WO2020040433A1 - Sglt-2 억제제인 다파글리플로진 전구체의 제조방법 - Google Patents

Sglt-2 억제제인 다파글리플로진 전구체의 제조방법 Download PDF

Info

Publication number
WO2020040433A1
WO2020040433A1 PCT/KR2019/009014 KR2019009014W WO2020040433A1 WO 2020040433 A1 WO2020040433 A1 WO 2020040433A1 KR 2019009014 W KR2019009014 W KR 2019009014W WO 2020040433 A1 WO2020040433 A1 WO 2020040433A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
acid
preparing
tetrahydrofuran
Prior art date
Application number
PCT/KR2019/009014
Other languages
English (en)
French (fr)
Inventor
성시영
민종필
푼나 레디 울라푸
목희연
Original Assignee
동아에스티 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동아에스티 주식회사 filed Critical 동아에스티 주식회사
Publication of WO2020040433A1 publication Critical patent/WO2020040433A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H7/00Compounds containing non-saccharide radicals linked to saccharide radicals by a carbon-to-carbon bond
    • C07H7/04Carbocyclic radicals

Definitions

  • the present invention relates to an improved method for preparing a compound of formula 1, which is a dapagliflozin precursor disclosed as a SGLT-2 inhibitor in Korean Patent Application No. 10-2018-0022252.
  • Diabetes is a chronic metabolic disease that affects millions of patients around the world and is divided into type 1 and type 2.
  • type 2 diabetes is caused by insulin resistance, which is caused by a decrease in the function of insulin, which lowers blood sugar.
  • SGLT-2 is a transporter responsible for excessive blood glucose resorption in the kidney along with SGLT-1, and SGLT-2 plays a majority role. Therefore, when the SGLT-2 inhibitor inhibits the SGLT-2 transporter, the blood sugar released into the urine increases, and thus the blood sugar is lowered, and further, the calorie contained in the blood sugar is discharged, resulting in the effect of weight loss.
  • One of the drugs developed as an SGLT-2 inhibitor that can be usefully used as a treatment for type 2 diabetes is Dapagliflozin, and it is now called Forxiga or Farxiga. It is sold all over the world under the brand name.
  • Dapagliflozin is a material having the following structure, which is disclosed for the first time in International Patent Publication No. WO 2001/027128, and also discloses a precursor of dapagliflozin in the prior art.
  • the dapagliflozin crystal disclosed in WO 2001/027128 is in an amorphous form, has poor stability, and has low melting point and high hygroscopicity, making it difficult to maintain a constant quality as a drug substance.
  • the precursor is merely a substrate and its usefulness as a precursor is not known.
  • WO 2008/002824 discloses a solvent of (S) -propylene glycol ((S) -PG), (R) -propylene glycol ((R) -PG), ethanol, and ethylene glycol (EG).
  • Several crystalline forms of dapagliflozin are disclosed including co-crystals of cargoes with 1: 2 L-proline, 1: 1 L-proline, 1: 1 L-proline hemihydrate, and 1: 1 L-phenylalanine And Dapagliflozin (S) -propylene glycol solvate hydrate (form SC-3), which is being used as an active ingredient of the commercially available Pocigar ® .
  • (S) -propylene glycol used as a solvent in WO 2008/002824, is an expensive solvent and has low economical efficiency, and it is difficult to smoothly form crystals when preparing solvates, so that an additional seeding process may be used to promote crystal formation. In order to do this, there are difficult disadvantages such as manufacturing / managing seed as a raw material. In addition, there is a problem of drying for a long time for 2 days under specific drying conditions (25 ⁇ 30 °C, 25 mmHG) until it corresponds to the content of the hydrate during drying.
  • the applicant has applied for a precursor of dapagliflozin of the formula (1) to Korean Patent Application No. 10-2018-0022252.
  • the precursor of dapagliflozin is not stable in the physical and chemical properties of dapagliflozin, i.e., in amorphous form, and it is difficult to maintain a constant quality as a drug substance due to its low melting point and high hygroscopicity. It is useful as an SGLT-2 inhibitor after efforts to solve the unsatisfactory problem, and has physicochemical properties with higher melting point, lower hygroscopicity and excellent storage stability than dapagliflozin.
  • the present invention in the preparation of dapagliflozin precursor of the compound of formula (1) disclosed in the Republic of Korea Patent Application No. 10-2018-0022252, prepared by changing the starting material and the reactant which is an expensive raw material to other low-cost materials It is to provide an improved manufacturing method that can reduce the cost, and to reduce the manufacturing process by eliminating the purification process of the intermediate produced during the manufacturing process to produce the target material with improved yield.
  • the present invention provides a method for producing a compound of formula 1, characterized in that it comprises a step of using a compound of formula (2) as a starting material and the following formula (3) as a reactant do.
  • the compound of Formula 4 prepared in step 1 is selected from p-toluenesulfonic acid, p-toluenesulfonic acid pyridine salt, hydrofluoric acid at a solvent selected from tetrahydrofuran, water, methanol, ethanol and 0 °C ⁇ 30 °C Reacting to remove the silane group to prepare a compound of Formula 5;
