WO2020040121A1 - 繊維強化熱可塑性樹脂基材およびそれを用いた積層品 - Google Patents

繊維強化熱可塑性樹脂基材およびそれを用いた積層品 Download PDF

Info

Publication number
WO2020040121A1
WO2020040121A1 PCT/JP2019/032395 JP2019032395W WO2020040121A1 WO 2020040121 A1 WO2020040121 A1 WO 2020040121A1 JP 2019032395 W JP2019032395 W JP 2019032395W WO 2020040121 A1 WO2020040121 A1 WO 2020040121A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
thermoplastic resin
reinforced thermoplastic
resin substrate
reinforced
Prior art date
Application number
PCT/JP2019/032395
Other languages
English (en)
French (fr)
Inventor
越政之
石田翔馬
大目裕千
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to AU2019326170A priority Critical patent/AU2019326170A1/en
Priority to KR1020217003807A priority patent/KR20210045990A/ko
Priority to BR112021001755-0A priority patent/BR112021001755A2/pt
Priority to CA3108462A priority patent/CA3108462A1/en
Priority to JP2019562674A priority patent/JPWO2020040121A1/ja
Priority to EP19851418.4A priority patent/EP3842478A4/en
Priority to CN201980053444.2A priority patent/CN112566964A/zh
Priority to US17/269,870 priority patent/US20210253813A1/en
Publication of WO2020040121A1 publication Critical patent/WO2020040121A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/06Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer mechanically connected, e.g. by needling to another layer, e.g. of fibres, of paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/08Interconnection of layers by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/20All layers being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/16Structural features of fibres, filaments or yarns e.g. wrapped, coiled, crimped or covered
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2479/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2481/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2481/04Polysulfides

