WO2020044545A1 - インバータ式発動発電機 - Google Patents

インバータ式発動発電機 Download PDF

Info

Publication number
WO2020044545A1
WO2020044545A1 PCT/JP2018/032385 JP2018032385W WO2020044545A1 WO 2020044545 A1 WO2020044545 A1 WO 2020044545A1 JP 2018032385 W JP2018032385 W JP 2018032385W WO 2020044545 A1 WO2020044545 A1 WO 2020044545A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
voltage
inverter
output
elements
Prior art date
Application number
PCT/JP2018/032385
Other languages
English (en)
French (fr)
Inventor
稔 前田河
智夫 井上
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to PCT/JP2018/032385 priority Critical patent/WO2020044545A1/ja
Priority to CN201880096406.0A priority patent/CN112567617A/zh
Priority to US17/263,816 priority patent/US11476787B2/en
Publication of WO2020044545A1 publication Critical patent/WO2020044545A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/48Arrangements for obtaining a constant output value at varying speed of the generator, e.g. on vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/02Details
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/09Boost converter, i.e. DC-DC step up converter increasing the voltage between the supply and the inverter driving the motor

Definitions

  • the present invention relates to an inverter-type power generator, and more particularly, to a generator having a weight and a size that can be carried by a user and capable of suitably supplying power to an electric load for agricultural work or outdoor use such as camping. .
  • An object of the present invention is to provide an inverter-type power generator in which the above-mentioned disadvantages are solved and the rectifier circuit and the step-up / step-down circuit are realized by one three-phase bridge circuit.
  • the present invention comprises an alternator having a three-phase winding and driven by a rotary motor to generate power, a three-phase rectifying bridge circuit having three sets of upper and lower elements, and the alternator. And a converter control unit that controls the driving of the elements of the three-phase rectification bridge circuit so that the DC terminal voltage output from the converter becomes a target voltage.
  • the upper and lower three sets of elements of the three-phase rectification bridge circuit of the converter are configured by a diode element capable of at least duty control on the upper side and a switching element including a diode capable of at least duty control on the lower side. It was made up of elements.
  • FIG. 2 is a flowchart showing a step-up / step-down control of a power generation output of an electronic control unit (control unit) in FIG. 1.
  • 3 is a time chart illustrating the control of FIG. 2.
  • FIG. 3 is an equivalent circuit diagram of the converter of FIG. 1 showing the entire control of FIG. 2;
  • FIG. 5 is an equivalent circuit diagram of an alternator and a converter showing the principle of power generation and boosting of FIG. 4.
  • FIG. 6 is an equivalent circuit diagram focusing on a part of a line portion of the alternator of FIG. 5.
  • FIG. 2 is an explanatory diagram showing voltage / output characteristics at high rotation when the number of windings of the alternator in FIG.
  • FIG. 8 is an explanatory diagram showing voltage / output characteristics at the time of low rotation in FIG. 7.
  • FIG. 8 is an explanatory diagram showing an increase in output due to boost rectification of the ALT 2 during low rotation in FIG. 7.
  • FIG. 8 is an explanatory diagram showing an increase in output due to boost rectification of the ALT 2 at the time of extremely low rotation in FIG. 7. It is an electric circuit diagram showing the whole inverter type generator concerning a 2nd embodiment of this invention.
  • FIG. 1 is an electric circuit diagram showing the entirety of an inverter-type power generator according to the first embodiment of the present invention.
  • An inverter-type power generator (hereinafter, referred to as a “generator” and denoted by reference numeral 1) has a weight and a size that can be carried by a user, and suitably supplies electric power to an electric load for agricultural work or outdoor use such as camping. It consists of a generator to be supplied.
  • a generator 1 is driven by a general-purpose engine (rotary prime mover) 10 to generate electricity, and an alternator (ALT; power generation unit) 12 is electrically connected to the alternator 12 to output three-phase alternating current.
  • a capacitor 16 that is electrically connected between the positive terminal and the negative terminal of the converter 14 to smooth the DC rectified by the converter 14, and that is electrically connected to the capacitor 16.
  • an inverter 20 connected to the inverter 20 for converting a DC smoothed by the capacitor 16 into an AC.
  • the inverter unit 22 is connected to the above-mentioned electric load 28 for agricultural work or the like via the waveform shaping circuit 24 and the output terminal 26.
  • a general-purpose engine (hereinafter, referred to as an “engine”) 10 is an ignition type air-cooled engine that uses, for example, gasoline as fuel, and includes a piston that reciprocates in a cylinder and a crankshaft (output shaft) that rotates in synchronization with the piston. Have. The power of the engine 10 is output to the alternator 12 via a crankshaft.
  • the alternator 12 includes a multi-pole alternator having UVW three-phase windings 12a, 12b, and 12c, and is rotated by the engine 10 to generate AC power.
  • the multi-pole alternator includes a rotor composed of a permanent magnet connected to the crankshaft of the engine 10 and rotating integrally therewith, and a stator arranged on the peripheral surface of the rotor. A large number of poles are formed by three-phase windings 12a, 12b, 12c of UVW arranged at a phase angle of every 120 degrees.
  • the configuration of the converter 14 and the like of the inverter unit 22 will be described in detail.
  • the converter 14 includes three pairs (a total of six) of upper and lower three sets connected corresponding to the U-phase, V-phase, and W-phase windings of the alternator 12. And a three-phase rectifying bridge circuit having a total of six elements 14a to 14f.
  • the upper and lower elements 14a, 14b, and 14c of the three-phase rectifier bridge circuit are composed of at least duty-controllable diode elements (eg, thyristors) 14a1 to 14c1.
  • the side elements 14d, 14e and 14f are connected in parallel with at least a switching element (for example, an FET (Field Effect Transistor) or a MOSFET (Metal-Oxide Semiconductor Field Effect Transistor) having a built-in parasitic diode or a IGBT). (A diode connected in parallel with a transistor).
  • a MOSFET (14d1-14f1) having a built-in parasitic diode 14d2-14f2 is used.
