WO2020045165A1 - 酸化ジルコニウム粒子の水分散液と有機溶媒分散液の製造方法 - Google Patents

酸化ジルコニウム粒子の水分散液と有機溶媒分散液の製造方法 Download PDF

Info

Publication number
WO2020045165A1
WO2020045165A1 PCT/JP2019/032436 JP2019032436W WO2020045165A1 WO 2020045165 A1 WO2020045165 A1 WO 2020045165A1 JP 2019032436 W JP2019032436 W JP 2019032436W WO 2020045165 A1 WO2020045165 A1 WO 2020045165A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconium oxide
oxide particles
aqueous dispersion
dispersion
water slurry
Prior art date
Application number
PCT/JP2019/032436
Other languages
English (en)
French (fr)
Inventor
考則 森田
Original Assignee
堺化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺化学工業株式会社 filed Critical 堺化学工業株式会社
Publication of WO2020045165A1 publication Critical patent/WO2020045165A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides

Definitions

  • the present invention relates to a method for producing each of an aqueous dispersion and an organic solvent dispersion of zirconium oxide particles, and more specifically, has a low viscosity and high transparency while containing fine zirconium oxide particles at a high concentration, and has a long term.
  • the present invention relates to a method for producing an aqueous dispersion of zirconium oxide particles and an organic solvent dispersion having excellent storage stability.
  • the zirconium oxide particle dispersion obtained by the method of the present invention is useful for various uses in the optical field, particularly, as a material for an optical composite resin such as an LED sealing resin and an antireflection film.
  • inorganic oxide particle dispersions such as silica, alumina, zinc oxide, tin oxide, zirconia, titania, and the like have been used in various industrial fields, particularly, in the optical field, used to adjust the refractive index. ing.
  • zirconium oxide has a high refractive index, and in recent years, various proposals have been made to use it as a highly functional resin or film which is compounded with a transparent resin or film to improve its refractive index.
  • the refractive index of the sealing resin is increased, so that light emitted from the light emitter can be more efficiently extracted, and the luminance of the LED can be improved. Is known to improve.
  • zirconium oxide is also used for the antireflection film on the display surface of a flat panel display (FPD) such as a liquid crystal display (LCD) and an electroluminescence display (EL).
  • FPD flat panel display
  • LCD liquid crystal display
  • EL electroluminescence display
  • the antireflection film is a laminated film in which a low refractive index layer and a high refractive index layer are laminated, and a composite resin material in which zirconium oxide is dispersed in the high refractive index layer is used.
  • a typical method for obtaining a zirconium oxide particle dispersion utilizes zirconium hydroxide generated by alkali neutralization of a zirconium salt.For example, hydrochloric acid is added at a predetermined concentration to a slurry of zirconium hydroxide.
  • a method of obtaining a dispersion of zirconium oxide particles by heating at a boiling temperature is known (see Patent Document 1).
  • the resulting zirconium oxide has an average particle diameter of 50 nm or more, so that the dispersion liquid does not have sufficient transparency.
  • An aqueous solution containing a zirconium salt is added to an aqueous solution of an alkali metal hydroxide heated to 60 ° C. or higher and neutralized, that is, reverse neutralized, filtered, washed, added with water, stirred, and acidified.
  • an alkali metal hydroxide heated to 60 ° C. or higher and neutralized, that is, reverse neutralized, filtered, washed, added with water, stirred, and acidified.
  • Patent Document 2 There is also known a method of obtaining a zirconia dispersion by heating and stirring at a temperature of 80 to 100 ° C.
  • a zirconium salt is neutralized with an alkali in water to obtain a zirconium hydroxide gel, which is once washed, ripened, and ultrasonically oxidized.
  • carboxylic acids such as malic acid, citric acid and tartaric acid
  • a zirconium salt is neutralized with an alkali in water to obtain a zirconium hydroxide gel, which is once washed, ripened, and ultrasonically oxidized.
  • a method of obtaining a dispersion of zirconium oxide particles by performing a hydrothermal treatment again in the presence of the carboxylic acid after sufficient dispersion by irradiation or the like (see Patent Document 3).
  • the zirconium salt is reacted with an alkali in water to obtain a slurry of zirconium oxide particles, which is then filtered, washed, and repulped, and the resulting slurry is added to 1 part by mole of zirconium in the slurry.
  • a method for obtaining a highly transparent aqueous dispersion of zirconium oxide particles by washing the resulting aqueous dispersion of zirconium oxide particles after adding 1 mol part or more of an organic acid and performing a hydrothermal treatment at a temperature of 170 ° C. or higher is also proposed. (See Patent Document 4).
  • the zirconium oxide particle dispersion As the use of the zirconium oxide particle dispersion has been expanded and its use has increased, the demand for its long-term storage stability has been increasing. No description is given, and depending on the obtained aqueous dispersion, the long-term storage stability may actually be poor.
  • Stabilizers such as acetic acid, ⁇ -diketone, and salicylic acid are added to an aqueous dispersion of zirconium oxide particles together with an organic solvent, and the mixture is filtered, and water is replaced with an organic solvent.
  • a solvent dispersion has been proposed (see Patent Document 5), it has not been clarified how much stability with time.
  • the dispersion of known zirconium oxide nanoparticles is not sufficient long-term storage stability, to ensure long-term storage stability, or to prevent deterioration Usually, it is stored at a refrigeration temperature or a freezing temperature, and is returned to a normal temperature when used.
  • an object of the present invention is to provide a method for producing an aqueous dispersion of zirconium oxide particles and an organic solvent dispersion, which are particularly excellent in storage stability over a long period of time.
  • the present invention relates to water of zirconium oxide nanoparticles having excellent long-term storage stability regardless of temperature, for example, in an environment without temperature control ranging from about 10 ° C. to about 40 ° C., and thus in an environment at room temperature.
  • An object of the present invention is to provide a method for producing each of a dispersion and an organic solvent dispersion.
  • the inventor of the present invention started from a step of reacting zirconium oxychloride with a basic substance in alkaline water to obtain a first water slurry containing zirconium oxide particles.
  • the second and third water slurries of zirconium oxide particles obtained on the way, and in some cases, the aqueous dispersion
  • the zirconium oxide particles contain a high concentration of fine zirconium oxide particles.
  • Zirconium oxide which has excellent transparency and low viscosity, and in particular, has excellent storage stability over a long period of time in the above-mentioned sense. It has found that it is possible to obtain an aqueous dispersion and organic solvent dispersion of particles, and have reached the present invention.
  • the following methods for producing an aqueous dispersion of zirconium oxide particles and an organic solvent dispersion are provided. Furthermore, according to the present invention, similarly, there are provided methods for producing an aqueous dispersion and an organic solvent dispersion of stabilized zirconium oxide particles, which are solid solutions containing a stabilizing element.
  • a second step of adding a molar part or more to obtain a third water slurry having a chlorine ion content of less than 4000 ppm based on the weight of the zirconium oxide particles A third step of hydrothermally treating the third aqueous slurry to obtain a first precursor of an aqueous dispersion of zirconium oxide particles, and washing the first precursor of the aqueous dispersion of zirconium oxide particles by ultrafiltration
  • a fourth step of obtaining a second precursor of an aqueous dispersion of zirconium oxide particles having a chloride ion content based on the weight of the zirconium oxide particles of less than 1500 ppm A fifth step of adding hydrochloric acid to the second precursor of the aqueous dispersion of zirconium oxide particles to obtain an aqueous dispersion of zirconium oxide particles having a chlorine ion content in the range of 1500 to 7000 ppm based on the weight of the zirconium oxide particles.
  • a salt of zirconium oxychloride and at least one stabilizing element selected from aluminum, magnesium, titanium and rare earth elements is reacted with a basic substance in water to form zirconium.
  • the first water slurry is filtered and washed, and then repulped in water to obtain a second water slurry containing particles of the coprecipitated zirconium and the stabilizing element.
  • the first precursor of the liquid is washed by ultrafiltration to obtain a second precursor of the aqueous dispersion of stabilized zirconium oxide particles having a chloride ion content of less than 1500 ppm based on the weight of the stabilized zirconium oxide particles.
  • the fourth step of obtaining Hydrochloric acid is added to the second precursor of the aqueous dispersion of stabilized zirconium oxide particles to obtain a dispersion of the aqueous dispersion of stabilized zirconium oxide particles having a chlorine ion content in the range of 1500 to 7000 ppm based on the weight of the stabilized zirconium oxide particles.
  • a method for producing the aqueous dispersion of stabilized zirconium oxide particles comprising a fifth step of obtaining a liquid.
  • a second step of adding a molar part or more to obtain a third water slurry having a chlorine ion content of less than 4000 ppm based on the weight of the zirconium oxide particles A third step of hydrothermally treating the third water slurry to obtain a first precursor of an aqueous dispersion of zirconium oxide particles, The first precursor of the aqueous dispersion of zirconium oxide particles is washed by ultrafiltration to obtain a second precursor of the aqueous dispersion of zirconium oxide particles having a chlorine ion content of less than 1500 ppm based on the weight of the zirconium oxide particles.
  • the fourth step of obtaining The second precursor of the aqueous dispersion of zirconium oxide particles and an aqueous dispersion of zirconium oxide particles having a chlorine ion content of 1500 ppm or more based on the weight of the zirconium oxide particles are mixed, and a chlorine ion content based on the weight of the zirconium oxide particles is mixed.
  • the method for producing an aqueous dispersion of zirconium oxide particles comprising a fifth step of obtaining an aqueous dispersion of zirconium oxide particles having a content of from 1500 to 7000 ppm.
  • a salt of zirconium oxychloride and at least one stabilizing element selected from aluminum, magnesium, titanium and rare earth elements is reacted with a basic substance in water to form zirconium.
  • the first water slurry is filtered and washed, and then repulped in water to obtain a second water slurry containing particles of the coprecipitated zirconium and the stabilizing element.
  • the first precursor of the liquid is washed by ultrafiltration to obtain a second precursor of the aqueous dispersion of stabilized zirconium oxide particles having a chloride ion content of less than 1500 ppm based on the weight of the stabilized zirconium oxide particles.
  • a method for producing the above-mentioned aqueous dispersion of stabilized zirconium oxide particles comprising a fifth step of obtaining the above-mentioned aqueous dispersion of stabilized zirconium oxide particles, wherein the chlorine ion content with respect to the weight of the zirconium particles is in the range of 1500 to 7000 ppm.
  • (stabilized) zirconium oxide particles mean zirconium oxide particles and / or stabilized zirconium oxide particles.
  • both the aqueous dispersion and the organic solvent dispersion of the (stabilized) zirconium oxide particles obtained by the first and second methods of the present invention contain fine (stabilized) zirconium oxide particles at a high concentration. , It has high transparency and low viscosity, and the viscosity increase when stored at a temperature of 25 ° C. for 24 months is 20 mPa ⁇ s or less, and is remarkably excellent in long-term storage stability. .
  • the viscosity is substantially the same as the viscosity immediately after production, long-term storage stability (Stabilized) aqueous dispersion and organic solvent dispersion of zirconium oxide particles can be obtained.
  • the temperature at which the zirconium oxychloride is reacted with the above basic substance in water is not particularly limited, but is usually in the range of 10 to 50 ° C, preferably 15 to 40 ° C. Range.
  • the molar excess of the basic substance with respect to the acid that is, the molar excess during alkali neutralization is usually 1.15 to 1 .5.
  • the molar excess of the basic substance with respect to the acid will be described later.
  • a method of adding an aqueous solution of a basic substance to an aqueous solution of a zirconium oxychloride salt for example, a method of adding an aqueous solution of zirconium oxychloride to an aqueous solution of a basic substance
  • the zirconium chloride aqueous solution and the basic substance aqueous solution may be added in advance to a so-called filling solution placed in a precipitation reactor at the same time, but any method may be used.
  • a simultaneous neutralization method in which the mixture is simultaneously added to a so-called filling solution placed in a reaction vessel is preferable.
  • an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide, ammonia, or the like is preferably used, but is not limited thereto.
  • the basic substance is usually used as an aqueous solution.
  • the concentration of the aqueous zirconium oxychloride solution is preferably 2.4 mol / L or less, and the concentration of the basic substance aqueous solution is preferably 10 mol / L or less.
  • a first water slurry having a zirconium oxide particle concentration of usually 1 to 20% by weight is thus obtained.
  • concentration of zirconium oxide particles in the first water slurry exceeds 20% by weight, such a first water slurry has a high viscosity, is difficult to stir, and has a chlorine ion content of the obtained zirconium oxide particles.
  • the concentration of zirconium oxide particles in the first water slurry is preferably in the range of 1 to 10% by weight.
  • the first step when the first water slurry containing zirconium oxide particles is obtained by reacting zirconium oxychloride with the above-mentioned basic substance in water, the amount of the above-mentioned basic substance with respect to zirconium oxychloride is large. If the pH during the reaction is higher than the above range, a large amount of water is required for washing in the second step, which is not economical.
  • the first water slurry containing the zirconium oxide particles obtained in the first step is filtered, washed with water, and then repulped in water to obtain the zirconium oxide particles.
  • the second water slurry preferably has an electric conductivity of 500 ⁇ S / cm or less.
  • the obtained first water slurry is filtered and washed, and the obtained cake is repulped in water to form a second water slurry.
  • Stirring with a stirrer may be used as a water slurry, but if necessary, in addition to wet media dispersion such as a bead mill, ultrasonic irradiation, using means such as a high-pressure homogenizer, the above cake may be repulped in water. Good.
  • the organic acid added to the second water slurry in the second step is a deflocculant, and is a so-called acid dissolving method in which the zirconium oxide particles in the obtained third water slurry are dispersed by repulsively charging each other. Used to glue.
  • organic acid preferably, a carboxylic acid or a hydroxycarboxylic acid is used.
  • organic acids include, for example, formic acid, acetic acid, monocarboxylic acids such as propionic acid, oxalic acid, malonic acid, succinic acid, fumaric acid, dicarboxylic acids such as maleic acid and higher polybasic acids Acids, lactic acid, malic acid, tartaric acid, citric acid, salts of hydroxycarboxylic acids such as gluconic acid and the like can be mentioned.
  • these organic acids are generally used in an amount of 1 mol part or more based on 1 mol part of zirconium in the third water slurry to be subjected to hydrothermal treatment. It is used in the range of mole parts, most preferably in the range of 1-3 mole parts.
  • the amount of the organic acid is less than 1 mol part per 1 mol part of zirconium in the third water slurry, not only the obtained aqueous dispersion of zirconium oxide particles is insufficient in transparency but also the viscosity May also be higher.
  • the amount of the organic acid exceeds 5 parts by mol with respect to 1 part by mol of zirconium in the third water slurry, there is no particular effect corresponding thereto and it is not economical.
  • 1 mol part or more of organic acid is added to 1 mol part of zirconium to the second water slurry, and the chlorine ion content relative to the weight of the zirconium oxide particles is less than 4000 ppm, preferably less than 3000 ppm, most preferably , A third water slurry that is less than 2000 ppm.
  • the hydrochloric acid is not particularly limited, but a hydrochloric acid having a concentration of 40% or less is preferable.
  • the third water slurry is subjected to hydrothermal treatment at a temperature of 170 ° C. or higher to obtain a first precursor of an aqueous dispersion of zirconium oxide particles.
  • the organic acid is a deflocculant
  • the third water slurry is treated under severe conditions of hydrothermal treatment in the presence of the deflocculant.
  • the particles are peptized more effectively.
  • the zirconium oxide particle concentration of the third water slurry subjected to the hydrothermal treatment is usually in the range of 1 to 20% by weight, and preferably in the range of 1 to 10% by weight.
  • the concentration of zirconium oxide particles in the third water slurry is preferably in the range of 1 to 10% by weight.
  • the temperature of the hydrothermal treatment is usually 170 ° C. or higher, preferably a temperature of 170 ° C. to 230 ° C.
  • the obtained aqueous dispersion of zirconium oxide particles not only does not have sufficient transparency, but also contains sedimenting coarse aggregated particles and has a high viscosity. Sometimes.
  • the time of the hydrothermal treatment is usually 1 hour or more, preferably 3 hours or more.
  • the temperature of the hydrothermal treatment is shorter than 1 hour, not only the obtained aqueous dispersion of zirconium oxide particles does not have sufficient transparency, but also coarse sedimentable aggregated particles are generated, and the desired transparent An aqueous dispersion of zirconium oxide particles having high properties cannot be obtained.
  • the time of the hydrothermal treatment may be lengthened, an effect corresponding to the time is not particularly obtained, so that usually 10 hours or less is sufficient.
  • the first precursor of the aqueous dispersion of zirconium oxide particles thus obtained is subjected to ultrafiltration so that the chlorine ion concentration with respect to the weight of the zirconium oxide particles is less than 1500 ppm.
  • a second precursor of an aqueous dispersion of certain zirconium oxide particles is obtained.
  • hydrochloric acid as a deflocculant is added to the second precursor of the aqueous dispersion of zirconium oxide particles, and the chlorine ion content with respect to the weight of the zirconium oxide particles is 1500 to 7000 ppm, preferably 2000 to 5000 ppm.
  • concentration of the zirconium oxide particles is usually in the range of 1 to 30% by weight to obtain an aqueous dispersion of zirconium oxide particles.
  • the chloride ion concentration with respect to the weight of the zirconium oxide particles is less than 1500 ppm, the storage stability of the aqueous dispersion becomes poor.
  • the chloride ion concentration with respect to the weight of the zirconium oxide particles exceeds 7000 ppm, there is a risk of corrosion of the manufacturing equipment.
  • the aqueous dispersion of zirconium oxide particles thus obtained can be concentrated, if necessary.
  • This concentration can be achieved by means such as evaporation concentration using a rotary evaporator or concentration using ultrafiltration using an ultrafiltration membrane.
  • the concentration means is not particularly limited, but is preferably concentrated by ultrafiltration using an ultrafiltration membrane.
  • the aqueous dispersion of zirconium oxide particles obtained by the above-mentioned hydrothermal treatment can be washed while being concentrated using an ultrafiltration membrane. That is, the aqueous dispersion of zirconium oxide particles is concentrated by ultrafiltration, and the obtained concentrate is diluted with water by adding water, washed, and the obtained water slurry is again ultrafiltered, and thus, The aqueous dispersion is subjected to ultrafiltration, and by repeating the concentration and dilution, the aqueous dispersion of zirconium oxide particles obtained by the hydrothermal treatment is concentrated and washed, and the remaining by-product salts are repeatedly removed with water. Thus, the aqueous dispersion of zirconium oxide particles can be concentrated to obtain an aqueous dispersion having an increased zirconium oxide concentration.
  • an aqueous dispersion of zirconium oxide particles having a zirconium oxide particle concentration of 10 to 50% by weight, having low viscosity and high transparency, and having excellent long-term storage stability is thus obtained. Obtainable.
  • the upper limit of the zirconium oxide particle concentration of the aqueous dispersion of zirconium oxide particles is usually 50% by weight, and preferably 40% by weight. This is because an aqueous dispersion having a zirconium oxide particle concentration exceeding 50% by weight has a high viscosity and eventually loses fluidity and gels.
  • the aqueous dispersion of zirconium oxide particles according to the first method described above is used.
  • the same treatment may be performed using an aqueous solution containing zirconium oxychloride and a salt of the above-mentioned stabilizing element.
  • the concentration of the salt of the stabilizing element in the aqueous solution is preferably 0.5 mol / L or less.
  • the stabilizing element is preferably at least one selected from aluminum, magnesium, titanium and rare earth elements.
  • the salt of the stabilizing element is not particularly limited, but usually, a water-soluble salt such as chloride or nitrate is preferably used.
  • a water-soluble salt such as chloride or nitrate
  • the stabilizing element is aluminum, aluminum chloride is preferably used, and when the stabilizing element is yttrium, yttrium chloride is preferably used.
  • the stabilizing element is generally used in a range of 1 to 20 mol% based on the zirconium element.
  • the molar excess of the basic substance with respect to the acid is usually 1.15 to 1.5. Is preferably within the range. The molar excess of the basic substance with respect to the acid will be described later.
  • an aqueous dispersion of zirconium oxide particles which is a solid solution containing the stabilizing element
  • the first water slurry is filtered, washed with water, and then repulped in water to obtain a second water slurry.
  • the total amount of zirconium and the stabilizing element in the second water slurry is obtained.
  • 1 mol part or more of the same organic acid as above is added to 1 mol part of the above to obtain a third water slurry having a chloride ion content of less than 4000 ppm based on the total weight of zirconium and the above stabilizing element in terms of oxide.
  • aqueous dispersion of zirconium oxide particles is obtained.
  • an aqueous dispersion of stabilized zirconium oxide particles having a concentration of about 1 to 30% by weight of stabilized zirconium oxide particles can be obtained, and if necessary, concentrated to a required concentration as described above. .
  • aqueous dispersion of stabilized zirconium oxide particles obtained by the first method of the present invention has the same properties as the above-described aqueous dispersion of zirconium oxide particles.
  • the (stabilized) zirconium oxide is passed through the first to fifth steps by the second method.
  • a water dispersion of the particles is obtained. Therefore, by replacing water, which is a dispersion medium of the aqueous dispersion of the (stabilized) zirconium oxide particles, with an organic solvent, the organic solvent is used as a dispersion medium, and the chlorine ion with respect to the weight of the (stabilized) zirconium oxide particles is used.
  • a (stabilized) zirconium oxide particle organic solvent dispersion having a content in the range of 1500 to 7000 ppm, preferably 2000 to 5000 ppm can be obtained.
  • the organic solvent is not particularly limited, but is preferably a water-miscible organic solvent.
  • a water-miscible organic solvent is not particularly limited. Examples thereof include aliphatic alcohols such as methanol, ethanol and 2-propanol, aliphatic carboxylic esters such as ethyl acetate and methyl formate, and acetone.
  • Methyl ethyl ketone aliphatic ketones such as methyl isobutyl ketone, polyhydric alcohols such as ethylene glycol and glycerin, and a mixture of two or more thereof, particularly preferably methanol, methyl ethyl ketone, methyl isobutyl ketone or Is a mixture of
  • the aqueous dispersion in order to replace water as a dispersion medium in an aqueous dispersion of (stabilized) zirconium oxide particles with an organic solvent, the aqueous dispersion is treated with a rotary evaporator to remove water, and then newly. An organic solvent is added, or the aqueous dispersion is subjected to ultrafiltration to remove water as a dispersion medium to obtain a slurry. The slurry is diluted with an organic solvent, and ultrafiltrated again. By repeating filtration and dilution, water, which is the initial dispersion medium, is replaced with an organic solvent, and a (stabilized) zirconium oxide particle organic solvent dispersion in which the dispersion medium is the organic solvent can be obtained.
  • (stabilized) zirconium oxide particles are obtained by replacing water as a dispersion medium in an aqueous dispersion of (stabilized) zirconium oxide particles with a water-miscible organic solvent and using the water-miscible organic solvent as a dispersion medium. After obtaining the organic solvent dispersion, the water-miscible organic solvent is further replaced with another organic solvent, and a new (stabilized) zirconium oxide particle organic solvent dispersion using the other organic solvent as a dispersion medium is formed. You can also get.
  • Such a (stabilized) zirconium oxide particle organic solvent dispersion obtained according to the present invention also has the same properties as the (stabilized) zirconium oxide particle aqueous dispersion described above, and has a low viscosity and high transparency. It has excellent long-term storage stability.
  • the (stabilized) aqueous dispersion of zirconium oxide particles and the organic solvent dispersion obtained by the first method may be further subjected to wet media dispersion such as a bead mill, ultrasonic irradiation, high pressure Dispersion treatment using a homogenizer or the like may be performed.
  • the first to fourth steps are the same as the first method described above.
  • a second precursor of an aqueous dispersion of zirconium oxide particles having a chlorine ion content of less than 1500 ppm based on the weight of the zirconium oxide particles is obtained.
  • the chlorine ion content based on the weight of the second precursor and the separately produced zirconium oxide particles is 1500 ppm or more, preferably 1500 to 20,000 ppm. And more preferably mixed with an aqueous dispersion of zirconium oxide particles having a chlorine ion content in the range of 1500 to 7000 ppm with respect to the weight of the zirconium oxide particles. obtain.
  • the (stabilized) aqueous dispersion of zirconium oxide particles and the organic solvent dispersion obtained by the second method may be further subjected to wet media dispersion such as a bead mill, ultrasonic irradiation, high pressure, if necessary. Dispersion treatment using a homogenizer or the like may be performed.
  • the aqueous dispersion and the organic solvent dispersion of the (stabilized) zirconium oxide particles obtained by any of the first and second methods according to the present invention have a (stabilized) zirconium oxide particle concentration of 30% by weight.
  • the total light transmittance is 70% or more
  • D50 which is a particle diameter of 50% by volume on a volume basis, is 1 to 20 nm, preferably 1 to 10 nm in particle size distribution measurement by a dynamic light scattering method.
  • the viscosity at a temperature of 25 ° C. immediately after the production is 20 mPa ⁇ s or less, preferably 10 mPa ⁇ s or less, compared to the viscosity at a temperature of 25 ° C. immediately after the production, when 24 months have passed since the production.
  • the amount of increase in viscosity at a temperature of 25 ° C. is 20 mPa ⁇ s or less, preferably 10 mPa ⁇ s or less.
  • both the aqueous dispersion and the organic solvent dispersion of the (stabilized) zirconium oxide particles obtained after storage for a long period of 40 months or more at room temperature are maintained.
  • the viscosity is substantially unchanged compared to immediately after production.
  • aqueous dispersion and an organic solvent dispersion of zirconium oxide nanoparticles having excellent properties can be obtained.
  • the aqueous dispersion of the zirconium oxide particles and the organic solvent dispersion according to the present invention may be stored at a refrigerated temperature and then returned to room temperature during use, or may be stored in a frozen state, and then stored during use. Even after thawing to room temperature, there is no change or deterioration in its physical properties and stability.
  • the ultrafiltration in the fourth step was performed using "Microza” manufactured by Asahi Kasei Chemicals Corporation, Model ACV-3010D (molecular weight cut off 13000) to produce an organic solvent dispersion.
  • Ultrafiltration when replacing water as a dispersion medium of an aqueous dispersion with an organic solvent was performed using "Microza” manufactured by Asahi Kasei Chemicals Corporation, Model ACP-1010D (molecular weight cut off 13000).
  • the particle size distribution, viscosity and total light transmittance of the (stabilized) zirconium oxide particle dispersion, and the chloride ion concentration of the (stabilized) zirconium oxide particle aqueous slurry or dispersion were as follows: Was measured as follows.
  • Particle Size Distribution D50, D90 and Dmax were measured using a dynamic light scattering particle size distribution analyzer (UPA-UT manufactured by Nikkiso Co., Ltd.).
  • D50, D90 and Dmax are numerical values on a volume basis.
  • Viscosity The viscosity was measured with a tuning fork vibration type SV viscometer (SV-1A, manufactured by A & D Corp.
  • Example 1 (Production of stabilized aqueous dispersion of zirconium oxide particles (I-2) by the first method)
  • the mixed aqueous solution of zirconium oxychloride and yttrium chloride and the aqueous potassium hydroxide solution are simultaneously poured into a precipitation reactor filled with 820 liters of pure water in advance, and the zirconium oxychloride and yttrium chloride are co-precipitated by simultaneous neutralization. And a first water slurry containing particles of the coprecipitate of yttrium. The pH of the obtained first water slurry was 10.
  • Second step The first water slurry is filtered, washed until the washing filtrate has an electric conductivity of 10 ⁇ S / cm or less, repulped again in pure water, and particles of the coprecipitated zirconium and yttrium particles.
  • 42 kg of acetic acid (1.3 mol parts per 1 mol part of the total amount of zirconium and yttrium in the second water slurry) is added to the second water slurry, and the solid content is an oxide of zirconium and yttrium.
  • 600 L of a third water slurry having a converted total weight of 7.5% by weight was obtained.
  • the third water slurry had a chlorine ion concentration of 4 ppm.
  • the chloride ion content based on the total weight of zirconium and yttrium oxide calculated based on the chloride ion concentration was 50 ppm.
  • the third water slurry was subjected to a hydrothermal treatment at 190 ° C. for 3 hours to obtain a first precursor of a transparent aqueous dispersion of stabilized zirconium oxide particles.
  • the first precursor of the transparent aqueous dispersion of the stabilized zirconium oxide particles is washed and concentrated by an ultrafiltration membrane, and the stabilized oxidation having a stabilized zirconium oxide particle concentration of 30.6% by weight and a chloride ion concentration of 6 ppm is performed.
  • a second precursor (I-1) of an aqueous dispersion of zirconium particles was obtained.
  • the chlorine ion content based on the weight of the stabilized zirconium oxide particles calculated based on the chloride ion concentration was 20 ppm.
  • the chlorine ion content based on the weight of the stabilized zirconium oxide particles calculated based on the chloride ion concentration was 3290 ppm.
  • the chlorine ion content based on the weight of the stabilized zirconium oxide particles, calculated based on the chloride ion concentration, was 3000 ppm.
  • Example 2 (Production of aqueous dispersion of zirconium oxide particles (I-4) by first method) First Step 900 L of a 0.6 mol / L zirconium oxychloride aqueous solution and 680 L of a 1.9 mol / L potassium hydroxide aqueous solution were prepared. The zirconium oxychloride aqueous solution and the potassium hydroxide aqueous solution are simultaneously poured into a precipitation reactor filled with 820 L of pure water in advance, and the zirconium oxychloride is precipitated by simultaneous neutralization, so that the first water slurry containing zirconium oxide particles is formed. I got The pH of the obtained first water slurry was 9.9.
  • Second step The first water slurry is filtered, washed until the electric conductivity of the water washing filtrate becomes 10 ⁇ S / cm or less, repulped again to pure water, and the second water containing the zirconium oxide particles is used. A slurry was obtained. 42 kg of acetic acid (1.4 mol parts per 1 mol part of zirconium in the second water slurry) is added to the second water slurry, and the solid content is 7.5 wt% in terms of zirconium oxide. % Of a third water slurry was obtained.
  • the chlorine ion concentration of the third water slurry was 50 ppm.
  • the chloride ion content based on the weight of the zirconium oxide particles calculated based on the chloride ion concentration was 670 ppm.
  • the third water slurry was subjected to hydrothermal treatment at 190 ° C. for 3 hours to obtain a first precursor of a transparent aqueous dispersion of zirconium oxide particles.
  • the first precursor of the transparent aqueous dispersion of the zirconium oxide particles is washed and concentrated by an ultrafiltration membrane, and the zirconium oxide particles having a zirconium oxide particle concentration of 30.3% by weight and a chlorine ion concentration of 80 ppm are obtained.
  • a second precursor (I-3) of the dispersion was obtained.
  • the chlorine ion content based on the weight of the zirconium oxide particles calculated based on the chloride ion concentration was 260 ppm.
  • the chlorine ion content relative to the weight of the zirconium oxide particles calculated based on the chloride ion concentration was 3410 ppm.
  • a methanol dispersion (II-4) of zirconium oxide particles having a zirconium oxide particle concentration of 30.0% by weight and a chlorine ion concentration of 1010 ppm was obtained.
  • the amount of methanol used for dilution was 90 L.
  • the chlorine ion content based on the weight of the zirconium oxide particles calculated based on the chloride ion concentration was 3350 ppm.
  • Example 3 (Production of aqueous dispersion of stabilized zirconium oxide particles by second method) (Production of aqueous dispersion of stabilized zirconium oxide particles (I-5) having a chloride ion content in the range of 1500 to 6500 ppm based on the weight of stabilized zirconium oxide particles by a method outside the scope of the present invention)
  • First Step 900 L of a mixed aqueous solution of 0.6 mol / L zirconium oxychloride and 0.03 mol / L yttrium chloride and 680 L of 1.8 mol / L potassium hydroxide aqueous solution were prepared.
  • the mixed aqueous solution of zirconium oxychloride and yttrium chloride and the aqueous potassium hydroxide solution are simultaneously poured into a precipitation reactor filled with 820 liters of pure water in advance, and the zirconium oxychloride and yttrium chloride are co-precipitated by simultaneous neutralization.
  • a first water slurry containing particles of the coprecipitate of yttrium was 9.
