WO2021233210A1 - 痕量探测设备 - Google Patents

痕量探测设备 Download PDF

Info

Publication number
WO2021233210A1
WO2021233210A1 PCT/CN2021/093720 CN2021093720W WO2021233210A1 WO 2021233210 A1 WO2021233210 A1 WO 2021233210A1 CN 2021093720 W CN2021093720 W CN 2021093720W WO 2021233210 A1 WO2021233210 A1 WO 2021233210A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
module
sampling
path module
fluid communication
Prior art date
Application number
PCT/CN2021/093720
Other languages
English (en)
French (fr)
Inventor
张清军
李元景
陈志强
李荐民
朱伟平
马秋峰
曹彪
严李李
李鸽
杨内
Original Assignee
同方威视技术股份有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司, 清华大学 filed Critical 同方威视技术股份有限公司
Priority to US17/999,201 priority Critical patent/US20230236150A1/en
Priority to DE112021002819.7T priority patent/DE112021002819T5/de
Publication of WO2021233210A1 publication Critical patent/WO2021233210A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7206Mass spectrometers interfaced to gas chromatograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/20Injection using a sampling valve
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/025Gas chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/20Injection using a sampling valve
    • G01N2030/201Injection using a sampling valve multiport valves, i.e. having more than two ports

Definitions

  • the invention relates to the field of detection technology, in particular to a trace detection device.
  • Gas chromatography-ion mobility spectrometry technology not only effectively utilizes the outstanding separation ability of gas chromatography for complex samples, but also effectively utilizes the high sensitivity of the ion mobility spectrometer device, which can not only solve the problem of the low discrimination ability of the gas chromatography device and the pairing of the ion mobility spectrum device
  • the detection of mixtures has the problems of low cross-sensitivity and low resolution, and can also obtain chromatographic retention time information, so it can effectively perform accurate resolution and simple quantification of samples with complex components, making this technology very suitable for complex environments Detection and early warning of toxic and harmful gases and other prohibited items.
  • the existing gas chromatography-ion mobility spectrometry technology either has poor resolution capability for complex components or long detection time, so it is difficult to meet the rapid detection requirements and precise detection requirements of complex detection environments and complex objects to be detected at the same time.
  • An object of the present disclosure is to solve at least one aspect of the above-mentioned problems and deficiencies in the prior art.
  • a trace detection device including: an ion transfer tube configured to detect a sample; a sampling gas path module configured to collect a sample; A sample gas path module configured to guide a sample carrier gas containing a sample collected by the sample gas path module toward the ion transfer tube; and a gas chromatography device, the gas chromatograph
  • the device can pre-separate the sample carrier gas to form a pre-separated sample carrier gas; wherein the sample gas path module is also configured to be able to switch between the first mode and the second mode, and In the first mode, the sample gas path module introduces the sample carrier gas into the ion transfer tube; and in the second mode, the sample gas path module introduces the sample carrier gas into the
  • the gas chromatography device pre-separates the sample carrier gas, and the pre-separated sample carrier gas is introduced into the ion transfer tube.
  • the sample injection gas circuit module includes a sample injection main gas circuit module, a first sample injection branch module and a second sample injection branch module connected in parallel, and the first sample injection branch module connected in parallel And the second sample injection branch module in series with the sample injection main gas circuit module, the gas chromatography device is arranged on the second sample injection branch module;
  • the trace detection equipment also includes a first three A through valve, the first port of the first three-way valve is in fluid communication with the sample injection main gas path module, and the second port of the first three-way valve is in fluid communication with the first sample injection branch module, The third port of the first three-way valve is in fluid communication with the second injection branch module, and the first three-way valve is configured to allow only the sample carrier gas in the first mode Flow from the main sampling gas path module to the first sampling branch module, and in the second mode, only the sample carrier gas is allowed to flow from the main sampling gas path module to the second Injection branch module.
  • the trace detection device further includes a pressurized gas circuit module configured to introduce pressurized gas upstream of the second sampling branch module.
  • the inlet end of the pressurized gas circuit module is in fluid communication with a part of the main sampling gas circuit module upstream of the sampling gas circuit module to receive data from the main sampling gas circuit.
  • the gas in the module is used as pressurized gas.
  • the trace detection device further includes a pump for driving the exhaust gas from the ion transfer tube into the pressurized gas path module.
  • the sampling gas path module includes a sampling head and a sampling tube
  • the trace detection device further includes a fourth three-way valve.
  • the first port of the fourth three-way valve is connected to the sampling tube.
  • the inlet is in fluid communication
  • the second port of the fourth three-way valve is in fluid communication with the sampling main gas path module
  • the third port of the fourth three-way valve is in fluid communication with the sampling head
  • the second port of the fourth three-way valve is in fluid communication with the sampling head.
  • the four-way valve is configured to only allow gas to flow from the sampling head to the sampling tube in the sampling state, and to only allow gas to flow from the sampling main gas path module to the sampling tube in the sampling state.
  • the fourth three-way valve and the first three-way valve are two-position three-way solenoid valves.
  • the sampling head includes a needle shape and a suction cup shape.
  • the trace detection device further includes an inhalation clean air path module, the inlet end of the inhalation clean air path module is in fluid communication with the outlet of the sampling tube, the inhalation clean air path module The outlet end of the inhalation and clean air path module is in fluid communication with the external environment, a first purification filter is provided on the inhalation and clean air path module, and the inhalation and clean air path module is configured to suck in the external environment in a clean state of inhalation The air passes through the sampling head and the sampling pipe in sequence, and then is filtered by the first purification filter before being discharged.
  • the trace detection device further includes a blowing and cleaning gas path module, the inlet end of the blowing and cleaning gas path module is in fluid communication with the external environment, and the outlet end of the blowing and cleaning gas path module is in fluid communication with the external environment.
  • the outlet of the sampling tube is in fluid communication
  • the blowing clean air path module is provided with a second purification filter
  • the blowing clean air path module is configured to allow air from the external environment to pass through in the blowing clean state.
  • the second purification filter flows through the sampling pipe and the sampling head in sequence after filtering, and then is discharged.
  • the trace detection device further includes a second three-way valve, the first port of the second three-way valve is in fluid communication with the outlet of the sampling pipe, and the first port of the second three-way valve is in fluid communication with the outlet of the sampling pipe.
  • the two ports are in fluid communication with the sample injection main gas path module, and the third port of the second three-way valve is connected to the inlet end of the suction cleaning gas path module and the outlet end of the blowing clean gas path module.
  • the second three-way valve is configured to only allow gas to flow from the sampling tube to the inhalation cleaning gas path module in the inhalation clean state or only allow gas to flow from in the inhalation state
  • the blowing clean gas path module flows to the sampling pipe, and in the sampling state, only gas is allowed to flow from the sampling pipe to the main sampling gas path module.
  • the trace detection device further includes a third three-way valve, the first port of the third three-way valve is in fluid communication with the second port of the second three-way valve, and the third The second port of the three-way valve is in fluid communication with the inlet end of the first purification filter, the third port of the third three-way valve is in fluid communication with the outlet end of the second purification filter, and the first The three-way valve is configured to only allow gas from the sampling tube to flow to the first purification filter in the suction clean state, and only allow gas from the second purification filter in the blowing clean state The purification filter flows to the sampling pipe.
  • the trace detection device further includes a circulating gas path module, the circulating gas path module includes a migrating gas circulating gas path module and a carrier gas circulating gas path module, and the inlet of the migrating gas circulating gas path module The end is in fluid communication with the gas outlet of the ion migration tube, and the outlet end of the migration gas circulation gas path module is in fluid communication with the third inlet of the ion migration tube for introducing migration gas into the ion migration tube;
  • the inlet end of the carrier gas circulation gas path module is in fluid communication with the gas outlet of the ion migration tube, and the outlet end of the carrier gas circulation gas path module is in fluid communication with the second inlet of the ion migration tube for The carrier gas is introduced into the ion migration tube.
  • the migration gas circulation gas circuit module is provided with a flow control valve for controlling the gas flow on the migration gas circulation gas circuit module; and the carrier gas circulation gas circuit module is also provided with a flow control valve.
  • the flow control valve is used to control the gas flow on the carrier gas circulation gas circuit module.
  • the trace detection device further includes a calibration gas circuit module, one end of the calibration gas circuit module is in fluid communication with the carrier gas circulation gas circuit module; the other end of the calibration gas circuit module is provided with The calibrator bin box is used to contain the calibrator; the calibration gas circuit module is also provided with an on-off valve, and the on-off valve is configured to control the on and off of the calibration gas circuit module, In this way, in the calibration state, the carrier gas in the carrier gas circulation gas path module introduces the calibrator permeated from the calibrator bin into the ion transfer tube to obtain calibration data.
  • Fig. 1 is a schematic diagram of a trace detection device according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic structural diagram of a trace detection device in an internal circulation state according to an embodiment of the disclosure.
  • FIG. 3 is a schematic structural diagram of a trace detection device in a sampling state according to an embodiment of the disclosure.
  • Fig. 4 is a schematic structural diagram of a trace detection device in a sampling state according to an embodiment of the disclosure.
  • FIG. 5 is a schematic structural diagram of a trace detection device in an inhalation cleaning state according to an embodiment of the disclosure.
  • FIG. 6 is a schematic diagram of the structure of the trace detection device in a blowing and cleaning state according to an embodiment of the disclosure.
  • fluid communication not only includes the case where the two are directly connected, but also includes that the gas can be in fluid communication between the two through other intermediate pipelines or elements.
  • a trace detection device including: an ion transfer tube configured to detect a sample; a sampling gas path module, the sampling gas path module configured to Collecting a sample; a sampling gas path module configured to guide a sample carrier gas containing the sample collected by the sampling gas path module toward the ion transfer tube; and a gas chromatography device, so
  • the gas chromatography device can pre-separate the sample carrier gas to form a pre-separated sample carrier gas; wherein, the sample gas path module is also configured to be able to switch between a first mode and a second mode, In the first mode, the sample gas path module introduces the sample carrier gas into the ion transfer tube; and in the second mode, the sample gas path module introduces the sample carrier gas
  • the gas chromatography device is introduced to pre-separate the sample carrier gas, and the pre-separated sample carrier gas is introduced into the ion transfer tube.
  • the user can switch to the first mode (ie, quick inspection mode) when the user needs to perform rapid qualitative detection of suspects, When it is necessary to deeply judge the specific nature of the suspect, it can be switched to the second mode (ie, fine inspection mode).
  • the user can select the required inspection mode according to the needs to meet the complex inspection environment and complex inspection targets.
  • the first mode ie, quick inspection mode
  • the second mode ie, fine inspection mode
  • FIG. 1 is a schematic structural diagram of a trace detection device 100 according to an embodiment of the disclosure.
  • FIG. 2 is a schematic diagram of the connection of the trace detection device in an embodiment of the disclosure in an internal circulation state.
  • FIG. 3 is a schematic structural diagram of a trace detection device in a sampling state according to an embodiment of the disclosure.
  • Fig. 4 is a schematic structural diagram of a trace detection device in a sampling state according to an embodiment of the disclosure.
  • FIG. 5 is a schematic structural diagram of a trace detection device in an inhalation cleaning state according to an embodiment of the disclosure.
  • FIG. 6 is a schematic diagram of the structure of the trace detection device in a blowing and cleaning state according to an embodiment of the disclosure.