  • the "diode element capable of duty control” or the "switching element having a diode capable of duty control” is not limited to the above.
  • the inverter 20 of the inverter unit 22 is composed of a bridge circuit composed of a total of four elements 20a to 20d in two upper and lower sets.
  • the four elements 20a to 20d are It is composed of an FET (or MOSFET) containing a diode.
  • a DC voltage detection circuit 32 for detecting a DC voltage between the positive and negative terminals of the capacitor 16 is connected to the capacitor 16, and the three-phase windings 12a-12c of the alternator 12 and the three A phase / zero-cross detection circuit 34 for detecting the phase and zero-cross of the three-phase windings at an angle is inserted in a connection circuit that connects the midpoints of the phase rectification bridge circuit.
  • the gate terminals of the upper and lower elements 14a1 to 14f1 of the three-phase rectification bridge circuit of the converter 14 are connected to an element drive circuit 36 that outputs an ON signal.
  • the inverter unit 22 includes an electronic control unit (Electronic Control Unit) 40.
  • the ECU 40 is configured by a microcomputer including at least a processor (CPU) 40a connected via a bus, a memory (ROM, RAM) 40b, an I / O 40c, and the like.
  • the ECU 40 (more specifically, the processor 40a and the memory 40b) operates as a control unit and rectifies the power generation output (AC output) of the alternator 12, a detection value (DC voltage) detected from the output of the DC voltage detection circuit 32 And the operation of the elements 14a-14f of the converter 14 via the element drive circuit 36 based on the phase and the zero-cross angle detected by the phase / zero-cross detection circuit 34 so that the voltage becomes the target DC voltage (target value).
  • AC output AC output
  • DC voltage DC voltage
  • the target DC voltage is determined in advance so as to satisfy an AC voltage expected to be required from the scheduled electric load 28. Further, the control unit 40 controls the operation of the elements 20a to 20d of the bridge circuit of the inverter 20 so that the AC voltage actually required by the electric load 28 is obtained. The detailed description of the inverter 20 is omitted.
  • the converter 14, the capacitor 16 and the control unit 40 of the inverter unit 22 operate as a rectifying unit and a step-up / step-down unit (COV), and the inverter 20 and the control unit 40 operate as a DC / AC conversion unit (INV). Further, the engine 10 and the alternator 12 operate as a power generation unit (ALT).
  • COV step-up / step-down unit
  • ALT power generation unit
  • FIG. 2 is a flow chart showing the step-up / step-down control of the power generation output of the control unit 40
  • FIG. 3 is a time chart for explaining the control
  • FIG. 4 is an equivalent circuit diagram of the converter 14 showing them overall
  • FIG. 4 is an equivalent circuit diagram of the alternator 12 and the converter 14 showing the principle of power generation and boosting
  • FIG. 6 is an equivalent circuit diagram focusing on a part of the line portion of the alternator 12 of FIG.
  • the thyristors (14a1 to 14c1) of the upper elements 14a to 14c of the converter 14 are turned off, and the MOSFETs of the lower elements 14d to 14f (hereinafter abbreviated as “FETs”). ) Turn off (14d1-14f1) (S: processing step). Note that the processing in FIG. 2 is executed every predetermined time, for example, every 10 msec.
  • the thyristors (14a1-14c1) are fixed to the ON state, and the FETs (14d1-14f1) are subjected to PWM (Pulse Width Modulation) control.
  • PWM Pulse Width Modulation
  • the process of the flow chart of FIG. 2 will be described with reference to the time chart of FIG. 3.
  • the process of S10 is a preparation process before the period ⁇ of the time chart of FIG. 3, and resets the operation of the element to an initial state. This is a process for comparing the DC voltage (detected value) with the target DC voltage (target value).
  • the moving average value of the conductivity of the thyristors (14a1-14c1) gradually increases by continuing the processing of S10. To decrease. Since the moving average value of the thyristor conductivity is the ratio of the ON time of the thyristor in a certain period of time, as shown in FIG. 3C, by continuing the process of S10, it decreases over time.
  • the process proceeds to S14, and the DC voltage is boosted by duty-controlling the FETs (14d1 to 14f1) while the thyristor is fixed to ON.
  • the duty control means a control in which the duty for turning on the FETs (14d1 to 14f1) is varied according to the deviation between the target DC voltage (target value) and the DC voltage (detection value) to bring the detection value close to the target value.
  • the PWM control of the FETs in S14 means that the IGBTs are PWM controlled.
  • the selection of the FET or the IGBT + diode depends on the current and voltage used.
  • the power output (current) of one phase of the three-phase power output is The current flows as indicated by the arrow through the thyristor (14a1-14c1) and the parasitic diode (14d2-14f2) of the lower FET (14d1-14f1).
  • the conductivity of the thyristor as shown in FIG. 3C, it is possible to lower the power generation output and bring the DC voltage closer to the target DC voltage.
  • FIG. 5 is an equivalent circuit diagram of the three-phase windings 12a, 12b, and 12c of the alternator 12 and the converter 14.
  • FIG. 6 is an equivalent circuit diagram focusing only on the portion between the lines a and b of the three-phase winding 12a.
  • the thyristor (14a1-14c1) is fixed to ON and used as a diode, and by combining the control of the three-phase winding 12a and the FET (14d1-14f1), the voltage is boosted by DC while rectifying. Is what makes it possible.
  • the gate terminal of the thyristor (14a1) always gives an ON signal and is used as a diode.
  • the FET (14d1) is turned on when a power generation output is generated, a current flows as indicated by i1, and magnetic energy is stored in the inductance of the three-phase winding 12a.
  • the timing of supplying the ON signal to the gate terminals of the FETs (14d1-14e1) is controlled by detecting the phase of the waveform from the output of the phase / zero-cross detection circuit in FIG.
  • the elements (14d1-14f1) are composed of IGBTs and diodes instead of FETs, the IGBTs are duty-controlled as described above.
  • the upper and lower three sets of elements 14a to 14f of the three-phase rectifier bridge circuit of the converter 14 are constituted by diode elements (for example, thyristors) (14a1 to 14c1) capable of controlling the upper sides 14a to 14c in duty.
  • the lower element 14d-14e is constituted by a switching element (for example, an FET 14d1-14f1 having a built-in parasitic diode 14d2-14f2) capable of at least duty control and having a diode.
