WO2020042421A1 - 晶圆检测设备 - Google Patents

晶圆检测设备 Download PDF

Info

Publication number
WO2020042421A1
WO2020042421A1 PCT/CN2018/119833 CN2018119833W WO2020042421A1 WO 2020042421 A1 WO2020042421 A1 WO 2020042421A1 CN 2018119833 W CN2018119833 W CN 2018119833W WO 2020042421 A1 WO2020042421 A1 WO 2020042421A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
inspection
station
stage
inspected
Prior art date
Application number
PCT/CN2018/119833
Other languages
English (en)
French (fr)
Inventor
朱志飞
舒文宾
杨慎东
郭连俊
Original Assignee
苏州精濑光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州精濑光电有限公司 filed Critical 苏州精濑光电有限公司
Publication of WO2020042421A1 publication Critical patent/WO2020042421A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/26Acting in response to an ongoing measurement without interruption of processing, e.g. endpoint detection, in-situ thickness measurement

Definitions

  • the present disclosure relates to the technical field of electronic product processing and production, for example, to a wafer inspection device.
  • Wafer microdisplay devices are different from conventional AMOLED devices that use amorphous silicon, microcrystalline silicon, or low-temperature polysilicon thin film transistors as a backplane. It uses a single crystal silicon chip as its substrate and has a pixel size one-tenth that of conventional display devices.
  • Wafer microdisplays have a broad market application space, especially suitable for head-mounted displays, stereoscopic mirrors, and eye-type displays, etc., and are mobile for portable computers, wireless Internet browsers, portable DVDs, gaming platforms, and wearable computers.
  • Information products provide high-definition video display, and even link with mobile communication networks and satellite positioning systems to obtain accurate image information anywhere and at any time, so that wafer microdisplays can be used in defense, aviation, aerospace and even It has very important military value in military applications such as individual combat. Therefore, wafers are expected to set off a new wave of near-eye displays in the military and consumer electronics fields.
  • the wafer-based ultra-micro display and near-eye large-screen device technologies are relatively new.
  • the wafer manufacturing process is still in the exploration and trial stage. Therefore, there may be some defects in the wafer manufacturing process.
  • the production process in the wafer is adjusted in a timely manner, and the wafer needs to be inspected for defects.
  • the related technology is still lacking in the equipment for wafer inspection.
  • the present disclosure provides a wafer inspection device, which can detect defects that may exist during the manufacturing process of the wafer, so as to improve the processing technology of the wafer.
  • a wafer inspection device includes a work platform, at least a macro inspection station and a micro inspection station are provided on the work platform, and a handling device is further provided on the work platform, and the handling device is configured to be to be inspected.
  • the wafer is transferred to the macro inspection station and the micro inspection station.
  • FIG. 1 is a schematic structural diagram of a wafer inspection device according to an embodiment
  • FIG. 2 is a schematic structural diagram of removing a cover of a wafer inspection device according to an embodiment
  • FIG. 3 is a schematic structural diagram of a part of a macro inspection station provided by an embodiment
  • FIG. 4 is a schematic structural diagram of another part of a macro inspection station according to an embodiment
  • FIG. 5 is a schematic structural diagram of a metal halide lamp light source according to an embodiment during operation
  • FIG. 6 is a schematic structural diagram of a sodium lamp light source in operation according to an embodiment
  • FIG. 7 is a schematic structural diagram of a micro inspection station according to an embodiment
  • FIG. 8 is a schematic structural diagram of a calibrator according to an embodiment
  • FIG. 9 is a schematic structural diagram of a darkroom provided by an embodiment
  • FIG. 10 is a plan view of a part of the structure of a macro inspection station according to an embodiment.
  • Macro inspection station 21, first carrier; 22, overturning frame; 23, fixed frame; 24, first driving device; 25, second driving device; 26, metal halide light source; 27, sodium lamp light source; 28, dimming glass; 29, reflecting mirror;
  • Micro inspection station 31. Second stage; 32. Microscope; 33. X-axis moving mechanism; 34. Y-axis moving mechanism; 35. Vibration damping component; 36. Rotating mechanism;
  • the wafer inspection device includes a work platform 1, and the work platform 1 is provided with at least a macro inspection station 2 and a micro inspection station 3, and The work platform 1 is also provided with a carrying device 5.
  • the carrying device 5 can carry the wafer to be inspected to the macro inspection station 2 and the micro inspection station 3. By setting macro inspection station 2 and micro inspection station 3 on the wafer inspection equipment, macro and micro inspection can be performed on the wafer.
  • the macro inspection station 2 mainly observes the naked defects on the wafer; micro inspection
  • the station 3 mainly observes the defects that are not visible to the naked eye on the wafer through the microscope 32, so that the defects existing in the wafer caused by the processing process can be comprehensively analyzed and analyzed in order to improve in time.
  • the carrying device 5 to realize the wafer can be transferred between different inspection stations, to avoid damage to the wafer during the manual transportation process, resulting in the detection results are affected, and the phenomenon of incorrect adjustment of the processing process occurs .
  • other detection stations may also be set as required.
  • a cassette station is set at the edge of the work platform 1, and the cassette station is set to place a cassette, wherein the cassette contains a wafer, and the handling device 5 can place the wafer to be inspected on the cassette station on the cassette station. Corresponding station, and return the wafer that has been inspected to the cassette station.
  • the working platform 1 is provided with a dark room 11 and the macro detection station 2 is provided in the dark room 11.
  • the side wall of the dark room 11 is provided with an entrance and exit opening 111 and an observation window 112, and the entrance and exit opening 111 is provided as
  • the carrying device 5 places the wafer to be inspected on the macro inspection station 2 and is configured to take out the wafer that has completed the macro inspection; the observation window 112 is provided for the inspector 100 to observe the inspection to be inspected on the macro inspection station 2 The wafer undergoes macro inspection.
  • the entrance and exit openings 111 and the observation window 112 are set at a predetermined distance to avoid the inspector 100 from affecting the wafer conveyance of the conveyance device 5 when inspecting the wafer through the observation window 112.
  • the observation window 112 and the entrance / exit sheet opening 111 are not on the same side.
  • the observation window 112 and the entrance / exit sheet opening 111 may be disposed on adjacent or opposite sidewalls of the dark room 11.
  • the macro inspection station 2 includes a first stage 21 and a light box 71.
  • the light box 71 is located above the first stage 21 and can detect the to-be-detected on the first stage 21. The object is irradiated.
  • the first stage 21 is connected to the turning frame 22 through a first rotating shaft 8
  • the turning frame 22 is connected to the fixing frame 23 through a second rotating shaft 9, and the projection of the first rotating shaft 8 and the second rotating shaft 9 on a horizontal plane They are perpendicular to each other
  • a first driving device 24 is connected to the first rotating shaft 8
  • a second driving device 25 is connected to the second rotating shaft 9. That is, the first stage 21 can rotate about the first rotation axis 8 relative to the flip frame 22, and the flip frame 22 can rotate about the second rotation axis 9 relative to the fixed frame 23, which is equivalent to the first stage 21 being able to rotate about a plane.