  • the compound of formula 6 prepared in step 3 is selected from trifluoroacetic acid, trifluorosulfonic acid, trifluoro boron etherate and triethylsilane or triisopropylsilane dichloromethane, tetrahydrofuran, acetonitrile Reacting at a temperature of ⁇ 40 ° C. to 0 ° C. using a solvent selected from the following, and then purifying through crystallization under isopropyl ether to prepare a compound of Formula 7;
  • step 6 Purifying the compound of formula 1 prepared in step 5 by silica gel column chromatography to obtain a compound of formula 1 as a target compound.
  • the compound of formula 2 used as a starting material in the present invention can be obtained by the following method.
  • a compound selected from acetyl chloride and acetic anhydride and an acid selected from acetic acid, trifluoromethanesulfonic acid and sulfonic acid and a solvent selected from dichloromethane, ethyl acetate, acetonitrile and tetrahydrofuran To react at a temperature of -78 °C ⁇ 25 °C to prepare a compound of formula 9, and reacted with sodium carbonate or potassium carbonate in a solvent selected from water, methanol, ethanol, isopropanol to prepare a compound of formula 10 to remove acetyl
  • a reagent selected from trimethylchlorosilane, t-butyldimethylchlorosilane and t-butyldiphenylchlorosilane a base selected from triethylamine, dimethylaminopyridine, diisopropylethylamine, dimethylformamide and ethyl
  • Solvent selected from acetate, tetrahydrofuran To react at 0 °C ⁇ room temperature to protect the primary alcohol of the compound of formula (10) to prepare a compound of formula (11), and then oxidized the dimethyl sulfoxide and acetic anhydride at 0 °C ⁇ room temperature and purified by heptane Compounds of Formula 2 may be prepared.
  • the compound of formula 3 used as a reactant in the present invention can be obtained by the following method.
  • the compound of Formula 3 may be reacted with the compound of Formula 13 by using a Grignard reagent, that is, a reagent selected from magnesium, chloroisopropylmagnesium, and chloroethylmagnesium.
  • a Grignard reagent that is, a reagent selected from magnesium, chloroisopropylmagnesium, and chloroethylmagnesium.
  • Compounds may be prepared and then immediately reacted with benzyl alcohol to prepare the compound of formula 3.
  • the compound of formula 2 used as a starting material of the present invention and the compound of formula 3 used as a reactant can be prepared with low-cost reagents, starting materials that are expensive reagents used in Korean Patent Application No. 10-2018-0022252 and It is possible to prepare the desired compound of formula (I) easily by using a low-cost reagent by replacing the reactants.
  • the purification process during the reaction of step 1 to 6 is carried out only two steps of the compound of Formula 1 and the compound of Formula 1, which is the target compound, and purification through silica gel column chromatography Only in the last step, compared to Korea Patent Application No. 10-2018-0022252, which requires purification using silica gel column chromatography at every step, it can reduce the cost required for the purification process and shorten the manufacturing process time. Not only solve the problem of the manufacturing method of the application 10-2018-0022252, but also can reduce the cost and shorten the manufacturing process can produce the target material with improved yield.
  • the present invention in the preparation of dapagliflozin precursor of the compound of formula (1), the starting material and the reactant which is a low-cost reagent is prepared and used, and the intermediate compounds to be prepared to exclude most of the purification process for each reaction step Improving yield provides a manufacturing method suitable for mass production.
  • the present invention relates to an improved method for preparing a compound of formula 1, which is a dapagliflozin precursor used as an SGLT-2 inhibitor, the method according to the present invention using a low-cost reagent to prepare a starting material and a reactant
  • a low-cost reagent to prepare a starting material and a reactant
  • Step 1 Preparation of (( 2R, 3R, 4S, 5R ) -6- acetoxy- 3,4,5- tris (benzyloxy) tetrahydro- 2H-pyran-2-yl) methyl acetate
  • Step 2 Preparation of ( 3R, 4S, 5R, 6R ) -3,4,5- tris ( benzyloxy ) -6- ( hydroxymethyl ) tetrahydro- 2H-pyran-2-ol
  • Step 3 Preparation of ( 3R, 4S, 5R, 6R ) -3,4,5- tris ( benzyloxy ) -6- ( hydroxymethyl ) tetrahydro- 2H-pyran-2-ol
  • Step 1 ( 3R, 4S, 5R, 6R ) -3,4,5- tris ( benzyloxy ) -2- (3-(( benzyloxy ) (4 -ethoxyphenyl ) methyl ) -4 -chlorophenyl ) Preparation of -6-(((tert-butyldimethylsilyl) oxy) methyl) tetrahydro-2H-pyran-2-ol
  • Step 2 ( 3R, 4S, 5R, 6R ) -3,4,5- tris ( benzyloxy ) -2- (3-(( benzyloxy ) (4 -ethoxyphenyl ) methyl ) -4 -chlorophenyl ) Preparation of -6- (hydroxymethyl) tetrahydro-2H-pyran-2-ol
  • Step 3 (( 2R, 3R, 4S, 5R ) -3,4,5- tris ( benzyloxy ) -6- (3-(( benzyloxy ) (4 -ethoxyphenyl ) methyl ) -4 -chlorophenyl Preparation of) -6-hydroxytetrahydro-2H-pyran-2-yl) methyl formate
  • Step 4 (( 2R, 3R, 4R, 5S, 6S ) -3,4,5- tris ( benzyloxy ) -6- (4 -chloro- 3- (4 -ethoxybenzyl ) phenyl) tetrahydro- 2H Preparation of -pyran-2-yl) methyl formate
  • Step 5 (( 2R, 3S, 4R, 5R, 6S ) -6- (4 -chloro- 3- (4 -ethoxybenzyl ) phenyl) -3,4,5 -trihydroxytetrahydro- 2H-pyran Preparation of 2-yl) methyl formate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 SGLT-2 억제제인 다파글리플로진 전구체의 제조방법에 관한 것으로서, 특히 대한민국 특허출원 10-2018-0022252호에 개시되어 있는 화학식 1 화합물인 다파글리플로진 전구체의 제조방법에 관한 것이다. 본 발명의 제조방법은 반응시 저가의 시약인 출발물질과 반응물질을 사용함으로써 제조 비용을 절감할 수 있을 뿐만 아니라, 중간체의 정제 과정을 상당부분 배제할 수 있어 제조 시간 및 비용을 절감할 수 있으며, 향상된 수율로 목적 화합물을 제조할 수 있어 대량생산에 유용하게 사용될 수 있다.

