WO2022168289A1 - 発電機 - Google Patents

発電機 Download PDF

Info

Publication number
WO2022168289A1
WO2022168289A1 PCT/JP2021/004445 JP2021004445W WO2022168289A1 WO 2022168289 A1 WO2022168289 A1 WO 2022168289A1 JP 2021004445 W JP2021004445 W JP 2021004445W WO 2022168289 A1 WO2022168289 A1 WO 2022168289A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
generator
power
engine
voltage
Prior art date
Application number
PCT/JP2021/004445
Other languages
English (en)
French (fr)
Inventor
裕一 尾上
健 山路
宏也 ▲高▼橋
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to PCT/JP2021/004445 priority Critical patent/WO2022168289A1/ja
Publication of WO2022168289A1 publication Critical patent/WO2022168289A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator

Definitions

  • the present invention relates to a generator using an engine as a drive source.
  • Patent Document 1 discloses a generator in which a rectifier circuit is composed of FETs (field effect transistors) and the rectifier circuit is used as a drive circuit for an alternator when the engine is started.
  • the output voltage (DC link voltage) of the rectifier circuit basically depends on the engine output. Control to change the output of the engine is conceivable in order to deal with load fluctuations, but it is difficult to deal with momentary load fluctuations. In the method of converting the DC link voltage using a DC/DC converter, an additional DC/DC converter is required. Also, in terms of fuel consumption and noise, it is desirable that the engine is operated in a low speed range.
  • An object of the present invention is to provide a generator that does not require a DC/DC converter and that allows the engine to operate in a relatively low speed range.
  • a generator that supplies AC power to a load, engine and an electric motor that functions as an alternator that is driven by the engine and generates three-phase AC power; a rectifier circuit for rectifying an output of the electric motor, the rectifying circuit including a plurality of switching elements for switching an energization state of each phase of the electric motor; an inverter that converts the DC power output by the rectifier circuit into AC power and outputs the same to a load; and a control means for controlling the plurality of switching elements,
  • the control means is When AC power is supplied to the load, the on/off of the plurality of switching elements is controlled so that a braking force acts on the rotation of the electric motor, and the output voltage of the electric motor is boosted, while the electric motor is operated as described above. act as an alternator,
  • a generator characterized by:
  • FIG. 2 is a block diagram showing the circuit configuration of the generator in FIG. 1; 4 is a flowchart of engine starting processing; 4 is a flowchart of FET drive control; FIG. 4 is an explanatory diagram of the operation of the generator when the engine is started; FIG. 4 is an explanatory diagram of the operation of the generator during power generation. Explanatory drawing of the characteristic of an electric motor. 10 is a flowchart of FET drive pattern setting processing; 4 is a flowchart of processing related to engine output change;
  • FIG. 1 is a schematic diagram of a generator 1 according to one embodiment of the present invention.
  • the power generator 1 of the present embodiment is a portable power generator, and is used, for example, as a power feeder that supplies electric power to an electric power load 100 outdoors.
  • the generator 1 can supply the electric load 100 with commercial power (single-phase alternating current 100 V in this embodiment) connected to the connecting portion (outlet) 4 .
  • Examples of the electric load 100 include household electric appliances such as cookers, air conditioners, televisions, lighting fixtures, and dryers.
  • the electric load 100 may also include commercial electric equipment such as an electric power tool, a large lighting device, and a compressor.
  • single-phase AC 100V is exemplified, but the power output specification is not limited to this, and other output specifications such as single-phase three-wire 200V and 240V can be adopted.
  • FIG. 2 is a block diagram showing the circuit configuration of the generator 1.
  • the generator 1 includes an engine 2 , an electric motor 3 , a rectifier circuit 5 , a smoothing capacitor 6 , an inverter 7 and a control unit 12 .
  • the engine 2 is a drive source for the generator 1, and is, for example, an ignition type, single-cylinder, four-stroke, air-cooled engine that uses gasoline as fuel.
  • a rotor of the electric motor 3 is connected to a crankshaft of the engine 2 , and driving force is transmitted between the electric motor 3 and the engine 2 .
  • the electric motor 3 is a three-phase brushless motor generator that includes a stator wound with three-phase windings of U-phase, V-phase, and W-phase, and a rotor provided with permanent magnets.
  • the electric motor 3 functions as a starter that starts the engine 2 and also functions as an alternator that is driven by the engine 2 to generate three-phase AC power.
  • the electric motor 3 is provided with a position detection sensor 11 that detects the position (rotational position) of its rotor.
  • the position detection sensor 11 is, for example, a magnetic sensor such as a Hall element.
  • a current detection sensor 10 detects the magnitude of the current flowing through the electric motor 3 .
  • the current detection sensors 10 are provided in the V-phase winding and the W-phase winding, respectively.
  • the current detection sensor 10 may also be provided on the U-phase winding. However, since the current flowing in the U-phase winding can be estimated from the detection results of the current detection sensors 10 provided in the V-phase and W-phase, there is no need to provide the current detection sensor 10 in the U-phase winding.
  • the position detection sensor 11 and the current detection sensor 10 are provided. can be omitted.
  • the rectifier circuit 5 includes FETs 5a to 5f as a plurality of switching devices for switching the energization state of each phase of the electric motor 3, and rectifies the AC power output from the electric motor 3 to output DC power.
  • a plurality of FETs 5a to 5f are bridge-connected to form a full-wave rectification bridge circuit.
  • Each of the FETs 5a-5f is an N-type MOSFET in this embodiment and has a drain D, a source S, a gate G and a parasitic diode Di.
  • a parasitic diode Di is a semiconductor element that always allows current to flow in one direction, and each FET 5a-5f includes such a semiconductor element and a switching element.
  • a set of FETs 5a and 5d is connected in series between the high-side wiring 1a and the low-side wiring 1b to form a leg.
  • a corresponding phase winding of the electric motor 3 is connected to each connection point between the FETs 5a to 5c and the FETs 5d to 5f.
  • a control signal sent from the generator ECU 14 is input to each gate G of the FETs 5a to 5f, and ON/OFF control of each of these FETs is executed.
  • the FETs 5a to 5f are turned on/off by PWM control.
  • the smoothing capacitor 6 is connected between the wiring 1a and the wiring 1b.
  • a smoothing capacitor 6 smoothes the DC output voltage (DC link voltage: Vdc) of the rectifier circuit 5 .
  • a starting power supply 8 and a voltage detection sensor 9 are also connected between the wiring 1a and the wiring 1b.
  • the starting power supply 8 includes a battery such as a lead battery or a lithium ion battery, a switch for connecting/disconnecting the battery and the wirings 1a and 1b, and the like. When a lead battery is used as the battery, the output voltage may be boosted by a DCDC converter.