  • Second step The first water slurry is filtered, washed until the washing filtrate has an electric conductivity of 10 ⁇ S / cm or less, repulped again in pure water, and particles of the coprecipitated zirconium and yttrium particles.
  • 42 kg of acetic acid (1.3 mol parts per 1 mol part of the total amount of zirconium and yttrium in the second water slurry) is added to the second water slurry, and the solid content is an oxide of zirconium and yttrium.
  • 600 L of a third water slurry having a converted total weight of 7.5% by weight was obtained.
  • the chlorine ion concentration of the third water slurry was 810 ppm.
  • the chlorine ion content based on the total weight of zirconium and yttrium oxide calculated based on the chloride ion concentration was 10800 ppm.
  • the third water slurry was subjected to a hydrothermal treatment at 190 ° C. for 3 hours to obtain a transparent aqueous dispersion precursor of stabilized zirconium oxide particles.
  • the transparent aqueous dispersion precursor of the stabilized zirconium oxide particles is washed and concentrated by an ultrafiltration membrane, and the stabilized zirconium oxide particles have a concentration of 30.1% by weight and a chlorine ion concentration of 1130 ppm.
  • An aqueous particle dispersion (I-5) was obtained.
  • the chlorine ion content based on the weight of the stabilized zirconium oxide particles calculated based on the chloride ion concentration was 3750 ppm.
  • First Step 900 L of a mixed aqueous solution of 0.6 mol / L zirconium oxychloride and 0.03 mol / L yttrium chloride and 680 L of a 1.9 mol / L potassium hydroxide aqueous solution were prepared.
  • the mixed aqueous solution of zirconium oxychloride and yttrium chloride and the aqueous potassium hydroxide solution are simultaneously poured into a precipitation reactor filled with 820 liters of pure water in advance, and the zirconium oxychloride and yttrium chloride are co-precipitated by simultaneous neutralization. And a first water slurry containing particles of the coprecipitate of yttrium. The pH of the obtained first water slurry was 10.
  • Second step The first water slurry is filtered, washed until the washing filtrate has an electric conductivity of 10 ⁇ S / cm or less, repulped again in pure water, and particles of the coprecipitated zirconium and yttrium particles.
  • 42 kg of acetic acid (1.3 mol parts per 1 mol part of the total amount of zirconium and yttrium in the second water slurry) is added to the second water slurry, and the solid content is an oxide of zirconium and yttrium.
  • 600 L of a third water slurry having a converted total weight of 7.5% by weight was obtained.
  • the third water slurry had a chlorine ion concentration of 4 ppm.
  • the chloride ion content based on the total weight of zirconium and yttrium oxide calculated based on the chloride ion concentration was 50 ppm.
  • the third water slurry was subjected to a hydrothermal treatment at 190 ° C. for 3 hours to obtain a first precursor of a transparent aqueous dispersion of stabilized zirconium oxide particles.
  • the first precursor of the transparent aqueous dispersion of the stabilized zirconium oxide particles is washed and concentrated with an ultrafiltration membrane, and the stabilized zirconium oxide particles having a concentration of 30.6% by weight and a chloride ion concentration of 6 ppm are obtained.
  • a second precursor (I-1) of the aqueous dispersion of stabilized zirconium oxide particles was obtained.
  • the chlorine ion content based on the weight of the stabilized zirconium oxide particles calculated based on the chloride ion concentration was 20 ppm.
  • the chlorine ion content based on the weight of the stabilized zirconium oxide particles, calculated based on the chloride ion concentration, was 2670 ppm.
  • Example 4 (Production of Aqueous Dispersion of Zirconium Oxide by Second Method) (Production of Zirconium Oxide Particle Aqueous Dispersion (I-7) with Chloride Ion Content in the Range of 1500 to 6500 ppm by Weight of Zirconium Oxide Particle by Method Outside the Present Invention) First Step A 0.6 mol / L concentration of zirconium oxychloride and 900 L of an aqueous solution and a 1.6 mol / L concentration of potassium hydroxide aqueous solution of 680 L were prepared.
  • the zirconium oxychloride aqueous solution and the potassium hydroxide aqueous solution are simultaneously poured into a precipitation reactor filled with 820 L of pure water in advance, and the zirconium oxychloride is precipitated by simultaneous neutralization, so that the first water slurry containing zirconium oxide particles is formed. I got The pH of the resulting first water slurry was 8.2.
  • Second step The first water slurry is filtered, washed until the electric conductivity of the water washing filtrate becomes 10 ⁇ S / cm or less, repulped again to pure water, and the second water containing the zirconium oxide particles is used. A slurry was obtained. 42 kg of acetic acid (1.4 mol parts per 1 mol part of zirconium in the second water slurry) is added to the second water slurry, and the solid content is 7.5 wt% in terms of zirconium oxide. % Of a third water slurry was obtained.
  • the third water slurry had a chlorine ion concentration of 1230 ppm.
  • the chlorine ion content based on the weight of the zirconium oxide particles calculated based on the chloride ion concentration was 16,450 ppm.
  • the third water slurry was subjected to hydrothermal treatment at 190 ° C. for 3 hours to obtain a transparent aqueous dispersion precursor of zirconium oxide particles.
  • the zirconium oxychloride aqueous solution and the potassium hydroxide aqueous solution are simultaneously poured into a precipitation reactor filled with 820 L of pure water in advance, and the zirconium oxychloride is precipitated by simultaneous neutralization, so that the first water slurry containing zirconium oxide particles is formed. I got The pH of the obtained first water slurry was 9.6.
  • Second step The first water slurry is filtered, washed until the electric conductivity of the water washing filtrate becomes 10 ⁇ S / cm or less, repulped again to pure water, and the second water containing the zirconium oxide particles is used. A slurry was obtained. 42 kg of acetic acid (1.4 mol parts per 1 mol part of zirconium in the second water slurry) is added to the second water slurry, and the solid content is 7.5 wt% in terms of zirconium oxide. % Of a third water slurry was obtained.
  • the third water slurry had a chloride ion concentration of 140 ppm.
  • the chlorine ion content based on the weight of the zirconium oxide particles calculated based on the chloride ion concentration was 1920 ppm.
  • the third water slurry was subjected to hydrothermal treatment at 190 ° C. for 3 hours to obtain a transparent aqueous dispersion precursor of zirconium oxide particles.
  • the transparent aqueous dispersion precursor of zirconium oxide particles is washed and concentrated by an ultrafiltration membrane, and the zirconium oxide aqueous dispersion precursor having a zirconium oxide particle concentration of 31.3% by weight and a chloride ion concentration of 220 ppm is provided. (I-8) was obtained.
  • the chlorine ion content based on the weight of the zirconium oxide particles calculated based on the chloride ion concentration was 710 ppm.
  • a methanol dispersion (II-9) of zirconium oxide particles having a zirconium oxide particle concentration of 30.4% by weight and a chlorine ion concentration of 950 ppm was obtained.
  • the amount of methanol used for dilution was 90 L.
  • the chlorine ion content based on the weight of the zirconium oxide particles calculated based on the chloride ion concentration was 3120 ppm.
  • Comparative Example 1 (Production of Stabilized Zirconium Oxide Particle Aqueous Dispersion (I-10) as Comparative Example to First and Second Methods)
  • the mixed aqueous solution of zirconium oxychloride and yttrium chloride and the aqueous potassium hydroxide solution are simultaneously poured into a precipitation reactor filled with 820 liters of pure water in advance, and the zirconium oxychloride and yttrium chloride are co-precipitated by simultaneous neutralization. And a first water slurry containing particles of the coprecipitate of yttrium. The pH of the obtained first water slurry was 9.7.
  • Second step The first water slurry is filtered, washed until the washing filtrate has an electric conductivity of 10 ⁇ S / cm or less, repulped in pure water, and contains particles of the coprecipitated zirconium and yttrium.
  • a second water slurry was obtained. 42 kg of acetic acid (1.3 mol parts per 1 mol part of the total amount of zirconium and yttrium in the first water slurry) is added to the second water slurry, and the solid content is an oxide of zirconium and yttrium. 600 L of a third water slurry having a converted total weight of 7.5% by weight was obtained.
  • the third water slurry had a chlorine ion concentration of 130 ppm.
  • the chlorine ion content based on the total weight of zirconium and yttrium oxides calculated based on the chloride ion concentration was 1,730 ppm.
  • the third water slurry was subjected to a hydrothermal treatment at 190 ° C. for 3 hours to obtain a transparent aqueous dispersion precursor of stabilized zirconium oxide particles.
  • the transparent aqueous dispersion precursor of the stabilized zirconium oxide particles is washed with an ultrafiltration membrane and concentrated to obtain a stabilized zirconium oxide particle concentration of 30.6% by weight and a chlorine ion concentration of 180 ppm.
  • An aqueous dispersion (I-10) of zirconium oxide particles was obtained.
  • the chlorine ion content based on the weight of the stabilized zirconium oxide particles calculated based on the chloride ion concentration was 590 ppm.
  • a methanol dispersion of stabilized zirconium oxide particles (II-10) having a stabilized zirconium oxide particle concentration of 30.4% by weight and a chloride ion concentration of 170 ppm was obtained.
  • the amount of methanol used for dilution was 90 L.
  • the methanol dispersion of stabilized zirconium oxide particles (II-10) had a viscosity at 25 ° C. of 36 mPa ⁇ s immediately after the production, but gelled 7 days after the production.
  • Second step The first water slurry is filtered, washed until the electric conductivity of the water washing filtrate becomes 10 ⁇ S / cm or less, repulped again to pure water, and the second water containing the zirconium oxide particles is used. A slurry was obtained. 42 kg of acetic acid (1.4 mol parts per 1 mol part of zirconium in the second water slurry) is added to the second water slurry, and the solid content is 7.5 wt% in terms of zirconium oxide. % Of a third water slurry was obtained.
  • the chlorine ion concentration of the third water slurry was 50 ppm.
  • the chloride ion content based on the weight of the zirconium oxide particles calculated based on the chloride ion concentration was 670 ppm.
  • the third water slurry was subjected to hydrothermal treatment at 190 ° C. for 3 hours to obtain a transparent aqueous dispersion precursor of zirconium oxide particles.
  • the precursor of the transparent aqueous dispersion of zirconium oxide particles is washed and concentrated by an ultrafiltration membrane, and the aqueous dispersion of zirconium oxide particles (I) having a zirconium oxide particle concentration of 30.3% by weight and a chloride ion concentration of 80 ppm (I -3) was obtained.
  • the chlorine ion content based on the weight of the zirconium oxide particles calculated based on the chloride ion concentration was 260 ppm.
  • the methanol was removed from the methanol dispersions of zirconium oxide particles obtained in Examples 2 and 4 and Comparative Example 2, dried, and the resulting zirconium oxide fine particles were observed with a TEM (transmission electron microscope).
  • the average primary particle diameter of the zirconium oxide particles was about 5 nm.
  • the methanol was removed from the methanol dispersion of the stabilized zirconium oxide particles as a solid solution containing yttrium obtained in Examples 1 and 3 and Comparative Example 1, and the powder was dried.
  • the obtained stabilized zirconium oxide particles were subjected to TEM ( Observation with a transmission electron microscope) revealed that the stabilized primary zirconium oxide particles had an average primary particle diameter of about 3 nm.
  • Table 1 shows the molar excess of alkali to acid when the (mixed) aqueous solution of zirconium oxychloride (and yttrium chloride) (acid) in the above Examples and Comparative Examples was neutralized with potassium hydroxide (alkali).
  • the molar excess is represented by the ratio of the molar amount of the alkali used in the neutralization reaction / the molar amount of the acid used.
  • K K / (2Z + 3Y) (3)
  • Z represents the molar amount of zirconium oxychloride used
  • Y represents the molar amount of yttrium chloride used.
  • the concentration of the aqueous potassium hydroxide solution used in the first step, the pH of the first water slurry obtained in the first step, and the pH of the third water slurry obtained in the second step Table 1 shows the chloride ion concentration of the water slurry and the chlorine ion content (Cl / ZrO 2 ) calculated based on the chloride ion concentration.
  • the chlorine ion content in Examples 1 and 3 and Comparative Example 1 is a chlorine ion content based on the total weight of zirconium and yttrium in terms of oxide, and in Examples 2, 4 and Comparative Example 2, It is a chlorine ion content with respect to the weight of zirconium oxide particles.
  • the zirconium oxide particles obtained in Examples 1 to 4 and Comparative Example 1 were calculated based on the concentration of the methanol dispersion, the particle size distribution, the total light transmittance, the chloride ion concentration, and the chloride ion concentration (stable).
  • Table 3 shows the results of evaluating the chlorine ion content (Cl / ZrO 2 ), the water content, the viscosity at 25 ° C. immediately after the production, the viscosity seven days after the production, and the long-term storage stability with respect to the zirconium oxide particles.
  • Comparative Example 2 while the dispersion medium of the aqueous dispersion of zirconium oxide particles was being replaced with methanol, the dispersion gelled, and a methanol dispersion could not be obtained.
  • column (a) of Example 3 shows the first and second steps for obtaining the aqueous dispersion (I-5) of column (a) of Example 3 in Table 2.
  • column (b) of Example 3 corresponds to the first and second steps for obtaining the aqueous dispersion precursor (I-1) in column (b) of Example 3 in Table 2. Is shown.
  • column (a) of Example 4 shows the first step and the second step for obtaining the aqueous dispersion (I-7) of column (a) of Example 4 in Table 2.
  • column (b) of Example 4 corresponds to the first and second steps for obtaining the aqueous dispersion precursor (I-8) in column (b) of Example 4 in Table 2. Is shown.
  • Example 1 shows the physical properties of the aqueous dispersion precursor (I-1), and column (b) of Example 1 shows that the aqueous dispersion I-1 contains hydrochloric acid. Shows the physical property values of the aqueous dispersion (I-2) according to the present invention obtained by adding the compound (A).
  • column (a) of Example 2 shows the physical properties of the aqueous dispersion precursor (I-3) that gives the aqueous dispersion (I-4), and column (b) of Example 2
  • the physical properties of the aqueous dispersion (I-4) according to the present invention obtained by adding hydrochloric acid to the aqueous dispersion precursor (I-3) are shown below.
  • Example 3 shows physical properties of the aqueous dispersion (I-5) used to obtain the aqueous dispersion (I-6), and column (b) of Example 3 shows The physical properties of the aqueous dispersion precursor (I-1) are shown.
  • Column (c) of Example 3 shows the present invention obtained by mixing the aqueous dispersion I-5 and the aqueous dispersion I-1.
  • the physical properties of the aqueous dispersion (I-6) are shown in Table 1.
  • Example 4 shows the physical properties of the first aqueous dispersion (I-7) used to obtain the aqueous dispersion (I-9) according to the present invention.
  • Column (b) shows the physical properties of the aqueous dispersion precursor (I-8) used to obtain the aqueous dispersion (I-9) according to the present invention.
  • Column (c) of Example 4 shows the above The physical properties of the aqueous dispersion (I-9) according to the present invention obtained by mixing the aqueous dispersion (I-7) and the aqueous dispersion precursor (I-8) are shown below.
  • the aqueous dispersion of (stabilized) zirconium oxide particles obtained according to the method of the present invention has high transparency even if it contains fine (stabilized) zirconium oxide particles at a high concentration as shown in Examples 1 to 4. It has properties and a low viscosity, and furthermore, its viscosity increase when stored at a temperature of 25 ° C. for 24 months is 20 mPa ⁇ s or less, and is remarkably excellent in long-term storage stability. In particular, according to a preferred embodiment, even after storage for 40 months or more, the viscosity at 25 ° C. is substantially the same as immediately after production, and is extremely excellent in long-term storage stability.
  • an organic solvent dispersion obtained by replacing water as a dispersion medium of the (stabilized) aqueous dispersion of zirconium oxide particles obtained according to the method of the present invention with an organic solvent is also an aqueous dispersion as shown in Table 3.
  • Table 3 an organic solvent dispersion obtained by replacing water as a dispersion medium of the (stabilized) aqueous dispersion of zirconium oxide particles obtained according to the method of the present invention with an organic solvent is also an aqueous dispersion as shown in Table 3.
  • the viscosity increase amount when stored at a temperature of 25 ° C. for 24 months is 20 mPa ⁇ s or less. It is remarkably excellent in long-term storage stability.
  • the viscosity at 25 ° C. is substantially the same as immediately after production, and is extremely excellent in long-term storage stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本発明によれば、オキシ塩化ジルコニウムを塩基性物質と反応させて、酸化ジルコニウム粒子を含む第1の水スラリーを得、上記第1の水スラリーを水洗して第2の水スラリーを得、上記第2の水スラリーにジルコニウム1モル部に対して有機酸1モル部以上を加えて、ジルコニウム粒子の重量に対する塩素イオン含有率が4000ppm未満である第3の水スラリーを得、次いで、上記第3の水スラリーを水熱処理して、酸化ジルコニウム粒子水分散液前駆体を得、上記酸化ジルコニウム粒子水分散液前駆体を限外濾過によって洗浄して、酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500ppm未満である酸化ジルコニウム粒子水分散液の第2の前駆体を得る第4工程、上記酸化ジルコニウム粒子水分散液の第2の前駆体に塩酸を加えて、酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500~7000ppmの範囲である酸化ジルコニウム粒子水分散液を得る第5工程を含む、酸化ジルコニウム粒子水分散液の製造方法が提供される。このようにして得られる酸化ジルコニウム粒子水分散液は、微細な酸化ジルコニウム粒子を高濃度で含有していても、透明性にすぐれ、低粘度であるうえに、特に、環境温度に関わらずに、長期間にわたる保存安定性にすぐれている。

