气清洁过程:第一三通阀105A、第三三通阀105C和第四三通阀105D同时接0位,第二泵103B持续开启,清洁空气由采样装置111经第一三通阀105A到达采样管110并经第三三通阀105C和第四三通阀105D、第二泵103B、第三净化过滤器107C和气阻108A排出,并对所经管道及阀组件进行清洁。(2)吹气清洁过程:第一三通阀105A、第三三通阀105C接0位,同时第四三通阀105D接1位,环境气体经气阻108B并经第四净化过滤器107D净化过滤后再经第二泵103B、经第四三通阀105D、第三三通阀105C、采样管110、第一三通阀105A和采样装置111后排出,并对所经管道及阀组件进行清洁。需要说明的是,吹气清洁其吹气经净化过滤,因此可应对较为苛刻的环境条件。
根据本公开的另一发明构思,提供一种嗅探装置,其包括如上所述的基于 脉冲采样的离子迁移谱仪。其中,嗅探装置所具有的技术效果与上述离子迁移谱仪的技术效果相对应,为了避免不必要的重复,在此将不再赘述。
综上,本公开所提供的离子迁移谱仪以及包括上述离子迁移谱仪的嗅探装置通过采用阀组件实现了被检样品的痕量脉冲取样,这种痕量脉冲取样直接进样的方式一方面可以提高仪器的检测灵敏度,另一方面在保证同等检测限的前提下其采、进样量低,苛刻的外界环境也难以对仪器性能产生影响。此外,本方案设计的采样气路同时还兼具吸气清洁或吹气清洁功能,可以辅助设备清洁提高仪器的工作效率。

Claims (24)

