WO2020045553A1 - 流体供給システム - Google Patents

流体供給システム Download PDF

Info

Publication number
WO2020045553A1
WO2020045553A1 PCT/JP2019/033849 JP2019033849W WO2020045553A1 WO 2020045553 A1 WO2020045553 A1 WO 2020045553A1 JP 2019033849 W JP2019033849 W JP 2019033849W WO 2020045553 A1 WO2020045553 A1 WO 2020045553A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
pump
centrifugal pump
differential pressure
fuel
Prior art date
Application number
PCT/JP2019/033849
Other languages
English (en)
French (fr)
Inventor
精鋭 増田
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to JP2020539578A priority Critical patent/JP6892017B2/ja
Priority to EP19853482.8A priority patent/EP3845761A4/en
Publication of WO2020045553A1 publication Critical patent/WO2020045553A1/ja
Priority to US17/176,372 priority patent/US20210164399A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/232Fuel valves; Draining valves or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/236Fuel delivery systems comprising two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/04Combinations of two or more pumps
    • F04B23/08Combinations of two or more pumps the pumps being of different types
    • F04B23/12Combinations of two or more pumps the pumps being of different types at least one pump being of the rotary-piston positive-displacement type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/04Combinations of two or more pumps
    • F04B23/08Combinations of two or more pumps the pumps being of different types
    • F04B23/14Combinations of two or more pumps the pumps being of different types at least one pump being of the non-positive-displacement type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • F04C11/005Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of dissimilar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B13/00Pumps specially modified to deliver fixed or variable measured quantities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/09Flow through the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/20Fluid liquid, i.e. incompressible
    • F04C2210/203Fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/24Application for metering throughflow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/21Pressure difference