Description

酸化ジルコニウム粒子の水分散液と有機溶媒分散液の製造方法
 本発明は酸化ジルコニウム粒子の水分散液と有機溶媒分散液のそれぞれの製造方法に関し、詳しくは、微細な酸化ジルコニウム粒子を高濃度で含みながら、低粘度と高透明性を有し、しかも、長期保存安定性にすぐれる酸化ジルコニウム粒子の水分散液と有機溶媒分散液のそれぞれの製造方法に関する。本発明の方法によって得られる酸化ジルコニウム粒子分散液は光学分野における種々の用途、特に、LED封止樹脂や反射防止膜等の光学用の複合樹脂の材料として有用である。
  従来、シリカ、アルミナ、酸化亜鉛、酸化スズ、ジルコニア、チタニア等の無機酸化物粒子分散液は、種々の産業分野において用いられており、特に、光学分野においては屈折率を調節するために用いられている。なかでも、酸化ジルコニウムは、屈折率が高いので、近年、透明な樹脂やフィルムと複合化し、その屈折率を向上させてなる高機能性樹脂やフィルムとして利用することが種々、提案されている。
  例えば、LEDを覆う封止樹脂に屈折率の高い酸化ジルコニウムを加えることによって、封止樹脂の屈折率が高められて、発光体の放つ光をより効率的に取り出すことが可能となり、LEDの輝度が向上することが知られている。
  同様に、液晶ディスプレイ(LCD)、エレクトロルミネッセンスディスプレイ(EL)等のフラットパネルディスプレイ(FPD)の表示面の反射防止膜にも、酸化ジルコニウムが用いられている。この反射防止膜は低屈折率層と高屈折率層を積層してなる積層膜であり、この高屈折率層に酸化ジルコニウムを分散させた複合樹脂材料が用いられている。
  上述した用途においては、酸化ジルコニウムの一次粒子径と樹脂中での二次凝集粒子径が可視光線の波長(380~800nm)よりも十分に小さくないときは、酸化ジルコニウム粒子による散乱の影響によって、封止樹脂や反射防止膜が白濁するので、必要とされる透明性が得られない。従って、酸化ジルコニウム粒子を樹脂に微粒子として分散させた透明性の高い酸化ジルコニウム粒子分散液の開発が強く要望されている。
  このような要望に応えるべく、近年、酸化ジルコニウムの微粒子やその分散液を得る方法が種々、提案されている。酸化ジルコニウム粒子分散液を得るための代表的な方法は、ジルコニウム塩のアルカリ中和によって生成する水酸化ジルコニウムを利用するものであって、例えば、水酸化ジルコニウムのスラリーに塩酸を所定の濃度で加え、煮沸温度で加熱して、酸化ジルコニウム粒子分散液を得る方法が知られている(特許文献1参照)。しかし、この方法によれば、得られる酸化ジルコニウムの平均粒子径が50nm以上であるので、分散液は、十分な透明性をもち難い。
  60℃以上に加熱したアルカリ金属の水酸化物水溶液にジルコニウム塩を含む水溶液を加え、中和した後、即ち、逆中和した後、濾過、洗浄し、水を加えて、攪拌した後、酸を加え、80~100℃の温度で加熱攪拌して、ジルコニア分散液を得る方法も知られている(特許文献2参照)。
  また、リンゴ酸、クエン酸、酒石酸等のカルボン酸の存在下、水中にてジルコニウム塩をアルカリで中和して、水酸化ジルコニウムゲルを得、これを一旦、洗浄した後、熟成し、超音波照射等によって十分に分散させた後、再度、上記カルボン酸の存在下に水熱処理することによって酸化ジルコニウム粒子分散液を得る方法が知られている(特許文献3参照)。
 ジルコニウム塩を水中にてアルカリと反応させて、酸化ジルコニウム粒子のスラリーを得、次いで、このスラリーを濾過、洗浄し、リパルプして、得られたスラリーにこのスラリー中のジルコニウム1モル部に対して有機酸1モル部以上を加え、170℃以上の温度にて水熱処理した後、得られた酸化ジルコニウム粒子水分散液を洗浄して、高透明性の酸化ジルコニウム粒子水分散液を得る方法も提案されている(特許文献4参照)。
 酸化ジルコニウム粒子分散液の用途が拡大すると共に、その使用量も増えるにつれて、その長期保存安定性に対する要求が高まっているが、上述した従来の酸化ジルコニウム粒子分散液は、長期保存安定性については何も記載がなく、また、得られる水分散液によっては、実際、長期保存安定性に劣る場合もある。
 酸化ジルコニウム粒子水分散液に有機溶媒と共に、酢酸、β-ジケトン、サリチル酸のような安定化剤を加え、濾過して、水を有機溶媒に置換してなり、経時安定性にすぐれるとする有機溶媒分散液が提案されているが(特許文献5参照)、どの程度の経時安定性を有するかは明らかにされていない。
 特に、長期保存安定性に関連して、従来、知られている酸化ジルコニウムナノ粒子の分散液は長期保存安定性が十分でないことから、長期保存安定性を確保し、又は劣化を防止するために、通常、冷蔵温度乃至冷凍温度にて保管し、使用に際しては、常温に戻すことが行われている。
特開平5-24844号公報 特開2008-31023号公報 特開2006-143535号公報 特開2010-150066号公報 特開2007-238422号公報
 本発明は、従来の酸化ジルコニウム粒子分散液における上述した問題を解決するためになされたものであって、微細な酸化ジルコニウム粒子を高濃度で含有していても、透明性にすぐれ、低粘度であるうえに、特に、長期間にわたる保存安定性にすぐれる酸化ジルコニウム粒子の水分散液と有機溶媒分散液のそれぞれの製造方法を提供することを目的とする。
 特に、本発明は、温度に関わりなく、例えば、約10℃から約40℃にわたる温度制御のない環境においても、従って、常温の環境においても、長期保存安定性にすぐれる酸化ジルコニウムナノ粒子の水分散液と有機溶媒分散液のそれぞれの製造方法を提供することを目的とする。
 本発明者は、オキシ塩化ジルコニウムをアルカリ性の水中にて塩基性物質と反応させて、酸化ジルコニウム粒子を含む第1の水スラリーを得る工程から出発して、これを水分散液と有機溶媒分散液に導く方法について詳細に研究した結果、上記第1の水スラリーから出発して、途中において得られる酸化ジルコニウム粒子の第2、第3等の水スラリーや、また、場合によっては、水分散液を与える前駆体における酸化ジルコニウム粒子の重量に対する塩素イオン含有率を最適に制御しつつ、最終的に上記塩素イオン含有率を所定の範囲とすることによって、微細な酸化ジルコニウム粒子を高濃度で含有していても、透明性にすぐれ、低粘度であるうえに、特に、上述した意味において、長期間にわたる保存安定性にすぐれる酸化ジルコニウム粒子の水分散液と有機溶媒分散液を得ることができることを見出して、本発明に至ったものである。
 本発明によれば、以下の酸化ジルコニウム粒子の水分散液と有機溶媒分散液のそれぞれ製造方法が提供される。更に、本発明によれば、同様にして、安定化元素を含む固溶体である安定化酸化ジルコニウム粒子の水分散液と有機溶媒分散液のそれぞれ製造方法が提供される。
(I)第1の方法
(1)酸化ジルコニウム粒子水分散液の製造
 オキシ塩化ジルコニウムを水中にて塩基性物質と反応させて、酸化ジルコニウム粒子を含むpH9.6~11.0の範囲である第1の水スラリーを得る第1工程、
 上記第1の水スラリーを濾過、水洗した後、水にリパルプして、上記酸化ジルコニウム粒子を含む第2の水スラリーを得、上記第2の水スラリーにジルコニウム1モル部に対して有機酸1モル部以上を加えて、上記酸化ジルコニウム粒子の重量に対する塩素イオン含有率が4000ppm未満である第3の水スラリーを得る第2工程、
 上記第3の水スラリーを水熱処理して、酸化ジルコニウム粒子水分散液の第1の前駆体を得る第3工程、及び
 上記酸化ジルコニウム粒子水分散液の第1の前駆体を限外濾過によって洗浄して、酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500ppm未満である酸化ジルコニウム粒子水分散液の第2の前駆体を得る第4の工程、
 上記酸化ジルコニウム粒子水分散液の第2の前駆体に塩酸を加えて、酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500~7000ppmの範囲である酸化ジルコニウム粒子水分散液を得る第5工程
を含む、酸化ジルコニウム粒子水分散液の製造方法。
(2)安定化酸化ジルコニウム粒子水分散液の製造
 オキシ塩化ジルコニウムとアルミニウム、マグネシウム、チタン及び希土類元素から選ばれる少なくとも1種の安定化元素の塩を水中にて塩基性物質と反応させて、ジルコニウムと上記安定化元素の共沈物の粒子を含むpH9.6~11.0の範囲である第1の水スラリーを得る第1工程、
 上記第1の水スラリーを濾過、水洗した後、水にリパルプして、上記ジルコニウムと上記安定化元素の共沈物の粒子を含む第2の水スラリーを得、上記第2の水スラリーにジルコニウムと上記安定化元素の合計量1モル部に対して有機酸1モル部以上を加えて、ジルコニウムと上記安定化元素の酸化物換算の合量重量に対する塩素イオン含有率が4000ppm未満である第3の水スラリーを得る第2工程、
 上記第3の水スラリーを水熱処理して、上記安定化元素を含む固溶体である安定化酸化ジルコニウム粒子水分散液の第1の前駆体を得る第3工程、及び
 上記安定化酸化ジルコニウム粒子水分散液の第1の前駆体を限外濾過によって洗浄して、上記安定化酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500ppm未満である上記安定化酸化ジルコニウム粒子水分散液の第2の前駆体を得る第4工程、
 上記安定化酸化ジルコニウム粒子水分散液の第2の前駆体に塩酸を加えて、上記安定化酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500~7000ppmの範囲である上記安定化酸化ジルコニウム粒子水分散液を得る第5工程
を含む、上記安定化酸化ジルコニウム粒子水分散液の製造方法。
(3)酸化ジルコニウム粒子有機溶媒分散液の製造
 上記(1)に記載の方法によって得られた上記酸化ジルコニウム粒子水分散液の分散媒である水を有機溶媒と置換して、酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500~7000ppmの範囲である、分散媒が上記有機溶媒である酸化ジルコニウム粒子有機溶媒分散液を得る酸化ジルコニウム粒子有機溶媒分散液の製造方法。
(4)安定化酸化ジルコニウム粒子有機溶媒分散液の製造
 上記(2)に記載の方法によって得られた上記安定化酸化ジルコニウム粒子水分散液の分散媒である水を有機溶媒と置換して、安定化酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500~7000ppmの範囲である、分散媒が上記有機溶媒である安定化酸化ジルコニウム粒子有機溶媒分散液を得る安定化酸化ジルコニウム粒子有機溶媒分散液の製造方法。
(II)第2の方法
(5)酸化ジルコニウム粒子水分散液の製造
 オキシ塩化ジルコニウムを水中にて塩基性物質と反応させて、酸化ジルコニウム粒子を含むpH9.6~11.0の範囲である第1の水スラリーを得る第1工程、
 上記第1の水スラリーを濾過、水洗した後、水にリパルプして、上記酸化ジルコニウム粒子を含む第2の水スラリーを得、上記第2の水スラリーにジルコニウム1モル部に対して有機酸1モル部以上を加えて、上記酸化ジルコニウム粒子の重量に対する塩素イオン含有率が4000ppm未満である第3の水スラリーを得る第2工程、
 上記第3の水スラリーを水熱処理して、酸化ジルコニウム粒子水分散液の第1の前駆体を得る第3工程、
 上記酸化ジルコニウム粒子水分散液の第1の前駆体を限外濾過によって洗浄して、酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500ppm未満である酸化ジルコニウム粒子水分散液の第2の前駆体を得る第4工程、
 上記酸化ジルコニウム粒子水分散液の第2の前駆体と酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500ppm以上である酸化ジルコニウム粒子水分散液を混合して、酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500~7000ppmの範囲である酸化ジルコニウム粒子水分散液を得る第5工程
を含む、酸化ジルコニウム粒子水分散液の製造方法。
(6)安定化酸化ジルコニウム粒子水分散液の製造
 オキシ塩化ジルコニウムとアルミニウム、マグネシウム、チタン及び希土類元素から選ばれる少なくとも1種の安定化元素の塩を水中にて塩基性物質と反応させて、ジルコニウムと上記安定化元素の共沈物の粒子を含むpH9.6~11.0の範囲である第1の水スラリーを得る第1工程、
 上記第1の水スラリーを濾過、水洗した後、水にリパルプして、上記ジルコニウムと上記安定化元素の共沈物の粒子を含む第2の水スラリーを得、上記第2の水スラリーにジルコニウムと上記安定化元素の合計量1モル部に対して有機酸1モル部以上を加えて、ジルコニウムと上記安定化元素の酸化物換算の合量重量に対する塩素イオン含有率が4000ppm未満である第3の水スラリーを得る第2工程、
 上記第3の水スラリーを水熱処理して、上記安定化元素を含む固溶体である安定化酸化ジルコニウム粒子水分散液の第1の前駆体を得る第3工程、及び
 上記安定化酸化ジルコニウム粒子水分散液の第1の前駆体を限外濾過によって洗浄して、上記安定化酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500ppm未満である上記安定化酸化ジルコニウム粒子水分散液の第2の前駆体を得る第4工程、
 上記安定化酸化ジルコニウム粒子水分散液の第2の前駆体と安定化酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500ppm以上である安定化酸化ジルコニウム粒子水分散液を混合して、上記安定化酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500~7000ppmの範囲である上記安定化酸化ジルコニウム粒子水分散液を得る第5工程
を含む、上記安定化酸化ジルコニウム粒子水分散液の製造方法。
(7)酸化ジルコニウム粒子有機溶媒分散液の製造
 上記(5)に記載の方法によって得られた上記酸化ジルコニウム粒子水分散液の分散媒である水を有機溶媒と置換して、酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500~7000ppmの範囲である、分散媒が上記有機溶媒である酸化ジルコニウム粒子有機溶媒分散液を得る酸化ジルコニウム粒子有機溶媒分散液の製造方法。
(8)安定化酸化ジルコニウム粒子有機溶媒分散液の製造
 上記(6)に記載の方法によって得られた上記安定化酸化ジルコニウム粒子水分散液の分散媒である水を有機溶媒と置換して、安定化酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500~7000ppmの範囲である、分散媒が上記有機溶媒である安定化酸化ジルコニウム粒子有機溶媒分散液を得る安定化酸化ジルコニウム粒子有機溶媒分散液の製造方法。
 以下において、(安定化)酸化ジルコニウム粒子は酸化ジルコニウム粒子及び/又は安定化酸化ジルコニウム粒子を意味する。
 上述したように、本発明の第1及び第2の方法によって得られる(安定化)酸化ジルコニウム粒子の水分散液と有機溶媒分散液はいずれも、微細な(安定化)酸化ジルコニウム粒子を高濃度にて含んでいても、高透明性と低粘度を有し、温度25℃にて24か月保管したときの粘度増加量が20mPa・s以下であって、長期保存安定性に著しくすぐれている。
 本発明の好ましい態様によれば、環境温度に関わらず、特に、常温環境下において、40か月以上にわたって保管しても、その粘度が製造直後の粘度と実質的に変わらず、長期保存安定性に極めてすぐれる(安定化)酸化ジルコニウム粒子の水分散液と有機溶媒分散液を得ることができる。
 先ず、本発明による第1の方法について述べる。
(1)酸化ジルコニウム粒子水分散液の製造
第1工程
 第1の方法による酸化ジルコニウム粒子水分散液の製造においては、第1工程として、オキシ塩化ジルコニウムを水中にて塩基性物質と反応させて、上記酸化ジルコニウム粒子を含むpH9.6~11.0の範囲である第1の水スラリーを得る。
 本発明において、オキシ塩化ジルコニウムを水中にて上記塩基性物質と反応させる際の温度は、特に限定されるものではないが、通常、10~50℃の範囲であり、好ましくは、15~40℃の範囲である。
 酸であるオキシ塩化ジルコニウムを塩基性物質で中和する際の中和反応において、酸に対する塩基性物質のモル過剰度、即ち、アルカリ中和時のモル過剰度は、通常、1.15~1.5の範囲であることが好ましい。上記酸に対する塩基性物質のモル過剰度については後述する。
 オキシ塩化ジルコニウムを水中にて上記塩基性物質と反応させる方法についても、例えば、オキシ塩化ジルコニウム塩水溶液に塩基性物質水溶液を添加する方法、塩基性物質水溶液にオキシ塩化ジルコニウム水溶液を添加する方法、オキシ塩化ジルコニウム塩水溶液と塩基性物質水溶液を、予め、沈殿反応器に入れた所謂張り込み液に同時に添加する方法等、いずれであってもよいが、なかでも、オキシ塩化ジルコニウム水溶液と塩基性物質を予め、反応容器に入れた所謂張り込み液に同時に添加する同時中和法が好ましい。
 上記塩基性物質としては、水酸化ナトリウムや水酸化カリウムのようなアルカリ金属水酸化物やアンモニア等が好ましく用いられるが、これら例示に限定されるものではない。上記塩基性物質は、通常、水溶液として用いられる。
 上記オキシ塩化ジルコニウム水溶液は、その濃度は、2.4モル/L以下であることが好ましく、また、上記塩基性物質水溶液は、その濃度が10モル/L以下であることが好ましい。
 本発明によれば、このようにして、第1工程において、通常、酸化ジルコニウム粒子濃度1~20重量%の第1の水スラリーを得る。この第1の水スラリー中の酸化ジルコニウム粒子濃度が20重量%を超えるときは、そのような第1の水スラリーは粘度が高く、攪拌が困難であり、得られる酸化ジルコニウム粒子の塩素イオン含有率が不均一となり、また、第2工程において、洗浄が不十分となって、このような水スラリーを用いることによっては、目的とする高透明性と低粘度を有する酸化ジルコニウム粒子水分散液を得ることができない。特に、本発明によれば、上記第1の水スラリーの酸化ジルコニウム粒子濃度は1~10重量%の範囲とすることが好ましい。
 前記第1工程において、オキシ塩化ジルコニウムと上記塩基性物質を水中で反応させて、酸化ジルコニウム粒子を含む第1の水スラリーを得るに際して、オキシ塩化ジルコニウムに対する上記塩基性物質の使用量が多く、上記反応の際のpHが上記範囲を越えて高いときは、第2工程において洗浄のために大量の水を必要とするので、経済的でない。
第2工程
 第1の方法の第2工程においては、上記第1の工程で得られた酸化ジルコニウム粒子を含む第1の水スラリーを濾過、水洗した後、水にリパルプして、上記酸化ジルコニウム粒子を含む第2の水スラリーを得るに際して、この第2の水スラリーは500μS/cm以下の電気伝導度を有することが好ましい。
 オキシ塩化ジルコニウムを水中にて塩基性物質、例えば、水酸化カリウムで中和するとき、塩化カリウムが副生する。そこで、オキシ塩化ジルコニウムを水中にて水酸化カリウムと反応させて得られた第1の水スラリー中に含まれる上記副生塩、即ち、塩化カリウムが十分に除去されていないときは、そのような水スラリーに有機酸を加え、水熱処理しても、十分な分散効果が得難く、従って、この後に限外濾過処理しても、透明性の高い酸化ジルコニウム粒子水分散液を得ることができない。
 また、本発明においては、得られた第1の水スラリーを濾過、洗浄し、得られたケーキを水中にリパルプして、第2の水スラリーとする際に、上記ケーキを水中に投入し、攪拌機にて攪拌して、水スラリーとしてもよいが、必要に応じて、ビーズミル等の湿式メディア分散のほか、超音波照射、高圧ホモジナイザー等の手段を用いて、上記ケーキを水中にリパルプしてもよい。
 第2工程において上記第2の水スラリーに加える上記有機酸は解膠剤であって、得られる第3の水スラリー中の酸化ジルコニウム粒子を相互に電荷的に反発させることによって分散させる所謂酸解膠させるために用いられる。
  上記有機酸としては、好ましくは、カルボン酸やヒドロキシカルボン酸が用いられる。そのような有機酸の具体例としては、例えば、蟻酸、酢酸、プロピオン酸等のモノカルボン酸、シュウ酸、マロン酸、コハク酸、フマル酸、マレイン酸等のジカルボン酸やより高次の多塩基酸、乳酸、リンゴ酸、酒石酸、クエン酸、グルコン酸等のヒドロキシカルボン酸等の塩を挙げることができる。
  また、これらの有機酸は、上述したように、水熱処理する第3の水スラリー中のジルコニウム1モル部に対して、通常、1モル部以上の範囲で用いられるが、好ましくは、1~5モル部の範囲で用いられ、最も好ましくは、1~3モル部の範囲で用いられる。第3の水スラリー中のジルコニウム1モル部に対して有機酸の量が1モル部よりも少ないときは、得られる酸化ジルコニウム粒子水分散液がその透明性において不十分であるのみならず、粘度も高くなることがある。他方、第3の水スラリー中のジルコニウム1モル部に対して有機酸の量が5モル部を越えても、それに見合う効果も特になく、経済的でもない。
 上記第2の水スラリーにジルコニウム1モル部に対して有機酸1モル部以上を加えて、上記酸化ジルコニウム粒子の重量に対する塩素イオン含有率が4000ppm未満、好ましくは、3000ppm未満であり、最も好ましくは、2000ppm未満である第3の水スラリーを得る。
 塩酸としては、特に制限されないが、濃度40%以下のものが好ましい。
第3工程
 第1の方法においては、第3工程として、上記第3の水スラリーを170℃以上の温度にて水熱処理して、酸化ジルコニウム粒子水分散液の第1の前駆体を得る。
 前述したように、上記有機酸は解膠剤であって、本発明によれば、第3の水スラリーを上記解膠剤の存在下に水熱処理なる過酷な条件下に処理するので、酸化ジルコニウム粒子はより効果的に解膠される。
 本発明によれば、水熱処理に供する第3の水スラリーについても、酸化ジルコニウム粒子濃度は、通常、1~20重量%の範囲であり、好ましくは、1~10重量%の範囲である。第3の水スラリーの酸化ジルコニウム粒子濃度が20重量%を超えるときは、水スラリーの粘度が高く、水熱処理に困難を生じる。特に、本発明によれば、第3の水スラリーの酸化ジルコニウム粒子濃度は、1~10重量%の範囲とすることが好ましい。
 上記水熱処理の温度は、通常、170℃以上であり、好ましくは、170℃~230℃の温度である。水熱処理の温度が170℃よりも低いときは、得られる酸化ジルコニウム粒子水分散液が十分な透明性をもたないのみならず、沈降性の粗大な凝集粒子を含み、また、高い粘度を有することがある。
  上記水熱処理の時間は、通常、1時間以上であり、好ましくは、3時間以上である。水熱処理の温度が1時間よりも短いときは、得られる酸化ジルコニウム粒子水分散液が十分な透明性をもたないのみならず、沈降性の粗大な凝集粒子が生成して、目的とする透明性の高い酸化ジルコニウム粒子水分散液を得ることができない。水熱処理の時間は幾ら長くしてもよいが、それに見合う効果も特に得られないので、通常、10時間以下で十分である。
第4工程
 次いで、本発明によれば、このようにして得られた酸化ジルコニウム粒子水分散液の第1の前駆体を限外濾過して、酸化ジルコニウム粒子の重量に対する塩素イオン濃度が1500ppm未満である酸化ジルコニウム粒子水分散液の第2の前駆体を得る。
第5工程
 次いで、上記酸化ジルコニウム粒子水分散液の第2の前駆体に解膠剤である塩酸を加えて、酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500~7000ppm、好ましくは、2000~5000ppmの範囲にあって、酸化ジルコニウム粒子濃度が、通常、1~30重量%の範囲にある酸化ジルコニウム粒子水分散液を得る。酸化ジルコニウム粒子の重量に対する塩素イオン濃度が1500ppm未満の場合には、水分散液の保存安定性が悪くなる。一方、酸化ジルコニウム粒子の重量に対する塩素イオン濃度が7000ppmを超える場合には、製造設備の腐食の虞がある。
  本発明によれば、必要に応じて、このようにして得られた酸化ジルコニウム粒子水分散液を濃縮することができる。この濃縮のためには、ロータリーエバポレーターによる蒸発濃縮、限外濾過膜を用いる限外濾過による濃縮等の手段によることができる。この濃縮手段は、特に限定されるものではないが、限外濾過膜を用いる限外濾過による濃縮が好ましい。
  従って、本発明によれば、上記水熱処理によって得られた酸化ジルコニウム粒子水分散液は、限外濾過膜を用いて濃縮すると同時に洗浄することができる。即ち、酸化ジルコニウム粒子水分散液を限外濾過して濃縮し、得られた濃縮液に水を加えて希釈、洗浄し、得られた水スラリーを再度、限外濾過し、このようにして、水分散液を限外濾過して、その濃縮と希釈を繰り返すことによって、水熱処理によって得られた酸化ジルコニウム粒子水分散液を濃縮しつつ、洗浄して、残存副生塩類を水と共に繰り返して除き、かくして、酸化ジルコニウム粒子水分散液を濃縮して、酸化ジルコニウム濃度を高めた水分散液を得ることができる。
 本発明によれば、このようにして、酸化ジルコニウム粒子濃度10~50重量%であって、低粘度と高透明性を有し、しかも、長期保存安定性にすぐれる酸化ジルコニウム粒子水分散液を得ることができる。
 本発明によれば、酸化ジルコニウム粒子水分散液の酸化ジルコニウム粒子濃度の上限は、通常、50重量%であり、好ましくは、40重量%である。酸化ジルコニウム粒子濃度が50重量%を越える水分散液は粘度が高く、最終的には、流動性を失って、ゲル化するからである。
 次に、本発明の第1の方法によって、安定化元素を含む固溶体である安定化酸化ジルコニウム粒子の水分散液の製造について述べる。
(2)安定化酸化ジルコニウム粒子水分散液の製造
 本発明による第1の方法によって、安定化酸化ジルコニウム粒子の水分散液を得るには、上述した第1の方法による酸化ジルコニウム粒子水分散液の製造において、オキシ塩化ジルコニウム水溶液に代えて、オキシ塩化ジルコニウムと前述した安定化元素の塩を含む水溶液を用いて同様に処理すればよい。上記安定化元素の塩の上記水溶液における濃度は、通常、0.5モル/L以下であることが好ましい。
 本発明において、上記安定化元素は、好ましくは、アルミニウム、マグネシウム、チタン及び希土類元素から選ばれる少なくとも1種である。
 上記安定化元素の塩は、特に限定されないが、通常、塩化物や硝酸塩等の水溶性塩が好ましく用いられる。例えば、安定化元素がアルミニウムであるときは、塩化アルミニウムが好ましく用いられ、また、安定化元素がイットリウムであるときは、塩化イットリウムが好ましく用いられる。本発明において、上記安定化元素は、ジルコニウム元素に対して、通常、1~20モル%の範囲で用いられる。
 本発明において、例えば、酸であるオキシ塩化ジルコニウムと塩化イットリウムを塩基性物質で中和する際の中和反応において、酸に対する塩基性物質のモル過剰度は、通常、1.15~1.5の範囲であることが好ましい。上記酸に対する塩基性物質のモル過剰度については後述する。
 本発明に従って、上記安定化元素を含む固溶体である酸化ジルコニウム粒子の水分散液を得るには、上述した酸化ジルコニウム粒子の水分散液を得る場合と同様にして、先ず、第1工程として、オキシ塩化ジルコニウムと上記安定化元素の塩を水中にて塩基性物質と反応させて、上記ジルコニウムと上記安定化元素の共沈物の粒子を含むpH9.6~11.0の範囲である第1の水スラリーを得る。
 次いで、第2工程として、上記第1の水スラリーを濾過、水洗した後、水にリパルプして、第2の水スラリーを得、この第2の水スラリーにジルコニウムと上記安定化元素の合計量の1モル部に対して前記と同じ有機酸1モル部以上を加えて、ジルコニウムと上記安定化元素の酸化物換算による合計重量に対する塩素イオン含有率が4000ppm未満である第3の水スラリーを得、上記第3の水スラリーを170℃以上の温度にて水熱処理して、安定化酸化ジルコニウム粒子水分散液の第1の前駆体を得、次いで、上記第1の前駆体を限外濾過して、安定化酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500ppm未満である安定化酸化ジルコニウム粒子水分散液の第2の前駆体を得、次いで、上記安定化酸化ジルコニウム粒子水分散液の第2の前駆体に解膠剤である塩酸を加えて、安定化酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500~7000ppm、好ましくは、2000~5000ppmの範囲である安定化酸化ジルコニウム粒子水分散液を得る。
 このようにして、安定化酸化ジルコニウム粒子濃度1~30重量%程度の安定化酸化ジルコニウム粒子水分散液を得ることができ、必要に応じて、前述したようにして、所要の濃度に濃縮される。
 また、このようにして、本発明の第1の方法によって得られる安定化酸化ジルコニウム粒子水分散液も、上述した酸化ジルコニウム粒子水分散液と同じ特性を有する。
 次に、第1の方法による(安定化)酸化ジルコニウム粒子有機溶媒分散液の製造について述べる。
(3)(安定化)酸化ジルコニウム粒子有機溶媒分散液の製造
 本発明によれば、前述したようにして、第2の方法によって、第1工程から第5工程を経て、(安定化)酸化ジルコニウム粒子水分散を得る。そこで、上記(安定化)酸化ジルコニウム粒子の水分散液の分散媒である水を有機溶媒と置換することによって、その有機溶媒を分散媒とし、上記(安定化)酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500~7000ppm、好ましくは、2000~5000ppmの範囲である(安定化)酸化ジルコニウム粒子有機溶媒分散液を得ることができる。
  本発明において、上記有機溶媒は、特に限定されるものではないが、好ましくは、水混和性有機溶媒である。このような水混和性有機溶媒は、特に限定されるものではないが、例えば、メタノール、エタノール、2-プロパノール等の脂肪族アルコール類、酢酸エチル、ギ酸メチル等の脂肪族カルボン酸エステル類、アセトン、メチルエチルケトン、メチルイソブチルケトン等の脂肪族ケトン類、エチレングリコール、グリセリン等の多価アルコール類や、これらの2種以上の混合物であるが、特に、好ましくは、メタノール、メチルエチルケトン、メチルイソブチルケトン又はこれらの混合物である。
  本発明によれば、(安定化)酸化ジルコニウム粒子水分散液における分散媒である水を有機溶媒と置換するには、水分散液をロータリーエバポレーターで処理して、水を除いた後、新たに有機溶媒を加えたり、また、水分散液を限外濾過して分散媒である水を除去してスラリーを得、これに有機溶媒を加えて希釈し、再度、限外濾過し、このようにして、濾過と希釈を繰り返すことによって、当初の分散媒である水を有機溶媒に置換して、分散媒がその有機溶媒である(安定化)酸化ジルコニウム粒子有機溶媒分散液を得ることができる。
  更には、例えば、(安定化)酸化ジルコニウム粒子水分散液における分散媒である水を水混和性有機溶媒と置換して、その水混和性有機溶媒を分散媒とする(安定化)酸化ジルコニウム粒子有機溶媒分散液を得た後、その水混和性有機溶媒を更に別の有機溶媒と置換して、その別の有機溶媒を分散媒とする新たな(安定化)酸化ジルコニウム粒子有機溶媒分散液を得ることもできる。
 本発明に従って得られるこのような(安定化)酸化ジルコニウム粒子有機溶媒分散液も、前述した(安定化)酸化ジルコニウム粒子水分散液と同じ特性を有し、低粘度であって、高透明性を有し、しかも、長期保存安定性にすぐれている。
 上述したようにして、第1の方法によって得られた(安定化)酸化ジルコニウム粒子水分散液と有機溶媒分散液は、必要に応じて、更に、ビーズミル等の湿式メディア分散、超音波照射、高圧ホモジナイザー等による分散処理を行ってもよい。
 次に、本発明による第2の方法について説明する。
(4)酸化ジルコニウム粒子水分散液の製造方法
 本発明による第2の方法に従って、酸化ジルコニウム粒子水分散液を製造する方法において、第1工程から第4工程までは、上述した第1の方法と同じであって、第4工程において、酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500ppm未満である酸化ジルコニウム粒子水分散液の第2の前駆体を得る。
第5工程
 本発明による第2の方法においては、第5工程において、上記第2の前駆体と、別に製造した酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500ppm以上、好ましくは、1500~20000ppmの範囲、より好ましくは、1500~10000ppmの範囲である酸化ジルコニウム粒子水分散液とを混合して、酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500~7000ppmの範囲である酸化ジルコニウム粒子水分散液を得る。
(5)安定化酸化ジルコニウム粒子水分散液の製造方法
 上述した本発明による第1の方法において、オキシ塩化ジルコニウムに代えて、オキシ塩化ジルコニウムと前記少なくとも1種の安定化元素の塩を用いる以外は、同様にして、安定化酸化ジルコニウム粒子水分散液を得ることができる。
(6)(安定化)酸化ジルコニウム粒子有機溶媒分散液の製造方法
前述した第1の方法と同様にして、(安定化)酸化ジルコニウム粒子有機溶媒分散液を得ることができる。
 上述したようにして、第2の方法によって得られた(安定化)酸化ジルコニウム粒子水分散液と有機溶媒分散液も、必要に応じて、更に、ビーズミル等の湿式メディア分散、超音波照射、高圧ホモジナイザー等による分散処理を行ってもよい。
 上述した本発明による第1及び第2のいずれの方法によっても、得られる(安定化)酸化ジルコニウム粒子水分散液と有機溶媒分散液は、その(安定化)酸化ジルコニウム粒子濃度が30重量%であるとき、全光線透過率が70%以上であり、動的光散乱法による粒度分布測定において、体積基準にて50体積%の粒子径であるD50が1~20nm、好ましくは、1~10nmの範囲であり、製造直後の温度25℃における粘度が20mPa・s以下、好ましくは、10mPa・s以下であり、製造直後の温度25℃における粘度に比べて、製造して24か月経過したときの温度25℃における粘度の増加量が20mPa・s以下、好ましくは、10mPa・s以下である。
 本発明の方法の好ましい態様によれば、得られる(安定化)酸化ジルコニウム粒子の水分散液も有機溶媒分散液も、常温環境下において、40か月以上の長期間にわたって保管した後も、その粘度は製造の直後と比べて、実質的に変わらない。
 以上に説明したように、本発明の方法によれば、環境温度に関わりなく、例えば、約10℃から約40℃にわたる温度制御のない環境においても、従って、常温の環境においても、長期保存安定性にすぐれる酸化ジルコニウムナノ粒子の水分散液と有機溶媒分散液を得ることができる。
 勿論、本発明による酸化ジルコニウム粒子の水分散液及び有機溶媒分散液は、冷蔵温度で保管し、その後、使用の際に常温に戻しても、また、冷凍して保管し、その後、使用の際に解凍して常温に戻しても、その物性や安定性に変化や劣化はみられない。
 以下の実施例及び比較例において、第4工程における限外濾過は、旭化成ケミカルズ(株)製「マイクローザ」、型式ACV-3010D(分画分子量13000)を用いて行い、有機溶媒分散液の製造において、水分散液の分散媒である水を有機溶媒と置換する際の限外濾過は、旭化成ケミカルズ(株)製「マイクローザ」、型式ACP-1010D(分画分子量13000)を用いて行った。
 また、以下の実施例及び比較例において、(安定化)酸化ジルコニウム粒子分散液の粒度分布、粘度及び全光線透過率、(安定化)酸化ジルコニウム粒子の水スラリー又は分散液の塩素イオン濃度は以下のようにして測定した。
粒度分布
 動的光散乱法粒度分布測定装置(日機装(株)製UPA-UT)を用いて、D50、D90及びDmaxを測定した。尚、D50、D90及びDmaxは体積基準での数値である。
粘度
 音叉型振動式SV型粘度計(エー・アンド・デイ(株)製SV-1A(測定粘度範囲0.3~1000mPa・s)にて測定した。
全光線透過率
 ヘーズメーター(日本電色工業(株))製NDH4000)を用いて、光路長10mmのセルにイオン交換水を充填して標準校正を行い、同様にセルに分散液を充填して全光線透過率を測定した。尚、全光線透過率が50%以上の場合を分散液及び分散液前駆体が透明であるとした。
塩素イオン濃度
 自動滴定装置(平沼産業(株)製TS-2000)を用いて、得られた水スラリー及び分散液に硝酸銀を添加し、沈殿滴定により測定した。
分散液の長期保存安定性の評価
 分散液を製造し、これを温度25℃にて24か月保管したときの粘度増加量が20mPa・s以下であるときを「○」(長期保存安定性にすぐれる)とし、分散液を製造し、これを温度25℃にて24か月保管したときの粘度増加量が20mPa・sを越えるとき、又は既にゲル化しているときを「×」(長期保存安定性に劣る)とした。
実施例1
(第1の方法による安定化酸化ジルコニウム粒子水分散液(I-2)の製造)
第1工程
 0.6モル/L濃度のオキシ塩化ジルコニウムと0.03モル/L濃度の塩化イットリウムの混合水溶液900Lと1.9モル/L濃度の水酸化カリウム水溶液680Lを調製した。予め、純水820Lを張った沈殿反応器に上記オキシ塩化ジルコニウムと塩化イットリウムの混合水溶液と水酸化カリウム水溶液とを同時に注ぎ、オキシ塩化ジルコニウムと塩化イットリウムを同時中和にて共沈させて、ジルコニウムとイットリウムの共沈物の粒子を含む第1の水スラリーを得た。得られた第1の水スラリーのpHは10であった。
第2工程
 上記第1の水スラリーを濾過し、水洗濾液の電気伝導度が10μS/cm以下となるまで洗浄して、純水に再度、リパルプして、上記ジルコニウムとイットリウムの共沈物の粒子を含む第2の水スラリーを得た。上記第2の水スラリーに酢酸42kg(上記第2の水スラリー中のジルコニウムとイットリウムの合計量1モル部に対して1.3モル部)を加え、固形分含有率がジルコニウムとイットリウムの酸化物換算の合計重量にて7.5重量%である第3の水スラリー600Lを得た。
 上記第3の水スラリーの塩素イオン濃度は4ppmであった。上記第3の水スラリーにおいて、上記塩素イオン濃度に基づいて算出したジルコニウムとイットリウムの酸化物換算の合計重量に対する塩素イオン含有率は50ppmであった。
第3工程
 上記第3の水スラリーを190℃で3時間、水熱処理して、安定化酸化ジルコニウム粒子の透明な水分散液の第1の前駆体を得た。
第4工程 
 上記安定化酸化ジルコニウム粒子の透明な水分散液の第1の前駆体を限外濾過膜にて洗浄、濃縮し、安定化酸化ジルコニウム粒子濃度30.6重量%、塩素イオン濃度6ppmの安定化酸化ジルコニウム粒子水分散液の第2の前駆体(I-1)を得た。
 この前駆体において、上記塩素イオン濃度に基づいて算出した安定化酸化ジルコニウム粒子の重量に対する塩素イオン含有率は20ppmであった。
第5工程
 上記安定化酸化ジルコニウム粒子水分散液の第2の前駆体(I-1)10kgに35%塩酸30gを添加して、酸化ジルコニウム粒子濃度30.4重量%、塩素イオン濃度1000ppmである安定化酸化ジルコニウム粒子水分散液(I-2)を得た。
 上記安定化酸化ジルコニウム粒子水分散液(I-2)において、その塩素イオン濃度に基づいて算出した安定化酸化ジルコニウム粒子の重量に対する塩素イオン含有率は3290ppmであった。
(安定化酸化ジルコニウム粒子のメタノール分散液(II-2)の製造)
 上記安定化酸化ジルコニウム粒子の水分散液(I-2)10kgを限外濾過膜を用いて濃縮し、このようにして得られた濃縮分散液に得られた濾液量と等量のメタノールを投入して、分散液の濃縮とメタノールによる希釈を連続的に且つ同時に並行して行うことによって、分散液中の安定化酸化ジルコニウム粒子濃度を30重量%に維持しつつ、分散液の分散媒を水からメタノールに置換して、安定化酸化ジルコニウム粒子濃度30.7重量%、塩素イオン濃度920ppmである安定化酸化ジルコニウム粒子メタノール分散液(II-2)を得た。この際、希釈に用いたメタノール量は90Lであった。
 上記安定化酸化ジルコニウム粒子メタノール分散液(II-2)において、その塩素イオン濃度に基づいて算出した安定化酸化ジルコニウム粒子の重量に対する塩素イオン含有率は3000ppmであった。
実施例2
(第1の方法による酸化ジルコニウム粒子水分散液(I-4)の製造)
第1工程
 0.6モル/L濃度のオキシ塩化ジルコニウム水溶液900Lと1.9モル/L濃度の水酸化カリウム水溶液680Lを調製した。予め、純水820Lを張った沈殿反応器に上記オキシ塩化ジルコニウム水溶液と水酸化カリウム水溶液とを同時に注ぎ、オキシ塩化ジルコニウムを同時中和にて沈殿させて、酸化ジルコニウム粒子を含む第1の水スラリーを得た。得られた第1の水スラリーのpHは9.9であった。
第2工程
 上記第1の水スラリーを濾過し、水洗濾液の電気伝導度が10μS/cm以下となるまで洗浄して、純水に再度、リパルプして、上記酸化ジルコニウム粒子を含む第2の水スラリーを得た。上記第2の水スラリーに酢酸42kg(上記第2の水スラリー中のジルコニウム1モル部に対して1.4モル部)を加え、固形分含有率が酸化ジルコニウム換算の重量にて7.5重量%である第3の水スラリー600Lを得た。
 上記第3の水スラリーの塩素イオン濃度は50ppmであった。上記第3の水スラリーにおいて、上記塩素イオン濃度に基づいて算出した酸化ジルコニウム粒子の重量に対する塩素イオン含有率は670ppmであった。
第3工程
 上記第3の水スラリーを190℃で3時間、水熱処理して、酸化ジルコニウム粒子の透明な水分散液の第1の前駆体を得た。
第4工程
 上記酸化ジルコニウム粒子の透明な水分散液の第1の前駆体を限外濾過膜にて洗浄、濃縮し、酸化ジルコニウム粒子濃度30.3重量%、塩素イオン濃度80ppmの酸化ジルコニウム粒子水分散液の第2の前駆体(I-3)を得た。
 上記第2の前駆体において、上記塩素イオン濃度に基づいて算出した酸化ジルコニウム粒子の重量に対する塩素イオン含有率は260ppmであった。
第5工程
 上記酸化ジルコニウム粒子水分散液の第2の前駆体(I-3)10kgに35%塩酸30gを添加して、酸化ジルコニウム粒子濃度30.2重量%、塩素イオン濃度1030ppmである酸化ジルコニウム粒子水分散液(I-4)を得た。
 上記酸化ジルコニウム粒子水分散液(I-4)において、その塩素イオン濃度に基づいて算出した酸化ジルコニウム粒子の重量に対する塩素イオン含有率は3410ppmであった。
(酸化ジルコニウム粒子のメタノール分散液(II-4)の製造)
 上記酸化ジルコニウム粒子の水分散液(I-4)10kgを限外濾過膜を用いて濃縮し、このようにして得られた濃縮分散液に得られた濾液量と等量のメタノールを投入して、分散液の濃縮とメタノールによる希釈を連続的に且つ同時に並行して行うことによって、分散液中の酸化ジルコニウム粒子濃度を30重量%に維持しつつ、分散液の分散媒を水からメタノールに置換して、酸化ジルコニウム粒子濃度30.0重量%、塩素イオン濃度1010ppmである酸化ジルコニウム粒子メタノール分散液(II-4)を得た。この際、希釈に用いたメタノール量は90Lであった。
 上記酸化ジルコニウム粒子メタノール分散液(II-4)において、その塩素イオン濃度に基づいて算出した酸化ジルコニウム粒子の重量に対する塩素イオン含有率は3350ppmであった。
実施例3
(第2の方法による安定化酸化ジルコニウム粒子水分散液の製造)
(本発明の範囲外の方法による安定化酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500~6500ppmの範囲にある安定化酸化ジルコニウム粒子水分散液(I-5)の製造)
第1工程
 0.6モル/L濃度のオキシ塩化ジルコニウムと0.03モル/L濃度の塩化イットリウムの混合水溶液900Lと1.8モル/L濃度の水酸化カリウム水溶液680Lを調製した。予め、純水820Lを張った沈殿反応器に上記オキシ塩化ジルコニウムと塩化イットリウムの混合水溶液と水酸化カリウム水溶液とを同時に注ぎ、オキシ塩化ジルコニウムと塩化イットリウムを同時中和にて共沈させて、ジルコニウムとイットリウムの共沈物の粒子を含む第1の水スラリーを得た。得られた第1の水スラリーのpHは9であった。
第2工程
 上記第1の水スラリーを濾過し、水洗濾液の電気伝導度が10μS/cm以下となるまで洗浄して、純水に再度、リパルプして、上記ジルコニウムとイットリウムの共沈物の粒子を含む第2の水スラリーを得た。上記第2の水スラリーに酢酸42kg(上記第2の水スラリー中のジルコニウムとイットリウムの合計量1モル部に対して1.3モル部)を加え、固形分含有率がジルコニウムとイットリウムの酸化物換算の合計重量にて7.5重量%である第3の水スラリー600Lを得た。
 上記第3の水スラリーの塩素イオン濃度は810ppmであった。上記第3の水スラリーにおいて、上記塩素イオン濃度に基づいて算出したジルコニウムとイットリウムの酸化物換算の合計重量に対する塩素イオン含有率は10800ppmであった。
第3工程
 上記第3の水スラリーを190℃で3時間、水熱処理して、安定化酸化ジルコニウム粒子の透明な水分散液前駆体を得た。
第4工程
 上記安定化酸化ジルコニウム粒子の透明な水分散液前駆体を限外濾過膜にて洗浄、濃縮し、安定化酸化ジルコニウム粒子濃度30.1重量%、塩素イオン濃度1130ppmの安定化酸化ジルコニウム粒子水分散液(I-5)を得た。この水分散液において、上記塩素イオン濃度に基づいて算出した安定化酸化ジルコニウム粒子の重量に対する塩素イオン含有率は3750ppmであった。
(安定化酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500ppm未満である安定化酸化ジルコニウム粒子水分散液の第2の前駆体(I-1)の製造)
第1工程
 0.6モル/L濃度のオキシ塩化ジルコニウムと0.03モル/L濃度の塩化イットリウムの混合水溶液900Lと1.9モル/L濃度の水酸化カリウム水溶液680Lを調製した。予め、純水820Lを張った沈殿反応器に上記オキシ塩化ジルコニウムと塩化イットリウムの混合水溶液と水酸化カリウム水溶液とを同時に注ぎ、オキシ塩化ジルコニウムと塩化イットリウムを同時中和にて共沈させて、ジルコニウムとイットリウムの共沈物の粒子を含む第1の水スラリーを得た。得られた第1の水スラリーのpHは10であった。
第2工程
 上記第1の水スラリーを濾過し、水洗濾液の電気伝導度が10μS/cm以下となるまで洗浄して、純水に再度、リパルプして、上記ジルコニウムとイットリウムの共沈物の粒子を含む第2の水スラリーを得た。上記第2の水スラリーに酢酸42kg(上記第2の水スラリー中のジルコニウムとイットリウムの合計量1モル部に対して1.3モル部)を加え、固形分含有率がジルコニウムとイットリウムの酸化物換算の合計重量にて7.5重量%である第3の水スラリー600Lを得た。
 上記第3の水スラリーの塩素イオン濃度は4ppmであった。上記第3の水スラリーにおいて、上記塩素イオン濃度に基づいて算出したジルコニウムとイットリウムの酸化物換算の合計重量に対する塩素イオン含有率は50ppmであった。
第3工程
 上記第3の水スラリーを190℃で3時間、水熱処理して、安定化酸化ジルコニウム粒子の透明な水分散液の第1の前駆体を得た。
第4工程
 上記安定化酸化ジルコニウム粒子の透明な水分散液の第1の前駆体を限外濾過膜にて洗浄、濃縮し、安定化酸化ジルコニウム粒子濃度30.6重量%、塩素イオン濃度6ppmの安定化酸化ジルコニウム粒子水分散液の第2の前駆体(I-1)を得た。
 この第2の前駆体において、上記塩素イオン濃度に基づいて算出した安定化酸化ジルコニウム粒子の重量に対する塩素イオン含有率は20ppmであった。
(安定化酸化ジルコニウム粒子の水分散液(I-6)の製造)
第5工程
 前述した安定化酸化ジルコニウム粒子の重量に対する塩素イオン含有率は20ppmである前駆体(I-1)4kgと上記安定化酸化ジルコニウム粒子水分散液(I-5)6kgを混合して、安定化酸化ジルコニウム粒子濃度30.4重量%、塩素イオン濃度810ppmである安定化酸化ジルコニウム粒子水分散液(I-6)を得た。
 上記安定化酸化ジルコニウム粒子水分散液(I-6)において、その塩素イオン濃度に基づいて算出した安定化酸化ジルコニウム粒子の重量に対する塩素イオン含有率は2670ppmであった。
(安定化酸化ジルコニウム粒子のメタノール分散液(II-6)の製造)
 上記安定化酸化ジルコニウム粒子の水分散液(I-6)10kgを限外濾過膜を用いて濃縮し、このようにして得られた濃縮分散液に得られた濾液量と等量のメタノールを投入して、分散液の濃縮とメタノールによる希釈を連続的に且つ同時に並行して行うことによって、分散液中の安定化酸化ジルコニウム粒子濃度を30重量%に維持しつつ、分散液の分散媒を水からメタノールに置換して、安定化酸化ジルコニウム粒子濃度30.6重量%、塩素イオン濃度760ppmである安定化酸化ジルコニウム粒子メタノール分散液(II-6)を得た。この際、希釈に用いたメタノール量は90Lであった。
 上記安定化酸化ジルコニウム粒子メタノール分散液(II-6)において、その塩素イオン濃度に基づいて算出した安定化酸化ジルコニウム粒子の重量に対する塩素イオン含有率は2480ppmであった。
実施例4
(第2の方法による酸化ジルコニウム水分散液の製造)