  1. 一种基于脉冲采样的离子迁移谱仪,其特征在于,包括:
    离子迁移管,所述离子迁移管上设置有供样品气体和载气流入的气体入口、供气体流出的气体出口和供迁移气体流入的迁移气体入口;
    采样气路,所述采样气路上设置有采样装置,所述采样装置包括采样头和采样管,所述采样头的出口与所述采样管的入口连通,所述采样气路构造成将所述采样头所采集的样品气体暂存在所述采样管内;
    进样气路,所述进样气路的两端分别与所述离子迁移管的气体入口与气体出口连通,所述采样管并联在所述进样气路上,所述进样气路构造成将所述离子迁移管内的载气导入所述采样管内,并将暂存在所述采样管内的样品气体载入所述离子迁移管内;和
    阀组件,所述阀组件构造成在采样状态下仅允许气体从所述采样装置流向所述采样管,在进样状态下仅允许气体从所述离子迁移管经所述采样管流回所述离子迁移管。
  2. 根据权利要求1所述的离子迁移谱仪,其特征在于,所述阀组件包括第一三通阀,所述第一三通阀的第一端口与所述采样装置的出口连通,第二端口与所述离子迁移管的气体出口连通,第三端口与所述采样管的入口连通。
  3. 根据权利要求2所述的离子迁移谱仪,其特征在于,还包括循环气路,所述循环气路包括迁移气循环气路和进样载气循环气路,所述迁移气循环气路的两端分别与所述离子迁移管的气体出口和迁移气体入口连通,用于从后端向所述离子迁移管内导入迁移气体;所述进样载气循环气路的两端分别与所述离子迁移管的气体出口和气体入口连通,用于从后端向所述离子迁移管内导入载气。
  4. 根据权利要求3所述的离子迁移谱仪,其特征在于,所述离子迁移管采用一体式双模式全陶瓷迁移管,所述迁移气循环气路的数量为两条,两条所述迁移气循环气路的出口端与所述一体式双模式全陶瓷迁移管的两个离子迁移管上的迁移气体入口一一对应连通。
  5. 根据权利要求3所述的离子迁移谱仪,其特征在于,所述迁移气循环气路上设置有第一流量控制阀,用于控制所述迁移气循环气路上的气体流量。
  6. 根据权利要求3所述的离子迁移谱仪,其特征在于,还包括第一泵,所述第一泵设置在气体流动方向上所述离子迁移管的下游,用于驱动气体流动。
  7. 根据权利要求6所述的离子迁移谱仪,其特征在于,还包括串联在所述进样气路上且位于所述离子迁移管和所述第一泵之间的第一缓冲腔。
  8. 根据权利要求7所述的离子迁移谱仪,其特征在于,还包括串联在所述进样气路上且位于所述离子迁移管和所述第一缓冲腔之间的第二流量控制阀。
  9. 根据权利要求8所述的离子迁移谱仪,其特征在于,还包括串联在所述进样气路上且位于所述第一泵和所述第一三通阀之间的第二缓冲腔。
  10. 根据权利要求9所述的离子迁移谱仪,其特征在于,所述迁移气循环气路的入口端和所述进样载气循环气路的入口端均与所述第二缓冲腔的排气口连通,所述第一三通阀的第二端口与所述第二缓冲腔的排气口连通。
  11. 根据权利要求10所述的离子迁移谱仪,其特征在于,所述阀组件还包括第二三通阀,所述进样载气循环气路的入口端通过所述第二三通阀与所述进样气路连通,且连接处位于所述第二缓冲腔和所述述第一三通阀之间,所述第二三通阀构造成在进样状态下仅允许气体从所述第二缓冲腔经所述进样气路的一部分流向所述采样管,在内循环状态下仅允许气体从所述第二缓冲腔经所述进样载气循环气路流向所述离子迁移管。
  12. 根据权利要求9所述的离子迁移谱仪,其特征在于,还包括第一净化过滤器,所述第一净化过滤器设置在所述进样气路上,且位于所述第一泵和所述第二缓冲腔之间,用于过滤通过所述进样气路的气体。
  13. 根据权利要求12所述的离子迁移谱仪,其特征在于,还包括用于向离子迁移管内补气或将离子迁移谱仪泄气的补气/泄气气路,所述补气/泄气气路的第一端与所述离子迁移管的气体出口连通,所述补气/泄气气路的第二端与外界环境连通。
  14. 根据权利要求13所述的离子迁移谱仪,其特征在于,在所述补气/泄气气路上设置有第二净化过滤器。
  15. 根据权利要求14所述的离子迁移谱仪,其特征在于,所述阀组件还包括第五三通阀,所述补气/泄气气路的第一端通过所述第五三通阀与所述进样气路连通,且连接处位于所述第一泵和所述第一净化过滤器之间,所述第五三通阀构造成在进样状态下仅允许气体从所述第一泵流向所述第一净化过滤器;在泄气状态下仅允许气体从所述第一泵流向所述第二净化过滤器;以及在补气状态下仅允许气体从所述第二净化过滤器流向所述第一泵。
  16. 根据权利要求15所述的离子迁移谱仪,其特征在于,所述补气/泄气气路上还设置有水阱过滤器,所述水阱过滤器位于所述第二净化过滤器和所述外界环境之间。
  17. 根据权利要求1所述的离子迁移谱仪,其特征在于,在所述采样气路上还设置有第二泵,用于驱动气体流动。
  18. 根据权利要求17所述的离子迁移谱仪,其特征在于,还包括吸气清洁气路,所述吸气清洁气路的两端分别与所述第二泵的出口和外界环境连通,所述第二泵设置在所述采样气路在气体流动方向上的下游;所述阀组件还包括设置在所述吸气清洁气路上位于所述第二泵和所述采样管之间的第三三通阀,所述第三三通阀构造成在吸气清洁状态下仅允许气体从所述采样管流向所述第二泵,在进样状态下仅允许气体从所述采样管流向所述离子迁移管;所述吸气清洁气路上设置有第三净化过滤器,所述吸气清洁气路构造成在吸气清洁状态下清洁空气流经采样气路并经第三净化过滤器过滤后排出。
  19. 根据权利要求18所述的离子迁移谱仪,其特征在于,还包括吹气清洁气路,所述吹气清洁气路的两端分别与所述采样泵的入口和外界环境连通,所述吹气清洁气路上设置有第四净化过滤器,所述吹气清洁气路构造成在吹气清洁状态下通过第四净化过滤器过滤后的气体流向采样气路以对采样气路进行清洁。
  20. 根据权利要求19所述的离子迁移谱仪,其特征在于,所述阀组件还包括在所述采样气路上位于所述第二泵和所述第三三通阀之间的第四三通阀,所述第四三通阀构造成在吸气清洁状态下仅允许气体从所述采样管流向所述第二泵;在吹气清洁状态下仅允许气体从所述第二泵流向所述采样管。
  21. 根据权利要求1-20中任一项所述的离子迁移谱仪,其特征在于,所述采样装置采用金属管制成。
  22. 根据权利要求1-20中任一项所述的离子迁移谱仪,其特征在于,所述采样装置上设置有加热器,用于确保所述采样装置的内部温度不低于预设温度。
  23. 根据权利要求1-20中任一项所述的离子迁移谱仪,其特征在于,所述采样装置的入口设置有微孔过滤装置,用于过滤样品气体中的杂质。
  24. 一种嗅探装置,其特征在于,包括根据权利要求1-23中任一项所述的离子迁移谱仪。
PCT/CN2019/090947 2018-09-06 2019-06-12 基于脉冲采样的离子迁移谱仪及嗅探装置 WO2020048178A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/626,767 US11346807B2 (en) 2018-09-06 2019-06-12 Pulsed sampling-based ion mobility spectrometer and sniffer
DE112019004472.9T DE112019004472B4 (de) 2018-09-06 2019-06-12 Ionenmobilitäts-Spektrometer mit gepulster Probenahme und Sniffer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811040529.0 2018-09-06
CN201811040529.0A CN110880445A (zh) 2018-09-06 2018-09-06 一种基于脉冲采样的离子迁移谱仪及嗅探装置