Definitions

  • the present invention relates to a fiber-reinforced thermoplastic resin base material and a laminate using the same.
  • Fiber reinforced thermoplastic resin base material made by impregnating thermoplastic resin into continuous reinforcing fiber is excellent in specific strength, specific rigidity, high weight reduction effect, heat resistance, chemical resistance, aircraft, It is preferably used for various applications such as transportation equipment such as automobiles, sports, and electric / electronic parts.
  • transportation equipment such as automobiles, sports, and electric / electronic parts.
  • Patent Document 1 discloses a method in which a resin is adhered to the outer surface of a reinforcing fiber base formed of expanded fibers and heated to a temperature equal to or higher than the melting point of the resin. A fiber-reinforced resin intermediate in which the resin is impregnated into the reinforcing fiber base has been proposed.
  • Patent Document 2 discloses that a thermoplastic resin nonwoven fabric in which thermoplastic resin fibers are woven in a non-woven state is superimposed on a reinforcing fiber sheet in which a plurality of reinforcing fiber bundles are aligned in one direction, and pressure is applied while heating.
  • a fiber-reinforced thermoplastic resin sheet is proposed in which a thermoplastic resin non-woven fabric is melted and impregnated with a thermoplastic resin in a reinforcing fiber bundle in a state in which a void portion is present, thereby forming a semi-preg state of the thermoplastic resin.
  • the fiber-reinforced thermoplastic resin sheet is semi-impregnated, the time required for manufacturing the fiber-reinforced thermoplastic resin sheet can be reduced, and it is flexible and, in addition, it is semi-impregnated as a fiber-reinforced thermoplastic resin sheet. It can be said that since the reinforcing fiber sheet can be made thinner, the unimpregnated portion can be reduced, and the impregnation can be completed sufficiently when pressurizing while heating during processing into a final molded product.
  • Patent Literature 1 Although the shape is improved due to the presence of the voids opened to the outside, the resin is unevenly arranged due to the openings outside, so that the resin-rich portion is formed at the time of molding. Tends to occur. In addition, there is a concern that the handling property may be deteriorated such as cracking of the reinforcing fiber bundle or displacement during lamination.
  • the fiber-reinforced thermoplastic resin sheet described in Patent Literature 2 is formed by applying pressure while heating a fabric made of thermoplastic resin fibers stacked on the fiber-reinforced sheet. For this reason, in this fiber-reinforced thermoplastic resin sheet, the molten thermoplastic resin layer is pressurized and consolidated, so that although a gap is partially formed, the impregnation is easy to proceed and the impregnated portion and the gap portion are formed. Since it is in a mixed state, there is a problem that it is difficult for air in the reinforcing fiber sheet to escape and a void is easily formed in a molded product.
  • an object of the present invention is to provide a fiber-reinforced thermoplastic resin base material having a thermoplastic resin as a matrix, with the thermoplastic resin covering the surface of the base material of the reinforcing fiber with high uniformity, and the matrix resin is applied to the reinforcing fiber base material.
  • An object of the present invention is to provide a fiber-reinforced thermoplastic resin base material having high shapeability and handleability by being uniformly impregnated while leaving voids.
  • a fiber-reinforced thermoplastic resin substrate comprising a continuous fiber substrate composed of continuous reinforcing fibers and a thermoplastic resin applied to the surface thereof, wherein the thermoplastic resin is formed on the entire surface of the continuous fiber substrate.
  • a fiber-reinforced thermoplastic resin base material which is coated in a solidified state and is impregnated in a continuous fiber base material while leaving voids, wherein the voids are formed intermittently in the fiber orientation direction.
  • thermoplastic resin substrate according to [1], wherein the impregnation distance is 20 ⁇ m to 60 ⁇ m and 20% to 80% of the thickness of the fiber-reinforced thermoplastic resin substrate.
  • the thermoplastic resin is a polyphenylene sulfide resin (PPS), a polyarylene ether One thermoplastic resin or two or more resins selected from ketone resin (PAEK), polyetherketoneketone resin (PEKK), polyethersulfone resin (PES), polyetherimide (PEI), and liquid crystal polymer (LCP)
  • PPS polyphenylene sulfide resin
  • PPS polyarylene ether
  • the polymer alloy contains a biphasic continuous structure having a structural period of 0.001 to 10 ⁇ m or a polymer alloy which forms a sea-island structure composed of an island phase having a particle diameter of 0.001 to 10 ⁇ m and a sea phase.
  • the fiber-reinforced thermoplastic resin substrate according to [4] or [5].
  • thermoplastic resin substrate according to any one of [1] to [12] or the molded article according to [12], and a metal material or a molded article thereof, or a resin material or a molded article thereof.
  • the surface of the continuous fiber base material is coated with a thermoplastic resin with high uniformity, and is impregnated with a matrix resin while leaving continuous voids in the fiber direction, thereby having high handleability and shapeability.
  • a fiber reinforced thermoplastic resin substrate is obtained.
  • the fiber-reinforced thermoplastic resin base material according to the present invention is a continuous fiber base material made of continuous reinforcing fibers, and a fiber-reinforced thermoplastic resin base material made of a thermoplastic resin applied to the surface thereof, The plastic resin is coated in a state where the entire surface of the continuous fiber base material is solidified, and is impregnated in a state where a gap is left in the continuous fiber base material, and the gap is formed intermittently in a fiber orientation direction. It is.
  • continuous fiber substrate made of continuous reinforcing fibers refers to a fiber-reinforced thermoplastic resin substrate in which the reinforcing fibers are not interrupted.
  • examples of the form and arrangement of the continuous fiber base material in the present invention include those in which continuous reinforcing fibers are aligned in one direction, woven fabric (cloth), knitted fabric, braid, tow, and the like. Among them, those in which the reinforcing fibers are arranged in one direction are preferable because the mechanical properties in a specific direction can be efficiently enhanced.
  • the type of reinforcing fiber is not particularly limited, and examples thereof include carbon fiber, metal fiber, organic fiber, and inorganic fiber. Two or more of these may be used.
  • carbon fibers as the reinforcing fibers, a fiber-reinforced thermoplastic resin base material having high mechanical properties while being lightweight can be obtained.
  • the carbon fiber examples include PAN-based carbon fiber made from polyacrylonitrile (PAN) fiber, pitch-based carbon fiber made from petroleum tar and oil pitch, and cellulosic carbon made from viscose rayon and cellulose acetate. Vapor-grown carbon fibers made from fibers, hydrocarbons and the like, and graphitized fibers thereof. Among these carbon fibers, PAN-based carbon fibers are preferably used because they have an excellent balance between strength and elastic modulus.
  • PAN-based carbon fibers are preferably used because they have an excellent balance between strength and elastic modulus.
  • metal fibers examples include fibers made of metal such as iron, gold, silver, copper, aluminum, brass, and stainless steel.
  • Examples of the organic fibers include fibers made of organic materials such as aramid, polybenzoxazole (PBO), polyphenylene sulfide, polyester, polyamide, and polyethylene.
  • Examples of the aramid fiber include a para-aramid fiber excellent in strength and elastic modulus and a meta-aramid fiber excellent in flame retardancy and long-term heat resistance.
  • Examples of the para-aramid fiber include polyparaphenylene terephthalamide fiber and copolyparaphenylene-3,4'-oxydiphenylene terephthalamide fiber, and examples of the meta-aramid fiber include polymetaphenylene isophthalamide fiber. Is mentioned.
  • As the aramid fiber a para-aramid fiber having a higher elastic modulus than a meta-aramid fiber is preferably used.
  • the inorganic fibers include fibers made of inorganic materials such as glass, basalt, silicon carbide, and silicon nitride.
  • the glass fiber include E glass fiber (for electric use), C glass fiber (for corrosion resistance), S glass fiber, and T glass fiber (high strength and high elastic modulus).
  • Basalt fiber is a fiber made of basalt, which is a mineral, and has extremely high heat resistance.
  • Basalt generally the FeO or FeO 2 is a compound of iron 9-25% by weight, but containing TiO or TiO 2 which is a compound of titanium 1-6% by weight, increase of these components in the molten state It is also possible to make the fibers.
  • the fiber-reinforced thermoplastic resin base material according to the present invention is often expected to serve as a reinforcing material, it is desirable to express high mechanical properties, and in order to express high mechanical properties, as a reinforcing fiber, It is preferable to include carbon fibers.
  • the continuous fiber base material is usually constituted by arranging one or more reinforcing fiber bundles in which many single fibers are bundled.
  • the total number of filaments (the number of single fibers) per reinforcing fiber bundle is preferably 1,000 to 2,000,000. From the viewpoint of productivity, the total number of reinforcing fibers is preferably 1,000 to 1,000,000, more preferably 1,000 to 600,000, and 1,000 to 300,000. Particularly preferred.
  • the upper limit of the total number of filaments per reinforcing fiber bundle may be determined in consideration of the balance between dispersibility and handleability so as to maintain good productivity, dispersibility, and handleability.
  • a single reinforcing fiber bundle is formed by bundling 1,000 to 50,000 single fibers of reinforcing fibers having an average diameter of preferably 5 to 10 ⁇ m.
  • thermoplastic resin used in the present invention examples include polyethylene terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, polytrimethylene terephthalate (PTT) resin, polyethylene naphthalate (PEN) resin, and liquid crystal polyester resin.
  • Polyester such as polyester, polyethylene (PE) resin, polypropylene (PP) resin, polybutylene resin, styrene resin, polyoxymethylene (POM) resin, polyamide (PA) resin, polycarbonate (PC) resin, poly Methylene methacrylate (PMMA) resin, polyvinyl chloride (PVC) resin, polyphenylene sulfide (PPS) resin, polyphenylene ether (PPE) resin, modified PPE resin, polyimide (PI) resin, polyamideimi (PAI) resin, polyetherimide (PEI) resin, polysulfone (PSU) resin, modified PSU resin, polyethersulfone resin, polyketone (PK) resin, polyarylene etherketone resin (PAEK), polyarylate (PAR) resin, Fluorine resins such as polyethernitrile (PEN) resin, phenolic resin, phenoxy resin and polytetrafluoroethylene resin, as well as polystyrene resin, polyolefin resin, poly
  • the polymer alloy is made of polyphenylene sulfide resin (PPS), polyarylene ether ketone resin (PAEK), polyether sulfone resin (PES), polyetherimide (PEI), liquid crystal polymer (LCP) And a polymer alloy obtained by combining two or more of the above resins is more preferable.
  • PPS polyphenylene sulfide resin
  • PAEK polyarylene ether ketone resin
  • PES polyether sulfone resin
  • PEI polyetherimide
  • LCP liquid crystal polymer
  • PAEK polyarylene ether ketone resin
  • PEEK polyether ketone
  • PEEK polyether ether ketone
  • PEEKK polyether ether ketone ketone
  • PEKK polyether ketone ketone
  • PEEK polyether ketone ether
  • PEEEK polyether diphenyl ether ketone
  • copolymers, modified bodies, and blends of two or more thereof Resin or the like may be used.
  • the polymer alloy forms a biphasic continuous structure having a structural period of 0.001 to 10 ⁇ m, or the polymer alloy forms a sea-island structure including an island phase having a particle diameter of 0.001 to 10 ⁇ m and a sea phase.
  • High mechanical properties and heat resistance can be achieved by controlling the structure to have a biphasic continuous structure in the range of 0.001 ⁇ m to 10 ⁇ m or a sea-island structure composed of an island phase and a sea phase having a particle size in the range of 0.001 to 1 ⁇ m.
  • a biphasic continuous structure in the range of 0.01 ⁇ m to 5 ⁇ m, or a sea-island structure composed of an island phase and a sea phase having a particle size in the range of 0.01 to 5 ⁇ m, and both in the range of 0.1 ⁇ m to 1 ⁇ m.
  • the phase continuity structure or the particle diameter in the range of 0.05 to 1 ⁇ m is more preferable.
  • thermoplastic resins for example, (i) a combination of a biphasic continuous structure and a sea-island structure, (ii) a combination of different types of biphasic continuous structures, and (iii) Various structures such as a continuous structure of a plurality of phases composed of three or more resins can be appropriately combined.
  • the scattering maxima in scattering measurements performed using a small-angle X-ray scattering device or light scattering device Confirmation of appearance is necessary.
  • the existence of a scattering maximum in this scattering measurement is a proof that a regular phase-separated structure having a certain period is present.
  • the period ⁇ m (nm) corresponds to the structural period in the case of a biphasic continuous structure, and in the case of a dispersed structure Corresponds to the distance between particles.
  • Equation 1 The value can be calculated by (Equation 1) using the wavelength ⁇ (nm) of the scattered light in the scatterer and the scattering angle ⁇ m (°) that gives the maximum scattering.
  • the uniformity of the structural period in the biphasic continuous structure of the polymer alloy or the uniformity of the interparticle distance in the dispersed structure is important. This uniformity can be evaluated by the above-mentioned small angle X-ray scattering measurement or light scattering measurement of the polymer alloy.
  • the size of the phase separation structure that can be analyzed is different. Therefore, it is necessary to appropriately use the phase separation structure size according to the size of the phase separation structure of the polymer alloy to be analyzed.
  • the small-angle X-ray scattering measurement and the light scattering measurement in addition to the structure period in the biphasic continuous structure or the size of the interparticle distance in the dispersed structure, information on the distribution thereof can be obtained.
  • the peak position of the scattering maximum in the spectrum obtained by these measurements that is, the scattering angle ⁇ m (°) corresponds to the structure period in the biphasic continuous structure or the size of the distance between particles in the dispersed structure, and the peak spread.
  • the scattering spectrum obtained by small-angle X-ray scattering measurement or light scattering measurement has a maximum value. It is characterized by.