Description

SGLT-2 억제제인 다파글리플로진 전구체의 제조방법
본 발명은 대한민국 특허출원 10-2018-0022252호에 SGLT-2 억제제로서 개시되어 있는 다파글리플로진 전구체인 화학식 1 화합물의 개량된 제조방법에 관한 것이다.
당뇨병은 전세계 수백만 명의 환자가 고통 받고 있는 만성 대사질환으로서, 제1형과 제2형으로 구분된다. 이 중 제2형 당뇨병은 혈당을 낮추는 역할을 하는 인슐린의 기능이 떨어져 발생하는 인슐린 저항성(insulin resistance)에 의해 발병한다.
한편, SGLT-2는 SGLT-1과 함께 신장에서의 과도한 혈당 재흡수를 담당하고 있는 수송체이며, SGLT-2가 대부분의 역할을 담당하고 있다. 따라서, SGLT-2 저해제가 SGLT-2 수송체를 억제시키면 소변으로 배출되는 혈당이 늘어나게 되며, 결국 혈당이 낮아지고 더 나아가 혈당이 갖고 있는 칼로리가 배출되어 체중감소의 효과가 발생하게 된다. 이와 같은 작용효과로 제2형 당뇨병 치료제로서 유용하게 사용될 수 있는 SGLT-2 억제제로 개발된 약물 중 하나가 다파글리플로진(Dapagliflozin)이며, 현재 포시가(Forxiga) 또는 파시가(Farxiga)라는 상품명으로 전세계에서 판매되고 있다.
다파글리플로진은 하기의 구조를 가지는 물질로서, 국제공개특허공보 WO 2001/027128호에 최초로 개시되어 있고, 또한 상기 종래기술에는 다파글리플로진의 전구체가 개시되어 있다.
그러나, 국제공개특허공보 WO 2001/027128호에 개시된 다파글리플로진 결정은 무정형의 형태로서, 안정성이 좋지 않으며, 낮은 융점과 높은 흡습성으로 원료의약품으로서의 일정한 품질을 유지하기가 어려워 제제학적으로 유용하지 못한 단점이 있고, 전구체는 단순히 기재만 되어 있을 뿐 전구체로서의 유용성을 알 수 없다.
한편, 국제공개특허공보 WO 2008/002824호에는, (S)-프로필렌글리콜((S)-PG), (R)-프로필렌글리콜((R)-PG), 에탄올, 에틸렌글리콜(EG)의 용매화물과 1:2 L-프롤린, 1:1 L-프롤린, 1:1 L-프롤린 반수화물, 및 1:1 L-페닐알라닌의 공결정을 포함하는 다파글리플로진의 여러 결정성 형태가 개시되어 있으며, 시판품인 포시가 ®의 실제 활성성분으로 사용되고 있는 다파글리플로진 (S)-프로필렌 글리콜 용매화물 수화물(형태 SC-3)이 개시되어 있다.
그러나, 국제공개특허공보 WO 2008/002824호에서 용매로 사용된 (S)-프로필렌글리콜은 고가의 용매로서 경제성이 낮으며, 용매화물 제조시 원활한 결정생성이 어려워 결정생성을 촉진하기 위해 추가적인 seeding 공정을 요구하고 있으며, 이를 위해 seed를 원료로서 제조/관리해야 하는 등의 어려운 단점이 있다. 또한, 건조시 수화물의 함유량에 상응할 때까지 특정 건조조건 (25~30 ℃, 25 mmHG)에서 2일 간의 장시간 동안 건조시켜야 하는 문제가 있다.
한편, 국제공개특허공보 WO 2016/041470호에는 SGLT-2 억제제로서 Glucopyranoside 구조에서 알코올이 케톤으로 치환된 글루코피라노사이드 화합물의 여러 유도체에 대해 개시되어 있으며, 중국 공개특허공보 CN 104109179호에는 C-아릴글루코사이드 유도체로서 아세틸그룹이 co-moiety인 다파글리플로진의 전구체가 개시되어 있으나, C-max가 낮아 전구체로서의 유용성에 문제점이 있다.
본 출원인은 대한민국 특허출원 10-2018-0022252호에 하기 화학식 1의 다파글리플로진의 전구체를 출원한 바 있다. 상기 다파글리플로진의 전구체는 다파글리플로진의 물리화학적 성상의 문제점, 즉 무정형의 형태로서 안정성이 좋지 않으며, 낮은 융점과 높은 흡습성으로 원료의약품으로서의 일정한 품질을 유지하기가 어려워 제제학적으로 유용하지 못한 문제점을 해결하기 위해 노력한 끝에 SGLT-2 억제제로 유용하며, 다파글리플로진보다 상대적으로 융점이 높고 흡습성이 낮으며 보존안정성이 우수한 물리화학적 특성을 가진다.
<화학식 1>
Figure PCTKR2019009014-appb-img-000001
Figure PCTKR2019009014-appb-img-000002
대한민국 특허출원 10-2018-0022252호에 개시되어 있는 상기 화학식 1은 하기 반응식 1의 제조 방법으로 제조된다.
<반응식 1>
Figure PCTKR2019009014-appb-img-000003
그런데, 상기 반응식 1에서 화합물 3을 제조하기 위한 출발물질인 화합물 2와 반응물질로 사용되는 1-클로로-2-(4-에톡시벤질)-4-요오드벤젠은 매우 고가의 시약이고, 상기 두 화합물의 반응에 필요한 시약인 클로로이소프로필마그네슘 또한 비교적 고가의 시약이므로 경제성 있는 원료의약품을 확보하기가 용이하지 않다. 또한 상기 반응식 1은 매 단계마다 실리카겔 컬럼크로마토그래피를 이용한 정제가 필요하므로 정제과정에 필요한 비용 및 시간이 많이 발생하는 문제점이 있다.
본 발명은, 대한민국 특허출원 10-2018-0022252호에 개시되어 있는 화학식 1 화합물인 다파글리플로진 전구체를 제조함에 있어서, 고가의 원료인 출발물질 및 반응물질을 다른 저가의 물질로 변경하여 제조비용을 절감하고, 제조과정 중에 생성되는 중간체의 정제 과정을 배제하여 제조공정을 단축시키더라도 향상된 수율로 목적물질을 제조할 수 있는 개량된 제조방법을 제공하는 데 있다.
상기 과제의 해결을 위하여, 본 발명은 하기 화학식 2 화합물을 출발물질로 사용하고 하기 화학식 3 화합물을 반응물질로 사용하여 반응시키는 제조단계를 포함하는 것을 특징으로 하는 하기 화학식 1 화합물의 제조방법을 제공한다.
<화학식 1>
Figure PCTKR2019009014-appb-img-000004