  • the voltage circuit can be realized by one three-phase bridge circuit.
  • FIG. 9 shows an output increase by boost rectification of ALT2 at low rotation
  • FIG. 10 shows an output increase by boost rectification of ALT2 at extremely low rotation.
  • the output of the ALT 2 is desirably large, but when the DC voltage is reduced, a voltage higher than the target DC voltage is required. At the time of low rotation of FIG. 8, the ALT 2 can secure the required output. .
  • the number of windings is set so that the maximum peak point of the output of the alternator 12 can be secured at the maximum rotation speed of the ALT 2, and as shown in FIG.
  • the rotation speed is low, the required output voltage is secured by boosting rectification, so that the power generation output can be used up to the output peak of the alternator 12 at the rotation speed.
  • the voltage can be secured by performing the step-up rectification described with reference to FIGS. 2 to 4.
  • the required output is possible.
  • it is possible to further reduce the idling speed at the time of light load, and to suppress the speed of the engine 10 to a low level, thereby obtaining a great advantage in terms of noise and fuel efficiency.
  • the generator 1 has both the maximum output and the output in the low rotation speed range of the alternator 12 of the same size as the winding specifications of the alternator 12 according to the maximum rotation speed and the maximum output point. As a result, the restriction on the winding specifications of the alternator 12 can be reduced.
  • the alternator voltage in the case of only boost rectification, it is necessary to set the alternator voltage to be lower than the target DC voltage in all the low-speed and high-speed output ranges. Sometimes, the DC voltage cannot reach the target DC voltage because the voltage cannot be boosted. From this point as well, the rectification method capable of both step-up and step-down in this embodiment has a great merit.
  • FIG. 11 is an electric circuit diagram similar to FIG. 1, showing the entirety of the generator 1 according to the second embodiment of the present invention.
  • an electric motor 10a is used instead of the engine 10 as a rotary motor.
  • the remaining configuration and effects are not different from those of the first embodiment.
  • the alternator 12 having the three-phase windings 12a, 12b, and 12c, which is driven by the rotary motor (the engine 10 or the electric motor 10a) to generate electric power
  • a converter 14 for converting a three-phase alternating current output from the alternator 12 to a direct current (DC), and a DC terminal voltage (DC voltage) output from the converter 14 and comprising a three-phase rectifying bridge circuit having a pair of elements 14a to 14f.
  • the inverter type generator 1 includes a converter control unit (ECU 40) that controls the driving of the elements 14a to 14f of the three-phase rectification bridge circuit.
  • the upper and lower three sets of elements of the three-phase rectifier bridge circuit are diode elements (for example, A switching element (FET or IGBT + and a diode or a diode in parallel with a transistor, for example, a parasitic diode 14d2 to 14f2, and a built-in MOSFET (14d1- 14f1)), the rectifier circuit and the step-up / step-down circuit can be realized by one three-phase bridge circuit.
  • diode elements for example, A switching element (FET or IGBT + and a diode or a diode in parallel with a transistor, for example, a parasitic diode 14d2 to 14f2, and a built-in MOSFET (14d1- 14f1)
  • the output of the alternator 12 can be maximized in a wide frequency range, and the alternator 12 Can have a winding specification that can ensure the maximum output with the same core, and furthermore, it can reduce the number of revolutions during load standby (in other words, when there is no load) than the idle speed of the conventional step-down rectification method it can.
  • the converter control unit is configured to control the driving of the upper and lower three sets of elements 14a to 14f such that the DC terminal voltage output from the three-phase bridge circuit becomes the target voltage.
  • the step-up / step-down control can be effectively performed.
  • the converter control unit compares a detection value (DC voltage) of the DC terminal voltage output from the three-phase bridge circuit with a target value (target DC voltage), and compares the detection value with the target value. (S10-S14), so that the step-up / step-down control can be performed more effectively in addition to the effects described above.
  • the converter control unit may generate an electromotive force due to magnetic energy generated in the three-phase winding.
  • the upper duty controllable diode element 14a1-14c1 of the upper and lower three sets of elements 14a-14f is turned on and the lower duty control element is turned on so that the output voltage of the three-phase bridge circuit increases by the same amount. Since the duty of the controllable elements 14d1-14f1 is controlled, the DC voltage can be increased to a voltage corresponding to the magnetic energy exceeding the power generation output, in addition to the above-described effects.
  • the converter control unit is configured to reduce the output voltage of the three-phase bridge circuit when the detected value (DC voltage) of the output DC terminal voltage exceeds the target value (target DC voltage). Since the lower duty controllable elements 14d1-14f1 of the upper and lower three sets of elements 14a-14f are turned off and the upper duty controllable diode elements 14a1-14c1 are duty-controlled, the above-described configuration is adopted. In addition to the effect described above, the DC voltage can be reduced to a desired voltage.
  • the rotary motor is constituted by the general-purpose engine 10 or the electric motor 10a, in addition to the above-described effects, even when the engine 10 or the electric motor 10a is used as the rotary motor, the rectifying circuit and the step-up / step-down circuit are one. It can be realized by a three-phase bridge circuit.
  • the inverter-type generator according to the present invention can be suitably used for a generator driven by a rotary prime mover such as an engine.
  • Inverter type power generator generator
  • 10 engine rotary motor
  • 10a motor rotary motor
  • 12 alternator 14 converter
  • 14a-14f element 14a1-14c1 thyristor
  • 14d1-14f1 MOSFET FET
  • 14d2 -14f2 diode 16 capacitor
  • 20 inverter 22 inverter unit
  • 28 electric load 30 battery (power supply)
  • 32 DC voltage detection circuit 34 phase / zero cross detection circuit
  • 36 element drive circuit 40 electronic control unit (ECU control. Part)
  • 40a ⁇ CPU 40b ⁇ memory