  • the fiber-reinforced thermoplastic resin base material according to the present invention is obtained by impregnating a continuous fiber base material with the above-mentioned thermoplastic resin in a state where voids are left. It may contain a polymer, various additives and the like.
  • any one generally used as a resin filler can be used, which further improves the strength, rigidity, heat resistance, and dimensional stability of a fiber-reinforced thermoplastic resin base material and a molded product using the same. be able to.
  • the filler include glass fiber, carbon fiber, potassium titanate whisker, zinc oxide whisker, aluminum borate whisker, aramid fiber, alumina fiber, silicon carbide fiber, ceramic fiber, asbestos fiber, stone fiber, metal fiber, and the like.
  • Fibrous inorganic filler wollastenite, zeolite, sericite, kaolin, mica, talc, clay, pyrophyllite, bentonite, montmorillonite, asbestos, aluminosilicate, alumina, silicon oxide, magnesium oxide, zirconium oxide, titanium oxide, oxide Iron, calcium carbonate, magnesium carbonate, dolomite, calcium sulfate, barium sulfate, magnesium hydroxide, calcium hydroxide, aluminum hydroxide, glass beads, ceramic beads, boron nitride, silicon carbide, silica, etc.
  • the fibrous filler is made of discontinuous fibers, the function can be provided without impairing the reinforcing effect of the reinforcing fibers made of continuous fibers.
  • polymers include, for example, polyolefins such as polyethylene and polypropylene, elastomers such as polyamide elastomers and polyester elastomers, polyesters, polycarbonates, polyphenylene ethers, polyphenylene sulfides, liquid crystal polymers, polysulfones, polyether sulfones, ABS resins, and SAN resins. Resins, polystyrene and the like can be mentioned. Two or more of these may be contained.
  • polyolefins such as polyethylene and polypropylene
  • elastomers such as polyamide elastomers and polyester elastomers
  • polyesters polycarbonates
  • polyphenylene ethers polyphenylene sulfides
  • liquid crystal polymers polysulfones, polyether sulfones, ABS resins, and SAN resins.
  • Resins, polystyrene and the like can be mentioned. Two or more of these may be contained.
  • a modified polyolefin such as a (co) polymer of an olefin compound and / or a conjugated diene compound, a polyamide elastomer Impact modifiers such as polyester elastomers are preferably used.
  • Examples of the (co) polymer of the olefinic compound and / or the conjugated diene compound include an ethylene-based copolymer, a conjugated diene-based polymer, and a conjugated diene-aromatic vinyl hydrocarbon-based copolymer.
  • Examples of the ethylene-based copolymer include a copolymer of ethylene and an ⁇ -olefin having 3 or more carbon atoms, a non-conjugated diene, vinyl acetate, vinyl alcohol, ⁇ , ⁇ -unsaturated carboxylic acid and a derivative thereof.
  • Examples of the ⁇ -olefin having 3 or more carbon atoms include propylene and butene-1.
  • Non-conjugated dienes include, for example, 5-methylidene-2-norbornene, 5-ethylidene-2-norbornene, dicyclopentadiene, 1,4-hexadiene and the like.
  • Examples of the ⁇ , ⁇ -unsaturated carboxylic acid include acrylic acid, methacrylic acid, ethacrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, and butenedicarboxylic acid.
  • Examples of the derivatives of ⁇ , ⁇ -unsaturated carboxylic acids include alkyl esters, aryl esters, glycidyl esters, acid anhydrides, and imides of the aforementioned ⁇ , ⁇ -unsaturated carboxylic acids.
  • the conjugated diene-based polymer refers to a polymer of at least one conjugated diene.
  • the conjugated diene include 1,3-butadiene, isoprene (2-methyl-1,3-butadiene), 2,3-dimethyl-1,3-butadiene, and 1,3-pentadiene. Further, some or all of the unsaturated bonds of these polymers may be reduced by hydrogenation.
  • the conjugated diene-aromatic vinyl hydrocarbon-based copolymer refers to a copolymer of a conjugated diene and an aromatic vinyl hydrocarbon, and may be a block copolymer or a random copolymer.
  • the conjugated diene include 1,3-butadiene and isoprene.
  • the aromatic vinyl hydrocarbon include styrene. Further, some or all of the unsaturated bonds other than the double bond other than the aromatic ring of the conjugated diene-aromatic vinyl hydrocarbon-based copolymer may be reduced by hydrogenation.
  • impact modifiers include ethylene / methacrylic acid copolymers and those in which some or all of the carboxylic acid moieties in these copolymers are salts with sodium, lithium, potassium, zinc, calcium, Examples include an ethylene / propylene-g-maleic anhydride copolymer and an ethylene / butene-1-g-maleic anhydride copolymer.
  • antioxidants and heat stabilizers hindered phenols, hydroquinones, phosphites and their substitutes, copper halides, iodine compounds, etc.
  • weathering agents resorcinols, salicylates
  • Benzotriazoles Benzotriazoles
  • benzophenones hindered amines, etc.
  • release agents and lubricants aliphatic alcohols, aliphatic amides, aliphatic bisamides, bisureas, polyethylene waxes, etc.
  • pigments cadmium sulfide, phthalocyanine, carbon black, etc.
  • Dyes eg, nigrosine, aniline black
  • plasticizers eg, octyl p-oxybenzoate, N-butylbenzenesulfonamide
  • antistatic agents eg, alkyl sulfate-type anionic antistatic agents, and quaternary ammonium salt-type cationic charges
  • the fiber-reinforced thermoplastic resin base material according to the present invention can be obtained by impregnating a continuous fiber base material with a thermoplastic resin in a state where voids remain.
  • Examples of the impregnation method include, for example, a method of melting a film-like thermoplastic resin and impregnating the reinforcing fiber bundle with the thermoplastic resin by applying pressure, after blending the fibrous thermoplastic resin and the reinforcing fiber bundle, The commingle method in which the fibrous thermoplastic resin is melted and impregnated with the thermoplastic resin in the reinforcing fiber bundle by applying pressure, after the powdery thermoplastic resin is dispersed in the interstices of the fibers in the reinforcing fiber bundle, the powdered A powder method in which a thermoplastic resin is melted and pressurized to impregnate the reinforcing fiber bundle with the thermoplastic resin. The reinforcing fiber bundle is immersed in the molten thermoplastic resin and then pressurized to impregnate the reinforcing fiber bundle with the thermoplastic resin.
  • Drawing method The drawing method is preferable because various types of fiber-reinforced thermoplastic resin base materials having various thicknesses and fiber volume contents can be produced
  • the fiber-reinforced thermoplastic resin base material according to the present invention may be formed by laminating two or more continuous fiber base materials and impregnating a thermoplastic resin between the surface and the interlayer. Laminating two or more continuous fiber substrates facilitates size adjustment.
  • the fiber-reinforced thermoplastic resin base material it is preferable that 30% by volume or more and 70% by volume or less of the reinforcing fibers are contained in 100% by volume of the entire fiber-reinforced thermoplastic resin base material.
  • the strength of a molded product obtained by using the fiber-reinforced thermoplastic resin base material can be further improved. 40 volume% or more is more preferable, and 50 volume% or more is still more preferable.
  • the reinforcing fibers are contained at 70% by volume or less, the reinforcing fibers can be more easily impregnated with the thermoplastic resin. 65 volume% or less is more preferable, and 60 volume% or less is further preferable.
  • the reinforcing fiber volume content Vf (volume%) of the fiber-reinforced thermoplastic resin substrate is measured by measuring the mass W0 (g) of the fiber-reinforced thermoplastic resin substrate, and then the fiber-reinforced thermoplastic resin substrate is cooled by air.
  • the thermoplastic resin component was burned off by heating at a medium temperature of 500 ° C. for 30 minutes, and the mass W1 (g) of the remaining reinforcing fibers was measured and calculated by (Equation 2).
  • Vf (volume%) (W1 / ⁇ f) / ⁇ W1 / ⁇ f + (W0 ⁇ W1) / ⁇ 1 ⁇ ⁇ 100 ⁇ f: density of reinforcing fiber (g / cm 3 ) ⁇ r: density of thermoplastic resin (g / cm 3 )
  • voids are formed intermittently in the fiber orientation direction.
  • the voids are formed intermittently in the fiber orientation direction, the drapability of the fiber-reinforced thermoplastic resin is improved.
  • “intermittently” means not only that the voids are formed continuously in the fiber orientation direction, but also that some of the voids are locally filled with the thermoplastic resin, but the fiber-reinforced thermoplastic resin The whole material includes a state where voids are substantially connected.
  • the fiber-reinforced thermoplastic resin substrate of the present invention preferably has a void content (void ratio) of 10% to 60% contained in the fiber-reinforced thermoplastic resin substrate.
  • void ratio a void content of 10% to 60% contained in the fiber-reinforced thermoplastic resin substrate.
  • the void ratio is 10% or more, the drapability of the fiber-reinforced thermoplastic resin is improved.
  • the void ratio is 60% or less, cracks in the layer are reduced, and the handleability of the fiber-reinforced thermoplastic resin base material is improved.
  • the void ratio of the fiber-reinforced thermoplastic resin substrate in the present invention was determined by observing a cross section in the thickness direction of the fiber-reinforced thermoplastic resin substrate as follows. A sample in which a fiber-reinforced thermoplastic resin substrate was embedded with an epoxy resin was prepared, and the sample was polished until a cross section in the thickness direction of the fiber-reinforced thermoplastic resin substrate could be observed well. The polished sample was photographed at a magnification of 400 times using an ultra-depth color 3D shape measuring microscope VHX-9500 (controller unit) / VHZ-100R (measuring unit) (manufactured by Keyence Corporation).
  • VHX-9500 controller unit
  • VHZ-100R measuring unit
  • the photographing range was a range of thickness of fiber-reinforced thermoplastic resin substrate ⁇ width of 500 ⁇ m.
  • the cross-sectional area of the base material and the area of the void (void) were determined, and the void ratio was calculated by (Equation 3).
  • Void rate (%) (total area of site occupied by voids) / (total area of fiber-reinforced thermoplastic resin base material) ⁇ 100
  • the continuous fiber base material is impregnated with the thermoplastic resin in an amount of 20 ⁇ m or more and 60 ⁇ m or less.
  • the fiber-reinforced thermoplastic resin base material By impregnating the fiber-reinforced thermoplastic resin base material with 10 ⁇ m or more per side, cracks in the fiber layer are reduced, and the handleability of the fiber-reinforced thermoplastic resin can be improved.
  • the impregnation distance per one side of the fiber reinforced thermoplastic resin base material is 30 ⁇ m or less, the drapability of the fiber reinforced thermoplastic resin base material can be improved.
  • the impregnation distance is preferably 20% or more and 80% or less of the thickness of the fiber-reinforced thermoplastic resin base material.
  • the impregnation distance is 20% or more of the thickness of the fiber-reinforced thermoplastic resin base material, cracks in the fibers are reduced, and the handleability of the fiber-reinforced thermoplastic resin can be improved.
  • the impregnation distance is 80% or less of the thickness of the fiber-reinforced thermoplastic resin base material, the drape property of the fiber-reinforced thermoplastic resin base material can be improved.
  • the impregnation distance of the fiber-reinforced thermoplastic resin substrate in the present invention was determined by observing a cross section in the thickness direction of the fiber-reinforced thermoplastic resin substrate as follows.
  • a fiber-reinforced thermoplastic resin substrate as a sample is embedded in an epoxy resin “Epoquick” (registered trademark: manufactured by Bühler Co.), and cured at room temperature for 24 hours.
  • Epoquick registered trademark: manufactured by Bühler Co.
  • the orientation direction of the reinforcing fibers in the fiber-reinforced polymer alloy substrate Is polished, and then the polished surface is photographed with an ultra-depth color 3D shape measuring microscope VHX-9500 (controller) / VHZ-100R (manufactured by Keyence Corporation) while changing the position.
  • the distance between fibers is measured on both sides of the fiber reinforced thermoplastic resin substrate. Since the impregnation is performed on both surfaces of the base material, twice the average value of the inter-fiber distances measured for 100 reinforcing fiber single yarns 3 is set as a representative value (impregnation distance).
  • In measuring the thickness of the fiber-reinforced thermoplastic resin substrate in the present invention, a temperature and a pressure higher than the melting point were applied to the fiber-reinforced thermoplastic resin substrate to completely impregnate the resin. The thickness was measured at five or more points, and the average value was used as a representative value.
  • the fiber-reinforced thermoplastic resin substrate of the present invention has the entire surface of the continuous fiber substrate covered with the thermoplastic resin.
  • the thermoplastic resin covers the entire continuous fiber base material, the thermoplastic resin is uniformly present on the surface of the base material, and handleability and shapeability can be improved.
  • the alignment (straightness) of the reinforcing fibers is uniform in the fiber-reinforced thermoplastic resin substrate of the present invention.
  • the alignment (straightness) can be evaluated by an arbitrary method such as a sectional observation method or an ultrasonic flaw detection method.
  • the impregnation distance of the thermoplastic resin is preferably larger than the thickness of the thermoplastic resin tree forming the surface layer.
  • the impregnation distance is larger than the thickness of the thermoplastic resin forming the surface layer, handleability and shapeability can be improved.
  • the thickness of the thermoplastic resin forming the surface layer of the fiber-reinforced thermoplastic resin substrate in the present invention was determined by observing a cross section in the thickness direction of the fiber-reinforced thermoplastic resin substrate as follows.
  • a fiber-reinforced thermoplastic resin substrate as a sample is embedded in an epoxy resin “Epoquick” (registered trademark: manufactured by Bühler Co.), and cured at room temperature for 24 hours.
  • the orientation direction of the reinforcing fibers in the fiber-reinforced polymer alloy substrate Is polished, and then the polished surface is photographed with an ultra-depth color 3D shape measuring microscope VHX-9500 (controller) / VHZ-100R (manufactured by Keyence Corporation) while changing the position.
  • the distance is measured on both sides of the fiber reinforced thermoplastic resin substrate. Since the impregnation is performed on both surfaces of the base material, twice the average value of the distance measured for 100 reinforcing fiber single yarns 3 is set as a representative value (the thickness of the thermoplastic resin tree forming the surface layer).
  • a manufacturing apparatus for example, a creel portion capable of holding one or more bobbins wound with a reinforcing fiber bundle before impregnation with a matrix resin, a feed portion for continuously feeding a reinforcing fiber bundle from the creel portion, a continuous portion
  • the molten matrix resin is adhered to the reinforcing fiber bundle sent out, and is impregnated by applying pressure, while an impregnation die for shaping into a predetermined shape, and the molten matrix resin is cooled and solidified to form a fiber-reinforced thermoplastic resin base. It is composed of a cooling roll for forming the material.
  • the reinforcing fiber bundle continuously fed is heated to a temperature higher than the melting point or glass transition temperature of the thermoplastic resin, and the molten matrix resin is applied and impregnated.
  • the continuously delivered reinforcing fiber bundle usually has a thin layered form.
  • a plurality of bobbins around which a bundle of reinforcing fibers is wound by collecting 1,000 to 50,000 continuous monofilaments of reinforcing fibers are prepared.
  • the reinforcing fiber bundle is made to enter into the impregnation die in which the molten matrix resin is stored through a plurality of yarn path guides.
  • the layered reinforcing fiber bundle may be made to enter the impregnation die in a state of being laminated in two or more layers.
  • the impregnation die provided in the manufacturing apparatus is configured to face the direction in which the reinforcing fiber bundle is transferred, and the matrix resin supplied from the feeder is stored in a molten state inside the impregnation die.
  • an inlet hole through which the reinforcing fiber bundle can pass is formed, and through this inlet hole, the reinforcing fiber bundle passes through the inside of the impregnating die. Go into.
  • the inside of the impregnating die has a structure in which the cross-sectional area decreases intermittently in the direction of fiber advancement. A slit-shaped nozzle having a smaller cross-sectional area is formed.
  • the reinforcing fiber bundle is taken in the nozzle direction with the accompanying flow of the matrix resin, the pressure of the resin increases as approaching the nozzle direction, and the matrix resin is impregnated. It is also possible to introduce a plurality of reinforcing fiber bundles in the form of a single layer into an impregnation die for shaping to an arbitrary thickness, and to laminate the layers in a state where a matrix resin is attached and impregnated to each layer.
  • the molten matrix resin By continuously pulling out the reinforcing fiber bundle impregnated with the molten matrix resin from the impregnation die, before the matrix resin impregnated into the reinforcing fiber bundle is solidified, it is shaped into a predetermined shape, and then, in a cooling and solidifying step, Then, the molten matrix resin is cooled and solidified to form a fiber-reinforced thermoplastic resin having a predetermined shape.
  • a nozzle is provided at the outlet of the impregnating die, and the reinforcing fiber bundle that is pulled out by the take-off roll and impregnated with the matrix resin is shaped into a predetermined cross-sectional shape.
  • the shaped reinforcing fiber bundle is cooled and solidified by passing through a cooling roll or a cooling mold through which cooling water is passed, whereby the fiber-reinforced thermoplastic resin base material having a fixed shape is formed. Is formed.
  • the take-up tension of the reinforcing fiber bundle impregnated with the matrix resin is preferably 5 to 200 N, more preferably 5 to 150 N per 12,000 single fibers. If the take-up tension is less than 5N, the reinforcing fiber bundles are easily impregnated with the resin because the reinforcing fiber bundles are easily moved, thereby making it easy to overlap with the adjacent reinforcing fiber bundles or to form a gap between the adjacent fiber bundles. do not do. If it exceeds 200 N, the reinforcing fiber bundle converges, so that the impregnation property of the matrix resin decreases.
  • the take-up tension can be appropriately adjusted according to the setting conditions of the preliminary tension and the transport speed. The take-up tension can be increased by increasing the transport speed. Further, the take-up tension can be appropriately adjusted by the shape and arrangement of the rolls.
  • one or more fiber-reinforced thermoplastic resin substrates according to the present invention are laminated in an arbitrary configuration, and a part thereof is welded to obtain an integrated fiber-reinforced thermoplastic resin laminate.
  • the layers may be stacked in any direction, such as UD stacking, 0 ° / 90 ° stacking, and quasi-isotropic stacking.
  • the welding method includes a hot plate welding method in which a heated hot plate is pressed against the welded portion to melt and solidify the resin, a vibration welding method in which the resin that vibrates the welded portion is melted and solidified, and an ultrasonic vibration is applied to the welded portion to apply a matrix.
  • An ultrasonic vibration method that melts the resin is exemplified.
  • the ultrasonic welding method is preferable because it can cope with various sizes and can be efficiently heated.
  • a molded article is obtained by laminating one or more sheets of the fiber-reinforced thermoplastic resin substrate according to the present invention in an optional configuration and then applying heat and / or pressure as necessary. .
  • thermoplastic resin base material laminated in an arbitrary configuration in a mold or on a press plate, press molding in which the mold or the press plate is closed and pressed.
  • the fiber-reinforced thermoplastic resin substrate of the present invention or a molded product thereof is excellent in productivity such as insert molding, integrated molding such as outsert molding, correction treatment by heating, heat welding, vibration welding, and ultrasonic welding. Integration using a bonding method or an adhesive can be performed, and a composite can be obtained.
  • the molding substrate or its molded product integrated with the fiber-reinforced thermoplastic resin substrate of the present invention or its molded product for example, a resin material or its molded product, a metal material or its molded product, An inorganic material or a molded product thereof can be used.
  • the resin material, the molded product thereof, the metal material, or the molded product thereof can effectively exert the reinforcing effect of the fiber-reinforced thermoplastic resin substrate according to the present invention.
  • a resin material or a molded product thereof is preferable in terms of adhesive strength to a fiber-reinforced thermoplastic resin base material.
  • a fiber-reinforced resin obtained by impregnating a matrix resin into a reinforcing fiber mat having a fiber length of 5 to 100 mm is suitable for molding and mechanical properties.
  • high-tensile steel, an aluminum alloy, a titanium alloy, a magnesium alloy, or the like can be used, and may be selected according to the characteristics required for the metal layer, the metal member, and the metal component.
  • the matrix resin of the molding material or the molded product thereof integrated with the fiber-reinforced thermoplastic resin substrate of the present invention may be the same type of resin as the fiber-reinforced thermoplastic resin substrate or the molded product thereof, It may be a resin. In order to further increase the adhesive strength, it is preferable that the resins are of the same type. In the case of different kinds of resins, it is more preferable to provide a resin layer at the interface.
  • the fiber-reinforced thermoplastic resin substrate of the present invention or a molded article thereof is used for various purposes such as aircraft parts, automobile parts, electric / electronic parts, building members, various containers, daily necessities, household goods and sanitary goods, by utilizing its excellent properties.
  • the fiber-reinforced polymer alloy base material or the molded product thereof according to the present invention is, inter alia, an aircraft engine peripheral part where stable mechanical properties are required, an exterior part of an aircraft part, a vehicle skeleton as an automobile body part, an automobile engine peripheral part, It is particularly preferably used for automobile underhood parts, automobile gear parts, automobile interior parts, automobile exterior parts, intake / exhaust system parts, engine cooling water system parts, automobile electric parts, and electric / electronic parts.
  • the fiber-reinforced thermoplastic resin base material or the molded product thereof according to the present invention includes aircraft engine peripheral parts such as fan blades, landing gear pods, winglets, spoilers, edges, ladders, elevators, failings, ribs and the like.
  • Aircraft related parts various seats, front body, underbody, various pillars, various members, various frames, various beams, various supports, various rails, various kinds of automobile body parts such as hinges, engine covers, air intake pipes, timing belt covers , Intake manifold, Filler cap, Throttle body, Cooling fan and other peripheral parts of the automobile engine, Cooling fan, Radiator tank top and base, Cylinder head cover, Oil pan, Brake Automotive underhood parts such as piping, fuel piping tubes, exhaust gas system parts, gear parts, automotive gear parts such as gears, actuators, bearing retainers, bearing cages, chain guides, chain tensioners, shift lever brackets, steering lock brackets, key cylinders, doors Automobile interior parts such as inner handle, door handle cowl, interior mirror bracket, air conditioner switch, instrument panel, console box, glove box, steering wheel, trim, front fender, rear fender, fuel lid, door panel, cylinder head cover, door mirror stay, Tailgate panel, license garnish, roof rail, engine mount bracket, rear garnish Car, rear spoiler,
  • Vf (volume%) (W1 / ⁇ f) / ⁇ W1 / ⁇ f + (W0 ⁇ W1) / ⁇ 1 ⁇ ⁇ 100 ⁇ f: density of reinforcing fiber (g / cm 3 ) ⁇ r: density of resin composition (g / cm 3 )
  • the photographing range was a range of thickness of fiber-reinforced thermoplastic resin substrate ⁇ width of 500 ⁇ m.
  • the area of the site occupied by the fiber-reinforced thermoplastic resin substrate and the area of the site forming voids (voids) were determined, and the porosity was calculated by (Equation 5).
  • Void fraction (%) (total area of the portion occupied by voids) / (total area of fiber-reinforced thermoplastic resin base material) ⁇ 100
  • connection state of the voids was performed by observing the cross section in the thickness direction of the fiber-reinforced thermoplastic resin base material obtained in each of Examples and Comparative Examples as follows.
  • the cross section parallel to the orientation direction of the reinforcing fibers of the fiber reinforced thermoplastic resin substrate is measured using an ultra-depth color 3D shape measuring microscope VHX-9500 (controller unit) / VHZ-100R (measuring unit) (manufactured by Keyence Corporation). And observed at 200 ⁇ magnification.
  • the fiber reinforced thermoplastic resin substrate was divided into five equal parts in the width direction, and a cross section parallel to the reinforcing fiber orientation direction was observed over a length of 100 mm.
  • connection state of the voids of the fiber reinforced thermoplastic resin base material was evaluated in the following two stages, and a pass was evaluated as good. Good: There are four or more base materials with connected voids. Poor: Less than 4 base materials with voids connected at the same location.
  • Carbon fiber bundle T700S-12K manufactured by Toray Industries, Inc.
  • Thermoplastic resin Polyamide 6 and polyamide 6/66, "Amilan” (registered trademark) manufactured by Toray Industries, Inc.
  • Polyphenylene sulfide “Torelina” (registered trademark) manufactured by Toray Industries, Inc.
  • Polyetheretherketone “VICTREX” (registered trademark) manufactured by Victrex Japan Co., Ltd.
  • ULTEM registered trademark
  • Example 1 The raw materials having the composition shown in Table 1 were mixed and charged into a feed port of a twin-screw extruder.
  • Melt kneading was performed at a predetermined kneading temperature and screw rotation speed, and a strand-like molten resin was discharged from a discharge port.
  • the discharged strand-shaped molten resin was cooled by passing through a cooling bath, and cut while being taken up by a pelletizer to obtain a thermoplastic resin pellet-shaped sample.
  • the obtained thermoplastic resin was subjected to the above evaluation. Table 1 shows the evaluation results.
  • the drawn-out carbon fiber bundle passed through a cooling roll, where the polyamide 6 resin was cooled and solidified, and wound around a winder as a continuous fiber-reinforced thermoplastic resin base material.
  • the width of the obtained fiber-reinforced thermoplastic resin substrate was 50 mm, and the reinforcing fiber direction was arranged in one direction.
  • the obtained fiber reinforced thermoplastic resin substrate was subjected to the above evaluation. Table 1 shows the evaluation results.
  • Example 5 A fiber-reinforced thermoplastic resin base material was obtained in the same manner as in Example 1, except that the conditions for the matrix resin were changed to those shown in Table 1. The obtained fiber reinforced thermoplastic resin substrate was subjected to the above evaluation. Table 1 shows the evaluation results.
  • Comparative Example 1 Using carbon fibers as reinforcing fibers, six bobbins around which carbon fiber bundles were wound were prepared, and the carbon fiber bundles were continuously sent out from the bobbins through a thread guide. A charged matrix resin powder ("Amilan” (registered trademark): polyamide 6 manufactured by Toray Industries, Inc.) was electrostatically adhered to the continuously delivered carbon fiber bundle. The electrostatically adhered powder was heated above the melting point to impregnate the carbon fiber bundle with the matrix resin. The width of the obtained fiber-reinforced thermoplastic resin substrate was 50 mm, and the reinforcing fiber direction was arranged in one direction. The obtained fiber reinforced thermoplastic resin substrate was subjected to the above evaluation. Table 1 shows the evaluation results. By comparing Examples 1 to 5 with Comparative Example 1, the fiber-reinforced thermoplastic resin substrate of the present invention is excellent in handleability and shapeability.
  • the fiber-reinforced thermoplastic resin substrate according to the present invention can be formed into a desired shape by any molding method such as autoclave molding, press molding, and film molding.
  • Molded articles obtained by molding using the fiber-reinforced thermoplastic resin substrate according to the present invention include, for example, aircraft engine peripheral parts, aircraft interior parts, aircraft exterior parts, vehicle frames, automobile engine peripheral parts, automobile underhood parts, It is effective for automotive applications such as automobile gear parts, automobile interior parts, automobile exterior parts, intake / exhaust system parts, engine cooling water system parts, automobile electrical parts, and electric / electronic parts such as LED reflectors and SMT connectors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Composite Materials (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

連続した強化繊維からなる連続繊維基材と、その表面に塗布された熱可塑性樹脂とからなる繊維強化熱可塑性樹脂基材であって、前記熱可塑性樹脂が連続繊維基材の表面全体を固化した状態で被覆され、かつ連続繊維基材中に空隙を残した状態で含浸されてなり、前記空隙が繊維配向方向に断続的に形成される繊維強化熱可塑性樹脂基材およびそれを用いた積層品。熱可塑性樹脂をマトリックスとした繊維強化熱可塑性樹脂基材に関して、強化繊維の基材の表面を熱可塑性樹脂が高い均一性をもって被覆し、マトリックス樹脂が強化繊維基材に空隙を残した状態で均一に含浸されることで、高い賦形性と取り扱い性を有する繊維強化熱可塑性樹脂基材を提供する。

Description

繊維強化熱可塑性樹脂基材およびそれを用いた積層品
 本発明は、繊維強化熱可塑性樹脂基材およびそれを用いた積層品に関する。
 連続した強化繊維に熱可塑性樹脂を含浸させてなる繊維強化熱可塑性樹脂基材は、比強度、比剛性に優れ、軽量化効果が高い上に、耐熱性、耐薬品性が高いため、航空機、自動車等の輸送機器や、スポーツ、電気・電子部品などの各種用途へ好ましく用いられている。近年、軽量化に対する需要の高まりにより、航空機、自動車用途を中心に、金属部品から樹脂部品への代替や、部品の小型化、モジュール化が進みつつあることから、より成形性に優れる材料開発が求められている。
 例えば、成形性に優れた構造材用複合材料として、特許文献1には開繊された強化繊維で形成される強化繊維基材の外面部に樹脂を付着させその樹脂の融点以上に加熱して前記樹脂を前記強化繊維基材に含浸させた繊維強化樹脂中間体が提案されている。このような繊維強化樹脂中間材は外面に開口した空隙を有し、前記樹脂が半含浸状態にあるものであるため、賦形性と含浸性に富み、繊維強化樹脂中間材を積層し、加熱・加圧することにより、複雑な形状であっても所望の繊維体積含有率を有し、含浸が充分に行われボイドなどの欠陥の少ない繊維強化樹脂成形品を成形することができるとされている。
 また、特許文献2には複数本の強化繊維束を一方向に引き揃えた強化繊維シートに熱可塑性樹脂繊維を不織状態で布帛とした熱可塑性樹脂不織布を重ね合わせて加熱しつつ加圧することにより、熱可塑性樹脂不織布を溶融させ強化繊維束中に熱可塑性樹脂を空隙部分が存在する状態で含浸させて、熱可塑性樹脂によるセミプレグ状態としてなる繊維強化熱可塑性樹脂シートが提案されている。この繊維強化熱可塑性樹脂シートは、半含浸であるために繊維強化熱可塑性樹脂シートの製造にかかる時間を短縮でき、また柔軟である上に、繊維強化熱可塑性樹脂シートとしては半含浸ではあるが、強化繊維シートを薄くできることから、未含浸部分を少なくすることができ、最終成形品に加工する際の加熱しつつ加圧する時に十分含浸を完了させることができるとされる。
特開2016-078360号公報 特開2003-165861号公報
 しかしながら、特許文献1に記載される技術では、外部に開口した空隙を有することから賦形性は向上するものの、外部に開口を有することから樹脂が不均一に配置されるため成型時に樹脂リッチ部が生じやすい。また、強化繊維束の割れや積層時のずれなど取り扱い性の悪化が懸念される。
 また、特許文献2に記載の繊維強化熱可塑性樹脂シートは、繊維強化シートに重ねた熱可塑性樹脂繊維からなる布帛を加熱しつつ加圧して成形される。このため、この繊維強化熱可塑性樹脂シートにおいては、溶融した熱可塑性樹脂層が加圧されて圧密化されるため、部分的には空隙が形成されるものの含浸も進みやすく含浸部と空隙部が混在した状態になるので、強化繊維シート内の空気が抜け難くなり、成型品にボイドを形成しやすいという問題がある。
 そこで本発明の課題は、熱可塑性樹脂をマトリックスとした繊維強化熱可塑性樹脂基材に関して、強化繊維の基材の表面を熱可塑性樹脂が高い均一性をもって被覆し、マトリックス樹脂が強化繊維基材に空隙を残した状態で均一に含浸されることで、高い賦形性と取り扱い性を有する繊維強化熱可塑性樹脂基材を提供することにある。
 上記課題を解決するために、本発明は、主として、以下の構成を有する。
[1]連続した強化繊維からなる連続繊維基材と、その表面に塗布された熱可塑性樹脂とからなる繊維強化熱可塑性樹脂基材であって、前記熱可塑性樹脂が連続繊維基材の表面全体を固化した状態で被覆され、かつ連続繊維基材中に空隙を残した状態で含浸されてなり、前記空隙が繊維配向方向に断続的に形成されている繊維強化熱可塑性樹脂基材。
[2]含浸距離が20μm~60μmであり、かつ繊維強化熱可塑性樹脂基材厚みの20%~80%である[1]に記載の繊維強化熱可塑性樹脂基材
[3]前記熱可塑性樹脂の含浸距離が表層を形成する熱可塑性樹の厚みより大きい[1]または[2]に記載の繊維強化熱可塑性樹脂基材
[4]前記熱可塑性樹脂が、ポリフェニレンスルフィド樹脂(PPS)、ポリアリーレンエーテルケトン樹脂(PAEK)、ポリエーテルケトンケトン樹脂(PEKK)、ポリエーテルスルホン樹脂(PES)、ポリエーテルイミド(PEI)、液晶ポリマー(LCP)から選ばれる1種の熱可塑性樹脂または2種以上の樹脂を組合せたポリマーアロイである[1]~[3]のいずれかに記載の繊維強化熱可塑性樹脂基材。
[5]前記熱可塑性樹脂がポリマーアロイからなる[4]に記載の繊維強化熱可塑性樹脂基材。
[6]前記ポリマーアロイの構造周期が0.001~10μmの両相連続構造、または前記ポリマーアロイが粒子径0.001~10μmの島相と海相からなる海島構造を形成するポリマーアロイを含有する[4]または[5]に記載の繊維強化熱可塑性樹脂基材。
[7]前記連続繊維基材が2層以上積層された連続繊維基材積層体の表面及び層間に前記熱可塑性樹脂が塗布された[1]~[6]のいずれかに記載の繊維強化熱可塑性樹脂基材。
[8]前記繊維強化熱可塑性樹脂基材の空隙率が10%~60%の範囲内である[1]~[7]のいずれかに記載の繊維強化熱可塑性樹脂基材。
[9]前記強化繊維が炭素繊維である[1]~[8]のいずれかに記載の繊維強化熱可塑性樹脂基材。
[10][1]~[9]のいずれかに記載の繊維強化熱可塑性樹脂基材を積層し、部分的に溶着してなる積層品。
[11]前記溶着が超音波溶着である[10]に記載の積層品。
[12][1]~[11]のいずれかに記載の繊維強化熱可塑性樹脂基材からなる成形品。
[13][1]~[12]のいずれかに記載の繊維強化熱可塑性樹脂基材または[12]に記載の成形品と、金属材料またはその成形品、もしくは樹脂材料またはその成形品とを一体化してなる複合成形品。
 本発明によれば、連続繊維基材の表面を熱可塑性樹脂が高い均一性をもって被覆し、繊維方向に連続した空隙を残してマトリックス樹脂を含浸させることにより、高い取り扱い性と賦形性を有する繊維強化熱可塑性樹脂基材が得られる。
本発明の一実施態様に係る繊維強化熱可塑性樹脂基材の概略断面図である。
 以下に、本発明について、実施形態とともに詳細に説明する。
 本発明に係る繊維強化熱可塑性樹脂基材は、連続した強化繊維からなる連続繊維基材と、その表面に塗布された熱可塑性樹脂とからなる繊維強化熱可塑性樹脂基材であって、前記熱可塑性樹脂が連続繊維基材の表面全体を固化した状態で被覆され、かつ連続繊維基材中に空隙を残した状態で含浸されてなり、前記空隙が繊維配向方向に断続的に形成されたものである。
 本発明において、連続した強化繊維からなる連続繊維基材とは、繊維強化熱可塑性樹脂基材中で当該強化繊維が途切れのないものをいう。本発明における連続繊維基材の形態および配列としては、例えば、連続した強化繊維を一方向に引き揃えられたもの、織物(クロス)、編み物、組み紐、トウ等が挙げられる。中でも、特定方向の機械特性を効率よく高められることから、強化繊維を一方向に引き揃えられたものが好ましい。
 強化繊維の種類としては特に限定されず、炭素繊維、金属繊維、有機繊維、無機繊維が例示される。これらを2種以上用いてもよい。強化繊維に炭素繊維を用いることで、軽量でありながら高い機械特性を有する繊維強化熱可塑性樹脂基材が得られる。
 炭素繊維としては、例えば、ポリアクリロニトリル(PAN)繊維を原料とするPAN系炭素繊維、石油タールや石油ピッチを原料とするピッチ系炭素繊維、ビスコースレーヨンや酢酸セルロースなどを原料とするセルロース系炭素繊維、炭化水素などを原料とする気相成長系炭素繊維、これらの黒鉛化繊維などが挙げられる。これら炭素繊維のうち、強度と弾性率のバランスに優れる点で、PAN系炭素繊維が好ましく用いられる。
 金属繊維としては、例えば、鉄、金、銀、銅、アルミニウム、黄銅、ステンレスなどの金属からなる繊維が挙げられる。
 有機繊維としては、例えば、アラミド、ポリベンゾオキサゾール(PBO)、ポリフェニレンスルフィド、ポリエステル、ポリアミド、ポリエチレンなどの有機材料からなる繊維が挙げられる。アラミド繊維としては、例えば、強度や弾性率に優れるパラ系アラミド繊維と、難燃性、長期耐熱性に優れるメタ系アラミド繊維が挙げられる。パラ系アラミド繊維としては、例えば、ポリパラフェニレンテレフタルアミド繊維、コポリパラフェニレン-3,4’-オキシジフェニレンテレフタルアミド繊維などが挙げられ、メタ系アラミド繊維としては、ポリメタフェニレンイソフタルアミド繊維などが挙げられる。アラミド繊維としては、メタ系アラミド繊維に比べて弾性率の高いパラ系アラミド繊維が好ましく用いられる。
 無機繊維としては、例えば、ガラス、バサルト、シリコンカーバイト、シリコンナイトライドなどの無機材料からなる繊維が挙げられる。ガラス繊維としては、例えば、Eガラス繊維(電気用)、Cガラス繊維(耐食用)、Sガラス繊維、Tガラス繊維(高強度、高弾性率)などが挙げられる。バサルト繊維は、鉱物である玄武岩を繊維化した物で、耐熱性の非常に高い繊維である。玄武岩は、一般的に、鉄の化合物であるFeOまたはFeOを9~25重量%、チタンの化合物であるTiOまたはTiOを1~6重量%含有するが、溶融状態でこれらの成分を増量して繊維化することも可能である。
 本発明に係る繊維強化熱可塑性樹脂基材は、補強材としての役目を期待されることが多いため、高い機械特性を発現することが望ましく、高い機械特性を発現するためには、強化繊維として炭素繊維を含むことが好ましい。
 繊維強化熱可塑性樹脂基材において、連続繊維基材は、通常、多数本の単繊維を束ねた強化繊維束を1本または複数本並べて構成される。1本または複数本の強化繊維束を並べたときの、強化繊維束1本あたりの総フィラメント数(単繊維の本数)は、1,000~2,000,000本が好ましい。生産性の観点からは、強化繊維の総フィラメント数は、1,000~1,000,000本がより好ましく、1,000~600,000本がさらに好ましく、1,000~300,000本が特に好ましい。強化繊維束1本あたりの総フィラメント数の上限は、分散性や取り扱い性とのバランスも考慮して、生産性と分散性、取り扱い性を良好に保てるように決められればよい。
 1本の強化繊維束は、好ましくは平均直径5~10μmである強化繊維の単繊維を1,000~50,000本束ねて構成される。
 本発明に使用される熱可塑性樹脂としては例えば、ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリトリメチレンテレフタレート(PTT)樹脂、ポリエチレンナフタレート(PEN)樹脂、液晶ポリエステル樹脂等のポリエステルや、ポリエチレン(PE)樹脂、ポリプロピレン(PP)樹脂、ポリブチレン樹脂等のポリオレフィンや、スチレン系樹脂の他や、ポリオキシメチレン(POM)樹脂、ポリアミド(PA)樹脂、ポリカーボネート(PC)樹脂、ポリメチレンメタクリレート(PMMA)樹脂、ポリ塩化ビニル(PVC)樹脂、ポリフェニレンスルフィド(PPS)樹脂、ポリフェニレンエーテル(PPE)樹脂、変性PPE樹脂、ポリイミド(PI)樹脂、ポリアミドイミド(PAI)樹脂、ポリエーテルイミド(PEI)樹脂、ポリスルホン(PSU)樹脂、変性PSU樹脂、ポリエーテルスルホン樹脂、ポリケトン(PK)樹脂、ポリアリーレンエーテルケトン樹脂(PAEK)、ポリアリレート(PAR)樹脂、ポリエーテルニトリル(PEN)樹脂、フェノール系樹脂、フェノキシ樹脂、ポリテトラフルオロエチレン樹脂などのフッ素系樹脂、更にポリスチレン系樹脂、ポリオレフィン系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリブタジエン系樹脂、ポリイソプレン系樹脂、フッ素系樹脂等の熱可塑エラストマー等やこれらの共重合体、変性体、および2種以上ブレンドした樹脂などでであってもよい。とりわけ、機械特性および耐熱性の観点から、ポリマーアロイがポリフェニレンスルフィド樹脂(PPS)、ポリアリーレンエーテルケトン樹脂(PAEK)、ポリエーテルスルホン樹脂(PES)、ポリエーテルイミド(PEI)、液晶ポリマー(LCP)から選ばれる樹脂が好ましく、前記樹脂を2種以上組合せたポリマーアロイがさらに好ましい。
 前記ポリアリーレンエーテルケトン樹脂(PAEK)としては、例えば、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルエーテルケトンケトン(PEEKK)、ポリエーテルケトンケトン(PEKK)、ポリエーテルケトンエーテルケトンケトン(PEKEKK)、ポリエーテエーテルルケトンエーテルケトン(PEEKEK)、ポリエーテルエーテルエーテルケトン(PEEEK)、及びポリエーテルジフェニルエーテルケトン(PEDEK)等やこれらの共重合体、変性体、および2種以上ブレンドした樹脂などであってもよい。
 前記ポリマーアロイが、構造周期0.001~10μmの両相連続構造、または前記ポリマーアロイが粒子径0.001~10μmの島相と海相からなる海島構造を形成することが好ましい。0.001μm~10μmの範囲の両相連続構造、または粒子径0.001~1μmの範囲の島相と海相からなる海島構造に制御することにより、高い機械特性および耐熱性を発現できる。0.01μm~5μmの範囲の両相連続構造、または粒子径0.01~5μmの範囲の島相と海相からなる海島構造を形成することがより好ましく、0.1μm~1μmの範囲の両相連続構造、または粒子径0.05~1μmの範囲がさらに好ましい。
 3種以上の熱可塑性樹脂を組み合わせたポリマーアロイの場合には、例えば、(i)両相連続構造と海島構造の組合せ、(ii)異なる種類の両相連続構造が組み合わさったもの、(iii)3種以上の樹脂から構成される複数相の連続構造等、各種構造を適宜組み合わせることができる。
 またこれらの両相連続構造、もしくは分散構造を確認するためには、規則的な周期構造が確認されることが重要である。これは例えば、光学顕微鏡観察や透過型電子顕微鏡観察により、両相連続構造が形成されることの確認に加えて、小角X線散乱装置または光散乱装置を用いて行う散乱測定において、散乱極大が現れることの確認が必要である。この散乱測定における散乱極大の存在は、ある周期を持った規則正しい相分離構造を持つ証明であり、その周期Λm(nm)は、両相連続構造の場合、構造周期に対応し、分散構造の場合粒子間距離に対応する。またその値は、散乱光の散乱体内での波長λ(nm)、散乱極大を与える散乱角θm(°)を用いて(式1)により計算することができる。
(式1) Λm=(λ/2)/sin(θm/2)
 また、両相連続構造における構造周期または分散構造における粒子間距離のサイズが上記の範囲にあっても、一部構造的に粗大な部分などがあると、例えば衝撃を受けた際そこを起点として破壊が進行するなど、本来のポリマーアロイの特性が得られないことがある。したがって、ポリマーアロイの両相連続構造における構造周期または分散構造における粒子間距離の均一性が重要となる。この均一性は、上述のポリマーアロイの小角X線散乱測定または、光散乱測定により評価することが可能である。小角X線散乱測定と光散乱測定では、分析可能な相分離構造サイズが異なるので、分析するポリマーアロイの相分離構造サイズに応じて適宜使い分ける必要がある。小角X線散乱測定および光散乱測定は両相連続構造における構造周期または分散構造における粒子間距離のサイズに加え、その分布に関する情報が得られる。具体的には、それら測定で得られるスペクトルにおける散乱極大のピーク位置、すなわち散乱角θm(°)が両相連続構造における構造周期または分散構造における粒子間距離のサイズに対応し、そのピークの拡がり方が、構造の均一性に対応する。優れた機械特性等の物理特性を得るためには、構造均一性が高い方が好ましく、本発明におけるポリマーアロイは小角X線散乱測定または光散乱測定により得られた散乱スペクトルが極大値を有することを特徴とする。
 本発明に係る繊維強化熱可塑性樹脂基材は、連続繊維基材に、前述の熱可塑性樹脂が空隙を残した状態で含浸させたものであり、必要に応じて、さらに、充填材、他種ポリマー、各種添加剤などを含有してもよい。
 充填材としては、一般に樹脂用フィラーとして用いられる任意のものを用いることができ、繊維強化熱可塑性樹脂基材やそれを用いた成形品の強度、剛性、耐熱性、寸法安定性をより向上させることができる。充填材としては、例えば、ガラス繊維、炭素繊維、チタン酸カリウムウィスカ、酸化亜鉛ウィスカ、硼酸アルミニウムウィスカ、アラミド繊維、アルミナ繊維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維、金属繊維などの繊維状無機充填材、ワラステナイト、ゼオライト、セリサイト、カオリン、マイカ、タルク、クレー、パイロフィライト、ベントナイト、モンモリロナイト、アスベスト、アルミノシリケート、アルミナ、酸化珪素、酸化マグネシウム、酸化ジルコニウム、酸化チタン、酸化鉄、炭酸カルシウム、炭酸マグネシウム、ドロマイト、硫酸カルシウム、硫酸バリウム、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム、ガラスビーズ、セラミックビーズ、窒化ホウ素、炭化珪素、シリカなどの非繊維状無機充填材などが挙げられる。これらを2種以上含有してもよい。これら充填材は中空であってもよい。また、イソシアネート系化合物、有機シラン系化合物、有機チタネート系化合物、有機ボラン系化合物、エポキシ化合物などのカップリング剤で処理されていてもよい。また、モンモリロナイトとして、有機アンモニウム塩で層間イオンをカチオン交換した有機化モンモリロナイトを用いてもよい。なお、繊維状充填材は、不連続繊維からなるものであれば、連続繊維からなる強化繊維の補強効果を損なうことなく機能を付与できる。
 他種ポリマーとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリアミド系エラストマー、ポリエステル系エラストマーなどのエラストマーや、ポリエステル、ポリカーボネート、ポリフェニレンエーテル、ポリフェニレンスルフィド、液晶ポリマー、ポリスルホン、ポリエーテルスルホン、ABS樹脂、SAN樹脂、ポリスチレンなどを挙げることができる。これらを2種以上含有してもよい。ポリアミド樹脂組成物から得られる繊維強化末端変性ポリアミド樹脂基材の耐衝撃性を向上させるためには、オレフィン系化合物および/または共役ジエン系化合物の(共)重合体などの変性ポリオレフィン、ポリアミド系エラストマー、ポリエステル系エラストマーなどの耐衝撃性改良剤が好ましく用いられる。
 オレフィン系化合物および/または共役ジエン系化合物の(共)重合体としては、エチレン系共重合体、共役ジエン系重合体、共役ジエン-芳香族ビニル炭化水素系共重合体などが挙げられる。
 エチレン系共重合体としては、例えば、エチレンと、炭素数3以上のα-オレフィン、非共役ジエン、酢酸ビニル、ビニルアルコール、α,β-不飽和カルボン酸およびその誘導体などとの共重合体が挙げられる。炭素数3以上のα-オレフィンとしては、例えば、プロピレン、ブテン-1などが挙げられる。非共役系ジエンとしては、例えば、5-メチリデン-2-ノルボルネン、5-エチリデン-2-ノルボルネン、ジシクロペンタジエン、1,4-ヘキサジエンなどが挙げられる。α,β-不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、エタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、ブテンジカルボン酸などが挙げられる。α,β-不飽和カルボン酸の誘導体としては、例えば、前記α,β-不飽和カルボン酸のアルキルエステル、アリールエステル、グリシジルエステル、酸無水物、イミドなどが挙げられる。
 共役ジエン系重合体とは、少なくとも1種の共役ジエンの重合体を指す。共役ジエンとしては、例えば、1,3-ブタジエン、イソプレン(2-メチル-1,3-ブタジエン)、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエンなどが挙げられる。また、これらの重合体の不飽和結合の一部または全部が水添により還元されていてもよい。
 共役ジエン-芳香族ビニル炭化水素系共重合体とは、共役ジエンと芳香族ビニル炭化水素との共重合体を指し、ブロック共重合体でもランダム共重合体でもよい。共役ジエンとしては、例えば、1,3-ブタジエン、イソプレンなどが挙げられる。芳香族ビニル炭化水素としては、例えば、スチレンなどが挙げられる。また、共役ジエン-芳香族ビニル炭化水素系共重合体の芳香環以外の二重結合以外の不飽和結合の一部または全部が水添により還元されていてもよい。
 耐衝撃性改良剤の具体例としては、エチレン/メタクリル酸共重合体およびこれら共重合体中のカルボン酸部分の一部または全てをナトリウム、リチウム、カリウム、亜鉛、カルシウムとの塩としたもの、エチレン/プロピレン-g-無水マレイン酸共重合体、エチレン/ブテン-1-g-無水マレイン酸共重合体などが挙げられる。
 各種添加剤としては、例えば、酸化防止剤や耐熱安定剤(ヒンダードフェノール系、ヒドロキノン系、ホスファイト系およびこれらの置換体、ハロゲン化銅、ヨウ素化合物等)、耐候剤(レゾルシノール系、サリシレート系、ベンゾトリアゾール系、ベンゾフェノン系、ヒンダードアミン系等)、離型剤および滑剤(脂肪族アルコール、脂肪族アミド、脂肪族ビスアミド、ビス尿素およびポリエチレンワックス等)、顔料(硫化カドミウム、フタロシアニン、カーボンブラック等)、染料(ニグロシン、アニリンブラック等)、可塑剤(p-オキシ安息香酸オクチル、N-ブチルベンゼンスルホンアミド等)、帯電防止剤(アルキルサルフェート型アニオン系帯電防止剤、4級アンモニウム塩型カチオン系帯電防止剤、ポリオキシエチレンソルビタンモノステアレートなどの非イオン系帯電防止剤、ベタイン系両性帯電防止剤等)、難燃剤(メラミンシアヌレート、水酸化マグネシウム、水酸化アルミニウム等の水酸化物、ポリリン酸アンモニウム、臭素化ポリスチレン、臭素化ポリフェニレンオキシド、臭素化ポリカーボネート、臭素化エポキシ樹脂あるいはこれらの臭素系難燃剤と三酸化アンチモンとの組み合わせ等)などが挙げられる。これらを2種以上配合してもよい。
 本発明に係る繊維強化熱可塑性樹脂基材は、連続繊維基材に熱可塑性樹脂を空隙が残存した状態で含浸させることにより得ることができる。
 含浸方法としては、例えば、フィルム状の熱可塑性樹脂を溶融し、加圧することで強化繊維束に熱可塑性樹脂を含浸させるフィルム法、繊維状の熱可塑性樹脂と強化繊維束とを混紡した後、繊維状の熱可塑性樹脂を溶融し、加圧することで強化繊維束に熱可塑性樹脂を含浸させるコミングル法、粉末状の熱可塑性樹脂を強化繊維束における繊維の隙間に分散させた後、粉末状の熱可塑性樹脂を溶融し、加圧することで強化繊維束に熱可塑性樹脂を含浸させる粉末法、溶融した熱可塑性樹脂中に強化繊維束を浸し、加圧することで強化繊維束に熱可塑性樹脂を含浸させる引き抜き法が挙げられる。様々な厚み、繊維体積含有率など多品種の繊維強化熱可塑性樹脂基材を作製できることから、引き抜き法が好ましい。
 本発明に係る繊維強化熱可塑性樹脂基材は、連続繊維基材を2層以上積層し、その表面と層間に熱可塑性樹脂が含浸されていてもよい。連続繊維基材を2層以上積層することに寸法の調整が容易となる。
 本発明に係る繊維強化熱可塑性樹脂基材では、繊維強化熱可塑性樹脂基材全体100体積%中、強化繊維を30体積%以上70体積%以下含有することが好ましい。強化繊維を30体積%以上含有することにより、繊維強化熱可塑性樹脂基材を用いて得られる成形品の強度をより向上させることができる。40体積%以上がより好ましく、50体積%以上がさらに好ましい。一方、強化繊維を70体積%以下含有することにより、強化繊維に熱可塑性樹脂をより含浸させやすい。65体積%以下がより好ましく、60体積%以下がさらに好ましい。
 なお、繊維強化熱可塑性樹脂基材の強化繊維体積含有率Vf(体積%)は、繊維強化熱可塑性樹脂基材の質量W0(g)を測定したのち、該繊維強化熱可塑性樹脂基材を空気中500℃で30分間加熱して熱可塑性樹脂成分を焼き飛ばし、残った強化繊維の質量W1(g)を測定し、(式2)により算出した。
(式2) Vf(体積%)=(W1/ρf)/{W1/ρf+(W0-W1)/ρ1}×100
 ρf:強化繊維の密度(g/cm
 ρr:熱可塑性樹脂の密度(g/cm
 本発明における繊維強化熱可塑性樹脂基材は、空隙が繊維配向方向に断続的に形成される。空隙が繊維配向方向に断続的に形成されることにより、繊維強化熱可塑性樹脂のドレープ性が向上する。ここで「断続的に」とは、空隙が繊維配向方向に連続して形成されるだけでなく、空隙の一部が熱可塑性樹脂により局所的に充填されているものの、繊維強化熱可塑性樹脂基材全体としては、実質的に空隙が繋がった状態も含まれるものとする。
 本発明の繊維強化熱可塑性樹脂基材は繊維強化熱可塑性樹脂基材に含まれるボイドの含有率(ボイド率)が10%~60%であることが好ましい。ボイド率が10%以上であることにより、繊維強化熱可塑性樹脂のドレープ性が向上する。ボイド率が60%以下であることにより、層内割れが小さくなり、繊維強化熱可塑性樹脂基材の取り扱い性が向上する。
 本発明における繊維強化熱可塑性樹脂基材のボイド率は、繊維強化熱可塑性樹脂基材の厚み方向断面を以下のように観察して求めた。繊維強化熱可塑性樹脂基材をエポキシ樹脂で包埋したサンプルを用意し、繊維強化熱可塑性樹脂基材の厚み方向断面が良好に観察できるようになるまで、前記サンプルを研磨した。研磨したサンプルを、超深度カラー3D形状測定顕微鏡VHX-9500(コントローラー部)/VHZ-100R(測定部)((株)キーエンス製)を使用して、拡大倍率400倍で撮影した。撮影範囲は、繊維強化熱可塑性樹脂基材の厚み×幅500μmの範囲とした。撮影画像において、基材の断面積および空隙(ボイド)となっている部位の面積を求め、(式3)によりボイド率を算出した。
(式3) ボイド率(%)=(ボイドが占める部位の総面積)/(繊維強化熱可塑性樹脂基材の総面積)×100
 本発明に係る繊維強化熱可塑性樹脂基材では、熱可塑性樹脂は連続繊維基材中に20μm以上60μm以下含浸していることが好ましい。繊維強化熱可塑性樹脂基材の片面あたり10μm以上含浸することにより、繊維の層内割れが小さくなり、繊維強化熱可塑性樹脂の取扱性を向上することができる。一方、繊維強化熱可塑性樹脂基材の片面あたりの含浸距離が30μm以下であることにより、繊維強化熱可塑性樹脂基材のドレープ性を向上することができる。また、含浸距離は繊維強化熱可塑性樹脂基材厚みの20%以上80%以下であることが好ましい。含浸距離が繊維強化熱可塑性樹脂基材厚みの20%以上であることにより、繊維の層内割れが小さくなり、繊維強化熱可塑性樹脂の取扱性を向上することができる。一方、含浸距離が繊維強化熱可塑性樹脂基材厚みの80%以下であることにより、繊維強化熱可塑性樹脂基材のドレープ性を向上することができる。
 なお、本発明における繊維強化熱可塑性樹脂基材の含浸距離は、繊維強化熱可塑性樹脂基材の厚み方向断面を以下のように観察して求めた。試料である繊維強化熱可塑性樹脂基材を、エポキシ樹脂「エポクイック」(登録商標:ビューラー社製)に埋め込み、室温で24時間硬化させた後、繊維強化ポリマーアロイ基材における強化繊維の配向方向にほぼ垂直な横断面を研磨し、次いで研磨面を超深度カラー3D形状測定顕微鏡VHX-9500(コントローラー部)/VHZ-100R((株)キーエンス製)で、位置を変えながら撮影する。
(測定部)
 図1を用いて、含浸距離の測定方法を説明する。連続繊維基材の強化繊維単糸3の中心から基材表面6に向けて引いた垂線7の上に他の単糸が存在しない強化繊維単糸3を無作為に100本選択し、強化繊維単糸3の外周と垂線7の交点から含浸が完了した単糸の遠い側の外周までの距離を、画像処理を用いて測定する。
 繊維間距離の測定は繊維強化熱可塑性樹脂の基材両面に対して行われる。含浸は基材両面で行われるため、100本の強化繊維単糸3について測定された繊維間距離の平均値の2倍を代表値(含浸距離)とする。
 本発明における繊維強化熱可塑性樹脂基材の厚み測定に際し、繊維強化熱可塑性樹脂基材に融点以上の温度、圧力を付与し樹脂を完全に含浸させた。厚みを5点以上測定し、その平均値を代表値とした。
 本発明の繊維強化熱可塑性樹脂基材は連続繊維基材の表面全体を熱可塑性樹脂が被覆されていることが重要である。熱可塑性樹脂が連続繊維基材全体を覆うことにより、基材表面に均一に熱可塑性樹脂が存在し、取り扱い性、賦形性が向上できる。また、本発明の繊維強化熱可塑性樹脂基材は強化繊維のアライメント(真直性)が均一であることが好ましい。アライメント(真直性)が均一であることにより、機械特性およびドレープ性を安定して発現できる。アライメント(真直性)は断面観察法や超音波探傷法など任意の方法で評価できる。
 本発明に係る繊維強化熱可塑性樹脂基材では、熱可塑性樹脂の含浸距離が表層を形成する熱可塑性樹脂樹の厚みより大きいことが好ましい。含浸距離が表層を形成する熱可塑性樹脂の厚みより大きいことにより、取り扱い性と賦形性が向上できる。
 なお、本発明における繊維強化熱可塑性樹脂基材の表層を形成する熱可塑性樹脂の厚みは、繊維強化熱可塑性樹脂基材の厚み方向断面を以下のように観察して求めた。試料である繊維強化熱可塑性樹脂基材を、エポキシ樹脂「エポクイック」(登録商標:ビューラー社製)に埋め込み、室温で24時間硬化させた後、繊維強化ポリマーアロイ基材における強化繊維の配向方向にほぼ垂直な横断面を研磨し、次いで研磨面を超深度カラー3D形状測定顕微鏡VHX-9500(コントローラー部)/VHZ-100R((株)キーエンス製)で、位置を変えながら撮影する。
 図1を用いて、表層を形成する熱可塑性樹脂樹の厚みの測定方法を説明する。撮影された繊維強化熱可塑性樹脂基材の横断面写真について、連続繊維基材の強化繊維単糸3の中心から基材表面6に向けて引いた垂線7の上に他の単糸が存在しない強化繊維単糸3を無作為に100本選択し、強化繊維単糸3の外周と垂線の交点から繊維強化連続繊維基材の表面までの距離を、画像処理を用いて測定する。
 距離の測定は繊維強化熱可塑性樹脂の基材両面に対して行われる。含浸は基材両面で行われるため、100本の強化繊維単糸3について測定された距離の平均値の2倍を代表値(表層を形成する熱可塑性樹脂樹の厚み)とする。
 ここで、本発明に係る繊維強化熱可塑性樹脂基材の製造方法について詳細に説明する。製造装置としては、例えば、マトリックス樹脂を含浸させる前の強化繊維束が巻き取られたボビンを1つまたは複数保持できるクリール部、このクリール部から強化繊維束を連続的に送り出すフィード部、連続的に送り出された強化繊維束に、溶融したマトリックス樹脂を付着させ、圧力を加えて含浸するとともに、所定の形状へ賦形する含浸ダイ、溶融したマトリックス樹脂を冷却固化して繊維強化熱可塑性樹脂基材を形成するための冷却ロールから構成される。
 含浸工程では、連続的に送り出される強化繊維束に、熱可塑性樹脂の融点もしくはガラス転移温度以上に加熱し、溶融させたマトリックス樹脂を塗布し、含浸させる。連続的に送り出される強化繊維束は通常、薄い層状の形態を有している。製造装置において、強化繊維の連続した単繊維を1,000~50,000本集めて束状とした強化繊維束を巻き付けたボビンを複数準備し、これら複数のボビンから強化繊維束を引き出し、横に並べて全体として薄い層状(テープ状)の形態とし、複数の糸道ガイドを介して、強化繊維束を、溶融したマトリックス樹脂が貯留された含浸ダイ内に進入させる。また、層状の強化繊維束は2層以上に積層した状態で含浸ダイに進入させてもよい。層状の強化繊維束を2層以上に積層することにより、寸法の調整が容易となる。
 製造装置に備えられた含浸ダイは、強化繊維束の移送方向を向く構成となっており、この含浸ダイの内部には、フィーダーから供給されたマトリックス樹脂が溶融した状態で貯留されている。強化繊維束の移送方向において上流側に位置する含浸ダイの入口には、前記強化繊維束が通過可能な入口孔が形成されており、この入口孔を介して、強化繊維束は含浸ダイの内部に入ってゆく。含浸ダイ内部は繊維の進行方向に向けて断続的に断面積が減少する構成を有しており、含浸ダイの出口に位置し、樹脂貯留部の上面(強化繊維束の導入側)の断面積よりも小さい断面積を有するスリット状のノズルが形成されている。強化繊維束は、マトリックス樹脂の随伴流を伴ってノズル方向に引き取られることから、ノズル方向に近づくにつれて樹脂の圧力が増大し、マトリックス樹脂が含浸される。任意の厚みに賦形するために複数枚の強化繊維束を単層の状態で含浸ダイに導入し、各層にマトリックス樹脂を付着・含浸させた状態で積層することも可能である。
 溶融したマトリックス樹脂が含浸された強化繊維束を含浸ダイから連続して引き抜くことで、強化繊維束に含浸したマトリックス樹脂が固化する前に、所定の形状に賦形し、その後、冷却固化工程で、溶融したマトリックス樹脂を冷却固化し、一定形状の繊維強化熱可塑性樹脂を形成する。含浸ダイの出口にはノズルが設けられており、引取ロールによって引き出され、マトリックス樹脂が含浸した強化繊維束を、所定の断面形状に賦形させる。
 賦形された強化繊維束は、内部に冷却水が通水されている冷却ロールもしくは冷却金型を通過させることで、溶融したマトリックス樹脂が冷却固化され、一定形状の繊維強化熱可塑性樹脂基材が形成される。
 ここで、マトリックス樹脂を含浸した強化繊維束の引き取り張力は、単繊維12,000本当たり、好ましくは5~200N、より好ましくは5~150Nとする。引取張力が5N未満では、強化繊維束が動きやすくなることにより隣接する強化繊維束との重なりや隣接する繊維束との間でギャップを生じやすくなることにより、強化繊維束に均一に樹脂が含浸しない。また、200Nを超えると、強化繊維束が収束することにより、マトリックス樹脂の含浸性が低下する。引き取り張力は予備張力の設定条件や、搬送速度により適宜調整可能である。搬送速度を高めることで引き取り張力を高くすることができる。また、引き取り張力はロールの形状やロールの配置によって適宜調整可能である。
 本発明においては、本発明に係る繊維強化熱可塑性樹脂基材を、任意の構成で1枚以上積層し、一部を溶着することで一体化された繊維強化熱可塑性樹脂積層品が得られる。
 本発明においては、積層する構成としてUD積層、0°/90°積層、疑似等方積層などいずれの方向で積層されても良い。
 溶着する方法としては、溶着部に加熱した熱板を押し付け樹脂を溶融・固化させる熱板溶着法、溶着部を振動させる樹脂を溶融・固化させる振動溶着法、溶着部に超音波振動を与えマトリックス樹脂を溶融させる超音波振動法などがあげられる。様々なサイズに対応でき、効率よく加熱できることから超音波溶着法が好ましい。
 本発明においては、本発明に係る繊維強化熱可塑性樹脂基材を、任意の構成で1枚以上積層後、必要に応じて熱および/または圧力を付与しながら成形することにより成形品が得られる。
 熱および/または圧力を付与する方法としては、例えば、任意の構成で積層した繊維強化熱可塑性樹脂基材を型内もしくはプレス板上に設置した後、型もしくはプレス板を閉じて加圧するプレス成形法、型内部もしくはプレス機全体を減圧にした状態でプレス成形を行う真空プレス法、任意の構成で積層した繊維強化熱可塑性樹脂基材を型内もしくはプレス板上に任意の構成で積層した成形材料をオートクレーブ内に投入して加圧・加熱するオートクレーブ成形法、任意の構成で積層した成形材料をフィルムなどで包み込み、内部を減圧にして大気圧で加圧しながらオーブン中で加熱するバッギング成形法、任意の構成で積層した繊維強化ポリマーアロイ基材に張力をかけながらテープを巻き付け、オーブン内で加熱するラッピングテープ法、任意の構成で積層した繊維強化ポリマーアロイ基材を型内に設置し、同じく型内に設置した中子内に気体や液体などを注入して加圧する内圧成形法等が挙げられる。とりわけ、成型品内のボイドを少なくできることからオートクレーブ法もしくは真空プレスが好ましく用いられる。
 本発明の繊維強化熱可塑性樹脂基材またはその成形品は、インサート成形、アウトサート成形などの一体化成形や、加熱による矯正処置、熱溶着、振動溶着、超音波溶着などの生産性に優れた接着工法や接着剤を用いた一体化を行うことができ、複合体を得ることができる。
 本発明の繊維強化熱可塑性樹脂基材またはその成形品と一体化される成形用基材またはその成形品には特に制限はなく、例えば、樹脂材料またはその成形品、金属材料またはその成形品、無機材料またはその成形品などが挙げられる。なかでも、樹脂材料またはその成形品もしくは金属材料またはその成形品が本発明に係る繊維強化熱可塑性樹脂基材の補強効果を効果的に発現することができる。樹脂材料またはその成形品は繊維強化熱可塑性樹脂基材との接着強度の点で好ましく、繊維長が5~100mmの強化繊維マットにマトリックス樹脂を含浸してなる繊維強化樹脂が成形性と機械特性の点からより好ましい。金属材料またはその成形品としては、高張力鋼やアルミニウム合金、チタン合金およびマグネシウム合金等が使用可能であり、金属層や金属部材、金属部品に要求される特性に応じて選択すればよい。
 本発明の繊維強化熱可塑性樹脂基材と一体化される成形材料またはその成形品のマトリックス樹脂は、繊維強化熱可塑性樹脂基材またはその成形品と同種の樹脂であってもよいし、異種の樹脂であってもよい。接着強度をより高めるためには、同種の樹脂であることが好ましい。異種の樹脂である場合は、界面に樹脂層を設けるとより好適である。
 本発明の繊維強化熱可塑性樹脂基材またはその成形品は、その優れた特性を活かし、航空機部品、自動車部品、電気・電子部品、建築部材、各種容器、日用品、生活雑貨および衛生用品など各種用途に利用することができる。本発明における繊維強化ポリマーアロイ基材またはその成形品は、とりわけ、安定した機械特性が要求される航空機エンジン周辺部品、航空機用部品の外装部品、自動車ボディー部品としての車両骨格、自動車エンジン周辺部品、自動車アンダーフード部品、自動車ギア部品、自動車内装部品、自動車外装部品、吸排気系部品、エンジン冷却水系部品や、自動車電装部品、電気・電子部品用途に特に好ましく用いられる。
 具体的には、本発明における繊維強化熱可塑性樹脂基材またはその成形品は、ファンブレードなどの航空機エンジン周辺部品、ランディングギアポッド、ウィングレット、スポイラー、エッジ、ラダー、エレベーター、フェイリング、リブなどの航空機関連部品、各種シート、フロントボディー、アンダーボディー、各種ピラー、各種メンバ、各種フレーム、各種ビーム、各種サポート、各種レール、各種ヒンジなどの自動車ボディー部品、エンジンカバー、エアインテークパイプ、タイミングベルトカバー、インテークマニホールド、フィラーキャップ、スロットルボディ、クーリングファンなどの自動車エンジン周辺部品、クーリングファン、ラジエータータンクのトップおよびベース、シリンダーヘッドカバー、オイルパン、ブレーキ配管、燃料配管用チューブ、排ガス系統部品などの自動車アンダーフード部品、ギア、アクチュエーター、ベアリングリテーナー、ベアリングケージ、チェーンガイド、チェーンテンショナなどの自動車ギア部品、シフトレバーブラケット、ステアリングロックブラケット、キーシリンダー、ドアインナーハンドル、ドアハンドルカウル、室内ミラーブラケット、エアコンスイッチ、インストルメンタルパネル、コンソールボックス、グローブボックス、ステアリングホイール、トリムなどの自動車内装部品、フロントフェンダー、リアフェンダー、フューエルリッド、ドアパネル、シリンダーヘッドカバー、ドアミラーステイ、テールゲートパネル、ライセンスガーニッシュ、ルーフレール、エンジンマウントブラケット、リアガーニッシュ、リアスポイラー、トランクリッド、ロッカーモール、モール、ランプハウジング、フロントグリル、マッドガード、サイドバンパーなどの自動車外装部品、エアインテークマニホールド、インタークーラーインレット、ターボチャージャ、エキゾーストパイプカバー、インナーブッシュ、エンジンマウント、エンジンヘッドカバー、リゾネーター、及びスロットルボディなどの吸排気系部品、チェーンカバー、サーモスタットハウジング、アウトレットパイプ、ラジエータータンク、オルタネーター、及びデリバリーパイプなどのエンジン冷却水系部品、コネクタやワイヤーハーネスコネクタ、モーター部品、ランプソケット、センサー車載スイッチ、コンビネーションスイッチなどの自動車電装部品、電気・電子部品としては、例えば、発電機、電動機、変圧器、変流器、電圧調整器、整流器、抵抗器、インバーター、継電器、電力用接点、開閉器、遮断機、スイッチ、ナイフスイッチ、多極ロッド、モーターケース、テレビハウジング、ノートパソコンハウジングおよび内部部品、CRTディスプレーハウジングおよび内部部品、プリンターハウジングおよび内部部品、携帯電話、モバイルパソコン、ハンドヘルド型モバイルなどの携帯端末ハウジングおよび内部部品、ICやLED対応ハウジング、コンデンサー座板、ヒューズホルダー、各種ギア、各種ケース、キャビネットなどの電気部品、コネクタ、SMT対応のコネクタ、カードコネクタ、ジャック、コイル、コイルボビン、センサー、LEDランプ、ソケット、抵抗器、リレー、リレーケース、リフレクタ、小型スイッチ、電源部品、コイルボビン、コンデンサー、バリコンケース、光ピックアップシャーシ、発振子、各種端子板、変成器、プラグ、プリント基板、チューナー、スピーカー、マイクロフォン、ヘッドフォン、小型モーター、磁気ヘッドベース、パワーモジュール、SiパワーモジュールやSiCパワーモジュール、半導体、液晶、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダー、トランス部材、パラボラアンテナ、コンピューター関連部品などの電子部品などに好ましく用いられる。
 以下に実施例を示し、本発明を更に具体的に説明するが、本発明はこれら実施例の記載に限定されるものではない。各実施例および比較例における物性評価は下記の方法に準拠して実施した。
 [体積含有率(Vf)]
 各実施例および比較例により得られた繊維強化熱可塑性樹脂基材の質量W0を測定したのち、該繊維強化熱可塑性樹脂基材を空気中550℃で240分加熱して、樹脂成分を焼き飛ばし、残った強化繊維の質量W1を測定し、(式4)により繊維強化熱可塑性樹脂基材の体積含有率(Vf)を算出した。
(式4) Vf(体積%)=(W1/ρf)/{W1/ρf+(W0-W1)/ρ1}×100
 ρf:強化繊維の密度(g/cm
 ρr:樹脂組成物の密度(g/cm
 [空隙率および空隙の状態]
 各実施例および比較例により得られた繊維強化熱可塑性樹脂基材の厚み方向断面を以下のように観察した。繊維強化熱可塑性樹脂基材の強化繊維配向方向と垂直な横断面エポキシ樹脂で包埋したサンプルを用意し、繊維強化樹脂基材の厚み方向断面が良好に観察できるようになるまで、前記サンプルを研磨した。研磨したサンプルを、超深度カラー3D形状測定顕微鏡VHX-9500(コントローラー部)/VHZ-100R(測定部)((株)キーエンス製)を使用して、拡大倍率400倍で撮影した。撮影範囲は、繊維強化熱可塑性樹脂基材の厚み×幅500μmの範囲とした。撮影画像において、繊維強化熱可塑性樹脂基材が占める部位の面積および空隙(ボイド)となっている部位の面積を求め、(式5)により空隙率を算出した。
(式5) ボイド率(%)=(ボイドが占める部位の総面積)/(繊維強化熱可塑性樹脂基材の総面積)×100
 空隙の連結状態の観察は、各実施例および比較例により得られた繊維強化熱可塑性樹脂基材の厚み方向断面を以下のように観察した。繊維強化熱可塑性樹脂基材の強化繊維配向方向と平行な横断面を超深度カラー3D形状測定顕微鏡VHX-9500(コントローラー部)/VHZ-100R(測定部)((株)キーエンス製)を使用して、撮影倍率200倍で観察した。繊維強化熱可塑性樹脂基材は幅方向に5等分し、強化繊維配向方向と平行な横断面を100mm長さにわたって観察した。繊維強化熱可塑性樹脂基材の空隙の連結状態を以下の2段階で評価し、良を合格とした。
 良 :空隙が連結している基材が4個以上存在する。
 不良:同じ個所に空隙が連結している基材が4個未満存在する。
 [表面品位]
 各実施例および比較例により得られた繊維強化熱可塑性樹脂基材の表面品位を目視により観察した。表面品位は、以下の2段階で評価し、良を合格とした。
 良 :表面に割れ、強化繊維の露出なし
 不良:表面に割れ、強化繊維の露出有り
 [原料]
 実施例および比較例において、原料は以下に示すものを用いた。
炭素繊維束 :東レ(株)製 T700S-12K
熱可塑性樹脂:
 ポリアミド6およびポリアミド6/66、東レ(株)製“アミラン”(登録商標)
 ポリフェニレンスルフィド  東レ(株)製“トレリナ”(登録商標)
 ポリエーテルエーテルケトン ビクトレックス・ジャパン(株)製“VICTREX”(登録商標)
 ポリエーテルイミド     サビック(株)製“ULTEM”(登録商標)
Figure JPOXMLDOC01-appb-T000001
 (実施例1)
 表1に示す配合組成で、原料を混合し、二軸押出機のフィード口に投入した。二軸押出機としては、スクリュー径が25mm、L/D=41の同方向回転二軸押出機((株)パーカーコーポレーション社製、HK-25D(41D))を使用した。所定の混練温度、スクリュー回転数で溶融混錬を行い吐出口よりストランド状の溶融樹脂を吐出した。吐出されたストランド状の溶融樹脂を、冷却バスを通過させて冷却し、ペレタイザーにより引取ながら裁断することにより、熱可塑性樹脂のペレット状のサンプルを得た。得られた熱可塑性樹脂を前記評価に供した。評価結果を表1に示す。
 強化繊維として炭素繊維を使用し、炭素繊維束が巻かれたボビンを6本準備し、それぞれボビンから連続的に糸道ガイドを通じて炭素繊維束を送り出した。連続的に送り出された炭素繊維束を、充填したフィーダーから定量供給されたマトリックス樹脂(東レ(株)製“アミラン”(登録商標):ポリアミド6)が貯留された含浸ダイを通過させマトリックス樹脂を含浸させた。含浸ダイ内で樹脂圧によりマトリックス樹脂としてのポリアミド6樹脂を含浸した炭素繊維を、引取ロールを用いて含浸ダイのスリットから1m/minの引き抜き速度で連続的に引き抜いた。引き抜かれた炭素繊維束は、冷却ロールを通過してポリアミド6樹脂が冷却固化され、連続した繊維強化熱可塑性樹脂基材として巻取機に巻き取られた。得られた繊維強化熱可塑性樹脂基材の幅は50mmであり、強化繊維方向は一方向に配列していた。得られた繊維強化熱可塑性樹脂基材を前記評価に供した。評価結果を表1に示す。
 (実施例2~5)
 マトリックス樹脂を表1に示す条件に変更した以外は実施例1と同様にして繊維強化熱可塑性樹脂基材を得た。得られた繊維強化熱可塑性樹脂基材を前記評価に供した。評価結果を表1に示す。
 (比較例1)
 強化繊維として炭素繊維を使用し、炭素繊維束が巻かれたボビンを6本準備し、それぞれボビンから連続的に糸道ガイドを通じて炭素繊維束を送り出した。連続的に送り出された炭素繊維束に帯電させたマトリックス樹脂粉末(東レ(株)製“アミラン”(登録商標):ポリアミド6)を静電付着させた。静電付着した粉末を融点以上に加熱して炭素繊維束にマトリックス樹脂を含浸させた。得られた繊維強化熱可塑性樹脂基材の幅は50mmであり、強化繊維方向は一方向に配列していた。得られた繊維強化熱可塑性樹脂基材を前記評価に供した。評価結果を表1に示す。 実施例1~5と比較例1との比較により、本発明の繊維強化熱可塑性樹脂基材は取り扱い性と賦形性に優れる。
 本発明に係る繊維強化熱可塑性樹脂基材は、オートクレーブ成形、プレス成形、フィルム成形などの任意の成形方法により、所望の形状に成形することが可能である。本発明に係る繊維強化熱可塑性樹脂基材を用いた成形により得られる成形品は、例えば、航空機エンジン周辺部品、航空機内装部品、航空機外装部品、車両骨格、自動車エンジン周辺部品、自動車アンダーフード部品、自動車ギア部品、自動車内装部品、自動車外装部品、吸排気系部品、エンジン冷却水系部品、自動車電装部品などの自動車用途、LEDリフレクタやSMTコネクタなどの電気・電子部品用途などに有効である。
1 繊維強化熱可塑性樹脂基材
2 熱可塑性樹脂
3 強化繊維単糸
4 含浸距離
5 表層樹脂
6 基材表面
7 垂線

Claims (13)

  1.  連続した強化繊維からなる連続繊維基材と、その表面に塗布された熱可塑性樹脂とからなる繊維強化熱可塑性樹脂基材であって、前記熱可塑性樹脂が連続繊維基材の表面全体を固化した状態で被覆され、かつ連続繊維基材中に空隙を残した状態で含浸されてなり、前記空隙が繊維配向方向に断続的に形成されている繊維強化熱可塑性樹脂基材。
  2.  含浸距離が20μm~60μmであり、かつ繊維強化熱可塑性樹脂基材厚みの20%~80%である請求項1に記載の繊維強化熱可塑性樹脂基材。
  3.  前記熱可塑性樹脂の含浸距離が表層を形成する熱可塑性樹脂の厚みより大きい請求項1または2に記載の繊維強化熱可塑性樹脂基材。
  4.  前記熱可塑性樹脂が、ポリフェニレンスルフィド樹脂(PPS)ポリアリーレンエーテルケトン樹脂(PAEK)、ポリエーテルスルホン樹脂(PES)、ポリエーテルイミド(PEI)、液晶ポリマー(LCP)から選ばれる1種の熱可塑性樹脂または2種以上の樹脂を組合せたポリマーアロイである請求項1~3のいずれかに記載の繊維強化熱可塑性樹脂基材。
  5.  前記熱可塑性樹脂がポリマーアロイからなる請求項4に記載の繊維強化熱可塑性樹脂基材。
  6.  前記ポリマーアロイの構造周期が0.001~10μmの両相連続構造、または前記ポリマーアロイが粒子径0.001~10μmの島相と海相からなる海島構造を形成するポリマーアロイを含有する請求項1~5のいずれかに記載の繊維強化熱可塑性樹脂基材。
  7.  前記連続繊維基材が2層以上積層された連続繊維基材積層体の表面及び層間に前記熱可塑性樹脂が塗布された請求項1~6のいずれかに記載の繊維強化熱可塑性樹脂基材。
  8.  前記繊維強化熱可塑性樹脂基材の空隙率が10%~60%の範囲内である請求項1~7のいずれかに記載の繊維強化熱可塑性樹脂基材。
  9.  前記強化繊維が炭素繊維である請求項1~8のいずれかに記載の繊維強化熱可塑性樹脂基材。
  10.  請求項1~9のいずれかに記載の繊維強化熱可塑性樹脂基材を積層し、部分的に溶着してなる積層品。
  11.  前記溶着が超音波溶着である請求項10に記載の積層品。
  12.  請求項1~11のいずれかに記載の繊維強化熱可塑性樹脂基材からなる成形品。
  13.  請求項1~12のいずれかに記載の繊維強化熱可塑性樹脂基材または請求項10に記載の成形品と、金属材料またはその成形品、もしくは樹脂材料またはその成形品とを一体化してなる複合成形品。
PCT/JP2019/032395 2018-08-22 2019-08-20 繊維強化熱可塑性樹脂基材およびそれを用いた積層品 WO2020040121A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2019326170A AU2019326170A1 (en) 2018-08-22 2019-08-20 Fiber-reinforced thermoplastic resin substrate and laminate using same
KR1020217003807A KR20210045990A (ko) 2018-08-22 2019-08-20 섬유 강화 열가소성 수지 기재 및 그것을 사용한 적층품
BR112021001755-0A BR112021001755A2 (pt) 2018-08-22 2019-08-20 substrato de resina termoplástica reforçada com fibra e laminado usando o mesmo
CA3108462A CA3108462A1 (en) 2018-08-22 2019-08-20 Fiber-reinforced thermoplastic resin substrate and laminate using same
JP2019562674A JPWO2020040121A1 (ja) 2018-08-22 2019-08-20 繊維強化熱可塑性樹脂基材およびそれを用いた積層品
EP19851418.4A EP3842478A4 (en) 2018-08-22 2019-08-20 FIBER REINFORCED AND LAMINATED THERMOPLASTIC RESIN SUBSTRATE USING THE SAME
CN201980053444.2A CN112566964A (zh) 2018-08-22 2019-08-20 纤维增强热塑性树脂基材及使用其的层叠品
US17/269,870 US20210253813A1 (en) 2018-08-22 2019-08-20 Fiber-reinforced thermoplastic resin substrate and laminate using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-155451 2018-08-22
JP2018155451 2018-08-22

Publications (1)

Publication Number Publication Date
WO2020040121A1 true WO2020040121A1 (ja) 2020-02-27

Family

ID=69592661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032395 WO2020040121A1 (ja) 2018-08-22 2019-08-20 繊維強化熱可塑性樹脂基材およびそれを用いた積層品

Country Status (10)

Country Link
US (1) US20210253813A1 (ja)
EP (1) EP3842478A4 (ja)
JP (1) JPWO2020040121A1 (ja)
KR (1) KR20210045990A (ja)
CN (1) CN112566964A (ja)
AU (1) AU2019326170A1 (ja)
BR (1) BR112021001755A2 (ja)
CA (1) CA3108462A1 (ja)
TW (1) TW202022027A (ja)
WO (1) WO2020040121A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200862A1 (ja) * 2020-03-31 2021-10-07 Agc株式会社 複合体
CN115243880A (zh) * 2020-03-18 2022-10-25 东丽株式会社 层叠体及使用其的熔接体
WO2023080151A1 (ja) 2021-11-02 2023-05-11 出光興産株式会社 芳香族ポリエーテル、組成物、フィルム、粉体、ペレット、複合材料の製造方法及び複合材料
WO2023080153A1 (ja) 2021-11-02 2023-05-11 出光興産株式会社 芳香族ポリエーテル、組成物、フィルム、粉体、ペレット、複合材料の製造方法及び複合材料
EP4116081A4 (en) * 2020-03-02 2024-03-27 Mitsui Chemicals, Inc. THERMOPLASTIC RESIN SHEET REINFORCED BY UNI-DIRECTIONAL FIBERS AND METHOD FOR MANUFACTURING SAME

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2019304719A1 (en) * 2018-07-17 2021-01-14 Toray Industries, Inc. Fiber-reinforced polymer alloy substrate and molded article using same
CN113211835A (zh) * 2021-04-07 2021-08-06 韶关市盛益塑胶制品有限公司 一种吸塑包装膜自动生产工艺
CN113285175B (zh) * 2021-05-20 2022-12-06 东华大学 海岛型聚苯硫醚超细纤维纸基电池隔膜及其制备方法
CN113285174B (zh) * 2021-05-20 2022-11-11 东华大学 海岛型聚苯硫醚复合电池隔膜及其制备方法
US11950378B2 (en) * 2021-08-13 2024-04-02 Harbor Electronics, Inc. Via bond attachment
CN115418074A (zh) * 2022-05-20 2022-12-02 湖南碳导新材料科技有限公司 一种取向型多维填料增强聚醚酮酮复合材料及其制备方法
KR20240023303A (ko) 2022-08-12 2024-02-21 한화첨단소재 주식회사 연속섬유 직조물을 활용한 고물성 열가소성 복합소재의 제조방법 및 제조장치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003165861A (ja) 2001-11-29 2003-06-10 Aron Kasei Co Ltd 発泡ポリエステル樹脂成形品の製造方法
JP2010202824A (ja) * 2009-03-05 2010-09-16 Teijin Ltd 面状複合体
JP2010274560A (ja) * 2009-05-29 2010-12-09 Toray Ind Inc 加飾成形品
JP2011006578A (ja) * 2009-06-25 2011-01-13 Mitsubishi Plastics Inc 繊維・樹脂複合化シート及びfrp成形体
JP2015131394A (ja) * 2014-01-09 2015-07-23 東レ株式会社 繊維強化熱可塑性樹脂一体化構造体
JP2016078360A (ja) 2014-10-17 2016-05-16 株式会社日本製鋼所 繊維強化樹脂中間体及びその製造方法
JP2016531026A (ja) * 2013-07-30 2016-10-06 エルジー・ハウシス・リミテッドLg Hausys,Ltd. 連続繊維補強樹脂複合材およびその成形品
JP2018062103A (ja) * 2016-10-12 2018-04-19 トヨタ自動車株式会社 接合体の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4774839B2 (ja) * 2004-07-08 2011-09-14 東レ株式会社 繊維強化複合材料の製造方法
JP2006328292A (ja) * 2005-05-30 2006-12-07 Toray Ind Inc ハニカムコキュア用プリプレグおよび製造方法
KR101449232B1 (ko) * 2007-03-20 2014-10-08 도레이 카부시키가이샤 프리프레그 및 섬유 강화 복합 재료, 및 섬유 강화 성형 기재의 제조 방법
JP2012007425A (ja) * 2010-06-28 2012-01-12 Grow Kogyo:Kk 可撓開閉体及びそれを用いたシートシャッター装置
CN105073403B (zh) * 2013-04-02 2018-08-24 东丽株式会社 夹层层合体、夹层结构体和使用了该夹层结构体的一体化成型品及它们的制造方法
EP3521345A4 (en) * 2016-09-29 2020-06-03 Toray Industries, Inc. FIBER-REINFORCED THERMOPLASTIC RESIN BASE AND MOLDING OBTAINED FROM IT
BR112020007719A2 (pt) * 2017-11-07 2020-10-13 Toray Industries, Inc. filamento de resina termoplástica reforçada com fibra e artigo moldado do mesmo

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003165861A (ja) 2001-11-29 2003-06-10 Aron Kasei Co Ltd 発泡ポリエステル樹脂成形品の製造方法
JP2010202824A (ja) * 2009-03-05 2010-09-16 Teijin Ltd 面状複合体
JP2010274560A (ja) * 2009-05-29 2010-12-09 Toray Ind Inc 加飾成形品
JP2011006578A (ja) * 2009-06-25 2011-01-13 Mitsubishi Plastics Inc 繊維・樹脂複合化シート及びfrp成形体
JP2016531026A (ja) * 2013-07-30 2016-10-06 エルジー・ハウシス・リミテッドLg Hausys,Ltd. 連続繊維補強樹脂複合材およびその成形品
JP2015131394A (ja) * 2014-01-09 2015-07-23 東レ株式会社 繊維強化熱可塑性樹脂一体化構造体
JP2016078360A (ja) 2014-10-17 2016-05-16 株式会社日本製鋼所 繊維強化樹脂中間体及びその製造方法
JP2018062103A (ja) * 2016-10-12 2018-04-19 トヨタ自動車株式会社 接合体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3842478A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4116081A4 (en) * 2020-03-02 2024-03-27 Mitsui Chemicals, Inc. THERMOPLASTIC RESIN SHEET REINFORCED BY UNI-DIRECTIONAL FIBERS AND METHOD FOR MANUFACTURING SAME
CN115243880A (zh) * 2020-03-18 2022-10-25 东丽株式会社 层叠体及使用其的熔接体
CN115243880B (zh) * 2020-03-18 2024-02-02 东丽株式会社 层叠体及使用其的熔接体
WO2021200862A1 (ja) * 2020-03-31 2021-10-07 Agc株式会社 複合体
WO2023080151A1 (ja) 2021-11-02 2023-05-11 出光興産株式会社 芳香族ポリエーテル、組成物、フィルム、粉体、ペレット、複合材料の製造方法及び複合材料
WO2023080153A1 (ja) 2021-11-02 2023-05-11 出光興産株式会社 芳香族ポリエーテル、組成物、フィルム、粉体、ペレット、複合材料の製造方法及び複合材料

Also Published As

Publication number Publication date
CA3108462A1 (en) 2020-02-27
TW202022027A (zh) 2020-06-16
US20210253813A1 (en) 2021-08-19
KR20210045990A (ko) 2021-04-27
JPWO2020040121A1 (ja) 2021-08-10
CN112566964A (zh) 2021-03-26
AU2019326170A1 (en) 2021-02-25
BR112021001755A2 (pt) 2021-04-27
EP3842478A1 (en) 2021-06-30
EP3842478A4 (en) 2022-05-11

Similar Documents

Publication Publication Date Title
WO2020040121A1 (ja) 繊維強化熱可塑性樹脂基材およびそれを用いた積層品
JP7033271B2 (ja) 繊維強化熱可塑性樹脂基材およびそれを用いた成形品
JP7496058B2 (ja) 繊維強化ポリマーアロイ基材およびそれを用いた成形品
JPWO2020040121A5 (ja)
CN113727824B (zh) 3d打印机用纤维增强热塑性树脂长丝及其成型品
JP7284930B2 (ja) 繊維強化熱可塑性樹脂フィラメントおよびその成形品
JP7196464B2 (ja) 繊維強化熱可塑性樹脂基材およびそれを用いた成形品
JP7268467B2 (ja) 繊維強化熱可塑性樹脂フィラメントおよびその成形品
WO2021187043A1 (ja) 積層体およびそれを用いた溶着体
WO2023162811A1 (ja) 繊維強化熱可塑性樹脂フィラメントおよびその成形品
JP2022098043A (ja) 3dプリンタ用繊維強化熱可塑性樹脂フィラメントおよびその成形品
JP2022098042A (ja) 3dプリンタ用繊維強化熱可塑性樹脂フィラメントおよびその成形品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019562674

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851418

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3108462

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021001755

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019326170

Country of ref document: AU

Date of ref document: 20190820

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019851418

Country of ref document: EP

Effective date: 20210322

ENP Entry into the national phase

Ref document number: 112021001755

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210129