  • the two coordinate axes in the Cartesian coordinate system are rotated to realize that the first stage 21 has two degrees of freedom capable of moving around the first rotation axis 8 and the second rotation axis 9, thereby facilitating the inspector 100 to perform wafer processing through the observation window 112. Detection of multiple angles.
  • the first stage 21 can be adjusted in the range of -180 ° to + 180 ° about the first rotation axis 8, and the flip frame 22 can be adjusted in the range of -180 ° to + 180 ° about the second rotation axis 9.
  • the middle portion of the first stage 21 may be made of a transparent material or directly made of a hollow structure. In this embodiment, the middle portion of the first stage 21 is a hollow structure.
  • the edge of the wafer can be vacuum-adsorbed to the edge of the first stage 21 to prevent the middle portion of the first stage 21 from being adsorbed.
  • impurities such as dust are adsorbed on the first stage 21 and interference with the detection result of the wafer occurs.
  • the light box 71 includes at least two light sources.
  • the light box 71 includes a metal halide light source 26 and a sodium lamp light source 27.
  • the metal halide light source 26 and the sodium lamp light source 27 are separately Circle for irradiation.
  • the wavelengths of the metal halide light source 26 and the sodium lamp light source 27 are different.
  • the inspector 100 can use the metal halide light source 26 and the sodium lamp light source 27 of different wavelengths to perform macro defect detection on the wafer.
  • the light sources in the light box 71 are not limited to light sources with different wavelengths, and may be light sources with different irradiation angles.
  • the metal halide light source 26 in this embodiment is placed horizontally, and the light source is irradiated on the first stage 21 through a tilted reflector 29.
  • the sodium lamp light source 27 is movably located below the metal halide light source 26.
  • the light source can be directly irradiated on the first stage 21.
  • the metal halide light source 26 irradiates the wafer placed on the first stage 21, the sodium lamp light source 27 is located below the metal halide light source 26 box, and does not affect the reflection of the metal halide lamp by the reflector 29.
  • the light beam irradiates the wafer; as shown in FIG. 6, when the sodium lamp light source 27 irradiates the wafer placed on the first stage 21, the metal halide lamp light source 26 is turned off, and the sodium lamp light source 27 moves to the corresponding position to irradiate the wafer. .
  • the reflecting mirror 29 is provided to facilitate the movement of the sodium lamp light source 27, so that the metal halide lamp light source 26 and the sodium lamp light source 27 irradiate the same position of the same wafer separately.
  • the metal halide lamp light source 26 can be moved, and the sodium lamp light source 27 is reflected by the reflector 29 and irradiates the wafer on the first stage 21.
  • the macro detection station 2 is further provided with a dimming glass 28, which is located above the first stage 21.
  • dimming glass 28 is a new type of special optoelectronic glass product with a sandwich structure in which a liquid crystal film is compounded between two layers of glass, and is integrally formed after high temperature and high pressure bonding.
  • the user controls the transparent and opaque states of the dimming glass 28 by controlling the on / off of the current.
  • the dimming glass 28 When the power of the dimming glass 28 is turned off, the liquid crystal molecules in the dimming glass 28 will show an irregular scattering state.
  • the dimming glass 28 has a transparent and opaque appearance. At this time, the light transmittance is low and diffuses.
  • the dimming glass 28 when the dimming glass 28 is energized, the liquid crystal molecules in the dimming glass 28 are arranged neatly, and the light can pass freely. At this time, the dimming glass 28 is instantaneously transparent, with high light transmittance and converging light. That is, the light spot irradiated on the wafer is adjusted by controlling the dimming glass 28 so that the light beam of the light source is more concentrated on the wafer. Specifically, referring to FIG. 4, the light emitted by the metal halide lamp light source 26 is irradiated on the reflecting mirror 29, and then reflected by the reflecting mirror 29 to reach the dimming glass 28, and then the light is adjusted by the dimming glass 28 to irradiate the first stage 21. On the wafer, it is convenient for the inspector 100 to inspect the wafer.
  • the microscopic inspection station 3 includes a second stage 31 and a microscope 32.
  • the microscope 32 can perform microscopic inspection on a wafer by changing lenses with different magnifications.
  • the micro inspection station 3 further includes a translation mechanism and a rotation mechanism 36.
  • the translation mechanism includes an X-axis movement mechanism 33 and a Y-axis movement mechanism 34 whose movement directions are perpendicular to each other, wherein the X-axis movement mechanism 33 can drive the second stage 31 to perform a linear reciprocating motion back and forth with respect to the microscope 32, Y
  • the axis moving mechanism 34 can drive the second stage 31 to perform a linear reciprocating motion in a left-right direction with respect to the microscope 32.
  • the rotation mechanism 36 is connected to the second stage 31 and can drive the second stage 31 to rotate. Because the microscope 32 needs to magnify and inspect a part of the wafer when inspecting the wafer, a translation mechanism or a rotation mechanism 36 is needed to realize that the second stage 31 drives the wafer to move under the microscope 32.
  • the micro inspection station 3 is provided with a rotation mechanism 36 and an X-axis movement mechanism 33 and a Y-axis movement mechanism 34 whose movement directions are perpendicular to each other, which is equivalent to the second stage 31 being able to move along X in a three-dimensional rectangular coordinate system.
  • the linear motion of the axis and the Y axis and the rotational motion about the Z axis make the micro inspection station 3 have three degrees of freedom, that is, the second stage 31 can drive the wafer to move, and it is convenient for the microscope 32 to move each wafer on the wafer. Partially perform magnification detection.
  • the micro inspection station 3 is further provided with a shock absorbing member 35.
  • the shock absorbing member 35 is disposed below the micro inspection platform.
  • the microscope 32, the translation mechanism and the rotation mechanism 36 are all located above the micro inspection platform. Since the micro inspection station 3 performs a 5X to 100X micro inspection on the wafer, the small external vibrations are likely to cause greater interference with the micro inspection results. For this reason, the shock absorbing member 35 in this embodiment uses an airbag type.
  • the airbag type shock absorber has adjustable spring height, carrying capacity and spring stiffness; the airbag type shock absorber has a low inherent vibration frequency, has a good effect of blocking high frequency vibration and noise, and can use air Damping effect; many advantages such as long service life of the bladder-type shock absorber, thereby greatly improving the reliability of microscopic inspection of the wafer by the microscope 32.
  • the wafer inspection equipment also includes image recording equipment located at the macro inspection station 2 and the micro inspection station 3, respectively.
  • the image recording equipment is configured to record the inspection images of the macro inspection and the inspection images of the micro inspection, and determine whether the inspection images are present. Defects are judged to obtain inspection results. On the other hand, it can also help inspectors 100 record inspection images and results and archive them to facilitate later analysis of inspection results and provide reference materials for adjusting wafer manufacturing processes.
  • the wafer inspection device further includes an calibrator 4.
  • the calibrator 4 is mainly set to calibrate a reference position of the wafer, so as to facilitate inspection of the wafer.
  • the wafer is provided with cutouts, and the wafer is placed in the cassette after the wafer production is completed. During the process of moving the cassette to the cassette station by the transport mechanism, the wafer placement position in the cassette It has changed.
  • the calibrator 4 includes a third stage 41, and a movement mechanism is connected to the third stage 41.
  • the movement mechanism is similar to a translation mechanism and a rotation mechanism 36 of a micro inspection station.
  • the calibrator 4 further includes a photoelectric sensor.
  • the controller wherein the translation mechanism and the rotation mechanism 36 are electrically connected to the controller, and the photoelectric sensor is also electrically connected to the controller.
  • the calibrator 4 body has fixed coordinates
  • the third stage 41 has relative coordinates I
  • the wafer has relative coordinates II.
  • the third stage 41 and the wafer are relatively fixed.
  • the third stage 41 needs to be moved accordingly so that the reference point of the wafer relative coordinate II coincides with the reference point of the fixed coordinate;
  • the rotation mechanism 36 calibrates the notch position of the wafer.
  • the photoelectric sensor can receive the optical signal from the wafer, and convert the optical signal into an electrical signal and pass it to the controller. The signal is judged and analyzed. If it is not calibrated, the controller drives the translation mechanism and rotation mechanism 36 to move or rotate accordingly. If it is calibrated, the transfer device 5 can transfer the wafer to the macro inspection station 2 or micro inspection station. 3. In other embodiments, the calibrator 4 can be set directly on the detection station, and there is no limitation in this embodiment.
  • the carrying device 5 is a rotatable and retractable mechanical arm.
  • the carrying device 5 is located at the middle position of the work platform 1, the macro inspection station 2, the micro inspection station 3, the calibrator 4, and the position where the cassette is placed. Distributed on the edge of the work platform 1.
  • the robotic arm can remove the wafer from the cassette, place the wafer on the calibrator 4, and then transfer the calibrated wafer to the macro inspection station 2 or micro inspection station 3. After the inspection is completed, Carry the wafer to the micro inspection station 3 or macro inspection station 2 for inspection; after the wafer has completed the macro inspection and micro inspection, the robotic arm can return the wafer to the cassette and carry out the next wafer Detection.
  • the carrying device 5 is a trolley that can move freely to carry wafers, which is not limited in this embodiment.
  • the wafer inspection equipment also includes an outer cover 7 and a fan filter unit 6, the work platform 1, the detection station, and the handling device 5 are all located in the outer cover 7, and the fan filter unit 6 is configured to filter the gas inside the outer cover 7.
  • the fan filter unit 6 uses an ultra-thin equipment fan filter unit Equipment-filter unit, referred to as EFU.
  • EFU ultra-thin equipment fan filter unit
  • the fan filter unit 6 has ultra-thin, low noise, energy saving, easy to operate and extremely low chemical gas. Dissemination and other characteristics.
  • This embodiment also discloses a wafer inspection method using the above wafer inspection equipment, including the following steps:
  • a wafer inspection equipment is provided, and the wafer inspection equipment is provided with at least a macro inspection station 2 and a micro inspection station 3;
  • S2 carry the wafer to be inspected to at least one of the macro inspection station 2 and the micro inspection station 3, and perform at least one of macro inspection and micro inspection on the wafer to be inspected;
  • wafer inspection includes three situations: macro inspection only, micro inspection only, and both macro inspection and micro inspection.
  • macro inspection the wafer to be inspected is transferred to the macro inspection station 2 for inspection. After the macro inspection is completed, the wafer is directly removed from the wafer inspection equipment.
  • micro inspection the wafer is inspected.
  • the wafer to be inspected is transferred to the micro inspection station 3 for micro inspection. After the micro inspection is completed, the wafer is directly removed from the wafer inspection equipment.
  • the wafer When the wafer requires both macro inspection and micro inspection, first transfer the wafer to be inspected to Macro inspection station 2 or micro inspection station 3, and then carry out the macro inspection or micro inspection wafer to micro inspection station 3 or macro inspection station 2 and then perform micro inspection or macro inspection, and then the macro inspection and Wafers that have been microscopically inspected are removed from the wafer inspection equipment.
  • S200 is further included before S2 and after S1, and the reference position calibration is performed on the wafer to be inspected.
  • the wafer inspection equipment provided includes an aligner 4, and the wafer to be inspected is transferred to the aligner 4, and the reference position of the wafer is calibrated.
  • the calibrator 4 includes a controller, and a photoelectric sensor and a moving mechanism both connected to the controller.
  • the wafer to be tested is located on the moving mechanism.
  • the photoelectric sensor is set to sense the reference position of the wafer to be tested and send the sensing signal to Controller, the controller can drive the movement of the moving mechanism.
  • the wafer inspection equipment provided includes a cassette station. Before S200 and after S1, S100 is also included. The cassette containing the wafer is placed on the cassette station.
  • the macro inspection station 2 includes a first stage 21 capable of rotating around its own center, and the first stage 21 is connected with a first rotating shaft 8 and a second rotating shaft that drive it to rotate around the center, and in S2, treat When the inspection wafer performs macro inspection, S21 is included to drive the first stage 21 to rotate around at least one of the first rotation axis 8 and the second rotation axis to adjust the detection angle of the wafer to be inspected.
  • the macro inspection station 2 includes a light box 71, and the light box 71 includes at least two kinds of light sources.
  • S2 further includes S22.
  • the light sources in the light box 71 are switched to irradiate the light source on the wafer to be inspected.
  • the manner of switching the light source includes at least one of switching the irradiation angle of the light source and switching the wavelength of the light source.
  • a metal halide lamp light source 26 and a sodium lamp light source 27 can be selected as the light sources with different light wavelengths.
  • the macro inspection station 2 further includes a dimming glass 28.
  • a dimming glass 28 When performing a macro inspection on the wafer to be inspected in S2, it includes S23 to adjust the light transmission state of the dimming glass 28.
  • the microscopic inspection station 3 includes a microscope 32 and a second stage 31 located below the microscope 32.
  • the second stage 31 can move and rotate horizontally.
  • S2 when microscopic inspection is performed on a wafer to be inspected, S24.
  • the second stage 31 is driven to perform at least one of the following movements under the microscope 32: horizontal movement and rotation.
  • the horizontal movement includes at least one of the following movements relative to the lens of the microscope 32 below the microscope 32: forward and backward movement and left and right movement.
  • the wafer inspection equipment provided further includes an image recording device.
  • image recording is performed on the wafer to be inspected in S25 and S25.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

一种晶圆检测设备,包括工作平台,所述工作平台上至少设置有宏观检测工位和微观检测工位,并且所述工作平台上还设置有搬运装置,所述搬运装置设置为将待检测晶圆搬运至所述宏观检测工位和所述微观检测工位。

Description

晶圆检测设备
本申请要求申请日为2018年08月27日、申请号为201810982460.7的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及电子产品加工生产技术领域,例如涉及一种晶圆检测设备。
背景技术
晶圆微显示器件区别于常规利用非晶硅、微晶硅或低温多晶硅薄膜晶体管为背板的AMOLED器件,它以单晶硅芯片为基底,像素尺寸为传统显示器件的1/10。
晶圆微显示器具有广阔的市场应用空间,特别适合应用于头盔显示器、立体显示镜以及眼睛式显示器等,并且为便携式计算机、无线互联网浏览器、便携式的DVD、游戏平台及可戴式计算机等移动信息产品提供高画质的视频显示,甚至与移动通讯网络及卫星定位等系统联在一起,可在任何地方及任何时间获得精确的图像信息,从而使晶圆微显示器在国防、航空、航天乃至单兵作战等军事应用上具有非常重要的军事价值。因此,晶圆有望在军事以及消费类电子领域掀起近眼显示的新浪潮。
相关技术中以晶圆为核心的超微显示和近眼大屏设备技术较新,其中晶圆的制作工艺还处于摸索和尝试阶段,因此,晶圆在制作过程中可能会存在一些缺陷,为了能够及时对晶圆中的制作工艺进行调整,需要对晶圆进行缺陷检测,然而,相关技术中针对晶圆检测方面的设备还有所欠缺。
发明内容
本公开提供了一种晶圆检测设备,可以针对晶圆在制作过程中可能存在的缺陷进行检测,以便于对晶圆的加工工艺进行改进。
一种晶圆检测设备,包括工作平台,所述工作平台上至少设置有宏观检测工位和微观检测工位,并且所述工作平台上还设置有搬运装置,所述搬运装置设置为将待检测晶圆搬运至所述宏观检测工位和所述微观检测工位。
附图说明
图1是一实施例提供的一种晶圆检测设备的结构示意图;
图2是一实施例提供的一种晶圆检测设备去除外罩的结构示意图;
图3是一实施例提供的宏观检测工位的一部分结构示意图;
图4是一实施例提供的宏观检测工位的另一部分结构示意图;
图5是一实施例提供的金属卤灯光源工作时的结构示意图;
图6是一实施例提供的钠灯光源工作时的结构示意图;
图7是一实施例提供的微观检测工位的结构示意图;
图8是一实施例提供的校准器的结构示意图;
图9是一实施例提供的暗室的结构示意图;
图10是一实施例提供的宏观检测工位的一部分结构的俯视图。
图中:
100、检测人员;
1、工作平台;11、暗室;111、进出片开口;112、观察窗;
2、宏观检测工位;21、第一载台;22、翻转架;23、固定架;24、第一驱动装置;25、第二驱动装置;26、金属卤灯光源;27、钠灯光源;28、调光玻璃;29、反射镜;
3、微观检测工位;31、第二载台;32、显微镜;33、X轴移动机构;34、Y轴移动机构;35、减震部件;36、旋转机构;
4、校准器;41、第三载台;
5、搬运装置;6、风机过滤机组;7、外罩;71、灯箱;
8、第一转轴;9、第二转轴。
具体实施方式
本实施例公开一种晶圆检测设备,如图1和图2所示,该晶圆检测设备包括工作平台1,工作平台1上至少设置有宏观检测工位2和微观检测工位3,并且工作平台1上还设置有搬运装置5,搬运装置5能将待检测晶圆搬运至宏观检测工位2和微观检测工位3。通过在晶圆检测设备上设置宏观检测工位2和微观检测工位3,可以对晶圆进行宏观和微观检测,其中宏观检测工位2主要观测晶圆上存在的肉眼可见的缺陷;微观检测工位3主要通过显微镜32观测晶圆上肉眼观测不到的缺陷,从而可以全面检测分析加工工艺导致晶圆存在的缺陷,以便及时进行 改进。并且通过设置搬运装置5实现晶圆能够在不同检测工位之间的搬运,避免了在人工搬运过程中对晶圆造成损伤,导致检测结果受影响,进而发生对加工工艺做出错误调整的现象。当然,于其他实施例中,还可以根据需要设置其他检测工位。
其中,工作平台1的边缘处设置有卡匣工位,卡匣工位设置为放置卡匣,其中卡匣中盛装有晶圆,搬运装置5能将卡匣工位上待检测晶圆放置于相应工位,以及将完成检测的晶圆放回至卡匣工位。
其中,工作平台1上设置有暗室11,宏观检测工位2设置于暗室11内,如图9所示,暗室11的侧壁设置有进出片开口111和观察窗112,进出片开口111设置为供搬运装置5将待检测晶圆放置于宏观检测工位2上,以及设置为供将完成宏观检测的晶圆取出;观察窗112设置为供检测人员100观察宏观检测工位2上的待检测晶圆进行宏观检测。并且进出片开口111和观察窗112的设置要间隔预设距离,以避免检测人员100通过观察窗112对晶圆进行检测时影响搬运装置5对晶圆的搬运。例如,当暗室11的横截面为矩形时,观察窗112和进出片开口111不在同一侧,可将观察窗112和进出片开口111设置在暗室11的相邻侧壁或相对侧壁上。
在一实施例中,如图3所示,宏观检测工位2包括第一载台21和灯箱71,灯箱71位于第一载台21的上方,并能对第一载台21上的待检测物进行照射。
如图10所示,第一载台21通过第一转轴8与翻转架22连接,翻转架22通过第二转轴9与固定架23连接,第一转轴8和第二转轴9在水平面上的投影相互垂直,并且,第一转轴8连接有第一驱动装置24,第二转轴9连接有第二驱动装置25。即,第一载台21能绕第一转轴8相对于翻转架22发生旋转,另外,翻转架22能绕第二转轴9相对于固定架23发生旋转,相当于第一载台21能够绕平面直角坐标系中两个坐标轴进行旋转,实现了第一载台21具有能够绕第一转轴8和第二转轴9运动的两个自由度,从而便于检测人员100通过观察窗112对晶圆进行多个角度的检测。其中,第一载台21能够绕第一转轴8进行-180°~+180°范围的调整,同时,翻转架22能够绕第二转轴9进行-180°~+180°范围的调整。并且,第一载台21的中间部分可以采用透明材质制成或直接制成中空结构。于本实施例中,第一载台21的中间部分为中空结构,晶圆的边缘可以采用真空负压吸附原理与第一载台21的边缘吸附,这样可以防止第一载台21的中间部分为透明材质时,第一载台21上吸附有灰尘等杂质,对晶圆的检测结果造成干扰的现象发生。
如图1和4所示,灯箱71包括至少两种光源,于本实施例中,灯箱71内包括 金属卤灯光源26和钠灯光源27,金属卤灯光源26和钠灯光源27分别单独对同一晶圆进行照射。金属卤灯光源26与钠灯光源27的波长不同,金属卤灯光源26照射于晶圆上时,检测人员100可以借助不同波长的金属卤灯光源26和钠灯光源27对晶圆进行宏观缺陷检测。灯箱71内的光源并不局限于是波长不同的光源,也可以是照射角度不同的光源。另外,检测时,需要在检测人员100周围设置幕布(图中未示出),防止透光对检测造成影响。本实施例中的金属卤灯光源26水平放置,通过倾斜放置的反射镜29将光源照射于第一载台21上,钠灯光源27可移动地位于金属卤灯光源26的下方,钠灯光源27的光源直接可以照射于第一载台21上。如图5所示,当金属卤灯光源26照射放置于第一载台21上的晶圆时,钠灯光源27位于金属卤灯光源26箱体下方,不影响反射镜29将金属卤灯的反射光束对晶圆进行照射;如图6所示,当钠灯光源27照射放置于第一载台21上的晶圆时,金属卤灯光源26关闭,钠灯光源27移动至相应位置对晶圆进行照射。通过设置反射镜29,方便钠灯光源27的移动,从而使得金属卤灯光源26和钠灯光源27分别单独对同一晶圆的同一位置进行照射。于其他实施例中,金属卤灯光源26可以移动,钠灯光源27经过反射镜29反射后照射于第一载台21的晶圆上。
在一实施例中,参照图5和图6,宏观检测工位2还设置有调光玻璃28,调光玻璃28位于第一载台21的上方。其中,调光玻璃28是一款将液晶膜复合进两层玻璃中间,经高温高压胶合后一体成型的夹层结构的新型特种光电玻璃产品。使用者通过控制电流的通断与否控制调光玻璃28的透明与不透明状态。当调光玻璃28关闭电源时,调光玻璃28里面的液晶分子会呈现不规则的散布状态,此时调光玻璃28呈现透光而不透明的外观状态,此时透光率较低,呈扩散光;当给调光玻璃28通电后,里面的液晶分子呈现整齐排列,光线可以自由穿透,此时调光玻璃28瞬间呈现透明状态,透光率较高,呈收束光。即,通过控制调光玻璃28调整光源照射在晶圆上的光斑,从而使得光源的光束更加集中地照射于晶圆上。具体参照图4,金属卤灯光源26发出的光线照射于反射镜29上,然后经过反射镜29反射到达调光玻璃28上,再经过调光玻璃28进行光线调整后照射于第一载台21上的晶圆上,便于检测人员100对晶圆进行检测。
如图7所示,微观检测工位3包括第二载台31和显微镜32,显微镜32通过变换不同倍数的镜头,可以对晶圆进行微观检查。其中,微观检测工位3还包括平移机构和旋转机构36。在一实施例中,平移机构包括移动方向相互垂直的X轴移动机构33和Y轴移动机构34,其中,X轴移动机构33能带动第二载台31相对显微 镜32进行前后直线往复运动,Y轴移动机构34能带动第二载台31相对显微镜32进行左右直线往复运动。旋转机构36与第二载台31连接,可以带动第二载台31进行旋转。由于显微镜32对晶圆进行检测时需要对晶圆的一部分进行放大检测,此时需要借助平移机构或旋转机构36来实现第二载台31带动晶圆在显微镜32下进行移动。本实施例中,微观检测工位3通过设置旋转机构36以及设置移动方向相互垂直的X轴移动机构33和Y轴移动机构34,相当于第二载台31能够在三维直角坐标系中沿X轴和Y轴做直线运动,以及绕Z轴做旋转运动,使微观检测工位3具有三个自由度,即使得第二载台31能够带动晶圆进行移动,便于显微镜32对晶圆上各个部分进行放大检测。
在一实施例中,微观检测工位3还设置有减震部件35,减震部件35设置于微观检测平台的下方,显微镜32、平移机构和旋转机构36均位于微观检测平台的上方。由于微观检测工位3要对晶圆进行5X~100X的微观检测,外界的微小振动极有可能对微观检测结果造成较大的干扰,为此,本实施例中的减震部件35采用气囊式减震器,该气囊式减震器具有可调的弹簧高度、承载能力和弹簧刚度;该气囊式减震器固有振动频率较低,隔绝高频振动及隔噪音效果好,且可利用空气的阻尼作用;该气囊式减震器使用寿命较长等众多优点,从而极大地提高了显微镜32对晶圆进行微观检测的可靠性。
晶圆检测设备还包括分别位于宏观检测工位2和微观检测工位3上的影像记录设备,影像记录设备设置为记录宏观检测的检测影像和微观检测的检测影像,并对检测影像中是否存在缺陷进行判断,获得检测结果;另一方面,也可以帮助检测人员100记录检测影像和结果并进行存档,便于后期对检测结果进行分析,进而为调整晶圆制作工艺提供参考资料。
参照图2和图8,晶圆检测设备还包括校准器4,校准器4主要设置为校准晶圆的基准位置,以便于对晶圆进行检测。在一实施例中,晶圆上均设置有切口,晶圆生产完成后被放置于卡匣中,输送机构将卡匣移动至卡匣工位的过程中,卡匣内的晶圆的放置位置已经发生变化,为了统一晶圆的检测标准,需要将切口位置放置于第一载台21和第二载台31上的位置保持统一,为此需要先将晶圆上的切口位置校准。于本实施例中,校准器4包括第三载台41,第三载台41连接有移动机构,其中移动机构类似微观检测工位的平移机构和旋转机构36,另外校准器4还包括光电传感器和控制器,其中,平移机构和旋转机构36均与控制器电连接,光电传感器也与控制器电连接。校准器4本体具有固定坐标,第三载台 41具有相对坐标I,晶圆具有相对坐标II,当晶圆放置于第三载台41上时,相对坐标I和相对坐标II两者的相对基准点之间存在偏差,此时第三载台41和晶圆相对固定,为此需要第三载台41进行相应的移动使得晶圆相对坐标II的基准点与固定坐标的基准点重合;并通过旋转机构36校准晶圆的切口位置。在一实施例中,校准器4的光源照射于待校正的晶圆上时,光电传感器能够接收来自晶圆的光信号,并将光信号转化为电信号传递给控制器,控制器对该电信号进行判断分析,若未校准,则控制器驱动平移机构和旋转机构36进行相应移动或旋转,若已校准,则搬运装置5则可以将晶圆搬运至宏观检测工位2或微观检测工位3。于其他实施例中,可以直接在检测工位上设置校准器4,本实施例在此不作任何限制。
再次参照图2,搬运装置5为可旋转且可伸缩的机械臂,搬运装置5位于工作平台1的中间位置,宏观检测工位2、微观检测工位3、校准器4以及放置卡匣的位置分布于工作平台1的边缘部分。机械臂可以从卡匣中取出晶圆,并将晶圆放置于校准器4上,然后将经过校准后的晶圆搬运至宏观检测工位2或微观检测工位3,待检测完成后,再将晶圆搬运至微观检测工位3或宏观检测工位2进行检测;当晶圆完成宏观检测和微观检测后,机械臂可将晶圆放回至卡匣中,并进行下一晶圆的检测。于其他实施例中,搬运装置5为可自由移动的小车来进行晶圆的搬运,本实施例在此不作任何限制。
此外,晶圆检测设备还包括外罩7和风机过滤机组6,工作平台1、检测工位及搬运装置5均位于外罩7内,风机过滤机组6设置为过滤外罩7内部的气体。于本实施例中,风机过滤机组6采用一种超薄型设备用风机过滤机组Equipment Fan-filter Unit,简称EFU,风机过滤机组6具有超薄、低噪、节能、易操控及极低化学气体散发性等特点。
本实施例还公开一种晶圆检测方法,使用上述晶圆检测设备,包括如下步骤:
S1中、提供一晶圆检测设备,晶圆检测设备至少设置有宏观检测工位2和微观检测工位3;
S2中、将待检测晶圆搬运至宏观检测工位2和微观检测工位3中的至少一个上,并对待检测晶圆进行宏观检测和微观检测中的至少一种检测;
S3中、将完成检测的晶圆移出晶圆检测设备。
其中,晶圆的检测包括仅需宏观检测、仅需微观检测、以及既需要宏观检 测也需要微观检测三种情况。当晶圆仅需进行宏观检测时,将待检测晶圆搬运至宏观检测工位2进行检测,完成宏观检测后直接将晶圆移出晶圆检测设备;当晶圆仅需进行微观检测时,将待检测晶圆搬运至微观检测工位3进行微观检测,完成微观检测后直接将晶圆移出晶圆检测设备;当晶圆既需要宏观检测也需要微观检测时,先将待检测晶圆搬运至宏观检测工位2或微观检测工位3,然后将完成宏观检测的或微观检测的晶圆搬运至微观检测工位3或宏观检测工位2再进行微观检测或宏观检测,然后将宏观检测和微观检测均完成的晶圆移出晶圆检测设备。
在一实施例中,在S2之前及S1之后还包括S200,将待检测晶圆进行基准位置校准。在一实施例中,提供的晶圆检测设备包括校准器4,将待检测晶圆搬运至校准器4上,并校准晶圆的基准位置。其中,校准器4包括控制器,以及均与控制器连接的光电传感器和移动机构,待检测晶圆位于移动机构上,光电传感器设置为感应待检测晶圆的基准位置,并将感应信号发送至控制器,控制器能驱动移动机构运动。
在一实施例中,提供的晶圆检测设备包括卡匣工位,在S200之前、S1之后还包括S100,将盛装有晶圆的卡匣放置于卡匣工位上。
在一实施例中,宏观检测工位2包含能绕自身中心转动的第一载台21,第一载台21连接有驱动其绕中心转动的第一转轴8和第二转轴,S2中,对待检测晶圆进行宏观检测时,包含S21,驱动第一载台21绕第一转轴8和第二转轴中的至少一个旋转,调整待检测晶圆的检测角度。
在一实施例中,宏观检测工位2包括灯箱71,灯箱71内包括至少两种光源,S2中还包括S22,切换灯箱71中光源,使光源照射于待检测晶圆上。
在一实施例中,切换光源的方式包括:切换光源的照射角度和切换光源波长中的至少一种。其中,光线波长不同的光源可以选择金属卤灯光源26和钠灯光源27。
在一实施例中,宏观检测工位2还包括调光玻璃28,S2中对待检测晶圆进行宏观检测时,包括S23,调整调光玻璃28的透光状态。
在一实施例中,微观检测工位3包括显微镜32和位于显微镜32下方的第二载台31,第二载台31能够水平移动和旋转,S2中,对待检测晶圆进行微观检测时,包含S24,驱动第二载台31在显微镜32下发生以下运动中的至少一种:水平移动和旋转。其中水平移动包括在显微镜32下方相对显微镜32镜头进行以下至少一 种运动:前后移动和左右移动。
在一实施例中,提供的晶圆检测设备还包括影像记录设备,S2中,对待检测晶圆进行宏观检测或微观检测时,包括S25,S25中对待检测晶圆进行影像记录。

Claims (10)

  1. 一种晶圆检测设备,包括工作平台(1),所述工作平台(1)上至少设置有宏观检测工位(2)和微观检测工位(3),并且所述工作平台(1)上还设置有搬运装置(5),所述搬运装置(5)设置为将待检测晶圆搬运至所述宏观检测工位(2)和所述微观检测工位(3)。
  2. 根据权利要求1所述的晶圆检测设备,还包括校准器(4),所述校准器(4)设置为校准所述待检测晶圆的基准位置。
  3. 根据权利要求2所述的晶圆检测设备,其中,所述校准器(4)包括控制器,以及均与所述控制器连接的移动机构和光电传感器,所述待检测晶圆位于所述移动机构上,所述光电传感器设置为感应所述待检测晶圆的基准位置,并将感应信号发送至所述控制器,所述控制器设置为驱动所述移动机构运动。
  4. 根据权利要求2所述的晶圆检测设备,其中,所述工作平台(1)的边缘处设置有卡匣工位,所述卡匣工位设置为放置卡匣,所述卡匣设置为盛装有晶圆;
    所述搬运装置(5)设置为将所述卡匣工位上的待检测晶圆搬运至所述校准器(4),以及将检测完成的晶圆搬运回所述卡匣工位上。
  5. 根据权利要求1所述的晶圆检测设备,其中,所述工作平台(1)上设置有暗室(11),所述宏观检测工位(2)设置于所述暗室(11)内,所述暗室(11)的侧壁设置有进出片开口(111)和观察窗(112)。
  6. 根据权利要求1所述的晶圆检测设备,其中,所述宏观检测工位(2)包括第一载台(21)和灯箱(71),所述灯箱(71)设置于所述第一载台(21)上方,所述灯箱(71)设置为照射所述第一载台(21)上的所述待检测晶圆。
  7. 根据权利要求6所述的晶圆检测设备,其中,所述第一载台(21)通过第一转轴(8)与翻转架(22)连接,所述翻转架(22)通过第二转轴(9)与固定架(23)连接,且所述第一转轴(8)和所述第二转轴(9)相互垂直,其中,所述第一转轴(8)连接有第一驱动装置(24),所述第二转轴(9)连接有第二驱动装置(25)。
  8. 根据权利要求6所述的晶圆检测设备,其中,所述宏观检测工位(2)还设置有调光玻璃(28),所述调光玻璃(28)位于所述第一载台(21)的上方。
  9. 根据权利要求6所述的晶圆检测设备,其中,所述灯箱(71)内包括至少两种光源。
  10. 根据权利要求1所述的晶圆检测设备,其中,所述微观检测工位(3)包 括第二载台(31)和显微镜(32),所述第二载台(31)位于所述显微镜(32)的下方,且所述第二载台(31)连接有旋转机构(36)和可沿水平移动的平移机构,其中所述平移机构包括移动方向相互垂直的X轴移动机构(33)和Y轴移动机构(34)。
PCT/CN2018/119833 2018-08-27 2018-12-07 晶圆检测设备 WO2020042421A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810982460.7 2018-08-27
CN201810982460.7A CN109119364B (zh) 2018-08-27 2018-08-27 一种晶圆检测设备

Publications (1)

Publication Number Publication Date
WO2020042421A1 true WO2020042421A1 (zh) 2020-03-05

Family

ID=64860194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119833 WO2020042421A1 (zh) 2018-08-27 2018-12-07 晶圆检测设备

Country Status (2)

Country Link
CN (1) CN109119364B (zh)
WO (1) WO2020042421A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11209373B2 (en) * 2019-06-21 2021-12-28 Kla Corporation Six degree of freedom workpiece stage
CN111891691A (zh) * 2020-07-23 2020-11-06 云南省烟草质量监督检测站 一种基于外包装的真假卷烟识别检测装置及其方法
CN113791033A (zh) * 2021-08-26 2021-12-14 山东天岳先进科技股份有限公司 一种晶片缺陷检测方法及装置
CN113725109B (zh) * 2021-08-26 2024-01-05 苏州新尚思自动化设备有限公司 Pin Hole晶圆检查机
CN115274483B (zh) * 2022-08-03 2024-01-23 立川(无锡)半导体设备有限公司 一种晶圆电性能检测设备
CN115655163B (zh) * 2022-09-27 2024-01-26 盖泽智控传感技术(上海)有限公司 一种晶圆检测装置
CN115939011B (zh) * 2023-03-09 2023-07-21 长鑫存储技术有限公司 辅助校准装置、半导体搬运系统及其校准方法
CN116148642B (zh) * 2023-04-21 2023-07-04 上海聚跃检测技术有限公司 一种芯片失效分析方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201673128U (zh) * 2010-03-12 2010-12-15 中芯国际集成电路制造(上海)有限公司 晶圆缺陷目检装置
CN202770777U (zh) * 2012-07-27 2013-03-06 中芯国际集成电路制造(上海)有限公司 晶圆检测装置和晶圆定位装置
US9311697B2 (en) * 2010-04-06 2016-04-12 Hitachi High-Technologies Corporation Inspection method and device therefor
CN207282471U (zh) * 2017-09-13 2018-04-27 深圳市矽电半导体设备有限公司 一种晶圆检测设备的扩晶环转送装置
CN109192673A (zh) * 2018-08-27 2019-01-11 苏州精濑光电有限公司 一种晶圆检测方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5980194A (en) * 1996-07-15 1999-11-09 Applied Materials, Inc. Wafer position error detection and correction system
KR200195100Y1 (ko) * 1997-12-16 2000-09-01 김영환 반도체 웨이퍼용 현미경
CN102222605B (zh) * 2011-06-08 2013-05-15 致茂电子(苏州)有限公司 一种具有破片检测的晶圆输送设备
CN208908214U (zh) * 2018-08-27 2019-05-28 苏州精濑光电有限公司 一种晶圆检测设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201673128U (zh) * 2010-03-12 2010-12-15 中芯国际集成电路制造(上海)有限公司 晶圆缺陷目检装置
US9311697B2 (en) * 2010-04-06 2016-04-12 Hitachi High-Technologies Corporation Inspection method and device therefor
CN202770777U (zh) * 2012-07-27 2013-03-06 中芯国际集成电路制造(上海)有限公司 晶圆检测装置和晶圆定位装置
CN207282471U (zh) * 2017-09-13 2018-04-27 深圳市矽电半导体设备有限公司 一种晶圆检测设备的扩晶环转送装置
CN109192673A (zh) * 2018-08-27 2019-01-11 苏州精濑光电有限公司 一种晶圆检测方法

Also Published As

Publication number Publication date
CN109119364B (zh) 2024-04-16
CN109119364A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
WO2020042421A1 (zh) 晶圆检测设备
KR101613135B1 (ko) 반도체 기판의 위치 검출 장치 및 위치 검출 방법
US6822734B1 (en) Apparatus and method for fabricating flat workpieces
TWI411773B (zh) 外觀檢查裝置及外觀檢查方法、以及可安裝於外觀檢查裝置之周圍部檢查單元
US6798498B2 (en) Apparatus for evaluating polysilicon film
Travinsky et al. Evaluation of digital micromirror devices for use in space-based multiobject spectrometer application
JP5189586B2 (ja) ビジョン検査システム及びこれを用いる被検査体の検査方法
JP2011501475A (ja) 超クリーンルーム内における弱衝撃性ガラス板の運搬装置及びその方法
CN103934568A (zh) 激光退火设备
JP3378795B2 (ja) 表示装置の検査装置および検査方法
KR20170137809A (ko) 노광 시스템
CN109192673B (zh) 一种晶圆检测方法
JP2005317956A (ja) ディスク状要素のハンドリング装置
KR100879007B1 (ko) 기판의 광학검사기능을 구비한 리페어장치
US20220052082A1 (en) Display device manufacturing apparatus and method
TWI488008B (zh) 快速交換裝置及光罩載物台之共用順應性
KR101913579B1 (ko) 하향식 기판 에칭장치
KR101912747B1 (ko) 하향식 기판 에칭장치
KR20140117020A (ko) 레이저 어닐링 장치, 레이저 어닐링 방법 및 이 방법을 이용해 제조된 디스플레이 장치
JP2008175548A (ja) 外観検査装置および外観検査方法
CN208908214U (zh) 一种晶圆检测设备
KR20180073755A (ko) 하향식 기판 에칭장치
JP3501661B2 (ja) 液晶表示パネルの検査方法および検査装置
US7035003B2 (en) Microscope arrangement for inspecting a substrate
KR101032794B1 (ko) 헤이즈 가속 검출장치 및 그 검출방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18931692

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.08.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18931692

Country of ref document: EP

Kind code of ref document: A1