Abstract

整流回路と昇降圧回路を1個の三相ブリッジ回路で実現するようにしたインバータ式発動発電機を提供する。 オルタネータ(12)と、上下3組の素子(14a-14f)を有する三相整流ブリッジ回路からなると共に、オルタネータ(12)から出力される三相交流を直流に変換するコンバータ(14)を備えたインバータ式発動発電機(1)において、コンバータ(14)の三相整流ブリッジ回路の上下3組の素子を、上側を少なくともデューティ制御可能なダイオード素子(14a1-14c1)から構成し、下側を少なくともデューティ制御可能でダイオード(14d2-14f2)を備えるスイッチング素子(14d1-14f1)から構成する。

Description

インバータ式発動発電機
 この発明はインバータ式発動発電機に関し、より具体的にはユーザが持ち運び可能な重量および寸法を有し、農作業用あるいはキャンプなどの野外用などの電気負荷に好適に電力を供給可能な発電機に関する。
 この種の発電機では、下記の特許文献1に記載されるように、オルタネータから出力される三相交流電圧を整流する際にサイリスタとダイオードの混合ブリッジ回路を用い、サイリスタの点呼角制御によって一定電圧に降圧しながら整流していた。
特開2010-35258号公報
 その構成では通常の全波整流回路と比較して整流後のDC昇降圧回路が不要となるが、降圧機能しか持たないため、各回転数でオルタネータの発電電圧を予め高めに設定しておく必要があり、特性、構造、耐圧などにおいて制約が大きい不都合があった。
 この発明の課題は上記した不都合を解消し、整流回路と昇降圧回路を1個の三相ブリッジ回路で実現するようにしたインバータ式発動発電機を提供することにある。
 上記した課題を解決するために、この発明は、三相巻線を有し、回転原動機で駆動されて発電するオルタネータと、上下3組の素子を有する三相整流ブリッジ回路からなると共に、前記オルタネータから出力される三相交流を直流に変換するコンバータと、前記コンバータから出力される直流の端子電圧が目標電圧となるように前記三相整流ブリッジ回路の素子の駆動を制御するコンバータ制御部とを備えたインバータ式発動発電機において、前記コンバータの三相整流ブリッジ回路の上下3組の素子を、上側を少なくともデューティ制御可能なダイオード素子から構成し、下側を少なくともデューティ制御可能でダイオードを備えるスイッチング素子から構成するようにした。
この発明の第1実施形態に係るインバータ式発動発電機を全体的に示す電気回路図である。 図1の電子制御ユニット(制御部)の発電出力の昇降圧制御を示すフロー・チャートである。 図2の制御を説明するタイム・チャートである。 図2の制御を全体的に示す図1のコンバータの等価回路図である。 図4の発電・昇圧の原理を示すオルタネータとコンバータの等価回路図である。 図5のオルタネータの一部の線間部に着目した等価回路図である。 図1のオルタネータの巻線数をALT1、ALT2としたときの高回転時の電圧・出力特性を示す説明図である。 図7で低回転時の電圧・出力特性を示す説明図である。 図7で低回転時のALT2の昇圧整流による出力アップを示す説明図である。 図7で極低回転時のALT2の昇圧整流による出力アップを示す説明図である。 この発明の第2実施形態に係るインバータ式発動発電機を全体的に示す電気回路図である。
 以下、添付図面を参照してこの発明の実施形態に係るインバータ式発動発電機ついて説明する。
 (第1実施形態)
 図1はこの発明の第1実施形態に係るインバータ式発動発電機を全体的に示す電気回路図である。
 インバータ式発動発電機(以下「発電機」といい、符号1で示す)は、ユーザが持ち運び可能な重量および寸法を有し、農作業用あるいはキャンプなどの野外用などの電気負荷に好適に電力を供給する発電機からなる。
 発電機1は、図示の如く、汎用エンジン(回転原動機)10で駆動されて発電するオルタネータ(ALT。発電部)12と、オルタネータ12に電気的に接続されてオルタネータ12から出力される三相交流を直流に変換(整流)するコンバータ14と、コンバータ14の正側端子と負側端子の間に電気的に接続されてコンバータ14で整流された直流を平滑するコンデンサ16と、コンデンサ16に電気的に接続されてコンデンサ16で平滑された直流を交流に変換するインバータ20とからなるインバータユニット22を備える。
 インバータユニット22は、波形成形回路24と出力端子26を介して前記した農作業用などの電気負荷28に接続される。
 汎用エンジン(以下「エンジン」という)10は、例えばガソリンを燃料とする点火式の空冷エンジンであり、シリンダ内を往復動するピストンと、ピストンに同期して回転するクランクシャフト(出力軸)とを有する。エンジン10の動力は、クランクシャフトを介してオルタネータ12に出力される。
 オルタネータ12はUVWの三相巻線12a,12b,12cを有し、エンジン10により回転駆動されて交流電力を発電する多極オルタネータからなる。図示は省略するが、多極オルタネータはエンジン10のクランクシャフトに連結されてそれと一体に回転する永久磁石からなるロータと、ロータの周面に配置されたステータとからなり、ステータには図示のように120度毎の位相角で配置されたUVWの三相巻線12a,12b,12cからなる極が多数形成される。
 インバータユニット22のコンバータ14などの構成を詳細に説明すると、コンバータ14はオルタネータ12のU相、V相、W相の各巻線に対応して接続された3対(計6個)の上下3組で計6個の素子14a―14fを有する三相整流ブリッジ回路からなる。 
 この実施形態においてはその三相整流ブリッジ回路の上下3組の素子14a―14fについて、上側の素子14a,14b,14cを少なくともデューティ制御可能なダイオード素子(例えばサイリスタ)14a1-14c1から構成し、下側の素子14d,14e,14fを少なくともデューティ制御可能でダイオードを備えるスイッチング素子(例えば寄生ダイオードを内蔵するFET(Field Effect Transistor)ないしはMOSFET(Metal-Oxide Semiconductor Field Effect Transistor)、あるいはIGBTと並列接続されたダイオード、あるいはトランジスタと並列接続されたダイオード)のいずれかから構成する。この実施形態では寄生ダイオード14d2-14f2を内蔵するMOSFET(14d1-14f1)から構成した。尚、ここで「デューティ制御可能なダイオード素子」あるいは「デューティ制御可能でダイオードを備えるスイッチング素子」は上記したものに止まらないことはいうまでもない。
 また、インバータユニット22のインバータ20は、図示の如く、上下2組で計4個の素子20a―20dからなるブリッジ回路から構成すると共に、この実施形態においてはその4個の素子20a―20dを、ダイオードを内蔵するFET(あるいはMOSFET)から構成する。
 インバータユニット22においては、図示の如く、コンデンサ16にはその正負端子間の直流電圧を検出するDC電圧検出回路32が接続されると共に、オルタネータ12の三相巻線12a-12cとコンバータ14の三相整流ブリッジ回路の中点を接続する接続回路には三相巻線の位相とゼロクロスを角度で検出する位相・ゼロクロス検出回路34が介挿される。また、コンバータ14の三相整流ブリッジ回路の上下の素子14a1―14f1のゲート端子はオン信号を出力する素子ドライブ回路36に接続される。
 インバータユニット22は、電子制御ユニット(Electronic Control Unit。以下「ECU」という)40を備える。ECU40は、バスを介して接続されるプロセッサ(CPU)40aと、メモリ(ROM,RAM)40bと、I/O40cなどを少なくとも含むマイクロコンピュータから構成される。
 ECU40(より詳しくはそのプロセッサ40aとメモリ40b)が制御部として動作し、オルタネータ12の発電出力(交流出力)を整流するとき、DC電圧検出回路32の出力から検出される検出値(DC電圧)が目標DC電圧(目標値)となるように昇降圧を、位相・ゼロクロス検出回路34から検出される位相とゼロクロスの角度に基づいて素子ドライブ回路36を介してコンバータ14の素子14a―14fの動作を制御する。
 目標DC電圧は、予定される電気負荷28から要求されると想定される交流電圧を満足するように予め決定される。また、制御部40は電気負荷28から実際に要求される交流電圧となるようにインバータ20のブリッジ回路の素子20a―20dの動作を制御するが、この発明の特徴はコンバータ14の構成にあるので、インバータ20についての詳細な説明は省略する。
 このようにインバータユニット22のコンバータ14とコンデンサ16と制御部40が整流部、昇降圧部(COV)として動作し、インバータ20と制御部40がDC/AC変換部(INV)として動作する。また、エンジン10とオルタネータ12が発電部(ALT)として動作する。
 次いで、上記した制御部40の発電出力の昇降圧などについて図2以降を参照して説明する。
 図2は制御部40の発電出力の昇降圧制御を示すフロー・チャート、図3はその制御を説明するタイム・チャート、図4はそれらを全体的に示すコンバータ14の等価回路図、図5は図4の発電・昇圧の原理を示すオルタネータ12とコンバータ14の等価回路図、図6は図5のオルタネータ12の一部の線間部に着目した等価回路図である。
 図2を参照して説明すると、S10においてコンバータ14の上側の素子14a-14cのサイリスタ(14a1-14c1)をOFF(オフ)し、下側の素子14d-14fのMOSFET(以下「FET」と略称)(14d1-14f1)をOFF(オフ)する(S:処理ステップ)。尚、図2の処理は所定時間、例えば10msecごとに実行される。
 次いでS12に進み、サイリスタ(14a1-14c1)をON(オン)する一方、FET(14d1-14f1)はOFF(オフ)のままとする。
 次いでS16に進み、サイリスタ(14a1-14c1)をON(オン)状態に固定し、FET(14d1-14f1)をPWM(Pulse Width Modulation)制御する。サイリスタとFETのON/OFF制御は素子ドライブ回路36を通じて行う。
 図2フロー・チャートの処理を図3タイム・チャートに即して説明すると、S10の処理は図3タイム・チャートの期間αの前の準備処理であり、素子の動作を初期状態にリセットし、DC電圧(検出値)と目標DC電圧(目標値)の比較を行う処理である。
 いま期間αにあるとすると、図3Aに示すようにDC電圧が目標DC電圧を超えていることから、S10の処理を継続することでサイリスタ(14a1-14c1)の導通率の移動平均値は徐々に減少する。サイリスタの導通率の移動平均値は一定時間でのサイリスタのON時間の割合であることから、S10の処理を継続することによって図3Cに示すように経時的に減少する。