Definitions

  • the present disclosure relates to a fluid supply system.
  • This application claims priority based on Japanese Patent Application No. 2018-163558 for which it applied to Japan on August 31, 2018, and uses the content here.
  • Patent Document 1 discloses a fuel supply device (fuel supply system) that includes a main centrifugal pump and a starting pump and supplies fuel to a gas turbine engine.
  • This main centrifugal pump can supply fuel at a high pressure, but it is difficult to supply a small flow rate of fuel at low rotation. Therefore, as described in Patent Literature 1, when starting a gas turbine engine in which the fuel supply amount is small, the fuel is pressurized by using a starting pump. Then, by switching and driving the start pump and the main centrifugal pump, fuel at an appropriate pressure and flow rate is supplied to the gas turbine engine.
  • Patent Documents 2 to 4 also disclose fuel supply devices.
  • the fuel discharged from the centrifugal pump is the same as the flow path through which the fuel discharged from the starting pump flows. Flows into the flow path.
  • a metering valve for measuring the flow rate of the fuel is provided at the subsequent stage of the starting pump, and the fuel discharged from the centrifugal pump flows into the flow path between the metering valve and the starting pump so that the flow rate is reduced.
  • the pressure in the path changes rapidly. If the pressure changes abruptly on the upstream side of the metering valve, a pressure difference occurs between the upstream side and the downstream side of the metering valve, and pulsation may occur in the metering flow rate.
  • the present disclosure has been made in view of the above circumstances, and in a fuel supply system in which a centrifugal pump and a starting pump are connected in series, a rapid pressure change on the upstream side of the metering valve when switching between the starting pump and the centrifugal pump is performed.
  • the purpose is to control.
  • Fluid supply system a centrifugal pump, connected in series with the centrifugal pump, provided at the downstream side of the centrifugal pump, a starting pump with a smaller discharge flow rate than the centrifugal pump
  • a metering valve provided on the downstream side of the centrifugal pump and the starting pump, for measuring a fluid discharged from the centrifugal pump or the starting pump, and discharging the fluid downstream at a predetermined flow rate
  • a differential pressure valve provided on the downstream side of the starting pump and driven based on a differential pressure between the pressure on the upstream side and the pressure on the downstream side of the metering valve; and a downstream side of the centrifugal pump and an upstream side of the differential pressure valve And a flow control valve set at a lower valve opening speed than the differential pressure valve.
  • a fluid supply system is the fluid supply system according to the first aspect, wherein the flow control valve is provided between a discharge port of the centrifugal pump and a suction port of the starting pump. Have been.
  • a fluid supply system is the fluid supply system according to the first aspect, wherein the flow control valve is provided in a bypass flow path that connects an upstream side and a downstream side of the starting pump. Have been.
  • a fluid supply system is the fluid supply system according to any one of the first to third aspects, wherein the opening speed of the flow control valve is 1/1 / the opening speed of the differential pressure valve. It is 5 to 1/10.
  • a fluid supply system is the fluid supply system according to any one of the first to fourth aspects, wherein the flow control valve is opened after the centrifugal pump is driven. Have been.
  • the opening speed of the flow control valve is set to be lower than the opening speed of the differential pressure valve.
  • FIG. 1 is a schematic diagram of a fuel supply system according to an embodiment of the present disclosure.
  • 4 is a time chart of each device in a fuel supply system according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a fuel supply system according to a modification of one embodiment of the present disclosure.
  • a fuel supply system 1 will be described as an embodiment of a fluid supply system according to the present disclosure with reference to the drawings.
  • the fuel supply system 1 may be regarded as the fluid supply system 1.
  • the fuel supply system 1 is a system that measures and supplies fuel (fluid) to a jet engine, and includes a centrifugal pump 2, a boost pump 3, a constant displacement pump 4 (starting pump), and a flow control valve 5 , A bypass valve 6, a metering valve 7, and a differential pressure detecting unit 8.
  • the centrifugal pump 2 is a pump arranged at the most upstream in the fuel supply system 1 according to the present embodiment.
  • the centrifugal pump 2 includes a casing (not shown) in which an inlet and an outlet are formed, and an impeller (not shown) housed in the casing, and pressurizes the fuel flowing into the casing by rotating the impeller. Device.
  • the centrifugal pump 2 is provided with an inlet shutoff valve 2a at the inlet of the casing, and is connected to an external fuel storage unit (not shown) via the inlet shutoff valve 2a.
  • the inlet cutoff valve 2a is provided so as to shut off the inlet of the casing, and supplies fuel to the casing when opened.
  • centrifugal pump 2 is connected to an inlet channel R1 at an outlet (discharge port) of the casing.
  • a check valve (not shown) is provided in the inlet flow path R ⁇ b> 1 at a stage preceding the flow control valve 5.
  • the boost pump 3 is a device that includes an impeller and a casing (not shown), like the centrifugal pump 2, and pressurizes and sends out the fuel that has flowed into the casing by rotating the impeller.
  • the inlet of the casing is connected to an external fuel storage unit (not shown) separately from the centrifugal pump 2, and preliminarily pressurizes the fuel supplied from the fuel storage unit.
  • the boost pump 3 is connected to a flow path whose discharge port guides to the inlet flow path R1.
  • the flow path is provided with a check valve (not shown).
  • the constant displacement pump 4 is a gear pump having an inflow port connected to the inlet flow path R ⁇ b> 1 and provided downstream of the centrifugal pump 2 and the boost pump 3.
  • the constant displacement pump 4 includes a casing (not shown) and a plurality of gears (not shown) housed in the casing and meshed with each other. Fuel discharged from the boost pump 3 is supplied to the constant displacement pump 4.
  • Such a constant displacement pump 4 has a smaller discharge flow rate and discharge pressure than the centrifugal pump 2 and is driven when supplying a low flow rate of fuel, that is, when starting the engine.
  • the centrifugal pump 2 is driven, the fixed-volume pump 4 does not perform work but functions as a part of a flow path, although fuel passes through the inside.
  • the flow control valve 5 is a valve device provided between the outlet of the centrifugal pump 2 and the outlet of the boost pump 3. That is, the flow control valve 5 is disposed on the inlet flow path R1 for guiding the fuel discharged from the centrifugal pump 2 to the constant displacement pump 4 side.
  • the flow control valve 5 is controlled by, for example, a hydraulic pressure, and is opened and closed at a valve opening speed that is about 5 of a valve opening speed that indicates a speed from the start of the opening of the differential pressure valve 8a to the full opening described later.
  • the bypass valve 6 is a valve device provided in a bypass flow path R3 that connects the inlet side (that is, the inlet flow path R1) and the outlet side (that is, the measurement flow path R2) of the constant displacement pump 4.
  • the bypass valve 6 is of a differential pressure sensing type driven by a differential pressure between the pressure on the downstream side of the metering valve 7 (that is, the outlet side of the fuel supply system 1) and the pressure on the outlet side of the constant displacement pump 4. 7 functions as a relief valve that is opened when the pressure on the outlet side of the constant displacement pump 4 becomes higher than the pressure on the downstream side of the pump 7.
  • the metering valve 7 is provided in a metering flow path R2 that guides the metering valve 7 from the outlet of the constant displacement pump 4 and includes a valve driving unit, a valve body, and a valve displacement meter (not shown). It is.
  • the valve driving unit is a device that drives a valve body by hydraulic pressure or the like.
  • the valve element closes the measurement flow path R2 and opens the measurement flow path R2 for a predetermined period by being moved by the valve driving unit, and supplies only a fixed amount of fuel to the outside.
  • the valve displacement meter is a sensor that measures the amount of movement (opening) of the valve element, and feeds back measurement data to the valve drive unit.
  • Such a metering valve 7 is connected to the outlet channel R4 on the downstream side, measures the fuel flowing through the metering channel R2, and discharges the fuel to the outlet channel R4 at a predetermined flow rate.
  • the differential pressure detecting section 8 includes a first differential pressure detecting channel R5, a second differential pressure detecting channel R6, a third differential pressure detecting channel R7, a differential pressure valve 8a, and a pressure control valve 8b.
  • the first differential pressure detection flow path R5 is connected to the measurement flow path R2, and the fuel on the upstream side of the measurement valve 7 (fuel between the connection point of the measurement flow path R2 and the bypass flow path R3 and the measurement valve 7). ) Is an inflow channel.
  • the second differential pressure detection flow path R6 is connected to the downstream side of the metering valve 7, and fuel after passing through the measurement valve 7 (fuel between the measurement valve 7 and the pressure control valve 8b in the outlet flow path R4) flows in. Channel.
  • the third differential pressure detection flow path R7 is connected to both the upstream side of the metering valve 7 and the downstream side of the metering valve 7 via the differential pressure valve 8a, and is measured by a position of a valve body 8a1 of the differential pressure valve 8a described later. It is a flow path into which either the fuel upstream of the valve 7 or the fuel downstream of the metering valve 7 flows.
  • the differential pressure valve 8a is a valve device including a valve element 8a1 and a spring 8a2.
  • the valve element 8a1 is provided between the first differential pressure detection flow path R5 and the second differential pressure detection flow path R6, and the fuel flowing through the first differential pressure detection flow path R5 and the second differential pressure detection flow path R6 Driven by the fuel flowing through.
  • the spring 8a2 urges the valve body 8a1 in the valve closing direction.
  • the differential pressure valve 8a is closed when the pressure in the first differential pressure detection channel R5 and the pressure in the second differential pressure detection channel R6 are balanced.
  • Such a differential pressure valve 8a is configured such that the valve element 8a1 is moved based on the differential pressure between the fuel in the first differential pressure detection flow path R5 and the fuel in the second differential pressure detection flow path R6.
  • This is a switching valve that switches the fuel flowing into the differential pressure detection flow path R7.
  • the differential pressure valve 8 a R7 is connected to the upstream side of the metering valve 7.
  • the differential pressure valve 8 a connects the third differential pressure detection flow path R ⁇ b> 7 to the downstream side of the metering valve 7 when the pressure after metering is higher than the pressure before metering. That is, the differential pressure valve 8a is driven based on the differential pressure between the pre-metering pressure and the post-metering pressure, and discharges either the fuel upstream of the metering valve 7 or the fuel downstream of the metering valve 7 downstream. .
  • the pressure control valve 8b is a differential pressure valve that is provided so as to close the outlet of the outlet flow path R4, and includes a valve body 8b1 and a spring 8b2.
  • the valve element 8b1 is provided between the outlet flow path R4 and the third differential pressure detection flow path R7.
  • the spring 8b2 urges the valve body 8b1 in the valve closing direction (the outlet flow path R4 side).
  • Such a pressure control valve 8b is driven based on the differential pressure between the pressure of the fuel flowing through the third differential pressure detection flow path R7 and the pressure of the fuel flowing through the outlet flow path R4 (post-measurement pressure).
  • the valve is opened only when the pressure is higher than the pressure of the fuel flowing through the third differential pressure detection flow path R7. While the pressure control valve 8b is open, fuel downstream of the metering valve 7 flows into a jet engine (not shown).
  • the operation of the fuel supply system 1 according to this embodiment will be described.
  • fuel is supplied from the boost pump 3 side, and the fuel pressurized by the constant displacement pump 4 flows into the measurement flow path R2.
  • the inlet shutoff valve 2a provided in the centrifugal pump 2 is closed, and no fuel flows into the centrifugal pump 2.
  • the fuel that has flowed into the measurement flow path R2 is measured by the measurement valve 7, and flows to the outlet flow path R4 at regular intervals. A part of the fuel flowing into the outlet flow path R4 flows into the first differential pressure detection flow path R5.
  • the inlet cutoff valve 2a of the centrifugal pump 2 is opened, and fuel flows into the centrifugal pump 2.
  • the fuel that has flowed into the inlet flow path R1 after being pressurized by the centrifugal pump 2 enters the constant displacement pump 4 by opening the flow control valve 5.
  • a part of the fuel pressurized by the centrifugal pump 2 flows into the bypass flow path R3.
  • the bypass valve 6 is opened when the pre-metering pressure is higher than the post-metering pressure. Therefore, when the bypass valve 6 is opened, the fuel flowing through the bypass flow path R3 joins the measurement flow path R2.
  • the fuel guided to the metering valve 7 flows to the outlet side at a predetermined flow rate by the metering valve 7.
  • a part of the fuel before measurement in the measurement flow path R2 flows into the first differential pressure detection flow path R5, and similarly, flows into the second differential pressure detection flow path R6 (that is, the fuel after the measurement). ),
  • the differential pressure valve 8a is driven.
  • the differential pressure valve 8a moves so that the fuel before the measurement flows through the third differential pressure detection flow path R7.
  • the pressure control valve 8b is opened, and fuel is supplied to an engine (not shown).
  • the operation of the flow control valve 5 in the fuel supply system 1 will be described with reference to a time chart of FIG.
  • the opening of the flow control valve 5 and the opening of the differential pressure valve 8a are simultaneously started.
  • the fuel that has passed through the centrifugal pump 2 gradually starts flowing into the inlet flow path R1.
  • the differential pressure valve 8a is fully opened earlier than the flow control valve 5 is fully opened.
  • the flow rate of the fuel flowing from the centrifugal pump 2 into the inlet flow path R1 is smaller than the flow rate of the fuel measured by the metering valve 7, and the differential pressure valve 8a connects the third differential pressure detection flow path R7 to the metering valve 7.
  • the pre-measurement pressure increases.
  • the differential pressure valve 8a is fully opened and the flow control valve 5 is in the process of being opened, the supply flow rate is suppressed to be smaller than the fuel measurement flow rate by the measurement valve 7, so that a sharp increase in the pre-measurement pressure is suppressed.
  • the flow control valve 5 is fully opened, even if the supply flow rate flowing into the inlet flow path R1 increases, the supply flow rate flowing into the inlet flow path R1 is balanced with the measurement flow rate. Become.
  • the change in the supply flow rate of the fuel supplied from the centrifugal pump 2 gentle, the change in the pre-measurement pressure becomes gentle. Therefore, according to the present embodiment, in the process of switching the operation from the constant displacement pump 4 to the centrifugal pump 2, it is possible to prevent a sharp increase in the pre-measurement pressure.
  • the opening and closing of the differential pressure valve 8a and the opening and closing of the pressure control valve 8b the pressure of the fuel supplied from the pressure control valve 8b to the engine is maintained substantially constant irrespective of the change in the fuel supply flow rate.
  • the supply flow rate of the fuel supplied from the centrifugal pump 2 can be controlled by opening the flow control valve 5 at a slower opening speed than the differential pressure valve 8a. Therefore, after the centrifugal pump 2 is started, the change in the pre-measurement pressure is moderated by preventing a sudden increase in the pre-measurement pressure, thereby preventing a differential pressure from being generated between the pre-measurement pressure and the post-measurement pressure. Can be. As a result, it is possible to prevent the pulsation from occurring in the metering flow rate in the metering valve 7. Therefore, it is possible to perform accurate measurement in the measurement valve 7.
  • the flow control valve 5 is provided between the discharge port of the centrifugal pump 2 and the suction port of the constant displacement pump 4. This makes it possible to control the flow rate of the entire amount of fuel supplied from the centrifugal pump 2, and to reliably control the pre-measurement pressure.
  • the flow control valve 5 is opened at a speed of about 1/5 of the valve opening speed of the differential pressure valve 8a. That is, in FIG. 2, if the valve opening time during which the differential pressure valve 8a changes from closed to open is a and the valve opening time during which the flow control valve 5 changes from closed to open is b, b is approximately 5a. be equivalent to. Thus, the flow control valve 5 has a sufficiently low valve opening speed with respect to the differential pressure valve 8a, and the change in the pre-measurement pressure can be made sufficiently gentle.
  • the opening of the flow control valve 5 is started after the centrifugal pump 2 is driven. Thereby, the flow control valve 5 is opened in a state where the flow path from the centrifugal pump 2 to the flow control valve 5 is filled with the fuel, and it is possible to prevent bubbles from being mixed into the inlet flow path R1.
  • FIG. 3 is a schematic diagram of a fuel supply system 10 according to a modification of one embodiment of the present disclosure. As shown in FIG. 3, the flow control valve 5 may be provided in the bypass flow path R3. Also in this case, it is possible to prevent a rapid change in the pre-measurement pressure by making the change in the flow rate of the fuel in the bypass flow path R3 gentle.
  • the valve opening speed of the flow control valve 5 be in a range of about 1/5 to about 1/10 of the valve opening speed of the differential pressure valve 8a. That is, in FIG. 2, if the valve opening time during which the differential pressure valve 8a changes from closed to open is a and the valve opening time during which the flow control valve 5 changes from closed to open is b, b is approximately 5a. To about 10a. If the valve opening speed of the flow control valve 5 is reduced to 1/10 or more, the time required for switching from the constant displacement pump 4 to the centrifugal pump 2 in the fuel supply system 1 becomes longer, which may impair the responsiveness of the entire system. There is. However, in the fuel supply system 1, when a quick response is not required at the time of pump switching, the valve opening speed can be made lower than 1/10.
  • the fuel supply system supplies the fuel of the liquid or the incompressible fluid in the jet engine, but the present disclosure is not limited thereto.
  • the type and use of the fluid are not limited as long as the fluid supply system includes the centrifugal pump 2 and the constant displacement pump 4 and switches and drives each pump.
  • the method of driving the flow control valve 5 is not particularly limited, and the flow control valve 5 can be driven by various methods such as an electric type and a hydraulic type.
  • a rapid change in fuel pressure can be suppressed by gradually changing the flow rate of fuel when switching between the starting pump and the centrifugal pump on the upstream side of the metering valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Reciprocating Pumps (AREA)

Abstract

遠心ポンプ(2)と、前記遠心ポンプ(2)と直列に接続され、前記遠心ポンプ(2)の下流側に設けられると共に、前記遠心ポンプ(2)よりも吐出流量の少ない始動ポンプ(4)とを備える流体供給システム(1)であって、前記遠心ポンプ(2)及び前記始動ポンプ(4)の下流側に設けられると共に、前記遠心ポンプ(2)または前記始動ポンプ(4)から吐出された流体を計量し、所定の流量ごとに下流へと放出する計量弁(7)と、前記遠心ポンプ(2)及び前記始動ポンプ(4)の下流側に設けられると共に、前記計量弁(7)の上流側の圧力と下流側の圧力との差圧に基づいて駆動する差圧弁(8a)と、前記遠心ポンプ(2)の下流側かつ前記差圧弁(8a)の上流側に設けられると共に前記差圧弁(8a)よりも開弁速度が遅く設定された流量制御弁(5)とを備える。

Description

流体供給システム
 本開示は、流体供給システムに関する。
本願は、2018年8月31日に日本国に出願された特願2018-163558号に基づき優先権を主張し、その内容をここに援用する。
例えば、特許文献1には、主遠心ポンプと始動ポンプとを備え、ガスタービンエンジンに燃料を供給する燃料供給装置(燃料供給システム)が開示されている。この主遠心ポンプは、燃料を昇圧して供給することが可能であるが、低回転において小流量の燃料を供給することが難しい。したがって、特許文献1に記載されているように、燃料の供給量が少量となるガスタービンエンジンの始動時には、始動ポンプを用いて燃料を昇圧する。そして、始動ポンプと主遠心ポンプとを切り替えて駆動させることで、適切な圧力、流量の燃料をガスタービンエンジンへと供給する。
特許文献2~4にも燃料供給装置が開示されている。
日本国特開2011-247259号公報 国際特許出願公開第WO2015/046177号 日本国特開2016-184489号公報 日本国特開2001-90579号公報
遠心ポンプと始動ポンプとが直列に接続された燃料供給システムにおいては、始動ポンプから遠心ポンプへと切り替えると、遠心ポンプから吐出された燃料が、始動ポンプから吐出された燃料が流れる流路と同一の流路へと流れ込む。始動ポンプの後段には、燃料の流量を計量する計量弁が設けられており、該計量弁と始動ポンプとの間の流路において、遠心ポンプから吐出された燃料が流入することで、該流路中の圧力が急激に変化する。計量弁の上流側において圧力が急激に変化すると、計量弁の上流側と下流側との間に差圧が生じ、計量流量に脈動が発生する可能性がある。
本開示は、上述する事情に鑑みてなされ、遠心ポンプと始動ポンプとが直列に接続された燃料供給システムにおいて、始動ポンプと遠心ポンプとの切替時における計量弁の上流側の急激な圧力変化を抑制することを目的とする。
本開示の第一の態様に係る流体供給システムは、遠心ポンプと、前記遠心ポンプと直列に接続され、前記遠心ポンプの下流側に設けられると共に、前記遠心ポンプよりも吐出流量の少ない始動ポンプと、前記遠心ポンプ及び前記始動ポンプの下流側に設けられると共に、前記遠心ポンプまたは前記始動ポンプから吐出された流体を計量し、所定の流量ごとに下流へと放出する計量弁と、前記遠心ポンプ及び前記始動ポンプの下流側に設けられると共に、前記計量弁の上流側の圧力と下流側の圧力との差圧に基づいて駆動する差圧弁と、前記遠心ポンプの下流側かつ前記差圧弁の上流側に設けられると共に前記差圧弁よりも開弁速度が遅く設定された流量制御弁とを備える。
本開示の第2の態様に係る流体供給システムは、上記第1の態様に係る流体供給システムにおいて、前記流量制御弁は、前記遠心ポンプの吐出口と前記始動ポンプの吸入口との間に設けられている。
本開示の第3の態様に係る流体供給システムは、上記第1の態様に係る流体供給システムにおいて、前記流量制御弁は、前記始動ポンプの上流側と下流側とを接続するバイパス流路に設けられている。
本開示の第4の態様に係る流体供給システムは、上記第1~3のいずれかの態様に係る流体供給システムにおいて、前記流量制御弁の開弁速度が前記差圧弁の開弁速度の1/5から1/10である。
本開示の第5の態様に係る流体供給システムは、上記第1~4のいずれかの態様に係る流体供給システムにおいて、前記流量制御弁は、前記遠心ポンプの駆動後に開弁されるように構成されている。
本開示によれば、遠心ポンプと始動ポンプとが直列に接続された流体供給システムにおいて、流量制御弁の開弁速度を差圧弁の開弁速度よりも遅く設定している。これにより、始動ポンプから遠心ポンプへと切り替える際に、遠心ポンプから供給される燃料は、徐々に始動ポンプへと流れ込む。したがって、計量弁の上流側において、燃料の流量変化が緩やかとなることで、燃料の急激な圧力変化を抑制することができる。
本開示の一実施形態に係る燃料供給システムの模式図である。 本開示の一実施形態に係る燃料供給システムにおける各装置のタイムチャートである。 本開示の一実施形態の変形例に係る燃料供給システムの模式図である。
以下、図面を参照して、本開示に係る流体供給システムの一実施形態として、燃料供給システム1について説明する。本開示では、燃料供給システム1は、流体供給システム1であると見なして良い。
燃料供給システム1は、ジェットエンジンに対して燃料(流体)を計量して供給するシステムであり、遠心ポンプ2と、ブーストポンプ3と、定容積型ポンプ4(始動ポンプ)と、流量制御弁5と、バイパス弁6と、計量弁7と、差圧検知部8とを備えている。
遠心ポンプ2は、本実施形態に係る燃料供給システム1において最も上流に配置されたポンプである。遠心ポンプ2は、入口及び出口が形成された不図示のケーシングと、ケーシングに収容された不図示の羽根車とを備え、該羽根車を回転させることにより、ケーシング内に流入した燃料を加圧して送り出す装置である。また、遠心ポンプ2には、ケーシングの入口において、入口遮断弁2aが設けられ、入口遮断弁2aを介して外部の燃料貯留部(不図示)と接続されている。入口遮断弁2aは、ケーシングの入口を遮断するように設けられ、開弁されることによりケーシングへと燃料を供給させる。また、遠心ポンプ2は、ケーシングの出口(吐出口)において入口流路R1と接続されている。また、入口流路R1には、流量制御弁5の前段において、逆止弁(不図示)が設けられている。
ブーストポンプ3は、遠心ポンプ2と同様に不図示の羽根車及びケーシングを備え、該羽根車を回転させることにより、ケーシング内に流入した燃料を加圧して送り出す装置である。このようなブーストポンプ3は、ケーシングの入口が遠心ポンプ2と別個に外部の燃料貯留部(不図示)と接続されており、燃料貯留部から供給された燃料を予備的に加圧する。また、ブーストポンプ3は、吐出口が入口流路R1へと案内する流路に接続されている。また、該流路には、逆止弁(不図示)が設けられている。
 定容積型ポンプ4は、流入口が入口流路R1と接続され、遠心ポンプ2及びブーストポンプ3の下流側に設けられたギヤポンプである。定容積型ポンプ4は、不図示のケーシングと、ケーシングに収容されると共に互いに歯合した不図示の複数のギヤとを備えている。定容積型ポンプ4には、ブーストポンプ3から吐出された燃料が供給される。このような定容積型ポンプ4は、遠心ポンプ2と比較して吐出流量及び吐出圧が小さく、低流量の燃料供給時、すなわちエンジン始動時において駆動するポンプである。なお、定容積型ポンプ4は、遠心ポンプ2駆動時において、内部を燃料が通過するものの、仕事を行わず、流路の一部として機能する。
流量制御弁5は、遠心ポンプ2の出口とブーストポンプ3の出口との間に設けられた弁装置である。すなわち、流量制御弁5は、遠心ポンプ2から吐出される燃料を定容積型ポンプ4側へと案内する入口流路R1上に配置されている。また、流量制御弁5は、例えば油圧により制御され、後述する差圧弁8aの開弁開始から全開となるまでの速度を示す開弁速度の1/5程度の開弁速度で開閉弁される。
バイパス弁6は、定容積型ポンプ4の入口側(すなわち入口流路R1)と出口側(すなわち計量流路R2)とを接続するバイパス流路R3に設けられた弁装置である。バイパス弁6は、計量弁7の下流側(すなわち燃料供給システム1の出口側)の圧力と定容積型ポンプ4の出口側の圧力との差圧により駆動する差圧感知式とされ、計量弁7の下流側の圧力よりも定容積型ポンプ4の出口側の圧力が高まった場合に開弁されるリリーフ弁として機能する。
計量弁7は、定容積型ポンプ4の出口から計量弁7へと案内する計量流路R2中に設けられ、いずれも不図示の弁駆動部と、弁体と、弁変位計とを備える装置である。弁駆動部は、弁体を油圧等により駆動させる装置である。弁体は、計量流路R2を閉塞すると共に、弁駆動部により移動されることで所定期間だけ計量流路R2を開放し、一定量の燃料のみを外部へと供給する。弁変位計は、弁体の移動量(開度)を計測するセンサであり、計測データを弁駆動部へとフィードバックしている。このような計量弁7は、下流側において出口流路R4と接続され、計量流路R2を流れる燃料を計量し、所定の流量ごとに出口流路R4へと放出する。
差圧検知部8は、第1差圧検知流路R5と、第2差圧検知流路R6と、第3差圧検知流路R7と、差圧弁8aと、圧力制御弁8bとを備えている。第1差圧検知流路R5は、計量流路R2と接続され、計量弁7の上流側における燃料(計量流路R2における、バイパス流路R3との接続箇所と計量弁7との間の燃料)が流入する流路である。第2差圧検知流路R6は、計量弁7の下流側と接続され、計量弁7通過後の燃料(出口流路R4における、計量弁7と圧力制御弁8bとの間の燃料)が流入する流路である。第3差圧検知流路R7は、計量弁7の上流側と計量弁7の下流側との双方と差圧弁8aを介して接続され、後述する差圧弁8aの弁体8a1の位置により、計量弁7の上流側における燃料または計量弁7の下流側における燃料のいずれかが流入する流路である。
差圧弁8aは、弁体8a1と、バネ8a2とを備えた弁装置である。弁体8a1は、第1差圧検知流路R5と第2差圧検知流路R6との間に設けられ、第1差圧検知流路R5を流れる燃料と、第2差圧検知流路R6を流れる燃料とにより駆動される。バネ8a2は、弁体8a1を閉弁方向に付勢している。
 差圧弁8aは、第1差圧検知流路R5の圧力と、第2差圧検知流路R6の圧力とが釣り合っている場合、閉弁状態とされる。このような差圧弁8aは、第1差圧検知流路R5内の燃料と第2差圧検知流路R6内の燃料との差圧に基づいて弁体8a1が移動されることで、第3差圧検知流路R7に流入する燃料を切り替える切替弁である。なお、差圧弁8aは、計量弁7の上流側における燃料の圧力(計量前圧力)が計量弁7通過後の燃料の圧力(計量後圧力)よりも高い場合に、第3差圧検知流路R7を計量弁7の上流側と接続させる。また、差圧弁8aは、計量後圧力が計量前圧力よりも高い場合に、第3差圧検知流路R7を計量弁7の下流側と接続させる。すなわち、差圧弁8aは、計量前圧力と計量後圧力の差圧に基づいて駆動され、計量弁7の上流側の燃料と計量弁7の下流側の燃料とのいずれか一方を下流に放出する。
圧力制御弁8bは、出口流路R4の出口を閉塞するように設けられ、弁体8b1と、バネ8b2とを備える差圧弁である。弁体8b1は、出口流路R4と第3差圧検知流路R7との間に設けられている。バネ8b2は、弁体8b1を閉弁方向(出口流路R4側)へと付勢している。このような圧力制御弁8bは、第3差圧検知流路R7を流れる燃料の圧力と、出口流路R4を流れる燃料の圧力(計量後圧力)との差圧に基づいて駆動し、計量後圧力が第3差圧検知流路R7を流れる燃料の圧力よりも高い場合のみ開弁される。圧力制御弁8bが開弁されている間に、計量弁7の下流側の燃料が不図示のジェットエンジンに流入する。
このような本実施形態に係る燃料供給システム1の動作について説明する。
 まず、エンジン始動時については、ブーストポンプ3側より燃料が供給され、定容積型ポンプ4により加圧された燃料が、計量流路R2へと流入する。なお、このとき、遠心ポンプ2に設けられた入口遮断弁2aは閉弁されており、遠心ポンプ2へと燃料が流入することはない。計量流路R2に流入した燃料は、計量弁7により計量され、一定量ごとに出口流路R4へと流れる。また、出口流路R4に流入した燃料の一部は、第1差圧検知流路R5へと流入する。
また、大容量の燃料が必要となる通常運転時には、遠心ポンプ2の入口遮断弁2aが開弁され、遠心ポンプ2に燃料が流入する。そして、遠心ポンプ2により加圧された後に入口流路R1に流入した燃料は、流量制御弁5が開弁されることにより、定容積型ポンプ4内へと進入する。また、遠心ポンプ2により加圧された燃料の一部は、バイパス流路R3へと流入する。バイパス弁6は計量前圧力が計量後圧力よりも高い場合に開弁される。このため、バイパス弁6が開弁されることにより、バイパス流路R3を流れる燃料は計量流路R2へと合流する。
そして、計量弁7へと案内された燃料は、計量弁7によって所定の流量ごとに出口側へと流れる。また、計量流路R2内における計量前の燃料の一部は、第1差圧検知流路R5に流入し、同様に第2差圧検知流路R6に流入した燃料(すなわち、計量後の燃料)との差圧に基づいて、差圧弁8aを駆動させる。なお、差圧弁8aは、計量前圧力が計量後圧力よりも高い場合には、第3差圧検知流路R7に計量前の燃料を流すように移動する。そして、第3差圧検知流路R7の圧力よりも計量後圧力が高まると、圧力制御弁8bが開弁され、燃料が不図示のエンジンへと供給される。
 また、燃料供給システム1における流量制御弁5の動作について、図2のタイムチャートを参照して説明する。
 図2に示すように、遠心ポンプ2が駆動された後に、流量制御弁5及び差圧弁8aの開弁が同時に開始される。
 流量制御弁5の開弁が開始されると、入口流路R1には、遠心ポンプ2を通過した燃料が徐々に流入を開始する。そして、差圧弁8aは、流量制御弁5が全開状態となるよりも早い段階で全開状態となる。このとき、遠心ポンプ2より入口流路R1へと流入する燃料の流量が計量弁7による燃料の計量流量に対して少なく、かつ、差圧弁8aが第3差圧検知流路R7を計量弁7の上流側と接続させた状態となる。本実施形態に係る燃料供給システム1は、計量弁7による燃料の計量流量よりも遠心ポンプ2から供給される燃料の供給流量が増加すると、計量前圧力が増加する。差圧弁8aが全開かつ流量制御弁5が開弁途中の場合には、上記供給流量が計量弁7による燃料の計量流量に対して少なく抑えられるため、計量前圧力の急激な上昇が抑えられる。そして、流量制御弁5が全開となると、入口流路R1へと流入する供給流量が増加しても、入口流路R1へと流入する供給流量が計量流量と釣り合うため、計量前圧力が一定となる。したがって、遠心ポンプ2から供給される燃料の供給流量の変化を緩やかとすることにより、計量前圧力の圧力変化は緩やかとなる。
従って、本実施形態によれば、定容積型ポンプ4から遠心ポンプ2に運転を切り替える過程において、計量前圧力の急激な上昇を防止することができる。
ここで、差圧弁8aの開閉と、圧力制御弁8bの開閉により、圧力制御弁8bからエンジンに供給される燃料の圧力は、燃料の供給流量の変化に依らず略一定に保たれる。
本実施形態によれば、流量制御弁5を差圧弁8aよりも緩やかな開弁速度で開弁させることにより、遠心ポンプ2から供給される燃料の供給流量を制御することができる。そのため、遠心ポンプ2始動後に、計量前圧力の急激な上昇を防止することで計量前圧力の変化を緩やかにし、計量前圧力と計量後圧力との間に差圧が発生することを防止することができる。これにより、計量弁7における計量流量に脈動が発生することを防止することができる。そのため、計量弁7における正確な計量を実施することが可能である。
また、本実施形態によれば、流量制御弁5は、遠心ポンプ2の吐出口と定容積型ポンプ4の吸入口との間に設けられている。これにより、遠心ポンプ2から供給される燃料の全量について流量を制御することが可能であり、計量前圧力を確実に制御することができる。
また、本実施形態によれば、流量制御弁5は、差圧弁8aの開弁速度の1/5程度の速度で開弁される。即ち、図2において、差圧弁8aが閉から開へと変化する開弁時間をaとし、流量制御弁5が閉から開へと変化する開弁時間をbとすれば、bは、略5aに等しい。これにより、流量制御弁5は、差圧弁8aに対して十分に開弁速度が遅くなり、計量前圧力の変化を十分に緩やかとすることができる。
また、本実施形態によれば、流量制御弁5は、遠心ポンプ2が駆動された後に開弁が開始される。これにより、流量制御弁5は、遠心ポンプ2から流量制御弁5までの流路が燃料により満たされた状態で開弁され、入口流路R1に気泡が混入することを防止できる。
以上、図面を参照しながら本開示の好適な実施形態について説明したが、本開示は上記実施形態に限定されない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、設計要求等に基づき種々変更可能である。
上記実施形態においては、流量制御弁5を遠心ポンプ2の吐出口と定容積型ポンプ4の吸入口との間に設けたが、本開示はこれに限定されない。
図3は、本開示の一実施形態の変形例に係る燃料供給システム10の模式図である。図3に示すように、流量制御弁5は、バイパス流路R3に設けてもよい。この場合についても、バイパス流路R3における燃料の流量変化を緩やかとすることにより、計量前圧力の急激な変化を防止することが可能である。
また、流量制御弁5の開弁速度は、差圧弁8aの開弁速度の1/5程度から1/10程度の範囲とすることが好ましい。即ち、図2において、差圧弁8aが閉から開へと変化する開弁時間をaとし、流量制御弁5が閉から開へと変化する開弁時間をbとすれば、bは、略5aから略10aの範囲にあることが好ましい。流量制御弁5の開弁速度を1/10以上に遅くすると、燃料供給システム1における定容積型ポンプ4から遠心ポンプ2への切り替えにかかる時間が長くなるため、系全体の応答性を損なう可能性がある。ただし、燃料供給システム1において、ポンプ切替時に素早い応答が必要とされない場合には、開弁速度を1/10よりも遅くすることも可能である。
また、本開示に係る流体供給システムの一実施形態として、上記実施形態においては、ジェットエンジンにおいて、液体または非圧縮性流体の燃料を供給する燃料供給システムとしたが、本開示はこれに限定されない。遠心ポンプ2及び定容積型ポンプ4を備え、各ポンプを切り替えて駆動させる流体供給システムであれば、流体の種類や用途は限定されない。
また、流量制御弁5の駆動方法は特に限定されず、電動式、油圧式等様々な方法により駆動させることが可能である。
 本開示の流体供給システムによれば、計量弁の上流側において、始動ポンプと遠心ポンプとの切替時における燃料の流量変化が緩やかとなることで、燃料の急激な圧力変化を抑制させることができる。
1 燃料供給システム(流体供給システム)
2 遠心ポンプ
2a 入口遮断弁
3 ブーストポンプ
4 定容積型ポンプ(始動ポンプ)
5 流量制御弁
6 バイパス弁
7 計量弁
8 差圧検知部
8a 差圧弁
8b 圧力制御弁
R1 入口流路
R2 計量流路
R3 バイパス流路
R4 出口流路
R5 第1差圧検知流路
R6 第2差圧検知流路
R7 第3差圧検知流路

Claims (5)

  1.  遠心ポンプと、
    前記遠心ポンプと直列に接続され、前記遠心ポンプの下流側に設けられると共に、前記遠心ポンプよりも吐出流量の少ない始動ポンプと、
     前記遠心ポンプ及び前記始動ポンプの下流側に設けられると共に、前記遠心ポンプまたは前記始動ポンプから吐出された流体を計量し、所定の流量ごとに下流へと放出する計量弁と、
     前記遠心ポンプ及び前記始動ポンプの下流側に設けられると共に、前記計量弁の上流側の圧力と下流側の圧力との差圧に基づいて駆動する差圧弁と、
     前記遠心ポンプの下流側かつ前記差圧弁の上流側に設けられると共に前記差圧弁よりも開弁速度が遅く設定された流量制御弁と
     を備える流体供給システム。
  2.  前記流量制御弁は、前記遠心ポンプの吐出口と前記始動ポンプの吸入口との間に設けられる請求項1記載の流体供給システム。
  3.  前記流量制御弁は、前記始動ポンプの上流側と下流側とを接続するバイパス流路に設けられる請求項1記載の流体供給システム。
  4.  前記流量制御弁の開弁速度が前記差圧弁の開弁速度の1/5から1/10である請求項1~3のいずれか一項に記載の流体供給システム。
  5.  前記流量制御弁は、前記遠心ポンプの駆動後に開弁されるように構成されている請求項1~4のいずれか一項に記載の流体供給システム。 
PCT/JP2019/033849 2018-08-31 2019-08-29 流体供給システム WO2020045553A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020539578A JP6892017B2 (ja) 2018-08-31 2019-08-29 流体供給システム
EP19853482.8A EP3845761A4 (en) 2018-08-31 2019-08-29 LIQUID SUPPLY SYSTEM
US17/176,372 US20210164399A1 (en) 2018-08-31 2021-02-16 Fluid supply system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018163558 2018-08-31
JP2018-163558 2018-08-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/176,372 Continuation US20210164399A1 (en) 2018-08-31 2021-02-16 Fluid supply system

Publications (1)

Publication Number Publication Date
WO2020045553A1 true WO2020045553A1 (ja) 2020-03-05

Family

ID=69644422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033849 WO2020045553A1 (ja) 2018-08-31 2019-08-29 流体供給システム

Country Status (4)

Country Link
US (1) US20210164399A1 (ja)
EP (1) EP3845761A4 (ja)
JP (1) JP6892017B2 (ja)
WO (1) WO2020045553A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114321728A (zh) * 2021-11-25 2022-04-12 中铁大桥科学研究院有限公司 一种泵撬系统及其施工方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11828233B2 (en) * 2021-11-26 2023-11-28 Hamilton Sundstrand Corporation Fuel pump systems

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5118258A (en) * 1990-09-04 1992-06-02 United Technologies Corporation Dual pump fuel delivery system
JP2001090579A (ja) 1999-09-22 2001-04-03 Ishikawajima Harima Heavy Ind Co Ltd 燃料流量制御回路
JP2008530442A (ja) * 2005-02-17 2008-08-07 イスパノ・シユイザ 航空機のエンジンの燃料供給
JP2011247259A (ja) 2010-05-25 2011-12-08 Hamilton Sundstrand Corp ガスタービンエンジン用の燃料ポンプ送りシステム
JP2013506794A (ja) * 2009-10-06 2013-02-28 スネクマ 航空エンジンのための燃料供給回路
WO2015046177A1 (ja) 2013-09-25 2015-04-02 株式会社Ihi 燃料システム
JP2016184489A (ja) 2015-03-26 2016-10-20 愛三工業株式会社 水素燃料供給システム
JP2018163558A (ja) 2017-03-27 2018-10-18 ソニー株式会社 情報処理装置、情報処理方法およびプログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5168704A (en) * 1990-08-17 1992-12-08 General Electric Company Gas turbine engine fuel and actuation pressure pumping system
JPH09112293A (ja) * 1995-10-20 1997-04-28 Ishikawajima Harima Heavy Ind Co Ltd ガスタービンの燃料供給装置
US8348633B2 (en) * 2009-12-11 2013-01-08 Hamilton Sundstrand Corporation Speed-dependent stability valve
EP2844875B1 (en) * 2012-05-01 2020-09-02 Eaton Corporation Pressure compensation control of a fixed displacement pump in a pumping and metering system and associated method
CA3093114C (en) * 2018-03-08 2022-12-13 Ihi Corporation Fuel supply control device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5118258A (en) * 1990-09-04 1992-06-02 United Technologies Corporation Dual pump fuel delivery system
JP2001090579A (ja) 1999-09-22 2001-04-03 Ishikawajima Harima Heavy Ind Co Ltd 燃料流量制御回路
JP2008530442A (ja) * 2005-02-17 2008-08-07 イスパノ・シユイザ 航空機のエンジンの燃料供給
JP2013506794A (ja) * 2009-10-06 2013-02-28 スネクマ 航空エンジンのための燃料供給回路
JP2011247259A (ja) 2010-05-25 2011-12-08 Hamilton Sundstrand Corp ガスタービンエンジン用の燃料ポンプ送りシステム
WO2015046177A1 (ja) 2013-09-25 2015-04-02 株式会社Ihi 燃料システム
JP2016184489A (ja) 2015-03-26 2016-10-20 愛三工業株式会社 水素燃料供給システム
JP2018163558A (ja) 2017-03-27 2018-10-18 ソニー株式会社 情報処理装置、情報処理方法およびプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3845761A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114321728A (zh) * 2021-11-25 2022-04-12 中铁大桥科学研究院有限公司 一种泵撬系统及其施工方法
CN114321728B (zh) * 2021-11-25 2023-10-27 中铁大桥科学研究院有限公司 一种泵撬系统及其施工方法

Also Published As

Publication number Publication date
JP6892017B2 (ja) 2021-06-18
EP3845761A1 (en) 2021-07-07
US20210164399A1 (en) 2021-06-03
EP3845761A4 (en) 2022-06-01
JPWO2020045553A1 (ja) 2021-02-15

Similar Documents

Publication Publication Date Title
WO2020045553A1 (ja) 流体供給システム
EP1785348B1 (en) Fuel system and method for determining the extent of internal wear of a fuel pump
CN104956191B (zh) 流量测量设备
JP6058672B2 (ja) 流体混合送達システム
US8720482B2 (en) Fuel system
US9828916B2 (en) Fuel system
CN106286062B (zh) 一种船用增压式喷油器多功能测试设备
US20150292453A1 (en) Systems and methods to regulate a pressure in a fuel delivery system
JP4059511B2 (ja) 流量計測装置および流量計測方法
JP2010216433A (ja) 燃料供給装置
JP2022122754A (ja) 航空機用ガスタービンエンジンの燃料供給システム及び燃料供給方法
CN104154015A (zh) 压缩装置
CN207582562U (zh) 管道式供水系统
JP2011112153A (ja) 液圧装置
JPH10318100A (ja) 内燃機関における噴射のために燃料噴射弁に供給される燃料を測定する方法、および、該方法を実施する燃料噴射系
JP7056374B2 (ja) 弁装置の特性調整装置
WO2020250796A1 (ja) ポンプシステム
US11808218B1 (en) Rapid fuel shutdown system with latching
JP2019203407A (ja) 弁装置の特性調整装置
US11994076B2 (en) Multi-step pressurizing valve system
JP2023130021A (ja) 薬液注入装置
FI119784B (fi) Virtausmäärän mittaus- ja säätölaite
WO2015123107A1 (en) Pressure regulator damping
FR2986272A1 (fr) Dispositif fluidique avec vanne de retour de carburant pour moteurs d'aeronefs, et procede d'obtention d'un tel dispositif
JP2015200221A (ja) ポンプ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853482

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539578

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019853482

Country of ref document: EP

Effective date: 20210331