Publications (1)

Publication Number Publication Date
WO2020048178A1 true WO2020048178A1 (zh) 2020-03-12

Family

ID=69722978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090947 WO2020048178A1 (zh) 2018-09-06 2019-06-12 基于脉冲采样的离子迁移谱仪及嗅探装置

Country Status (4)

Country Link
US (1) US11346807B2 (zh)
CN (1) CN110880445A (zh)
DE (1) DE112019004472B4 (zh)
WO (1) WO2020048178A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111337598B (zh) * 2020-05-18 2020-09-11 同方威视技术股份有限公司 痕量探测设备
CN113804747B (zh) * 2020-05-29 2023-08-01 同方威视技术股份有限公司 热解吸采样装置、热解吸设备和离子迁移谱仪检测设备
CN113804511A (zh) * 2020-05-29 2021-12-17 同方威视技术股份有限公司 手持式气体采样装置和气体检测系统
CN113776900B (zh) * 2020-06-08 2022-08-30 同方威视技术股份有限公司 气味嗅探装置和用于集装箱的车载安检设备
CN112103171B (zh) * 2020-09-18 2023-10-13 中国科学院空天信息创新研究院 被动进样装置及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004109254A2 (en) * 2003-06-06 2004-12-16 Ionwerks Fullerene-based maldi matrices for peptides and proteins
CN102072933A (zh) * 2009-11-20 2011-05-25 中国科学院大连化学物理研究所 一种应用于离子迁移谱的定容式连续进样器
CN203561618U (zh) * 2013-10-28 2014-04-23 同方威视技术股份有限公司 离子迁移谱仪系统
CN206258418U (zh) * 2016-12-08 2017-06-16 同方威视技术股份有限公司 气相色谱与离子迁移谱设备
CN208819830U (zh) * 2018-09-06 2019-05-03 同方威视技术股份有限公司 一种基于脉冲采样的离子迁移谱仪及嗅探装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9602158D0 (en) 1996-02-02 1996-04-03 Graseby Dynamics Ltd Corona discharge ion sources for analytical instruments
US5736739A (en) * 1996-04-04 1998-04-07 Mine Safety Appliances Company Recirculating filtration system for use with a transportable ion mobility spectrometer in gas chromatography applications
DE19938392B4 (de) 1999-08-05 2007-11-08 Dräger Safety AG & Co. KGaA Einlasssystem für Ionenmobilitätsspektrometer
DE102007052802B4 (de) * 2007-11-06 2012-06-14 Bruker Daltonik Gmbh Ionenmobilitätsspektrometer und Verfahren zu seinem Betrieb
DE202009007714U1 (de) 2009-05-27 2009-08-27 Helmholtz-Zentrum Für Umweltforschung Gmbh - Ufz Detektionssystem zur Ankopplung an Membrane Interphase Probe (MIP)-Techniken auf Basis der Ionenmobilitätsspektrometrie
CN106645472A (zh) 2016-12-08 2017-05-10 同方威视技术股份有限公司 气相色谱‑离子迁移谱设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004109254A2 (en) * 2003-06-06 2004-12-16 Ionwerks Fullerene-based maldi matrices for peptides and proteins
CN102072933A (zh) * 2009-11-20 2011-05-25 中国科学院大连化学物理研究所 一种应用于离子迁移谱的定容式连续进样器
CN203561618U (zh) * 2013-10-28 2014-04-23 同方威视技术股份有限公司 离子迁移谱仪系统
CN206258418U (zh) * 2016-12-08 2017-06-16 同方威视技术股份有限公司 气相色谱与离子迁移谱设备
CN208819830U (zh) * 2018-09-06 2019-05-03 同方威视技术股份有限公司 一种基于脉冲采样的离子迁移谱仪及嗅探装置

Also Published As

Publication number Publication date
CN110880445A (zh) 2020-03-13
US11346807B2 (en) 2022-05-31
DE112019004472B4 (de) 2022-09-29
US20210404988A1 (en) 2021-12-30
DE112019004472T5 (de) 2021-05-20

Similar Documents

Publication Publication Date Title
WO2020048178A1 (zh) 基于脉冲采样的离子迁移谱仪及嗅探装置
WO2021233210A1 (zh) 痕量探测设备
US11022581B2 (en) Multiple functions ion mobility spectrometer device
US11320407B2 (en) Gas chromatograph-ion mobility spectrometry combined equipment
CN208819830U (zh) 一种基于脉冲采样的离子迁移谱仪及嗅探装置
CN112924626B (zh) 一种电子鼻装置
CN103854950A (zh) 一种膜进样离子迁移谱气路
JP2007500364A5 (zh)
TWI581305B (zh) 檢測污染位置的設備、檢測污染位置的方法及電腦可讀取記錄媒體
CN103854949B (zh) 热解析进样器离子迁移谱气路
CN102072933A (zh) 一种应用于离子迁移谱的定容式连续进样器
JPH10104134A (ja) 内燃機関排ガスの定流量希釈サンプリング装置
CN209606374U (zh) 离子迁移谱仪装置
CN207601028U (zh) 一种简易气相色谱气路
JP2000180364A (ja) ガス分析装置
WO2021238951A1 (zh) 气相检测装置
JP3390506B2 (ja) ガス漏れ検査装置
CN112285259B (zh) 一种离子迁移谱装置
TWI752814B (zh) 氣體偵測系統及其檢測方法
CN107532977A (zh) 用于操作船舶气体采样装置的方法
WO2018196575A1 (zh) 双模减压器
JP2000171357A (ja) 窒素酸化物分析装置
JPH09304366A (ja) 気体試料吸着装置
TWM639050U (zh) 晶圓盒採樣裝置
CN208313936U (zh) 一种多组分分析仪器系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857681

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19857681

Country of ref document: EP

Kind code of ref document: A1