 図3においては期間αの終端でDC電圧が目標DC電圧に一致し、続く期間βで目標DC電圧未満となることから、S12の処理に進む。即ち、図3Bに示すようにサイリスタ(14a1-14c1)の動作はOFFからONに変更される結果、図3Cに示すようにサイリスタの導通率の移動平均値は上昇に転じる。図3Bの右端にサイリスタのON/OFF制御(デューティ制御)を誇張して示す。
 続く期間γで導通率が飽和することから、S14に進み、サイリスタをON固定したままFET(14d1-14f1)をデューティ制御することでDC電圧を昇圧させる。ここで、デューティ制御は目標DC電圧(目標値)とDC電圧(検出値)の偏差に応じてFET(14d1-14f1)をONするデューティを可変にして検出値を目標値に近づける制御を意味する。
 この昇圧制御については後で詳細に説明する。
 その結果、図3Aに示すように期間Δにおいて検出DC電圧が目標DC電圧を超えたことから、再びS10の処理に戻り、上記を繰り返す。
 尚、コンバータ14において下側の素子14d-14fをFETに代え、IGBTとダイオードとした場合、S14のFETのPWM制御はIGBTをPWM制御することを意味する。尚、FETとIGBT+ダイオードのいずれを選定するかは使用する電流と電圧による。
 図4を参照して図2と図3に示す制御を敷衍する。
 図4の左端に示す発電・降圧時の場合、S10とS12の処理に示すようにIGBTとFETがOFFされることから、三相の発電出力の一つの相の発電出力(電流)は上側のサイリスタ(14a1-14c1)と下側のFET(14d1-14f1)の寄生ダイオード(14d2-14f2)を通って矢印で示すように流れる。このとき、図3Cに示すようにサイリスタの導通率を低下させることで、発電出力を降圧させてDC電圧を目標DC電圧に近づけることができる。
 図4の右端に示す発電・昇圧時の場合、S12,S14の処理に示すようにサイリスタ(14a1-14c1)をON固定させたまま、オルタネータ12の三相巻線12aのインダクタンスLを利用しつつFET(14d1-14f1)を制御して昇圧させる。三相の発電出力の一つの相に着目したとき電流は矢印で示すように流れる。
 図5を参照してその昇圧制御をさらに説明すると、同図はオルタネータ12の三相巻線12a,12b,12cとコンバータ14の等価回路図である。図6は三相巻線12aのa-b線間部のみに着目した等価回路図である。
 この制御は概説すると、サイリスタ(14a1-14c1)をON固定してダイオードとして使用し、三相巻線12aとFET(14d1-14f1)の制御を組み合わせることにより、整流しながらDCで電圧の昇圧制御を可能にするものである。
 即ち、昇圧時はサイリスタ(14a1)のゲート端子は常時ON信号を与えてダイオードとして使用する。発電出力が生じたときにFET(14d1)をONすると、電流はi1のように流れ、三相巻線12aのインダクタンスに磁気エネルギが蓄えられる。
 次いで、FET(14e1)をOFFすると、電流はi2のように流れる。即ち、三相巻線12aに蓄えられた磁気エネルギが放出される結果、発電出力は電流i2の分だけ嵩上げされて昇圧される。従って、三相整流ブリッジ回路のFET(14d1-14e1)をデューティ制御することでDC電圧を発電出力に必要な電圧まで昇圧させることが可能となる。
 FET(14d1-14e1)のゲート端子にON信号を供給するタイミングは、図1の位相・ゼロクロス検出回路の出力から波形の位相を検出し、素子ドライブ回路36を通じて最適な位相で制御する。尚、素子(14d1-14f1)としてFETに代え、IGBTとダイオードから構成したときはIGBTをデューティ制御することは前記したとおりである。
 この実施形態に係る発電機はコンバータ14の三相整流ブリッジ回路の上下3組の素子14a-14fを、上側14a-14cをデューティ制御可能なダイオード素子(例えばサイリスタ)(14a1-14c1)から構成し、下側の素子14d-14eを少なくともデューティ制御可能でダイオードを備えるスイッチング素子(例えば寄生ダイオード14d2-14f2を内蔵したFET14d1-14f1など)から構成するようにしたので、コンバータ14において、整流回路と昇降圧回路を1個の三相ブリッジ回路で実現することができる。
 ここで、この実施形態の発電機1の回転数における利点について図7から図10を参照して説明する。
 同一のコアを用いて巻線数を変えたオルタネータを、ALT1,ALT2(巻線数:ALT1<ALT2)としたときの電圧・出力特性は、例えば高回転時が図7、低回転時が図8に示すとおりとなる。また、図9は低回転時のALT2の昇圧整流による出力アップを、図10は極低回転時のALT2の昇圧整流による出力アップを示す。
 図7の高回転時にはALT2は出力が大きくて望ましいが、DC電圧を降圧するときは目標DC電圧以上の電圧が必要となり、図8の低回転時にはALT2の方が必要な出力を確保できることになる。
 しかしながら、この実施形態で述べたようにDC昇降圧が可能となると、ALT2の最大回転数でオルタネータ12の出力の最大ピーク点が確保できるように巻線数を設定し、図9に示す如く、低回転時は昇圧整流を行って必要な電圧を確保することで、その回転数のオルタネータ12の出力ピークまで発電出力を使用することができる。
 また、図10に示す如く、オルタネータ電圧が目標DC電圧に達しない極低回転時においても、図2から図4を参照して説明した昇圧整流することで電圧を確保できるため、電気負荷28から要求される出力が可能となる。これにより、軽負荷時のアイドル回転数をさらに下げることも可能となり、エンジン10の回転数を低く抑えることができ、騒音・燃費などで大きなメリットを得ることができる。
 このように、この実施形態に係る発電機1は、最大回転数・最大出力ポイントにあわせたオルタネータ12の巻線仕様として、同一サイズのオルタネータ12で最大の出力と低回転域での出力を両立できることになり、オルタネータ12の巻線仕様の制約が減少させることができる。
 また、昇圧整流のみの場合は低回転、高回転の全出力域でオルタネータ電圧を目標DC電圧より低くなるように設定する必要があるが、昇圧比には限界があるため、低回転の最大出力時に昇圧しきれず、DC電圧が目標DC電圧に到達できないことがある。その点からもこの実施形態における昇降圧の両方が可能な整流手法はメリットが大きい。
 (第2実施形態)
 図11はこの発明の第2実施形態に係る発電機1を全体的に示す、図1と同様な電気回路図である。
 第1実施形態と相違する点に焦点をおいて説明すると、第1実施形態にあっては回転原動機としてエンジン10に代え、電動機10aを用いるようにした。尚
残余の構成および効果は第1実施形態と異ならない。
 上記した如く、第1、第2実施形態にあっては、三相巻線12a,12b,12cを有し、回転原動機(エンジン10あるいは電動機10a)で駆動されて発電するオルタネータ12と、上下3組の素子14a-14fを有する三相整流ブリッジ回路からなると共に、前記オルタネータ12から出力される三相交流を直流に変換するコンバータ14と、前記コンバータ14から出力される直流の端子電圧(DC電圧)が目標電圧(DC目標電圧)となるように前記三相整流ブリッジ回路の素子14a-14fの駆動を制御するコンバータ制御部(ECU40)とを備えたインバータ式発動発電機1において、前記コンバータ14の三相整流ブリッジ回路の上下3組の素子を、上側を少なくともデューティ制御可能なダイオード素子(例えばサイリスタ)(14a1-14c1)から構成し、下側を少なくともデューティ制御可能でダイオードを備えるスイッチング素子(FETまたはIGBT+とダイオード、またはトランジスタと並列ダイオード、例えば寄生ダイオード14d2-14f2を内蔵するMOSFET(14d1-14f1))から構成したので、整流回路と昇降圧回路を1個の三相ブリッジ回路で実現することができる。
 また、整流回路と別に昇圧・降圧回路を追加する必要がないため、サイズ、重量、部品点数をアップすることなく、発電時に一定のDC電圧の供給が可能となる。
 また、図7から図10を参照して説明したように、発電時は昇圧・降圧両方に対応できるため、広い回数数領域でオルタネータ12の出力を最大限に確保することができると共に、オルタネータ12は同一コアで最大の出力を確保できる巻線仕様にでき、さらには負荷待機時(換言すれば無負荷時)の回転数を従来の降圧型の整流手法のアイドル回転数よりも低下させることができる。
 また、前記コンバータ制御部は、前記三相ブリッジ回路から出力される直流の端子電圧が目標電圧となるように前記上下3組の素子14a-14fの駆動を制御する如く構成したので、上記した効果に加え、昇降圧制御を効果的に行うことができる。
 また、前記コンバータ制御部は、前記三相ブリッジ回路から出力される直流の端子電圧の検出値(DC電圧)を目標値(目標DC電圧)と比較し、前記検出値と前記目標値の比較結果に応じて前記上下3組の素子14a-14fの駆動を制御する(S10-S14)如く構成したので、上記した効果に加え、昇降圧制御を一層効果的に行うことができる。
 また、前記コンバータ制御部は、前記出力される直流の端子電圧の前記検出値(DC電圧)が前記目標値(目標DC電圧)未満のとき、前記三相巻線に生じた磁気エネルギによる起電力分だけ前記三相ブリッジ回路の出力電圧が増加するように、前記上下3組の素子14a-14fのうちの上側の前記デューティ制御可能なダイオード素子14a1-14c1をオンすると共に、下側の前記デューティ制御可能な素子14d1-14f1をデューティ制御する如く構成したので、上記した効果に加え、発電出力を超えた磁気エネルギ相当分の電圧までDC電圧を昇圧させることができる。
 前記コンバータ制御部は、前記出力される直流の端子電圧の前記検出値(DC電圧)が前記目標値(目標DC電圧)を超えるとき、前記三相ブリッジ回路の出力電圧が減少するように、前記上下3組の素子14a-14fのうちの下側の前記デューティ制御可能な素子14d1-14f1をオフすると共に、上側の前記デューティ制御可能なダイオード素子14a1-14c1をデューティ制御する如く構成したので、上記した効果に加え、DC電圧を所望の電圧に降圧させることができる。
 また、前記回転原動機が汎用エンジン10または電動機10aからなる如く構成したので、上記した効果に加え、回転原動機としてエンジン10または電動機10aが用いられる場合でも、整流回路と昇降圧回路とを1個の三相ブリッジ回路で実現することができる。
 この発明に係るインバータ式発電機は、エンジンなどの回転原動機で駆動される発電機に好適に使用することができる。
1 インバータ式発動発電機(発電機)、10 エンジン(回転原動機)、10a 電動機(回転原動機)、12 オルタネータ、14 コンバータ、14a-14f 素子、14a1-14c1 サイリスタ、14d1-14f1 MOSFET(FET)、14d2-14f2 ダイオード、16 コンデンサ、20 インバータ、22 インバータユニット、28 電気負荷、30 バッテリ(電源)、32 DC電圧検出回路、34 位相・ゼロクロス検出回路、36 素子ドライブ回路、40 電子制御ユニット(ECU。制御部)、40a CPU、40b メモリ