  • a starting voltage (DC voltage) for rotationally driving the electric motor 3 is applied between the wiring 1a and the wiring 1b.
  • a voltage detection sensor 9 detects the magnitude of the DC output voltage of the rectifier circuit 5 .
  • the inverter 7 converts the DC power output by the rectifier circuit 5 into AC power and outputs it to the load 100 side.
  • the single-phase AC power output from the inverter 7 is modulated into a sine wave by the filter circuit 16 having reactors and capacitors, and is output to the connection section 4 .
  • the inverter 7 includes a plurality of switching devices 7a-7d forming an H-bridge circuit.
  • the switching devices 7a-7d are N-type MOSFETs and have drains D, sources S, gates G and parasitic diodes Di.
  • a control signal sent from the generator ECU 14 is input to each gate G of the switching devices 7a to 7d, and ON/OFF control of each of these switching devices is executed.
  • the FETs 7a-7d are turned on/off by PWM control.
  • the control unit 12 controls the generator 1.
  • the control unit 12 includes an engine ECU 13 that controls the engine 2 and a generator ECU 14 that controls the generator 1 as a whole.
  • the functions of these ECUs may be realized by one ECU.
  • Each ECU 13, 14 includes, for example, a processor represented by a CPU, a storage device such as a semiconductor memory, an input/output interface, a communication interface, and the like.
  • the storage device stores programs executed by the processor, data used for processing by the processor, and the like.
  • the engine ECU 13 and the generator ECU 14 are communicably connected.
  • the engine ECU 13 operates the engine 2 by performing fuel injection control, ignition control, and throttle control of the engine 2 , for example, based on the detection results of sensors provided in the engine 2 .
  • the generator ECU 14 performs intermittent control of the starting power supply 8, on/off control of the FETs 5a to 5f of the rectifier circuit 5, on/off control of the switching devices 7a to 7d of the inverter 7, and the like.
  • the generator ECU 14 can acquire detection results of the voltage detection sensor 9 , the current detection sensor 10 and the position detection sensor 11 . Further, the generator ECU 14 is connected to an operation unit 15, which recognizes a user's instruction to the operation unit 15 (for example, starting power generation, ending power generation, etc.) and executes corresponding processing.
  • FIG. 3 is a flowchart of a process for starting the engine 2 executed by the generator ECU 14.
  • a user using the power generator 1 operates the operation unit 15 to instruct to start power generation.
  • S1 it is determined whether or not an instruction to start power generation has been given to the operation unit 15. If there is an instruction to start power generation, the process proceeds to S2.
  • the generator ECU 14 outputs a control signal for turning on the starting power source 8, and the starting power source 8 is turned on. Thereby, a starting voltage is applied between the wiring 1a and the wiring 1b.
  • the generator ECU 14 starts rotation control of the electric motor 3 in S3.
  • the FETs 5a to 5f are controlled to turn on/off so that the electric motor 3 rotates so that the electric motor 3 functions as a starter. That is, the rectifier circuit 5 is used as a starting circuit.
  • the FETs 5a to 5f are turned on and off by, for example, PWM control, and the control conditions (on timing with respect to the rotor position, duty ratio, etc.) at the time of starting can be stored in the storage device of the generator ECU 14 in advance.
  • the generator ECU 14 acquires the detection result of the position detection sensor 11 (S11), and controls the ON/OFF of the FETs 5a to 5f based on the acquired detection result (rotor position information).
  • FIG. 5 schematically shows the operation of the generator 1 during starting. As indicated by thick arrows in the figure, a DC voltage is supplied from the starting power source 8 to the rectifier circuit 5, and the switching of the FETs 5a to 5f of the rectifier circuit 5 drives the electric motor 3 to rotate.
  • the generator ECU 14 instructs the engine ECU 13 to start the engine 2.
  • the engine ECU 13 starts operating the engine 2 .
  • the generator ECU 14 turns off the starting power supply 8 in S6.
  • the rotation control of the electric motor 3 started in S3 is terminated. Thus, the starting process is completed.
  • FIG. 6 schematically shows the operation of the generator 1 during power generation.
  • the driving of the engine 2 causes the electric motor 3 to rotate in the direction of arrow d1, and the electric motor 3 functions as an alternator to generate three-phase AC power.
  • the three-phase AC power generated by the electric motor 3 is rectified by the parasitic diode Di of the rectifier circuit 5, and the rectifier circuit 5 generates a DC voltage V.
  • the DC voltage V is supplied to the inverter 7 as a DC link voltage Vdc, converted to an AC voltage by the inverter 7, and output.
  • the engine 2 is basically rotated at a constant speed (referred to as standard operation).
  • the generator 1 may be operated in an operation mode selected by the user from among a plurality of types of operation modes.
  • the operation modes include, for example, an energy saving mode and a high output mode. In the energy saving mode, the engine 2 is operated at a relatively low speed, and in the high output mode, the engine 2 is operated at a relatively high speed. You can drive with
  • the DC link voltage that does not reach the target voltage (assumed to be Vt) is output from the rectifier circuit 5. be done. In short, the DC voltage rectified by the parasitic diode Di is lower than the target voltage Vt.
  • the electric load 100 is This is achieved by designing the number of turns of the windings of the electric motor 3 so that the DC link voltage that does not reach the target voltage Vt is output from the rectifier circuit 5 when the load is acting.
  • FIG. 7 shows an example of the characteristics of the electric motor 3, exemplifying the relationship between the DC output voltage and the DC output current when the three-phase AC power output from the electric motor 3 is rectified.
  • the target voltage Vt is, for example, a voltage within a range of 141 V to 180 V, particularly a voltage within a range of approximately 155 V to 165 V, assuming that the generator 1 supplies single-phase AC power of 100 V to the load 100. .
  • the power generation capacity of the electric motor 3 alone outputs a voltage lower than the target voltage Vt. Therefore, in this embodiment, the output voltage of the electric motor 3 is boosted by on/off control of the FETs 5a to 5f. As a result, the target voltage Vt is obtained as the DC link voltage Vtc.
  • the voltage output from the electric motor 3 is boosted by applying a braking force to the rotation of the electric motor 3 as indicated by the dashed arrow d2 in FIG.
  • a braking force can be generated by controlling the ON/OFF of the FETs 5a to 5f.
  • vector control can be used for on/off control of the FETs 5a to 5f.
  • the voltage application timing and amplitude of the U to W phases of the voltage with respect to the position of the rotor (the ON timing of the FETs 5a to 5f and the duty ratio) is set, and the processing of FIG. 4 is executed based on the set conditions.
  • FIG. 8 is a flowchart showing an example of setting processing of control conditions for the FETs 5a to 5f during power generation, which is repeatedly executed by the generator ECU 14 at a predetermined cycle.
  • a detection result of the actual DC link voltage is acquired from the voltage detection sensor 9 in S21.
  • the difference between the detection result obtained in S21 and the target pressure Vt is calculated.
  • the control conditions (on-timing, duty ratio, etc.) of each of the FETs 5a to 5f are set.
  • the DC link voltage Vdc can be boosted to the target voltage Vt and maintained.
  • the output voltage of the electric motor 3 can be arbitrarily boosted, different DC link voltages can be obtained while using the common electric motor 3 . That is, the AC power output of the generator 1 can be changed while using the common electric motor 3, and the same generator 1 can individually respond to the power situation of the country of use.
  • a state in which the load 100 does not consume power may be determined from, for example, the detection result of the voltage detection sensor 9 or the detection result of a sensor (not shown) that detects the output current of the inverter 7 .
  • FIG. 9 is a flowchart showing an example of processing related to changing the output of the engine 2, which is repeatedly executed by the generator ECU 14 at a predetermined cycle.
  • the generator ECU 14 acquires the detection result of the current detection sensor 10 in S31.
  • the torque output by the engine 2 is estimated from the detection result acquired in S31.
  • the estimated torque estimated in S32 is compared with a predetermined threshold torque, and it is determined whether or not to change the output of the engine 2. Specifically, it is determined whether or not the estimated torque is greater than the threshold torque.
  • the threshold torque is set, for example, from the performance curve of the engine 2 to a value smaller than the torque in the operating region during power generation.
  • the generator ECU 14 instructs the engine ECU 13 to increase the output of the engine 2.
  • the engine ECU 13, for example, increases the rotation speed of the engine 2 to increase the output of the engine 2 compared to the standard operation.
  • the processing of S35 and S36 is the processing of increasing the output of the engine 2 from the standard operation by the processing of S34 and then returning to the standard operation.
  • S35 it is determined whether or not the estimated torque is smaller than the threshold torque.
  • the threshold torque here may be a value different from the threshold torque used in the determination of S33, for example, a value lower than the threshold torque used in the determination of S33.
  • the generator ECU 14 instructs the engine ECU 13 to reduce the output of the engine 2.
  • the engine ECU 13 returns the output of the engine 2 to standard operation.
  • the FETs (5a to 5f) are used as the switching devices that constitute the rectifier circuit 5, but instead of the FETs, a device combining an IGBT and a diode may be used.
  • the IGBT is a switching element
  • the diode like the parasitic diode Di, is provided as a semiconductor element that always allows current to flow in one direction. As the forward direction, connected.
  • the electric motor 3 functions as a starter, but the electric motor 3 may be used exclusively as an alternator, and a starter motor may be provided separately.
  • a DC motor for example, may be used as the starter motor, and the DC motor may be driven by a starting power source instead of the starting power source 8 to start the engine 2 .
  • the generator of the above embodiment is A generator (1) for supplying AC power to a load, an engine (2); an electric motor (3) that functions as an alternator that is driven by the engine and generates three-phase AC power; a rectifier circuit (5) comprising a plurality of switching devices (5a-5f) for switching the energization state of each phase of the electric motor and rectifying the output of the electric motor; an inverter (7) that converts the DC power output from the rectifier circuit into AC power and outputs the AC power to a load; a control means (12) for controlling the plurality of switching devices;
  • the control means is When AC power is supplied to the load, the electric motor is controlled by the alternator while increasing the output voltage of the electric motor by controlling the on/off of the plurality of FETs so that a braking force acts on the rotation of the electric motor. function as According to this embodiment, it is possible to provide a power generator that does not require a DC/DC converter and that allows the engine to operate in a relatively low speed range.
  • the electric motor When starting the engine, the electric motor functions as a starter by controlling the on/off of the plurality of switching devices so that the electric motor rotates. According to this embodiment, the electric motor can function as a starter, and a dedicated starter can be eliminated.
  • the generator of the above embodiment is A voltage detection means (9) for detecting the output voltage of the rectifier circuit, When AC power is supplied to the load, the control means controls on/off of the plurality of switching devices based on the difference between the detection result of the voltage detection means and the target voltage (S11-S12). , S21-S23). According to this embodiment, the DC link voltage can be maintained at the target voltage.
  • the electric motor is designed such that when all of the plurality of switching devices are turned off in an operating region of the engine during power generation by the generator, a voltage that does not reach the target voltage is output from the rectifier circuit. (Fig. 7). According to this embodiment, the number of turns of the windings of the electric motor can be reduced, and resistance loss can be reduced.
  • the engine is operated such that the rectifier circuit outputs a voltage that does not reach the target voltage when all of the plurality of switching devices are turned off (FIG. 7). According to this embodiment, the engine can be operated in a relatively low speed range.
  • the generator of the above embodiment is A current detection means (10) for detecting a current flowing through the electric motor,
  • the control means determines whether or not to change the output of the engine based on the detection result of the current detection means (S31-S36). According to this embodiment, engine stall can be avoided.
  • the generator of the above embodiment is A position detection sensor (11) for detecting the position of the rotor of the electric motor, When AC power is supplied to the load, the control means controls ON/OFF of the plurality of switching devices based on the detection result of the position detection sensor to boost the output voltage of the electric motor. According to this embodiment, the voltage can be boosted more effectively.
  • the inverter outputs AC power equivalent to commercial AC power.
  • the generator can be used as a power source for a load that operates on commercial AC power.
  • Each switching device includes a switching element and a semiconductor element that allows current to flow in one direction at all times.
  • Each switching device is a MOSFET.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本発明は、発電機であって、エンジンと、前記エンジンを始動するスタータとして機能すると共に、前記エンジンで駆動されて三相交流電力を発生するオルタネータとして機能する電動機と、前記電動機の各相の通電状態を切り替える複数のスイッチングデバイスを備え、前記電動機の出力を整流する整流回路と、前記整流回路が出力する直流電力を交流電力に変換して負荷側へ出力するインバータと、前記複数のスイッチングデバイスを制御する制御手段と、を備える。前記負荷へ交流電力を供給する場合には、前記電動機の回転に制動力が作用するように前記複数のスイッチングデバイスのオン・オフを制御して前記電動機の出力電圧を昇圧しつつ、前記電動機を前記オルタネータとして機能させる。

Description

発電機
 本発明はエンジンを駆動源とした発電機に関する。
 エンジンを駆動源としたインバータ発電機では、オルタネータをエンジンで駆動して発電し、発電電力を整流回路で整流して、インバータで交流電力に変換して負荷に供給する。整流回路として、ダイオードやサイリスタを用いた回路が知られている。また、オルタネータをスタータモータとして利用した発電機が提案されている(特許文献1)。特許文献1には整流回路をFET(電界効果トランジスタ)で構成し、エンジンの始動時に整流回路をオルタネータの駆動回路として用いた発電機が開示されている。
特開2019-138298号公報
 整流回路の出力電圧(DCリンク電圧)は、基本的にエンジンの出力に依存する。負荷変動に対応するためにエンジンの出力を変更する制御が考えられるが、瞬間的な負荷変動への対応が困難である。DC/DCコンバータを用いてDCリンク電圧を変換する方式では、DC/DCコンバータが追加で必要となる。また、燃費や騒音の点で、エンジンは低回転領域で運転されることが望ましい。
 本発明の目的は、DC/DCコンバータを不要とし、また、エンジンを比較的低回転領域で運転可能な発電機を提供することにある。
 本発明によれば、
 負荷に交流電力を供給する発電機であって、
 エンジンと、
 前記エンジンで駆動されて三相交流電力を発生するオルタネータとして機能する電動機と、
 前記電動機の各相の通電状態を切り替える複数のスイッチング素子を備え、前記電動機の出力を整流する整流回路と、
 前記整流回路が出力する直流電力を交流電力に変換して負荷側へ出力するインバータと、
 前記複数のスイッチング素子を制御する制御手段と、を備え、
 前記制御手段は、
  前記負荷へ交流電力を供給する場合に、前記電動機の回転に制動力が作用するように前記複数のスイッチング素子のオン・オフを制御して前記電動機の出力電圧を昇圧しつつ、前記電動機を前記オルタネータとして機能させる、
ことを特徴とする発電機が提供される。
 本発明によれば、DC/DCコンバータを不要とし、また、エンジンを比較的低回転領域で運転可能な発電機を提供することができる。
本発明の実施形態に係る発電機の概要図。 図1の発電機の回路構成を示すブロック図。 エンジン始動処理のフローチャート。 FETの駆動制御のフローチャート。 エンジン始動時の発電機の動作説明図。 発電時の発電機の動作説明図。 電動機の特性の説明図。 FETの駆動パターンの設定処理のフローチャート。 エンジンの出力変更に関わる処理のフローチャート。
 以下、添付図面を参照して実施形態を詳しく説明する。尚、以下の実施形態は特許請求の範囲に係る発明を限定するものではなく、また実施形態で説明されている特徴の組み合わせの全てが発明に必須のものとは限らない。実施形態で説明されている複数の特徴のうち二つ以上の特徴が任意に組み合わされてもよい。また、同一若しくは同様の構成には同一の参照番号を付し、重複した説明は省略する。
 <発電機の概要>
 図1は本発明の一実施形態に係る発電機1の概要図である。本実施形態の発電機1は可搬式の発電機であり、例えば、屋外において電力負荷100に電力を供給する給電機として利用される。発電機1は、接続部(アウトレット)4に接続される商用電力(本実施形態の場合、単相交流100V)を電気負荷100に供給可能である。電気負荷100としては、例えば、調理器、エアコン、テレビ、照明器具、ドライヤ等の家庭用電気機器を挙げることができる。また、電気負荷100としては、電動工具、大型照明装置、コンプレッサー等の業務用電気機器を挙げることもできる。なお、本実施形態では、単相交流100Vを例示したが、電力の出力仕様はこれに限られず、単相三線200V、240V等、他の出力仕様を採用することも可能である。
 <回路構成>
 図2は発電機1の回路構成を示すブロック図である。発電機1は、エンジン2、電動機3、整流回路5、平滑コンデンサ6、インバータ7及び制御ユニット12を備える。エンジン2は、発電機1の駆動源であり、例えば、ガソリンを燃料とする点火式で単気筒4ストロークの空冷エンジンである。電動機3のロータはエンジン2のクランク軸に連結されており、電動機3とエンジン2との間で駆動力が伝達される。電動機3は、U相、V相、W相の三相巻線が巻き回されたステータと、永久磁石が設けられたロータとを備える三相ブラシレスモータ発電機である。電動機3は、エンジン2を始動するスタータとして機能すると共に、エンジン2で駆動されて三相交流電力を発生するオルタネータとして機能する。
 電動機3には、そのロータの位置(回転位置)を検知する位置検知センサ11が設けられている。位置検知センサ11は例えばホール素子等の磁気センサである。電流検知センサ10は電動機3を流れる電流の大きさを検知する。本実施形態の場合、電流検知センサ10は、V相の巻き線とW相の巻き線とにそれぞれ設けられている。電流検知センサ10は更にU相の巻き線に設けてもよい。しかし、V相とW相に設けた各電流検知センサ10の検知結果からU相の巻き線に流れる電流を推定できるのでU相の巻き線に電流検知センサ10を設ける必要はない。なお、本実施形態では、位置検知センサ11と、電流検知センサ10とをそれぞれ設けたが、電流検知センサ10によって、ロータの位置検知や回転数を推定することができ、この場合、検知センサ11を省略することも可能である。
 整流回路5は、電動機3の各相の通電状態を切り替える複数のスイッチングデバイスとして、FET5a~5fを備え、電動機3が出力する交流電力を整流して直流電力を出力する。複数のFET5a~5fはブリッジ接続されており、全波整流ブリッジ回路を構成する。各FET5a~5fは、本実施形態の場合、N型のMOSFETであり、ドレインD、ソースS、ゲートG及び寄生ダイオードDiを有する。寄生ダイオードDiは、一方向に電流が流れることを常時許容する半導体要素であり、各FET5a~5fはこうした半導体要素とスイッチング要素とを含んでいる。
 FET5aとFET5dの組は、ハイ側の配線1aとロー側の配線1bとの間で直列に接続されて、レグを構成する。FET5bとFET5eの組及びFET5cとFET5fの組も同様であり、それぞれレグを構成する。FET5a~5cと、FET5d~5fとの各接続点に、電動機3の、対応する相の巻き線が接続されている。FET5a~5fの各ゲートGには、発電機ECU14から送出される制御信号が入力され、これらの各FETのオン・オフ制御が実行される。本実施形態の場合、PWM制御によりFET5a~5fがオン・オフされる。
 平滑コンデンサ6は配線1aと配線1bとの間に接続されている。平滑コンデンサ6によって整流回路5の直流出力電圧(DCリンク電圧:Vdc)が平滑化される。配線1aと配線1bとの間には、また、始動電源8と、電圧検知センサ9とが接続されている。始動電源8は、鉛電池やリチウムイオン電池等の電池や、電池と配線1a及び1bとを断続するスイッチ等を含み、発電機ECU14によってスイッチの断続が制御される。電池として鉛電池を用いる場合は、DCDCコンバータによって出力電圧を昇圧してもよい。始動電源8をオンにすると配線1aと配線1bとの間に電動機3を回転駆動するための始動電圧(直流電圧)が印加される。電圧検知センサ9は、整流回路5の直流出力電圧の大きさを検知する。
 インバータ7は、整流回路5が出力する直流電力を交流電力に変換して負荷100の側へ出力する。本実施形態の場合、インバータ7が出力する単相交流電力は、リアクトルやコンデンサを有するフィルタ回路16によって正弦波に変調され、接続部4に出力される。インバータ7は、H型ブリッジ回路を構成する複数のスイッチングデバイス7a~7dを備える。本実施形態の場合、スイッチングデバイス7a~7dは、N型のMOSFETであり、ドレインD、ソースS、ゲートG及び寄生ダイオードDiを有する。スイッチングデバイス7a~7dの各ゲートGには、発電機ECU14から送出される制御信号が入力され、これらの各スイッチングデバイスのオン・オフ制御が実行される。本実施形態の場合、PWM制御によりFET7a~7dがオン・オフされる。
 制御ユニット12は発電機1を制御する。本実施形態の場合、制御ユニット12は、エンジン2を制御するエンジンECU13と、発電機1の全体を制御する発電機ECU14とを備える。これらのECUの機能は一つのECUで実現されてもよい。各ECU13、14は、例えば、CPUに代表されるプロセッサ、半導体メモリ等の記憶デバイス、入出力インタフェース及び通信インタフェース等を含む。記憶デバイスにはプロセッサが実行するプログラムやプロセッサが処理に使用するデータ等が格納される。エンジンECU13と、発電機ECU14とは通信可能に接続されている。エンジンECU13は、例えば、エンジン2に設けられたセンサの検知結果に基づいて、エンジン2の燃料噴射制御、点火制御、スロットル制御を行ってエンジン2を運転する。発電機ECU14は、始動電源8の断続制御、整流回路5のFET5a~5fのオン・オフ制御、インバータ7のスイッチングデバイス7a~7dのオン・オフ制御等を行う。発電機ECU14は、電圧検知センサ9、電流検知センサ10及び位置検知センサ11の検知結果を取得可能である。また、発電機ECU14には操作部15が接続されており、操作部15に対するユーザの指示(例えば発電開始、終了等)を認識して、対応する処理を実行する。
 <制御例>
 制御ユニット12の処理例について説明する。図3は発電機ECU14が実行するエンジン2の始動処理のフローチャートである。発電機1を利用するユーザは、操作部15を操作して発電開始を指示する。S1では操作部15に対して発電開始指示があったか否かを判定する。発電開始指示があればS2へ進む。S2では発電機ECU14は始動電源8をオンにする制御信号を出力し、始動電源8がオンとなる。これにより配線1aと配線1bとの間に始動電圧が印加される。
 S3で発電機ECU14は電動機3の回転制御を開始する。ここでは、電動機3が回転するようにFET5a~5fのオン・オフを制御して電動機3をスタータとして機能させる。すなわち、整流回路5を始動回路として用いる。FET5a~5fのオン・オフは例えばPWM制御により行い、始動時の制御条件(ロータ位置に対するオンタイミング、デューティ比等)は予め発電機ECU14の記憶デバイスに格納しておくことができる。発電機ECU14は、図4に示すように、位置検知センサ11の検知結果を取得し(S11)、取得した検知結果(ロータの位置情報)に基づいて、FET5a~5fのオン・オフを制御する(S12)。これにより発電機3が回転し、エンジン2のクランク軸が回転される。図5は始動時の発電機1の動作を模式的に示している。同図の太線矢印で示すように、始動電源8から直流電圧が整流回路5に供給され、整流回路5のFET5a~5fのスイッチングにより電動機3が回転駆動される。
 図3のS4で発電機ECU14はエンジンECU13に対してエンジン2の始動を指示する。エンジンECU13はエンジン2の運転を開始する。S5ではエンジン2が始動したか否かを判定する。この判定は、例えば、電圧検知センサ9の検知結果、電流検知センサ10の検知結果、又は、エンジンECU13から送信される情報(エンジン回転数等)により行うことができる。エンジン2が始動したと判定した場合、S6で発電機ECU14は始動電源8をオフにする。S7では、S3で開始した電動機3の回転制御を終了する。以上により始動処理が終了する。
 次に、負荷100へ交流電力を供給する発電中の制御ユニット12の処理について説明する。図6は発電中の発電機1の動作を模式的に示している。エンジン2の駆動によって電動機3が矢印d1方向に回転され、電動機3はオルタネータとして機能して三相交流電力を発生する。電動機3が発生した三相交流電力は、整流回路5の寄生ダイオードDiで整流され、整流回路5が直流電圧Vを発生させる。直流電圧VはDCリンク電圧Vdcとしてインバータ7に供給され、インバータ7で交流電圧に変換されて出力される。
 エンジン2は基本的に定速で回転される(標準運転と呼ぶ)。発電機1は複数種類の動作モードの中からユーザが選択した動作モードで動作されるものであってもよい。動作モードとしては例えば省エネルギモード、高出力モードを挙げることができ、省エネルギモードの場合、エンジン2を相対的に低回転で運転し、高出力モードの場合、エンジン2を相対的に高回転で運転してもよい。
 本実施形態の場合、発電機1の発電時におけるエンジン2の運転領域において、FET5a~5fを全てオフとした場合に、整流回路5から目標電圧(Vtとする)に達しないDCリンク電圧が出力される。要するに、寄生ダイオードDiで整流された直流電圧が、目標電圧Vtよりも低い。これは、発電中、エンジン2を比較的低回転の運転領域で運転する、或いは、発電時に想定されているエンジン2の運転領域(例えばエンジン回転数で数千rpm)では、電気負荷100のよる負荷が作用している場合に、整流回路5から目標電圧Vtに達しないDCリンク電圧が出力するように電動機3の巻き線の巻き数等を設計することで実現される。図7は電動機3の特性の例を示しており、電動機3から出力された三相交流電力を整流した場合の直流出力電圧と直流出力電流との関係を例示している。
 目標電圧Vtは、例えば、発電機1が負荷100に単相交流100Vの電力を供給することを想定した場合、141V~180Vの範囲内の電圧、特に約155V~165Vの範囲内の電圧である。エンジン2の運転領域DRにおいては、電動機3の発電能力のみでは目標電圧Vtよりも低い電圧が出力される。そこで本実施形態では、FET5a~5fのオン・オフ制御によって、電動機3の出力電圧を昇圧する。これにより、DCリンク電圧Vtcとして目標電圧Vtを得る。
 電動機3から出力される電圧の昇圧は、図6の破線矢印d2で示すように電動機3の回転に制動力を作用させることでその回生電力を利用する。制動力は、FET5a~5fのオン・オフを制御することにより発生させることができる。FET5a~5fのオン・オフ制御には例えばベクトル制御を用いることができ、ロータの回転位相に対するU~V相の電圧印加タイミングを遅らせ、電圧の振幅を大きくすることで昇圧量を増大できる。
 そこで、発電中は、目標電圧Vtと実DCリンク電圧Vdcとの差圧の大きさに応じて、ロータの位置に対する電圧のU~W相の電圧印加タイミングと振幅(FET5a~5fのオンタイミングとデューティ比)を設定し、設定した条件に基づいて図4の処理を実行する。
 図8は発電中のFET5a~5fの制御条件の設定処理の例を示すフローチャートであり、発電機ECU14が所定の周期で繰り返し実行する。S21で電圧検知センサ9から実DCリンク電圧の検知結果を取得する。S22ではS21で取得した検知結果と、目標検圧Vtとの差分を演算する。S23ではS22で演算した差分に基づいて、各FET5a~5fの制御条件(オンタイミングとデューティ比等)を設定する。設定した内容で図4の処理が実行されることで、DCリンク電圧Vdcを目標電圧Vtに昇圧し、維持することができる。
 以上のように、本実施形態では、FET5a~5fのスイッチングによって電動機3の回転によるエンジン2の始動と、電動機3の出力電圧の昇圧とを行うことができる。したがって、スタータモータやDC/DCコンバータを不要とし、また、エンジン2を比較的低回転領域で運転することができる。また、電動機3の出力電圧を昇圧することから、電動機3自体の出力電圧性能を下げることができ、例えば、ステータの巻き線の巻き数を減らすことができる。これにより抵抗損失を低減することができる。更に、負荷100の消費電力の変動によるDCリンク電圧Vdcの変動に対して、FET5a~5fのスイッチングによる昇圧量の調整によって迅速に対応できる。また、電動機3の出力電圧を任意に昇圧することができるため、共通の電動機3を用いながら、異なるDCリンク電圧を得ることができる。すなわち、発電機1の交流電力出力を、共通の電動機3を用いながら変更することができ、同じ発電機1でその使用国の電力事情に個別に対応することができる。
 なお、発電中、負荷100の消費電力が無い間は、電動機3の回転に制動力を作用させるFET5a~5fのオン・オフ制御を行わなくてもよい。負荷100の消費電力が無い状態は、例えば、電圧検知センサ9の検知結果や、インバータ7の出力電流を検知するセンサ(不図示)の検知結果から判断してもよい。
 次に、本実施形態のように電動機3の回生電力を利用することで、その出力電圧の昇圧を行うと、負荷100の消費電力の変動等によって、昇圧量が大きくなり、エンジン2が負担するトルクが大きくなる場合がある。発電中のエンジンストールは避けなければならない。電流検知センサ10が検知する巻き線の電流量はエンジン2が出力するトルクに比例する。そこで、電流検知センサ10の検知結果を監視してエンジン2の出力を変更する。図9はエンジン2の出力変更に関わる処理例を示すフローチャートであり、発電機ECU14が所定の周期で繰り返し実行する。
 S31で発電機ECU14は、電流検知センサ10の検知結果を取得する。S32ではS31で取得した検知結果からエンジン2が出力しているトルクを推定する。S33ではS32で推定した推定トルクと予め定めた閾値トルクとを比較し、エンジン2の出力を変更するか否かを判定する。具体的には推定トルクが閾値トルクよりも大きいか否かを判定する。閾値トルクは、例えば、エンジン2の性能曲線から、発電時の運転領域のトルクよりも小さい値に設定される。推定トルクが閾値トルクよりも大きいと判断した場合はS34へ進み、推定トルクが閾値トルク以下である場合はS35へ進む。
 S34で発電機ECU14はエンジンECU13に対してエンジン2の出力増大を指示する。エンジンECU13は例えばエンジン2の回転数を上げて標準運転よりもエンジン2の出力を増大する。
 S35及びS36の処理は、S34の処理により、標準運転よりもエンジン2の出力を増大した後に標準運転に戻す処理である。S35では推定トルクが閾値トルクよりも小さいか否かを判定する。ここでの閾値トルクはS33の判定で用いた閾値トルクと別の値でよく、例えば、S33の判定で用いた閾値トルクよりも低い値とされる。
 推定トルクが閾値トルクよりも小さいと判断した場合はS36へ進み、推定トルクが閾値トルク以上である場合は処理を終了する。S36で発電機ECU14はエンジンECU13に対してエンジン2の出力減少を指示する。エンジンECU13はエンジン2の出力を標準運転に戻す。以上の処理により、エンジン2のストールを防止して、安定した発電を行うことができる。
 <他の実施形態>
 上記実施形態では、整流回路5を構成するスイッチングデバイスとして、FET(5a~5f)を用いたが、FETに代えてIGBTとダイオードとを組み合わせたデバイスであってもよい。この場合、IGBTはスイッチング要素であり、ダイオードは、寄生ダイオードDiと同様に、一方向に電流が流れることを常時許容する半導体要素として設けられ、IGBTのコレクタ-エミッタ間に、エミッタ→コレクタ方向を順方向として、接続される。
 また、上記実施形態では、電動機3をスタータとして機能させたが、電動機3は専らオルタネータとして使用し、スタータモータを別に備えてもよい。スタータモータとしては例えばDCモータを使用し、始動電源8に代わる始動電源によってDCモータを駆動して、エンジン2を始動してもよい。
 <実施形態のまとめ>
 上記実施形態は、少なくとも以下の発電機を開示している。
 1.上記実施形態の発電機は、
 負荷に交流電力を供給する発電機(1)であって、
 エンジン(2)と、
 前記エンジンで駆動されて三相交流電力を発生するオルタネータとして機能する電動機(3)と、
 前記電動機の各相の通電状態を切り替える複数のスイッチングデバイス(5a-5f)を備え、前記電動機の出力を整流する整流回路(5)と、
 前記整流回路が出力する直流電力を交流電力に変換して負荷側へ出力するインバータ(7)と、
 前記複数のスイッチングデバイスを制御する制御手段(12)と、を備え、
 前記制御手段は、
 前記負荷へ交流電力を供給する場合に、前記電動機の回転に制動力が作用するように前記複数のFETのオン・オフを制御して前記電動機の出力電圧を昇圧しつつ、前記電動機を前記オルタネータとして機能させる。
  この実施形態によれば、DC/DCコンバータを不要とし、また、エンジンを比較的低回転領域で運転可能な発電機を提供することができる。
 2.上記実施形態では、
 前記エンジンを始動させる場合に、前記電動機が回転するように前記複数のスイッチングデバイスのオン・オフを制御して前記電動機をスタータとして機能させる。
  この実施形態によれば、前記電動機をスタータとして機能させることができ、専用スタータを不要とすることができる。
 3.上記実施形態の発電機は、
 前記整流回路の出力電圧を検知する電圧検知手段(9)を備え、
 前記制御手段は、前記負荷へ交流電力を供給する場合には、前記電圧検知手段の検知結果と目標電圧との差分に基づいて、前記複数のスイッチングデバイスのオン・オフを制御する(S11-S12,S21-S23)。
  この実施形態によれば、DCリンク電圧を目標電圧に維持することができる。
 4.上記実施形態では、
 前記電動機は、前記発電機の発電時における前記エンジンの運転領域において、前記複数のスイッチングデバイスを全てオフとした場合に、前記整流回路から前記目標電圧に達しない電圧が出力されるように設計されている(図7)。
  この実施形態によれば、前記電動機の巻き線の巻き数を減らすことができ、抵抗損失を低減することができる。
 5.上記実施形態では、
 前記エンジンは、前記複数のスイッチングデバイスを全てオフとした場合に、前記整流回路から前記目標電圧に達しない電圧が出力されるように運転される(図7)。
  この実施形態によれば、エンジンを比較的低回転領域で運転できる。
 6.上記実施形態の発電機は、
 前記電動機を流れる電流を検知する電流検知手段(10)を備え、
 前記制御手段は、前記電流検知手段の検知結果に基づいて、前記エンジンの出力を変更するか否かを判定する(S31-S36)。
  この実施形態によれば、エンジンストールを回避できる。
 7.上記実施形態の発電機は、
 前記電動機のロータの位置を検知する位置検知センサ(11)を備え、
 前記制御手段は、前記負荷へ交流電力を供給する場合には、前記位置検知センサの検知結果に基づいて前記複数のスイッチングデバイスのオン・オフを制御して前記電動機の出力電圧を昇圧する。
  この実施形態によれば、より効果的に昇圧できる。
 8.上記実施形態では、
 前記インバータは、商用交流電力に相当する交流電力を出力する。
  この実施形態によれば、前記発電機を、商用交流電力で動作する負荷の電源として利用することができる。
 9.上記実施形態では、
 各スイッチングデバイスは、スイッチング要素と、一方向に電流が流れることを常時許容する半導体要素とを含んでいる。
 10.上記実施形態では、
 各スイッチングデバイスは、MOSFETである。
 以上、発明の実施形態について説明したが、発明は上記の実施形態に制限されるものではなく、発明の要旨の範囲内で、種々の変形・変更が可能である。

Claims (10)

  1.  負荷に交流電力を供給する発電機であって、
     エンジンと、
     前記エンジンで駆動されて三相交流電力を発生するオルタネータとして機能する電動機と、
     前記電動機の各相の通電状態を切り替える複数のスイッチングデバイスを備え、前記電動機の出力を整流する整流回路と、
     前記整流回路が出力する直流電力を交流電力に変換して負荷側へ出力するインバータと、
     前記複数のスイッチングデバイスを制御する制御手段と、を備え、
     前記制御手段は、
     前記負荷へ交流電力を供給する場合に、前記電動機の回転に制動力が作用するように前記複数のスイッチングデバイスのオン・オフを制御して前記電動機の出力電圧を昇圧しつつ、前記電動機を前記オルタネータとして機能させる、
    ことを特徴とする発電機。
  2.  請求項1に記載の発電機であって、
     前記制御手段は、
     前記エンジンを始動させる場合に、前記電動機が回転するように前記複数のスイッチングデバイスのオン・オフを制御して前記電動機をスタータとして機能させる、
    ことを特徴とする発電機。
  3.  請求項1に記載の発電機であって、
     前記整流回路の出力電圧を検知する電圧検知手段を備え、
     前記制御手段は、前記負荷へ交流電力を供給する場合に、前記電圧検知手段の検知結果と目標電圧との差分に基づいて、前記複数のスイッチングデバイスのオン・オフを制御する、
    ことを特徴とする発電機。
  4.  請求項3に記載の発電機であって、
     前記電動機は、前記発電機の発電時における前記エンジンの運転領域において、前記複数のスイッチングデバイスを全てオフとした場合に、前記整流回路から前記目標電圧に達しない電圧が出力されるように設計されている、
    ことを特徴とする発電機。
  5.  請求項3に記載の発電機であって、
     前記エンジンは、前記複数のスイッチングデバイスを全てオフとした場合に、前記整流回路から前記目標電圧に達しない電圧が出力されるように運転される、
    ことを特徴とする発電機。
  6.  請求項1に記載の発電機であって、
     前記電動機を流れる電流を検知する電流検知手段を備え、
     前記制御手段は、前記電流検知手段の検知結果に基づいて、前記エンジンの出力を変更するか否かを判定する、
    ことを特徴とする発電機。
  7.  請求項1に記載の発電機であって、
     前記電動機のロータの位置を検知する位置検知センサを備え、
     前記制御手段は、前記負荷へ交流電力を供給する場合には、前記位置検知センサの検知結果に基づいて前記複数のスイッチングデバイスのオン・オフを制御して前記電動機の出力電圧を昇圧する、
    ことを特徴とする発電機。
  8.  請求項1に記載の発電機であって、
     前記インバータは、商用交流電力に相当する交流電力を出力する、
    ことを特徴とする発電機。
  9.  請求項1に記載の発電機であって、
     各スイッチングデバイスは、スイッチング要素と、一方向に電流が流れることを常時許容する半導体要素とを含んでいる、
    ことを特徴とする発電機。
  10.  請求項1に記載の発電機であって、
     各スイッチングデバイスは、MOSFETである、
    ことを特徴とする発電機。
PCT/JP2021/004445 2021-02-05 2021-02-05 発電機 WO2022168289A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/004445 WO2022168289A1 (ja) 2021-02-05 2021-02-05 発電機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/004445 WO2022168289A1 (ja) 2021-02-05 2021-02-05 発電機

Publications (1)

Publication Number Publication Date
WO2022168289A1 true WO2022168289A1 (ja) 2022-08-11

Family

ID=82742083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004445 WO2022168289A1 (ja) 2021-02-05 2021-02-05 発電機

Country Status (1)

Country Link
WO (1) WO2022168289A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001157497A (ja) * 1999-11-19 2001-06-08 Mitsuba Corp 同期発電機の発電制御装置
JP2012039697A (ja) * 2010-08-04 2012-02-23 Shindengen Electric Mfg Co Ltd 位相制御装置、バッテリ充電装置、および位相制御方法
WO2020044544A1 (ja) * 2018-08-31 2020-03-05 本田技研工業株式会社 インバータ式発動発電機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001157497A (ja) * 1999-11-19 2001-06-08 Mitsuba Corp 同期発電機の発電制御装置
JP2012039697A (ja) * 2010-08-04 2012-02-23 Shindengen Electric Mfg Co Ltd 位相制御装置、バッテリ充電装置、および位相制御方法
WO2020044544A1 (ja) * 2018-08-31 2020-03-05 本田技研工業株式会社 インバータ式発動発電機

Similar Documents

Publication Publication Date Title
US6787931B2 (en) Starter generator for internal combustion engine
US20050001582A1 (en) Motor control device
US20100020572A1 (en) Inverter generator
US8766603B2 (en) Control apparatus for inverter generator
JP5130142B2 (ja) インバータ発電機
US7157885B2 (en) Inverter controlled generator set and method for controlling the same
WO2020044544A1 (ja) インバータ式発動発電機
JP5130143B2 (ja) インバータ発電機
CN113890396A (zh) 一种发电调压系统及其输出电压控制方法、设备及介质
US10014813B2 (en) Methods for switching on and for switching off an N-phase electric machine in a motor vehicle
JP6875907B2 (ja) 発電機システム
WO2022168289A1 (ja) 発電機
WO2022168290A1 (ja) 発電機
US8878498B2 (en) Method for reducing a voltage ripple due to rotational nonuniformity of a generator driven by an internal combustion engine
KR20100028403A (ko) 하이브리드 동력 장치
JP2001157497A (ja) 同期発電機の発電制御装置
US11476787B2 (en) Inverter type engine generator
JPH11187654A (ja) Dc−dcコンバータ
US9712100B2 (en) Electric rotating machine and control method therefor
WO2018038062A1 (ja) 停止制御システム
JP4392351B2 (ja) 発動発電機用インバータ
JP7077886B2 (ja) 車両用回転電機
JP6832775B2 (ja) エンジン発電機
JP2018019513A (ja) モータ制御装置
JP4049698B2 (ja) モータ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21923614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP