WO2020045379A1 - 熱電変換材料のチップの製造方法及びその製造方法により得られたチップを用いた熱電変換モジュールの製造方法 - Google Patents

熱電変換材料のチップの製造方法及びその製造方法により得られたチップを用いた熱電変換モジュールの製造方法 Download PDF

Info

Publication number
WO2020045379A1
WO2020045379A1 PCT/JP2019/033408 JP2019033408W WO2020045379A1 WO 2020045379 A1 WO2020045379 A1 WO 2020045379A1 JP 2019033408 W JP2019033408 W JP 2019033408W WO 2020045379 A1 WO2020045379 A1 WO 2020045379A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
chip
conversion material
layer
thermoelectric
Prior art date
Application number
PCT/JP2019/033408
Other languages
English (en)
French (fr)
Inventor
昌也 戸▲高▼
邦久 加藤
豪志 武藤
祐馬 勝田
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2020539462A priority Critical patent/JP7438115B2/ja
Priority to CN201980055839.6A priority patent/CN112602204A/zh
Priority to KR1020217005951A priority patent/KR20210043594A/ko
Priority to US17/271,091 priority patent/US11895919B2/en
Publication of WO2020045379A1 publication Critical patent/WO2020045379A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur

Definitions

  • the present invention relates to a method of manufacturing a chip of a thermoelectric conversion material for performing mutual energy conversion between heat and electricity, and a method of manufacturing a thermoelectric conversion module using the chip obtained by the method.
  • thermoelectric conversion module having a thermoelectric effect such as a Seebeck effect or a Peltier effect.
  • thermoelectric conversion module use of a so-called ⁇ -type thermoelectric conversion element.
  • ⁇ type a pair of electrodes which are separated from each other are provided on a substrate, for example, a P type thermoelectric element is provided on a negative electrode, and an N type thermoelectric element is provided on the other electrode, similarly separated from each other. And the upper surfaces of both thermoelectric materials are connected to the electrodes of the opposing substrate.
  • in-plane type thermoelectric conversion element is known.
  • the in-plane type is configured such that P-type thermoelectric elements and N-type thermoelectric elements are provided alternately in the in-plane direction of the substrate, and, for example, the lower part of the junction between both thermoelectric elements is connected in series with an electrode interposed therebetween.
  • a resin substrate such as polyimide is used as a substrate used for a thermoelectric conversion module from the viewpoint of heat resistance and flexibility.
  • a thin film of a bismuth telluride-based material is used from the viewpoint of thermoelectric performance.
  • the electrode a Cu electrode having a high thermal conductivity and a low resistance is used. Is used. (Patent Documents 1 and 2 etc.).
  • thermoelectric semiconductor material included in the thermoelectric conversion material formed from the thermoelectric semiconductor composition is used as the thermoelectric semiconductor material included in the thermoelectric conversion material formed from the thermoelectric semiconductor composition.
  • a Cu-based electrode is used as the electrode and a resin such as polyimide is used as the substrate, for example, in the step of annealing the thermoelectric conversion module at a high temperature such as 300 ° C., the thermoelectric semiconductor included in the thermoelectric conversion material is used.
  • an alloy layer is formed by diffusion, resulting in cracking or peeling of the electrode, increasing the electrical resistance between the thermoelectric conversion material and the Cu electrode, and deteriorating thermoelectric performance.
  • thermoelectric semiconductor material contained in the P-type thermoelectric element layer or the N-type thermoelectric element layer.
  • heat resistance cannot be maintained at a high annealing temperature (ie, a processing temperature at which the thermoelectric performance can be maximized), and for this reason, the thermoelectric semiconductor material may not be optimally annealed.
  • the present invention makes it possible to anneal a thermoelectric conversion material in a form having no joint with an electrode, and to manufacture a thermoelectric conversion material chip capable of annealing a thermoelectric semiconductor material at an optimum annealing temperature. It is an object to provide a method and a method for manufacturing a thermoelectric conversion module using the chip.
  • thermoelectric conversion material chips hereinafter, referred to as a “self-supporting film of thermoelectric conversion material”
  • self-supporting film of thermoelectric conversion material A plurality of thermoelectric conversion material chips that are annealed at a temperature and then peeled off from the sacrificial layer, thereby being annealed in a form that does not have a junction with an electrode. Or simply "self-supporting film”) and a method of manufacturing a thermoelectric conversion module using the chip, and completed the present invention. That is, the present invention provides the following (1) to (30).
  • thermoelectric conversion material comprising a thermoelectric semiconductor composition
  • a method for producing a chip of a thermoelectric conversion material comprising a thermoelectric semiconductor composition, wherein (A) a step of forming a sacrificial layer on a substrate, and (B) the sacrificial layer obtained in the step (A). Forming a chip of the thermoelectric material on the layer, (C) annealing the chip of the thermoelectric material obtained in the step (B), and (D) performing the step (C).
  • a method for manufacturing a chip of a thermoelectric conversion material comprising a step of peeling off the chip of the thermoelectric conversion material after the obtained annealing treatment.
  • thermoelectric conversion material chip according to the above (2), wherein the resin is a thermoplastic resin.
  • thermoplastic resin is polymethyl methacrylate or polystyrene.
  • release agent is a fluorine-based release agent or a silicone-based release agent.
  • (6) The method of manufacturing a thermoelectric conversion material chip according to any one of (1) to (5), wherein the thickness of the sacrificial layer is 10 nm to 10 ⁇ m.
  • thermoelectric conversion material chip according to any one of (1) to (6), wherein the substrate is one selected from the group consisting of glass, alumina, and silicon.
  • the thermoelectric semiconductor composition contains a thermoelectric semiconductor material, and the thermoelectric semiconductor material is a bismuth-tellurium thermoelectric semiconductor material, a telluride thermoelectric semiconductor material, an antimony-tellurium thermoelectric semiconductor material, or a bismuth selenide thermoelectric semiconductor material.
  • thermoelectric conversion material chip (9) The method for producing a chip of a thermoelectric conversion material according to the above (8), wherein the thermoelectric semiconductor composition further contains a heat-resistant resin and an ionic liquid and / or an inorganic ionic compound. (10) The method of manufacturing a thermoelectric conversion material chip according to (9), wherein the heat-resistant resin is a polyimide resin, a polyamide resin, a polyamide-imide resin, or an epoxy resin. (11) The method of manufacturing a thermoelectric conversion material chip according to any one of (1) to (10), wherein the annealing is performed at a temperature of 250 to 600 ° C.
  • step (D) In the step (D), (D-1) the chip of the thermoelectric conversion material after the annealing treatment obtained in the step (C) is peeled off from the sacrificial layer, and the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet is peeled off. And (D-2) a step of reducing the adhesive strength of the pressure-sensitive adhesive layer and peeling the chip of the thermoelectric conversion material transferred in the step (D-1) from the pressure-sensitive adhesive layer. And a method for producing a chip of the thermoelectric conversion material according to any one of (1) to (11). (13) The production of the thermoelectric conversion material chip according to the above (12), wherein the reduction of the adhesive strength of the adhesive layer in the step (D-2) is performed by irradiating heat or energy rays.
  • thermoelectric conversion material chip according to (12) or (13), wherein the pressure-sensitive adhesive layer includes an energy-ray-curable pressure-sensitive adhesive, a heat-curable pressure-sensitive adhesive, or a heat-foamable pressure-sensitive adhesive.
  • thermoelectric conversion material according to any one of the above (12) to (16), wherein the pressure-sensitive adhesive layer has a pressure of 1.0 N / 25 mm or more with respect to a mirror surface of a silicon wafer before a pressure-reducing treatment. Chip manufacturing method.
  • thermoelectric conversion material chip according to any one of the above (12) to (18), further comprising a step of forming a solder receiving layer on the surface.
  • solder receiving layer is made of a metal material.
  • thermoelectric conversion module in which a plurality of chips of thermoelectric conversion material obtained by the method of manufacturing chips of thermoelectric conversion material according to any one of (1) to (20) are combined, (I) forming a first electrode on the first resin film; (II) forming a second electrode on the second resin film, (III) forming a bonding material layer 1 on the first electrode obtained in the step (I); (IV) placing one surface of the thermoelectric conversion material chip on the bonding material layer 1 obtained in the step (III); (V) One surface of the thermoelectric conversion material chip placed in the step (IV) is connected to the first electrode with the bonding material layer 1 obtained in the step (III) interposed.
  • thermoelectric conversion module A method for manufacturing a thermoelectric conversion module, comprising: (22) A method of manufacturing a thermoelectric conversion module in which a plurality of thermoelectric conversion material chips obtained by the method of manufacturing a thermoelectric conversion material chip according to (19) or (20) are combined, (XI) forming a first electrode on the first resin film; (XII) forming a second electrode on the second resin film, (XIII) forming a solder material layer on the first electrode obtained in the step (XI); (XIV) placing one surface of the thermoelectric conversion material chip having a solder receiving layer on the solder material layer obtained in the step (XIII), (XV) the one side of the thermoelectric conversion material chip having the solder receiving layer placed in the step (XIV), which has the solder receiving layer, is interposed with the solder material layer obtained in the step (XIII).
  • thermoelectric conversion module A method for manufacturing a thermoelectric conversion module, comprising: (23) A method for producing a thermoelectric conversion module in which a plurality of thermoelectric conversion material chips made of a thermoelectric semiconductor composition are combined, (I) forming a sacrificial layer on the substrate; (Ii) forming a chip of the thermoelectric conversion material on the sacrificial layer obtained in the step (i); (Iii) a step of annealing the chip of the thermoelectric conversion material obtained in the step (ii), and (iv) preparing a first layer having a first resin film and a first electrode in this order.
  • V a step of preparing a second A layer having a second resin film and a second electrode in this order, or a second B layer having a second resin film and no electrodes;
  • a bonding material layer is formed by connecting one surface of the chip of the thermoelectric conversion material after the annealing treatment obtained in the step (iii) and the electrode of the first layer prepared in the step (iv).
  • thermoelectric conversion material obtained by peeling in the step of (vii) Bonding the other surface of the chip to the second electrode of the second A layer prepared in the step (v) with the bonding material layer 2 interposed therebetween; Or a step of joining the second B layer prepared in the step (v) with the joining material layer 3 interposed therebetween.
  • the step (v) is a step of preparing a second A layer having a second resin film and a second electrode in this order,
  • the other surface of the chip of the thermoelectric conversion material obtained in the step (vii) and the second surface of the second A layer prepared in the step (v) may be used.
  • the step (v) is a step of preparing a second B layer having a second resin film and no electrodes
  • a bonding material is formed by bonding the other surface of the thermoelectric conversion material chip obtained in the step (vii) and the second B layer prepared in the step (v).
  • thermoelectric conversion module according to (23) or (25), wherein the bonding material layer 3 is made of a resin material.
  • the thermoelectric device according to (23) or (25) further including a step of forming a solder receiving layer on one surface of the chip of the thermoelectric conversion material after the annealing treatment obtained in the step (iii). Manufacturing method of conversion module.
  • (30) The method for producing a thermoelectric conversion module according to (28) or (29), wherein the solder receiving layer is made of a metal material.
  • thermoelectric conversion module a method of manufacturing a chip of a thermoelectric conversion material that enables annealing of a thermoelectric conversion material in a form having no joint portion with an electrode and enables annealing of a thermoelectric semiconductor material at an optimum annealing temperature and A method for manufacturing a thermoelectric conversion module using the chip can be provided.
  • FIG. 1 is a cross-sectional configuration diagram for explaining an example of an embodiment of a method for manufacturing a chip of a thermoelectric conversion material of the present invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing which shows an example of embodiment of the process according to the manufacturing method of the thermoelectric conversion module which combined the chip
  • thermoelectric conversion module uses a chip of a thermoelectric conversion material obtained by a manufacturing method of a chip of a thermoelectric conversion material of the present invention in order of a process.
  • explanatory drawing which shows an example of the manufacturing method of the chip
  • the method for manufacturing a chip of a thermoelectric conversion material of the present invention is a method of manufacturing a chip of a thermoelectric conversion material comprising a thermoelectric semiconductor composition, wherein (A) a step of forming a sacrificial layer on a substrate; A step of forming a chip of the thermoelectric conversion material on the sacrificial layer obtained in step A), (C) a step of annealing the chip of the thermoelectric conversion material obtained in step (B), and (D) a step of peeling off the chip of the thermoelectric conversion material after the annealing treatment obtained in the step (C).
  • thermoelectric conversion material In the method for manufacturing a chip of a thermoelectric conversion material of the present invention, a chip of a thermoelectric conversion material after annealing at a high temperature, that is, A free-standing film of the conversion material can be easily obtained.
  • the sacrificial layer may have disappeared or remained after the annealing treatment, and the sacrificial layer may be removed from the thermoelectric conversion material without affecting the characteristics of the thermoelectric conversion material chip. Is defined as a layer that only needs to have the function of peeling off the chip.
  • the thermoelectric conversion material is not formed of a single layer (film) of a thermoelectric semiconductor material.
  • the thermoelectric semiconductor composition further includes a heat-resistant resin, an ionic liquid, and the like. It is formed from an object.
  • FIG. 1 is a cross-sectional configuration diagram for explaining an example of an embodiment of a method for manufacturing a chip of a thermoelectric conversion material of the present invention.
  • a sacrificial layer 2 is formed on a substrate 1, and a P-type thermoelectric conversion material chip 3 a and an N-type thermoelectric conversion material chip 3 b, which are thermoelectric conversion materials 3, are formed on the sacrificial layer 2.
  • the chip of the thermoelectric conversion material can be formed as a self-standing film of the thermoelectric conversion material.
  • the sacrifice layer formation step is a step of forming a sacrifice layer on a substrate. For example, in FIG. This is the step of performing
  • thermoelectric conversion material In the method for manufacturing a chip of a thermoelectric conversion material of the present invention, a sacrificial layer is used.
  • the sacrificial layer is used to form the thermoelectric conversion material chip as a self-supporting film, and is provided between the substrate and the thermoelectric conversion material chip, and has a function of peeling the thermoelectric conversion material chip after annealing. Having. As described above, the material constituting the sacrificial layer may be lost or remained after the annealing treatment, and as a result, the thermoelectric conversion material may have no effect on the chip characteristics without any influence. It is only necessary to have a function capable of peeling off the chip of the conversion material, and a resin and a release agent having both functions are preferable.
  • thermoplastic resin examples include acrylic resins such as poly (methyl) acrylate, poly (ethyl) acrylate, methyl (meth) acrylate-butyl (meth) acrylate copolymer, polyethylene, polypropylene, and polymethylpentene.
  • polyolefin resins such as polyolefin resins, polycarbonate resins, thermoplastic polyester resins such as polyethylene terephthalate and polyethylene naphthalate, polystyrene, acrylonitrile-styrene copolymer, polyvinyl acetate, ethylene-vinyl acetate copolymer, vinyl chloride, polyurethane, polyvinyl alcohol , Polyvinylpyrrolidone, ethylcellulose and the like.
  • poly (methyl methacrylate) means poly (methyl acrylate) or poly (methyl methacrylate), and (meth) has the same meaning.
  • the curable resin include a thermosetting resin and a photocurable resin.
  • thermosetting resin examples include an epoxy resin and a phenol resin.
  • thermocurable resin examples include a photocurable acrylic resin, a photocurable urethane resin, and a photocurable epoxy resin.
  • thermoplastic resin chip can be formed on the sacrifice layer, and from the viewpoint that the chip of the thermoelectric conversion material can be easily peeled off as a self-supporting film even after annealing at a high temperature, the thermoplastic resin is used.
  • polymethyl methacrylate, polystyrene, polyvinyl alcohol, polyvinylpyrrolidone, and ethylcellulose are preferable, and polymethyl methacrylate and polystyrene are more preferable from the viewpoint of material cost, releasability, and maintenance of the properties of the thermoelectric conversion material.
  • the resin preferably has a mass reduction rate of 90% or more, more preferably 95% or more, and more preferably 99% or more at an annealing treatment temperature described later by thermogravimetry (TG). preferable. If the mass reduction rate is in the above range, the function of peeling off the thermoelectric conversion material chip will not be lost even when the thermoelectric conversion material chip is annealed, as described later.
  • TG thermogravimetry
  • the release agent constituting the sacrificial layer used in the present invention is not particularly limited, but is a fluorine-based release agent (fluorine atom-containing compound; for example, polytetrafluoroethylene or the like), a silicone-based release agent (silicone compound; for example, , A silicone resin, a polyorganosiloxane having a polyoxyalkylene unit, a higher fatty acid or a salt thereof (eg, a metal salt), a higher fatty acid ester, a higher fatty acid amide, and the like.
  • fluorine-based release agent fluorine atom-containing compound; for example, polytetrafluoroethylene or the like
  • silicone-based release agent silicon compound
  • thermoelectric conversion material from the viewpoint that a chip of the thermoelectric conversion material can be formed on the sacrificial layer, and even after annealing at a high temperature, the chip of the thermoelectric conversion material can be easily separated (released) as a self-supporting film.
  • Fluorine-based release agents and silicone-based release agents are preferred, and fluorine-based release agents are more preferred from the viewpoints of material cost, releasability, and maintaining the properties of the thermoelectric conversion material.
  • the thickness of the sacrificial layer is preferably from 10 nm to 10 ⁇ m, more preferably from 50 nm to 5 ⁇ m, even more preferably from 200 nm to 2 ⁇ m.
  • the thickness of the sacrificial layer is preferably 50 nm to 10 ⁇ m, more preferably 100 nm to 5 ⁇ m, and still more preferably 200 nm to 2 ⁇ m.
  • the thickness of the sacrificial layer in the case of using the resin is within this range, the separation after the annealing treatment becomes easy, and the thermoelectric performance of the chip of the thermoelectric conversion material after the separation is easily maintained. Further, even when another layer is laminated on the sacrificial layer, the self-standing film is easily maintained.
  • the thickness of the sacrificial layer is preferably 10 nm to 5 ⁇ m, more preferably 50 nm to 1 ⁇ m, still more preferably 100 nm to 0.5 ⁇ m, and particularly preferably 200 nm to 0.1 ⁇ m. It is. When the thickness of the sacrificial layer in the case where the release agent is used is within this range, the peeling after the annealing treatment becomes easy, and the thermoelectric performance of the chip of the thermoelectric conversion material after the peeling is easily maintained.
  • the formation of the sacrificial layer is performed using the above-described resin or a release agent.
  • a method for forming the sacrificial layer include various coating methods such as a dip coating method, a spin coating method, a spray coating method, a gravure coating method, a die coating method, and a doctor blade method on a substrate. It is appropriately selected according to the resin used, the physical properties of the release agent, and the like.
  • the substrate examples include glass, silicon, ceramic, metal, and plastic. From the viewpoint of performing the annealing at a high temperature, glass, silicon, ceramic, and metal are preferable.From the viewpoint of adhesion to the sacrificial layer, material cost, and dimensional stability after heat treatment, glass, silicon, and ceramic may be used. More preferred.
  • the thickness of the substrate is preferably 100 to 1200 ⁇ m, more preferably 200 to 800 ⁇ m, and further preferably 400 to 700 ⁇ m, from the viewpoint of process and dimensional stability.
  • thermoelectric conversion material chips 3 made of a material, that is, the P-type thermoelectric conversion material chips 3a and the N-type thermoelectric conversion material chips 3b are applied as thin films.
  • the arrangement of the chip of the P-type thermoelectric conversion material and the chip of the N-type thermoelectric conversion material is not particularly limited. However, from the viewpoint of thermoelectric performance, the chip is configured to be used in a ⁇ -type or in-plane type thermoelectric conversion module.
  • thermoelectric conversion module for example, a pair of electrodes that are separated from each other are provided on a substrate, and a chip of a P-type thermoelectric conversion material is In the same manner, chips of an N-type thermoelectric conversion material are provided separately from each other, and the upper surfaces of both thermoelectric conversion material chips are electrically connected in series to electrodes on the opposing substrate. From the viewpoint of efficiently obtaining high thermoelectric performance, a plurality of pairs of a chip of a P-type thermoelectric conversion material and a chip of an N-type thermoelectric conversion material interposed between electrodes of an opposing substrate are electrically connected in series (described later). (See FIG. 2 (f)).
  • thermoelectric conversion module for example, one electrode is provided on a substrate, a chip of a P-type thermoelectric conversion material is provided on the surface of the electrode, and an N-type is provided on the surface of the electrode.
  • a chip made of a thermoelectric conversion material is provided such that side surfaces of both chips (for example, surfaces in a direction perpendicular to the substrate) are in contact with or separated from each other, and are electrically connected in the in-plane direction of the substrate with the electrodes interposed therebetween. It is configured by connecting in series (for example, in the case of a power generation configuration, a pair of electrodes for extracting electromotive force are also used).
  • thermoelectric conversion material the same number of chips of the P-type thermoelectric conversion material and chips of the N-type thermoelectric conversion material are alternately provided with electrodes and electrically connected in the in-plane direction of the substrate. It is preferable to use them connected in series.
  • thermoelectric conversion material used in the present invention comprises a thermoelectric semiconductor composition.
  • a thermoelectric semiconductor composition Preferably, it is composed of a thin film made of a thermoelectric semiconductor material (hereinafter, sometimes referred to as “thermal semiconductor fine particles”), a heat-resistant resin, and a thermoelectric semiconductor composition containing an ionic liquid and / or an inorganic ionic compound.
  • thermoelectric semiconductor material used in the present invention, that is, the thermoelectric semiconductor material contained in the chip of the P-type thermoelectric conversion material and the chip of the N-type thermoelectric conversion material can generate a thermoelectromotive force by applying a temperature difference.
  • the material is not particularly limited as long as the material can be used.
  • bismuth-tellurium-based thermoelectric semiconductor materials such as P-type bismuth telluride and N-type bismuth telluride
  • telluride-based thermoelectric semiconductor materials such as GeTe and PbTe
  • ZnSb zinc, etc.
  • thermoelectric semiconductor material such as SiGe - germanium thermoelectric semiconductor material; Bi 2 Se 3 bismuth selenide-based thermoelectric semiconductor materials such; beta-FeSi 2 , CrSi 2, MnSi 1.73, silicide-based thermoelectric semiconductor materials, such as Mg 2 Si Oxide thermoelectric semiconductor material; FeVAl, FeVAlSi, Heusler materials such FeVTiAl, such sulfide-based thermoelectric semiconductor materials, such as TiS 2 is used.
  • thermoelectric semiconductor material a bismuth-tellurium-based thermoelectric semiconductor material, a telluride-based thermoelectric semiconductor material, an antimony-tellurium-based thermoelectric semiconductor material, or a bismuth selenide-based thermoelectric semiconductor material is preferable.
  • a bismuth-tellurium-based thermoelectric semiconductor material such as P-type bismuth telluride or N-type bismuth telluride is more preferable.
  • P-type bismuth telluride those having a carrier as a hole and a Seebeck coefficient as a positive value, for example, those represented by Bi X Te 3 Sb 2-X are preferably used.
  • X is preferably 0 ⁇ X ⁇ 0.8, and more preferably 0.4 ⁇ X ⁇ 0.6.
  • the Seebeck coefficient and the electrical conductivity increase, which is preferable because characteristics as a P-type thermoelectric element are maintained.
  • the N-type bismuth telluride preferably has an electron carrier and a negative Seebeck coefficient and is preferably represented by, for example, Bi 2 Te 3-Y Se Y.
  • the Seebeck coefficient and the electric conductivity increase, and the characteristics as an N-type thermoelectric element are preferably maintained.
  • thermoelectric semiconductor fine particles used in the thermoelectric semiconductor composition are obtained by pulverizing the above-described thermoelectric semiconductor material to a predetermined size using a pulverizer or the like.
  • the blending amount of the thermoelectric semiconductor fine particles in the thermoelectric semiconductor composition is preferably 30 to 99% by mass. More preferably, it is 50 to 96% by mass, still more preferably 70 to 95% by mass.
  • the Seebeck coefficient absolute value of the Peltier coefficient
  • the decrease in electric conductivity is suppressed, and only the heat conductivity is reduced, so that high thermoelectric performance is exhibited.
  • a film having sufficient film strength and flexibility is obtained, which is preferable.
  • the average particle size of the thermoelectric semiconductor fine particles is preferably 10 nm to 200 ⁇ m, more preferably 10 nm to 30 ⁇ m, further preferably 50 nm to 10 ⁇ m, and particularly preferably 1 to 6 ⁇ m. Within the above range, uniform dispersion is facilitated, and electric conductivity can be increased.
  • the method of pulverizing the thermoelectric semiconductor material to obtain thermoelectric semiconductor fine particles is not particularly limited, and may be pulverized to a predetermined size by a known pulverizer such as a jet mill, a ball mill, a bead mill, a colloid mill, and a roller mill. .
  • the average particle size of the thermoelectric semiconductor fine particles was obtained by measuring with a laser diffraction particle size analyzer (manufactured by Malvern, Mastersizer 3000), and was defined as the median value of the particle size distribution.
  • thermoelectric semiconductor particles are preferably heat-treated in advance (the "heat treatment” here is different from the “annealing treatment” performed in the annealing step in the present invention).
  • the thermoelectric semiconductor particles have improved crystallinity, and further, since the surface oxide film of the thermoelectric semiconductor particles is removed, the Seebeck coefficient or the Peltier coefficient of the thermoelectric conversion material increases, and the thermoelectric performance index further increases. Can be improved.
  • the heat treatment is not particularly limited, but before preparing the thermoelectric semiconductor composition, the gas flow rate is controlled so as not to adversely affect the thermoelectric semiconductor particles, under an atmosphere of an inert gas such as nitrogen or argon.
  • the reaction is preferably performed under a reducing gas atmosphere such as hydrogen or under vacuum conditions, and more preferably under a mixed gas atmosphere of an inert gas and a reducing gas.
  • a reducing gas atmosphere such as hydrogen or under vacuum conditions
  • a mixed gas atmosphere of an inert gas and a reducing gas is usually preferable that the temperature is lower than the melting point of the fine particles and at 100 to 1500 ° C. for several minutes to several tens of hours.
  • thermoelectric semiconductor composition used in the present invention a heat-resistant resin is preferably used from the viewpoint of performing an annealing treatment on the thermoelectric semiconductor material at a high temperature. It acts as a binder between the thermoelectric semiconductor materials (thermoelectric semiconductor particles), can increase the flexibility of the thermoelectric conversion module, and facilitates the formation of a thin film by coating or the like.
  • the heat-resistant resin is not particularly limited. However, when a thin film of the thermoelectric semiconductor composition is subjected to crystal growth of thermoelectric semiconductor particles by annealing or the like, various properties such as mechanical strength and thermal conductivity of the resin are used. A heat-resistant resin that maintains its physical properties without deterioration is preferred.
  • the heat-resistant resin is preferably a polyamide resin, a polyamide-imide resin, a polyimide resin, or an epoxy resin, which has higher heat resistance and does not adversely affect the crystal growth of the thermoelectric semiconductor particles in the thin film, and has excellent flexibility.
  • a polyamide resin, a polyamideimide resin, and a polyimide resin are more preferable.
  • a polyimide resin is more preferable as the heat-resistant resin from the viewpoint of adhesion to the polyimide film.
  • the polyimide resin is a general term for polyimide and its precursor.
  • the heat-resistant resin preferably has a decomposition temperature of 300 ° C or higher.
  • the decomposition temperature is in the above range, as described later, even when the thin film made of the thermoelectric semiconductor composition is annealed, the flexibility can be maintained without losing the function as a binder.
  • the heat-resistant resin preferably has a mass reduction rate at 300 ° C. by thermogravimetry (TG) of 10% or less, more preferably 5% or less, and still more preferably 1% or less. . If the mass reduction rate is within the above range, as described later, even when the thin film made of the thermoelectric semiconductor composition is annealed, the flexibility of the thermoelectric element layer can be maintained without losing the function as a binder. .
  • TG thermogravimetry
  • the compounding amount of the heat-resistant resin in the thermoelectric semiconductor composition is 0.1 to 40% by mass, preferably 0.5 to 20% by mass, more preferably 1 to 20% by mass, and further preferably 2 to 15% by mass. % By mass.
  • the compounding amount of the heat-resistant resin is within the above range, it functions as a binder of the thermoelectric semiconductor material, facilitates formation of a thin film, and obtains a film having both high thermoelectric performance and high film strength.
  • the ionic liquid used in the present invention is a molten salt formed by combining a cation and an anion, and refers to a salt that can exist as a liquid in any temperature range of -50 to 500 ° C.
  • Ionic liquids have features such as extremely low vapor pressure, non-volatility, excellent thermal stability and electrochemical stability, low viscosity, and high ionic conductivity. Therefore, as a conductive auxiliary agent, it is possible to effectively suppress a decrease in electric conductivity between the thermoelectric semiconductor particles. Further, the ionic liquid has a high polarity based on the aprotic ionic structure and has excellent compatibility with the heat-resistant resin, so that the electric conductivity of the thermoelectric element layer can be made uniform.
  • ionic liquids can be used.
  • nitrogen-containing cyclic cation compounds such as pyridinium, pyrimidinium, pyrazolium, pyrrolidinium, piperidinium, imidazolium and derivatives thereof; amine cations of tetraalkylammonium and derivatives thereof; phosphines such as phosphonium, trialkylsulfonium and tetraalkylphosphonium systems cations and their derivatives; and cationic components, such as lithium cations and derivatives thereof, Cl -, AlCl 4 -, Al 2 Cl 7 -, ClO 4 - chloride or ion, Br -, etc.
  • the cation component of the ionic liquid is a pyridinium cation and a derivative thereof from the viewpoints of high-temperature stability, compatibility with the thermoelectric semiconductor fine particles and the resin, and suppression of a decrease in electric conductivity in the gap between the thermoelectric semiconductor fine particles.
  • the anionic component of the ionic liquid preferably contains a halide anion, and more preferably contains at least one selected from Cl ⁇ , Br ⁇ and I ⁇ .
  • the ionic liquid in which the cation component contains a pyridinium cation and a derivative thereof include 4-methyl-butylpyridinium chloride, 3-methyl-butylpyridinium chloride, 4-methyl-hexylpyridinium chloride, and 3-methyl-hexylpyridinium.
  • Chloride 4-methyl-octylpyridinium chloride, 3-methyl-octylpyridinium chloride, 3,4-dimethyl-butylpyridinium chloride, 3,5-dimethyl-butylpyridinium chloride, 4-methyl-butylpyridinium tetrafluoroborate, 4- Methyl-butylpyridinium hexafluorophosphate, 1-butyl-4-methylpyridinium bromide, 1-butyl-4-methylpyridinium hexafluorophosphate, 1-butyl-4- Chill pyridinium iodide and the like. Of these, 1-butyl-4-methylpyridinium bromide, 1-butyl-4-methylpyridinium hexafluorophosphate, and 1-butyl-4-methylpyridinium iodide are preferred.
  • the ionic liquid in which the cation component contains an imidazolium cation and a derivative thereof include [1-butyl-3- (2-hydroxyethyl) imidazolium bromide] and [1-butyl-3- (2 -Hydroxyethyl) imidazolium tetrafluoroborate], 1-ethyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium bromide, 1-butyl-3-methylimidazolium chloride, 1-hexyl-3 -Methylimidazolium chloride, 1-octyl-3-methylimidazolium chloride, 1-decyl-3-methylimidazolium chloride, 1-decyl-3-methylimidazolium bromide, 1-dodecyl-3-methylimidazolium chloride, 1-tetradecyl-3-methylimida Lithium chloride, 1-ethyl-3-methyl
  • [1-butyl-3- (2-hydroxyethyl) imidazolium bromide] and [1-butyl-3- (2-hydroxyethyl) imidazolium tetrafluoroborate] are preferable.
  • the above ionic liquid preferably has an electric conductivity of 10 ⁇ 7 S / cm or more, more preferably 10 ⁇ 6 S / cm or more.
  • the electric conductivity is in the above range, a decrease in electric conductivity between the thermoelectric semiconductor particles can be effectively suppressed as a conductive auxiliary agent.
  • the ionic liquid preferably has a decomposition temperature of 300 ° C or higher.
  • the decomposition temperature is in the above range, the effect as a conductive auxiliary agent can be maintained even when a thin film made of a thermoelectric semiconductor composition is annealed, as described later.
  • the ionic liquid has a mass reduction rate at 300 ° C. by thermogravimetry (TG) of preferably 10% or less, more preferably 5% or less, and still more preferably 1% or less. .
  • TG thermogravimetry
  • the blending amount of the ionic liquid in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, and further preferably 1.0 to 20% by mass.
  • the blending amount of the ionic liquid is within the above range, a decrease in electric conductivity is effectively suppressed, and a film having high thermoelectric performance is obtained.
  • the inorganic ionic compound used in the present invention is a compound composed of at least a cation and an anion.
  • the inorganic ionic compound is solid at room temperature, has a melting point at any temperature in the temperature range of 400 to 900 ° C., and has characteristics such as high ionic conductivity. It is possible to suppress a decrease in the electric conductivity between the thermoelectric semiconductor particles.
  • a metal cation is used as the cation.
  • the metal cation include an alkali metal cation, an alkaline earth metal cation, a typical metal cation, and a transition metal cation, and an alkali metal cation or an alkaline earth metal cation is more preferable.
  • the alkali metal cation include Li + , Na + , K + , Rb + , Cs +, and Fr + .
  • Examples of the alkaline earth metal cation include Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ .
  • anion examples include F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , CN ⁇ , NO 3 ⁇ , NO 2 ⁇ , ClO ⁇ , ClO 2 ⁇ , ClO 3 ⁇ , ClO 4 ⁇ , and CrO 4 2.
  • -, HSO 4 -, SCN - , BF 4 -, PF 6 - and the like.
  • a cation component such as potassium cation, sodium cation, or lithium cations, Cl -, AlCl 4 -, Al 2 Cl 7 -, ClO 4 - chloride or ion, Br -, etc. of bromide ion, I -, etc.
  • iodide ions fluoride ions such as BF 4 ⁇ and PF 6 ⁇ , halide anions such as F (HF) n ⁇ and anion components such as NO 3 ⁇ , OH ⁇ and CN ⁇ .
  • the cation component of the inorganic ionic compound is potassium. , Sodium, and lithium.
  • the anionic component of the inorganic ionic compound preferably contains a halide anion, and more preferably contains at least one selected from Cl ⁇ , Br ⁇ , and I ⁇ .
  • the inorganic ionic compound in which the cation component contains a potassium cation include KBr, KI, KCl, KF, KOH, and K 2 CO 3 . Among them, KBr and KI are preferable.
  • Specific examples of the inorganic ionic compound in which the cation component contains a sodium cation include NaBr, NaI, NaOH, NaF, and Na 2 CO 3 . Of these, NaBr and NaI are preferred.
  • Specific examples of the inorganic ionic compound whose cation component includes a lithium cation include LiF, LiOH, and LiNO 3 . Among them, LiF and LiOH are preferable.
  • the above-mentioned inorganic ionic compound preferably has an electric conductivity of 10 ⁇ 7 S / cm or more, more preferably 10 ⁇ 6 S / cm or more.
  • the electric conductivity is in the above range, reduction in electric conductivity between the thermoelectric semiconductor particles can be effectively suppressed as a conductive auxiliary agent.
  • the inorganic ionic compound preferably has a decomposition temperature of 400 ° C or higher.
  • the decomposition temperature is in the above range, the effect as a conductive auxiliary agent can be maintained even when a thin film made of a thermoelectric semiconductor composition is annealed, as described later.
  • the inorganic ionic compound preferably has a mass reduction rate at 400 ° C. by thermogravimetry (TG) of 10% or less, more preferably 5% or less, and more preferably 1% or less. More preferred.
  • TG thermogravimetry
  • the compounding amount of the inorganic ionic compound in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, and further preferably 1.0 to 10% by mass. .
  • the amount of the inorganic ionic compound is within the above range, a decrease in electric conductivity can be effectively suppressed, and as a result, a film having improved thermoelectric performance can be obtained.
  • the total content of the inorganic ionic compound and the ionic liquid in the thermoelectric semiconductor composition is preferably from 0.01 to 50% by mass, Preferably it is 0.5 to 30% by mass, more preferably 1.0 to 10% by mass.
  • thermoelectric semiconductor composition used in the present invention in addition to the components other than the above, if necessary, further dispersant, film forming aid, light stabilizer, antioxidant, tackifier, plasticizer, colorant, Other additives such as a resin stabilizer, a filler, a pigment, a conductive filler, a conductive polymer, and a curing agent may be included. These additives can be used alone or in combination of two or more.
  • thermoelectric semiconductor composition used in the present invention is not particularly limited, and the thermoelectric semiconductor fine particles and the heat-resistant resin can be obtained by a known method such as an ultrasonic homogenizer, a spiral mixer, a planetary mixer, a disperser, and a hybrid mixer.
  • the thermoelectric semiconductor composition may be prepared by adding one or both of the ionic liquid and the inorganic ionic compound, and if necessary, the other additives and a solvent, and mixing and dispersing the same.
  • the solvent examples include solvents such as toluene, ethyl acetate, methyl ethyl ketone, alcohol, tetrahydrofuran, methylpyrrolidone, and ethyl cellosolve. These solvents may be used alone or as a mixture of two or more.
  • the solid content concentration of the thermoelectric semiconductor composition is not particularly limited as long as the composition has a viscosity suitable for coating.
  • the thin film made of the thermoelectric semiconductor composition can be formed by applying the thermoelectric semiconductor composition on the sacrificial layer used in the present invention and drying it. By forming in this manner, a large-area thermoelectric element layer can be easily obtained at low cost.
  • thermoelectric semiconductor composition As a method of applying the thermoelectric semiconductor composition on a substrate, screen printing, flexographic printing, gravure printing, spin coating, dip coating, die coating, spray coating, bar coating, doctor blade, etc. Is not particularly limited.
  • the coating film is formed in a pattern, screen printing, stencil printing, slot die coating, or the like that can easily form a pattern using a screen plate having a desired pattern is preferably used.
  • a thin film is formed by drying the obtained coating film.
  • a conventionally known drying method such as a hot air drying method, a hot roll drying method, and an infrared irradiation method can be employed.
  • the heating temperature is usually 80 to 150 ° C., and the heating time varies depending on the heating method, but is usually several seconds to several tens of minutes.
  • the heating temperature is not particularly limited as long as the used solvent can be dried.
  • thermoelectric semiconductor composition on the substrate from the viewpoint of the shape controllability of the chip of the obtained thermoelectric conversion material, the following, in the multilayer printing method or the pattern frame arrangement / peeling method, It is more preferable to apply by a screen printing method or a stencil printing method.
  • Multilayer printing method Multilayer printing method, using a coating liquid or the like consisting of a thermoelectric semiconductor composition, on the substrate, or at the same position on the electrode, using a screen plate having a desired pattern, a stencil plate, screen printing method, stencil
  • This is a method in which printing is performed a plurality of times by a printing method or the like to form a thick-film thermoelectric conversion material chip in which a thin film of the thermoelectric conversion material is stacked a plurality of times. Specifically, first, a coating film that becomes a thin film of the first layer of the thermoelectric conversion material is formed, and the obtained coating film is dried to form a thin film of the first layer of the thermoelectric conversion material.
  • thermoelectric conversion material of the second layer is formed on the thin film of the thermoelectric conversion material obtained in the first layer, and the obtained coating film is dried. Thereby, a thin film of the thermoelectric conversion material of the second layer is formed.
  • a coating film to be a thin film of the thermoelectric conversion material of the third and subsequent layers is formed on the thin film of the thermoelectric conversion material obtained immediately before, and the obtained coating film is dried. Thereby, a thin film of the thermoelectric conversion material of the third and subsequent layers is formed.
  • a chip of a thermoelectric conversion material having a desired thickness can be obtained.
  • a chip of a thermoelectric conversion material having high shape controllability can be obtained.
  • the pattern frame arrangement / peeling method is to provide a pattern frame having an opening separated on a substrate, fill the opening with a thermoelectric semiconductor composition, dry, and peel the pattern frame from the substrate. This is a method for forming a chip of a thermoelectric conversion material having excellent shape controllability in which the shape of the opening of the pattern frame is reflected.
  • the shape of the opening is not particularly limited, and examples thereof include a rectangular parallelepiped shape, a cubic shape, and a columnar shape.
  • a step of providing a pattern frame having an opening on a substrate a step of filling the opening with the thermoelectric semiconductor composition, drying the thermoelectric semiconductor composition filled in the opening, and performing thermoelectric conversion Forming a chip of a material; and removing the pattern frame from the substrate.
  • An example of a method for manufacturing a chip of a thermoelectric conversion material using the pattern frame arrangement / peeling method will be specifically described with reference to the drawings. FIG.
  • FIG. 5 is an explanatory diagram showing an example of a method for manufacturing a chip of a thermoelectric conversion material by a pattern frame arrangement / peeling method used in the present invention in the order of steps;
  • (A) is sectional drawing which shows the aspect which made the pattern frame oppose on the board
  • (B) is a cross-sectional view after the pattern frame is provided on the substrate, and the pattern frame 32 is provided on the substrate 31;
  • (C) is a cross-sectional view after filling the thermoelectric semiconductor composition into the opening of the pattern frame.
  • thermoelectric semiconductor composition including a thermoelectric semiconductor composition including a thermoelectric semiconductor material and a thermoelectric semiconductor composition including an N-type thermoelectric semiconductor material are respectively filled in predetermined openings 33, and the thermoelectric semiconductor includes a P-type thermoelectric semiconductor material filled in the openings 33.
  • thermoelectric semiconductor composition including the composition and the N-type thermoelectric semiconductor material to form a P-type thermoelectric conversion material chip 34b and an N-type thermoelectric conversion material chip 34a;
  • (D) is a cross-sectional view showing an embodiment in which the pattern frame is peeled off from the formed thermoelectric conversion material chip to obtain only the thermoelectric conversion material chip, and the pattern frame 32 is formed into the formed P-type thermoelectric conversion material chip 34b.
  • the chip 34a of the N-type thermoelectric conversion material is peeled off from the chip 34a of the N-type thermoelectric conversion material to obtain a chip 34b of the P-type thermoelectric conversion material and a chip 34a of the N-type thermoelectric conversion material as self-supporting chips.
  • a chip of a thermoelectric conversion material can be obtained.
  • by using the pattern frame arrangement / peeling method a chip of a thermoelectric conversion material with high shape controllability can be obtained.
  • thermoelectric semiconductor composition The method for drying the obtained coating film (thin film) is as described above.
  • the heating temperature when a solvent is used in preparing the thermoelectric semiconductor composition is also as described above.
  • the thickness of the thin film made of the thermoelectric semiconductor composition is not particularly limited, but is preferably 100 nm to 1000 ⁇ m, more preferably 300 nm to 600 ⁇ m, and still more preferably 5 to 400 ⁇ m from the viewpoint of thermoelectric performance and film strength.
  • the annealing step is a step of forming a thermoelectric conversion material chip on the sacrificial layer and then heat-treating the thermoelectric conversion material chip at a predetermined temperature with the sacrificial layer on the substrate. is there.
  • a step of annealing the thermoelectric conversion material chip 3 made of the thermoelectric semiconductor composition on the sacrificial layer 2 is performed.
  • an annealing process is performed. By performing the annealing treatment, the thermoelectric performance can be stabilized, and the thermoelectric semiconductor particles in the thin film can be crystal-grown, so that the thermoelectric performance can be further improved.
  • the annealing treatment is not particularly limited, but is usually performed under a controlled gas flow rate, under an inert gas atmosphere such as nitrogen or argon, under a reducing gas atmosphere, or under vacuum conditions.
  • the annealing temperature is usually 100 to 600 ° C., for several minutes to several tens of hours, preferably 150 to 600 ° C. For several minutes to several tens of hours, more preferably at 250 to 600 ° C. for several minutes to several tens of hours, and still more preferably at 250 to 460 ° C. for several minutes to several tens of hours.
  • the chip separation step of the thermoelectric conversion material is a step of separating the chip of the thermoelectric conversion material from the sacrificial layer after annealing the chip of the thermoelectric conversion material.
  • the method of peeling the chip is no particular limitation on the method of peeling the chip as long as the method is capable of peeling the thermoelectric conversion material chip from the sacrificial layer after annealing the thermoelectric conversion material chip. It may be peeled off in the form of individual pieces, or may be peeled off in the form of a plurality of chips.
  • the chip peeling step (D) may include (D-1) the step of annealing the thermoelectric conversion material chip obtained in the step (C). (D-2) a step of reducing the adhesive force of the adhesive layer and transferring the thermoelectric conversion material chip in the step (D-1) by peeling off the sacrificial layer and transferring the adhesive layer to an adhesive layer of an adhesive sheet; From the pressure-sensitive adhesive layer.
  • FIG. 3 is an explanatory view showing an example of steps in accordance with the method for manufacturing a chip of a thermoelectric conversion material of the present invention in the order of steps
  • FIG. 3A is a cross-sectional view after a sacrificial layer 12 is formed on a substrate 11.
  • (B) is a cross-sectional view after forming a patterned thermoelectric conversion material chip 13 on the sacrificial layer 12 and then performing an annealing process, and
  • (c) shows a solder 13 described later on the thermoelectric conversion material chip 13.
  • FIG. 4E is a cross-sectional view showing a mode in which the chip 13 of the thermoelectric conversion material is peeled off from the sacrificial layer 12 and the chip 13 of the thermoelectric conversion material is transferred to the adhesive layer 21b, and FIG. ) Of the chip 13 of the thermoelectric conversion material obtained in FIG.
  • thermoelectric conversion material 11 is a cross-sectional view after a solder receiving layer 14b described later is formed on the surface on the side opposite to the surface on the side of the adhesive layer, similarly to (c), and (g) shows a reduction in the adhesive force of the adhesive layer 21b.
  • the chip 13 of the thermoelectric conversion material having the solder receiving layers 14a and 14b on both sides of the chip 13 of the thermoelectric conversion material obtained in (f) is used as the chip (piece) 13 'of the thermoelectric conversion material, and the adhesive layer It is a cross-sectional schematic diagram which shows the aspect peeled from 21b.
  • the method for producing a chip of thermoelectric conversion material of the present invention preferably includes a step of transferring a chip of thermoelectric conversion material.
  • an adhesive sheet that is, an adhesive comprising a pressure-sensitive adhesive composition on a substrate
  • a sheet material having a layer hereinafter, may be referred to as a “dicing tape”.
  • the pressure-sensitive adhesive composition contains a pressure-sensitive adhesive described below as a main component.
  • the step of transferring the chip of the thermoelectric conversion material is a step of, after annealing the chip of the thermoelectric conversion material, transferring the chip of the thermoelectric conversion material on the sacrificial layer onto the adhesive layer, for example, as shown in FIG.
  • FIG. 3 after the adhesive layer 21b on the base material 21a constituting the adhesive sheet 21 and the chip 13 of the thermoelectric conversion material are adhered with the solder receiving layer 14a to be described later interposed therebetween, in FIG. In this step, the chip 13 of the conversion material is peeled off, and the chip 13 of the thermoelectric conversion material is transferred to the adhesive layer 21b via the solder receiving layer 14a.
  • the method of bonding the chip of the thermoelectric conversion material to the pressure-sensitive adhesive layer is not particularly limited, and is performed by a known method.
  • the method of peeling the sacrificial layer is not particularly limited as long as the chip of the thermoelectric conversion material after the annealing is peeled from the peeling layer while maintaining the shape and characteristics, and is performed by a known method.
  • the pressure-sensitive adhesive layer used in the present invention has the following conditions (s) from the viewpoint of transferring the chip of the thermoelectric conversion material, and from the viewpoint of easily peeling the chip of the thermoelectric conversion material after transfer as the chip of the thermoelectric conversion material. , (T), and (u).
  • (S) The adhesive force of the pressure-sensitive adhesive layer to the mirror surface of the silicon wafer before the adhesive force reduction treatment is 1.0 N / 25 mm or more.
  • T The adhesion of the pressure-sensitive adhesive layer to the mirror surface of the silicon wafer after the adhesion force reduction treatment. The force is less than 1.0 N / 25 mm (u).
  • the ratio of the thickness of the pressure-sensitive adhesive layer to the thickness of the thermoelectric conversion material chip is 5/100 to 70/100.
  • the adhesive force is an adhesive force measured under the conditions of a peeling speed of 300 mm / min and a peeling angle of 180 degrees in accordance with the method specified in JISZ-0237.
  • the adhesive strength of the adhesive layer to the mirror surface of the silicon wafer before the adhesive strength reduction treatment is more preferably 1.5 to 50 N / 25 mm, and more preferably 2.0 to 20 N / 25 mm. Is more preferable.
  • the adhesive force of the pressure-sensitive adhesive layer is in the above range, the chip of the thermoelectric conversion material can be easily peeled from the sacrificial layer, and the chip of the thermoelectric conversion material can be easily transferred to the pressure-sensitive adhesive layer.
  • the adhesive strength exceeds 50 N / 25 mm, the adhesive strength of the adhesive layer may not be able to be less than 1.0 N / 25 mm.
  • the adhesive strength of the adhesive layer to the mirror surface of the silicon wafer after the adhesive strength reduction treatment is more preferably 0.01 to 0.20 N / 25 mm, and more preferably 0.05 to 0 N / 25 mm. .15 N / 25 mm.
  • the ratio of the thickness of the pressure-sensitive adhesive layer to the thickness of the chip of the thermoelectric conversion material is more preferably from 10/100 to 30/100, and is preferably from 15/100 to 25/100. Is more preferable.
  • the ratio of the thickness of the pressure-sensitive adhesive layer to the thickness of the chip of the thermoelectric conversion material is in the above range, and the pressure-sensitive adhesive strength of the pressure-sensitive adhesive layer to the mirror surface of the silicon wafer after the step of reducing the adhesive force is (t).
  • the pressure-sensitive adhesive layer satisfying the above (s), (t) and (u) may be composed of a known pressure-sensitive adhesive, and is not particularly limited, but includes, for example, rubber-based, acrylic-based, and silicone-based pressure-sensitive adhesives. And a thermoplastic elastomer such as a styrene-based elastomer or an olefin-based elastomer. Among these, an acrylic pressure-sensitive adhesive is preferably used.
  • the acrylic pressure-sensitive adhesive may be a homopolymer of an acrylate compound or a copolymer of an acrylate compound and a comonomer.
  • the acrylate compound include methyl acrylate, ethyl acrylate, butyl acrylate and 2-ethylhexyl acrylate.
  • the comonomer composing the acrylic copolymer include vinyl acetate, acrylonitrile, acrylamide, styrene, methyl (meth) acrylate, (meth) acrylic acid, hydroxyethyl methacrylate, dimethylaminoethyl methacrylate, glycidyl methacrylate, and anhydride. Maleic acid and the like are included.
  • the pressure-sensitive adhesive layer is, from the viewpoint of process simplicity, an energy-ray-curable pressure-sensitive adhesive that reduces the adhesive force by energy rays, a heat-curable pressure-sensitive adhesive that reduces the adhesive force by heating, or a heat-foamable adhesive. It is preferable to include an agent. Further, in the energy ray-curable pressure-sensitive adhesive, an ultraviolet-curable pressure-sensitive adhesive is more preferable.
  • the ultraviolet-curable pressure-sensitive adhesive includes a pressure-sensitive adhesive such as the acrylic pressure-sensitive adhesive and a photopolymerization initiator
  • the heat-curable pressure-sensitive adhesive includes a pressure-sensitive adhesive such as the acrylic pressure-sensitive adhesive and a thermal polymerization initiator. If necessary, any of the pressure-sensitive adhesives further contains a curable compound (a component having a carbon-carbon double bond) and a crosslinking agent.
  • the photopolymerization initiator may be any compound that can be cleaved by irradiation with ultraviolet rays to generate a radical.
  • benzoin alkyl ethers such as benzoin methyl ether, benzoin isopropyl ether, and benzoin isobutyl ether; benzyl, benzoin, and benzophenone And aromatic ketones such as benzyl dimethyl ketal.
  • the thermal polymerization initiator is an organic peroxide derivative, an azo-based polymerization initiator, or the like, but is preferably an organic peroxide derivative because nitrogen is not generated during heating.
  • organic peroxide derivative include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, diacyl peroxide and the like.
  • the curable compound may be any monomer, oligomer or polymer having a carbon-carbon double bond in the molecule and curable by radical polymerization.
  • examples of such curable compounds include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, tetraethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neo
  • esters of (meth) acrylic acid and polyhydric alcohols such as pentyl glycol di (meth) acrylate and dipentaerythritol hexa (meth) acrylate.
  • the pressure-sensitive adhesive is an ultraviolet-curable polymer having a carbon-carbon double bond in a side chain, a curable compound may not necessarily be added.
  • the content of the curable compound is preferably from 5 to 900 parts by mass, more preferably from 20 to 200 parts by mass, per 100 parts by mass of the pressure-sensitive adhesive.
  • the content of the curable compound is within the above range, the adjustment of the adhesive strength becomes sufficient, and the storage stability can be maintained without too high sensitivity to heat or light.
  • crosslinking agent examples include epoxy compounds such as pentaerythritol polyglycidyl ether; and isocyanate compounds such as tetramethylene diisocyanate, hexamethylene diisocyanate, and polyisocyanate.
  • any pressure-sensitive adhesive which is easily expanded and peeled off by the action of a foaming agent or an expanding agent can be used without particular limitation, and examples thereof include a heat-expandable microsphere-containing pressure-sensitive adhesive.
  • a heat-expandable microsphere-containing pressure-sensitive adhesive When the temperature reaches a predetermined temperature, the heat-expandable microspheres contained in the pressure-sensitive adhesive expand, and the pressure-sensitive adhesive surface is deformed into an uneven shape, whereby the pressure-sensitive adhesive strength is significantly reduced.
  • the heat-expandable microspheres having such a function include Microsphere (registered trademark, manufactured by Matsumoto Yushi-Seiyaku Co., Ltd.).
  • the glass transition temperature (Tg) of the pressure-sensitive adhesive layer is preferably from -50 to 30 ° C, more preferably from -25 to 30 ° C.
  • the Tg of the pressure-sensitive adhesive layer is a temperature at which the loss tangent (tan ⁇ ) has a maximum value in a range of ⁇ 50 to 50 ° C. in a dynamic viscoelasticity measurement at a frequency of 11 Hz of a sample on which the pressure-sensitive adhesive layer is laminated. Point to.
  • the pressure-sensitive adhesive layer is an energy-ray-curable pressure-sensitive adhesive, it refers to a glass transition temperature before the pressure-sensitive adhesive layer is cured by irradiation with energy rays.
  • the glass transition temperature of the pressure-sensitive adhesive layer regulates the types and polymerization ratios of the monomers constituting the above-mentioned acrylic pressure-sensitive adhesive, and is optionally added. It can be controlled by estimating the effect of an ultraviolet curable compound or a crosslinking agent.
  • tackifier eg, a rosin derivative resin, a polyterpene resin, a petroleum resin, an oil-soluble phenol resin, and the like
  • thickener e.g., a rosin derivative resin, a polyterpene resin, a petroleum resin, an oil-soluble phenol resin, and the like
  • plasticizer e.g., a plasticizer, if necessary.
  • the adhesive in the chip transfer step of the thermoelectric conversion material, the transfer of the chip of the thermoelectric conversion material can be easily performed, and in the chip separation step of the thermoelectric conversion material described later, energy such as ultraviolet light and heat is used.
  • energy such as ultraviolet light and heat is used.
  • the thickness of the pressure-sensitive adhesive layer preferably satisfies the condition (u) according to the thickness of the chip of the thermoelectric conversion material. Usually, it is 3 to 100 ⁇ m, preferably 5 to 80 ⁇ m.
  • polyethylene films such as low-density polyethylene (LDPE) film, linear low-density polyethylene (LLDPE) film, high-density polyethylene (HDPE) film, polypropylene film, ethylene- Polyolefin films such as propylene copolymer film, polybutene film, polybutadiene film, polymethylpentene film, ethylene-norbornene copolymer film, norbornene resin film; ethylene-vinyl acetate copolymer film, ethylene- (meth) acrylic acid Ethylene copolymer films such as copolymer films and ethylene- (meth) acrylate copolymer films; and polyvinyl chloride films such as polyvinyl chloride films and vinyl chloride copolymer films.
  • LDPE low-density polyethylene
  • LLDPE linear low-density polyethylene
  • HDPE high-density polyethylene
  • polypropylene film ethylene- Polyolefin films such as propylene
  • polyethylene terephthalate film a polyester film such as polyethylene terephthalate and polybutylene terephthalate film; polyurethane film; polyimide film; polystyrene films; polycarbonate films; fluororesin films and the like. Modified films such as crosslinked films and ionomer films are also used. Further, a laminated film in which a plurality of the above films are laminated may be used.
  • (meth) acrylic acid in this specification means both acrylic acid and methacrylic acid. The same applies to other similar terms.
  • the substrate is a laminated film
  • a polyolefin-based film is preferable, and a polyethylene film, a polypropylene film and an ethylene-propylene copolymer film are particularly preferable, and an ethylene-propylene copolymer film is more preferable.
  • these resin films it is easy to satisfy the above-mentioned physical properties.
  • the above-mentioned physical properties are satisfied by adjusting the copolymerization ratio of an ethylene monomer and a propylene monomer. easy.
  • these resin films are preferable from the viewpoint of work sticking property and chip peeling property.
  • one or both surfaces may be subjected to a surface treatment such as an oxidation method or a roughening method, or a primer treatment.
  • a surface treatment such as an oxidation method or a roughening method, or a primer treatment.
  • the oxidation method include corona discharge treatment, plasma discharge treatment, chromium oxidation treatment (wet method), flame treatment, hot air treatment, ozone, ultraviolet irradiation treatment, and the like.
  • a thermal spraying method is a thermal spraying method.
  • the base material may contain various additives such as a colorant, a flame retardant, a plasticizer, an antistatic agent, a lubricant, and a filler in the resin film.
  • the thickness of the substrate is not particularly limited, but is preferably 20 to 450 ⁇ m, more preferably 25 to 400 ⁇ m, and further preferably 50 to 350 ⁇ m.
  • thermoelectric conversion material of the present invention preferably includes a step of chipping thermoelectric conversion material.
  • the adhesive force of the pressure-sensitive adhesive layer is reduced, the chip of the thermoelectric conversion material transferred in the step (D-1) is peeled from the pressure-sensitive adhesive layer, and the chip of the thermoelectric conversion material is removed.
  • the adhesive force of the pressure-sensitive adhesive layer is reduced, and the chip 13 of the thermoelectric conversion material having the solder receiving layers 14a and 14b on both sides is reduced from the pressure-sensitive adhesive layer 21b to the solder receiving layer.
  • the chip (individual piece) 13 ′ of the thermoelectric conversion material is obtained by interposing and peeling the film 14 a.
  • the energy rays include ionizing radiation, that is, ultraviolet rays, electron beams, X-rays, and the like. Among these, ultraviolet rays are preferred from the viewpoints of cost, safety, and easy introduction of equipment.
  • near ultraviolet rays including ultraviolet rays having a wavelength of about 200 to 380 nm from the viewpoint of easy handling.
  • the amount may be appropriately selected depending on the thickness of the type and pressure-sensitive adhesive layer of the energy ray-curable component contained in the pressure-sensitive adhesive composition is generally 50 ⁇ 500mJ / cm 2 approximately, 100 ⁇ 450 mJ / cm 2 is preferable, and 200 to 400 mJ / cm 2 is more preferable.
  • the ultraviolet illumination is usually 50 ⁇ 500mW / cm 2 or so, preferably 100 ⁇ 450mW / cm 2, more preferably 200 ⁇ 400mW / cm 2.
  • the ultraviolet light source is not particularly limited, and for example, a high-pressure mercury lamp, a metal halide lamp, a UV-LED or the like is used.
  • the acceleration voltage may be appropriately selected depending on the type of the energy ray-curable component contained in the pressure-sensitive adhesive composition and the thickness of the pressure-sensitive adhesive layer.
  • the voltage is preferably about 10 to 1000 kV.
  • the irradiation dose may be set in a range where the pressure-sensitive adhesive is appropriately cured, and is usually selected in a range of 10 to 1000 krad.
  • the electron beam source is not particularly limited.
  • various electron beam accelerators such as Cockloft-Walton type, Van degraft type, Resonant transformer type, Insulated core transformer type, or linear type, Dynamitron type, high frequency type, etc. Can be used.
  • the method of peeling the chip of the thermoelectric conversion material from the pressure-sensitive adhesive layer is not particularly limited, and can be performed by a known method.
  • solder receiving layer forming step In the present invention, from the viewpoint of improving the bonding strength between the obtained thermoelectric conversion material chip and the solder material layer on the electrodes, the adhesive on the thermoelectric conversion material chip after the annealing treatment and / or the thermoelectric conversion material chip In order to provide the solder receiving layer on the surface opposite to the surface after the transfer to the layer, it is preferable to further include a solder receiving layer forming step.
  • the solder receiving layer forming step for example, the solder receiving layer 14a is formed on the chip 13 of the thermoelectric conversion material in FIG. 3C, or the solder receiving layer 14b is formed on the chip 13 of the thermoelectric conversion material in FIG. Is a step of forming
  • the solder receiving layer preferably contains a metal material.
  • the metal material is preferably at least one selected from gold, silver, rhodium, platinum, chromium, palladium, tin, and alloys containing any of these metal materials.
  • gold, silver or a two-layer structure of tin and gold is more preferable, and silver is further preferable from the viewpoint of material cost, high thermal conductivity, and bonding stability.
  • the solder receiving layer may be formed using a paste material containing a solvent and a resin component in addition to the metal material. When a paste material is used, it is preferable to remove the solvent and the resin component by baking or the like as described later. As the paste material, silver paste and aluminum paste are preferable.
  • a metal resinate material can be used for the solder receiving layer.
  • the thickness of the solder receiving layer is preferably from 10 nm to 50 ⁇ m, more preferably from 50 nm to 16 ⁇ m, further preferably from 200 nm to 4 ⁇ m, particularly preferably from 500 nm to 3 ⁇ m.
  • the thickness of the solder receiving layer is within this range, the adhesion between the thermoelectric conversion material including the resin and the surface of the chip and the surface of the solder material layer on the electrode side are excellent, and a highly reliable bonding is achieved. can get.
  • the thermal conductivity as well as the electrical conductivity can be maintained high, the thermoelectric performance of the thermoelectric conversion module does not decrease and is maintained as a result.
  • the solder receiving layer may be formed as a single layer of the metal material as it is, or may be used as a single layer, or two or more metal materials may be laminated and used as a multilayer.
  • a film may be formed as a composition containing a metal material in a solvent, a resin, or the like.
  • the resin component including the solvent and the like may be removed by baking or the like. preferable.
  • the formation of the solder receiving layer is performed using the above-described metal material.
  • a method of forming the solder receiving layer as a pattern after providing a solder receiving layer in which a pattern is not formed on a chip of a thermoelectric conversion material, a known physical treatment or chemical treatment mainly using a photolithography method, Or a method of processing them into a predetermined pattern shape by using them in combination, or a method of directly forming a pattern of a solder receiving layer by a screen printing method, a stencil printing method, an ink jet method, or the like.
  • PVD physical vapor deposition
  • CVD thermal CVD, atomic layer deposition (ALD)
  • ALD atomic layer deposition
  • Vacuum film forming method such as chemical vapor deposition method
  • wet process such as various coating such as dip coating method, spin coating method, spray coating method, gravure coating method, die coating method, doctor blade method and electrodeposition method
  • silver salt method an electrolytic plating method, an electroless plating method, and lamination of a metal foil, which are appropriately selected according to the material of the solder receiving layer.
  • solder receiving layer is required to have high electrical conductivity and high thermal conductivity from the viewpoint of maintaining thermoelectric performance, a screen printing method, a stencil printing method, an electrolytic plating method, an electroless plating method, a vacuum forming method, or the like. It is preferable to use a solder receiving layer formed by a film method.
  • thermoelectric conversion material does not have a joint with the electrode and is annealed at the optimum annealing temperature with respect to the thermoelectric semiconductor material constituting the thermoelectric conversion material, the electric resistance between the thermoelectric conversion material and the electrode is reduced. It does not cause problems such as increase and decrease in thermoelectric performance.
  • thermoelectric conversion module The method for manufacturing a thermoelectric conversion module according to the present invention is a method for manufacturing a thermoelectric conversion module in which a plurality of thermoelectric conversion material chips obtained by the above-described method for manufacturing thermoelectric conversion material chips are combined.
  • thermoelectric conversion module is configured such that a P-type thermoelectric conversion material chip and an N-type thermoelectric conversion material chip are interposed with electrodes so as to form a ⁇ -type or in-plane type thermoelectric conversion module. It is preferable to mount (arrange) and manufacture such that they are connected to each other.
  • thermoelectric conversion module For example, a pair of electrodes separated from each other are provided on a substrate, a chip of a P-type thermoelectric conversion material is placed on the minus electrode, and an N is placed on the other electrode. Similarly, the thermoelectric conversion material chips are provided separately from each other, and the upper surfaces of both thermoelectric conversion material chips are electrically connected in series to the electrodes on the opposing substrate. From the viewpoint of efficiently obtaining high thermoelectric performance, a plurality of pairs of a chip of a P-type thermoelectric conversion material and a chip of an N-type thermoelectric conversion material interposed between electrodes of an opposing substrate are electrically connected in series (described later). 4 (g)).
  • thermoelectric conversion module obtained by the method of manufacturing a chip of a thermoelectric conversion material of the present invention, in which a plurality of chips of the thermoelectric conversion material are combined, the following steps (I) to (VI) are exemplified.
  • thermoelectric conversion material chip mounted in the step (IV) is connected to the first electrode with the bonding material layer 1 obtained in the step (III) interposed therebetween. Joining; (VI) bonding the other surface of the chip of the thermoelectric conversion material after the step (V) and the second electrode obtained in the step (II) with the bonding material layer 2 interposed therebetween; Process.
  • thermoelectric conversion module obtained by the method for manufacturing a chip of the thermoelectric conversion material of the present invention
  • a plurality of chips of the thermoelectric conversion material on which the solder receiving layer is formed is formed, as an example, It is preferable to include the following steps (XI) to (XVI).
  • thermoelectric conversion material chip having a solder receiving layer on the solder material layer obtained in the step (XIII) placing one surface of the thermoelectric conversion material chip having a solder receiving layer on the solder material layer obtained in the step (XIII), (XV) One side of the thermoelectric conversion material chip having the solder receiving layer placed in the step (XIV), which has the solder receiving layer, is interposed with the solder material layer obtained in the step (XIII).
  • XVI the solder receiving layer on the other surface of the chip of the thermoelectric conversion material after the step (XV), and the second step obtained in the step (XII). A step of joining the electrodes with a solder material layer.
  • thermoelectric conversion module using a chip of a thermoelectric conversion material obtained by the method of manufacturing a chip of a thermoelectric conversion material of the present invention
  • a method of manufacturing a thermoelectric conversion module using a chip of a thermoelectric conversion material obtained by the method of manufacturing a chip of a thermoelectric conversion material of the present invention will be described with reference to the drawings.
  • FIG. 4 is an explanatory view showing an example of a process according to a method of manufacturing a thermoelectric conversion module using a chip of a thermoelectric conversion material obtained by the method of manufacturing a chip of a thermoelectric conversion material of the present invention
  • FIG. It is sectional drawing of the chip 13p of the P-type thermoelectric conversion material which has the solder receiving layers 14a and 14b on both surfaces, and the chip 13n of the N-type thermoelectric conversion material obtained by the manufacturing method of the chip of the thermoelectric conversion material mentioned above, (b) () Is a cross-sectional view after the electrode 16 and the solder material layer 17 are formed on the resin film 15, and (c) shows the solder material layer 17 on the electrode 16 on the resin film 15 obtained in (b).
  • FIG. 3 is a cross-sectional view after bonding the electrode 16 with the electrode 16.
  • the electrode forming step is a step of forming a first electrode on a first resin film in, for example, the step (I) of the method for manufacturing a thermoelectric conversion module of the present invention. In the step (II) or the like, this is a step of forming a second electrode on the second resin film.
  • a metal layer is formed on the resin film 15 and Is processed into a predetermined pattern to form the electrode 16.
  • thermoelectric conversion module of the present invention it is preferable to use a first resin film and a second resin film which do not affect the decrease in the electrical conductivity of the thermoelectric conversion material and the increase in the thermal conductivity.
  • a first resin film and a second resin film which do not affect the decrease in the electrical conductivity of the thermoelectric conversion material and the increase in the thermal conductivity.
  • the substrate of the thermoelectric conversion material can maintain the performance of the thermoelectric conversion material without heat deformation, and has excellent heat resistance and dimensional stability.
  • a polyimide film, a polyamide film, a polyetherimide film, a polyaramid film, and a polyamideimide film are each independently preferable, and a polyimide film is particularly preferable from the viewpoint of high versatility.
  • the thicknesses of the first resin film and the second resin film are each independently preferably 1 to 1000 ⁇ m, more preferably 5 to 500 ⁇ m, and more preferably 10 to 100 ⁇ m from the viewpoint of flexibility, heat resistance and dimensional stability. Is more preferred.
  • the first resin film and the second resin film preferably have a 5% weight loss temperature measured by thermogravimetric analysis of 300 ° C. or more, more preferably 400 ° C. or more.
  • the heating dimensional change measured at 200 ° C. in accordance with JIS K7133 (1999) is preferably 0.5% or less, more preferably 0.3% or less.
  • the linear expansion coefficient measured in accordance with JIS K7197 (2012) is 0.1 ppm ⁇ ° C. -1 to 50 ppm ⁇ ° C. -1 and 0.1 ppm ⁇ ° C. -1 to 30 ppm ⁇ ° C. -1 Is more preferred.
  • Electrode As the metal material of the first electrode and the second electrode of the thermoelectric conversion module used in the present invention, copper, gold, nickel, aluminum, rhodium, platinum, chromium, palladium, stainless steel, molybdenum or any one of these metals And the like.
  • the thickness of the electrode layer is preferably 10 nm to 200 ⁇ m, more preferably 30 nm to 150 ⁇ m, and still more preferably 50 nm to 120 ⁇ m. When the thickness of the electrode layer is within the above range, the electric conductivity is high, the resistance is low, and sufficient strength as an electrode is obtained.
  • the electrodes are formed using the above-described metal material.
  • a method of forming an electrode after providing an electrode on which a pattern is not formed on a resin film, a predetermined physical or chemical treatment mainly using a photolithography method, or a combination thereof, or the like, is used. Or a method of directly forming an electrode pattern by a screen printing method, an ink jet method, or the like.
  • Examples of a method for forming an electrode on which no pattern is formed include PVD (physical vapor deposition) such as vacuum deposition, sputtering, and ion plating, or CVD (chemical vapor deposition) such as thermal CVD and atomic layer deposition (ALD).
  • Dry processes such as vapor phase epitaxy
  • various coatings such as dip coating, spin coating, spray coating, gravure coating, die coating, and doctor blade
  • wet processes such as electrodeposition, silver salt methods ,
  • a vacuum film forming method such as a vacuum evaporation method and a sputtering method, an electrolytic plating method, and an electroless plating method are preferable.
  • the pattern can be easily formed with a hard mask such as a metal mask interposed therebetween, depending on the size and dimensional accuracy requirements of the formed pattern.
  • the bonding material layer forming step is, for example, the step (III) or the like in the method for manufacturing a thermoelectric conversion module of the present invention, and is a step of forming the bonding material layer 1 on the first electrode. Also, for example, this is included in the step (VI) or the like, and is a step of forming the bonding material layer 2 on the second electrode. Specifically, for example, as shown in FIG. 4B, this is a step of forming a solder material layer 17 on the electrode 16, and the bonding material layer 1 and the bonding material layer 2 are connected to a chip of a thermoelectric conversion material. Used to join electrodes.
  • the bonding material examples include a solder material, a conductive adhesive, a sintered bonding agent, and the like, which are formed on the electrodes in this order as a solder material layer, a conductive adhesive layer, a sintered bonding agent layer, and the like.
  • conductive means that the electrical resistivity is less than 1 ⁇ 10 6 ⁇ ⁇ m.
  • solder material constituting the solder material layer a resin film, the heat-resistant temperature of the heat-resistant resin contained in the chip of the thermoelectric conversion material, and the like, and the conductivity and the heat conductivity may be considered, and may be appropriately selected.
  • Known materials such as alloys
  • the thickness of the solder material layer (after heating and cooling) is preferably 10 to 200 ⁇ m, more preferably 20 to 150 ⁇ m, further preferably 30 to 130 ⁇ m, and particularly preferably 40 to 120 ⁇ m. When the thickness of the solder material layer is in this range, it is easy to obtain the adhesion of the thermoelectric conversion material to the chip and the electrode.
  • solder material on the substrate As a method of applying the solder material on the substrate, a known method such as stencil printing, screen printing, and dispensing method can be used.
  • the heating temperature varies depending on the solder material, resin film, and the like used, but is usually at 150 to 280 ° C. for 3 to 20 minutes.
  • the conductive adhesive constituting the conductive adhesive layer is not particularly limited, and examples thereof include a conductive paste.
  • the conductive paste include a copper paste, a silver paste, and a nickel paste.
  • a binder an epoxy resin, an acrylic resin, a urethane resin, and the like are used.
  • a method of applying the conductive adhesive on the resin film a known method such as screen printing, dispensing method and the like can be mentioned.
  • the thickness of the conductive adhesive layer is preferably 10 to 200 ⁇ m, more preferably 20 to 150 ⁇ m, further preferably 30 to 130 ⁇ m, and particularly preferably 40 to 120 ⁇ m.
  • the sintering bonding agent constituting the sintering bonding agent layer is not particularly limited, and examples thereof include a sintering paste and the like.
  • the sintering paste is made of, for example, micron-sized metal powder and nano-sized metal particles, and is different from the conductive adhesive in that metal is directly bonded by sintering, and is an epoxy resin, an acrylic resin, a urethane.
  • a binder such as a resin may be included.
  • the sintering paste include a silver sintering paste and a copper sintering paste.
  • Known methods such as screen printing, stencil printing, and dispensing can be used as a method of applying the sintered bonding agent layer on the resin film.
  • the sintering conditions vary depending on the metal material used and the like, but are usually at 100 to 300 ° C. for 30 to 120 minutes.
  • Commercially available sintered bonding agents include, for example, sintering paste (manufactured by Kyocera Corporation, product name: CT2700R7S) and sintered metal bonding material (manufactured by Nihon Handa, product name: MAX102) as silver sintering paste. Can be used.
  • the thickness of the sintered bonding agent layer is preferably 10 to 200 ⁇ m, more preferably 20 to 150 ⁇ m, further preferably 30 to 130 ⁇ m, and particularly preferably 40 to 120 ⁇ m.
  • thermoelectric conversion material chip mounting step is, for example, the step (IV) or the like in the method of manufacturing a thermoelectric conversion module of the present invention, and the chip of the thermoelectric conversion material obtained by the method of manufacturing a chip of the thermoelectric conversion material Is a step of placing one surface of the resin film 15 on the bonding material layer 1 obtained in the step (III) or the like.
  • step (IV) the step of manufacturing a thermoelectric conversion module of the present invention
  • a chip 13p of a P-type thermoelectric conversion material having solder receiving layers 14a and 14b and an N-type thermoelectric conversion having solder receiving layers 14a and 14b This is a step of mounting the chips 13n of the material such that the surfaces of the respective solder receiving layers 14a are on the upper surface of the solder material layer 17 and the respective pairs are formed on the electrodes 16 (after the mounting (d And aspects of).
  • the arrangement of the chip of the P-type thermoelectric conversion material and the chip of the N-type thermoelectric conversion material may be such that the same type is combined depending on the application. For example, “... NPPN ", "... PNPP" ... "may be randomly combined.
  • thermoelectric conversion material From the viewpoint of obtaining theoretically high thermoelectric performance, it is preferable to arrange a plurality of pairs of chips of a P-type thermoelectric conversion material and chips of an N-type thermoelectric conversion material with electrodes interposed therebetween.
  • a known method is used.
  • thermoelectric conversion material chips are handled by the above-described chip mounter or the like, aligned with a camera or the like, and mounted. It is preferable that the chip of the thermoelectric conversion material is mounted by a chip mounter from the viewpoint of handling properties, mounting accuracy, and mass productivity.
  • the joining step is, for example, the step (V) or the like of the method for manufacturing a thermoelectric conversion module of the present invention, and the one surface of the chip of the thermoelectric conversion material placed in the step (IV) or the like is
  • This is a step of bonding to the first electrode with the bonding material layer 1 obtained in the step (III) or the like interposed therebetween.
  • the solder material layer 7 in FIG. This is a step of returning to room temperature after holding for a predetermined time.
  • thermoelectric conversion module of the present invention for example, the step (VI) or the like, and the other surface of the thermoelectric conversion material chip after the step (V) or the like;
  • the second electrode obtained in the above steps is joined with the joining material layer 2 interposed therebetween.
  • FIG. 4F the chip 13p of the P-type thermoelectric conversion material in FIG.
  • the step of bonding the surface of the upper solder receiving layer 14b and the surface of the solder receiving layer 14b on the chip 13n of the P-type thermoelectric conversion material to the electrode 16 on the resin film 15 with the respective solder material layers 17 interposed therebetween. is there.
  • FIG. 4 (g) shows an aspect (solder material layer 17 ') after heating and cooling the solder material layer 17 of (f).
  • the bonding conditions such as the heating temperature and the holding time are as described above.
  • FIG. 4E shows a state after the temperature of the solder material layer 17 is returned to room temperature (the thickness of the solder material layer 17 ′ is reduced by heating and cooling).
  • the bonding with the electrode is performed via the above-described bonding material, such as a solder material layer, a conductive adhesive layer, or a sintered bonding agent layer.
  • a solder material layer it is preferable to join with a solder receiving layer interposed from the viewpoint of improving the adhesion.
  • thermoelectric conversion module excluding the case where there is no electrode on any one of the pair of resin films
  • the combination of the respective bonding material layers used for the electrodes on the pair of resin films in the thermoelectric conversion module is not particularly limited. From the viewpoint of preventing mechanical deformation of the module and suppressing a decrease in thermoelectric performance, it is preferable to use a combination of solder material layers, conductive adhesive layers, or a sintered bonding agent layer.
  • thermoelectric conversion material of this invention According to the manufacturing method of the chip of the thermoelectric conversion material of this invention, and the manufacturing method of the thermoelectric conversion module using the said chip, the chip of a thermoelectric conversion material can be formed by a simple method, and the thermoelectric conversion module using the said chip
  • thermoelectric conversion material By manufacturing a thermoelectric conversion material, it is possible to prevent a decrease in thermoelectric performance due to the formation of an alloy layer due to diffusion between a thermoelectric conversion material and an electrode in a conventional annealing process, and to provide a thermoelectric semiconductor material constituting a chip of a thermoelectric conversion material.
  • the annealing can be performed at the optimum annealing temperature, a thermoelectric conversion module with improved thermoelectric performance can be manufactured.
  • thermoelectric conversion module The method for manufacturing a thermoelectric conversion module of the present invention is a method for manufacturing a thermoelectric conversion module in which a plurality of chips of a thermoelectric conversion material made of a thermoelectric semiconductor composition are combined, and (i) a step of forming a sacrificial layer on a substrate; (Ii) a step of forming a chip of the thermoelectric conversion material on the sacrificial layer obtained in the step (i), and (iii) annealing the chip of the thermoelectric conversion material obtained in the step (ii).
  • thermoelectric conversion module is a method for manufacturing a thermoelectric conversion module, which includes a step of bonding via a bonding material layer 2 or a step of bonding via a bonding material layer 3 the second B layer prepared in the step (v).
  • the thermoelectric conversion module is manufactured in the form of a chip of a thermoelectric conversion material obtained through the above-described steps (i), (ii), and (iii).
  • each of the steps (i), (ii) and (iii) is the same as the above-mentioned method of manufacturing a chip of a thermoelectric conversion material of the present invention, wherein the (A) sacrificial layer forming step, and (B) the thermoelectric conversion material These steps correspond to the chip forming step and the annealing step (C) in this order, and are exactly the same steps.
  • the substrate used, the sacrificial layer, the thin film of the thermoelectric semiconductor composition, and the preferable materials, thicknesses, forming methods, and the like constituting them are all the same as described above.
  • the step (v) is a step of preparing a second A layer having a second resin film and a second electrode in this order.
  • the step (viii) comprises the other surface of the chip of the thermoelectric conversion material obtained in the step (vii) and the second surface of the second A layer prepared in the step (v). It is preferable to join the electrodes with the above-mentioned electrodes with the joining material layer 2 interposed therebetween.
  • the thermoelectric conversion module obtained in the above steps corresponds to the ⁇ -type thermoelectric conversion module described above.
  • the step (v) is a step of preparing a second B layer having a second resin film and no electrodes.
  • the step (viii) the other surface of the chip of the thermoelectric conversion material obtained in the step (vii) is joined to the second B layer prepared in the step (v). It is preferable that the bonding step is performed with the material layer 3 interposed therebetween.
  • the thermoelectric conversion module obtained in the above step corresponds to the in-plane type thermoelectric conversion module described above.
  • thermoelectric conversion module in which a plurality of thermoelectric conversion material chips made of a thermoelectric semiconductor composition are combined, will be described with reference to the drawings.
  • FIG. 2 shows an example of an embodiment ( ⁇ -type thermoelectric conversion module) of an embodiment of a process according to a method of manufacturing a thermoelectric conversion module in which a plurality of thermoelectric conversion material chips made of a thermoelectric semiconductor composition are combined according to the present invention in the order of steps.
  • (a) is sectional drawing after forming the solder receiving layer mentioned later on one surface (upper surface) of the chip
  • (b) is an electrode and a solder material layer on a resin film.
  • FIG. 4C is a cross-sectional view after formation.
  • FIG. 5C shows an electrode on the resin film obtained in FIG. 5B with a solder material layer and the solder receiving layer of FIG.
  • FIG. 5 is a cross-sectional view after peeling off (lower surface).
  • E is a cross-sectional view after forming a solder receiving layer on the other surface (lower surface) of the thermoelectric conversion material chip on the resin film obtained in (d), and (f) is (b).
  • FIG. 7 is a cross-sectional view after bonding the electrode on the resin film obtained in the above to the other surface (lower surface) of the chip of the thermoelectric conversion material with a solder material layer and a solder receiving layer described later in FIG. .
  • the electrode forming step is a step of preparing a first layer having the first resin film and the first electrode in this order of (iv) in the method for manufacturing a thermoelectric conversion module of the present invention. This is a step of forming a first electrode thereon.
  • a second electrode is formed on the second resin film.
  • FIG. 2B for example, a step of forming a metal layer on the resin film 5 and processing them into a predetermined pattern to form the electrode 6 is shown.
  • thermoelectric conversion module in the method for manufacturing a thermoelectric conversion module of the present invention, a first resin film and a second resin film that do not affect the decrease in the electric conductivity of the thermoelectric conversion material and the increase in the heat conductivity are used.
  • the resin film used for the first resin film and the second resin film the same material as the above-described resin film can be used, and the thickness, 5% weight loss temperature measured by thermogravimetric analysis, at 200 ° C. The measured heating dimensional change rate, the coefficient of linear expansion in the plane direction, and the like are all the same.
  • Electrode As the metal material of the first electrode and the second electrode of the thermoelectric conversion module used in the present invention, The same metal material as the above-described electrode can be used, and the thickness of the electrode layer, the forming method, and the like are all the same.
  • the electrode bonding step 1 is the step (vi) of the method for manufacturing a thermoelectric conversion module of the present invention, and is performed on one side of the chip of the thermoelectric conversion material after the annealing treatment obtained in the step (iii). And joining the first electrode of the first layer prepared in the step (iv) with the joining material layer 1 interposed therebetween.
  • the electrode bonding step 1 for example, in FIG.
  • each of the solder material layer 7 on the electrode 6 of the resin film 5, the chip 3a of the P-type thermoelectric conversion material, and the chip 3b of the N-type thermoelectric conversion material The chip 3a of the P-type thermoelectric conversion material and the chip 3b of the N-type thermoelectric conversion material are adhered to the electrode 7 with the solder receiving layer 4 formed on one surface of the substrate, and the solder material layer 7 is heated to a predetermined temperature. After holding for a predetermined time, the temperature is returned to room temperature, so that the chip 3a of the P-type thermoelectric conversion material and the chip 3b of the N-type thermoelectric conversion material are joined to the electrode 7. The heating temperature and the holding time are as described later.
  • FIG. 2 (c ′) shows the state after the temperature of the solder material layer 7 is returned to room temperature (the solder material layer 7 ′ is solidified by heating and cooling, and its thickness is reduced).
  • the electrode bonding step 1 includes a bonding material layer 1 forming step.
  • the bonding material layer 1 forming step is a step of forming the bonding material layer 1 on the first electrode obtained in the step (iv) in the step (vi) of the method for manufacturing a thermoelectric conversion module of the present invention. .
  • the bonding material layer 1 forming step is, for example, a step of forming a solder material layer 7 on the electrode 6 in FIG.
  • the bonding material constituting the bonding material layer 1 the same material as the bonding material described above can be used, and examples thereof include a solder material, a conductive adhesive, and a sintered bonding agent. It is preferable that the conductive adhesive layer and the sintered bonding layer are formed on the electrode.
  • solder material constituting the solder material layer the same material as the solder material used for the above-described solder material layer can be used, and the thickness, application method, heating temperature, holding time, and the like of the solder material layer are all the same. .
  • the same material as the conductive adhesive used for the above-described conductive adhesive layer can be used, and the thickness of the conductive adhesive layer, a coating method, and the like. All the same.
  • the same material as the sintering bonding agent used for the above-described sintering bonding agent layer can be used. The same applies to the sintering temperature and the holding time.
  • solder material layer it is preferable that the bonding is performed with the above-mentioned solder receiving layer interposed from the viewpoint of improving the adhesion of the thermoelectric conversion material to the chip.
  • thermoelectric conversion module for example, when manufacturing the ⁇ -type thermoelectric conversion module and the in-plane type thermoelectric conversion module, the method further includes the annealing after the annealing treatment obtained in the step (iii). Forming a solder receiving layer on one surface of the thermoelectric conversion material chip.
  • the solder receiving layer forming step is a step of forming a solder receiving layer on the chip of the thermoelectric conversion material.
  • the chip 3a of the P-type thermoelectric conversion material and This is a step of forming the solder receiving layer 4 on one surface of the chip 3b of the N-type thermoelectric conversion material.
  • the solder receiving layer used in the present invention can be made of the same material as the metal material used for the solder receiving layer described above, and the thickness and the forming method of the solder receiving layer are all the same.
  • the chip peeling step is a step (vii) of the method for manufacturing a thermoelectric conversion module, and is a step of peeling the other surface of the chip of the thermoelectric conversion material after the step (vi) from the sacrificial layer.
  • the chip peeling step is, for example, a step of peeling the other surface of the chip 3a of the P-type thermoelectric conversion material and the chip 3b of the N-type thermoelectric conversion material from the sacrificial layer 2 in FIG.
  • There is no particular limitation on the method of peeling the thermoelectric conversion material as long as the method can peel all the chips of the thermoelectric conversion material from the sacrificial layer at once.
  • the electrode bonding step 2 is included in the step (viii) of the method for manufacturing a thermoelectric conversion module of the present invention, and includes the other surface of the chip of the thermoelectric conversion material obtained by peeling off in the step (vii). And bonding the second electrode of the second A layer prepared in the step (v) with the bonding material layer 2 interposed therebetween.
  • the electrode bonding step 2 for example, in FIG. 2F, the other surface of the chip 3a of the P-type thermoelectric conversion material and the chip 3b of the N-type thermoelectric conversion material, the solder receiving layer 4 and the solder material layer 7 are interposed. Then, this is a step of bonding the electrode 6 on the resin film 5.
  • the same material as that described in the electrode bonding step 1 can be used, and the bonding method is also the same. It is preferable that the connection with the electrode is made via the above-mentioned solder material layer, conductive adhesive layer, or sintered bonding agent layer.
  • the electrode bonding step 2 includes a bonding material layer 2 forming step.
  • the bonding material layer 2 forming step is, in the step (viii) of the method for manufacturing a thermoelectric conversion module of the present invention, a bonding material layer 2 formed on the second electrode of the layer 2A prepared in the step (v). Is a step of forming
  • the bonding material layer 2 can be made of the same material as the bonding material layer 1 described above, and all have the same formation method, thickness, and the like.
  • the other surface of the chip of the thermoelectric conversion material obtained by peeling in the step (vii) may be further applied. It is preferable to include a step of forming a solder receiving layer.
  • FIG. 2E shows a step of forming the solder receiving layer 4 on the other surface of the chip 3a made of the P-type thermoelectric conversion material and the chip 3b made of the N-type thermoelectric conversion material.
  • the resin film bonding step is included in the step (viii) of the method for producing a thermoelectric conversion module of the present invention, and includes the other surface of the chip of the thermoelectric conversion material obtained in the step (vii). And a step of bonding the second resin layer having the second resin film prepared in the step (v) and having no electrode, with the bonding material layer 3 interposed therebetween.
  • the second resin film is as described above.
  • the bonding with the 2B layer having the second resin film and no electrode uses the bonding material layer 3.
  • the joining material constituting the joining material layer 3 is preferably a resin material, and is formed on the resin film as the resin material layer.
  • the resin material preferably contains a polyolefin resin, an epoxy resin, or an acrylic resin. Further, it is preferable that the resin material has adhesiveness and low water vapor permeability.
  • having adhesiveness means that the resin material has adhesiveness, adhesiveness, and pressure-sensitive adhesiveness that can be adhered by pressure sensitivity at the initial stage of application.
  • the resin material layer can be formed by a known method.
  • the thickness of the resin material layer is preferably 1 to 100 ⁇ m, more preferably 3 to 50 ⁇ m, and still more preferably 5 to 30 ⁇ m.
  • thermoelectric conversion module (excluding the case where no electrode is provided on one of the pair of resin films) is not particularly limited, but is described above. As described above, from the viewpoint of preventing mechanical deformation of the thermoelectric conversion module and suppressing a decrease in thermoelectric performance, it is preferable to use a combination of solder material layers, conductive adhesive layers, or sintered bonding agent layers. .
  • thermoelectric conversion module Still another example of a method for manufacturing a thermoelectric conversion module using a chip obtained by the method for manufacturing a chip of a thermoelectric conversion material of the present invention includes the following method. Specifically, a plurality of chips of the thermoelectric conversion material are peeled from the sacrificial layer described above one by one to obtain a plurality of chips, and the plurality of chips are placed on predetermined electrodes on the resin film. This is a method of forming a thermoelectric conversion module by arranging one by one. As a method of arranging a plurality of chips of the thermoelectric conversion material on the electrodes, a known method such as handling each chip with a robot or the like, performing alignment with a microscope or the like, and arranging the chips can be used.
  • thermoelectric conversion material of this invention According to the manufacturing method of the chip of the thermoelectric conversion material of this invention, and the manufacturing method of the thermoelectric conversion module which combined the chip of the thermoelectric conversion material which consists of a thermoelectric semiconductor composition, the chip of a thermoelectric conversion material is formed by a simple method. In the obtained thermoelectric conversion module, it is possible to prevent a decrease in thermoelectric performance due to the formation of the alloy layer due to diffusion between the thermoelectric conversion material and the electrode in the conventional annealing process.
  • thermoelectric conversion material The thin films of the thermoelectric conversion materials of the test pieces prepared in Examples 1 to 5 and Comparative Example 1 were prepared according to the cross-cut test described in JIS K5600-5-6: 1999, as shown in the table of JIS K5600-5-6 below.
  • the peelability of the thermoelectric conversion material from the test piece of the present invention was evaluated by evaluating the adhesion based on the judgment of 1 (classification of test results) as a reference. (Excerpt from "Table 1 Classification of Test Results") Category 0: The edges of the cut are completely smooth, and there is no peeling of any grid. Category 1: Small peeling of the coating film at the intersection of cuts. Affected in the cross-cut portion will not clearly exceed 5%.
  • Category 2 The coating is peeled off along the edge of the cut and / or at the intersection. The cross-cut part is clearly affected by more than 5% but not more than 15%.
  • Classification 3 The coating is partially or completely peeled off along the edge of the cut, and / or various parts of the eyes are partially or completely peeled off. Affected in the cross cut portion is clearly more than 15% but not more than 35%.
  • Category 4 The coating film has partially or completely peeled off along the edge of the cut, and / or some eyes have been partially or completely peeled off. Affected in the crosscut portion will not clearly exceed 65%.
  • Category 5 Any peeling degree that cannot be classified in Class 4.
  • thermoelectric semiconductor composition preparation of thermoelectric semiconductor fine particles
  • P-type bismuth telluride Bi 0.4 Te 3 Sb 1.6 manufactured by Kojundo Chemical Laboratory, particle size: 180 ⁇ m
  • a planetary ball mill Premium line P, manufactured by Fritsch Japan KK
  • the particles were pulverized in a nitrogen gas atmosphere to produce thermoelectric semiconductor particles having an average particle size of 2.0 ⁇ m.
  • thermoelectric semiconductor particles obtained by the pulverization were subjected to particle size distribution measurement using a laser diffraction type particle size analyzer (manufactured by Malvern, Mastersizer 3000).
  • a laser diffraction type particle size analyzer manufactured by Malvern, Mastersizer 3000.
  • a polyamic acid poly (pyromellitic dianhydride, manufactured by Sigma-Ald
  • thermoelectric conversion material Polymethyl methyl methacrylate resin (PMMA) (Sigma-Aldrich) (Trade name: Polymethyl methacrylate) dissolved in toluene, and a 10% solids polymethyl methacrylate resin solution is spin-coated to a thickness of 1.0 ⁇ m after drying. did.
  • the coating solution prepared in the above (1) was applied on the sacrificial layer by screen printing with a metal mask interposed therebetween, and dried at a temperature of 120 ° C. for 10 minutes under an argon atmosphere, and a thickness of 50 ⁇ m was obtained. A thin film was formed.
  • Example 2 A test piece was produced in the same manner as in Example 1 except that N-type bismuth telluride Bi 2 Te 3 was used as the thermoelectric semiconductor material. The peelability between the thermoelectric conversion material and the sacrificial layer of the obtained test piece and the electric resistance value of the surface of the thermoelectric conversion material peeled off from the test piece which was in contact with the sacrificial layer were measured. Table 1 shows the results.
  • Example 3 In Example 1, except that a fluorine-based release agent (manufactured by Daikin, trade name: Optool HD-1100TH) as a release agent was applied as a sacrificial layer to a thickness of 0.1 ⁇ m on a glass substrate.
  • a test piece was produced in the same manner as in Example 1. The peelability between the thermoelectric conversion material and the sacrificial layer of the obtained test piece and the electric resistance value of the surface of the thermoelectric conversion material peeled off from the test piece which was in contact with the sacrificial layer were measured. Table 1 shows the results.
  • Example 4 A test piece was prepared in the same manner as in Example 3, except that N-type bismuth telluride Bi 2 Te 3 was used as the thermoelectric semiconductor material. The peelability between the thermoelectric conversion material and the sacrificial layer of the obtained test piece and the electric resistance value of the surface of the thermoelectric conversion material peeled off from the test piece which was in contact with the sacrificial layer were measured. Table 1 shows the results.
  • Example 5 (Example 5)
  • a polystyrene solution having a solid content of 10% in which polystyrene resin (PS) (manufactured by Sigma-Aldrich Co., Ltd., trade name: polystyrene) was dissolved in toluene was dried to a thickness of 1 by a spin coating method.
  • a test piece was prepared in the same manner as in Example 1, except that the film was formed to have a thickness of 0.0 ⁇ m.
  • the peelability between the thermoelectric conversion material and the sacrificial layer of the obtained test piece and the electric resistance value of the surface of the thermoelectric conversion material peeled off from the test piece which was in contact with the sacrificial layer were measured. Table 1 shows the results.
  • thermoelectric conversion material A test piece was prepared in the same manner as in Example 1 except that the sacrificial layer was not formed on the glass substrate.
  • the peelability between the thermoelectric conversion material and the sacrificial layer of the obtained test piece and the electric resistance value of the surface of the thermoelectric conversion material peeled off from the test piece which was in contact with the sacrificial layer were measured. Table 1 shows the results.
  • Example 1 using the PMMA resin as the sacrificial layer, the peelability was higher and a self-supporting film of the thermoelectric conversion material could be formed as compared with Comparative Example 1 in which the sacrificial layer was not provided (joining failure was visually confirmed). I understood that. In addition, it was found that even in Example 5 using the PS resin as the sacrificial layer, the releasability was high and a free-standing film could be formed. Furthermore, it was found that in Examples 3 and 4 using a fluorine-based release agent as the sacrificial layer, a free-standing film could be formed.
  • thermoelectric conversion material chips produced in Examples 6 to 11 to the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet, and evaluation of the peelability of the transferred thermoelectric conversion material chips from the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet.
  • the following method was used.
  • (A) Evaluation of transferability The number N of the chips of the thermoelectric conversion material having the solder receiving layer remaining on the sacrificial layer side after the transfer was counted, and the ratio (N / (P: transfer rate), the transferability of the chip of the thermoelectric conversion material with the solder receiving layer interposed to the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet was evaluated according to the following criteria.
  • Adhesive strength is weak and can be easily peeled off
  • Adhesive strength is slightly weak and can be peeled off
  • Adhesive strength is slightly strong and cannot be easily peeled off
  • Adhesive strength is not strong and cannot be peeled off
  • one of the samples was peeled at a peeling rate of 300 mm / min and a peeling angle in the same environment using a tensile tester (manufactured by Orientec, Tensilon) in accordance with the method specified in JIS Z-0237: 2009. Under the condition of 180 °, the adhesive strength of the adhesive layer of the adhesive sheet was measured.
  • the other sample was irradiated with ultraviolet light at 250 mW / cm 2 and an integrated light amount of 240 mJ / cm 2 by using a UV irradiator (electrodeless UV lamp system, model number: 1-LH10MKII-10, manufactured by Heraeus). Irradiation was performed, and the adhesive strength of the adhesive layer of the adhesive sheet was measured.
  • thermoelectric conversion material chips A polymethyl methyl methacrylate resin (PMMA) (trade name: polymethyl methacrylate, manufactured by Sigma-Aldrich Co., Ltd.) was dissolved in toluene as a sacrificial layer on a 0.7 mm thick soda lime glass substrate, and the solid content was 10%. Was formed by spin coating so that the thickness after drying was 6.0 ⁇ m.
  • a chip of a P-type thermoelectric conversion material is applied by a stencil printing method using a coating liquid (P) containing thermoelectric semiconductor fine particles described later on the sacrificial layer with a metal mask interposed therebetween.
  • PMMA polymethyl methyl methacrylate resin
  • a silver paste (manufactured by Mitsuboshi Belting Co., Ltd., product name: MDotEC264) was printed as a solder receiving layer on the surface of the chip (after the annealing treatment) of the obtained P-type thermoelectric conversion material by a screen printing method, and was heated at 50 ° C. for 10 minutes. Heated (thickness: 10 ⁇ m).
  • the silver paste is printed on the surface of the chip of the P-type thermoelectric material in contact with the sacrificial layer in the same manner as described above, and heated at 50 ° C. for 10 minutes to obtain a solder receiving layer (thickness: 10 ⁇ m).
  • a solder receiving layer thickness: 10 ⁇ m.
  • UV irradiator made by Heraeus Co., Ltd., electrodeless UV lamp system model number: 1-LH10MKII-10) to have an illuminance of 250 mW / cm 2 and an integrated light amount of 240 mJ / cm 2 Irradiated.
  • the chip of the P-type thermoelectric conversion material was peeled off from the adhesive layer on the dicing tape side to obtain a chip of the P-type thermoelectric conversion material having a solder receiving layer on both sides of the chip of the P-type thermoelectric conversion material.
  • thermoelectric semiconductor fine particles P-type bismuth telluride Bi 0.4 Te 3 Sb 1.6 (manufactured by Kojundo Chemical Laboratory, particle size: 180 ⁇ m), which is a bismuth-tellurium-based thermoelectric semiconductor material, was mixed with a planetary ball mill (Premium line P, manufactured by Fritsch Japan KK). Using -7), the particles were pulverized in a nitrogen gas atmosphere to produce thermoelectric semiconductor particles T1 having an average particle size of 2.0 ⁇ m. The thermoelectric semiconductor particles obtained by the pulverization were subjected to particle size distribution measurement using a laser diffraction type particle size analyzer (manufactured by Malvern, Mastersizer 3000).
  • thermoelectric semiconductor composition Coating liquid (P) 76.6 parts by mass of the obtained fine particles T1 of the P-type bismuth-tellurium-based thermoelectric semiconductor material, and a polyamic acid (poly (pyromellitic dianhydride-co-4, manufactured by Sigma-Aldrich Co., Ltd.) as a polyimide precursor as a heat-resistant resin , 4'-oxydianiline) amic acid solution, solvent: N-methylpyrrolidone, solid content: 15% by mass) 16.5 parts by mass, and ionic liquid N-butylpyridinium bromide 6.0 parts by mass, Then, a coating liquid (P) comprising a thermoelectric semiconductor composition in which 0.9 part by mass of a liquid obtained by mixing butyl acetate and N-methylpyrrolidone at a mass ratio of 8: 2 as a diluent was mixed and dispersed was prepared.
  • a coating liquid (P) comprising a thermoelectric semiconductor composition in which 0.9 part by mass of
  • Example 7 In Example 6, the dicing tape was changed to D-255 (manufactured by Lintec, thickness of the adhesive layer: 40 ⁇ m), and the thickness of the metal mask was changed so that the chip of the thermoelectric conversion material had the thickness shown in Table 2.
  • a chip made of the P-type thermoelectric conversion material of Example 7 was produced in the same manner as in Example 6, except for the above.
  • Example 8 In Example 6, the dicing tape was changed to D-485 (manufactured by Lintec, thickness of the adhesive layer: 40 ⁇ m), and the thickness of the metal mask was changed so that the chip of the thermoelectric conversion material had the thickness shown in Table 2.
  • a chip made of the P-type thermoelectric conversion material of Example 8 was produced in the same manner as in Example 6, except for the above.
  • Example 9 In Example 6, the dicing tape was changed to D-841 (manufactured by Lintec Corporation, adhesive layer thickness: 10 ⁇ m), and the thickness of the metal mask was changed so that the thermoelectric conversion material chips had the thickness shown in Table 2. A chip of the P-type thermoelectric conversion material of Example 9 was produced in the same manner as in Example 6, except for the above.
  • Example 10 (Example 10) In Example 6, the dicing tape was changed to D-841W (manufactured by Lintec Corporation, adhesive layer thickness: 20 ⁇ m), and the thickness of the metal mask was changed so that the chip of the thermoelectric conversion material had the thickness shown in Table 2. A chip made of the P-type thermoelectric conversion material of Example 10 was produced in the same manner as in Example 6, except for performing the above.
  • Example 11 The chip of the P-type thermoelectric conversion material of Example 11 was manufactured in the same manner as in Example 6, except that the dicing tape was changed to D-510T (manufactured by Lintec, adhesive layer thickness: 30 ⁇ m). Produced.
  • thermoelectric conversion module obtained by the manufacturing method of the present invention has a possibility of realizing thinness (small size and light weight) while having flexibility.
  • the thermoelectric conversion module using the chip obtained by the above-described method of manufacturing the chip of the thermoelectric conversion material is used for exhaust heat from various combustion furnaces such as factories, waste combustion furnaces, cement combustion furnaces, and exhaust gas heat from automobiles.
  • the present invention is applied to a power generation application that converts waste heat of electronic equipment into electricity.
  • a cooling application in the field of electronic equipment, for example, application to temperature control of various sensors such as a semiconductor device, such as a charge coupled device (CCD), a micro electro mechanical systems (MEMS), and a light receiving element can be considered.
  • a semiconductor device such as a charge coupled device (CCD), a micro electro mechanical systems (MEMS), and a light receiving element
  • MEMS micro electro mechanical systems
  • a light receiving element can be considered.
  • thermoelectric conversion material chip 3a P-type thermoelectric conversion material chip 3b: N-type thermoelectric conversion material chip 4: solder receiving layer 5: resin film 6: electrode 7: solder material layer ( At the time of formation) 7 ': Solder material layer (after joining)
  • Substrate 12 Sacrificial layer 13: Thermoelectric conversion material chip 13 ': Thermoelectric conversion material chip (piece) 13p: P-type thermoelectric conversion material chip 13n: N-type thermoelectric conversion material chips 14a, 14b: solder receiving layer 15: resin film 16: electrode 17: solder material layer (when formed) 17 ': Solder material layer (after joining)

Abstract

電極との接合部を有さない形態で熱電変換材料のアニール処理を可能にし、最適なアニール温度で熱電半導体材料のアニールが可能となる熱電変換材料のチップの製造方法及び該チップ(13)を用いた熱電変換モジュールの製造方法を提供するものであり、熱電半導体組成物からなる熱電変換材料のチップを製造する方法であって、(A)基板(1)上に犠牲層(2)を形成する工程、(B)前記(A)の工程で得られた前記犠牲層上に前記熱電変換材料のチップを形成する工程、(C)前記(B)の工程で得られた前記熱電変換材料のチップをアニール処理する工程、及び(D)前記(C)の工程で得られたアニール処理後の前記熱電変換材料のチップを剥離する工程、を含む、熱電変換材料のチップの製造方法、及びその製造方法により得られたチップを用いた熱電変換モジュールの製造方法である。

Description

熱電変換材料のチップの製造方法及びその製造方法により得られたチップを用いた熱電変換モジュールの製造方法
 本発明は、熱と電気との相互エネルギー変換を行う熱電変換材料のチップの製造方法及びその製造方法により得られたチップを用いた熱電変換モジュールの製造方法に関する。
 従来から、エネルギーの有効利用手段の一つとして、ゼーベック効果やペルチェ効果などの熱電効果を有する熱電変換モジュールにより、熱エネルギーと電気エネルギーとを直接相互変換するようにした装置がある。
 前記熱電変換モジュールとして、いわゆるπ型の熱電変換素子の使用が知られている。π型は、互いに離間するー対の電極を基板上に設け、例えば、―方の電極の上にP型熱電素子を、他方の電極の上にN型熱電素子を、同じく互いに離間して設け、両方の熱電材料の上面を対向する基板の電極に接続することで構成されている。また、いわゆるインプレーン型の熱電変換素子の使用が知られている。インプレーン型は、P型熱電素子とN型熱電素子とが基板の面内方向に交互に設けられ、例えば、両熱電素子間の接合部の下部を電極を介在し直列に接続することで構成されている。
 このような中、熱電変換モジュールの屈曲性向上、薄型化及び熱電性能の向上等の要求がある。これらの要求を満足するために、例えば、熱電変換モジュールに用いる基板として、ポリイミド等の樹脂基板が耐熱性及び屈曲性の観点から使用されている。また、N型の熱電半導体材料、P型の熱電半導体材料としては、熱電性能の観点から、ビスマステルライド系材料の薄膜が用いられ、前記電極としては、熱伝導率が高く、低抵抗のCu電極が用いられている。(特許文献1、2等)。
特開2010-192764公報 特開2012-204452公報
 しかしながら、前述したように、熱電変換モジュールの屈曲性向上、薄型化及び熱電性能の向上等の要求の中で、熱電半導体組成物から形成される熱電変換材料に含まれる熱電半導体材料として、ビスマステルライド系の材料を用い、電極としてCu電極、基板としてポリイミド等の樹脂を用いた場合、例えば、300℃等の高温度下で熱電変換モジュールをアニール処理する工程で、熱電変換材料に含まれる熱電半導体材料とCu電極との接合部において、拡散により合金層が形成され、結果的に電極に割れや剥がれが生じ、熱電変換材料とCu電極間の電気抵抗値が増大してしまい、熱電性能が低下する等の新たな問題が発生する懸念があることが、本発明者らの検討により見出された。
 これに加え、支持基板として前記ポリイミド等の耐熱性樹脂を用いた基板を使用する場合であっても、用いるP型熱電素子層やN型熱電素子層に含有する熱電半導体材料に依存する、最適なアニール温度(すなわち、熱電性能を最大限に発揮し得るプロセス処理温度)まで耐熱性を維持することができない場合があり、この理由で前記熱電半導体材料に対し最適なアニール処理ができないことがあった。
 本発明は、上記を鑑み、電極との接合部を有さない形態で熱電変換材料のアニール処理を可能にし、最適なアニール温度で熱電半導体材料のアニールが可能となる熱電変換材料のチップの製造方法及び該チップを用いた熱電変換モジュールの製造方法を提供することを課題とする。
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、基板上に特定の犠牲層を設け、該犠牲層上に熱電変換材料の所定のパターン層を形成した後、それらを高温度下でアニール処理を行い、その後、犠牲層から剥離することで、電極との接合部を有さない形態でアニール処理された複数の熱電変換材料のチップ(以下、「熱電変換材料の自立膜」又は単に「自立膜」ということがある。)を製造する方法、及び該チップを用いた熱電変換モジュールの製造方法、を見出し、本発明を完成した。
 すなわち、本発明は、以下の(1)~(30)を提供するものである。
(1)熱電半導体組成物からなる熱電変換材料のチップを製造する方法であって、(A)基板上に犠牲層を形成する工程、(B)前記(A)の工程で得られた前記犠牲層上に前記熱電変換材料のチップを形成する工程、(C)前記(B)の工程で得られた前記熱電変換材料のチップをアニール処理する工程、及び(D)前記(C)の工程で得られたアニール処理後の前記熱電変換材料のチップを剥離する工程を含む、熱電変換材料のチップの製造方法。(2)前記犠牲層が、樹脂、又は離型剤を含む、上記(1)に記載の熱電変換材料のチップの製造方法。
(3)前記樹脂が、熱可塑性樹脂である上記(2)に記載の熱電変換材料のチップの製造方法。
(4)前記熱可塑性樹脂が、ポリメタクリル酸メチル、又はポリスチレンである、上記(3)に記載の熱電変換材料のチップの製造方法。
(5)前記離型剤が、フッ素系離型剤、又はシリーコン系離型剤である上記(1)~(4)のいずれかに記載の熱電変換材料のチップの製造方法。
(6)前記犠牲層の厚さが、10nm~10μmである、上記(1)~(5)のいずれかに記載の熱電変換材料のチップの製造方法。
(7)前記基板が、ガラス、アルミナ及びシリコンからなる群から選ばれる1種である、上記(1)~(6)のいずれかに記載の熱電変換材料のチップの製造方法。
(8)前記熱電半導体組成物は熱電半導体材料を含んでおり、該熱電半導体材料がビスマス-テルル系熱電半導体材料、テルライド系熱電半導体材料、アンチモン-テルル系熱電半導体材料、又はビスマスセレナイド系熱電半導体材料である、上記(1)~(7)のいずれかに記載の熱電変換材料のチップの製造方法。
(9)前記熱電半導体組成物が、さらに、耐熱性樹脂、並びにイオン液体及び/又は無機イオン性化合物を含む、上記(8)に記載の熱電変換材料のチップの製造方法。
(10)前記耐熱性樹脂が、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、又はエポキシ樹脂である、上記(9)に記載の熱電変換材料のチップの製造方法。
(11)前記アニール処理の温度が、250~600℃で行われる、上記(1)~(10)のいずれかに記載の熱電変換材料のチップの製造方法。
(12)前記(D)の工程が、(D-1)前記(C)の工程で得られたアニール処理後の前記熱電変換材料のチップを、前記犠牲層から剥離し粘着シートの粘着剤層に転写する工程、及び(D-2)前記粘着剤層の粘着力を低下させ、前記(D-1)の工程で転写した熱電変換材料のチップを前記粘着剤層から剥離する工程、を含む、上記(1)~(11)に記載の熱電変換材料のチップの製造方法。
(13)前記(D-2)の工程における、前記粘着剤層の粘着力の低下を、熱、又はエネルギー線を照射することにより行う、上記(12)に記載の熱電変換材料のチップの製造方法。
(14)前記粘着剤層がエネルギー線硬化型粘着剤、加熱硬化型粘着剤、又は加熱発泡型粘着剤を含む、上記(12)又は(13)に記載の熱電変換材料のチップの製造方法。
(15)前記熱電変換材料のチップの形成がステンシル印刷法で行われる、上記(12)~(14)のいずれかに記載の熱電変換材料のチップの製造方法。
(16)前記粘着剤層の厚さと前記熱電変換材料のチップの厚さとの比が、5/100~70/100である、上記(12)~(15)のいずれかに記載の熱電変換材料のチップの製造方法。
(17)前記粘着剤層のシリコンウェハのミラー面に対する、粘着力低下処理前の粘着力が1.0N/25mm以上である、上記(12)~(16)のいずれかに記載の熱電変換材料のチップの製造方法。
(18)前記粘着剤層のシリコンウェハのミラー面に対する、粘着力低下処理後の粘着力が1.0N/25mm未満である、上記(12)~(17)のいずれか1項に記載の熱電変換材料のチップの製造方法。
(19)前記(C)の工程で得られたアニール処理後の熱電変換材料のチップ上及び/又は前記(D-2)の工程において転写された熱電変換材料のチップの面とは反対側の面上に、さらにハンダ受理層を形成する工程を含む、上記(12)~(18)のいずれか1項に記載の熱電変換材料チップの製造方法。
(20)前記ハンダ受理層が、金属材料からなる、上記(19)に記載の熱電変換材料のチップの製造方法。
(21)上記(1)~(20)のいずれかに記載の熱電変換材料のチップの製造方法により得られた熱電変換材料のチップを、複数組み合わせた熱電変換モジュールを製造する方法であって、
(I)第1の樹脂フィルム上に第1の電極を形成する工程、
(II)第2の樹脂フィルム上に第2の電極を形成する工程、
(III)前記(I)の工程で得られた前記第1の電極上に接合材料層1を形成する工程、
(IV)前記熱電変換材料のチップの一方の面を、前記(III)の工程で得られた前記接合材料層1上に載置する工程、
(V)前記(IV)の工程で載置した前記熱電変換材料のチップの一方の面を、前記(III)の工程で得られた前記接合材料層1を介在して前記第1の電極と接合する工程、及び
(VI)前記(V)の工程後の前記熱電変換材料のチップの他方の面と、前記(II)の工程で得られた前記第2の電極とを接合材料層2を介在して接合する工程、
を含む、熱電変換モジュールの製造方法。
(22)上記(19)又は(20)に記載の熱電変換材料のチップの製造方法により得られた熱電変換材料のチップを、複数組み合わせた熱電変換モジュールを製造する方法であって、
(XI)第1の樹脂フィルム上に第1の電極を形成する工程、
(XII)第2の樹脂フィルム上に第2の電極を形成する工程、
(XIII)前記(XI)の工程で得られた前記第1の電極上にハンダ材料層を形成する工程、
(XIV)前記熱電変換材料のチップのハンダ受理層を有する一方の面を、前記(XIII)の工程で得られた前記ハンダ材料層上に載置する工程、
(XV)前記(XIV)の工程で載置した前記熱電変換材料のチップのハンダ受理層を有する一方の面を、前記(XIII)の工程で得られた前記ハンダ材料層を介在して前記第1の電極と接合する工程、及び
(XVI)前記(XV)の工程後の前記熱電変換材料のチップの他方の面のハンダ受理層と、前記(XII)の工程で得られた前記第2の電極とをハンダ材料層を介在して接合する工程、
を含む、熱電変換モジュールの製造方法。
(23)熱電半導体組成物からなる熱電変換材料のチップを複数組み合わせた熱電変換モジュールを製造する方法であって、
(i)基板上に犠牲層を形成する工程、
(ii)前記(i)の工程で得られた前記犠牲層上に前記熱電変換材料のチップを形成する工程、
(iii)前記(ii)の工程で得られた前記熱電変換材料のチップをアニール処理する工程、(iv)第1の樹脂フィルムと第1の電極とをこの順に有する第1の層を準備する工程、
(v)第2の樹脂フィルムと第2の電極とをこの順に有する第2Aの層、又は第2の樹脂フィルムを有しかつ電極を有しない第2Bの層を準備する工程、
(vi)前記(iii)の工程で得られたアニール処理後の前記熱電変換材料のチップの一方の面と、前記(iv)の工程で準備した前記第1の層の電極とを接合材料層1を介在して接合する工程、
(vii)前記(vi)の工程後の前記熱電変換材料のチップの他方の面を前記犠牲層から剥離する工程、及び
(viii)前記(vii)の工程で剥離し得られた前記熱電変換材料のチップの他方の面と、前記(v)の工程で準備した前記第2Aの層の第2の電極とを接合材料層2を介在して接合する工程、
又は前記(v)の工程で準備した前記第2Bの層とを接合材料層3を介在して接合する工程、を含む、熱電変換モジュールの製造方法。
(24)前記(v)の工程が、第2の樹脂フィルムと第2の電極とをこの順に有する第2Aの層を準備する工程であり、
 前記(viii)の工程が、前記(vii)の工程で剥離し得られた前記熱電変換材料のチップの他方の面と、前記(v)の工程で準備した前記第2Aの層の第2の電極とを接合材料層2を介在して接合する工程である、上記(23)に記載の熱電変換モジュールの製造方法。
(25)前記(v)の工程が、第2の樹脂フィルムを有しかつ電極を有しない第2Bの層を準備する工程であり、
 前記(viii)の工程が、前記(vii)の工程で剥離し得られた前記熱電変換材料のチップの他方の面と、前記(v)の工程で準備した前記第2Bの層とを接合材料層3を介在して接合する工程である、上記(23)に記載の熱電変換モジュールの製造方法。
(26)前記接合材料層1及び2が、それぞれ独立に、ハンダ材料、導電性接着剤、又は焼結接合剤からなる、上記(23)~(25)のいずれかに記載の熱電変換モジュールの製造方法。
(27)前記接合材料層3が、樹脂材料からなる、上記(23)又は(25)に記載の熱電変換モジュールの製造方法。
(28)前記(iii)の工程で得られたアニール処理後の前記熱電変換材料のチップの一方の面にハンダ受理層を形成する工程及び前記(vii)の工程で剥離し得られた前記熱電変換材料のチップの他方の面にハンダ受理層を形成する工程を含む、上記(23)又は(24)に記載の熱電変換モジュールの製造方法。
(29)前記(iii)の工程で得られたアニール処理後の前記熱電変換材料のチップの一方の面にハンダ受理層を形成する工程を含む、上記(23)又は(25)に記載の熱電変換モジュールの製造方法。
(30)前記ハンダ受理層が、金属材料からなる、上記(28)又は(29)に記載の熱電変換モジュールの製造方法。
 本発明によれば、電極との接合部を有さない形態で熱電変換材料のアニール処理を可能にし、最適なアニール温度で熱電半導体材料のアニールが可能となる熱電変換材料のチップの製造方法及び該チップを用いた熱電変換モジュールの製造方法を提供することができる。
本発明の熱電変換材料のチップの製造方法の実施態様の一例を説明するための断面構成図である。 本発明の、熱電半導体組成物からなる熱電変換材料のチップを複数組み合わせた熱電変換モジュールの製造方法に従った工程の実施態様の一例を工程順に示す説明図である。 本発明の熱電変換材料のチップの製造方法に従った工程の一例を工程順に示す説明図である。 本発明の熱電変換材料のチップの製造方法により得られた熱電変換材料のチップを用いた熱電変換モジュールの製造方法に従った工程の一例を工程順に示す説明図である。 本発明に用いたパターン枠配置/剥離法による熱電変換材料のチップの製造方法の一例を工程順に示す説明図である。
[熱電変換材料のチップの製造方法] 
 本発明の熱電変換材料のチップの製造方法は、熱電半導体組成物からなる熱電変換材料のチップを製造する方法であって、(A)基板上に犠牲層を形成する工程、(B)前記(A)の工程で得られた前記犠牲層上に前記熱電変換材料のチップを形成する工程、(C)前記(B)の工程で得られた前記熱電変換材料のチップをアニール処理する工程、及び(D)前記(C)の工程で得られたアニール処理後の前記熱電変換材料のチップを剥離する工程を含むことを特徴とする。
 本発明の熱電変換材料のチップの製造方法においては、基板と熱電変換材料のチップとの間に犠牲層を設けることにより、高温度下でのアニール処理後の熱電変換材料のチップ、すなわち、熱電変換材料の自立膜を容易に得ることができる。
 なお、本発明において、犠牲層とは、アニール処理後に、消失していても、残存していてもよく、熱電変換材料のチップの特性に何ら影響を及ぼすことなく、前記犠牲層から熱電変換材料のチップを剥離する機能を有していればよい層と定義する。また、本発明において、熱電変換材料とは、熱電半導体材料の単一層(膜)で形成されるものでなく、後述するように、例えば、さらに、耐熱性樹脂、イオン液体等を含む熱電半導体組成物から形成されるものである。
 図1は、本発明の熱電変換材料のチップの製造方法の実施態様の一例を説明するための断面構成図である。基板1上に犠牲層2を形成し、次いで犠牲層2上に熱電変換材料3であるP型熱電変換材料のチップ3a及びN型熱電変換材料のチップ3bを形成し、その後、それらを所定の高温度下でアニール処理し、犠牲層2から剥離することにより、熱電変換材料のチップを熱電変換材料の自立膜として形成することができる。
(A)犠牲層形成工程
 犠牲層形成工程は基板上に犠牲層を形成する工程であり、例えば、図1においては、基板1上に樹脂、又は離型剤を塗布し、犠牲層2を形成する工程である。
(犠牲層)
 本発明の熱電変換材料のチップの製造方法においては、犠牲層を用いる。
 犠牲層は、熱電変換材料のチップを自立膜として形成するために用いられるものであり、基板と熱電変換材料のチップとの間に設けられ、アニール処理後に、熱電変換材料のチップを剥離する機能を有する。
 犠牲層を構成する材料としては、前述したように、アニール処理後に、消失していても、残存していてもよく、結果的に熱電変換材料のチップの特性に何ら影響を及ぼすことなく、熱電変換材料のチップを剥離できる機能を有していればよく、いずれの機能を兼ね備えている、樹脂、離型剤、が好ましい。
(樹脂)
 本発明に用いる犠牲層を構成する樹脂としては、特に制限されないが、熱可塑性樹脂や硬化性樹脂を用いることができる。熱可塑性樹脂としては、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸エチル、(メタ)アクリル酸メチル-(メタ)アクリル酸ブチル共重合体等のアクリル樹脂、ポリエチレン、ポリプロピレン、ポリメチルペンテン等のポリオレフィン系樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート等の熱可塑性ポリエステル樹脂、ポリスチレン、アクリロニトリル-スチレン共重合体、ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、塩化ビニル、ポリウレタン、ポリビニルアルコール、ポリビニルピロリドン、エチルセルロース等を挙げることができる。なお、ポリ(メタ)アクリル酸メチルとはポリアクリル酸メチル又はポリメタクリル酸メチルを意味するものとし、その他、(メタ)は同じ意味である。硬化性樹脂としては、熱硬化性樹脂や光硬化性樹脂が挙げられる。熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂等が挙げられる。光硬化性樹脂としては、光硬化性アクリル樹脂、光硬化性ウレタン樹脂、光硬化性エポキシ樹脂等が挙げられる。
 この中で、犠牲層上に熱電変換材料のチップが形成でき、高温度下でのアニール処理後においても、熱電変換材料のチップを自立膜として容易に剥離可能とする観点から、熱可塑性樹脂が好ましく、ポリメタクリル酸メチル、ポリスチレン、ポリビニルアルコール、ポリビニルピロリドン、エチルセルロースが好ましく、材料コスト、剥離性、熱電変換材料の特性維持の観点から、ポリメタクリル酸メチル、ポリスチレンがさらに好ましい。
 また、前記樹脂は、熱重量測定(TG)による後述するアニール処理温度における質量減少率が90%以上であることが好ましく、95%以上であることがより好ましく、99%以上であることがさらに好ましい。質量減少率が上記範囲であれば、後述するように、熱電変換材料のチップをアニール処理した場合でも、熱電変換材料のチップを剥離できる機能が失われることがない。
(離型剤)
 本発明に用いる犠牲層を構成する離型剤としては、特に制限されないが、フッ素系離型剤(フッ素原子含有化合物;例えば、ポリテトラフルオロエチレン等)、シリコーン系離型剤(シリコーン化合物;例えば、シリコーン樹脂、ポリオキシアルキレン単位を有するポリオルガノシロキサン等)、高級脂肪酸又はその塩(例えば、金属塩等)、高級脂肪酸エステル、高級脂肪酸アミド等が挙げられる。
 この中で、犠牲層上に熱電変換材料のチップが形成でき、高温度下でのアニール処理後においても、熱電変換材料のチップを自立膜として容易に剥離(離型)可能とする観点から、フッ素系離型剤、シリコーン系離型剤、好ましく、材料コスト、剥離性、熱電変換材料の特性の維持の観点から、フッ素系離型剤がさらに好ましい。
 犠牲層の厚さは、好ましくは10nm~10μmであり、より好ましくは50nm~5μm、さらに好ましくは200nm~2μmである。犠牲層の厚さがこの範囲にあると、アニール処理後の剥離が容易になり、かつ剥離後の熱電変換材料のチップの熱電性能を維持しやすい。
 特に、樹脂を用いた場合の犠牲層の厚さは、好ましくは50nm~10μmであり、より好ましくは100nm~5μm、さらに好ましくは200nm~2μm、である。樹脂を用いた場合の犠牲層の厚さがこの範囲にあると、アニール処理後の剥離が容易になり、かつ剥離後の熱電変換材料のチップの熱電性能を維持しやすい。さらに、犠牲層上にさらに他の層を積層した場合においても、自立膜を維持しやすくなる。
 同様に、離型剤を用いた場合の犠牲層の厚さは、好ましくは10nm~5μmであり、より好ましくは50nm~1μm、さらに好ましくは100nm~0.5μm、特に好ましくは200nm~0.1μmである。離型剤を用いた場合の犠牲層の厚さがこの範囲にあると、アニール処理後の剥離が容易になり、かつ剥離後の熱電変換材料のチップの熱電性能を維持しやすい。
 犠牲層の形成は、前述した樹脂、又は離型剤を用いて行う。
 犠牲層を形成する方法としては、基板上にディップコーティング法、スピンコーティング法、スプレーコーティング法、グラビアコーティング法、ダイコーティング法、ドクターブレード法等の各種コーティング法が挙げられる。用いる樹脂、離型剤の物性等に応じて適宜選択される。
(基板)
 基板としては、ガラス、シリコン、セラミック、金属、又はプラスチック等が挙げられる。アニール処理を高温度下で行う観点から、ガラス、シリコン、セラミック、金属が好ましく、犠牲層との密着性、材料コスト、熱処理後の寸法安定性の観点から、ガラス、シリコン、セラミックを用いることがより好ましい。
 前記基板の厚さは、プロセス及び寸法安定性の観点から、100~1200μmが好ましく、200~800μmがより好ましく、400~700μmがさらに好ましい。
(B)熱電変換材料のチップ形成工程
 熱電変換材料のチップ形成工程は、犠牲層上に熱電変換材料のチップを形成する工程であり、例えば、図1においては、犠牲層2上に熱電半導体組成物からなる熱電変換材料のチップ3、すなわち、P型熱電変換材料のチップ3a、N型熱電変換材料のチップ3bを薄膜として塗布する工程である。P型熱電変換材料のチップ、N型熱電変換材料のチップの配置については、特に制限されないが、熱電性能の観点から、π型、又はインプレーン型の熱電変換モジュールに用いられる構成となるようにし、電極にて接続されるように形成されることが好ましい。
 ここで、π型の熱電変換モジュールを構成する場合、例えば、互いに離間するー対の電極を基板上に設け、―方の電極の上にP型熱電変換材料のチップを、他方の電極の上にN型熱電変換材料のチップを、同じく互いに離間して設け、両方の熱電変換材料のチップの上面を対向する基板上の電極に電気的に直列接続することで構成される。高い熱電性能を効率良く得る観点から、対向する基板の電極を介在したP型熱電変換材料のチップ及びN型熱電変換材料のチップの対を複数組、電気的に直列接続して用いる(後述する図2の(f)参照)ことが好ましい。
 同様に、インプレーン型の熱電変換モジュールを構成する場合、例えば、一の電極を基板上に設け、該電極の面上にP型熱電変換材料のチップと、同じく該電極の面上にN型熱電変換材料のチップとを、両チップの側面同士(例えば、基板に対し垂直方向の面同士)が互いに接触又は離間するように設け、基板の面内方向に前記電極を介在して電気的に直列接続(例えば、発電の構成の場合、1対の起電力取り出し用電極を併用)することで構成される。高い熱電性能を効率良く得る観点から、該構成において、同数の複数のP型熱電変換材料のチップとN型熱電変換材料のチップとが交互に電極を介在し基板の面内方向に電気的に直列接続して用いることが好ましい。
(熱電変換材料)
 本発明に用いる熱電変換材料は、熱電半導体組成物からなる。好ましくは、熱電半導体材料(以下、「熱半導体微粒子」ということがある。)、耐熱性樹脂、並びにイオン液体及び/又は無機イオン性化合物を含む熱電半導体組成物からなる薄膜からなる。
(熱電半導体材料)
 本発明に用いる熱電半導体材料、すなわち、P型熱電変換材料のチップ、N型熱電変換材料のチップに含まれる熱電半導体材料としては、温度差を付与することにより、熱起電力を発生させることができる材料であれば特に制限されず、例えば、P型ビスマステルライド、N型ビスマステルライド等のビスマス-テルル系熱電半導体材料;GeTe、PbTe等のテルライド系熱電半導体材料;アンチモン-テルル系熱電半導体材料;ZnSb、ZnSb2、ZnSb等の亜鉛-アンチモン系熱電半導体材料;SiGe等のシリコン-ゲルマニウム系熱電半導体材料;BiSe等のビスマスセレナイド系熱電半導体材料;β―FeSi、CrSi、MnSi1.73、MgSi等のシリサイド系熱電半導体材料;酸化物系熱電半導体材料;FeVAl、FeVAlSi、FeVTiAl等のホイスラー材料、TiS等の硫化物系熱電半導体材料等が用いられる。
 これらの中で、ビスマス-テルル系熱電半導体材料、テルライド系熱電半導体材料、アンチモン-テルル系熱電半導体材料、又はビスマスセレナイド系熱電半導体材料が好ましい。
 さらに、熱電性能の観点から、P型ビスマステルライド又はN型ビスマステルライド等のビスマス-テルル系熱電半導体材料であることがより好ましい。
 前記P型ビスマステルライドは、キャリアが正孔で、ゼーベック係数が正値であり、例えば、BiTeSb2-Xで表わされるものが好ましく用いられる。この場合、Xは、好ましくは0<X≦0.8であり、より好ましくは0.4≦X≦0.6である。Xが0より大きく0.8以下であるとゼーベック係数と電気伝導率が大きくなり、P型熱電素子としての特性が維持されるので好ましい。
 また、前記N型ビスマステルライドは、キャリアが電子で、ゼーベック係数が負値であり、例えば、BiTe3-YSeで表わされるものが好ましく用いられる。この場合、Yは、好ましくは0≦Y≦3(Y=0の時:BiTe)であり、より好ましくは0<Y≦2.7である。Yが0以上3以下であるとゼーベック係数と電気伝導率が大きくなり、N型熱電素子としての特性が維持されるので好ましい。
 熱電半導体組成物に用いる熱電半導体微粒子は、前述した熱電半導体材料を、微粉砕装置等により、所定のサイズまで粉砕したものである。
 熱電半導体微粒子の前記熱電半導体組成物中の配合量は、好ましくは、30~99質量%である。より好ましくは、50~96質量%であり、さらに好ましくは、70~95質量%である。熱電半導体微粒子の配合量が、上記範囲内であれば、ゼーベック係数(ペルチェ係数の絶対値)が大きく、また電気伝導率の低下が抑制され、熱伝導率のみが低下するため高い熱電性能を示すとともに、十分な皮膜強度、屈曲性を有する膜が得られ好ましい。
 熱電半導体微粒子の平均粒径は、好ましくは、10nm~200μm、より好ましくは、10nm~30μm、さらに好ましくは、50nm~10μm、特に好ましくは、1~6μmである。上記範囲内であれば、均一分散が容易になり、電気伝導率を高くすることができる。
 前記熱電半導体材料を粉砕して熱電半導体微粒子を得る方法は特に限定されず、ジェットミル、ボールミル、ビーズミル、コロイドミル、ローラーミル等の公知の微粉砕装置等により、所定のサイズまで粉砕すればよい。
 なお、熱電半導体微粒子の平均粒径は、レーザー回折式粒度分析装置(Malvern社製、マスターサイザー3000)にて測定することにより得られ、粒径分布の中央値とした。
 また、熱電半導体微粒子は、事前に熱処理されたものであることが好ましい(ここでいう「熱処理」とは本発明でいうアニール処理工程で行う「アニール処理」とは異なる)。熱処理を行うことにより、熱電半導体微粒子は、結晶性が向上し、さらに、熱電半導体微粒子の表面酸化膜が除去されるため、熱電変換材料のゼーベック係数又はペルチェ係数が増大し、熱電性能指数をさらに向上させることができる。熱処理は、特に限定されないが、熱電半導体組成物を調製する前に、熱電半導体微粒子に悪影響を及ぼすことがないように、ガス流量が制御された、窒素、アルゴン等の不活性ガス雰囲気下、同じく水素等の還元ガス雰囲気下、または真空条件下で行うことが好ましく、不活性ガス及び還元ガスの混合ガス雰囲気下で行うことがより好ましい。具体的な温度条件は、用いる熱電半導体微粒子に依存するが、通常、微粒子の融点以下の温度で、かつ100~1500℃で、数分~数十時間行うことが好ましい。
(耐熱性樹脂)
 本発明に用いる熱電半導体組成物には、熱電半導体材料を高温度でアニール処理を行う観点から、耐熱性樹脂が好ましく用いられる。熱電半導体材料(熱電半導体微粒子)間のバインダーとして働き、熱電変換モジュールの屈曲性を高めることができるとともに、塗布等による薄膜の形成が容易になる。該耐熱性樹脂は、特に制限されるものではないが、熱電半導体組成物からなる薄膜をアニール処理等により熱電半導体微粒子を結晶成長させる際に、樹脂としての機械的強度及び熱伝導率等の諸物性が損なわれず維持される耐熱性樹脂が好ましい。
 前記耐熱性樹脂は、耐熱性がより高く、且つ薄膜中の熱電半導体微粒子の結晶成長に悪影響を及ぼさないという点から、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、エポキシ樹脂が好ましく、屈曲性に優れるという点からポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂がより好ましい。後述する基板として、ポリイミドフィルムを用いた場合、該ポリイミドフィルムとの密着性などの点から、耐熱性樹脂としては、ポリイミド樹脂がより好ましい。なお、本発明においてポリイミド樹脂とは、ポリイミド及びその前駆体を総称する。
 前記耐熱性樹脂は、分解温度が300℃以上であることが好ましい。分解温度が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、バインダーとして機能が失われることなく、屈曲性を維持することができる。
 また、前記耐熱性樹脂は、熱重量測定(TG)による300℃における質量減少率が10%以下であることが好ましく、5%以下であることがより好ましく、1%以下であることがさらに好ましい。質量減少率が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、バインダーとして機能が失われることなく、熱電素子層の屈曲性を維持することができる。
 前記耐熱性樹脂の前記熱電半導体組成物中の配合量は、0.1~40質量%、好ましくは0.5~20質量%、より好ましくは、1~20質量%、さらに好ましくは2~15質量%である。前記耐熱性樹脂の配合量が、上記範囲内であると、熱電半導体材料のバインダーとし機能し、薄膜の形成がしやすくなり、しかも高い熱電性能と皮膜強度が両立した膜が得られる。
(イオン液体)
 本発明で用いるイオン液体は、カチオンとアニオンとを組み合わせてなる溶融塩であり、-50~500℃の温度領域のいずれかの温度領域において、液体で存在し得る塩をいう。イオン液体は、蒸気圧が極めて低く不揮発性であること、優れた熱安定性及び電気化学安定性を有していること、粘度が低いこと、かつイオン伝導度が高いこと等の特徴を有しているため、導電補助剤として、熱電半導体微粒子間の電気伝導率の低減を効果的に抑制することができる。また、イオン液体は、非プロトン性のイオン構造に基づく高い極性を示し、耐熱性樹脂との相溶性に優れるため、熱電素子層の電気伝導率を均一にすることができる。
 イオン液体は、公知または市販のものが使用できる。例えば、ピリジニウム、ピリミジニウム、ピラゾリウム、ピロリジニウム、ピペリジニウム、イミダゾリウム等の窒素含有環状カチオン化合物及びそれらの誘導体;テトラアルキルアンモニウムのアミン系カチオン及びそれらの誘導体;ホスホニウム、トリアルキルスルホニウム、テトラアルキルホスホニウム等のホスフィン系カチオン及びそれらの誘導体;リチウムカチオン及びその誘導体等のカチオン成分と、Cl、AlCl 、AlCl 、ClO 等の塩化物イオン、Br等の臭化物イオン、I等のヨウ化物イオン、BF 、PF 等のフッ化物イオン、F(HF) 等のハロゲン化物アニオン、NO 、CHCOO、CFCOO、CHSO 、CFSO 、(FSO、(CFSO、(CFSO、AsF 、SbF 、NbF 、TaF 、F(HF)n、(CN)、CSO 、(CSO、CCOO、(CFSO)(CFCO)N等のアニオン成分とから構成されるものが挙げられる。
 上記のイオン液体の中で、高温安定性、熱電半導体微粒子及び樹脂との相溶性、熱電半導体微粒子間隙の電気伝導率の低下抑制等の観点から、イオン液体のカチオン成分が、ピリジニウムカチオン及びその誘導体、イミダゾリウムカチオン及びその誘導体から選ばれる少なくとも1種を含むことが好ましい。イオン液体のアニオン成分が、ハロゲン化物アニオンを含むことが好ましく、Cl、Br及びIから選ばれる少なくとも1種を含むことがさらに好ましい。
 カチオン成分が、ピリジニウムカチオン及びその誘導体を含むイオン液体の具体的な例として、4-メチル-ブチルピリジニウムクロライド、3-メチル-ブチルピリジニウムクロライド、4-メチル-ヘキシルピリジニウムクロライド、3-メチル-ヘキシルピリジニウムクロライド、4-メチル-オクチルピリジニウムクロライド、3-メチル-オクチルピリジニウムクロライド、3、4-ジメチル-ブチルピリジニウムクロライド、3、5-ジメチル-ブチルピリジニウムクロライド、4-メチル-ブチルピリジニウムテトラフルオロボレート、4-メチル-ブチルピリジニウムヘキサフルオロホスフェート、1-ブチル-4-メチルピリジニウムブロミド、1-ブチル-4-メチルピリジニウムヘキサフルオロホスファート、1-ブチル-4-メチルピリジニウムヨージド等が挙げられる。この中で、1-ブチル-4-メチルピリジニウムブロミド、1-ブチル-4-メチルピリジニウムヘキサフルオロホスファート、1-ブチル-4-メチルピリジニウムヨージドが好ましい。
 また、カチオン成分が、イミダゾリウムカチオン及びその誘導体を含むイオン液体の具体的な例として、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムブロミド]、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムテトラフルオロボレイト]、1-エチル-3-メチルイミダゾリウムクロライド、1-エチル-3-メチルイミダゾリウムブロミド、1-ブチル-3-メチルイミダゾリウムクロライド、1-ヘキシル-3-メチルイミダゾリウムクロライド、1-オクチル-3-メチルイミダゾリウムクロライド、1-デシル-3-メチルイミダゾリウムクロライド、1-デシル-3-メチルイミダゾリウムブロミド、1-ドデシル-3-メチルイミダゾリウムクロライド、1-テトラデシル-3-メチルイミダゾリウムクロライド、1-エチル-3-メチルイミダゾリウムテトラフロオロボレート、1-ブチル-3-メチルイミダゾリウムテトラフロオロボレート、1-ヘキシル-3-メチルイミダゾリウムテトラフロオロボレート、1-エチル-3-メチルイミダゾリウムヘキサフルオロホスフェート、1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスフェート、1-メチル-3-ブチルイミダゾリウムメチルスルフェート、1、3-ジブチルイミダゾリウムメチルスルフェート等が挙げられる。この中で、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムブロミド]、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムテトラフルオロボレイト]が好ましい。
 上記のイオン液体は、電気伝導率が10-7S/cm以上であることが好ましく、10-6S/cm以上であることがより好ましい。電気伝導率が上記の範囲であれば、導電補助剤として、熱電半導体微粒子間の電気伝導率の低減を効果的に抑制することができる。
 また、上記のイオン液体は、分解温度が300℃以上であることが好ましい。分解温度が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、導電補助剤としての効果を維持することができる。
 また、上記のイオン液体は、熱重量測定(TG)による300℃における質量減少率が10%以下であることが好ましく、5%以下であることがより好ましく、1%以下であることがさらに好ましい。質量減少率が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、導電補助剤としての効果を維持することができる。
 前記イオン液体の前記熱電半導体組成物中の配合量は、好ましくは0.01~50質量%、より好ましくは0.5~30質量%、さらに好ましくは1.0~20質量%である。前記イオン液体の配合量が、上記の範囲内であれば、電気伝導率の低下が効果的に抑制され、高い熱電性能を有する膜が得られる。
(無機イオン性化合物)
 本発明で用いる無機イオン性化合物は、少なくともカチオンとアニオンから構成される化合物である。無機イオン性化合物は室温において固体であり、400~900℃の温度領域のいずれかの温度に融点を有し、イオン伝導度が高いこと等の特徴を有しているため、導電補助剤として、熱電半導体微粒子間の電気伝導率の低減を抑制することができる。
 カチオンとしては、金属カチオンを用いる。
 金属カチオンとしては、例えば、アルカリ金属カチオン、アルカリ土類金属カチオン、典型金属カチオン及び遷移金属カチオンが挙げられ、アルカリ金属カチオン又はアルカリ土類金属カチオンがより好ましい。
 アルカリ金属カチオンとしては、例えば、Li、Na、K、Rb、Cs及びFr等が挙げられる。
 アルカリ土類金属カチオンとしては、例えば、Mg2+、Ca2+、Sr2+及びBa2+等が挙げられる。
 アニオンとしては、例えば、F、Cl、Br、I、OH、CN、NO 、NO 、ClO、ClO 、ClO 、ClO 、CrO 2-、HSO 、SCN、BF 、PF 等が挙げられる。
 無機イオン性化合物は、公知または市販のものが使用できる。例えば、カリウムカチオン、ナトリウムカチオン、又はリチウムカチオン等のカチオン成分と、Cl、AlCl 、AlCl 、ClO 等の塩化物イオン、Br等の臭化物イオン、I等のヨウ化物イオン、BF 、PF 等のフッ化物イオン、F(HF) 等のハロゲン化物アニオン、NO 、OH、CN等のアニオン成分とから構成されるものが挙げられる。
 上記の無機イオン性化合物の中で、高温安定性、熱電半導体微粒子及び樹脂との相溶性、熱電半導体微粒子間隙の電気伝導率の低下抑制等の観点から、無機イオン性化合物のカチオン成分が、カリウム、ナトリウム、及びリチウムから選ばれる少なくとも1種を含むことが好ましい。また、無機イオン性化合物のアニオン成分が、ハロゲン化物アニオンを含むことが好ましく、Cl、Br、及びIから選ばれる少なくとも1種を含むことがさらに好ましい。
 カチオン成分が、カリウムカチオンを含む無機イオン性化合物の具体的な例として、KBr、KI、KCl、KF、KOH、KCO等が挙げられる。この中で、KBr、KIが好ましい。
 カチオン成分が、ナトリウムカチオンを含む無機イオン性化合物の具体的な例として、NaBr、NaI、NaOH、NaF、NaCO等が挙げられる。この中で、NaBr、NaIが好ましい。
 カチオン成分が、リチウムカチオンを含む無機イオン性化合物の具体的な例として、LiF、LiOH、LiNO等が挙げられる。この中で、LiF、LiOHが好ましい。
 上記の無機イオン性化合物は、電気伝導率が10-7S/cm以上であることが好ましく、10-6S/cm以上であることがより好ましい。電気伝導率が上記範囲であれば、導電補助剤として、熱電半導体微粒子間の電気伝導率の低減を効果的に抑制することができる。
 また、上記の無機イオン性化合物は、分解温度が400℃以上であることが好ましい。分解温度が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、導電補助剤としての効果を維持することができる。
 また、上記の無機イオン性化合物は、熱重量測定(TG)による400℃における質量減少率が10%以下であることが好ましく、5%以下であることがより好ましく、1%以下であることがさらに好ましい。質量減少率が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、導電補助剤としての効果を維持することができる。
 前記無機イオン性化合物の前記熱電半導体組成物中の配合量は、好ましくは0.01~50質量%、より好ましくは0.5~30質量%、さらに好ましくは1.0~10質量%である。前記無機イオン性化合物の配合量が、上記範囲内であれば、電気伝導率の低下を効果的に抑制でき、結果として熱電性能が向上した膜が得られる。
 なお、無機イオン性化合物とイオン液体とを併用する場合においては、前記熱電半導体組成物中における、無機イオン性化合物及びイオン液体の含有量の総量は、好ましくは0.01~50質量%、より好ましくは0.5~30質量%、さらに好ましくは1.0~10質量%である。
(その他の添加剤)
 本発明で用いる熱電半導体組成物には、上記以外の成分以外に、必要に応じて、さらに分散剤、造膜助剤、光安定剤、酸化防止剤、粘着付与剤、可塑剤、着色剤、樹脂安定剤、充てん剤、顔料、導電性フィラー、導電性高分子、硬化剤等の他の添加剤を含んでいてもよい。これらの添加剤は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
(熱電半導体組成物の調製方法)
 本発明で用いる熱電半導体組成物の調製方法は、特に制限はなく、超音波ホモジナイザー、スパイラルミキサー、プラネタリーミキサー、ディスパーサー、ハイブリッドミキサー等の公知の方法により、前記熱電半導体微粒子、前記耐熱性樹脂、前記イオン液体及び無機イオン性化合物の一方又は双方、必要に応じて前記その他の添加剤、さらに溶媒を加えて、混合分散させ、当該熱電半導体組成物を調製すればよい。
 前記溶媒としては、例えば、トルエン、酢酸エチル、メチルエチルケトン、アルコール、テトラヒドロフラン、メチルピロリドン、エチルセロソルブ等の溶媒などが挙げられる。これらの溶媒は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。熱電半導体組成物の固形分濃度としては、該組成物が塗工に適した粘度であればよく、特に制限はない。
 前記熱電半導体組成物からなる薄膜は、本発明に用いた犠牲層上に、前記熱電半導体組成物を塗布し、乾燥することで形成することができる。このように、形成することで、簡便に低コストで大面積の熱電素子層を得ることができる。
 熱電半導体組成物を、基板上に塗布する方法としては、スクリーン印刷法、フレキソ印刷法、グラビア印刷法、スピンコート法、ディップコート法、ダイコート法、スプレーコート法、バーコート法、ドクターブレード法等の公知の方法が挙げられ、特に制限されない。塗膜をパターン状に形成する場合は、所望のパターンを有するスクリーン版を用いて簡便にパターン形成が可能なスクリーン印刷、ステンシル印刷、スロットダイコート等が好ましく用いられる。
 次いで、得られた塗膜を乾燥することにより、薄膜が形成されるが、乾燥方法としては、熱風乾燥法、熱ロール乾燥法、赤外線照射法等、従来公知の乾燥方法が採用できる。加熱温度は、通常、80~150℃であり、加熱時間は、加熱方法により異なるが、通常、数秒~数十分である。
 また、熱電半導体組成物の調製において溶媒を使用した場合、加熱温度は、使用した溶媒を乾燥できる温度範囲であれば、特に制限はない。
 本発明において、熱電半導体組成物を基板上に塗布する他の方法として、得られる熱電変換材料のチップの形状制御性の観点から、以下に示す、多層印刷法又はパターン枠配置/剥離法において、スクリーン印刷法、又はステンシル印刷法により塗布することがさらに好ましい。
(多層印刷法)
 多層印刷法とは、熱電半導体組成物からなる塗工液等を用い、基板上、又は電極上の同一の位置に、所望のパターンを有するスクリーン版、ステンシル版を用いて、スクリーン印刷法、ステンシル印刷法等により印刷を複数回重ねて行うことにより、熱電変換材料の薄膜が複数回積層された厚膜の熱電変換材料のチップを形成する方法である。
 具体的には、まず、第1層目の熱電変換材料の薄膜となる塗膜を形成し、得られた塗膜を乾燥することにより、第1層目の熱電変換材料の薄膜を形成する。次いで、第1層目と同様に、第2層目の熱電変換材料の薄膜となる塗膜を第1層目で得られた熱電変換材料の薄膜上に形成し、得られた塗膜を乾燥することにより、第2層目の熱電変換材料の薄膜を形成する。第3層目以降についても、同様に、第3層目以降の熱電変換材料の薄膜となる塗膜を直前に得られた熱電変換材料の薄膜上に形成し、得られた塗膜を乾燥することにより、第3層目以降の熱電変換材料の薄膜を形成する。このプロセスを所望の回数繰り返し行うことにより、所望の厚さを有する熱電変換材料のチップが得られる。
 多層印刷法を用いることにより、形状制御性の高い熱電変換材料のチップを得ることができる。
(パターン枠配置/剥離法)
 パターン枠配置/剥離法とは、基板上に離間した開口部を有するパターン枠を設け、前記開口部に熱電半導体組成物を充填し、乾燥し、前記パターン枠を基板上から剥離することで、パターン枠の開口部の形状が反映された形状制御性に優れる熱電変換材料のチップを形成する方法である。前記開口部の形状としては、特に制限されないが、直方体状、立方体状、円柱状等が挙げられる。
 製造工程としては、基板上に開口部を有するパターン枠を設ける工程、前記開口部に前記熱電半導体組成物を充填する工程、前記開口部に充填された前記熱電半導体組成物を乾燥し、熱電変換材料のチップを形成する工程、及び前記パターン枠を基板上から剥離する工程を含む。
 パターン枠配置/剥離法を用いた熱電変換材料のチップの製造方法の一例を、図を用い具体的に説明する。
 図5は、本発明に用いたパターン枠配置/剥離法による熱電変換材料のチップの製造方法の一例を工程順に示す説明図であり、
(a)は基板上にパターン枠を対向させた態様を示す断面図であり、ステンレス鋼32’からなる、開口32s、開口部33、開口部深さ(パターン枠厚)33dを有する、パターン枠32を準備し、基板31とを対向させる;
(b)はパターン枠を基板上に設けた後の断面図であり、パターン枠32を基板31上に設ける;
(c)はパターン枠の開口部に熱電半導体組成物を充填した後の断面図であり、(b)で準備したステンレス鋼32’からなるパターン枠32の開口33sを有する開口部33に、P型熱電半導体材料を含む熱電半導体組成物及びN型熱電半導体材料を含む熱電半導体組成物をそれぞれ所定の開口部33内に充填し、開口部33に充填されたP型熱電半導体材料を含む熱電半導体組成物及びN型熱電半導体材料を含む熱電半導体組成物を乾燥し、P型熱電変換材料のチップ34b、N型熱電変換材料のチップ34aを形成する;
(d)はパターン枠を、形成した熱電変換材料のチップから剥離し、熱電変換材料のチップのみを得る態様を示す断面図であり、パターン枠32を、形成したP型熱電変換材料のチップ34b、N型熱電変換材料のチップ34aから剥離し、自立チップとしてのP型熱電変換材料のチップ34b、N型熱電変換材料のチップ34aを得る。
 上記により、熱電変換材料のチップを得ることができる。
 このように、パターン枠配置/剥離法を用いることにより、形状制御性の高い熱電変換材料のチップを得ることができる。
 得られた塗膜(薄膜)の乾燥方法は前述したとおりである。
 また、熱電半導体組成物の調製において溶媒を使用した場合の加熱温度も、前述したとおりである。
 前記熱電半導体組成物からなる薄膜の厚さは、特に制限はないが、熱電性能と皮膜強度の点から、好ましくは100nm~1000μm、より好ましくは300nm~600μm、さらに好ましくは5~400μmである。
(C)アニール処理工程
 アニール処理工程は、犠牲層上に熱電変換材料のチップを形成後、該熱電変換材料のチップを、所定の温度で基板上に犠牲層を有した状態で熱処理する工程である。
 例えば、図1においては、犠牲層2上の熱電半導体組成物からなる熱電変換材料のチップ3をアニール処理する工程である。
 熱電変換材料のチップは、薄膜として形成後、アニール処理を行う。アニール処理を行うことで、熱電性能を安定化させるとともに、薄膜中の熱電半導体微粒子を結晶成長させることができ、熱電性能をさらに向上させることができる。
 アニール処理は、特に限定されないが、通常、ガス流量が制御された、窒素、アルゴン等の不活性ガス雰囲気下、還元ガス雰囲気下、または真空条件下で行われ、用いる耐熱性樹脂、イオン液体、無機イオン性化合物、犠牲層として用いた樹脂、離型剤の耐熱温度等に依存するが、アニール処理の温度は、通常100~600℃で、数分~数十時間、好ましくは150~600℃で、数分~数十時間、より好ましくは250~600℃で、数分~数十時間、さらに好ましくは250~460℃で、数分~数十時間行う。
(D)チップ剥離工程
 熱電変換材料のチップ剥離工程は、熱電変換材料のチップをアニール処理した後、犠牲層から熱電変換材料のチップを剥離する工程である。
 チップの剥離方法としては、熱電変換材料のチップをアニール処理した後、犠牲層から熱電変換材料のチップを剥離可能な方法であれば特に制限はなく、犠牲層から熱電変換材料の複数のチップを1枚1枚の個片の形態で剥離してもよいし、複数のチップの形態で一括して剥離してもよい。
 本発明の熱電変換材料のチップの製造方法において、前記(D)のチップ剥離工程が、(D-1)前記(C)の工程で得られたアニール処理後の前記熱電変換材料のチップを、前記犠牲層から剥離し粘着シートの粘着剤層に転写する工程、及び(D-2)前記粘着剤層の粘着力を低下させ、前記(D-1)の工程で転写した熱電変換材料のチップを前記粘着剤層から剥離する工程、を含むことが好ましい。
 図3は、本発明の熱電変換材料のチップの製造方法に従った工程の一例を工程順に示す説明図であり、(a)は基板11上に犠牲層12を形成した後の断面図であり、(b)は犠牲層12上にパターン化した熱電変換材料のチップ13を形成し、次いでアニール処理を行った後の断面図であり、(c)熱電変換材料のチップ13上に後述するハンダ受理層14aを形成した後の断面図であり、(d)は粘着シート21の基材21a上の粘着剤層21bにハンダ受理層14aを介在し熱電変換材料のチップ13を接着した後の断面図であり、(e)は犠牲層12から熱電変換材料のチップ13を剥離し、熱電変換材料のチップ13を粘着剤層21bに転写する態様を示す断面図であり、(f)は(e)で得られた熱電変換材料のチップ13の犠牲層側の面とは反対側の面に(c)と同様に、後述するハンダ受理層14bを形成した後の断面図であり、(g)は、粘着剤層21bの粘着力を低下させた後、(f)で得られた熱電変換材料のチップ13の両面にハンダ受理層14a、14bを有する熱電変換材料のチップ13を熱電変換材料のチップ(個片)13’として、粘着剤層21bから剥離する態様を示す断面模式図である。
(D-1)熱電変換材料のチップ転写工程
 本発明の熱電変換材料のチップの製造方法においては、熱電変換材料のチップ転写工程を含むことが好ましい。
 熱電変換材料のチップの転写工程において、熱電変換材料のチップの転写後、熱電変換材料のチップとして、容易に剥離する目的で、粘着シート、すなわち、基材上に粘着剤組成物からなる粘着剤層を有するシート材料(以下、「ダイシングテープ」ということがある。)を用いることが好ましい。前記粘着剤組成物は後述する粘着剤を主成分としたものである。
 熱電変換材料のチップの転写工程は、熱電変換材料のチップをアニール処理した後、犠牲層上の熱電変換材料のチップを、粘着剤層上に転写する工程であり、例えば、図3(d)において、粘着シート21を構成する基材21a上の粘着剤層21bと熱電変換材料のチップ13を後述するハンダ受理層14aを介在し接着した後、図3(e)において、犠牲層12から熱電変換材料のチップ13を剥離し、熱電変換材料のチップ13をハンダ受理層14aを介在し粘着剤層21bに転写する工程である。
 熱電変換材料のチップを粘着剤層に接着する方法は、特に制限はなく、公知の手法で行われる。
 また、犠牲層の剥離方法としては、アニール処理後の熱電変換材料のチップが、形状及び特性を維持した状態で剥離層から剥離されれば、特に制限はなく、公知の手法で行われる。
(粘着剤層)
 本発明に用いる粘着剤層は、熱電変換材料のチップを転写する観点から、及び転写後の該熱電変換材料のチップを熱電変換材料のチップとして容易に剥離する観点から、以下の条件(s)、(t)、(u)を満たすことが好ましい。
(s)粘着剤層のシリコンウェハのミラー面に対する、粘着力低下処理前における粘着力が1.0N/25mm以上
(t)粘着剤層のシリコンウェハのミラー面に対する、粘着力低下処理後における粘着力が1.0N/25mm未満
(u)粘着剤層の厚さと熱電変換材料のチップの厚さとの比が、5/100~70/100
 ここで、粘着力は、JISZ-0237に規定される方法に準拠して、剥離速度300mm/分、剥離角度180度の条件下で測定した粘着力である。
 前記条件(s)において、粘着剤層のシリコンウェハのミラー面に対する、粘着力低下処理前における粘着力が1.5~50N/25mmであることがより好ましく、2.0~20N/25mmであることがさらに好ましい。前記粘着剤層の粘着力が上記の範囲にあると、熱電変換材料のチップが犠牲層から容易に剥離でき、熱電変換材料のチップを前記粘着剤層に容易に転写できる。粘着力が50N/25mm超になると、粘着剤層の粘着力が1.0N/25mm未満にすることができなくなることがある。
 また、前記条件(t)において、粘着剤層のシリコンウェハのミラー面に対する、粘着力低下処理後における粘着力が0.01~0.20N/25mmであることがより好ましく、0.05~0.15N/25mmであることがさらに好ましい。前記粘着剤層の粘着力が上記の範囲にあると、熱電変換材料のチップを粘着剤層から容易に剥離しやすくなり、熱電変換材料のチップを個片として得られやすくなる。
 さらに、前記条件(u)において、粘着剤層の厚さと熱電変換材料のチップの厚さとの比が、10/100~30/100であることがより好ましく、15/100~25/100であることがさらに好ましい。前記粘着剤層の厚さと前記熱電変換材料のチップの厚さとの比が上記の範囲にあり、かつ粘着剤層のシリコンウェハのミラー面に対する、粘着力低下工程後における粘着力が前記(t)の条件を満たすことにより、熱電変換材料のチップを粘着剤層から容易に剥離でき、熱電変換材料のチップを容易に個片として得ることができる。
 前記(s)、(t)及び(u)を満たす粘着剤層は、公知の粘着剤で構成されてよく、特に限定されないが、例えば、ゴム系、アクリル系及びシリコーン系等の粘着剤のほか、スチレン系エラストマーやオレフィン系エラストマー等熱可塑性エラストマーで構成されてもよい。この中で、アクリル系粘着剤が好ましく用いられる。
 アクリル系粘着剤は、アクリル酸エステル化合物の単独重合体、またはアクリル酸エステル化合物とコモノマーとの共重合体であってよい。アクリル酸エステル化合物の例には、メチルアクリレート、エチルアクリレート、ブチルアクリレートおよび2-エチルヘキシルアクリレート等が含まれる。アクリル系共重合体を構成するコモノマーの例には、酢酸ビニル、アクリルニトリル、アクリルアマイド、スチレン、メチル(メタ)クリレート、(メタ)アクリル酸、ヒドロキシエチルメタクリレート、ジメチルアミノエチルメタクリレート、グリシジルメタクリレートおよび無水マレイン酸等が含まれる。
 本発明においては、粘着剤層は、プロセス簡易性の観点から、エネルギー線により粘着力を低下させるエネルギー線硬化型粘着剤、加熱により粘着力を低下させる加熱硬化型粘着剤、又は加熱発泡型粘着剤を含むことが好ましい。さらに、エネルギー線硬化型粘着剤においては、紫外線硬化型粘着剤がより好ましい。
 紫外線硬化型粘着剤は、前記アクリル系粘着剤等の粘着剤と光重合開始剤とを含み、また、加熱硬化型粘着剤は、前記アクリル系粘着剤等の粘着剤と熱重合開始剤とを含み、必要に応じて、いずれの粘着剤において硬化性化合物(炭素-炭素二重結合を有する成分)や架橋剤をさらに含む。
 光重合開始剤は、紫外線を照射することにより開裂し、ラジカルを生成する化合物であればよく、例えば、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾインアルキルエーテル類;ベンジル、ベンゾイン、ベンゾフェノン、α-ヒドロキシシクロヘキシルフェニルケトン等の芳香族ケトン類;ベンジルジメチルケタール等の芳香族ケタール類等が挙げられる。
 熱重合開始剤は、有機過酸化物誘導体やアゾ系重合開始剤等であるが、加熱時に窒素が発生しない点から、好ましくは有機過酸化物誘導体である。有機過酸化物誘導体の例には、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド等が含まれる。
 硬化性化合物は、分子中に炭素-炭素二重結合を有し、ラジカル重合により硬化可能なモノマー、オリゴマーまたはポリマーであればよい。そのような硬化性化合物の例には、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の(メタ)アクリル酸と多価アルコールとのエステル等が含まれる。粘着剤が、側鎖に炭素-炭素二重結合を有する紫外線硬化型ポリマーである場合は、硬化性化合物を必ずしも加えなくてもよい。
 硬化性化合物の含有量は、粘着剤100質量部に対して5~900質量部が好ましく、20~200質量部がより好ましい。硬化性化合物の含有量が上記の範囲にあると、粘着力の調整が十分となり、熱や光に対する感度が高すぎることもなく保存安定性が維持できる。
 架橋剤としては、ペンタエリストールポリグリシジルエーテル等のエポキシ系化合物;テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ポリイソシアネート等のイソシアネート系化合物が挙げられる。
 加熱発泡型粘着剤としては、発泡剤や膨張剤の作用により膨張し剥離しやすくなる粘着剤であれば、特に制限なく使用可能であり、例えば、加熱膨張性微小球含有粘着剤等が挙げられ、所定の温度になると粘着剤に配合されている該熱膨張性微小球が膨張し、粘着剤表面が凹凸状に変形することで粘着力が著しく低下する。このような機能を有する加熱膨張性微小球としては、例えば、マイクロスフェアー(登録商標、松本油脂製薬社製)が挙げられる。
 粘着剤層のガラス転移温度(Tg)は、-50~30℃が好ましく、-25~30℃であることが好ましい。ここで、粘着剤層のTgとは、粘着剤層を積層させた試料の周波数11Hzでの動的粘弾性測定において、-50~50℃の領域で損失正接(tanδ)が最大値を示す温度を指す。なお、粘着剤層がエネルギー線硬化型の粘着剤である場合には、エネルギー線照射により粘着剤層を硬化させる前のガラス転移温度を指す。粘着剤層が前記したアクリル系粘着剤からなる場合は、粘着剤層のガラス転移温度は、前記したアクリル系粘着剤を構成する単量体の種類および重合比を規制し、場合によって添加される紫外線硬化性化合物や架橋剤の影響を見積もることにより制御できる。
 粘着剤組成物中に含まれ得るその他の成分としては、例えば、必要に応じて、粘着付与剤(例えば、ロジン誘導体樹脂、ポリテルペン樹脂、石油樹脂、油溶性フェノール樹脂等)、増粘剤、可塑剤、充填剤、発泡剤、老化防止剤、酸化防止剤、紫外線吸収剤、帯電防止剤、界面活性剤、レベリング剤、着色剤、難燃剤、シランカップリング剤等の適宜な添加剤が挙げられる。
 前記粘着剤を使用することにより、熱電変換材料のチップ転写工程においては、熱電変換材料のチップの転写が容易に行え、後述する熱電変換材料のチップ剥離工程においては、紫外線や熱等のエネルギーを与えることにより、粘着剤層と熱電変換材料のチップ間の粘着力が低下するため、熱電変換材料のチップの剥離が容易に行え、熱電変換材料のチップとして容易に得やすくなる。
 粘着剤層の厚さは、熱電変換材料のチップの厚さに応じ、前記条件(u)を満たすことが好ましい。通常は3~100μm、好ましくは5~80μmである。
(基材)
 本発明に用いる粘着シートの粘着剤の基材としては、低密度ポリエチレン(LDPE)フィルム、直鎖低密度ポリエチレン(LLDPE)フィルム、高密度ポリエチレン(HDPE)フィルム等のポリエチレンフィルム、ポリプロピレンフィルム、エチレン-プロピレン共重合体フィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフィルム、エチレン-ノルボルネン共重合体フィルム、ノルボルネン樹脂フィルム等のポリオレフィン系フィルム;エチレン-酢酸ビニル共重合体フィルム、エチレン-(メタ)アクリル酸共重合体フィルム、エチレン-(メタ)アクリル酸エステル共重合体フィルム等のエチレン系共重合フィルム;ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム等のポリ塩化ビニル系フィルム;ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム等のポリエステル系フィルム;ポリウレタンフィルム;ポリイミドフィルム;ポリスチレンフィルム;ポリカーボネートフィルム;フッ素樹脂フィルム等が挙げられる。また、これらの架橋フィルム、アイオノマーフィルムのような変性フィルムも用いられる。さらに上記フィルムを複数積層した積層フィルムであってもよい。なお、本明細書における「(メタ)アクリル酸」は、アクリル酸およびメタクリル酸の両方を意味する。他の類似用語についても同様である。
 基材が積層フィルムの場合、例えば、基材の背面側に、加熱前後で算術平均粗さが変化するフィルムを配置し、基材の粘着剤層側に、耐熱性があって高温でも変形しないフィルムを配置することが好ましい。
 上記の中でも、ポリオレフィン系フィルムが好ましく、特に、ポリエチレンフィルム、ポリプロピレンフィルムおよびエチレン-プロピレン共重合体フィルムが好ましく、さらにはエチレン-プロピレン共重合体フィルムが好ましい。これらの樹脂フィルムによれば、前述した物性を満たし易く、特に、エチレン-プロピレン共重合体フィルムの場合には、エチレンモノマーとプロピレンモノマーとの共重合比を調整することにより、前述した物性を満たし易い。また、これらの樹脂フィルムは、ワーク貼付性やチップ剥離性の観点からも好ましい。
 上記樹脂フィルムは、その表面に積層される粘着剤層との密着性を向上させる目的で、所望により、片面または両面に、酸化法や凹凸化法等による表面処理、あるいはプライマー処理を施すことができる。上記酸化法としては、例えば、コロナ放電処理、プラズマ放電処理、クロム酸化処理(湿式)、火炎処理、熱風処理、オゾン、紫外線照射処理等が挙げられ、また、凹凸化法としては、例えばサンドブラスト法、溶射処理法等が挙げられる。
 基材は、上記樹脂フィルム中に、着色剤、難燃剤、可塑剤、帯電防止剤、滑剤、フィラー等の各種添加剤を含有してもよい。
 基材の厚さは、特に限定されないが、20~450μmであることが好ましく、より好ましくは25~400μm、さらに好ましくは50~350μmである。
(D-2)熱電変換材料のチップ剥離工程
 本発明の熱電変換材料のチップの製造方法においては、熱電変換材料のチップ剥離工程を含むことが好ましい。熱電変換材料のチップ剥離工程は、前記粘着剤層の粘着力を低下させ、前記(D-1)の工程で転写した熱電変換材料のチップを粘着剤層から剥離し、熱電変換材料のチップとする工程であり、例えば、図3(f)において、粘着剤層の粘着力を低下させ、粘着剤層21bから、両面にハンダ受理層14a及び14bを有する熱電変換材料のチップ13をハンダ受理層14aを介在し、剥離し、熱電変換材料のチップ(個片)13’を得る工程である。
 粘着剤層の粘着力を低下させる方法としては、熱、又はエネルギー線を照射することにより粘着力が低下する前述した粘着剤を含む粘着剤層に対し、剥離する前に、熱、又はエネルギー線を照射し、該粘着剤層の、前記熱電変換材料のチップに対する粘着力を低下させる。
 前記エネルギー線としては、電離放射線、すなわち、紫外線、電子線、X線等が挙げられる。これらのうちでも、コスト、安全性、設備の導入が容易な観点から紫外線が好ましい。
 エネルギー線として紫外線を用いる場合には、取り扱いの容易さから波長200~380nm程度の紫外線を含む近紫外線を用いることが好ましい。光量としては、粘着剤組成物中に含まれるエネルギー線硬化性成分の種類や粘着剤層の厚さに応じて適宜選択すればよく、通常50~500mJ/cm程度であり、100~450mJ/cmが好ましく、200~400mJ/cmがより好ましい。また、紫外線照度は、通常50~500mW/cm程度であり、100~450mW/cmが好ましく、200~400mW/cmがより好ましい。紫外線源としては特に制限はなく、例えば高圧水銀ランプ、メタルハライドランプ、UV-LED等が用いられる。
 エネルギー線として電子線を用いる場合には、その加速電圧については、粘着剤組成物中に含まれるエネルギー線硬化性成分の種類や粘着剤層の厚さに応じて適宜選定すればよく、通常加速電圧10~1000kV程度であることが好ましい。また、照射線量は、粘着剤が適切に硬化する範囲に設定すればよく、通常10~1000kradの範囲で選定される。電子線源としては、特に制限はなく、例えば、コックロフトワルトン型、バンデグラフト型、共振変圧器型、絶縁コア変圧器型、あるいは直線型、ダイナミトロン型、高周波型等の各種電子線加速器を用いることができる。
 熱電変換材料のチップを粘着剤層から剥離する方法は、特に制限されず、公知の方法で行うことができる。
(ハンダ受理層形成工程)
 本発明では、得られた熱電変換材料のチップと電極上のハンダ材料層との接合強度を向上させる観点から、アニール処理後の熱電変換材料のチップ上及び/又は熱電変換材料のチップの粘着剤層に転写した後の面とは反対側の面上にハンダ受理層を設けるために、さらにハンダ受理層形成工程を含むことが好ましい。
 ハンダ受理層形成工程は、例えば、図3(c)において、熱電変換材料のチップ13上にハンダ受理層14aを、又は図3(f)において、熱電変換材料のチップ13上にハンダ受理層14bを形成する工程である。
 ハンダ受理層は、金属材料を含むことが好ましい。金属材料は、金、銀、ロジウム、白金、クロム、パラジウム、錫、及びこれらのいずれかの金属材料を含む合金から選ばれる少なくとも1種であることが好ましい。この中で、より好ましくは、金、銀又は、錫及び金の2層構成であり、材料コスト、高熱伝導性、接合安定性の観点から、銀がさらに好ましい。
 さらにハンダ受理層には、金属材料に加えて、溶媒や樹脂成分を含むペースト材を用いて形成してもよい。ペースト材を用いる場合は、後述するように焼成等により溶媒や樹脂成分を除去することが好ましい。ペースト材としては、銀ペースト、アルミペーストが好ましい。その他、ハンダ受理層には、金属レジネート材料を用いることができる。
 ハンダ受理層の厚さは、好ましくは10nm~50μmであり、より好ましくは50nm~16μm、さらに好ましくは200nm~4μm、特に好ましくは500nm~3μmである。ハンダ受理層の厚さがこの範囲にあると、樹脂を含む熱電変換材料のチップの面との密着性、及び電極側のハンダ材料層の面との密着性が優れ、信頼性の高い接合が得られる。また、導電性はもとより、熱伝導性が高く維持できるため、結果的に熱電変換モジュールとしての熱電性能が低下することはなく、維持される。
 ハンダ受理層は、前記金属材料をそのまま成膜し単層で用いてもよいし、2以上の金属材料を積層し多層で用いてもよい。また、金属材料を溶媒、樹脂等に含有させた組成物として成膜してもよい。但し、この場合、高い導電性、高い熱伝導性を維持する(熱電性能を維持する)観点から、ハンダ受理層の最終形態として、溶媒等を含め樹脂成分は焼成等により除去しておくことが好ましい。
 ハンダ受理層の形成は、前述した金属材料を用いて行う。
 ハンダ受理層をパターンとして形成する方法としては、熱電変換材料のチップ上にパターンが形成されていないハンダ受理層を設けた後、フォトリソグラフィー法を主体とした公知の物理的処理もしくは化学的処理、又はそれらを併用する等により、所定のパターン形状に加工する方法、または、スクリーン印刷法、ステンシル印刷法、インクジェット法等により直接ハンダ受理層のパターンを形成する方法等が挙げられる。
 パターン形成が不要なハンダ受理層の形成方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法等のPVD(物理気相成長法)、もしくは熱CVD、原子層蒸着(ALD)等のCVD(化学気相成長法)等の真空成膜法、又はディップコーティング法、スピンコーティング法、スプレーコーティング法、グラビアコーティング法、ダイコーティング法、ドクターブレード法等の各種コーティングや電着法等のウェットプロセス、銀塩法、電解めっき法、無電解めっき法、金属箔の積層等が挙げられ、ハンダ受理層の材料に応じて適宜選択される。
 本発明では、ハンダ受理層には、熱電性能を維持する観点から、高い導電性、高い熱伝導性が求められるため、スクリーン印刷法、ステンシル印刷法、電解めっき法、無電解めっき法や真空成膜法で成膜したハンダ受理層を用いることが好ましい。
 本発明の熱電変換材料のチップの製造方法によれば、簡便な方法で熱電変換材料のチップを製造することができる。また、熱電変換材料が電極との接合部を有さない形態で、かつ熱電変換材料を構成する熱電半導体材料に対し最適なアニール温度でアニールするため、熱電変換材料と電極間の電気抵抗値が増大してしまい、熱電性能が低下する等の問題が発生することがない。
[熱電変換モジュールの製造方法]
 本発明の熱電変換モジュールの製造方法は、前述した熱電変換材料のチップの製造方法により得られた熱電変換材料のチップを複数組み合わせた熱電変換モジュールを製造する方法である。
 熱電変換モジュールは、熱電性能の観点から、P型熱電変換材料のチップ及びN型熱電変換材料のチップを、π型、又はインプレーン型の熱電変換モジュールの構成になるように、電極を介在して接続されるように載置(配置)し、製造することが好ましい。
 前記π型の熱電変換モジュールを構成する場合、例えば、互いに離間するー対の電極を基板上に設け、―方の電極の上にP型熱電変換材料のチップを、他方の電極の上にN型熱電変換材料のチップを、同じく互いに離間して設け、両方の熱電変換材料のチップの上面を対向する基板上の電極に電気的に直列接続することで構成される。高い熱電性能を効率良く得る観点から、対向する基板の電極を介在したP型熱電変換材料のチップ及びN型熱電変換材料のチップの対を複数組、電気的に直列接続して用いる(後述する図4(g)参照)ことが好ましい。
 本発明の熱電変換材料のチップの製造方法により得られた、熱電変換材料のチップを複数組み合わせたπ型の熱電変換モジュールの製造方法においては、一例として、以下(I)~(VI)の工程を含むことが好ましい。
(I)第1の樹脂フィルム上に第1の電極を形成する工程;
(II)第2の樹脂フィルム上に第2の電極を形成する工程;
(III)前記(I)の工程で得られた前記第1の電極上に接合材料層1を形成する工程;
(IV)前記熱電変換材料のチップの一方の面を、前記(III)の工程で得られた前記接合材料層1上に載置する工程;
(V)前記(IV)の工程で載置した前記熱電変換材料のチップの一方の面を、前記(III)の工程で得られた前記接合材料層1を介在して前記第1の電極と接合する工程;
(VI)前記(V)の工程後の前記熱電変換材料のチップの他方の面と、前記(II)の工程で得られた前記第2の電極とを接合材料層2を介し介在して接合する工程。
 また、本発明の熱電変換材料のチップの製造方法により得られた、前記ハンダ受理層が形成された熱電変換材料のチップを複数組み合わせたπ型の熱電変換モジュールの製造方法においては、一例として、以下(XI)~(XVI)の工程を含むことが好ましい。
(XI)第1の樹脂フィルム上に第1の電極を形成する工程、
(XII)第2の樹脂フィルム上に第2の電極を形成する工程、
(XIII)前記(XI)の工程で得られた前記第1の電極上にハンダ材料層を形成する工程、
(XIV)前記熱電変換材料のチップのハンダ受理層を有する一方の面を、前記(XIII)の工程で得られた前記ハンダ材料層上に載置する工程、
(XV)前記(XIV)の工程で載置した前記熱電変換材料のチップのハンダ受理層を有する一方の面を、前記(XIII)の工程で得られた前記ハンダ材料層を介在して前記第1の電極と接合する工程、及び
(XVI)前記(XV)の工程後の前記熱電変換材料のチップの他方の面のハンダ受理層と、前記(XII)の工程で得られた前記第2の電極とをハンダ材料層を介在して接合する工程。
 以下、本発明の熱電変換材料のチップの製造方法により得られた熱電変換材料のチップを用いた熱電変換モジュールの製造方法について、図を用いて説明する。
 図4は、本発明の熱電変換材料のチップの製造方法により得られた熱電変換材料のチップを用いた熱電変換モジュールの製造方法に従った工程の一例を示す説明図であり、(a)は前述した熱電変換材料のチップの製造方法により得られた、両面にハンダ受理層14a、14bを有するP型熱電変換材料のチップ13p及びN型熱電変換材料のチップ13nの断面図であり、(b)は樹脂フィルム15に電極16及びハンダ材料層17を形成した後の断面図であり、(c)は(b)で得られた樹脂フィルム15上の電極16上のハンダ材料層17に、ハンダ受理層14aを有するP型熱電変換材料のチップ13p及びN型熱電変換材料のチップ13nを載置する態様を示す断面図であり、(d)はP型熱電変換材料のチップ13p及びN型熱電変換材料のチップ13nを載置した後の態様を示す断面模式図であり、(e)はハンダ材料層17を加熱冷却し接合した後の態様(ハンダ材料層17’)を示し、(f)は(b)で得られた樹脂フィルム15の電極16上のハンダ材料層17とP型熱電変換材料のチップ13p及びN型熱電変換材料のチップ13nのハンダ受理層14bとを貼り合わせた後の断面図であり、(g)は(f)で用いたハンダ材料層17を加熱冷却により、ハンダ受理層14a、14bを有するP型熱電変換材料のチップ13p及びN型熱電変換材料のチップ13nと電極16とを接合した後の断面図である。
<電極形成工程>
 電極形成工程は、本発明の熱電変換モジュールの製造方法の、例えば、前記(I)等の工程において、第1の樹脂フィルム上に第1の電極を形成する工程であり、また、例えば、前記(II)等の工程において、第2の樹脂フィルム上に第2の電極を形成する工程であり、図4(b)においては、例えば、樹脂フィルム15上に金属層を成膜して、それらを所定のパターンに加工し、電極16を形成する工程である。
(樹脂フィルム)
 本発明の熱電変換モジュールの製造方法において、熱電変換材料の電気伝導率の低下、熱伝導率の増加に影響を及ぼさない第1の樹脂フィルム及び第2の樹脂フィルムを用いることが好ましい。なかでも、屈曲性に優れ、熱電半導体組成物からなる薄膜をアニール処理した場合でも、基板が熱変形することなく、熱電変換材料のチップの性能を維持することができ、耐熱性及び寸法安定性が高いという点から、それぞれ独立に、ポリイミドフィルム、ポリアミドフィルム、ポリエーテルイミドフィルム、ポリアラミドフィルム、ポリアミドイミドフィルムが好ましく、さらに、汎用性が高いという点から、ポリイミドフィルムが特に好ましい。
 前記第1の樹脂フィルム及び第2の樹脂フィルムの厚さは、屈曲性、耐熱性及び寸法安定性の観点から、それぞれ独立に、1~1000μmが好ましく、5~500μmがより好ましく、10~100μmがさらに好ましい。
 また、前記第1の樹脂フィルム及び第2の樹脂フィルムは、熱重量分析で測定される5%重量減少温度が300℃以上であることが好ましく、400℃以上であることがより好ましい。JIS K7133(1999)に準拠して200℃で測定した加熱寸法変化率が0.5%以下であることが好ましく、0.3%以下であることがより好ましい。JIS K7197(2012)に準拠して測定した平面方向の線膨脹係数が0.1ppm・℃-1~50ppm・℃-1であり、0.1ppm・℃-1~30ppm・℃-1であることがより好ましい。
(電極)
 本発明に用いる熱電変換モジュールの第1の電極及び第2の電極の金属材料としては、銅、金、ニッケル、アルミニウム、ロジウム、白金、クロム、パラジウム、ステンレス鋼、モリブデン又はこれらのいずれかの金属を含む合金等が挙げられる。
 前記電極の層の厚さは、好ましくは10nm~200μm、より好ましくは30nm~150μm、さらに好ましくは50nm~120μmである。電極の層の厚さが、上記範囲内であれば、電気伝導率が高く低抵抗となり、電極として十分な強度が得られる。
 電極の形成は、前述した金属材料を用いて行う。
 電極を形成する方法としては、樹脂フィルム上にパターンが形成されていない電極を設けた後、フォトリソグラフィー法を主体とした公知の物理的処理もしくは化学的処理、又はそれらを併用する等により、所定のパターン形状に加工する方法、または、スクリーン印刷法、インクジェット法等により直接電極のパターンを形成する方法等が挙げられる。
 パターンが形成されていない電極の形成方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法等のPVD(物理気相成長法)、もしくは熱CVD、原子層蒸着(ALD)等のCVD(化学気相成長法)等のドライプロセス、又はディップコーティング法、スピンコーティング法、スプレーコーティング法、グラビアコーティング法、ダイコーティング法、ドクターブレード法等の各種コーティングや電着法等のウェットプロセス、銀塩法、電解めっき法、無電解めっき法、金属箔の積層等が挙げられ、電極の材料に応じて適宜選択される。
 本発明に用いる電極には、熱電性能を維持する観点から、高い導電性、高い熱伝導性が求められるため、めっき法や真空成膜法で成膜した電極を用いることが好ましい。高い導電性、高い熱伝導性を容易に実現できることから、真空蒸着法、スパッタリング法等の真空成膜法、および電解めっき法、無電解めっき法が好ましい。形成パターンの寸法、寸法精度の要求にもよるが、メタルマスク等のハードマスクを介在し、容易にパターンを形成することもできる。
<接合材料層形成工程>
 接合材料層形成工程は、本発明の熱電変換モジュールの製造方法の、例えば、前記(III)等の工程であり、第1の電極上に接合材料層1を形成する工程である。また、例えば、前記(VI)等の工程に含まれるものであり、第2の電極上に接合材料層2を形成する工程である。
 具体的には、例えば、図4(b)に示したように、電極16上にハンダ材料層17を形成する工程であり、接合材料層1及び接合材料層2は、熱電変換材料のチップと電極とを接合するために用いられる。
 接合材料としては、ハンダ材料、導電性接着剤、焼結接合剤等が挙げられ、それぞれ、この順に、ハンダ材料層、導電性接着剤層、焼結接合剤層等として、電極上に形成されることが好ましい。本明細書において導電性とは、電気抵抗率が1×10Ω・m未満のことを指す。
 前記ハンダ材料層を構成するハンダ材料としては、樹脂フィルム、熱電変換材料のチップに含まれる耐熱性樹脂の耐熱温度等、また、導電性、熱伝導性とを考慮し、適宜選択すればよく、Sn、Sn/Pb合金、Sn/Ag合金、Sn/Cu合金、Sn/Sb合金、Sn/In合金、Sn/Zn合金、Sn/In/Bi合金、Sn/In/Bi/Zn合金、Sn/Bi/Pb/Cd合金、Sn/Bi/Pb合金、Sn/Bi/Cd合金、Bi/Pb合金、Sn/Bi/Zn合金、Sn/Bi合金、Sn/Bi/Pb合金、Sn/Pb/Cd合金、Sn/Cd合金等の既知の材料が挙げられる。鉛フリー及び/またはカドミウムフリー、融点、導電性、熱伝導性の観点から、43Sn/57Bi合金、42Sn/58Bi合金、40Sn/56Bi/4Zn合金、48Sn/52In合金、39.8Sn/52In/7Bi/1.2Zn合金のような合金が好ましい。
 ハンダ材料の市販品としては、以下のものが挙げられる。例えば、42Sn/58Bi合金(タムラ製作所社製、製品名:SAM10-401-27)、41Sn/58Bi/Ag合金(ニホンハンダ社製、製品名:PF141-LT7HO)、96.5Sn3Ag0.5Cu合金(ニホンハンダ社製、製品名:PF305-207BTO)等が使用できる。
 ハンダ材料層の厚さ(加熱冷却後)は、好ましくは10~200μmであり、より好ましくは20~150μm、さらに好ましくは30~130μm、特に好ましくは40~120μmである。ハンダ材料層の厚さがこの範囲にあると、熱電変換材料のチップ及び電極との密着性が得やすくなる。
 ハンダ材料を基板上に塗布する方法としては、ステンシル印刷、スクリーン印刷、ディスペンシング法等の公知の方法が挙げられる。加熱温度は用いるハンダ材料、樹脂フィルム等により異なるが、通常、150~280℃で3~20分間行う。
 前記導電性接着剤層を構成する導電性接着剤としては、特に制限されないが、導電ペースト等が挙げられる。導電ペーストとしては、銅ペースト、銀ペースト、ニッケルペースト等が挙げられ、バインダーを使用する場合は、エポキシ樹脂、アクリル樹脂、ウレタン樹脂等が挙げられる。
 導電性接着剤を樹脂フィルム上に塗布する方法としては、スクリーン印刷、ディスペンシング法等の公知の方法が挙げられる。
 導電性接着剤層の厚さは、好ましくは10~200μmであり、より好ましくは20~150μm、さらに好ましくは30~130μm、特に好ましくは40~120μmである。
 前記焼結接合剤層を構成する焼結接合剤としては、特に制限されないが、シンタリングペースト等が挙げられる。前記シンタリングペーストは、例えば、ミクロンサイズの金属粉とナノサイズの金属粒子等からなり、前記導電性接着剤と異なり、直接金属をシンタリングで接合するものであり、エポキシ樹脂、アクリル樹脂、ウレタン樹脂等のバインダーを含んでいてもよい。
 シンタリングペーストとしては、銀シンタリングペースト、銅シンタリングペースト等が挙げられる。
 焼結接合剤層を樹脂フィルム上に塗布する方法としては、スクリーン印刷、ステンシル印刷、ディスペンシング法等の公知の方法が挙げられる。焼結条件は、用いる金属材料等に異なるが、通常、100~300℃で、30~120分間である。
 焼結接合剤の市販品としては、例えば、銀シンタリングペーストとして、シンタリングペースト(京セラ社製、製品名:CT2700R7S)、焼結型金属接合材(ニホンハンダ社製、製品名:MAX102)等が使用できる。
 焼結接合剤層の厚さは、好ましくは10~200μmであり、より好ましくは20~150μm、さらに好ましくは30~130μm、特に好ましくは40~120μmである。
<熱電変換材料チップ載置工程>
 熱電変換材料チップ載置工程は、本発明の熱電変換モジュールの製造方法の、例えば、前記(IV)等の工程であり、前記熱電変換材料のチップの製造方法により得られた熱電変換材料のチップの一方の面を、前記(III)等の工程で得られた前記接合材料層1上に載置する工程であり、例えば、図4(c)においては、樹脂フィルム15の電極16上のハンダ材料層17上に、チップマウンター(図示せず)のハンド部22を用い、ハンダ受理層14a及び14bを有するP型熱電変換材料のチップ13p、並びにハンダ受理層14a及び14bを有するN型熱電変換材料のチップ13nを、それぞれのハンダ受理層14aの面がハンダ材料層17の上面に、かつそれぞれが電極16上において一対となるよう載置する工程である(載置後(d)の態様とする)。
 P型熱電変換材料のチップ、N型熱電変換材料のチップの配置は、用途により、同じ型もの同士を組み合わせてもよいし、例えば、「・・・NPPN・・・」、「・・・PNPP・・・」等、ランダムに組み合わせてもよい。理論的に高い熱電性能が得られる観点から、P型熱電変換材料のチップ及びN型熱電変換材料のチップの対を電極を介在し複数配置することが好ましい。
 熱電変換材料のチップを、接合材料層1上に載置する方法としては、特に制限はなく、公知の方法が用いられる。例えば、熱電変換材料のチップ1つを、又は複数を、前述したチップマウンター等でハンドリングし、カメラ等で位置合わせを行い、載置する等の方法が挙げられる。
 熱電変換材料のチップは、ハンドリング性、載置精度、量産性の観点から、チップマウンターにより載置することが好ましい。
<接合工程>
 接合工程は、本発明の熱電変換モジュールの製造方法の、例えば、前記(V)等の工程であり、前記(IV)等の工程で載置した前記熱電変換材料のチップの一方の面を前記(III)等の工程で得られた前記接合材料層1を介在して前記第1の電極と接合する工程であり、例えば、図4の(c)のハンダ材料層7を所定の温度に加熱し所定の時間保持後、室温に戻す工程である。
 また、本発明の熱電変換モジュールの製造方法の、例えば、前記(VI)等の工程であり、前記(V)等の工程後の前記熱電変換材料のチップの他方の面と、前記(II)等の工程で得られた前記第2の電極とを接合材料層2を介在して接合する工程であり、例えば、図4(f)においては、(e)におけるP型熱電変換材料のチップ13p上のハンダ受理層14bの面及びP型熱電変換材料のチップ13n上のハンダ受理層14bの面と、それぞれのハンダ材料層17を介在し、樹脂フィルム15上の電極16とを接合する工程である。また、図4(g)は、(f)のハンダ材料層17を加熱冷却した後の態様(ハンダ材料層17’)を示す。
 接合条件である加熱温度、保持時間等については、前述した通りである。なお、図4の(e)は、ハンダ材料層17を室温に戻した後の態様である(ハンダ材料層17’は加熱冷却により固化し厚さが減少する)。
 電極との接合は、前述した接合材料である、ハンダ材料層、導電性接着剤層、又は焼結接合剤層を介在して接合することが好ましい。また、ハンダ材料層を用いる場合は、密着性向上の観点からハンダ受理層を介在して接合することが好ましい。
 なお、熱電変換モジュールにおける一対の樹脂フィルム上の電極に用いるそれぞれの接合材料層の組み合わせ(一対のいずれかの樹脂フィルム上に電極を有さない場合は除く)は、特に制限されないが、熱電変換モジュールの機械的な変形を防止し熱電性能の低下を抑制する観点から、ハンダ材料層同士、導電性接着剤層同士、又は焼結接合剤層の組み合わせとすることが好ましい。
 本発明の熱電変換材料のチップの製造方法、該チップを用いた熱電変換モジュールの製造方法によれば、簡便な方法で熱電変換材料のチップを形成することができ、該チップを用い熱電変換モジュールを製造することで、従来のアニール処理工程での熱電変換材料と電極間での拡散による合金層の形成由来の熱電性能の低下を防止でき、かつ熱電変換材料のチップを構成する熱電半導体材料に対し、最適なアニール温度でアニールが可能であることからより熱電性能が向上した熱電変換モジュールを製造できる。
[熱電変換モジュールの製造方法]
 本発明の熱電変換モジュールの製造方法は、熱電半導体組成物からなる熱電変換材料のチップを複数組み合わせた熱電変換モジュールを製造する方法であって、(i)基板上に犠牲層を形成する工程、(ii)前記(i)の工程で得られた前記犠牲層上に前記熱電変換材料のチップを形成する工程、(iii)前記(ii)の工程で得られた前記熱電変換材料のチップをアニール処理する工程、(iv)第1の樹脂フィルムと第1の電極とをこの順に有する第1の層を準備する工程、(v)第2の樹脂フィルムと第2の電極とをこの順に有する第2Aの層、又は第2の樹脂フィルムを有しかつ電極を有しない第2Bの層を準備する工程、(vi)前記(iii)の工程で得られたアニール処理後の前記熱電変換材料のチップの一方の面と、前記(iv)の工程で準備した前記第1の層の電極とを接合材料層1を介在して接合する工程、(vii)前記(vi)の工程後の前記熱電変換材料のチップの他方の面を前記犠牲層から剥離する工程、及び(viii)前記(vii)の工程で剥離し得られた前記熱電変換材料のチップの他方の面と、前記(v)の工程で準備した前記第2Aの層の電極とを接合材料層2を介在して接合する工程、又は前記(v)の工程で準備した前記第2Bの層とを接合材料層3を介在して接合する工程を含む、熱電変換モジュールの製造方法である。
 本発明の熱電変換モジュールの製造方法では、前記(i)、(ii)及び(iii)の各工程を経ることにより得られた熱電変換材料のチップの形態で、熱電変換モジュールを製造することを特徴としている。ここで、前記(i)、(ii)及び(iii)の各工程は、前述した本発明の熱電変換材料のチップの製造方法において、前記(A)犠牲層形成工程、(B)熱電変換材料のチップ形成工程及び(C)アニール処理工程の各工程にこの順に対応し、全く同一の工程であり、例えば、図1で説明したとおりの実施態様が挙げられる。また、用いる基板、犠牲層、熱電半導体組成物の薄膜、さらにそれらを構成する好ましい材料、厚さ、そして形成方法等含め、すべて前述したとおり同一である。
 本発明の熱電変換モジュールの製造方法では、熱電性能の観点から、前記(v)の工程が、第2の樹脂フィルムと第2の電極とをこの順に有する第2Aの層を準備する工程であり、前記(viii)の工程が、前記(vii)の工程で剥離し得られた前記熱電変換材料のチップの他方の面と、前記(v)の工程で準備した前記第2Aの層の第2の電極とを接合材料層2を介在して接合する工程であることが好ましい。
 上記工程で得られる熱電変換モジュールは、前述したπ型の熱電変換モジュールに相当する。
 また、本発明の熱電変換モジュールの製造方法では、熱電性能の観点から、前記(v)の工程が、第2の樹脂フィルムを有しかつ電極を有しない第2Bの層を準備する工程であり、前記(viii)の工程が、前記(vii)の工程で剥離し得られた前記熱電変換材料のチップの他方の面と、前記(v)の工程で準備した前記第2Bの層とを接合材料層3を介在して接合する工程であることが好ましい。
 上記工程で得られる熱電変換モジュールは、前述したインプレーン型の熱電変換モジュールに相当する。
 以下、本発明の、熱電半導体組成物からなる熱電変換材料のチップを複数組み合わせた熱電変換モジュールの製造方法について、図を用いて説明する。
 図2は、本発明の、熱電半導体組成物からなる熱電変換材料のチップを複数組み合わせた熱電変換モジュールの製造方法に従った工程の実施態様の一例(π型熱電変換モジュール)を工程順に示す説明図であり、(a)は熱電変換材料のチップの一方の面(上面)に後述するハンダ受理層を形成した後の断面図であり、(b)は樹脂フィルム上に電極及びハンダ材料層を形成した後の断面図であり、(c)は(b)で得られた樹脂フィルム上の電極をハンダ材料層及び(a)のハンダ受理層を介在し熱電変換材料のチップの一方の面(上面)と貼り合わせした後の断面図であり、(c’)はハンダ材料層を加熱冷却により接合した後の断面図であり、(d)は犠牲層から熱電変換材料のチップの他方の面(下面)を剥離した後の断面図であり、(e)は(d)で得られた、樹脂フィルム上の熱電変換材料のチップの他方の面(下面)にハンダ受理層を形成した後の断面図であり、(f)は(b)で得られた樹脂フィルム上の電極をハンダ材料層及び(e)の後述するハンダ受理層を介在し熱電変換材料のチップの他方の面(下面)と貼り合せ、接合した後の断面図である。
<電極形成工程>
 電極形成工程は、本発明の熱電変換モジュールの製造方法の前記(iv)の第1の樹脂フィルムと第1の電極とをこの順に有する第1の層を準備する工程において、第1の樹脂フィルム上に第1の電極を形成する工程である。又は、前記(v)の第2の樹脂フィルムと第2の電極とをこの順に有する第2Aの層を準備する工程において、第2の樹脂フィルム上に第2の電極を形成する工程である。図2(b)においては、例えば、樹脂フィルム5上に金属層を成膜して、それらを所定のパターンに加工し、電極6を形成する工程である。
(樹脂フィルム)
 本発明の熱電変換モジュールの製造方法における熱電変換モジュールにおいて、熱電変換材料の電気伝導率の低下、熱伝導率の増加に影響を及ぼさない第1の樹脂フィルム及び第2の樹脂フィルムを用いる。
 第1の樹脂フィルム及び第2の樹脂フィルムに用いる樹脂フィルムは、前述した樹脂フィルムと同様の材料を用いることができ、厚さ、熱重量分析で測定される5%重量減少温度、200℃で測定した加熱寸法変化率、平面方向の線膨脹係数等すべて同様である。
(電極)
 本発明に用いる熱電変換モジュールの第1の電極及び第2の電極の金属材料としては、
前述した電極と同様の金属材料を用いることができ、電極の層の厚さ、形成方法等すべて同様である。
<電極接合工程1>
 電極接合工程1は、本発明の熱電変換モジュールの製造方法の前記(vi)の工程であり、前記(iii)の工程で得られたアニール処理後の前記熱電変換材料のチップの一方の面と、前記(iv)の工程で準備した前記第1の層の第1の電極とを接合材料層1を介在して接合する工程である。
 電極接合工程1は、例えば、図2の(c)においては、樹脂フィルム5の電極6上のハンダ材料層7と、P型熱電変換材料のチップ3a、N型熱電変換材料のチップ3bのそれぞれの一方の面に形成したハンダ受理層4とを介在し、P型熱電変換材料のチップ3a及びN型熱電変換材料のチップ3bを電極7と貼り合わせ、ハンダ材料層7を所定の温度に加熱し所定の時間保持後、室温に戻すことにより、P型熱電変換材料のチップ3a及びN型熱電変換材料のチップ3bを、電極7と接合する工程である。加熱温度、保持時間等については、後述するとおりである。なお、図2の(c’)は、ハンダ材料層7を室温に戻した後の態様である(ハンダ材料層7’は加熱冷却により固化し厚さが減少)。
(接合材料層1形成工程)
 電極接合工程1には、接合材料層1形成工程が含まれる。
 接合材料層1形成工程は、本発明の熱電変換モジュールの製造方法の(vi)の工程において、(iv)の工程で得られた第1の電極上に接合材料層1を形成する工程である。
 接合材料層1形成工程は、例えば、図2(b)においては、電極6上にハンダ材料層7を形成する工程である。
 接合材料層1を構成する接合材料としては、前述した接合材料と同様の材料を用いることができ、ハンダ材料、導電性接着剤、焼結接合剤等が挙げられ、それぞれ、ハンダ材料層、導電性接着剤層、焼結接合層として、電極上に形成されることが好ましい。
 ハンダ材料層を構成するハンダ材料としては、前述したハンダ材料層に用いるハンダ材料と同様の材料を用いることができ、ハンダ材料層の厚さ、塗布方法、加熱温度、保持時間等すべて同様である。
 導電性接着剤層を構成する導電性接着剤としては、前述した導電性接着剤層に用いる導電性接着剤と同様の材料を用いることができ、導電性接着剤層の厚さ、塗布方法等すべて同様である。
 焼結接合剤層を構成する焼結接合剤としては、前述した焼結接合剤層に用いる焼結接合剤と同様の材料を用いることができ、焼結接合剤層の厚さ、塗布方法、焼結温度、保持時間等すべて同様である。
 また、ハンダ材料層を用いる場合は、熱電変換材料のチップとの密着性向上の観点から前述したハンダ受理層を介在して接合することが好ましい。
(ハンダ受理層形成工程)
 本発明の熱電変換モジュールの製造方法において、例えば、前記π型の熱電変換モジュール、及び前記インプレーン型の熱電変換モジュールを製造する場合、さらに、前記(iii)の工程で得られたアニール処理後の前記熱電変換材料のチップの一方の面にハンダ受理層を形成する工程を含むことが好ましい。
 ハンダ受理層形成工程は、前述したように、熱電変換材料のチップ上に、ハンダ受理層を形成する工程であり、例えば、図2の(a)においては、P型熱電変換材料のチップ3a及びN型熱電変換材料のチップ3bの一方の面にハンダ受理層4を形成する工程である。
 本発明に用いるハンダ受理層は、前述したハンダ受理層に用いる金属材料と同様の材料を用いることができ、ハンダ受理層の厚さ、形成方法等もすべて同様である。
<チップ剥離工程>
 チップ剥離工程は、熱電変換モジュールの製造方法の(vii)の工程であり、前記(vi)の工程後の熱電変換材料のチップの他方の面を犠牲層から剥離する工程である。
 チップ剥離工程は、例えば、図2の(d)においては、犠牲層2からP型熱電変換材料のチップ3a及びN型熱電変換材料のチップ3bの他方の面を剥離する工程である。
 熱電変換材料の剥離方法としては、犠牲層から熱電変換材料のチップをすべて一括して剥離可能な方法であれば、特に制限はない。
<電極接合工程2>
 電極接合工程2は、本発明の熱電変換モジュールの製造方法の(viii)の工程に含まれるものであり、(vii)の工程で剥離し得られた前記熱電変換材料のチップの他方の面と、前記(v)の工程で準備した前記第2Aの層の第2の電極とを接合材料層2を介在して接合する工程である。
 電極接合工程2は、例えば、図2の(f)において、P型熱電変換材料のチップ3a及びN型熱電変換材料のチップ3bの他方の面と、ハンダ受理層4及びハンダ材料層7を介在し、樹脂フィルム5上の電極6とを接合する工程である。
 第2Aの層の、第2の電極及び第2の樹脂フィルムのいずれの材料も、電極接合工程1に記載したものと同一のものが使用でき、接合方法も同一である。
 電極との接合は、前述したハンダ材料層、導電性接着剤層、又は焼結接合剤層を介在して接合することが好ましい。
(接合材料層2形成工程)
 電極接合工程2には、接合材料層2形成工程が含まれる。
 接合材料層2形成工程は、本発明の熱電変換モジュールの製造方法の(viii)の工程において、前記(v)の工程で準備した前記第2Aの層の第2の電極上に接合材料層2を形成する工程である。
 接合材料層2は、前述した接合材料層1と同様の材料を用いることができ、形成方法、厚さ等すべて同様である。
 また、例えば、前記π型の熱電変換モジュールを製造する際に、ハンダ材料層を用いる場合は、さらに、前記(vii)の工程で剥離し得られた前記熱電変換材料のチップの他方の面にハンダ受理層を形成する工程を含むことが好ましい。
 例えば、図2の(e)においては、P型熱電変換材料のチップ3a及びN型熱電変換材料のチップ3bの他方の面にハンダ受理層4を形成する工程である。
(樹脂フィルム接合工程)
 樹脂フィルム接合工程は、本発明の熱電変換モジュールの製造方法の(viii)の工程に含まれるものであり、(vii)の工程で剥離し得られた前記熱電変換材料のチップの他方の面と、前記(v)の工程で準備した第2の樹脂フィルムを有しかつ電極を有しない第2Bの層とを接合材料層3を介在して接合する工程である。前記第2の樹脂フィルムは、前述したとおりである。第2の樹脂フィルムを有しかつ電極を有しない第2Bの層との接合は、接合材料層3を用いる。
 接合材料層3を構成する接合材料としては、好ましくは樹脂材料であり、樹脂材料層として、樹脂フィルム上に形成される。
 前記樹脂材料としては、ポリオレフィン系樹脂、エポキシ系樹脂、又はアクリル系樹脂を含むものであることが好ましい。さらに、前記樹脂材料は粘接着性や低水蒸気透過率性を有していることが好ましい。本明細書において、粘接着性を有するとは、樹脂材料が、粘着性、接着性、貼り付ける初期において感圧により接着可能な感圧性の粘着性を有することを意味する。
 樹脂材料層の形成は、公知の方法で行うことができる。
 樹脂材料層の厚さは、好ましくは1~100μm、より好ましくは3~50μm、さらに好ましくは5~30μmである。
 なお、熱電変換モジュールにおける一対の樹脂フィルム上の電極に用いるそれぞれの接合材料層の組み合わせ(一対のいずれかの樹脂フィルム上に電極を有さない場合を除く)は、特に制限されないが、前述したように、熱電変換モジュールの機械的な変形を防止し熱電性能の低下を抑制する観点から、ハンダ材料層同士、導電性接着剤層同士、又は焼結接合剤層同士の組み合わせとすることが好ましい。
(熱電変換モジュールの他の製造方法)
 本発明の熱電変換材料のチップの製造方法により得られたチップを用いた熱電変換モジュールの製造方法のさらに他の例として以下の方法が挙げられる。
 具体的には、前述した犠牲層から、熱電変換材料の複数のチップを、1チップごとに剥離することにより、複数のチップを得、該複数のチップを前記樹脂フィルム上の所定の電極上に1つ1つ配置することにより、熱電変換モジュールを形成する方法である。
 熱電変換材料の複数のチップを電極上に配置する方法は、チップ1つ1つを、ロボット等でハンドリングし、顕微鏡等で位置合わせを行い、配置する等、公知の方法を用いることができる。
 本発明の熱電変換材料のチップの製造方法、及び熱電半導体組成物からなる熱電変換材料のチップを複数組み合わせた熱電変換モジュールの製造方法によれば、簡便な方法で熱電変換材料のチップを形成することができ、得られた熱電変換モジュールにあっては、従来のアニール処理工程での熱電変換材料と電極間での拡散による合金層の形成由来の熱電性能の低下を防止できる。
 次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
 実施例1~5及び比較例1で作製した熱電変換材料のチップを有する試験片における、犠牲層からの熱電変換材料のチップの剥離性評価は、以下の方法で行った。
<剥離性評価>
(剥離性評価1)
 実施例1~5及び比較例1で作製した試験片の熱電変換材料の薄膜をJIS K5600-5-6:1999記載のクロスカット試験に準拠して、以下に示すJIS K5600-5-6の表1(試験結果の分類)の判定を基準として付着性を評価することにより、試験片からの熱電変換材料の本発明の剥離性を評価した。
(「表1 試験結果の分類」から抜粋)
分類0:カットの縁が完全に滑らかで,どの格子の目にもはがれがない。
分類1:カットの交差点における塗膜の小さなはがれ。クロスカット部分で影響を受けるのは,明確に5%を上回ることはない。
分類2:塗膜がカットの縁に沿って,及び/又は交差点においてはがれている。クロスカット部分で影響を受けるのは明確に5%を超えるが15%を上回ることはない。
分類3:塗膜がカットの縁に沿って,部分的又は全面的に大はがれを生じており,及び/又は目のいろいろな部分が,部分的又は全面的にはがれている。クロスカット部分で影響を受けるのは,明確に15%を超えるが35%を上回ることはない。
分類4:塗膜がカットの縁に沿って,部分的又は全面的に大はがれを生じており,及び/又は数か所の目が部分的又は全面的にはがれている。クロスカット部分で影響を受けるのは,明確に65%を上回ることはない。
分類5:分類4でも分類できないはがれ程度のいずれか。
(剥離性評価2)
 試験片から剥離した熱電変換材料の裏面、すなわち、犠牲層に接していた側の面の電気抵抗値を低抵抗測定装置(日置社製、型名:RM3545)を用いて、25℃60%RHの環境下で測定した。
 上記、剥離性評価1及び剥離性評価2の結果に基づき、以下の基準により、トータルの剥離性を評価(総合評価)した。
〇:分類5かつ電気抵抗値が1(Ω)以下(剥離後の熱電変換材料の裏面に、犠牲層が、残存していないことを意味する)。
×:分類5以外かつ電気抵抗値が1(Ω)超(剥離後の熱電変換材料の裏面に、犠牲層が、残存している可能性があることを意味する)。
(実施例1)
<熱電変換材料の試験片の作製>
(1)熱電半導体組成物の作製
(熱電半導体微粒子の作製)
 ビスマス-テルル系熱電半導体材料であるP型ビスマステルライドBi0.4TeSb1.6(高純度化学研究所製、粒径:180μm)を、遊星型ボールミル(フリッチュジャパン社製、Premium line P-7)を使用し、窒素ガス雰囲気下で粉砕することで、平均粒径2.0μmの熱電半導体微粒子を作製した。粉砕して得られた熱電半導体微粒子に関して、レーザー回折式粒度分析装置(Malvern社製、マスターサイザー3000)により粒度分布測定を行った。
(熱電半導体組成物の塗工液の調製)
 上記で得られたP型ビスマステルライドBi0.4Te3.0Sb1.6微粒子92質量部、耐熱性樹脂としてポリイミド前駆体であるポリアミック酸(シグマアルドリッチ社製、ポリ(ピロメリト酸二無水物-co-4,4´-オキシジアニリン)アミド酸溶液、溶媒:N-メチルピロリドン、固形分濃度:15質量%)3質量部、及びイオン液体としてN-ブチルピリジニウムブロミド5質量部を混合分散した熱電半導体組成物からなる塗工液を調製した。
(2)熱電変換材料の薄膜の形成
 厚さ0.7mmのガラス基板(河村久蔵商店社製、商品名:青板ガラス)上に犠牲層として、ポリメチルメタクリル酸メチル樹脂(PMMA)(シグマアルドリッチ社製、商品名:ポリメタクリル酸メチル、)をトルエンに溶解した、固形分10%のポリメチルメタクリル酸メチル樹脂溶液をスピンコート法により、乾燥後の厚さが1.0μmとなるように成膜した。
 次いで、メタルマスクを介在して、犠牲層上に上記(1)で調製した塗工液を、スクリーン印刷により塗布し、温度120℃で、10分間アルゴン雰囲気下で乾燥し、厚さが50μmの薄膜を形成した。次いで、得られた薄膜に対し、水素とアルゴンの混合ガス(水素:アルゴン=3体積%:97体積%)雰囲気下で、加温速度5K/minで昇温し、400℃で1時間保持し、前記薄膜をアニール処理し、熱電半導体材料の微粒子を結晶成長させ、熱電変換材料を作製することにより、熱電変換材料の試験片を作製した。得られた試験片の熱電変換材料と犠牲層間の剥離性及び試験片から、剥離した熱電変換材料の裏面、すなわち、犠牲層に接していた側の面の電気抵抗値を測定した。結果を表1に示す。
(実施例2)
 実施例1において、熱電半導体材料としてN型ビスマステルライドBiTeを用いた以外は、実施例1と同様にして試験片を作製した。得られた試験片の熱電変換材料と犠牲層間の剥離性及び試験片から剥離した、熱電変換材料の、犠牲層に接していた側の面の電気抵抗値を測定した。結果を表1に示す。
(実施例3)
 実施例1において、犠牲層として離型剤であるフッ素系離型剤(ダイキン社製、商品名:オプツールHD-1100TH)をガラス基板上に厚さが0.1μmになるように塗布した以外は、実施例1と同様にして試験片を作製した。得られた試験片の熱電変換材料と犠牲層間の剥離性及び試験片から剥離した、熱電変換材料の、犠牲層に接していた側の面の電気抵抗値を測定した。結果を表1に示す。
(実施例4)
 実施例3において、熱電半導体材料としてN型ビスマステルライドBiTeを用いた以外は、実施例3と同様にして試験片を作製した。得られた試験片の熱電変換材料と犠牲層間の剥離性及び試験片から剥離した、熱電変換材料の、犠牲層に接していた側の面の電気抵抗値を測定した。結果を表1に示す。
(実施例5)
 実施例1において、犠牲層としてポリスチレン樹脂(PS)(シグマアルドリッチ社製、商品名:ポリスチレン)をトルエンに溶解した固形分10%のポリスチレン溶液を用いスピンコート法により、乾燥後の厚さが1.0μmとなるように成膜した以外は、実施例1と同様に試験片を作製した。得られた試験片の熱電変換材料と犠牲層間の剥離性及び試験片から剥離した、熱電変換材料の、犠牲層に接していた側の面の電気抵抗値を測定した。結果を表1に示す。
(比較例1)
 実施例1において、ガラス基板上に犠牲層を成膜しなかった以外は、実施例1と同様に試験片を作製した。得られた試験片の熱電変換材料と犠牲層間の剥離性及び試験片から剥離した、熱電変換材料の、犠牲層に接していた側の面の電気抵抗値を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 犠牲層としてPMMA樹脂を用いた実施例1では、犠牲層を設けない比較例1(目視で接合不良を確認)に比べて、剥離性が高く、熱電変換材料の自立膜の形成が可能であることが分かった。また、犠牲層としてPS樹脂を用いた実施例5でも、剥離性が高く、自立膜の形成が可能であることが分かった。さらに、犠牲層としてフッ素系離型剤を用いた実施例3、4でも、自立膜の形成が可能であることが分かった。
 実施例6~11で作製した熱電変換材料のチップの粘着シートの粘着剤層への転写性の評価、及び転写された熱電変換材料のチップの粘着シートの粘着剤層からの剥離性の評価を以下の方法で行った。
(a)転写性評価
 転写後に犠牲層側に残存したハンダ受理層を有する熱電変換材料のチップの個数Nをカウントし、ハンダ受理層を有する熱電変換材料のチップの全個数Pに対する比率(N/P:転写率)を算出することにより、ハンダ受理層を介在した熱電変換材料のチップの、粘着シートの粘着剤層への転写性を、以下の判定基準により評価した。なお、粘着シートを貼り合せた後、粘着剤層には、粘着シート側の基板を介在して、1kg/0.01mmの荷重をかけ5分間静置させた後、犠牲層から試験片を剥離し転写を行った。
◎:転写率が、1≧N/P≧0.90
〇:転写率が、0.90>N/P≧0.70
△:転写率が、0.70>N/P≧0.50
×:転写率が、0.50>N/P≧0
(b)剥離性評価
 UV照射後の粘着シートの粘着剤層から、得られた熱電変換材料のチップを剥離する際の剥離性を、以下の判定条件により評価した。
◎:密着力が弱く、容易に剥離できる
〇:密着力が少し弱く剥離できる
△:密着力が少し強めで容易に剥離できない
×:密着力が強く剥離できない
(c)粘着力の評価
 実施例で用いた粘着シートを25mm幅、100mm幅長のサンプルを2枚作製し、粘着シートの剥離シートを剥がして、6インチ、厚さ700μmのシリコンウェハ(SUMCO社製、ミラー面の算術平均粗さ(Ra)5.0nm)のミラー面に貼付したのち、23℃、相対湿度50%の環境下で20分間静置した。その後、一方のサンプルについて、同環境下で引張試験機(オリエンテック社製、テンシロン)を用いて、JIS Z-0237:2009に規定される方法に準拠して、剥離速度300mm/分、剥離角度180度の条件で、粘着シートの粘着剤層の粘着力を測定した。同様に、他方のサンプルについて、UV照射機(ヘレウス社製、無電極UVランプシステム 型番:1-LH10MKII-10)を用いて紫外線を照度250mW/cm、積算光量として240mJ/cmとなるよう照射し、粘着シートの粘着剤層の粘着力を測定した。
(実施例6)
<熱電変換材料のチップの作製>
 厚さ0.7mmのソーダライムガラス基板上に犠牲層として、ポリメチルメタクリル酸メチル樹脂(PMMA)(シグマアルドリッチ社製、商品名:ポリメタクリル酸メチル、)をトルエンに溶解した、固形分10%のポリメチルメタクリル酸メチル樹脂溶液をスピンコート法により、乾燥後の厚さが6.0μmとなるように成膜した。
 次いで、メタルマスクを介在して、犠牲層上に後述する熱電半導体微粒子を含む塗工液(P)を用い、P型熱電変換材料のチップをステンシル印刷法により塗布し、温度120℃で、10分間アルゴン雰囲気下で乾燥し、厚さが220μmの薄膜として形成した。
 その後、得られた薄膜に対し、水素とアルゴンの混合ガス(水素:アルゴン=3体積%:97体積%)雰囲気下で、加温速度5K/minで昇温し、460℃で1時間保持し、前記薄膜をアニール処理し、熱電半導体材料の微粒子を結晶成長させ、厚さが200μmのP型熱電変換材料のチップ(アニール処理後)を形成した。
 次いで、得られたP型熱電変換材料のチップ(アニール処理後)の面にハンダ受理層として銀ペースト(三ツ星ベルト社製、製品名:MDotEC264)をスクリーン印刷法により印刷し、50℃で10分間加熱した(厚さ:10μm)。
 厚さ0.7mmのソーダライムガラス基板に両面テープで固定したダイシングテープ(粘着シート)(リンテック社製、製品名:D-675Q、粘着剤層厚さ:30μm)の剥離フィルムを剥がし、粘着剤層と得られたP型熱電変換材料のチップ上のハンダ受理層とを貼り合せた。次いで、ダイシングテープのガラス基板の表面に、1kg/0.01mmの荷重を静置の状態で5分間かけ、その後、犠牲層からP型熱電変換材料のチップを剥離して、前記ハンダ受理層を介在しダイシングテープ側の粘着剤層に転写した。次いで、犠牲層と接していたP型熱電変換材料のチップの面側に、前記銀ペーストを前記と同様に印刷し、50℃で10分間加熱し、ハンダ受理層(厚さ:10μm)を得た。ダイシングテープのガラス面側から、UV照射機(ヘレウス社製、無電極UVランプシステム 型番:1-LH10MKII-10)を用いて紫外線を照度250mW/cm、積算光量として240mJ/cmとなるよう照射した。その後、P型熱電変換材料のチップをダイシングテープ側の粘着剤層から剥離し、P型熱電変換材料のチップの両面にハンダ受理層を有するP型熱電変換材料のチップを得た。
(熱電半導体微粒子の作製方法)
 ビスマス-テルル系熱電半導体材料であるP型ビスマステルライドBi0.4TeSb1.6(高純度化学研究所製、粒径:180μm)を、遊星型ボールミル(フリッチュジャパン社製、Premium line P-7)を使用し、窒素ガス雰囲気下で粉砕することで、平均粒径2.0μmの熱電半導体微粒子T1を作製した。粉砕して得られた熱電半導体微粒子に関して、レーザー回折式粒度分析装置(Malvern社製、マスターサイザー3000)により粒度分布測定を行った。
(熱電半導体組成物の作製)
塗工液(P)
 得られたP型ビスマス-テルル系熱電半導体材料の微粒子T1を76.6質量部、耐熱性樹脂としてポリイミド前駆体であるポリアミック酸(シグマアルドリッチ社製、ポリ(ピロメリト酸二無水物-co-4,4´-オキシジアニリン)アミド酸溶液、溶媒:N-メチルピロリドン、固形分濃度:15質量%)16.5質量部、及びイオン液体として、N-ブチルピリジニウムブロミド6.0質量部、さらに、希釈剤として酢酸ブチルとN-メチルピロリドンを質量比8:2で混合した液0.9質量部を混合分散した熱電半導体組成物からなる塗工液(P)を調製した。
(実施例7)
 実施例6において、ダイシングテープをD-255(リンテック社製、粘着剤層厚さ:40μm)に変更し、熱電変換材料のチップが表2の厚さになるようにメタルマスクの厚さを変更した以外は、実施例6と同様にして、実施例7のP型熱電変換材料のチップを作製した。
(実施例8)
 実施例6において、ダイシングテープをD-485(リンテック社製、粘着剤層厚さ:40μm)に変更し、熱電変換材料のチップが表2の厚さになるようにメタルマスクの厚さを変更した以外は、実施例6と同様にして、実施例8のP型熱電変換材料のチップを作製した。
(実施例9)
 実施例6において、ダイシングテープをD-841(リンテック社製、粘着剤層厚さ:10μm)に変更し、熱電変換材料のチップが表2の厚さになるようにメタルマスクの厚さを変更した以外は、実施例6と同様にして、実施例9のP型熱電変換材料のチップを作製した。
(実施例10)
 実施例6において、ダイシングテープをD-841W(リンテック社製、粘着剤層厚さ:20μm)に変更し、熱電変換材料のチップが表2の厚さになるようにメタルマスクの厚さを変更した以外は、実施例6と同様にして、実施例10のP型熱電変換材料のチップを作製した。
(実施例11)
 実施例6において、ダイシングテープをD-510T(リンテック社製、粘着剤層厚さ:30μm)に変更した以外は、実施例6と同様にして、実施例11のP型熱電変換材料のチップを作製した。
 実施例6~11で作製したP型熱電変換材料のチップの転写性及び剥離性の評価を行った。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 本発明の熱電変換材料のチップの製造方法において、条件(s)、(t)、(u)を満たす粘着剤層を用いた実施例6~11では、熱電変換材料のチップの転写、剥離が良好に行われることがわかる。
 本発明の熱電変換材料のチップの製造方法及びその製造方法により得られたチップを用いた熱電変換モジュールの製造方法によれば、電極と熱電変換材料との拡散による合金相の形成が防止でき、結果として熱電性能が低下する等の問題を解消することができる。同時に、製造工程内での歩留まりの向上が期待できる。また、本発明の製造方法で得られた熱電変換モジュールは、屈曲性を有するとともに、薄型化(小型、軽量)が実現できる可能性を有する。
 上記の熱電変換材料のチップの製造方法により得られたチップを用いた熱電変換モジュールは、工場や廃棄物燃焼炉、セメント燃焼炉等の各種燃焼炉からの排熱、自動車の燃焼ガス排熱及び電子機器の排熱を電気に変換する発電用途に適用することが考えられる。冷却用途としては、エレクトロニクス機器の分野において、例えば、半導体素子である、CCD(Charge Coupled Device)、MEMS(Micro Electro Mechanical Systems)、受光素子等の各種センサーの温度制御等に適用することが考えられる。
1:基板
2:犠牲層
3:熱電変換材料のチップ
3a:P型熱電変換材料のチップ
3b:N型熱電変換材料のチップ
4:ハンダ受理層
5:樹脂フィルム
6:電極
7:ハンダ材料層(形成時)
7’:ハンダ材料層(接合後)
11:基板
12:犠牲層
13:熱電変換材料のチップ
13’:熱電変換材料のチップ(個片)
13p:P型熱電変換材料のチップ
13n:N型熱電変換材料のチップ
14a,14b:ハンダ受理層
15:樹脂フィルム
16:電極
17:ハンダ材料層(形成時)
17’:ハンダ材料層(接合後)
21:粘着シート
21a:基材
21b:粘着剤層
22:ハンド部
31:基板
32:パターン枠
32’:ステンレス鋼
33s:開口
33d:開口部深さ(パターン枠厚)
33:開口部
34a:N型熱電変換材料のチップ
34b:P型熱電変換材料のチップ
 

Claims (30)

  1.  熱電半導体組成物からなる熱電変換材料のチップを製造する方法であって、
    (A)基板上に犠牲層を形成する工程、
    (B)前記(A)の工程で得られた前記犠牲層上に前記熱電変換材料のチップを形成する工程、
    (C)前記(B)の工程で得られた前記熱電変換材料のチップをアニール処理する工程、及び
    (D)前記(C)の工程で得られたアニール処理後の前記熱電変換材料のチップを剥離する工程、
    を含む、熱電変換材料のチップの製造方法。
  2.  前記犠牲層が、樹脂、又は離型剤を含む、請求項1に記載の熱電変換材料のチップの製造方法。
  3.  前記樹脂が、熱可塑性樹脂である請求項2に記載の熱電変換材料のチップの製造方法。
  4.  前記熱可塑性樹脂が、ポリメタクリル酸メチル、又はポリスチレンである、請求項3に記載の熱電変換材料のチップの製造方法。
  5.  前記離型剤が、フッ素系離型剤、又はシリコーン系離型剤である、請求項1~4のいずれか1項に記載の熱電変換材料のチップの製造方法。
  6.  前記犠牲層の厚さが、10nm~10μmである、請求項1~5のいずれか1項に記載の熱電変換材料のチップの製造方法。
  7.  前記基板が、ガラス、アルミナ及びシリコンからなる群から選ばれる1種である、請求項1~6のいずれか1項に記載の熱電変換材料のチップの製造方法。
  8.  前記熱電半導体組成物は熱電半導体材料を含んでおり、該熱電半導体材料がビスマス-テルル系熱電半導体材料、テルライド系熱電半導体材料、アンチモン-テルル系熱電半導体材料、又はビスマスセレナイド系熱電半導体材料である、請求項1~7のいずれか1項に記載の熱電変換材料のチップの製造方法。
  9.  前記熱電半導体組成物が、さらに、耐熱性樹脂、並びにイオン液体及び/又は無機イオン性化合物を含む、請求項8に記載の熱電変換材料のチップの製造方法。
  10.  前記耐熱性樹脂が、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、又はエポキシ樹脂である、請求項9に記載の熱電変換材料のチップの製造方法。
  11.  前記アニール処理の温度が、250~600℃で行われる、請求項1~10のいずれか1項に記載の熱電変換材料のチップの製造方法。
  12.  前記(D)の工程が、
    (D-1)前記(C)の工程で得られたアニール処理後の前記熱電変換材料のチップを、前記犠牲層から剥離し粘着シートの粘着剤層に転写する工程、及び
    (D-2)前記粘着剤層の粘着力を低下させ、前記(D-1)の工程で転写した熱電変換材料のチップを前記粘着剤層から剥離する工程、
    を含む、請求項1~11に記載の熱電変換材料のチップの製造方法。
  13.  前記(D-2)の工程における、前記粘着剤層の粘着力の低下を、熱、又はエネルギー線を照射することにより行う、請求項12に記載の熱電変換材料のチップの製造方法。
  14.  前記粘着剤層がエネルギー線硬化型粘着剤、加熱硬化型粘着剤、又は加熱発泡型粘着剤を含む、請求項12又は13に記載の熱電変換材料のチップの製造方法。
  15.  前記熱電変換材料のチップの形成がステンシル印刷法で行われる、請求項12~14のいずれか1項に記載の熱電変換材料のチップの製造方法。
  16.  前記粘着剤層の厚さと前記熱電変換材料のチップの厚さとの比が、5/100~70/100である、請求項12~15のいずれか1項に記載の熱電変換材料のチップの製造方法。
  17.  前記粘着剤層のシリコンウェハのミラー面に対する、粘着力低下処理前の粘着力が1.0N/25mm以上である、請求項12~16のいずれか1項に記載の熱電変換材料のチップの製造方法。
  18.  前記粘着剤層のシリコンウェハのミラー面に対する、粘着力低下処理後の粘着力が1.0N/25mm未満である、請求項12~17のいずれか1項に記載の熱電変換材料のチップの製造方法。
  19.  前記(C)の工程で得られたアニール処理後の熱電変換材料のチップ上及び/又は前記(D-2)の工程において転写された熱電変換材料のチップの面とは反対側の面上に、さらにハンダ受理層を形成する工程を含む、請求項12~18のいずれか1項に記載の熱電変換材料チップの製造方法。
  20.  前記ハンダ受理層が、金属材料からなる、請求項19に記載の熱電変換材料のチップの製造方法。
  21.  請求項1~20のいずれか1項に記載の熱電変換材料のチップの製造方法により得られた熱電変換材料のチップを、複数組み合わせた熱電変換モジュールを製造する方法であって、
    (I)第1の樹脂フィルム上に第1の電極を形成する工程、
    (II)第2の樹脂フィルム上に第2の電極を形成する工程、
    (III)前記(I)の工程で得られた前記第1の電極上に接合材料層1を形成する工程、
    (IV)前記熱電変換材料のチップの一方の面を、前記(III)の工程で得られた前記接合材料層1上に載置する工程、
    (V)前記(IV)の工程で載置した前記熱電変換材料のチップの一方の面を、前記(III)の工程で得られた前記接合材料層1を介在して前記第1の電極と接合する工程、及び
    (VI)前記(V)の工程後の前記熱電変換材料のチップの他方の面と、前記(II)の工程で得られた前記第2の電極とを接合材料層2を介在して接合する工程、
    を含む、熱電変換モジュールの製造方法。
  22.  請求項19又は20に記載の熱電変換材料のチップの製造方法により得られた熱電変換材料のチップを、複数組み合わせた熱電変換モジュールを製造する方法であって、
    (XI)第1の樹脂フィルム上に第1の電極を形成する工程、
    (XII)第2の樹脂フィルム上に第2の電極を形成する工程、
    (XIII)前記(XI)の工程で得られた前記第1の電極上にハンダ材料層を形成する工程、
    (XIV)前記熱電変換材料のチップのハンダ受理層を有する一方の面を、前記(XIII)の工程で得られた前記ハンダ材料層上に載置する工程、
    (XV)前記(XIV)の工程で載置した前記熱電変換材料のチップのハンダ受理層を有する一方の面を、前記(XIII)の工程で得られた前記ハンダ材料層を介在して前記第1の電極と接合する工程、及び
    (XVI)前記(XV)の工程後の前記熱電変換材料のチップの他方の面のハンダ受理層と、前記(XII)の工程で得られた前記第2の電極とをハンダ材料層を介在して接合する工程、
    を含む、熱電変換モジュールの製造方法。
  23.  熱電半導体組成物からなる熱電変換材料のチップを複数組み合わせた熱電変換モジュールを製造する方法であって、
    (i)基板上に犠牲層を形成する工程、
    (ii)前記(i)の工程で得られた前記犠牲層上に前記熱電変換材料のチップを形成する工程、
    (iii)前記(ii)の工程で得られた前記熱電変換材料のチップをアニール処理する工程、(iv)第1の樹脂フィルムと第1の電極とをこの順に有する第1の層を準備する工程、
    (v)第2の樹脂フィルムと第2の電極とをこの順に有する第2Aの層、又は第2の樹脂フィルムを有しかつ電極を有しない第2Bの層を準備する工程、
    (vi)前記(iii)の工程で得られたアニール処理後の前記熱電変換材料のチップの一方の面と、前記(iv)の工程で準備した前記第1の層の電極とを接合材料層1を介在して接合する工程、
    (vii)前記(vi)の工程後の前記熱電変換材料のチップの他方の面を前記犠牲層から剥離する工程、及び
    (viii)前記(vii)の工程で剥離し得られた前記熱電変換材料のチップの他方の面と、前記(v)の工程で準備した前記第2Aの層の第2の電極とを接合材料層2を介在して接合する工程、
    又は前記(v)の工程で準備した前記第2Bの層とを接合材料層3を介在して接合する工程、を含む、熱電変換モジュールの製造方法。
  24.  前記(v)の工程が、第2の樹脂フィルムと第2の電極とをこの順に有する第2Aの層を準備する工程であり、
     前記(viii)の工程が、前記(vii)の工程で剥離し得られた前記熱電変換材料のチップの他方の面と、前記(v)の工程で準備した前記第2Aの層の第2の電極とを接合材料層2を介在して接合する工程である、請求項23に記載の熱電変換モジュールの製造方法。
  25.  前記(v)の工程が、第2の樹脂フィルムを有しかつ電極を有しない第2Bの層を準備する工程であり、
     前記(viii)の工程が、前記(vii)の工程で剥離し得られた前記熱電変換材料のチップの他方の面と、前記(v)の工程で準備した前記第2Bの層とを接合材料層3を介在して接合する工程である、請求項23に記載の熱電変換モジュールの製造方法。
  26.  前記接合材料層1及び2が、それぞれ独立に、ハンダ材料、導電性接着剤、又は焼結接合剤からなる、請求項23~25のいずれか1項に記載の熱電変換モジュールの製造方法。
  27.  前記接合材料層3が、樹脂材料からなる、請求項23又は25に記載の熱電変換モジュールの製造方法。
  28.  前記(iii)の工程で得られたアニール処理後の前記熱電変換材料のチップの一方の面にハンダ受理層を形成する工程及び前記(vii)の工程で剥離し得られた前記熱電変換材料のチップの他方の面にハンダ受理層を形成する工程を含む、請求項23又は24に記載の熱電変換モジュールの製造方法。
  29.  前記(iii)の工程で得られたアニール処理後の前記熱電変換材料のチップの一方の面にハンダ受理層を形成する工程を含む、請求項23又は25に記載の熱電変換モジュールの製造方法。
  30.  前記ハンダ受理層が、金属材料からなる、請求項28又は29に記載の熱電変換モジュールの製造方法。
     
     
PCT/JP2019/033408 2018-08-28 2019-08-27 熱電変換材料のチップの製造方法及びその製造方法により得られたチップを用いた熱電変換モジュールの製造方法 WO2020045379A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020539462A JP7438115B2 (ja) 2018-08-28 2019-08-27 熱電変換材料のチップの製造方法及びその製造方法により得られたチップを用いた熱電変換モジュールの製造方法
CN201980055839.6A CN112602204A (zh) 2018-08-28 2019-08-27 热电转换材料的芯片的制造方法、以及使用了由该制造方法得到的芯片的热电转换组件的制造方法
KR1020217005951A KR20210043594A (ko) 2018-08-28 2019-08-27 열전 변환 재료의 칩의 제조 방법 및 그 제조 방법에 의해 얻어진 칩을 사용한 열전 변환 모듈의 제조 방법
US17/271,091 US11895919B2 (en) 2018-08-28 2019-08-27 Production method for chip made of thermoelectric conversion material and method for manufacturing thermoelectric conversion module using chip obtained by said production method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018159254 2018-08-28
JP2018-159254 2018-08-28
JP2018185811 2018-09-28
JP2018-185811 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020045379A1 true WO2020045379A1 (ja) 2020-03-05

Family

ID=69643029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033408 WO2020045379A1 (ja) 2018-08-28 2019-08-27 熱電変換材料のチップの製造方法及びその製造方法により得られたチップを用いた熱電変換モジュールの製造方法

Country Status (6)

Country Link
US (1) US11895919B2 (ja)
JP (1) JP7438115B2 (ja)
KR (1) KR20210043594A (ja)
CN (1) CN112602204A (ja)
TW (1) TWI816864B (ja)
WO (1) WO2020045379A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196709A1 (ja) * 2019-03-28 2020-10-01 リンテック株式会社 熱電変換材料のチップの製造方法
CN112394643A (zh) * 2020-11-27 2021-02-23 大连理工大学 钢铁企业热电系统调度方法、系统及计算机可读存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018214778A1 (de) * 2018-08-30 2020-03-05 Siemens Aktiengesellschaft Verfahren zur Fertigung von Leiterbahnen und Elektronikmodul
TWI808422B (zh) * 2021-05-21 2023-07-11 錼創顯示科技股份有限公司 接著層結構以及半導體結構
CN114379260B (zh) * 2021-09-02 2023-09-26 苏州清听声学科技有限公司 一种定向发声屏绝缘凸点丝印制作方法
WO2023143076A1 (zh) * 2022-01-28 2023-08-03 中国科学院上海硅酸盐研究所 半导体材料臂阵列的制备方法及半导体材料臂阵列界面层的批量制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030041892A1 (en) * 1998-08-07 2003-03-06 California Institute Of Technology Microfabricated thermoelectric power-generation devices
US7531739B1 (en) * 2004-10-15 2009-05-12 Marlow Industries, Inc. Build-in-place method of manufacturing thermoelectric modules
JP2010109132A (ja) * 2008-10-30 2010-05-13 Yamaha Corp 熱電モジュールを備えたパッケージおよびその製造方法
JP2013251333A (ja) * 2012-05-30 2013-12-12 Fujifilm Corp 熱電変換素子の製造方法
JP2017041540A (ja) * 2015-08-20 2017-02-23 リンテック株式会社 ペルチェ冷却素子及びその製造方法
JP2017098283A (ja) * 2015-11-18 2017-06-01 日東電工株式会社 半導体装置の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60313867T2 (de) * 2002-06-20 2008-04-03 Sumitomo Bakelite Co. Ltd. Transparente verbundzusammensetzung
JP5426188B2 (ja) 2009-02-19 2014-02-26 株式会社Kelk 熱電変換モジュール及び熱電半導体素子
KR100984108B1 (ko) * 2009-10-23 2010-09-28 한국기계연구원 전이공정을 이용한 박막형 유연 열전 모듈 제조 방법
JP5689719B2 (ja) 2011-03-24 2015-03-25 株式会社小松製作所 BiTe系多結晶熱電材料およびそれを用いた熱電モジュール
US20160163950A1 (en) * 2014-12-08 2016-06-09 Industrial Technology Research Institute Structure of thermoelectric module and fabricating method thereof
TW201622190A (zh) * 2014-12-10 2016-06-16 財團法人工業技術研究院 熱電模組
KR102445974B1 (ko) * 2014-12-26 2022-09-21 린텍 가부시키가이샤 펠티에 냉각 소자 및 그의 제조 방법
JP6542593B2 (ja) * 2015-06-12 2019-07-10 スリーエム イノベイティブ プロパティズ カンパニー 支持体層を備えた積層フィルム及びそのフィルムロール
KR101989908B1 (ko) * 2015-10-27 2019-06-17 주식회사 테그웨이 유연 열전소자 및 이의 제조방법
WO2017074002A1 (ko) * 2015-10-27 2017-05-04 한국과학기술원 유연 열전소자 및 이의 제조방법
WO2018030695A1 (ko) 2016-08-11 2018-02-15 주식회사 루멘스 엘이디 모듈 및 그 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030041892A1 (en) * 1998-08-07 2003-03-06 California Institute Of Technology Microfabricated thermoelectric power-generation devices
US7531739B1 (en) * 2004-10-15 2009-05-12 Marlow Industries, Inc. Build-in-place method of manufacturing thermoelectric modules
JP2010109132A (ja) * 2008-10-30 2010-05-13 Yamaha Corp 熱電モジュールを備えたパッケージおよびその製造方法
JP2013251333A (ja) * 2012-05-30 2013-12-12 Fujifilm Corp 熱電変換素子の製造方法
JP2017041540A (ja) * 2015-08-20 2017-02-23 リンテック株式会社 ペルチェ冷却素子及びその製造方法
JP2017098283A (ja) * 2015-11-18 2017-06-01 日東電工株式会社 半導体装置の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196709A1 (ja) * 2019-03-28 2020-10-01 リンテック株式会社 熱電変換材料のチップの製造方法
JP7458375B2 (ja) 2019-03-28 2024-03-29 リンテック株式会社 熱電変換材料のチップの製造方法
CN112394643A (zh) * 2020-11-27 2021-02-23 大连理工大学 钢铁企业热电系统调度方法、系统及计算机可读存储介质

Also Published As

Publication number Publication date
TW202029536A (zh) 2020-08-01
CN112602204A (zh) 2021-04-02
US11895919B2 (en) 2024-02-06
JP7438115B2 (ja) 2024-02-26
US20210376218A1 (en) 2021-12-02
KR20210043594A (ko) 2021-04-21
JPWO2020045379A1 (ja) 2021-08-10
TWI816864B (zh) 2023-10-01

Similar Documents

Publication Publication Date Title
JP7438115B2 (ja) 熱電変換材料のチップの製造方法及びその製造方法により得られたチップを用いた熱電変換モジュールの製造方法
JP7303741B2 (ja) 熱電変換素子層及びその製造方法
JP7113458B2 (ja) 熱電変換モジュール及びその製造方法
JP7346427B2 (ja) 熱電変換材料のチップの製造方法及びその製造方法により得られたチップを用いた熱電変換モジュールの製造方法
WO2020071396A1 (ja) 熱電変換モジュール用中間体の製造方法
US11974504B2 (en) Thermoelectric conversion body, thermoelectric conversion module, and method for manufacturing thermoelectric conversion body
WO2022092177A1 (ja) 熱電変換モジュール
JP7348192B2 (ja) 半導体素子
JP7458375B2 (ja) 熱電変換材料のチップの製造方法
WO2020071424A1 (ja) 熱電変換材料のチップ
CN115700061A (zh) 热电转换组件及其制造方法
WO2021193357A1 (ja) 熱電変換モジュール
JP7401361B2 (ja) 熱電変換モジュール
WO2020203611A1 (ja) 熱電変換材料のチップへのハンダ受理層形成方法
WO2021193358A1 (ja) 熱電変換モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855223

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539462

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217005951

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19855223

Country of ref document: EP

Kind code of ref document: A1