  • the trace detection equipment 100 includes an ion migration tube 101, a gas chromatography device 114, a sampling gas path module I, a sample gas path module II, a pressurized gas path module III, and an inhalation clean gas path module IV. , Blowing clean air circuit module V, circulating air circuit module VI, calibration air circuit module VII, air supplement/bleed air circuit module VIII, and exhaust gas pretreatment module IX.
  • the ion mobility spectrometer 101 is configured to detect samples.
  • the ion mobility tube 101 is provided with a first inlet 101A, a second inlet 101B, a third inlet 101C, and an outlet 101D.
  • the sample carrier gas enters the ion transfer tube 101 through the first inlet 101A, and the gas in the ion transfer tube 101 flows out through the outlet 101D.
  • Part of the gas flowing out of the ion transfer tube 101 is used as a carrier gas and returns to the ion transfer tube through the second inlet 101B.
  • the tube 101 and part of the gas flowing out of the ion transfer tube 101 are used as a migration gas and return to the ion transfer tube 101 via the third inlet 101C.
  • the sampling gas path module 1 includes a sampling head 113 and a sampling tube 110, the sampling head 113 is configured to collect samples, and the sampling tube 110 is configured to temporarily store the samples collected by the sampling head 113.
  • the shape of the sampling head 113 includes, but is not limited to, a needle shape (for example, for travel luggage), a suction cup shape (for example, for a container ventilator), or any shape known in the art or applicable. In this way, the user can make a selection according to the condition of the object to be inspected, so as to improve the adaptability of the trace detection device 100.
  • the trace detection device 100 further includes a second pump 103B, which is used to drive the sample collected by the sampling head 113 into the sampling tube 110 in the sampling state.
  • the second pump 103B is preferably a diaphragm pump.
  • the inlet end of the sample gas path module II is in fluid communication with the outlet 101D of the ion transfer tube 101 via the exhaust gas pretreatment module IX, and the outlet end of the sample gas path module II is in fluid communication with the ion transfer tube 101
  • the first inlet 101A is in fluid communication
  • the sampling gas path module II is configured to introduce the purified exhaust gas from the ion transfer tube 101 into the sampling tube 110 to form a sample containing sample with the sample temporarily stored in the sampling tube 110 And introduce the sample carrier gas into the ion transfer tube 101.
  • the sample injection gas circuit module II includes a sample injection main gas circuit module II 0 , a first sample injection branch module II 1 and a second sample injection branch module II 2 connected in parallel.
  • the sample injection main gas path module II 0 includes a first part II 0A , a second part II 0B, and a third part II 0C , wherein the inlet end of the first part II 0A passes through the exhaust gas pretreatment module IV It is in fluid communication with the outlet 101D of the ion transfer tube 101, and the outlet end is in fluid communication with the inlet 110A of the sampling tube 110 via a fourth three-way valve 105D (for example, a two-position three-way solenoid valve), and is used to transfer the purified from the ion transfer tube 101
  • the exhaust gas of the sample is introduced into the sampling tube 110 to form a sample carrier gas containing the sample with the sample temporarily stored in the sampling tube 110.
  • the inlet end of the second part II 0B is in fluid communication with the outlet 110B of the sampling pipe 110 via a second two-position three-way valve (for example, two-position three-way solenoid valve) 105B.
  • the trace detection device 100 also includes a first three-way valve 105A (for example, a two-position three-way solenoid valve).
  • the first port of the first three-way valve 105A is in fluid communication with the outlet end of the second part II 0B, and the second port Is in fluid communication with the inlet end of the first injection branch module II 1 , and the third port is in fluid communication with the inlet end of the second injection branch module II 2 , and the first three-way valve 105A is configured to be in the first mode In the second mode, only the sample carrier gas is allowed to flow from the second part II 0B of the sample injection main gas circuit module II 0 to the first sample injection branch module II 1 , and in the second mode, only the sample carrier gas is allowed to flow from the sample injection main gas The second part II 0B of the circuit module II 0 flows to the second injection branch module II 2 .
  • the outlet end of the first injection branch module II 1 and the outlet end of the second injection branch module II 2 are both in fluid communication with the inlet end of the third part II 0C , and the outlet end of the third part II 0C is in fluid communication with the ion migration
  • the first inlet 101A of the tube 101 is in fluid communication and is used to introduce the sample carrier gas from the first sample injection branch module II 1 or the second sample injection gas circuit module II 2 into the ion migration tube 101. That is, the first three-way valve 105A is used to switch between the first mode and the second mode.
  • the gas chromatography device 114 is arranged on the second injection branch module II 2 and is configured to pre-separate the sample carrier gas from the sampling tube 110. The pre-separated sample carrier gas is introduced into the ion transfer tube 101 via the third part II 0C of the main gas path module II 0 for the sample injection.
  • the gas chromatography device 114 may include a chromatographic column and a heating jacket sleeved on the outside of the chromatographic column.
  • the chromatographic column may be, for example, a clustered capillary column with high column efficiency and strong separation ability.
  • the gas chromatography device 114 can also adopt any alternative device known in the art or any applicable alternative device.
  • the outlet end of the first sample injection branch module II 1 or the second sample injection gas circuit module II 2 can also be directly in fluid communication with the first inlet 101A of the ion transfer tube 101, or the first three-way valve 105A
  • the port may also be directly in fluid communication with the outlet 110B of the sampling tube 110, that is, the main gas path module II 0 does not necessarily need to have the second part II 0B and the third part II 0C .
  • the first port of the fourth three-way valve 105D is in fluid communication with the inlet 110A of the sampling tube 110, and the second port is connected to the first part II 0A of the sample injection main gas path module II 0
  • the outlet end is in fluid communication
  • the third port is in fluid communication with the sampling head 113
  • the fourth three-way valve 105D is configured to only allow gas to flow from the sampling head 113 to the sampling tube 110 in the sampling state, and only allow the gas to flow from the sampling head 113 to the sampling tube 110 in the sampling state.
  • the gas flows from the first part II 0A of the sampling main gas path module II 0 to the sampling pipe 110.
  • the trace detection device 100 further includes a pressurized gas circuit module III, which is configured to feed the gas in the second injection branch module II 2 In the flow direction, pressurized gas is introduced upstream of the gas chromatography device 114 to drive the sample carrier gas into the gas chromatography device 114.
  • a pressurized gas circuit module III which is configured to feed the gas in the second injection branch module II 2 In the flow direction, pressurized gas is introduced upstream of the gas chromatography device 114 to drive the sample carrier gas into the gas chromatography device 114.
  • the inlet end of the booster gas circuit module III is in fluid communication with the first part II 0A of the sample injection main gas circuit module II 0 to receive data from the sample injection main gas circuit module.
  • the gas in I 0 is used as pressurized gas.
  • the trace detection device 100 further includes a third pump 103C.
  • the third pump 103C is arranged on the first part II 0A of the sample injection main gas path module II 0 , and is located along the gas flow direction at the connection between the booster gas path module III and the first part II 0A of the sample injection main gas path module II 0
  • the upstream of the position is used to drive the exhaust gas from the ion migration tube 101 into the pressurized gas path module III through the exhaust gas pretreatment module IX, so as to increase the pressure in the pressurized gas path module III.
  • the third pump 103C is preferably a diaphragm pump.
  • the trace detection device 100 further includes an inhalation clean air path module IV.
  • the outlet 110B of the tube 110 is in fluid communication
  • the outlet end of the inhalation clean air path module IV is in fluid communication with the external environment
  • the inhalation clean air path module IV is provided with a first purification filter 107A
  • the inhalation clean air path Module IV is configured to suck the air in the external environment through the sampling head 113 and the sampling pipe 110 in the inhalation clean state, and then be filtered by the first purification filter 107A and discharged to achieve the cleaning of the pipelines and valves that pass through. , And ensure that the discharged air will not adversely affect the external environment.
  • the air inhalation and cleaning air path module IV is further provided with an air resistance 108A, and the air resistance 108A is located downstream of the first purification filter 107A in the gas flow direction to Adjust the gas flow in the suction and clean gas path module IV.
  • the trace detection device 100 further includes a blowing clean gas path module V, the inlet end of the blowing clean gas path module V is in fluid communication with the external environment, and the blowing clean gas The outlet end of the circuit module V is in fluid communication with the outlet 110B of the sampling tube 110 via the second two-position three-way valve 105B.
  • the blowing clean gas circuit module V is also provided with a second purification filter 107B, and the blowing clean gas The circuit module V is configured to make the air from the external environment filtered through the second purification filter 107B in the blowing clean state, enter the sampling pipe 110 and the sampling head 113 in sequence, and then discharge, so as to achieve the cleaning of the pipelines and valves. .
  • the trace detection device 100 can be made to cope with relatively harsh environmental conditions.
  • the air blowing and cleaning air path module V is further provided with an air resistance 108B, and the air resistance 108B is located upstream of the second purification filter 107B along the gas flow direction to Adjust the gas flow in the blowing and cleaning gas circuit module V.
  • the trace detection device 100 further includes a third three-way valve 105C.
  • the outlet 101D of the tube 110 is in fluid communication
  • the second port is in fluid communication with the inlet end of the first purification filter 107A
  • the third port is in fluid communication with the outlet end of the second purification filter 107B
  • the third three-way valve 105C is configured In the suction clean state, only the gas from the sampling pipe 110 is allowed to flow to the first purification filter 107A, and in the blowing clean state, only the gas is allowed to flow from the second purification filter 107B to the sampling pipe 110.
  • the inhalation clean air path module IV and the blowing clean air path module V can share some parts, for example, the third port of the inhalation clean air path module IV and the second three-way valve 105B
  • the connected end (ie, the inlet end) and the end (ie, the outlet end) of the blowing clean air path module V connected to the third port of the second three-way valve 105B are shared to reduce the number of parts and reduce manufacturing cost.
  • the first port of the second three-way valve 105B is in fluid communication with the outlet of the sampling tube 110, and the second port is connected to the second part of the main gas path module II 0 for sample injection.
  • the inlet end of II 0B is in fluid communication
  • the third port is in fluid communication with the inlet end of the inhalation clean air path module IV (the outlet end of the blowing clean air path module V)
  • the second three-way valve 105B is configured to In the gas cleaning state, only gas is allowed to flow from the outlet 110B of the sampling tube 110 to the inhalation clean gas path module IV (or from the blowing clean gas path module V to the sampling tube 110 in the blowing clean state), and in the sampling state Only the gas is allowed to flow from the outlet 110B of the sampling pipe 110 to the second part II 0B of the sample injection main gas path module II 0 .
  • the second pump 103B is also configured to drive the gas to flow through the sampling tube 110 and the first purification filter through the sampling head 113 in the inhalation clean state. 107A and the gas block 108A, and are discharged from the gas block 108A; and in the blowing clean state, it is used to drive the gas to flow through the gas block 108B, the second purification filter 107B, the sampling tube 110 and the sampling head 113, and from the sampling head 113 discharge.
  • the clean air path module IV and the clean air path module V share the second pump 103B with the sampling air path module I to reduce costs. It should be noted that those skilled in the art should understand that in some other embodiments of the present disclosure, they can also be set on the inhalation clean gas path module IV, the blowing clean gas path module V, and the sampling gas path module I. Pump.
  • the trace detection device 100 in this embodiment has both an inhalation clean air path module IV and a blowing clean air path module V.
  • an inhalation clean air path module IV and a blowing clean air path module V.
  • those skilled in the art should understand that in some other embodiments of the present disclosure, It is also possible to provide only one of the suction cleaning air path module IV and the blowing cleaning air path module V.
  • the trace detection device 100 further includes a circulating gas circuit module VI, and the circulating gas circuit module VI includes a migration gas circulating gas circuit module VI 1 and a carrier gas circulating gas circuit.
  • Module VI 2 the inlet end of the migration gas circulation gas path module VI 1 is in fluid communication with the outlet 101D of the ion migration tube 101 via the exhaust gas pretreatment module IX, the outlet end of the migration gas circulation gas path module VI 1 and the third inlet 101C fluid Connected to the gas migration zone of the ion migration tube 101;
  • the inlet end of the carrier gas circulation gas path module VI 2 is in fluid communication with the outlet 101D of the ion migration tube 101 via the exhaust gas pretreatment module IX, and the carrier gas circulation gas
  • the outlet end of the path module VI 2 is in fluid communication with the second inlet 101B, and is used to introduce carrier gas into the ionization reaction zone of the ion transfer tube 101.
  • the exhaust gas pretreatment module IX is configured to pretreat the exhaust gas from the ion transfer tube 101, and it includes a first pump 103A that is located in the ion migration direction in the gas flow direction.
  • the downstream of the pipe 101 is used to drive the flow of gas in the entire system.
  • the first pump 103A is preferably a diaphragm pump.
  • the exhaust gas pretreatment module IX also includes a first buffer chamber 102A located between the first pump 103A and the outlet 101D of the ion transfer tube 101 in the gas flow direction.
  • the first buffer chamber 102A is used to reduce the flow of the first pump 103A. The effect of pulsed gas flow on the signal of ion transfer tube 101.
  • the exhaust gas pretreatment module IX further includes a second buffer chamber 102B located downstream of the first pump 103A in the gas flow direction to further reduce the influence of the pulsed gas flow of the first pump 103A on the signal of the ion transfer tube 101.
  • the migration gas circulation gas path module VI 1 and the carrier gas circulation gas path module VI 2 are respectively communicated with the exhaust port of the second buffer chamber 102B.
  • at least a part of at least one surface of the first buffer cavity 102A and the second buffer cavity 102B is provided with a buffer film to enhance the buffer effect.
  • the buffer film adopts a buffer film with good stretch performance.
  • the material of the buffer film includes but is not limited to latex.
  • the exhaust gas pretreatment module IX further includes a third purification filter 107C.
  • the third purification filter 107C is located between the first pump 103A and the second buffer chamber 102B, and is used to remove the ion transfer tube from the ion transfer tube.
  • the exhaust gas discharged from 101 is filtered.
  • the trace detection device 100 further includes a calibration gas circuit module VII, one end of the calibration gas circuit module VII is in fluid communication with the carrier gas circulation gas circuit module VI 2 ; the other end of the calibration gas circuit module VII is provided with
  • the calibrator compartment box 112 is used to contain the calibrator, such as a trace standard agent;
  • the calibration gas circuit module VII is also provided with an on-off valve 111, and the on-off valve 111 (for example, a solenoid valve) is configured To control the on and off of the calibration gas circuit module, so that in the calibration state, the carrier gas in the carrier gas circulation gas circuit module VI 2 introduces the calibrant permeated from the calibrator compartment 112 into the ion transfer tube 101 to obtain calibration data For example, the peak position and the calibration coefficient are calibrated, so as to realize the calibration of the trace detection device 100.
  • the calibration gas path module VII the adaptability of the trace detection device 100 to the detection environment can be improved.
  • the trace detection device 100 further includes a first flow control valve (such as a solenoid valve) 106A, which is located between the outlet 101D of the ion transfer tube 101 and the first buffer chamber 102A, Used to read the gas flow of the exhaust gas from the ion migration tube 101 and control the migration gas circulation gas path module VI1 is provided with a second flow control valve (such as solenoid valve) 106B for reading the migration gas circulation gas path module The gas flow rate of the migration gas in VI 1 is controlled.
  • the carrier gas circulating gas circuit module VI 2 is provided with a third flow control valve 106C for reading and controlling the gas flow of the carrier gas in the carrier gas circulating gas circuit module VI 2.
  • the trace detection device 100 also includes a gas supplement/deflation gas path module VIII for supplying gas into the ion migration tube 101 and for deflating the ion migration tube 101, and a gas supplement/deflation gas path module VIII.
  • One end is in fluid communication with the outlet 101D of the ion transfer tube 101 via the first buffer chamber 102A, and the other end of the air supplement/vent air circuit module VIII is in communication with the external environment.
  • a fourth purification filter 107D is provided on the air supplement/bleed air circuit module VIII, which is used to purify the gas flowing through the air supplement/bleed air circuit module VIII.
  • a water trap filter 109 is also provided on the air supplement/bleed air path module VIII.
  • the water trap filter 109 is connected between the fourth purification filter 107D and the external environment to further reduce the external environment. The influence of ion transfer tube.
  • the trace detection device 100 further includes a fifth three-way valve (for example, a two-position three-way solenoid valve) 104, which is located between the first pump 103A and the third purification filter 107C.
  • the first port of the fifth three-way valve 104 is in fluid communication with the first buffer chamber 102A, the second port is in fluid communication with the third purification filter 107C, and the third port is in fluid communication with the fourth purification filter 107D.
  • the five-way valve 104 is configured to only allow gas to flow from the first buffer chamber 102A to the third purification filter 107C in the sampling state and the internal circulation state; in the degassing state, only the gas is allowed to flow from the first buffer chamber 102A to the external environment ; And in the supplemental gas state, only gas is allowed to flow from the external environment to the first buffer chamber 102A.
  • the ion transfer tube 101 is an integrated dual-mode full ceramic transfer tube, which includes a first ion transfer tube and a second ion transfer tube.
  • the number of the migration gas circulation gas path module VI 1 is two, and the outlet end of each migration gas circulation gas path module VI 1 is in communication with the third inlet 101C of the corresponding ion migration tube 101.
  • the ion transfer tube 101 may be any ion transfer tube 101 known in the art or any applicable ion transfer tube 101, such as a single ion transfer tube 101. Tube 101.
  • the sampling tube 110 may be, for example, a stainless steel tube, the outer diameter of which does not exceed 5 mm.
  • the sampling gas circuit module 1 may be provided with a heater, for example, to ensure that the internal temperature of the sampling gas circuit module 1 is not lower than a preset temperature, such as 50° C., so as to facilitate pulse sample storage and sample injection.
  • the inlet 110A of the sampling tube 110 may be provided with a microporous filter device, such as a microporous filter screen, for filtering impurities such as dust or particles in the sample.
  • the first three-way valve 105A and the fourth three-way valve 105D may be, for example, two-position three-way solenoid valves, so as to be quickly switched under the control of, for example, a controller, so that pulse sampling can be realized.
  • the time can be as low as milliseconds, and the minimum sampling amount of a single pulse can be as low as a few microseconds.
  • the second three-way valve 105B and the third three-way valve 105C are also preferably two-position three-way solenoid valves.
  • the first three-way valve 105A, the second three-way valve 105B, the third three-way valve 105C, and the fourth three-way valve 105D can be replaced by, for example, any components known in the art or any applicable components, such as two on and off. valve.
  • the working process of the trace detection device 100 is as follows:
  • the fifth three-way valve 104 is in communication with the third purification filter 107C.
  • the gas inside the ion transfer tube 101 comes out of the outlet 101D, and then flows through
  • the first buffer chamber 102A and the fifth three-way valve 104 reach the second buffer chamber 102B after being filtered by the third purifying filter 107C, and then enter the migration gas circulation air circuit module VI 1 and the second buffer chamber through the second flow control valve 106B.
  • the three-flow control valve 106C enters the carrier gas circulation gas path module VI 2 and then returns to the ion migration tube 101.
  • the sampling head 113 is close to the sample to be tested, the fourth three-way valve 105D and the second three-way valve 105B are connected to position 1, the third three-way valve 105C is connected to position 0, and the second pump 103B The gas sample reaches the sampling pipe 110 through the fourth three-way valve 105D through the sampling head 113 under the driving of, so as to complete the sampling.
  • the second three-way valve 105B and the fourth three-way valve 105D are quickly connected to position 0, and the exhaust gas from the ion transfer tube 101 is driven by the first pump 103A to pass through the first buffer in turn
  • the cavity 102A, the third purification filter 107C, and the second buffer cavity 102B are pressurized by the second pump 103B and then enter the sampling tube 110, and form a sample carrier gas containing the sample with the sample temporarily stored in the sampling tube 110, and then pass through
  • the first injection branch module II 1 enters the ion transfer tube 101 (in this case, the first three-way valve 105A is connected to position 0) or passes through the second injection branch module II 2 for pre-processing by the ion chromatography device 114 After separation, it is introduced into the ion transfer tube 101 (in this case, the first three-way valve 105A is connected to position 1, as shown in FIG. 4) for detection and analysis.
  • Blowing cleaning process As shown in Figure 6, the second three-way valve 105B, the third three-way valve 105C and the fourth three-way valve 105D are connected to the first position, the second pump 103B is turned on, and the air from the external environment passes through the air resistance 108B is purified and filtered by the second purification filter 107B, and then flows through the second pump 103B, the third three-way valve 105C, the second three-way valve 105B, the sampling pipe 110, the fourth three-way valve 105D and the sampling head 113 in sequence. Discharge to clean the pipes and valves that pass through.
  • the trace detection device switches the sample gas path module between the first mode and the second mode, so that when the user needs to quickly qualitatively detect suspects, it can switch to the first mode (quick inspection). Mode), and can switch to the second mode (precision inspection mode) when it is necessary to deeply determine the specific nature of the suspect. In this way, the user can select the required detection mode according to the demand, so as to meet the various detection needs of the user.
  • the trace detection equipment realizes the trace pulse sampling of the tested sample. This direct injection method of trace pulse sampling can improve the detection sensitivity of the instrument on the one hand, and on the other hand, it can ensure the same detection limit. The sampling and injection volume is low, even the harsh external environment can hardly affect the performance of the instrument. Further, the trace detection device has the function of suction cleaning or blowing cleaning, which can assist equipment cleaning and improve work efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种痕量探测设备(100),包括:离子迁移管(101),离子迁移管(101)被配置成检测样品;采样气路模块(I),采样气路模块(I)被配置成采集样品;进样气路模块(II),进样气路模块(II)被配置成将包含采样气路模块(I)所采集的样品的样品载气朝着离子迁移管(101)引导;以及气相色谱装置(114),气相色谱装置(114)能够将样品载气进行预分离,以形成预分离的样品载气;其中,进样气路模块(II)还被配置成能够在第一模式与第二模式之间切换,在第一模式下,进样气路模块(II)将样品载气导入离子迁移管(101);以及在第二模式下,进样气路模块(II)将样品载气导入气相色谱装置(114)以对样品载气进行预分离,经预分离的样品载气被导入离子迁移管(101)。

Description

痕量探测设备
相关申请的交叉引用
本申请主张在2020年05月18日在中国专利局提交的中国专利申请No.202010416806.4的优先权,其全部内容通过引用包含于此。
技术领域
本发明涉及检测技术领域,特别是涉及一种痕量探测设备。
背景技术
气相色谱-离子迁移谱联用技术不仅有效地利用气相色谱对复杂样品突出的分离能力,同时还有效地利用离子迁移谱装置灵敏度高,不仅可以解决气相色谱装置低鉴别能力和离子迁移谱装置对混合物进行检测时存在的交叉灵敏度低和分辨低的问题,而且还可获取色谱保留时间信息,因此能够有效地对成分复杂的样品进行精确的分辨和简单定量,使得该技术非常适用于复杂环境中有毒有害气体和其它违禁物品的检测、预警。
然而,现有的气相色谱-离子迁移谱联用技术要么对复杂成分的分辨能力差,要么检测时间长,因此难以同时满足现场复杂检测环境和复杂被检目标的快速检测需求和精确检测需求。
发明内容
本公开的一个目的旨在解决现有技术中存在的上述问题和缺陷的至少一个方面。
根据本公开的实施例,提供了一种痕量探测设备,包括:离子迁移管,所述离子迁移管被配置成检测样品;采样气路模块,所述采样气路模块被配置成采集样品;进样气路模块,所述进样气路模块被配置成将包含所述采样气路模块所采集的样品的样品载气朝着所述离子迁移管引导;以及气相色谱装置,所述气相色谱装置能够将所述样品载气进行预分离,以形成预分离的样品载气;其中,所述进样气路模块还被配置成能够在第一模式与第二模式之间切换,在所述第一模式下,所述进样气路模块将所述样品载气导入所述离子迁移管;以 及在所述第二模式下,所述进样气路模块将所述样品载气导入所述气相色谱装置以对所述样品载气进行预分离,经预分离的样品载气被导入所述离子迁移管。
在一些实施例中,所述进样气路模块包括进样主气路模块以及并联的第一进样支路模块和第二进样支路模块,所述并联的第一进样支路模块和所述第二进样支路模块串联于所述进样主气路模块,所述气相色谱装置设置在所述第二进样支路模块上;所述痕量探测设备还包括第一三通阀,所述第一三通阀的第一端口与所述进样主气路模块流体连通,所述第一三通阀的第二端口与所述第一进样支路模块流体连通,所述第一三通阀的第三端口与所述第二进样支路模块流体连通,并且所述第一三通阀被配置成在所述第一模式下,仅允许所述样品载气从所述进样主气路模块流向所述第一进样支路模块,以及在所述第二模式下,仅允许所述样品载气从所述进样主气路模块流向所述第二进样支路模块。
在一些实施例中,所述痕量探测设备还包括增压气路模块,所述增压气路模块被配置成向所述第二进样支路模块的上游导入增压气体。
在一些实施例中,所述增压气路模块的进口端与所述进样主气路模块的位于所述采样气路模块的上游的部分流体连通,以接收来自所述进样主气路模块内的气体用作增压气体。
在一些实施例中,所述痕量探测设备还包括泵,所述泵用于驱动来自所述离子迁移管的排出气进入所述增压气路模块。
在一些实施例中,所述采样气路模块包括采样头和采样管,所述痕量探测设备还包括第四三通阀,所述第四三通阀的第一端口与所述采样管的入口流体连通,所述第四三通阀的第二端口与所述进样主气路模块流体连通,所述第四三通阀的第三端口与所述采样头流体连通,并且所述第四三通阀被配置成在采样状态下仅允许气体从所述采样头流向所述采样管,以及在进样状态下仅允许气体从所述进样主气路模块流向所述采样管。
在一些实施例中,所述第四三通阀和所述第一三通阀为两位三通电磁阀。
在一些实施例中,所述采样头包括针状和吸盘状。
在一些实施例中,所述痕量探测设备还包括吸气清洁气路模块,所述吸气清洁气路模块的进口端与所述采样管的出口流体连通,所述吸气清洁气路模块的出口端与外界环境流体连通,所述吸气清洁气路模块上设置有第一净化过滤器,并且所述吸气清洁气路模块被配置成在吸气清洁状态下抽吸外界环境中的空气依次通过所述采样头和所述采样管,然后经所述第一净化过滤器过滤后排 出。
在一些实施例中,所述痕量探测设备还包括吹气清洁气路模块,所述吹气清洁气路模块的进口端与外界环境流体连通,所述吹气清洁气路模块的出口端与所述采样管的出口流体连通,所述吹气清洁气路模块上设置有第二净化过滤器,所述吹气清洁气路模块被配置成在吹气清洁状态下使来自外界环境的空气经所述第二净化过滤器过滤后依次流经所述采样管和所述采样头后排出。
在一些实施例中,所述痕量探测设备还包括第二三通阀,所述第二三通阀的第一端口与所述采样管的出口流体连通,所述第二三通阀的第二端口与所述进样主气路模块流体连通,所述第二三通阀的第三端口与所述吸气清洁气路模块的进口端和所述吹气清洁气路模块的出口端流体连通,并且所述第二三通阀被配置成在所述吸气清洁状态下仅允许气体从所述采样管流向所述吸气清洁气路模块或者在所述吹气状态下仅允许气体从所述吹气清洁气路模块流向所述采样管,以及在进样状态下仅允许气体从所述采样管流向所述进样主气路模块。
在一些实施例中,所述痕量探测设备还包括第三三通阀,所述第三三通阀的第一端口与所述第二三通阀的第二端口流体连通,所述第三三通阀的第二端口与所述第一净化过滤器的进口端流体连通,所述第三三通阀的第三端口与所述第二净化过滤器的出口端流体连通,并且所述第三三通阀被配置成在所述吸气清洁状态下仅允许来自所述采样管的气体流向所述第一净化过滤器,以及在所述吹气清洁状态下仅允许气体从所述第二净化过滤器流向所述采样管。
在一些实施例中,所述痕量探测设备还包括循环气路模块,所述循环气路模块包括迁移气循环气路模块和载气循环气路模块,所述迁移气循环气路模块的进口端与所述离子迁移管的气体出口流体连通,所述迁移气循环气路模块的出口端与所述离子迁移管的第三入口流体连通,用于向所述离子迁移管内导入迁移气;所述载气循环气路模块的进口端与所述离子迁移管的气体出口流体连通,所述载气循环气路模块的出口端与所述离子迁移管的第二入口流体连通,用于向所述离子迁移管内导入载气。
在一些实施例中,所述迁移气循环气路模块上设置有流量控制阀,用于控制所述迁移气循环气路模块上的气体流量;以及所述载气循环气路模块上也设置有流量控制阀,用于控制所述载气循环气路模块上的气体流量。
在一些实施例中,所述痕量探测设备还包括校准气路模块,所述校准气路 模块的一端与所述载气循环气路模块流体连通;所述校准气路模块的另一端设置有校准物仓盒,所述校准物仓盒用于容纳校准物;所述校准气路模块上还设置有通断阀,所述通断阀被配置成控制所述校准气路模块的通断,以使得在校准状态下,所述载气循环气路模块内的载气将所述校准物仓盒渗透出的校准物导入所述离子迁移管,以获取校准数据。
附图说明
图1为本公开的一个实施例的痕量探测设备的示意图。
图2为本公开的一个实施例的痕量探测设备在内循环状态下的结构示意图。
图3为本公开的一个实施例的痕量探测设备在采样状态下的结构示意图。
图4为本公开的一个实施例的痕量探测设备在进样状态下的结构示意图。
图5为本公开的一个实施例的痕量探测设备在吸气清洁状态下的结构示意图。
图6为本公开的一个实施例的痕量探测设备在吹气清洁状态下的结构示意图。
具体实施方式
虽然将参照含有本公开的较佳实施例的附图充分描述本公开,但在此描述之前应了解本领域的普通技术人员可修改本文中所描述的发明,同时获得本公开的技术效果。因此,须了解以上的描述对本领域的普通技术人员而言为一广泛的揭示,且其内容不在于限制本公开所描述的示例性实施例。
另外,在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本披露实施例的全面理解。然而明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。在其他情况下,公知的结构和装置以图示的方式体现以简化附图。
需要说明的是,本公开所使用的术语“流体连通”不仅包括两者直接相连的情况,而且还包括气体可以通过其他中间管路或元件在两者之间流体连通。
根据本公开的总体上的发明构思,提供了一种痕量探测设备,包括:离子迁移管,所述离子迁移管被配置成检测样品;采样气路模块,所述采样气路模块被配置成采集样品;进样气路模块,所述进样气路模块被配置成将包含所述采样气路模块所采集的样品的样品载气朝着所述离子迁移管引导;以及气相色 谱装置,所述气相色谱装置能够将所述样品载气进行预分离,以形成预分离的样品载气;其中,所述进样气路模块还被配置成能够在第一模式与第二模式之间切换,在所述第一模式下,所述进样气路模块将所述样品载气导入所述离子迁移管;以及在所述第二模式下,所述进样气路模块将所述样品载气导入所述气相色谱装置以对所述样品载气进行预分离,经预分离的样品载气被导入所述离子迁移管。
根据本公开,通过将进样气路模块在第一模式和第二模式之间切换,以使得当用户需要对嫌疑物进行快速定性检测时可以切换到第一模式(即,快检模式),而当需要深度判断嫌疑物的具体性质时可以切换到第二模式(即,精检模式),这样,用户可以根据需求选择所需要的检测模式,以满足现场复杂检测环境和复杂被检目标的多种检测需求。
图1为本公开的一个实施例的痕量探测设备100的结构示意图。图2为本公开的一个实施例的痕量探测设备在内循环状态下的连接示意图。图3为本公开的一个实施例的痕量探测设备在采样状态下的结构示意图。图4为本公开的一个实施例的痕量探测设备在进样状态下的结构示意图。图5为本公开的一个实施例的痕量探测设备在吸气清洁状态下的结构示意图。图6为本公开的一个实施例的痕量探测设备在吹气清洁状态下的结构示意图。
如图1所示,该痕量探测设备100包括离子迁移管101、气相色谱装置114、采样气路模块I、进样气路模块II、增压气路模块III、吸气清洁气路模块IV、吹气清洁气路模块V、循环气路模块VI、校准气路模块VII、补气/泄气气路模块VIII以及排出气预处理模块IX。
如图1和图2所示,离子迁移谱管101被配置成检测样品,该离子迁移管101上设置有第一入口101A、第二入口101B、第三入口101C和出口101D,其中,包含样品的样品载气经由第一入口101A进入离子迁移管101,离子迁移管101内的气体经由出口101D流出,从离子迁移管101流出的部分气体用作载气并经由第二入口101B回到离子迁移管101,以及从离子迁移管101流出的部分气体用作迁移气并经由第三入口101C回到离子迁移管101。
如图2所示,采样气路模块I包括采样头113和采样管110,采样头113被配置成采集样品,采样管110被配置成暂存采样头113所采集的样品。其中,采样头113的形状包括但不限于针状(例如用于旅行箱包)、吸盘状(例如用 于集装箱通风器),或者也可以采用在本领域已知的或任何可以适用的形状。这样用户可根据被检物情况进行选择,以提高该痕量探测设备100的适应性。该痕量探测设备100还包括第二泵103B,该第二泵在采样状态下用于驱动采样头113所采集的样品进入采样管110。该第二泵103B优选为隔膜泵。
如图2和图4所示,进样气路模块II的进口端经由排出气预处理模块IX与离子迁移管101的出口101D流体连通,进样气路模块II的出口端与离子迁移管101的第一入口101A流体连通,并且该进样气路模块II被配置成将经过净化的来自离子迁移管101的排出气导入采样管110内,以与暂存在采样管110内的样品形成包含样品的样品载气,并将该样品载气导入离子迁移管101内。
如图2和图4所示,进样气路模块II包括进样主气路模块II 0、并联的第一进样支路模块II 1和第二进样支路模块II 2。在该示例性实施例中,进样主气路模块II 0包括第一部分II 0A、第二部分II 0B和第三部分II 0C,其中,第一部分II 0A的进口端经由排出气预处理模块IV与离子迁移管101的出口101D流体连通,出口端经由第四三通阀105D(例如两位三通电磁阀)与采样管110的入口110A流体流通,用于将经过净化的来自离子迁移管101的排出气导入采样管110内,以与暂存在采样管110内的样品形成包含样品的样品载气。第二部分II 0B的进口端经由第二两位三通阀(例如两位三通电磁阀)105B与采样管110的出口110B流体连通。该痕量探测设备100还包括第一三通阀105A(例如两位三通电磁阀),该第一三通阀105A的第一端口与第二部分II 0B的出口端流体连通,第二端口与第一进样支路模块II 1的进口端流体连通,第三端口与第二进样支路模块II 2的进口端流体连通,并且该第一三通阀105A被配置成在第一模式下,仅允许样品载气从进样主气路模块II 0的第二部分II 0B流向第一进样支路模块II 1,以及在第二模式下,仅允许样品载气从进样主气路模块II 0的第二部分II 0B流向第二进样支路模块II 2。第一进样支路模块II 1的出口端和第二进样支路模块II 2的出口端均与第三部分II 0C的进口端流体连通,而第三部分II 0C的出口端与离子迁移管101的第一入口101A流体连通,用于将来自第一进样支路模块II 1或者第二进样气路模块II 2的样品载气导入离子迁移管101。也就是说,第一三通阀105A用于实现第一模式和第二模式之间的切换。气相色谱装置114设置在第二进样支路模块II 2上,并被配置成将来自采样管110的样品载气进行预分离。预分离后的样品载气经由进样主气路模块II 0的第三部分II 0C导入离子迁移管101。
需要说明的是,本领域的技术人员应当理解,气相色谱装置114可以包括色谱柱和套装在色谱柱外面的加热护套。色谱柱可以例如为柱效高、分离能力强的集束毛细柱。当然,气相色谱装置114还可以采用在本领域已知的或任何可以适用的替代装置。此外,第一进样支路模块II 1或者第二进样气路模块II 2的出口端也可以直接与离子迁移管101的第一入口101A流体连通,或者第一三通阀105A的第一端口也可以直接与采样管110的出口110B流体连通,也就是说,主气路模块II 0并不一定需要具有第二部分II 0B和第三部分II 0C
在一些实施例中,如图2所示,第四三通阀105D的第一端口与采样管110的入口110A流体连通,第二端口与进样主气路模块II 0的第一部分II 0A的出口端流体连通,第三端口与采样头113流体连通,并且该第四三通阀105D被配置成在采样状态下仅允许气体从采样头113流向采样管110,以及在进样状态下仅允许气体从进样主气路模块II 0的第一部分II 0A流向采样管110。
在一些实施例中,如图2所示,该痕量探测设备100还包括增压气路模块III,该增压气路模块III被配置成向第二进样支路模块II 2的在气体流动方向上气相色谱装置114的上游导入增压气体,以驱动样品载气进入气相色谱装置114。
在一些实施例中,如图2和图4所示,增压气路模块III的进口端与进样主气路模块II 0的第一部分II 0A流体连通,以接收来自进样主气路模块I 0内的气体用作增压气体。
在一些实施例中,如图2至图6所示,该痕量探测设备100还包括第三泵103C。该第三泵103C设置在进样主气路模块II 0的第一部分II 0A上,并沿气体流动方向位于增压气路模块III和进样主气路模块II 0的第一部分II 0A的连接处的上游,用于驱动来自离子迁移管101的排出气经由排出气预处理模块IX进入增压气路模块III,以提高增压气路模块III内的压力。该第三泵103C优选为隔膜泵。
在一些实施例中,如图5所示,该痕量探测设备100还包括吸气清洁气路模块IV,该吸气清洁气路模块IV的进口端经由第二两位三通阀105B与采样管110的出口110B流体连通,该吸气清洁气路模块IV的出口端与外界环境流体连通,该吸气清洁气路模块IV上设置有第一净化过滤器107A,并且该吸气清洁气路模块IV被配置成在吸气清洁状态下抽吸外界环境中的空气依次通过采样头113和采样管110,然后经第一净化过滤器107A过滤后排出,以实现对所 经管路和阀的清洁,并保证所排出的空气不会对外界环境产生不利影响。
在一些实施例中,如图2至图6所示,该吸气清洁气路模块IV上还设置有气阻108A,该气阻108A沿气体流动方向位于第一净化过滤器107A的下游,以调节吸气清洁气路模块IV内的气体流动。
在一些实施例中,如图6所示,该痕量探测设备100还包括吹气清洁气路模块V,该吹气清洁气路模块V的进口端与外界环境流体连通,该吹气清洁气路模块V的出口端经由第二两位三通阀105B与采样管110的出口110B流体连通,该吹气清洁气路模块V上还设置有第二净化过滤器107B,并且该吹气清洁气路模块V被配置成在吹气清洁状态下使来自外界环境中的空气经由第二净化过滤器107B过滤后依次进入采样管110和采样头113后排出,以实现对所经管路和阀的清洁。此外,通过设置第二净化过滤器107B首先对外界环境中的空气进行过滤,可以使得该痕量探测设备100可以应对较为苛刻的环境条件。
在一些实施例中,如图2至图6所示,该吹气清洁气路模块V上还设置有气阻108B,该气阻108B沿气体流动方向位于第二净化过滤器107B的上游,以调节吹气清洁气路模块V内的气体流动。
在一些实施例中,如图2至图6所示,该痕量探测设备100还包括第三三通阀105C,该第三三通阀105C的第一端口经由第二三通阀105B与采样管110的出口101D流体连通,第二端口与第一净化过滤器107A的进口端流体连通,第三端口与第二净化过滤器107B的出口端流体连通,并且该第三三通阀105C被配置成在吸气清洁状态下仅允许来自采样管110的气体流向第一净化过滤器107A,以及在吹气清洁状态下仅允许气体从第二净化过滤器107B流向采样管110。通过设置第三三通阀105C,可以使得吸气清洁气路模块IV和吹气清洁气路模块V共用一部分部件,例如,吸气清洁气路模块IV与第二三通阀105B的第三端口连接的端部(即,进口端)和吹气清洁气路模块V与第二三通阀105B的第三端口连接的端部(即,出口端)是共用的,以减少部件数量,降低制造成本。
在一些实施例中,如图2至图6所示,第二三通阀105B的第一端口与采样管110的出口流体连通,第二端口与进样主气路模块II 0的第二部分II 0B的进口端流体连通,第三端口与吸气清洁气路模块IV的进口端(吹气清洁气路模块V的出口端)流体连通,并且该第二三通阀105B被配置成在吸气清洁状态下仅允许气体从采样管110的出口110B流向吸气清洁气路模块IV(或者在 吹气清洁状态下从吹气清洁气路模块V流向采样管110),以及在进样状态下仅允许气体从采样管110的出口110B流向进样主气路模块II 0的第二部分II 0B
在一些实施例中,如图2至图6所示,该第二泵103B还被配置成在吸气清洁状态下用于驱动气体经采样头113依次流经采样管110、第一净化过滤器107A和气阻108A,并从气阻108A排出;以及在吹气清洁状态下用于驱动气体依次流经气阻108B、第二净化过滤器107B、采样管110和采样头113,并从采样头113排出。也就是说,吸气清洁气路模块IV和吹气清洁气路模块V与采样气路模块I共用第二泵103B,以降低成本。需要说明的是,本领域的技术人员应当理解,在本公开的其它一些实施例中,也可以在吸气清洁气路模块IV、吹气清洁气路模块V、采样气路模块I上分别设置泵。
此外,该实施例中的痕量探测设备100同时具有吸气清洁气路模块IV和吹气清洁气路模块V,然而,本领域的技术人员应当理解,在本公开的其它一些实施例中,也可以仅设置吸气清洁气路模块IV和吹气清洁气路模块V中的一者。
在一些实施例中,如图1和图2所示,该痕量探测设备100还包括循环气路模块VI,该循环气路模块VI包括迁移气循环气路模块VI 1和载气循环气路模块VI 2,迁移气循环气路模块VI 1的进口端经由排出气预处理模块IX与离子迁移管101的出口101D流体连通,迁移气循环气路模块VI 1的出口端和第三入口101C流体连通,用于向离子迁移管101的气体迁移区导入迁移气;载气循环气路模块VI 2的进口端经由排出气预处理模块IX与离子迁移管101的出口101D流体连通,载气循环气路模块VI 2的出口端和第二入口101B流体连通,用于向离子迁移管101的离化反应区导入载气。
在该实施例中,排出气预处理模块IX被配置成用于对来自离子迁移管101的排出气进行预处理,其包括第一泵103A,该第一泵103A在气体流动方向上位于离子迁移管101的下游,用于驱动气体在整个系统内的流动。该第一泵103A优选为隔膜泵。该排出气预处理模块IX还包括在气体流动方向上位于第一泵103A和离子迁移管101的出口101D之间的第一缓冲腔102A,该第一缓冲腔102A用于降低第一泵103A的脉冲气流对离子迁移管101信号的影响。进一步地,该排出气预处理模块IX还包括在气体流动方向上位于第一泵103A的下游的第二缓冲腔102B,以进一步降低第一泵103A的脉冲气流对离子迁移管101信号的影响。迁移气循环气路模块VI 1和载气循环气路模块VI 2分别与第二缓冲 腔102B的排气口连通。在一个实施例中,第一缓冲腔102A、第二缓冲腔102B的至少一个面的至少一部分上设置有缓冲膜,以增强缓冲效果。在一个实施例中,该缓冲膜采用伸缩性能好的缓冲膜。该缓冲膜的材质包括但不限于乳胶。
如图2所示,该排出气预处理模块IX还包括第三净化过滤器107C,该第三净化过滤器107C位于第一泵103A和第二缓冲腔102B之间,用于对从离子迁移管101排出的排出气进行过滤。
如图2所示,该痕量探测设备100还包括校准气路模块VII,该校准气路模块VII的一端与载气循环气路模块VI 2流体连通;校准气路模块VII的另一端设置有校准物仓盒112,该校准物仓盒112用于容纳校准物,例如痕量标准剂;校准气路模块VII上还设置有通断阀111,该通断阀111(例如电磁阀)被配置成控制校准气路模块的通断,以使得在校准状态下,载气循环气路模块VI 2内的载气将校准物仓盒112渗透出的校准物导入离子迁移管101,以获取校准数据,例如校准峰峰位和校准系数,从而实现对该痕量探测设备100的校准。通过该校准气路模块VII可以提高该痕量探测设备100对检测环境的适应性。
如图2所示,该痕量探测设备100还包括第一流量控制阀(例如电磁阀)106A,该第一流量控制阀106A位于离子迁移管101的出口101D和第一缓冲腔102A之间,用于读取来自离子迁移管101的排出气的气体流量并进行控制迁移气循环气路模块VI1上设置有第二流量控制阀(例如电磁阀)106B,用于读取迁移气循环气路模块VI 1内的迁移气的气体流量并进行控制。载气循环气路模块VI 2上设置有第三流量控制阀106C,用于读取载气循环气路模块VI 2内的载气的气体流量并进行控制。
如图2所示,该痕量探测设备100还包括用于向离子迁移管101内补气和将离子迁移管101泄气的补气/泄气气路模块VIII,补气/泄气气路模块VIII的一端经由第一缓冲腔102A与离子迁移管101的出口101D流体连通,补气/泄气气路模块VIII的另一端与外界环境连通。通过设置补气/泄气气路模块VIII,可以使得离子迁移管101可依据环境、微量采样以及离子迁移管101自身温度等的变化进行自动的补气及泄气,从而实现快速采样。
如图2所示,在补气/泄气气路模块VIII上设置有第四净化过滤器107D,用于对流经补气/泄气气路模块VIII上的气体进行净化。
如图2所示,在补气/泄气气路模块VIII上还设置有水阱过滤器109,该水阱过滤器109连通于第四净化过滤器107D和外界环境之间,以进一步降低 外界对离子迁移管的影响。
如图2所示,该痕量探测设备100还包括第五三通阀(例如两位三通电磁阀)104,该第五三通阀104位于第一泵103A和第三净化过滤器107C之间,该第五三通阀104的第一端口与第一缓冲腔102A流体连通,第二端口与第三净化过滤器107C流体连通,第三端口与第四净化过滤器107D流体连通,该第五三通阀104被配置成在进样状态和内循环状态下仅允许气体从第一缓冲腔102A流向第三净化过滤器107C;在泄气状态下仅允许气体从第一缓冲腔102A流向外界环境;以及在补气状态下仅允许气体从外界环境流向第一缓冲腔102A。
在该实施例中,离子迁移管101为一体化双模式全陶瓷迁移管,其包括第一离子迁移管和第二离子迁移管。相应地,迁移气循环气路模块VI 1的数量为两条,每条迁移气循环气路模块VI 1的出口端与相应的离子迁移管101的第三入口101C连通。需要说明的是,本领域的技术人员应当理解,在本公开的其它一些实施例中,离子迁移管101可以是在本领域已知的或任何可以适用的离子迁移管101,例如单个的离子迁移管101。
在一个实施例中,采样管110例如可以为不锈钢管,其外径不超过5mm。采样气路模块I上例如可以设置加热器,用于确保采样气路模块I的内部温度不低于预设温度,例如50℃,以便于脉冲样品存储及进样。此外,采样管110的入口110A可以设置有微孔过滤装置,例如微孔滤网,用于过滤样品中的灰尘或颗粒等杂质。
在该实施例中,第一三通阀105A和第四三通阀105D例如可以为两位三通电磁阀,以便在例如控制器等的控制下快速切换,从而可以实现脉冲采样,且脉冲采样时间可低至毫秒级,单次脉冲最小采样量可低至数微升级。通过这种脉冲采样直接进样方式,例如与传统的半透膜进样相比,可以大幅度提升灵敏度,而且能最大限度降低苛刻的外界检测环境对离子迁移检测准确度的影响,以保证离子迁移管在苛刻现场环境下长期稳定的工作。需要说明的是,第二三通阀105B和第三三通阀105C也优选为两位三通电磁阀。当然,第一三通阀105A、第二三通阀105B、第三三通阀105C和第四三通阀105D例如可以由本领域已知的或任何可以适用的部件来代替,例如两个通断阀。
该痕量探测设备100的工作过程如下:
内循环过程:如图2所示,第五三通阀104与第三净化过滤器107C连通,在第一泵103A的作用下,离子迁移管101内部的气体从出口101D出来,然后 依次流经第一缓冲腔102A和第五三通阀104,并经第三净化过滤器107C过滤后到达第二缓冲腔102B,然后分别经第二流量控制阀106B进入迁移气循环气路模块VI 1和第三流量控制阀106C进入载气循环气路模块VI 2后回到离子迁移管101。
采样过程:如图3所示,将采样头113靠近被检样品,第四三通阀105D和第二三通阀105B接1位,第三三通阀105C接0位,在第二泵103B的驱动下气体样品经采样头113通过第四三通阀105D到达采样管110内,从而完成采样。
进样过程:当采样结束时,第二三通阀105B、第四三通阀105D迅速接0位,从离子迁移管101出来的排出气在第一泵103A的驱动下,依次通过第一缓冲腔102A、第三净化过滤器107C、第二缓冲腔102B,然后经第二泵103B增压后进入采样管110,并与暂存在采样管110内的样品形成包含样品的样本载气,然后经由第一进样支路模块II 1进入离子迁移管101(在这种情况下,第一三通阀105A接0位)或经由第二进样支路模块II 2以通过离子色谱装置114进行预分离后再导入离子迁移管101(在这种情况下,第一三通阀105A接1位,如图4所示)内进行检测分析。
吸气清洁过程:如图5所示,第二三通阀105B、第四三通阀105D接1位,第三三通阀105C接0位,同时第二泵103B开启,清洁空气由采样头113经第四三通阀105D到达采样管110,并依次流经第二三通阀105B和第三三通阀105C、第二泵103B、第一净化过滤器107A和气阻108A排出,以对所经管道及阀进行清洁。
吹气清洁过程:如图6所示,第二三通阀105B、第三三通阀105C和第四三通阀105D接1位,第二泵103B开启,来自外界环境中的空气经气阻108B并经第二净化过滤器107B净化过滤后再依次流经第二泵103B、第三三通阀105C、第二三通阀105B、采样管110、第四三通阀105D和采样头113后排出,以对所经管道及阀进行清洁。
本公开所提供的痕量探测设备通过将进样气路模块在第一模式和第二模式之间切换,以使得当用户需要对嫌疑物进行快速定性检测时可以切换到第一模式(快检模式),而当需要深度判断嫌疑物的具体性质时可以切换到第二模式(精检模式),这样,用户可以根据需求选择所需的检测模式,从而满足用户的各种检测需求。此外,该痕量探测设备实现了被检样品的痕量脉冲取样, 这种痕量脉冲取样直接进样的方式一方面可以提高仪器的检测灵敏度,另一方面在保证同等检测限的前提下其采、进样量低,即使苛刻的外界环境也难以对仪器性能产生影响。进一步地,该痕量探测设备具有吸气清洁或吹气清洁功能,可以辅助设备清洁,提高工作效率。
本领域的技术人员可以理解,上面所描述的实施例都是示例性的,并且本领域的技术人员可以对其进行改进,各种实施例中所描述的结构在不发生结构或者原理方面的冲突的情况下可以进行自由组合。
在详细说明本公开的较佳实施例之后,熟悉本领域的技术人员可清楚的了解,在不脱离随附权利要求的保护范围与精神下可进行各种变化与改变,且本公开亦不受限于说明书中所举示例性实施例的实施方式。

Claims (15)

  1. 一种痕量探测设备,包括:
    离子迁移管,所述离子迁移管被配置成检测样品;
    采样气路模块,所述采样气路模块被配置成采集样品;
    进样气路模块,所述进样气路模块被配置成将包含所述采样气路模块所采集的样品的样品载气朝着所述离子迁移管引导;以及
    气相色谱装置,所述气相色谱装置能够将所述样品载气进行预分离,以形成预分离的样品载气;
    其中,所述进样气路模块还被配置成能够在第一模式与第二模式之间切换,在所述第一模式下,所述进样气路模块将所述样品载气导入所述离子迁移管;以及在所述第二模式下,所述进样气路模块将所述样品载气导入所述气相色谱装置以对所述样品载气进行预分离,经预分离的样品载气被导入所述离子迁移管。
  2. 根据权利要求1所述的痕量探测设备,其中,所述进样气路模块包括进样主气路模块以及并联的第一进样支路模块和第二进样支路模块,所述并联的第一进样支路模块和所述第二进样支路模块串联于所述进样主气路模块,所述气相色谱装置设置在所述第二进样支路模块上;
    所述痕量探测设备还包括第一三通阀,所述第一三通阀的第一端口与所述进样主气路模块流体连通,所述第一三通阀的第二端口与所述第一进样支路模块流体连通,所述第一三通阀的第三端口与所述第二进样支路模块流体连通,并且所述第一三通阀被配置成在所述第一模式下,仅允许所述样品载气从所述进样主气路模块流向所述第一进样支路模块,以及在所述第二模式下,仅允许所述样品载气从所述进样主气路模块流向所述第二进样支路模块。
  3. 根据权利要求2所述的痕量探测设备,还包括增压气路模块,所述增压气路模块被配置成向所述第二进样支路模块的上游导入增压气体。
  4. 根据权利要求3所述的痕量探测设备,其中,所述增压气路模块的进口端与所述进样主气路模块的位于所述采样气路模块的上游的部分流体连通, 以接收来自所述进样主气路模块内的气体用作增压气体。
  5. 根据权利要求3所述的痕量探测设备,还包括泵,所述泵用于驱动来自所述离子迁移管的排出气进入所述增压气路模块。
  6. 根据权利要求2所述的痕量探测设备,其中,所述采样气路模块包括采样头和采样管,所述痕量探测设备还包括第四三通阀,所述第四三通阀的第一端口与所述采样管的入口流体连通,所述第四三通阀的第二端口与所述进样主气路模块流体连通,所述第四三通阀的第三端口与所述采样头流体连通,并且所述第四三通阀被配置成在采样状态下仅允许气体从所述采样头流向所述采样管,以及在进样状态下仅允许气体从所述进样主气路模块流向所述采样管。
  7. 根据权利要求6所述的痕量探测设备,其中,所述第四三通阀和所述第一三通阀为两位三通电磁阀。
  8. 根据权利要求6所述的痕量探测设备,其中,所述采样头包括针状和吸盘状。
  9. 根据权利要求6所述的痕量探测设备,还包括吸气清洁气路模块,所述吸气清洁气路模块的进口端与所述采样管的出口流体连通,所述吸气清洁气路模块的出口端与外界环境流体连通,所述吸气清洁气路模块上设置有第一净化过滤器,并且所述吸气清洁气路模块被配置成在吸气清洁状态下抽吸外界环境中的空气依次通过所述采样头和所述采样管,然后经所述第一净化过滤器过滤后排出。
  10. 根据权利要求9所述的痕量探测设备,还包括吹气清洁气路模块,所述吹气清洁气路模块的进口端与外界环境流体连通,所述吹气清洁气路模块的出口端与所述采样管的出口流体连通,所述吹气清洁气路模块上设置有第二净化过滤器,所述吹气清洁气路模块被配置成在吹气清洁状态下使来自外界环境的空气经所述第二净化过滤器过滤后依次流经所述采样管和所述采样头后排出。
  11. 根据权利要求10所述的痕量探测设备,还包括第二三通阀,所述第二三通阀的第一端口与所述采样管的出口流体连通,所述第二三通阀的第二端口与所述进样主气路模块流体连通,所述第二三通阀的第三端口与所述吸气清洁气路模块的进口端和所述吹气清洁气路模块的出口端流体连通,并且所述第二三通阀被配置成在所述吸气清洁状态下仅允许气体从所述采样管流向所述吸气清洁气路模块或者在所述吹气状态下仅允许气体从所述吹气清洁气路模块流向所述采样管,以及在进样状态下仅允许气体从所述采样管流向所述进样主气路模块。
  12. 根据权利要求11所述的痕量探测设备,还包括第三三通阀,所述第三三通阀的第一端口与所述第二三通阀的第二端口流体连通,所述第三三通阀的第二端口与所述第一净化过滤器的进口端流体连通,所述第三三通阀的第三端口与所述第二净化过滤器的出口端流体连通,并且所述第三三通阀被配置成在所述吸气清洁状态下仅允许来自所述采样管的气体流向所述第一净化过滤器,以及在所述吹气清洁状态下仅允许气体从所述第二净化过滤器流向所述采样管。
  13. 根据权利要求1所述的痕量探测设备,还包括循环气路模块,所述循环气路模块包括迁移气循环气路模块和载气循环气路模块,所述迁移气循环气路模块的进口端与所述离子迁移管的气体出口流体连通,所述迁移气循环气路模块的出口端与所述离子迁移管的第三入口流体连通,用于向所述离子迁移管内导入迁移气;所述载气循环气路模块的进口端与所述离子迁移管的气体出口流体连通,所述载气循环气路模块的出口端与所述离子迁移管的第二入口流体连通,用于向所述离子迁移管内导入载气。
  14. 根据权利要求13所述的痕量探测设备,其中,所述迁移气循环气路模块上设置有流量控制阀,用于控制所述迁移气循环气路模块上的气体流量;以及所述载气循环气路模块上也设置有流量控制阀,用于控制所述载气循环气路模块上的气体流量。
  15. 根据权利要求13所述的痕量探测设备,其中,还包括校准气路模块,所述校准气路模块的一端与所述载气循环气路模块流体连通;所述校准气路模块的另一端设置有校准物仓盒,所述校准物仓盒用于容纳校准物;所述校准气路模块上还设置有通断阀,所述通断阀被配置成控制所述校准气路模块的通断,以使得在校准状态下,所述载气循环气路模块内的载气将所述校准物仓盒渗透出的校准物导入所述离子迁移管,以获取校准数据。
PCT/CN2021/093720 2020-05-18 2021-05-14 痕量探测设备 WO2021233210A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/999,201 US20230236150A1 (en) 2020-05-18 2021-05-14 Trace detection device
DE112021002819.7T DE112021002819T5 (de) 2020-05-18 2021-05-14 Spurendetektionsvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010416806.4 2020-05-18
CN202010416806.4A CN111337598B (zh) 2020-05-18 2020-05-18 痕量探测设备

Publications (1)

Publication Number Publication Date
WO2021233210A1 true WO2021233210A1 (zh) 2021-11-25

Family

ID=71186529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093720 WO2021233210A1 (zh) 2020-05-18 2021-05-14 痕量探测设备

Country Status (4)

Country Link
US (1) US20230236150A1 (zh)
CN (1) CN111337598B (zh)
DE (1) DE112021002819T5 (zh)
WO (1) WO2021233210A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111337598B (zh) * 2020-05-18 2020-09-11 同方威视技术股份有限公司 痕量探测设备
CN113740444A (zh) * 2020-05-29 2021-12-03 清华大学 气相检测装置
CN113776900B (zh) * 2020-06-08 2022-08-30 同方威视技术股份有限公司 气味嗅探装置和用于集装箱的车载安检设备
CN113390995B (zh) * 2021-06-17 2023-12-26 中国烟草总公司郑州烟草研究院 一种带有进样口的便携式气相色谱离子迁移谱gc-ims
CN114383903B (zh) * 2021-12-24 2023-05-09 同方威视技术股份有限公司 痕量气体采样设备及探测系统

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5811059A (en) * 1995-10-16 1998-09-22 The United States Of America As Represented By The Secretary Of The Army Automated, on-demand ion mobility spectrometry analysis of gas chromatograph effluents
WO1999041601A1 (en) * 1998-02-11 1999-08-19 Haley Lawrence V Hand-held detection system using gc/ims
US20040031919A1 (en) * 2002-06-24 2004-02-19 Jurgen Leonhardt Ion mobility spectrometer with GC column and internal controlled gas circulation
US20070029477A1 (en) * 2005-04-29 2007-02-08 Sionex Corporation Compact gas chromatography and ion mobility based sample analysis systems, methods, and devices
WO2011157781A1 (de) * 2010-06-17 2011-12-22 Step Sensortechnik Und Elektronik Pockau Gmbh Verfahren für die ionenmobilitätsspektrometrie
CN104569233A (zh) * 2013-10-28 2015-04-29 同方威视技术股份有限公司 离子迁移谱仪系统
US20150115151A1 (en) * 2011-11-02 2015-04-30 Leco Corporation Ion Mobility Spectrometer
CN104956215A (zh) * 2012-10-10 2015-09-30 史密斯探测-沃特福特有限公司 便携式取证采集系统
US20160003774A1 (en) * 2012-04-26 2016-01-07 Teknoscan Systems Inc. Substances Detection System and Method
CN105259246A (zh) * 2015-11-18 2016-01-20 同方威视技术股份有限公司 暗室式安检设备以及方法
CN105277577A (zh) * 2015-11-18 2016-01-27 清华大学 暗室式安检设备以及方法
CN105319284A (zh) * 2014-07-18 2016-02-10 中国科学院大连化学物理研究所 一种气相色谱和离子迁移谱的联用方法
CN105849551A (zh) * 2013-11-22 2016-08-10 伊姆斯佩克斯诊断有限公司 借助气相色谱-离子迁移谱测量人体呼出空气的方法
CN106645472A (zh) * 2016-12-08 2017-05-10 同方威视技术股份有限公司 气相色谱‑离子迁移谱设备
CN107907622A (zh) * 2017-12-29 2018-04-13 同方威视技术股份有限公司 气相色谱‑离子迁移谱探测器及联用装置
WO2018103438A1 (zh) * 2016-12-07 2018-06-14 同方威视技术股份有限公司 用于痕量分析仪器标定的标准样品的制备和送进装置
CN108845054A (zh) * 2018-07-12 2018-11-20 同方威视技术股份有限公司 物品检测系统及方法、电子设备、存储介质
CN109307724A (zh) * 2018-12-18 2019-02-05 同方威视技术股份有限公司 气相色谱-离子迁移谱联用设备
CN109521081A (zh) * 2018-12-29 2019-03-26 同方威视技术股份有限公司 多功能离子迁移谱仪装置
CN109781867A (zh) * 2017-11-10 2019-05-21 中国科学院大连化学物理研究所 一种用于六氟化硫分解物检测的气相色谱-离子迁移谱联用装置
CN110880445A (zh) * 2018-09-06 2020-03-13 同方威视技术股份有限公司 一种基于脉冲采样的离子迁移谱仪及嗅探装置
CN110988208A (zh) * 2019-12-18 2020-04-10 中科新天地(合肥)环保科技有限公司 一种基于离子迁移谱的VOCs检测设备
CN111337598A (zh) * 2020-05-18 2020-06-26 同方威视技术股份有限公司 痕量探测设备
CN112563114A (zh) * 2020-12-11 2021-03-26 中国科学院大连化学物理研究所 一种气相色谱差分离子迁移谱仪及其气路控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201917559U (zh) * 2010-11-30 2011-08-03 中国科学院大连化学物理研究所 一种气相色谱和双极离子迁移谱联用装置
CN104515824B (zh) * 2014-12-31 2016-08-24 同方威视技术股份有限公司 气相物质分析装置和气相导入装置
CN209559837U (zh) * 2019-01-14 2019-10-29 中国科学院南海海洋研究所 一种lc/ms和ms自动切换高通量连续进样装置

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5811059A (en) * 1995-10-16 1998-09-22 The United States Of America As Represented By The Secretary Of The Army Automated, on-demand ion mobility spectrometry analysis of gas chromatograph effluents
WO1999041601A1 (en) * 1998-02-11 1999-08-19 Haley Lawrence V Hand-held detection system using gc/ims
US20040031919A1 (en) * 2002-06-24 2004-02-19 Jurgen Leonhardt Ion mobility spectrometer with GC column and internal controlled gas circulation
US20070029477A1 (en) * 2005-04-29 2007-02-08 Sionex Corporation Compact gas chromatography and ion mobility based sample analysis systems, methods, and devices
WO2011157781A1 (de) * 2010-06-17 2011-12-22 Step Sensortechnik Und Elektronik Pockau Gmbh Verfahren für die ionenmobilitätsspektrometrie
US20150115151A1 (en) * 2011-11-02 2015-04-30 Leco Corporation Ion Mobility Spectrometer
US20160003774A1 (en) * 2012-04-26 2016-01-07 Teknoscan Systems Inc. Substances Detection System and Method
CN104956215A (zh) * 2012-10-10 2015-09-30 史密斯探测-沃特福特有限公司 便携式取证采集系统
CN104569233A (zh) * 2013-10-28 2015-04-29 同方威视技术股份有限公司 离子迁移谱仪系统
CN108008054A (zh) * 2013-10-28 2018-05-08 同方威视技术股份有限公司 离子迁移谱仪系统
CN105849551A (zh) * 2013-11-22 2016-08-10 伊姆斯佩克斯诊断有限公司 借助气相色谱-离子迁移谱测量人体呼出空气的方法
CN105319284A (zh) * 2014-07-18 2016-02-10 中国科学院大连化学物理研究所 一种气相色谱和离子迁移谱的联用方法
CN105277577A (zh) * 2015-11-18 2016-01-27 清华大学 暗室式安检设备以及方法
CN105259246A (zh) * 2015-11-18 2016-01-20 同方威视技术股份有限公司 暗室式安检设备以及方法
WO2018103438A1 (zh) * 2016-12-07 2018-06-14 同方威视技术股份有限公司 用于痕量分析仪器标定的标准样品的制备和送进装置
CN106645472A (zh) * 2016-12-08 2017-05-10 同方威视技术股份有限公司 气相色谱‑离子迁移谱设备
CN109781867A (zh) * 2017-11-10 2019-05-21 中国科学院大连化学物理研究所 一种用于六氟化硫分解物检测的气相色谱-离子迁移谱联用装置
CN107907622A (zh) * 2017-12-29 2018-04-13 同方威视技术股份有限公司 气相色谱‑离子迁移谱探测器及联用装置
CN108845054A (zh) * 2018-07-12 2018-11-20 同方威视技术股份有限公司 物品检测系统及方法、电子设备、存储介质
CN110880445A (zh) * 2018-09-06 2020-03-13 同方威视技术股份有限公司 一种基于脉冲采样的离子迁移谱仪及嗅探装置
CN109307724A (zh) * 2018-12-18 2019-02-05 同方威视技术股份有限公司 气相色谱-离子迁移谱联用设备
CN109521081A (zh) * 2018-12-29 2019-03-26 同方威视技术股份有限公司 多功能离子迁移谱仪装置
CN110988208A (zh) * 2019-12-18 2020-04-10 中科新天地(合肥)环保科技有限公司 一种基于离子迁移谱的VOCs检测设备
CN111337598A (zh) * 2020-05-18 2020-06-26 同方威视技术股份有限公司 痕量探测设备
CN112563114A (zh) * 2020-12-11 2021-03-26 中国科学院大连化学物理研究所 一种气相色谱差分离子迁移谱仪及其气路控制方法

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
CHENG SHASHA, CHEN CHUANG, WANG WEIGUO, DU YONGZHAI, HAN FENGLEI, LI LIN, ZHOU QINGHUA, ZHANG XIANG, LI HAIYANG: "A Novel Gas Chromatography Detector based on Ion Mobility Spectrometry Technology and Its Application", SEPU - CHINESE JOURNAL OF CHROMATOGRAPHY, HUAXUE ZAZHI CHUBANSHE, DALIAN, CN, vol. 29, no. 9, 30 September 2011 (2011-09-30), CN , pages 901 - 907, XP055869961, ISSN: 1000-8713, DOI: 10.3724/SP.J.1123.2011.00901 *
CHIMAN KWAN ; A.P. SNYDER ; R.P. ERICKSON ; P.A. SMITH ; W.M. MASWADEH ; B. AYHAN ; J.L. JENSEN ; J.O. JENSEN ; A. TRIPATHI: "Chemical Agent Detection Using GC-IMS: A Comparative Study", IEEE SENSORS JOURNAL, IEEE, USA, vol. 10, no. 3, 1 March 2010 (2010-03-01), USA, pages 451 - 460, XP011290016, ISSN: 1530-437X, DOI: 10.1109/JSEN.2009.2038128 *
DEBONO, RENO : "Separation of mixtures using gas chromatography coupled to ion mobility spectrometry", INTERNATIONAL JOURNAL FOR ION MOBILITY SPECTROMETRY, vol. 5, no. 2, 31 December 2002 (2002-12-31), pages 194 - 201, XP009531971, ISSN: 1435-6163 *
FUCHE, CHR. : "The use of IMS and GC/IMS for analysis of Saliva", INTERNATIONAL JOURNAL FOR ION MOBILITY SPECTROMETRY, vol. 4, no. 1, 31 December 2001 (2001-12-31), DE, pages 20 - 25, XP009531970, ISSN: 1435-6163 *
GREG W. COOK, PETER T. LAPUMA, GARY L. HOOK, BRIAN A. ECKENRODE: "Using Gas Chromatography with Ion Mobility Spectrometry to Resolve Explosive Compounds in the Presence of Interferents*", JOURNAL OF FORENSIC SCIENCES, CALLAGHAN AND CO., CHICAGO, IL, US, vol. 55, no. 6, 1 November 2010 (2010-11-01), CHICAGO, IL, US , pages 1582 - 1591, XP055260077, ISSN: 0022-1198, DOI: 10.1111/j.1556-4029.2010.01522.x *
HALEY LAWRENCE V., ROMESKIE JULIAN M.: "GC-IMS: a technology for many applications", PROCEEDINGS OF SPIE, SPIE, 1000 20TH ST. BELLINGHAM WA 98225-6705 USA, vol. 3575, 28 December 1998 (1998-12-28), 1000 20th St. Bellingham WA 98225-6705 USA , pages 375 - 383, XP055869947, ISSN: 0277-786X, ISBN: 978-1-5106-4548-6, DOI: 10.1117/12.335012 *
KANU, A.B. HILL, H.H.: "Ion mobility spectrometry detection for gas chromatography", JOURNAL OF CHROMATOGRAPHY A, ELSEVIER, AMSTERDAM, NL, vol. 1177, no. 1, 12 November 2007 (2007-11-12), AMSTERDAM, NL, pages 12 - 27, XP022392446, ISSN: 0021-9673, DOI: 10.1016/j.chroma.2007.10.110 *
LEONHARDT J W: "A new ppb-gas analyzer by means of GC-ion mobility spectrometry (GC-IMS)", JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, AKADEMIAI KIADO RT., HU, vol. 257, no. 1, 1 July 2003 (2003-07-01), HU , pages 133 - 139, XP055869945, ISSN: 0236-5731, DOI: 10.1023/A:1024765814585 *
PERYCZ URSZULA, WITKIEWICZ ZYGFRYD, MAZIEJUK MIROSŁAW, PUTON JAROSŁAW, EUROPE LCGC: "Coupling Gas Chromatography with Ion Mobility Spectrometry", LC GC EUROPE, vol. 29, no. 6, 20 May 2016 (2016-05-20), pages 294 - 303, XP055869951 *
VAUTZ WOLFGANG, JOACHIM FRANZKE, STEFANO ZAMPOLLI, IVAN ELMI, SASCHA LIEDTKE: "On the potential of ion mobility spectrometry coupled to GC pre-separation - A tutorial", ANALYTICA CHIMICA ACTA, vol. 1024, 2 March 2018 (2018-03-02), pages 52 - 64, XP055869948, DOI: 10.1016/j.aca.2018.02.052 *
YANG JUNCHAO, CAO SHU-YA;YANG LIU: "Research of Gas Chromatography–Ion Mobility Spectrometry", MODERN INSTRUMENTS & MEDICAL TREATMENT, vol. 20, no. 3, 31 December 2014 (2014-12-31), pages 20 - 24, XP055869955, ISSN: 2095-5200, DOI: 10.11876/mimt201403006 *

Also Published As

Publication number Publication date
CN111337598B (zh) 2020-09-11
CN111337598A (zh) 2020-06-26
DE112021002819T5 (de) 2023-03-02
US20230236150A1 (en) 2023-07-27

Similar Documents

Publication Publication Date Title
WO2021233210A1 (zh) 痕量探测设备
EP3892993B1 (en) Water removal method for gas concentration sampling and device therefor
US11346807B2 (en) Pulsed sampling-based ion mobility spectrometer and sniffer
US11320407B2 (en) Gas chromatograph-ion mobility spectrometry combined equipment
US3772909A (en) Apparatus for analyzing environmental gases
CN103675082A (zh) 一种提高离子迁移谱检测灵敏度的进样装置
CN114235941A (zh) 一种环境空气中非甲烷总烃的直接检测装置及方法
CN210866123U (zh) 一种三通道并联可切换的质谱进样装置
CN103854949B (zh) 热解析进样器离子迁移谱气路
CN207472839U (zh) 一种双冷阱的热解析模块
CN108776194B (zh) 分析装置及气体分析仪
WO2021238951A1 (zh) 气相检测装置
CN115932133A (zh) 具有多种进样模式的迁移谱检测装置和方法
JP4182913B2 (ja) 気体試料導入装置
RU2663697C1 (ru) Электроуправляемый пробоотборник для газового хроматографа
CN219203092U (zh) 一种适用于过程质谱仪的多路进样系统
SU1536249A1 (ru) Многоточечна система отбора газовых проб
CN100478686C (zh) 测定气体样品n2o浓度中双进样口进样实现反吹的方法
JPH01265157A (ja) ガスオートサンプラー
CN220063966U (zh) 气相色谱质谱联用仪接口装置和气相色谱质谱联用仪
CN114354791B (zh) 非甲烷总烃的检测系统和方法
CN216646361U (zh) 一种环境空气nmhc在线检测流程架构
CN109900845A (zh) 一种双冷阱的热解析模块
JPH02140649A (ja) 油中溶存ガス監視装置
CN218726952U (zh) 一种走航质谱分析仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21807938

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21807938

Country of ref document: EP

Kind code of ref document: A1