<화학식 2>
Figure PCTKR2019009014-appb-img-000005
<화학식 3>
Figure PCTKR2019009014-appb-img-000006
본 발명에 의한 다파글리플로진 전구체인 화학식 1 화합물의 제조방법은 하기와 같다.
① 화학식 2 화합물과 화학식 3 화합물을 커플링하는 반응으로 n-부틸리튬, 이소프로필클로로마그네슘, 에틸클로로마그네슘, 이소프로필클로로마그네슘-클로로리튬 중에서 선택된 시약과 테트라히드로퓨란 또는 톨루엔을 용매로 사용하여 -80℃ ~ 0℃의 온도에서 반응하여 하기 화학식 4 화합물을 제조하는 단계;
② 상기 ① 단계에서 제조된 화학식 4 화합물을 p-톨루엔설폰산, p-톨루엔설폰산 피리딘염, 불산 중에서 선택된 산을 테트라히드로퓨란, 물, 메탄올, 에탄올 중에서 선택된 용매와 0℃ ~ 30℃ 온도에서 반응시켜 실란기를 제거하여 하기 화학식 5 화합물을 제조하는 단계;
③ 상기 ② 단계에서 제조된 화학식 5 화합물을 피리딘, 디이소프로필에틸아민, 트리에틸아민 중에서 선택된 염기 및 아세틱포믹무수물 또는 포름산과 디클로로메탄, 테트라히드로퓨란, 아세토니트릴 중에서 선택된 용매를 이용하여 0℃ ~ 30℃온도에서 포밀화 반응을 통해 하기 화학식 6 화합물을 제조하는 단계;
④ 상기 ③ 단계에서 제조된 화학식 6 화합물을 트리플루오로아세트산, 트리플루오로설폰산, 트리플루오로보론에테레이트 중에서 선택된 산과 트리에틸실란 혹은 트리이소프로필실란을 디클로로메탄, 테트라히드로퓨란, 아세토니트릴 중에서 선택된 용매를 이용하여 -40℃ ~ 0℃온도에서 반응시킨 다음 이소프로필에테르하에서 결정화를 통해 정제하여 하기 화학식 7 화합물을 제조하는 단계;
⑤ 상기 ④ 단계에서 제조된 화학식 7 화합물을 10% 팔라듐/탄소, 수소가스와 함께 가압하여 에틸아세테이트, 에탄올, 메탄올 중에서 선택된 용매하에서 수소화 반응을 하여 화학식 1 화합물을 제조하는 단계; 및
⑥ 상기 ⑤ 단계에서 제조된 화학식 1 화합물을 실리카겔 컬럼크로마토그래피로 정제하여 목적화합물인 화학식 1 화합물을 얻을 수 있다.
<화학식 1>
Figure PCTKR2019009014-appb-img-000007
<화학식 4>
Figure PCTKR2019009014-appb-img-000008
<화학식 5>
Figure PCTKR2019009014-appb-img-000009
<화학식 6>
Figure PCTKR2019009014-appb-img-000010
<화학식 7>
Figure PCTKR2019009014-appb-img-000011
본 발명에서 목적물질인 화학식 1 화합물의 제조방법을 하기 반응식 2로 나타내었다.
<반응식 2>
Figure PCTKR2019009014-appb-img-000012
본 발명에서 출발물질로 사용되는 상기 화학식 2 화합물은 하기 방법에 의해 얻을 수 있다.
즉, 하기 화학식 8 화합물에 아세틸클로라이드, 아세트산무수물 중에서 선택되는 시약 및 아세트산, 트리플루오로메탄설폰산, 설폰산 중에서 선택되는 산과 디클로로메탄, 에틸아세테이트, 아세토니트릴, 테트라히드로퓨란 중에서 선택되는 용매를 사용하여 -78℃ ~ 25℃의 온도에서 반응하여 하기 화학식 9 화합물을 제조하고, 이를 탄산나트륨 또는 탄산칼륨과 물, 메탄올, 에탄올, 이소프로판올 중에서 선택되는 용매하에서 반응시켜 아세틸이 제거된 하기 화학식 10 화합물을 제조한 후, 이를 트리메틸클로로실란, t-부틸디메틸클로로실란, t-부틸디페닐클로로실란 중에서 선택되는 시약과 트리에틸아민, 디메틸아미노피리딘,디이소프로필에틸아민 중에서 선택되는 염기와 디메틸포름아미드, 에틸아세테이트, 테트라히드로퓨란 중에서 선택되는 용매하에서 0℃~상온에서 반응시켜 화학식 10 화합물의 1차 알코올을 보호하여 하기 화학식 11 화합물을 제조한 다음, 이 화합물을 디메틸설폭사이드 및 아세트산무수물을 0℃~상온에서 산화반응 시킨 후 헵탄으로 정제하여 화학식 2 화합물을 제조할 수 있다.
<화학식 8>
Figure PCTKR2019009014-appb-img-000013
<화학식 9>
Figure PCTKR2019009014-appb-img-000014
<화학식 10>
Figure PCTKR2019009014-appb-img-000015
<화학식 11>
Figure PCTKR2019009014-appb-img-000016
본 발명에서 출발물질로 사용되는 화학식 2 화합물의 제조공정을 하기 반응식 3으로 나타내었다.
<반응식 3>
Figure PCTKR2019009014-appb-img-000017
또한, 본 발명에서 반응물질로 사용되는 화학식 3 화합물은 하기 방법에 의해 얻을 수 있다.
본 발명에서 화학식 3 화합물은 하기 화학식 12 화합물을 그리냐드(Grignard) 시약, 즉 마그네슘, 클로로이소프로필마그네슘, 클로로에틸마그네슘중에서 선택되는 시약을 이용하여 하기 화학식 13 화합물과 반응시켜 이에 상응하는 하기 화학식 14 화합물을 제조한 다음 즉시 벤질알콜과 반응시켜 화학식 3 화합물을 제조할 수 있다.
<화학식 12>
Figure PCTKR2019009014-appb-img-000018
<화학식 13>
Figure PCTKR2019009014-appb-img-000019
<화학식 14>
Figure PCTKR2019009014-appb-img-000020
본 발명에서 반응물질로 사용되는 화학식 3 화합물의 제조공정을 하기 반응식 4로 나타내었다.
<반응식 4>
Figure PCTKR2019009014-appb-img-000021
상기 본 발명의 출발물질로 사용되는 화학식 2 화합물과 반응물질로 사용되는 화학식 3 화합물은 저가의 시약으로 제조할 수 있어, 대한민국 특허출원 10-2018-0022252호에서 사용되는 고가의 시약인 출발물질 및 반응물질을 대체하여 저가의 시약을 이용하여 쉽게 목적물인 화학식 1 화합물을 제조할 수 있다.
또한, 본 발명에 따른 화학식 1 화합물의 제조방법에 있어서, 상기 ① 내지 ⑥ 단계 반응 중에 정제 과정은 화학식 6 화합물 및 목적 화합물인 화학식 1 화합물의 2단계만 진행하고, 실리카겔 컬럼크로마토그래피를 통한 정제는 마지막 단계에서만 진행하는 것으로서, 매 단계마다 실리카겔 컬럼크로마토그래피를 이용한 정제가 필요한 대한민국 특허출원 10-2018-0022252호에 비하여 정제과정에 필요한 비용을 절감하고, 제조 공정시간을 단축할 수 있어, 대한민국 특허출원 10-2018-0022252호의 제조방법이 갖는 문제점을 해결한 것일 뿐만 아니라, 비용 절감 및 제조공정을 단축시키더라도 향상된 수율로 목적물질을 제조할 수 있다.
그러므로, 본 발명은 화학식 1 화합물인 다파글리플로진 전구체를 제조함에 있어서, 저가의 시약인 출발물질과 반응물질을 제조하여 사용하고, 제조되는 중간체 화합물들은 각 반응단계마다 정제과정을 대부분 배제하고 수율을 향상시킴으로써 대량생산에 적합한 제조방법을 제공한다.
본 발명은 SGLT-2 억제제로 사용되는 다파글리플로진 전구체인 화학식 1 화합물의 개량된 제조방법에 관한 것으로서, 본 발명에 따른 제조방법은 출발물질 및 반응물질을 저가의 시약을 사용하여 제조하여 이를 이용하여 목적화합물을 제조함으로써 제조비용을 절감할 수 있을 뿐만 아니라, 정제 공정 또한 대부분 배제하여 제조공정을 단축시킬 수 있으며, 향상된 수율로 목적 화합물을 제조할 수 있어 대량생산에 유용하게 사용될 수 있다.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.
<실시예 1> 2-((벤질옥시)(4-에톡시페닐)메틸)-4-브로모-1-클로로벤젠의 제조
질소가스로 충전시킨 반응부에 마그네슘 2g과 테트라히드로퓨란 140mL을 넣고 상온에서 교반시켰다. 반응물에 1-브로모-4-에톡시벤젠 16.5g을 테트라하이드로퓨란 20mL에 녹인 용액을 서서히 투입하였다. 반응액을 0 ℃ 로 냉각시켰다. 5-브로모-2-클로로벤즈알데히드 15g을 테트라히드로퓨란 20mL에 녹여 반응부에 서서히 투입하였다. 2시간 교반 후 톨루엔 150mL을 투입 후 추출 하였다. 층 분리 후 톨루엔 층에 벤질 알코올 9.6g, p-TsOH 0.65g을 차례로 투입한 다음 딘-스타크 장치를 이용 아제오트로픽 증류를 하여 82%의 수율로 표제화합물을 얻었다.
1H NMR (CDCl 3) δ 7.76(d, 1H), 7.28~7.19(m, 8H), 7.10(d, 1H), 6.79~6.77(m, 2H), 5.66(s, 1H), 4.44~4.43(m, 2H), 3.97~3.91(m, 2H), 1.34~1.31 (m, 3H)
< 실시예 2> ( 3R,4S,5R,6R )-3,4,5- 트리스 ( 벤질옥시 )-6-((( tert - 부틸디메틸실릴 ) 옥시 ) 메틸 ) 테트라히드로 -2H-피란-2-온의 제조
1단계 : (( 2R,3R,4S,5R )-6- 아세톡시 -3,4,5- tris(벤질옥시)테트라히드로 -2H-피란-2-일) 메틸 아세테이트의 제조
반응부에 (3R,4S,5R,6R)-3,4,5-트리스(벤질옥시)-6-((벤질옥시)메틸)테트라히드로-2H-피란-2-올 20g과 에틸아세테이트 400mL를 넣고 교반하였다. 반응 온도를 10~15 ℃로 냉각한 다음 아세트산 무수물/아세트산(1:6) 200mL, 트리플루오로설폰산 1.5당량을 차례로 넣고 24시간 교반하였다. 상수 200mL 및 포화 염화나트륨수용액 200mL로 세척하고 황산나트륨 패드 여과 후 유기층을 감압 농축하여 표제화합물을 얻었다
2단계 : ( 3R,4S,5R,6R )-3,4,5- 트리스 ( 벤질옥시 )-6-( 히드록시메틸 ) 테트라히드로 -2H-피란-2-올의 제조
반응부에 상기 1단계에서 제조된 ((2R,3R,4S,5R)-6-아세톡시-3,4,5-tris(벤질옥시)테트라히드로-2H-피란-2-일)메틸 아세테이트 10g 및 메틸알콜 100mL을 넣고 교반하였다. 반응액에 탄산칼륨 50% 수용액을 투입한 다음 반응 온도를 30 ℃로 승온하여 3시간 교반하였다. 에틸아세테이트 200mL로 추출 후 상수 200mL로 세척한 다음 포화 염화나트륨수용액 200mL으로 세척하고 황산나트륨 패드 여과 후 유기층을 감압 농축하였다. 디이소프로필 에테르 100mL를 넣고 환류 교반한 다음 상온으로 냉각하였다. 생성된 고체를 여과하여 표제의 화합물을 얻었다.
3단계 : ( 3R,4S,5R,6R )-3,4,5- 트리스 ( 벤질옥시 )-6-( 히드록시메틸 ) 테트라히드로 -2H-피란-2-올의 제조
반응부에 상기 2단계에서 제조된 (3R,4S,5R,6R)-3,4,5-트리스(벤질옥시)-6-(히드록시메틸)테트라히드로-2H-피란-2-올 1g 및 N,N-디메틸포름알데히드 10mL을 넣고 교반하였다. 반응액에 트리에틸아민 1.13g을 투입한 다음 반응 온도를 10℃이하로 냉각 하였다. t-부틸디메틸클로로실란 0.51g을 서서히 투입한 다음 24시간 교반하였다. 에틸아세테이트 20mL로 추출 후 상수 20mL로 세척한 다음 포화 염화나트륨수용액 20mL으로 세척하고 황산나트륨 패드 여과 후 유기층을 감압 농축하였다. 농축물에 헵탄 10mL을 넣고 교반하였다. 내부 온도를 -20℃~-15℃로 냉각 후 5시간 교반하였다. 생성된 고체를 감압 여과하여 3단계 최종 37%의 수율로 표제의 화합물을 얻었다.
1H NMR (CDCl 3-d1) δ 7.35~7.20(m, 15H), 4.99~4.96(d, 1H), 4.71~4.70(m, 2H), 4.63~4.59(m, 3H), 4.26~4.23(m, 1H), 4.03~4.01(m, 1H), 3.93~3.71(m, 4H), 0.82(s, 9H), 0.00(s, 6H)
< 실시예 3> (( 2R,3S,4R,5R,6S )-6-(4- 클로로 -3-(4- 에톡시벤질 )페닐)-3,4,5- 트리히드록시테트라히드로 -2H-피란-2-일)메틸 포메이트의 제조
1단계 : ( 3R,4S,5R,6R )-3,4,5- 트리스 ( 벤질옥시 )-2-(3-(( 벤질옥시 )(4- 에톡시페닐 ) 메틸 )-4- 클로로페닐 )-6-(((tert-부틸디메틸실릴)옥시)메틸)테트라히드로-2H-피란-2-올의 제조
반응부에 2-((벤질옥시)(4-에톡시페닐)메틸)-4-브로모-1-클로로벤젠 4.9g, 톨루엔 49mL 및 테트라히드로퓨란 12.25mL을 넣고 교반하였다. 반응 온도를 -65℃로 냉각 후 2.5M n-부틸리튬 4.53mL을 서서히 투입하고 2시간 교반하였다. 다른 반응부에 (3R,4S,5R,6R)-3,4,5-트리스(벤질옥시)-6-(((tert-부틸디메틸실릴)옥시)메틸)테트라히드로-2H-피란-2-온 5.8g 및 톨루엔 58mL을 넣고 교반하였다. 반응 온도를 -65℃로 냉각 후 SM4 반응액을 서서히 투입하였다. 반응 온도를 0℃로 자연스럽게 올리면서 2시간 교반하였다. 에틸아세테이트 100mL로 추출 후 상수 100mL로 세척한 다음 포화 염화나트륨수용액 100mL으로 세척하고 황산나트륨 패드 여과 후 유기층을 감압 농축하여 표제의 화합물을 얻었다.
2단계 : ( 3R,4S,5R,6R )-3,4,5- 트리스 ( 벤질옥시 )-2-(3-(( 벤질옥시 )(4- 에톡시페닐 ) 메틸 )-4- 클로로페닐 )-6-(히드록시메틸)테트라히드로-2H-피란-2-올의 제조
반응부에 상기 1단계에서 제조된 (3R,4S,5R,6R)-3,4,5-트리스(벤질옥시)-2-(3-((벤질옥시)(4-에톡시페닐)메틸)-4-클로로페닐)-6-(((tert-부틸디메틸실릴)옥시)메틸)테트라히드로-2H-피란-2-올 190mg 및 테트라히드로퓨란 3mL을 투입 교반하였다. p-톨루엔술폰산 45mg를 투입한 다음 상온에서 20시간 교반하였다. 에틸아세테이트 100mL로 추출 후 상수 100mL로 세척한 다음 포화 염화나트륨수용액 100mL으로 세척하고 황산나트륨 패드 여과 후 유기층을 감압 농축하여 표제의 화합물을 얻었다.
3단계 : (( 2R,3R,4S,5R )-3,4,5- 트리스 ( 벤질옥시 )-6-(3-(( 벤질옥시 )(4- 에톡시페닐 ) 메틸 )-4- 클로로페닐 )-6-히드록시테트라히드로-2H-피란-2-일)메틸 포메이트의 제조
반응부에 (3R,4S,5R,6R)-3,4,5-트리스(벤질옥시)-2-(3-((벤질옥시)(4-에톡시페닐)메틸)-4-클로로페닐)-6-(히드록시메틸)테트라히드로-2H-피란-2-올 500mg 및 디클로로메탄 5mL을 가하고 상온에서 교반하였다. 피리딘 322mg를 투입한 다음 반응 온도를 0℃로 냉각하였다. 아세틱 포믹 무수물 206mg를 서서히 투입하였다. 반응 온도를 유지하며 3시간 교반하였다. 디클로로메탄 10mL로 추출 후 상수 10mL로 세척한 다음 포화 염화나트륨수용액 10mL으로 세척하고 황산나트륨 패드 여과 후 유기층을 감압 농축하여 표제의 화합물을 얻었다.
4단계 : (( 2R,3R,4R,5S,6S )-3,4,5- 트리스 ( 벤질옥시 )-6-(4- 클로로 -3-(4- 에톡시벤질 )페닐) 테트라히드로 -2H-피란-2-일)메틸 포메이트의 제조
반응부에 상기 3단계에서 제조된 ((2R,3R,4S,5R)-3,4,5-트리스(벤질옥시)-6-(3-((벤질옥시)(4-에톡시페닐)메틸)-4-클로로페닐)-6-히드록시테트라히드로-2H-피란-2-일)메틸 포메이트 25.8g, 아세토니트릴 193.5mL 및 디클로로메탄 64.5mL을 가하고 상온에서 교반하였다. 반응 온도를 -40℃로 냉각한 다음 트리이소프로필실란 4.9g, 트리플루오로보란 에테레이트 4.4g을 차례로 투입하였다. 온도를 유지하며 1.5시간 교반한 다음 0℃로 자연스럽게 승온하며 2시간 교반하였다. 디클로로메탄 200mL로 추출 후 상수 200mL로 세척한 다음 포화 염화나트륨수용액 200mL으로 세척하고 황산나트륨 패드 여과 후 유기층을 감압 농축하여 표제의 화합물을 얻었다.
5단계 : (( 2R,3S,4R,5R,6S )-6-(4- 클로로 -3-(4- 에톡시벤질 )페닐)-3,4,5- 트리히드록시테트라히드로 -2H-피란-2-일)메틸 포메이트의 제조
고압 반응부에 ((2R,3R,4R,5S,6S)-3,4,5-트리스(벤질옥시)-6-(4-클로로-3-(4-에톡시벤질)페닐)테트라히드로-2H-피란-2-일)메틸 포메이트 200mg 및 에틸아세테이트 8mL을 가하고 교반하였다. 10% 팔라듐차콜 40mg, 1,2-디클로로벤젠 432mg를 차례로 가한 다음 수소 가스를 1기압의 압력으로 주입하고 2시간 교반하였다. 반응 물을 셀라이트 여과 후 감압 농축하였다. 실리카켈 컬럼크로마토그래피를 통해 정제하여 5단계 최종 46%의 수율로 표제의 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) δ 8.19(s, 1H), 7.36(d, 1H), 7.25(d, 1H), 7.17(dd, 1H), 7.08(d, 2H), 6.82(d, 2H), 5.27(d, 1H), 5.09(d, 1H), 4.93(d, 1H), 4.40(d, 1H), 4.13(dd, 2H), 4.04(d, 1H), 3.99~3.90(m, 4H), 3.49~3.44(m, 1H), 3.27~3.24(m, 1H), 3.21~3.17(m, 1H), 3.12~3.08(m, 1H), 1.29(t, 3H)

Claims (11)

  1. 하기 화학식 2 화합물을 출발물질로 사용하고 하기 화학식 3 화합물을 반응물질로 사용하여 반응시키는 단계를 포함하는 것을 특징으로 하는 하기 화학식 1 화합물의 제조방법.
    <화학식 1>
    Figure PCTKR2019009014-appb-img-000022
    <화학식 2>
    Figure PCTKR2019009014-appb-img-000023
    <화학식 3>
    Figure PCTKR2019009014-appb-img-000024
  2. 제 1 항에 있어서, 화학식 2 화합물과 화학식 3 화합물을 n-부틸리튬, 이소프로필클로로마그네슘, 에틸클로로마그네슘, 이소프로필클로로마그네슘-클로로리튬 중에서 선택된 시약과 테트라히드로퓨란 또는 톨루엔을 용매로 사용하여 -80℃ ~ 0℃의 온도에서 커플링 반응하여 하기 화학식 4 화합물을 제조하는 단계를 포함하는 것을 특징으로 하는 화학식 1 화합물의 제조방법.
    <화학식 4>
    Figure PCTKR2019009014-appb-img-000025
  3. 제 2 항에 있어서, 화학식 4 화합물과 p-톨루엔설폰산, p-톨루엔설폰산 피리딘염, 불산 중에서 선택된 산을 테트라히드로퓨란, 물, 메탄올, 에탄올 중에서 선택된 용매와 0℃ ~ 30℃ 온도에서 반응하여 하기 화학식 5 화합물을 제조하는 단계를 추가로 포함하는 것을 특징으로 하는 화학식 1 화합물의 제조방법.
    <화학식 5>
    Figure PCTKR2019009014-appb-img-000026
  4. 제 3 항에 있어서, 화학식 5 화합물과 피리딘, 디이소프로필에틸아민, 트리에틸아민 중에서 선택된 염기 및 아세틱포믹무수물 또는 포름산과 디클로로메탄, 테트라히드로퓨란, 아세토니트릴 중에서 선택된 용매를 이용하여 0℃ ~ 30℃온도에서 반응하여 하기 화학식 6 화합물을 제조하는 단계를 추가로 포함하는 것을 특징으로 하는 화학식 1 화합물의 제조방법.
    <화학식 6>
    Figure PCTKR2019009014-appb-img-000027
  5. 제 4 항에 있어서, 화학식 6 화합물과 트리플루오로아세트산, 트리플루오로설폰산, 트리플루오로보론에테레이트 중에서 선택된 산과 트리에틸실란 혹은 트리이소프로필실란을 디클로로메탄, 테트라히드로퓨란, 아세토니트릴 중에서 선택된 용매를 이용하여 -40℃ ~ 0℃온도에서 반응하여 하기 화학식 7 화합물을 제조하는 단계를 추가로 포함하는 것을 특징으로 하는 화학식 1 화합물의 제조방법.
    <화학식 7>
    Figure PCTKR2019009014-appb-img-000028
  6. 제 5 항에 있어서, 화학식 7 화합물과 10% 팔라듐/탄소, 수소가스를 가압하여 에틸아세테이트, 에탄올, 메탄올 중에서 선택된 용매하에서 반응하여 화학식 1 화합물을 제조하는 단계를 추가로 포함하는 것을 특징으로 하는 화학식 1 화합물의 제조방법.
  7. 제 1 항에 있어서, 상기 화학식 2 화합물은 하기 화학식 11 화합물과 디메틸설폭사이드 및 아세트산무수물을 0℃~상온에서 산화 반응하여 제조됨을 특징으로 하는 화학식 1 화합물의 제조방법.
    <화학식 11>
    Figure PCTKR2019009014-appb-img-000029
  8. 제 7 항에 있어서, 화학식 11 화합물은 하기 화학식 10 화합물의 1차 알코올에 트리메틸클로로실란, t-부틸디메틸클로로실란, t-부탈디페닐클로로실란 중에서 선택되는 시약과 트리에틸아민, 디메틸아미노피리딘, 디이소프로필에틸아민 중에서 선택되는 염기와 디메틸포름아미드, 에틸아세테이트, 테트라히드로퓨란 중에서 선택되는 용매하에서 0℃~상온에서 반응하여 제조됨을 특징으로 하는 화학식 1 화합물의 제조방법.
    <화학식 10>
    Figure PCTKR2019009014-appb-img-000030
  9. 제 8 항에 있어서, 화학식 10 화합물은 하기 화학식 9 화합물에 탄산나트륨 또는 탄산칼륨과 물, 메탄올, 에탄올, 이소프로판올 중에서 선택되는 용매하에서 반응하여 탈아세틸화 시킴으로써 제조됨을 특징으로 하는 화학식 1 화합물의 제조방법.
    <화학식 9>
    Figure PCTKR2019009014-appb-img-000031
  10. 제 9 항에 있어서, 화학식 9 화합물은 하기 화학식 8 화합물에 아세틸클로라이드, 아세트산무수물 중에서 선택되는 시약 및 아세트산, 트리플루오로메탄설폰산, 설폰산 중에서 선택되는 산과 디클로로메탄, 에틸아세테이트, 아세토니트릴, 테트라히드로퓨란 중에서 선택되는 용매를 사용하여 -78℃ ~ 25℃의 온도 반응하여 제조됨을 특징으로 하는 화학식 1 화합물의 제조방법.
    <화학식 8>
    Figure PCTKR2019009014-appb-img-000032
  11. 제 1 항에 있어서, 화학식 3 화합물은 하기 화학식 12 화합물에 마그네슘, 클로로이소프로필마그네슘, 클로로에틸마그네슘중에서 선택되는 시약을 이용하여 하기 화학식 13 화합물과 테트라히드로퓨란하에서 반응시켜 하기 화학식 14 화합물을 제조하는 공정에서 정제과정 없이 한 번에 벤질알콜, 황산, 질산, 염산, p-톨루엔설폰산 중에서 선택되는 산과 테트라히드로퓨란, 톨루엔 중에서 선택되는 용매하에서 반응시켜 제조됨을 특징으로 하는 화학식 1 화합물의 제조방법.
    <화학식 12>
    Figure PCTKR2019009014-appb-img-000033
    <화학식 13>
    Figure PCTKR2019009014-appb-img-000034
    <화학식 14>
    Figure PCTKR2019009014-appb-img-000035
PCT/KR2019/009014 2018-08-22 2019-07-22 Sglt-2 억제제인 다파글리플로진 전구체의 제조방법 WO2020040433A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180098162A KR20200022257A (ko) 2018-08-22 2018-08-22 Sglt-2 억제제인 다파글리플로진 전구체의 제조방법
KR10-2018-0098162 2018-08-22

Publications (1)

Publication Number Publication Date
WO2020040433A1 true WO2020040433A1 (ko) 2020-02-27

Family

ID=69593305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/009014 WO2020040433A1 (ko) 2018-08-22 2019-07-22 Sglt-2 억제제인 다파글리플로진 전구체의 제조방법

Country Status (2)

Country Link
KR (1) KR20200022257A (ko)
WO (1) WO2020040433A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001027128A1 (en) * 1999-10-12 2001-04-19 Bristol-Myers Squibb Company C-aryl glucoside sglt2 inhibitors
CN104109179A (zh) * 2013-04-16 2014-10-22 杭州华东医药集团生物工程研究所有限公司 一类c-芳基葡萄糖苷衍生物、制备方法及其用途
WO2016041470A1 (en) * 2014-09-15 2016-03-24 National Institute Of Biological Sciences, Beijing Sglt-2 inhibitors
CN107163092A (zh) * 2017-06-13 2017-09-15 杭州科巢生物科技有限公司 Sglt‑2糖尿病抑制剂及其中间体的制备方法
WO2018029611A1 (en) * 2016-08-09 2018-02-15 Laurus Labs Limited Novel processes for preparation of dapagliflozin or its solvates or co-crystals thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001027128A1 (en) * 1999-10-12 2001-04-19 Bristol-Myers Squibb Company C-aryl glucoside sglt2 inhibitors
CN104109179A (zh) * 2013-04-16 2014-10-22 杭州华东医药集团生物工程研究所有限公司 一类c-芳基葡萄糖苷衍生物、制备方法及其用途
WO2016041470A1 (en) * 2014-09-15 2016-03-24 National Institute Of Biological Sciences, Beijing Sglt-2 inhibitors
WO2018029611A1 (en) * 2016-08-09 2018-02-15 Laurus Labs Limited Novel processes for preparation of dapagliflozin or its solvates or co-crystals thereof
CN107163092A (zh) * 2017-06-13 2017-09-15 杭州科巢生物科技有限公司 Sglt‑2糖尿病抑制剂及其中间体的制备方法

Also Published As

Publication number Publication date
KR20200022257A (ko) 2020-03-03

Similar Documents

Publication Publication Date Title
JP4890466B2 (ja) アゼチジノンの合成のためのプロセス
EP0559896B1 (en) 6-o-methylerythromycin a derivative
WO2011071314A2 (en) Processes for preparing crystalline forms a and b of ilaprazole and process for converting the crystalline forms
KR100426030B1 (ko) 락톤계 당화합물에서의 키랄성 전환방법
KR100701226B1 (ko) 항균성 인돌론 옥사졸리디논, 이의 제조를 위한 중간체 및이를 포함하는 약학 조성물
EP0688782B1 (en) Stereoselective process for preparing protected 2&#39;,2&#39;-difluorolactonen
WO2020040433A1 (ko) Sglt-2 억제제인 다파글리플로진 전구체의 제조방법
WO2010110622A2 (en) Novel crystal forms of adefovir dipivoxil and processes for preparing the same
EP0292101A2 (en) Process for the preparation of 3&#39;-azido-3&#39;-deoxythymidine and intermediates
WO2021230691A1 (ko) 친환경 용매를 이용한 아질사탄의 제조방법 및 이에 관한 핵심 중간체 화합물
EP0801063A1 (en) Thiazolidinedione derivatives having antidiabetic, hypolipidaemic antihypertensive properties, process for their preparation and pharmaceutical compositions containing them
HU202548B (en) Process for producing epipodophyllotoxin-glycoside-4&#39;-acyl derivatives and pharmaceutical compositions comprising such compounds
WO2018155970A1 (ko) Sglt-2 억제제인 신규 글루코스 유도체
WO2017090991A1 (ko) 벤조피란 유도체의 정제방법, 이의 결정형 및 상기 결정형의 제조방법
EP3941911A1 (en) Method for the synthesis of 2,5-furandicarboxylic acid
WO2021172955A1 (ko) Sglt 저해제의 합성에 유용한 중간체 및 이를 이용한 sglt 저해제의 제조 방법
WO2022149638A1 (ko) 피롤로피리딘 유도체의 제조방법
CA2152270A1 (fr) Derives de l&#39;etoposide, leur procede de preparation, leur utilisation a titre de medicament et leur utilisation pour la preparation d&#39;un medicamant destine au traitement anticancereux
CN111484540B (zh) 含双核苷酸结构的化合物
EP0412760B1 (en) Benzopyran derivatives
WO2023182869A1 (en) Novel salt of glp-1 receptor agonist compound, preparation method thereof and pharmaceutical composition comprising thereof
WO2023090947A1 (ko) 코로나바이러스 감염 질환의 예방 또는 치료용 약제학적 조성물
WO2009139593A2 (ko) HMG-CoA 환원 저해제의 제조를 위한 키랄 중간체의 제조방법
JP2784658B2 (ja) ハイグロマイシンの合成中間体
WO2012018235A2 (ko) 수율 및 순도가 개선된 데시타빈의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19852406

Country of ref document: EP

Kind code of ref document: A1