(本発明外の方法による酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500~6500ppmの範囲にある酸化ジルコニウム粒子水分散液(I-7)の製造)
第1工程
 0.6モル/L濃度のオキシ塩化ジルコニウムと水溶液900Lと1.6モル/L濃度の水酸化カリウム水溶液680Lを調製した。予め、純水820Lを張った沈殿反応器に上記オキシ塩化ジルコニウム水溶液と水酸化カリウム水溶液とを同時に注ぎ、オキシ塩化ジルコニウムを同時中和にて沈殿させて、酸化ジルコニウム粒子を含む第1の水スラリーを得た。得られた第1の水スラリーのpHは8.2であった。
第2工程
 上記第1の水スラリーを濾過し、水洗濾液の電気伝導度が10μS/cm以下となるまで洗浄して、純水に再度、リパルプして、上記酸化ジルコニウム粒子を含む第2の水スラリーを得た。上記第2の水スラリーに酢酸42kg(上記第2の水スラリー中のジルコニウム1モル部に対して1.4モル部)を加え、固形分含有率が酸化ジルコニウム換算の重量にて7.5重量%である第3の水スラリー600Lを得た。
 上記第3の水スラリーの塩素イオン濃度は1230ppmであった。上記第3の水スラリーにおいて、上記塩素イオン濃度に基づいて算出した酸化ジルコニウム粒子の重量に対する塩素イオン含有率は16450ppmであった。
第3工程
 上記第3の水スラリーを190℃で3時間、水熱処理して、酸化ジルコニウム粒子の透明な水分散液前駆体を得た。
第4工程
 上記酸化ジルコニウム粒子の透明な水分散液前駆体を限外濾過膜にて洗浄、濃縮し、酸化ジルコニウム粒子濃度30.8重量%、塩素イオン濃度1720ppmの酸化ジルコニウム粒子水分散液(I-7)を得た。この水分散液において、上記塩素イオン濃度に基づいて算出した酸化ジルコニウム粒子の重量に対する塩素イオン含有率は5580ppmであった。
(酸化ジルコニウム粒子に対する塩素イオン含有率が1500ppm未満である酸化ジルコニウム粒子水分散液前駆体(I-8)の製造)
第1工程
 0.6モル/L濃度のオキシ塩化ジルコニウムと水溶液900Lと1.8モル/L濃度の水酸化カリウム水溶液680Lを調製した。予め、純水820Lを張った沈殿反応器に上記オキシ塩化ジルコニウム水溶液と水酸化カリウム水溶液とを同時に注ぎ、オキシ塩化ジルコニウムを同時中和にて沈殿させて、酸化ジルコニウム粒子を含む第1の水スラリーを得た。得られた第1の水スラリーのpHは9.6であった。
第2工程
 上記第1の水スラリーを濾過し、水洗濾液の電気伝導度が10μS/cm以下となるまで洗浄して、純水に再度、リパルプして、上記酸化ジルコニウム粒子を含む第2の水スラリーを得た。上記第2の水スラリーに酢酸42kg(上記第2の水スラリー中のジルコニウム1モル部に対して1.4モル部)を加え、固形分含有率が酸化ジルコニウム換算の重量にて7.5重量%である第3の水スラリー600Lを得た。
 上記第3の水スラリーの塩素イオン濃度は140ppmであった。上記第3の水スラリーにおいて、上記塩素イオン濃度に基づいて算出した酸化ジルコニウム粒子の重量に対する塩素イオン含有率は1920ppmであった。
第3工程
 上記第3の水スラリーを190℃で3時間、水熱処理して、酸化ジルコニウム粒子の透明な水分散液前駆体を得た。
第4工程
 上記酸化ジルコニウム粒子の透明な水分散液前駆体を限外濾過膜にて洗浄、濃縮し、酸化ジルコニウム粒子濃度31.3重量%、塩素イオン濃度220ppmの酸化ジルコニウム粒子水分散液前駆体(I-8)を得た。この水分散液において、上記塩素イオン濃度に基づいて算出した酸化ジルコニウム粒子の重量に対する塩素イオン含有率は710ppmであった。
(酸化ジルコニウム粒子水分散液(I-9)の製造)
第5工程
 上記酸化ジルコニウム粒子水分散液(I-7)5kgと上記酸化ジルコニウム粒子水分散液前駆体(I-8)5kgを混合して、酸化ジルコニウム粒子濃度30.7重量%、塩素イオン濃度960ppmである酸化ジルコニウム粒子水分散液(I-9)を得た。
上記酸化ジルコニウム粒子水分散液(I-9)において、その塩素イオン濃度に基づいて算出した酸化ジルコニウム粒子の重量に対する塩素イオン含有率は3130ppmであった。
(酸化ジルコニウム粒子のメタノール分散液(II-9)の製造)
 上記酸化ジルコニウム粒子の水分散液(I-9)10kgを限外濾過膜を用いて濃縮し、このようにして得られた濃縮分散液に得られた濾液量と等量のメタノールを投入して、分散液の濃縮とメタノールによる希釈を連続的に且つ同時に並行して行うことによって、分散液中の酸化ジルコニウム濃度を30重量%に維持しつつ、分散液の分散媒を水からメタノールに置換して、酸化ジルコニウム粒子濃度30.4重量%、塩素イオン濃度950ppmである酸化ジルコニウム粒子メタノール分散液(II-9)を得た。この際、希釈に用いたメタノール量は90Lであった。
 上記酸化ジルコニウム粒子メタノール分散液(II-9)において、その塩素イオン濃度に基づいて算出した酸化ジルコニウム粒子の重量に対する塩素イオン含有率は3120ppmであった。
比較例1
(第1及び第2の方法に対する比較例としての安定化酸化ジルコニウム粒子の水分散液(I-10)の製造)
第1工程
 0.6モル/L濃度のオキシ塩化ジルコニウムと0.03モル/L濃度の塩化イットリウムの混合水溶液900Lと1.9モル/L濃度の水酸化カリウム水溶液680Lを調製した。予め、純水820Lを張った沈殿反応器に上記オキシ塩化ジルコニウムと塩化イットリウムの混合水溶液と水酸化カリウム水溶液とを同時に注ぎ、オキシ塩化ジルコニウムと塩化イットリウムを同時中和にて共沈させて、ジルコニウムとイットリウムの共沈物の粒子を含む第1の水スラリーを得た。得られた第1の水スラリーのpHは9.7であった。
第2工程
 上記第1の水スラリーを濾過し、水洗濾液の電気伝導度が10μS/cm以下となるまで洗浄して、純水にリパルプして、上記ジルコニウムとイットリウムの共沈物の粒子を含む第2の水スラリーを得た。上記第2の水スラリーに酢酸42kg(上記第1の水スラリー中のジルコニウムとイットリウムの合計量1モル部に対して1.3モル部)を加え、固形分含有率がジルコニウムとイットリウムの酸化物換算の合計重量にて7.5重量%である第3の水スラリー600Lを得た。
 上記第3の水スラリーの塩素イオン濃度は130ppmであった。上記第3の水スラリーにおいて、上記塩素イオン濃度に基づいて算出したジルコニウムとイットリウムの酸化物換算の合計重量に対する塩素イオン含有率は1730ppmであった。
第3工程
 上記第3の水スラリーを190℃で3時間、水熱処理して、安定化酸化ジルコニウム粒子の透明な水分散液前駆体を得た。 
第4工程
 上記安定化酸化ジルコニウム粒子の透明な水分散液前駆体を限外濾過膜にて洗浄、濃縮して、安定化酸化ジルコニウム粒子濃度30.6重量%、塩素イオン濃度180ppmである安定化酸化ジルコニウム粒子の水分散液(I-10)を得た。上記水分散液において、その塩素イオン濃度に基づいて算出した安定化酸化ジルコニウム粒子の重量に対する塩素イオン含有率は590ppmであった。
(安定化酸化ジルコニウム粒子のメタノール分散液(II-10)の製造)
 上記安定化酸化ジルコニウム粒子の水分散液(I-10)10kgを限外濾過膜を用いて濃縮し、このようにして得られた濃縮分散液に得られた濾液量と等量のメタノールを投入して、分散液の濃縮とメタノールによる希釈を連続的に且つ同時に並行して行うことによって、分散液中の安定化酸化ジルコニウム濃度を30重量%に維持しつつ、分散液の分散媒を水からメタノールに置換して、安定化酸化ジルコニウム粒子濃度30.4重量%、塩素イオン濃度170ppmである安定化酸化ジルコニウム粒子メタノール分散液(II-10)を得た。この際、希釈に用いたメタノール量は90Lであった。
 上記安定化酸化ジルコニウム粒子メタノール分散液(II-10)において、その塩素イオン濃度に基づいて算出した安定化酸化ジルコニウム粒子の重量に対する塩素イオン含有率は560ppmであった。
 上記安定化酸化ジルコニウム粒子メタノール分散液(II-10)は、製造直後は、25℃における粘度が36mPa・sであったが、製造から7日後にはゲル化した。
比較例2
(第1及び第2の方法に対する比較例としての酸化ジルコニウム粒子の水分散液(I-3)の製造)
第1工程
 0.6モル/L濃度のオキシ塩化ジルコニウム水溶液900Lと1.9モル/L濃度の水酸化カリウム水溶液680Lを調製した。予め、純水820Lを張った沈殿反応器に上記オキシ塩化ジルコニウム水溶液と水酸化カリウム水溶液とを同時に注ぎ、オキシ塩化ジルコニウムを同時中和にて沈殿させて、酸化ジルコニウム粒子を含む第1の水スラリーを得た。得られた第1の水スラリーのpHは9.9であった。
第2工程
 上記第1の水スラリーを濾過し、水洗濾液の電気伝導度が10μS/cm以下となるまで洗浄して、純水に再度、リパルプして、上記酸化ジルコニウム粒子を含む第2の水スラリーを得た。上記第2の水スラリーに酢酸42kg(上記第2の水スラリー中のジルコニウム1モル部に対して1.4モル部)を加え、固形分含有率が酸化ジルコニウム換算の重量にて7.5重量%である第3の水スラリー600Lを得た。
 上記第3の水スラリーの塩素イオン濃度は50ppmであった。上記第3の水スラリーにおいて、上記塩素イオン濃度に基づいて算出した酸化ジルコニウム粒子の重量に対する塩素イオン含有率は670ppmであった。
第3工程
 上記第3の水スラリーを190℃で3時間、水熱処理して、酸化ジルコニウム粒子の透明な水分散液前駆体を得た。
第4工程
 上記酸化ジルコニウム粒子の透明な水分散液前駆体を限外濾過膜にて洗浄、濃縮し、酸化ジルコニウム粒子濃度30.3重量%、塩素イオン濃度80ppmの酸化ジルコニウム粒子水分散液(I-3)を得た。この水分散液において、上記塩素イオン濃度に基づいて算出した酸化ジルコニウム粒子の重量に対する塩素イオン含有率は260ppmであった。
(酸化ジルコニウム粒子のメタノール分散液(II-3)の製造)
 上記酸化ジルコニウム粒子の水分散液(I-3)10kgを限外濾過膜を用いて濃縮し、このようにして得られた濃縮分散液に得られた濾液量と等量のメタノールを投入して、分散液の濃縮とメタノールによる希釈を連続的に且つ同時に並行して行うことによって、分散液中の安定化酸化ジルコニウム粒子濃度を30重量%に維持しつつ、分散液の分散媒を水からメタノールに置換していたところ、処理中に粘度が上昇して、終には流動性を失って、ゲル化した。
 上記実施例2、4及び比較例2で得られた酸化ジルコニウム粒子メタノール分散液からメタノールを除去、乾燥し、かくして、得られた酸化ジルコニウム微粒子粉末をTEM(透過型電子顕微鏡)にて観察したところ、酸化ジルコニウム粒子の平均一次粒子径は約5nmであった。
 上記実施例1、3及び比較例1で得られたイットリウムを含む固溶体である安定化酸化ジルコニウム粒子メタノール分散液からメタノールを除去、乾燥し、かくして、得られた安定化酸化ジルコニウム粒子粉末をTEM(透過型電子顕微鏡)にて観察したところ、安定化酸化ジルコニウム粒子の平均一次粒子径は約3nmであった。
 上記実施例及び比較例において、オキシ塩化ジルコニウム(と塩化イットリウム)(酸)の(混合)水溶液を水酸化カリウム(アルカリ)で中和したときの酸に対するアルカリのモル過剰度を表1に示す。ここに、上記モル過剰度とは、上記中和反応において用いたアルカリのモル量/用いた酸のモル量の比によって表される。
  オキシ塩化ジルコニウムと塩化イットリウムの水酸化カリウムによる中和反応の化学式は次式のとおりである。
 ZrOCl+ 2KOH → ZrO(OH) 2 + 2KCl …(1)
 YCl+3KOH → Y(OH) 3 + 3KCl …(2)
 従って、酸に対するアルカリのモル過剰度Eは、次式によって求めることができる。
 E=K/(2Z+3Y)…(3)
 ここに、Kは用いた水酸化カリウムのモル量、Zは用いたオキシ塩化ジルコニウムのモル量、Yは用いた塩化イットリウムのモル量を表す。
 上記実施例1~4及び比較例1~2において、第1工程で用いた水酸化カリウム水溶液濃度、第1工程で得られた第1の水スラリーのpH、第2工程で得られた第3の水スラリーの塩素イオン濃度とその塩素イオン濃度に基づいて算出した塩素イオン含有率(Cl/ZrO2)を表1に示す。但し、上記塩素イオン含有率は、実施例1、3及び比較例1においては、ジルコニウムとイットリウムの酸化物換算の合計重量に対する塩素イオン含有率であり、実施例2、4及び比較例2においては酸化ジルコニウム粒子の重量に対する塩素イオン含有率である。
 また、上記実施例1~4及び比較例1~2において得られた(安定化)酸化ジルコニウム粒子水分散液の(安定化)酸化ジルコニウム粒子濃度、pH、電気伝導度、粒度分布、全光線透過率、塩素イオン濃度とその塩素イオン濃度に基づいて算出した(安定化)酸化ジルコニウム粒子の重量に対する塩素イオン含有率(Cl/ZrO2)、製造直後の水分散液の25℃における粘度及び水分散液の長期保存安定性の評価の結果を表2に示す。
 更に、上記実施例1~4、比較例1において得られた酸化ジルコニウム粒子のメタノール分散液の濃度、粒度分布、全光線透過率、塩素イオン濃度と共に、その塩素イオン濃度に基づいて算出した(安定化)酸化ジルコニウム粒子に対する塩素イオン含有率(Cl/ZrO2)、水分量、製造直後の25℃における粘度、製造して7日後の粘度及び長期保存安定性の評価の結果を表3に示す。比較例2においては、酸化ジルコニウム粒子水分散液の分散媒をメタノールに置換している途中で分散液がゲル化して、メタノール分散液を得ることができなかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1において、実施例3の(a)欄は、表2において、実施例3の(a)欄の水分散液(I-5)を得るための第1工程と第2工程を示す。また、表1において、実施例3の(b)欄は、表2において、実施例3の(b)欄の水分散液前駆体(I-1)を得るための第1工程と第2工程を示す。
 表1において、実施例4の(a)欄は、表2において、実施例4の(a)欄の水分散液(I-7)を得るための第1工程と第2工程を示す。また、表1において、実施例4の(b)欄は、表2において、実施例4の(b)欄の水分散液前駆体(I-8)を得るための第1工程と第2工程を示す。
 表2において、実施例1の(a)欄は、上記水分散液前駆体(I-1)の物性値を示し、実施例1の(b)欄は、上記水分散液I-1に塩酸を加えて得られた本発明による水分散液(I-2)の物性値を示す。
 表2において、実施例2の(a)欄は、水分散液(I-4)を与える水分散液前駆体(I-3)の物性値を示し、実施例2の(b)欄は、上記水分散液前駆体(I-3)に塩酸を加えて得られた本発明による水分散液(I-4)の物性値を示す。
 表2において、実施例3の(a)欄は、水分散液(I-6)を得るために用いる水分散液(I-5)の物性値を示し、実施例3の(b)欄は前記水分散液前駆体(I-1)の物性値を示し、実施例3の(c)欄は、上記水分散液I-5と水分散液I-1を混合して得られた本発明による水分散液(I-6)の物性値を示す。
 表2において、実施例4の(a)欄は、本発明による水分散液(I-9)を得るために用いる第1の水分散液(I-7)の物性値を示し、実施例4の(b)欄は、本発明による水分散液(I-9)を得るために用いる水分散体前駆体(I-8)の物性値を示し、実施例4の(c)欄は、上記水分散液(I-7)と水分散液前駆体(I-8)を混合して得られた本発明による水分散液(I-9)の物性値を示す。
 本発明の方法に従って得た(安定化)酸化ジルコニウム粒子水分散液は、実施例1~4に示すように、微細な(安定化)酸化ジルコニウム粒子を高濃度にて含んでいても、高透明性と低粘度を有し、そのうえ、温度25℃にて24か月保管したときの粘度増加量が20mPa・s以下であって、長期保存安定性に著しくすぐれている。特に、好ましい態様によれば、40か月以上保管しても、その25℃における粘度は、製造直後と実質的に変わらず、長期保存安定性に極めてすぐれている。
 更に、本発明の方法に従って得た(安定化)酸化ジルコニウム粒子水分散液の分散媒である水を有機溶媒に置換して得られる有機溶媒分散液も、表3に示すように、水分散液と同様に、微細な酸化ジルコニウム粒子を高濃度で含んでいても、高透明性と低粘度を有し、そのうえ、温度25℃にて24か月保管したときの粘度増加量が20mPa・s以下であって、長期保存安定性に著しくすぐれている。特に、好ましい態様によれば、40か月以上保管しても、その25℃における粘度は、製造直後と実質的に変わらず、長期保存安定性に極めてすぐれている。

Claims (8)

  1.  オキシ塩化ジルコニウムを水中にて塩基性物質と反応させて、酸化ジルコニウム粒子を含むpH9.6~11.0の範囲である第1の水スラリーを得る第1工程、
     上記第1の水スラリーを濾過、水洗した後、水にリパルプして、上記酸化ジルコニウム粒子を含む第2の水スラリーを得、上記第2の水スラリーにジルコニウム1モル部に対して有機酸1モル部以上を加えて、酸化ジルコニウム粒子の重量に対する塩素イオン含有率が4000ppm未満である第3の水スラリーを得る第2工程、
     上記第3の水スラリーを水熱処理して、酸化ジルコニウム粒子水分散液の第1の前駆体を得る第3工程、及び
     上記酸化ジルコニウム粒子水分散液の第1の前駆体を限外濾過によって洗浄して、酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500ppm未満である酸化ジルコニウム粒子水分散液の第2の前駆体を得る第4の工程、
     上記酸化ジルコニウム粒子水分散液の第2の前駆体に塩酸を加えて、酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500~7000ppmの範囲である酸化ジルコニウム粒子水分散液を得る第5工程
    を含む、酸化ジルコニウム粒子水分散液の製造方法。
  2.  オキシ塩化ジルコニウムとアルミニウム、マグネシウム、チタン及び希土類元素から選ばれる少なくとも1種の安定化元素の塩を水中にて塩基性物質と反応させて、ジルコニウムと上記安定化元素の共沈物の粒子を含むpH9.6~11.0の範囲である第1の水スラリーを得る第1工程、
     上記第1の水スラリーを濾過、水洗した後、水にリパルプして、上記ジルコニウムと上記安定化元素の共沈物の粒子を含む第2の水スラリーを得、上記第2の水スラリーにジルコニウムと上記安定化元素の合計量1モル部に対して有機酸1モル部以上を加えて、ジルコニウムと上記安定化元素の酸化物換算の合量重量に対する塩素イオン含有率が4000ppm未満である第3の水スラリーを得る第2工程、
     上記第3の水スラリーを水熱処理して、上記安定化元素を含む固溶体である安定化酸化ジルコニウム粒子水分散液の第1の前駆体を得る第3工程、及び
     上記安定化酸化ジルコニウム粒子水分散液の第1の前駆体を限外濾過によって洗浄して、上記安定化酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500ppm未満である上記安定化酸化ジルコニウム粒子水分散液の第2の前駆体を得る第4工程、
     上記安定化酸化ジルコニウム粒子水分散液の第2の前駆体に塩酸を加えて、上記安定化酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500~7000ppmの範囲である上記安定化酸化ジルコニウム粒子水分散液を得る第5工程
    を含む、上記安定化酸化ジルコニウム粒子水分散液の製造方法。
  3.  請求項1に記載の方法によって得られた前記酸化ジルコニウム粒子水分散液の分散媒である水を有機溶媒と置換して、酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500~7000ppmの範囲である、分散媒が上記有機溶媒である酸化ジルコニウム粒子有機溶媒分散液を得る酸化ジルコニウム粒子有機溶媒分散液の製造方法。
  4.  請求項2に記載の方法によって得られた前記安定化酸化ジルコニウム粒子水分散液の分散媒である水を有機溶媒と置換して、安定化酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500~7000ppmの範囲である、分散媒が上記有機溶媒である安定化酸化ジルコニウム粒子有機溶媒分散液を得る安定化酸化ジルコニウム粒子有機溶媒分散液の製造方法。
  5.  オキシ塩化ジルコニウムを水中にて塩基性物質と反応させて、酸化ジルコニウム粒子を含むpH9.6~11.0の範囲である第1の水スラリーを得る第1工程、
     上記第1の水スラリーを濾過、水洗した後、水にリパルプして、上記酸化ジルコニウム粒子を含む第2の水スラリーを得、上記第2の水スラリーにジルコニウム1モル部に対して有機酸1モル部以上を加えて、酸化ジルコニウム粒子の重量に対する塩素イオン含有率が4000ppm未満である第3の水スラリーを得る第2工程、
     上記第3の水スラリーを水熱処理して、酸化ジルコニウム粒子水分散液の第1の前駆体を得る第3工程、
     上記酸化ジルコニウム粒子水分散液の第1の前駆体を限外濾過によって洗浄して、酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500ppm未満である酸化ジルコニウム粒子水分散液の第2の前駆体を得る第4工程、
     上記酸化ジルコニウム粒子水分散液の第2の前駆体と酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500ppm以上である酸化ジルコニウム粒子水分散液を混合して、酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500~7000ppmの範囲である酸化ジルコニウム粒子水分散液を得る第5工程
    を含む、酸化ジルコニウム粒子水分散液の製造方法。
  6.  オキシ塩化ジルコニウムとアルミニウム、マグネシウム、チタン及び希土類元素から選ばれる少なくとも1種の安定化元素の塩を水中にて塩基性物質と反応させて、ジルコニウムと上記安定化元素の共沈物の粒子を含むpH9.6~11.0の範囲である第1の水スラリーを得る第1工程、
     上記第1の水スラリーを濾過、水洗した後、水にリパルプして、上記ジルコニウムと上記安定化元素の共沈物の粒子を含む第2の水スラリーを得、上記第2の水スラリーにジルコニウムと上記安定化元素の合計量1モル部に対して有機酸1モル部以上を加えて、ジルコニウムと上記安定化元素の酸化物換算の合量重量に対する塩素イオン含有率が4000ppm未満である第3の水スラリーを得る第2工程、
     上記第3の水スラリーを水熱処理して、上記安定化元素を含む固溶体である安定化酸化ジルコニウム粒子水分散液の第1の前駆体を得る第3工程、及び
     上記安定化酸化ジルコニウム粒子水分散液の第1の前駆体を限外濾過によって洗浄して、上記安定化酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500ppm未満である上記安定化酸化ジルコニウム粒子水分散液の第2の前駆体を得る第4工程、
    上記安定化酸化ジルコニウム粒子水分散液の第2の前駆体と安定化酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500ppm以上である安定化酸化ジルコニウム粒子水分散液を混合して、上記安定化酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500~7000ppmの範囲である上記安定化酸化ジルコニウム粒子水分散液を得る第5工程
    を含む、上記安定化酸化ジルコニウム粒子水分散液の製造方法。
  7.  請求項5に記載の方法によって得られた前記酸化ジルコニウム粒子水分散液の分散媒である水を有機溶媒と置換して、酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500~7000ppmの範囲である、分散媒が上記有機溶媒である酸化ジルコニウム粒子有機溶媒分散液を得る酸化ジルコニウム粒子有機溶媒分散液の製造方法。
  8.  請求項6に記載の方法によって得られた前記安定化酸化ジルコニウム粒子水分散液の分散媒である水を有機溶媒と置換して、安定化酸化ジルコニウム粒子の重量に対する塩素イオン含有率が1500~7000ppmの範囲である、分散媒が上記有機溶媒である安定化酸化ジルコニウム粒子有機溶媒分散液を得る安定化酸化ジルコニウム粒子有機溶媒分散液の製造方法。
     
     
PCT/JP2019/032436 2018-08-27 2019-08-20 酸化ジルコニウム粒子の水分散液と有機溶媒分散液の製造方法 WO2020045165A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018157989A JP6665902B2 (ja) 2018-08-27 2018-08-27 酸化ジルコニウム粒子の水分散液と有機溶媒分散液の製造方法
JP2018-157989 2018-08-27

Publications (1)

Publication Number Publication Date
WO2020045165A1 true WO2020045165A1 (ja) 2020-03-05

Family

ID=69644330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032436 WO2020045165A1 (ja) 2018-08-27 2019-08-20 酸化ジルコニウム粒子の水分散液と有機溶媒分散液の製造方法

Country Status (3)

Country Link
JP (1) JP6665902B2 (ja)
TW (1) TW202017867A (ja)
WO (1) WO2020045165A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111848161A (zh) * 2020-08-05 2020-10-30 上海大学(浙江·嘉兴)新兴产业研究院 一种纳米氧化锆粉体的制备方法
CN113800558A (zh) * 2021-09-10 2021-12-17 华中科技大学 一种采用水热法制备自稳定纳米氧化锆溶胶的方法
JP2022553585A (ja) * 2020-11-23 2022-12-26 山東国瓷功能材料股▲分▼有限公司 ナノ酸化ジルコニウム粉体、その調製方法及び得られる分散液、光学フィルム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022143972A (ja) 2021-03-18 2022-10-03 堺化学工業株式会社 ジルコニウム元素含有金属酸化物分散液の製造方法及びジルコニウム元素含有金属酸化物分散液

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004010449A (ja) * 2002-06-10 2004-01-15 Hosokawa Micron Corp ジルコニアゾルの製造方法及びジルコニア微粉末の製造方法
JP2006143535A (ja) * 2004-11-19 2006-06-08 Catalysts & Chem Ind Co Ltd ジルコニアゾルの製造方法およびジルコニアゾル
WO2016035689A1 (ja) * 2014-09-05 2016-03-10 堺化学工業株式会社 酸化ジルコニウム粒子の有機溶媒分散体とその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004010449A (ja) * 2002-06-10 2004-01-15 Hosokawa Micron Corp ジルコニアゾルの製造方法及びジルコニア微粉末の製造方法
JP2006143535A (ja) * 2004-11-19 2006-06-08 Catalysts & Chem Ind Co Ltd ジルコニアゾルの製造方法およびジルコニアゾル
WO2016035689A1 (ja) * 2014-09-05 2016-03-10 堺化学工業株式会社 酸化ジルコニウム粒子の有機溶媒分散体とその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111848161A (zh) * 2020-08-05 2020-10-30 上海大学(浙江·嘉兴)新兴产业研究院 一种纳米氧化锆粉体的制备方法
JP2022553585A (ja) * 2020-11-23 2022-12-26 山東国瓷功能材料股▲分▼有限公司 ナノ酸化ジルコニウム粉体、その調製方法及び得られる分散液、光学フィルム
JP7348956B2 (ja) 2020-11-23 2023-09-21 山東国瓷功能材料股▲分▼有限公司 ナノ酸化ジルコニウム粉体、その調製方法及び得られる分散液、光学フィルム
CN113800558A (zh) * 2021-09-10 2021-12-17 华中科技大学 一种采用水热法制备自稳定纳米氧化锆溶胶的方法

Also Published As

Publication number Publication date
JP2020033196A (ja) 2020-03-05
TW202017867A (zh) 2020-05-16
JP6665902B2 (ja) 2020-03-13

Similar Documents

Publication Publication Date Title
JP6665902B2 (ja) 酸化ジルコニウム粒子の水分散液と有機溶媒分散液の製造方法
AU2009331269B2 (en) Zirconium oxide dispersion and manufacturing method therefor
JP5950060B1 (ja) 酸化ジルコニウム粒子の有機溶媒分散体とその製造方法
JP6011749B1 (ja) 酸化チタン粒子の有機溶媒分散体とその製造方法
JP6028958B1 (ja) 酸化チタン粒子の有機溶媒分散体の製造方法
JP6665901B2 (ja) 酸化ジルコニウム粒子の水分散液と有機溶媒分散液の製造方法
JP6665900B2 (ja) 酸化ジルコニウム粒子の水分散液と有機溶媒分散液の製造方法
JP6732947B2 (ja) ジルコニアゾルおよびその製造方法
WO2016158894A1 (ja) 二酸化バナジウム含有粒子の製造方法及び二酸化バナジウム含有粒子、分散液の調製方法及び分散液、並びに光学フィルム
JP7405078B2 (ja) セリア-ジルコニア系複合酸化物分散液の製造方法
EP4310054A1 (en) Method for producing liquid dispersion of metal oxide containing zirconium element, and liquid dispersion of metal oxide containing zirconium element
JP6520622B2 (ja) 二酸化バナジウム含有粒子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19854600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19854600

Country of ref document: EP

Kind code of ref document: A1