Claims (6)

  1.  三相巻線を有し、回転原動機で駆動されて発電するオルタネータと、
     上下3組の素子を有する三相整流ブリッジ回路からなると共に、前記オルタネータから出力される三相交流を直流に変換するコンバータと、
     前記コンバータから出力される直流の端子電圧が目標電圧となるように前記三相整流ブリッジ回路の素子の駆動を制御するコンバータ制御部と、
    を備えたインバータ式発動発電機において、
     前記コンバータの三相整流ブリッジ回路の上下3組の素子を、上側を少なくともデューティ制御可能なダイオード素子から構成し、下側を少なくともデューティ制御可能でダイオードを備えるスイッチング素子から構成したことを特徴とするインバータ式発動発電機。
  2.  前記コンバータ制御部は、前記三相ブリッジ回路から出力される直流の端子電圧が目標電圧となるように前記上下3組の素子の駆動を制御することを特徴とする請求項1記載のインバータ式発動発電機。
  3.  前記コンバータ制御部は、前記三相ブリッジ回路から出力される直流の端子電圧の検出値を目標値と比較し、前記検出値と前記目標値の比較結果に応じて前記上下3組の素子の駆動を制御することを特徴とする請求項2記載のインバータ式発動発電機。
  4.  前記コンバータ制御部は、前記出力される直流の端子電圧の前記検出値が前記目標値未満のとき、前記三相巻線に生じた磁気エネルギによる起電力分だけ前記三相ブリッジ回路の出力電圧が増加するように、前記上下3組の素子のうちの上側の前記デューティ制御可能なダイオード素子をオンすると共に、下側の前記デューティ制御可能な素子をデューティ制御することを特徴する請求項2または3記載のインバータ式発動発電機。
  5.  前記コンバータ制御部は、前記出力される直流の端子電圧の前記検出値が前記目標値を超えるとき、前記三相ブリッジ回路の出力電圧が減少するように、前記上下3組の素子のうちの下側の前記デューティ制御可能な素子をオフすると共に、上側の前記デューティ制御可能なダイオード素子をデューティ制御することを特徴する請求項3または4記載のインバータ式発動発電機。
  6.  前記回転原動機が汎用エンジンまたは電動機からなることを特徴する請求項1から5のいずれか1項に記載のインバータ式発動発電機。
PCT/JP2018/032385 2018-08-31 2018-08-31 インバータ式発動発電機 WO2020044545A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2018/032385 WO2020044545A1 (ja) 2018-08-31 2018-08-31 インバータ式発動発電機
CN201880096406.0A CN112567617A (zh) 2018-08-31 2018-08-31 逆变器式发动机驱动型发电机
US17/263,816 US11476787B2 (en) 2018-08-31 2018-08-31 Inverter type engine generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/032385 WO2020044545A1 (ja) 2018-08-31 2018-08-31 インバータ式発動発電機

Publications (1)

Publication Number Publication Date
WO2020044545A1 true WO2020044545A1 (ja) 2020-03-05

Family

ID=69643206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032385 WO2020044545A1 (ja) 2018-08-31 2018-08-31 インバータ式発動発電機

Country Status (3)

Country Link
US (1) US11476787B2 (ja)
CN (1) CN112567617A (ja)
WO (1) WO2020044545A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112104241A (zh) * 2020-09-16 2020-12-18 隆鑫通用动力股份有限公司 一种发动机驱动型发电机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11196599A (ja) * 1997-10-11 1999-07-21 Robert Bosch Gmbh ジェネレータの調整装置および方法
JP2001119928A (ja) * 1999-08-09 2001-04-27 Leroy Somer 電気を生成する装置
JP2008532473A (ja) * 2005-03-01 2008-08-14 ヨーク・インターナショナル・コーポレーション 可変速駆動装置内の直流リンクをプリチャージするシステム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08237998A (ja) * 1995-02-23 1996-09-13 Isuzu Ceramics Kenkyusho:Kk 交流発電機の電圧制御装置
JP2002233072A (ja) * 2001-02-01 2002-08-16 Honda Motor Co Ltd 自動車用電源装置
JP5281329B2 (ja) 2008-07-25 2013-09-04 本田技研工業株式会社 インバータ発電機
JP5424612B2 (ja) * 2008-10-28 2014-02-26 澤藤電機株式会社 インバータ発電機
JP2011234485A (ja) 2010-04-27 2011-11-17 Honda Motor Co Ltd インバータ式発動発電機
US10263558B2 (en) * 2016-03-16 2019-04-16 Rockwell Automation Technologies, Inc. Phase loss detection in active front end converters

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11196599A (ja) * 1997-10-11 1999-07-21 Robert Bosch Gmbh ジェネレータの調整装置および方法
JP2001119928A (ja) * 1999-08-09 2001-04-27 Leroy Somer 電気を生成する装置
JP2008532473A (ja) * 2005-03-01 2008-08-14 ヨーク・インターナショナル・コーポレーション 可変速駆動装置内の直流リンクをプリチャージするシステム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112104241A (zh) * 2020-09-16 2020-12-18 隆鑫通用动力股份有限公司 一种发动机驱动型发电机

Also Published As

Publication number Publication date
US20210297031A1 (en) 2021-09-23
CN112567617A (zh) 2021-03-26
US11476787B2 (en) 2022-10-18

Similar Documents

Publication Publication Date Title
CN1255933C (zh) 空调装置
JP5307814B2 (ja) 電源装置
US8975886B2 (en) Charging and distribution control
US20100020572A1 (en) Inverter generator
JP2010288436A (ja) 電源装置
JP2007151388A (ja) 発電回路
JP2011234485A (ja) インバータ式発動発電機
WO2020044544A1 (ja) インバータ式発動発電機
WO2020044545A1 (ja) インバータ式発動発電機
JPH11206130A (ja) 電源装置
JP2013541317A (ja) 内燃機関によって駆動される発電機の回転の不均一性に起因する電圧リップルを低減するための方法
WO2022168290A1 (ja) 発電機
WO2022168289A1 (ja) 発電機
WO2019159632A1 (ja) インバータ発電機
WO2022180703A1 (ja) 発電機、制御装置及び制御方法
JP7077886B2 (ja) 車両用回転電機
CN1450716A (zh) 变换装置及其控制方法
JP6832775B2 (ja) エンジン発電機
US9712100B2 (en) Electric rotating machine and control method therefor
JP2009044928A (ja) 交流回転機
JP5558608B1 (ja) 電源装置および電源装置の制御方法
JP2023181105A (ja) モータ制御システム及び方法
JP4049698B2 (ja) モータ制御装置
JP2001078462A (ja) 車両用モータ駆動装置
US20150365035A1 (en) Apparatus for driving switched reluctance motor and method of controlling the apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18931729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP