WO2020040038A1 - 自発光型スクリーン及び表示システム - Google Patents

自発光型スクリーン及び表示システム Download PDF

Info

Publication number
WO2020040038A1
WO2020040038A1 PCT/JP2019/032058 JP2019032058W WO2020040038A1 WO 2020040038 A1 WO2020040038 A1 WO 2020040038A1 JP 2019032058 W JP2019032058 W JP 2019032058W WO 2020040038 A1 WO2020040038 A1 WO 2020040038A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor layer
phosphor
layer
self
transparent substrate
Prior art date
Application number
PCT/JP2019/032058
Other languages
English (en)
French (fr)
Inventor
暢子 満居
幸宏 垰
玲美 川上
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2020040038A1 publication Critical patent/WO2020040038A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F13/00Illuminated signs; Luminous advertising
    • G09F13/18Edge-illuminated signs
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F13/00Illuminated signs; Luminous advertising
    • G09F13/20Illuminated signs; Luminous advertising with luminescent surfaces or parts
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)
  • Led Device Packages (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

安全性に優れた自発光型スクリーン及び表示システムを提供する。 蛍光体を含む蛍光体層11と、第1の透明基材12とを備え、蛍光体層11は、第1の透明基材12の第1の主面12aに接しており、第1の透明基材12は、単層構造、又はx個(xは2以上の整数である。)の層が積層された多層構造であり、下記式1を満たす、自発光型スクリーン。n2-n1>0 ・・・式1 ここで、n1は、第1の透明基材12が単層構造である場合は、第1の透明基材12の屈折率を示し、第1の透明基材12が多層構造である場合は、前記x個の層のうち最も第1の主面12a側の層の屈折率を示し、n2は、蛍光体層11のマトリックスの屈折率を示す。

Description

自発光型スクリーン及び表示システム
 本発明は、安全性に優れた自発光型スクリーン及び表示システムに関する。
 2枚のガラス板を中間膜で貼り合わせた合わせガラスは、自動車等の車両用窓ガラス、建築物用窓ガラス等として用いられる。
 近年、自動車用等のヘッドアップディスプレイ装置等として、図6に示すような、中間膜に蛍光体を含む合わせガラス110と、レーザ投光器120とを備える表示システム100が提案されている。合わせガラス110は自発光型スクリーンとして機能する。合わせガラス110にレーザ投光器120からレーザ光(励起光)が所定パターンで放射されると、レーザ光が放射された部分が発光し、映像が表示される。
 しかし、上記の表示システム100においては、レーザ投光器120と合わせガラス110との間に物体(手鏡等)が入り込み、この物体によってレーザ光が反射されることがある。反射されたレーザ光(レーザ反射光)は、視認者X(自動車の運転者等)の眼や肌に当たり、視認者Xを危険にさらすおそれがある。
 そこで、ガラス110及びレーザ投光器120と共に、蛍光体の発光放射を検出する光検出器と、光検出器が蛍光体の発光放射を検出しないとき、レーザ投光器120による放射を中断する制御ユニットとを設けた装置が提案されている(特許文献1、2)。
日本特表2014-531610号公報 日本特許第6316326号公報
 しかし、特許文献1~2の装置では、光検出器や制御ユニットが誤作動したときに視認者が危険にさらされるおそれがある。
 本発明の目的は、安全性に優れた自発光型スクリーン及び表示システムを提供することにある。
 本発明は、以下の態様を有する。
 〔1〕蛍光体を含む蛍光体層と、第1の透明基材とを備え、
 前記蛍光体層は、前記第1の透明基材の第1の主面に接しており、
 前記第1の透明基材は、単層構造、又はx個(xは2以上の整数である。)の層が積層された多層構造であり、かつ下記式1を満たすことを特徴とする自発光型スクリーン。
 n-n>0 ・・・式1
 ここで、nは、前記第1の透明基材が単層構造である場合は、前記第1の透明基材の屈折率を示し、前記第1の透明基材が多層構造である場合は、前記x個の層のうち最も前記第1の主面側の層の屈折率を示し、
 nは、前記蛍光体層のマトリックスの屈折率を示す。
 〔2〕前記蛍光体層が所定パターンで形成されている前記〔1〕の自発光型スクリーン。
 〔3〕蛍光体を含まない第1の非蛍光体層をさらに備え、
 前記蛍光体層は、前記第1の非蛍光体層の中に形成されており、前記蛍光体層及び前記
第1の非蛍光体層の両方が前記第1の透明基材の第1の主面に接しており、かつ下記式2を満たす前記〔2〕の自発光型スクリーン。
 n≧n ・・・式2
 ここで、nは前記と同義であり、nは、前記第1の非蛍光体層のマトリックスの屈折率を示す。
 〔4〕前記式2において、n=nである前記〔3〕の自発光型スクリーン。
 〔5〕前記第1の非蛍光体層上に、蛍光体を含まない第2の非蛍光体層をさらに備え、
 下記式3を満たす前記〔3〕又は〔4〕の自発光型スクリーン。
 n≧n ・・・式3
 ここで、nは前記と同義であり、nは、前記第2の非蛍光体層のマトリックスの屈折率を示す。
 〔6〕前記蛍光体層のマトリックス、前記第1の非蛍光体層のマトリックス及び前記第2の非蛍光体層のマトリックスからなる群より選ばれる1種以上の吸水率が0.8質量%以下である前記〔5〕の自発光型スクリーン。
 〔7〕前記第1の非蛍光体層のマトリックス成分と、前記第2の非蛍光体層のマトリックス成分とが同じである前記〔5〕又は〔6〕の自発光型スクリーン。
 〔8〕前記マトリックス成分が、加水分解性金属化合物の加水分解縮合物、樹脂、又はそれらの混合物を含む前記〔7〕の自発光型スクリーン。
 〔9〕前記蛍光体層の厚さが0.5~50μmである前記〔1〕~〔8〕のいずれかの自発光型スクリーン。
 〔10〕前記蛍光体が無機蛍光体を含む前記〔1〕~〔9〕のいずれかの自発光型スクリーン。
 〔11〕第2の透明基材をさらに備え、前記第2の透明基材は、前記蛍光体層の前記第1の透明基材側とは反対側に配置されている前記〔1〕~〔10〕のいずれかの自発光型スクリーン。
 〔12〕前記第1の透明基材及び前記第2の透明基材の少なくとも一方が紫外線吸収ガラス基材を含む前記〔11〕の自発光型スクリーン。
 〔13〕蛍光体を含む蛍光体層と、蛍光体を含まない第1の非蛍光体層とを備え、前記蛍光体層は、所定パターンで前記第1の非蛍光体層の中に形成されており、下記式4を満たす、自発光型スクリーン。
 n≧n ・・・式4
 ここで、nは、前記蛍光体層のマトリックスの屈折率を示し、nは、前記第1の非蛍光体層のマトリックスの屈折率を示す。
 〔14〕全光線透過率が50~90%であり、かつヘーズが0.1~20%である前記〔1〕~〔13〕のいずれかの自発光型スクリーン。
 〔15〕前記〔1〕~〔14〕のいずれかの自発光型スクリーンと、発光装置とを備え、前記発光装置は、前記自発光型スクリーンの端部に配置されている表示システム。
 本発明によれば、映像を表示させるための光の反射光が視認者を危険にさらすおそれがなく、安全性に優れた自発光型スクリーン及び表示システムを提供できる。
第一実施形態に係る表示システムの模式断面図である。 第二実施形態に係る表示システムの模式断面図である。 第二実施形態に係る表示システムの変形例の模式断面図である。 第三実施形態に係る表示システムの模式断面図である。 第四実施形態に係る表示システムの模式断面図である。 第四実施形態に係る表示システムの変形例の模式断面図である。 本発明の表示システムを備えた自動車の一例を示す模式斜視図である。 従来の表示システムの構成を示す模式図である。
 以下、本発明の自発光型スクリーン及び表示システムについて、添付の図面を参照し、実施形態を示して説明する。なお、図1~6における寸法比は、説明の便宜上のものであり、実際のものとは異なったものである。
 本明細書及び特許請求の範囲において、「屈折率」は、ナトリウムランプのd線(波長589nm)を用いて25℃で測定したときの値である。
 数値範囲を示す「~」は、その前後に記載された数値を下限値及び上限値として含むことを意味する。下限値及び上限値の単位が同じの場合、上限値の単位を省略して示す場合がある。
〔第一実施形態〕
 図1は、本発明の第一実施形態に係る表示システム1の模式断面図である。
 本実施形態の表示システム1は、スクリーン10(自発光型スクリーン)と、発光装置90とを備える。スクリーン10は、蛍光体層11と、第1の透明基材12とを備える。
 蛍光体層11は、第1の透明基材12の第1の主面12aに接している。また、蛍光体層11は、所定パターンで形成されている。
 発光装置90は、スクリーン10の端部(エッジ)に配置されている。したがって、スクリーン10は、スクリーン10の端部に、発光装置90が配置される発光装置配置部を有する。本実施形態では、発光装置90は、第1の透明基材12の側端面、つまり厚さ方向と直交する方向の端面に接している。
(第1の透明基材)
 第1の透明基材12は、単層構造及び多層構造のいずれでもよい。多層構造は、x個の層が積層された構造である。xは2以上の整数である。xの上限は例えば5である。多層構造においては、前記x個の層のうち第1の主面12a側からi番目(iは1以上(x-1)以下の整数である。)の層の屈折率をnとしたときに、nとni+1との差(n-ni+1)は、特に制限はないが、例えば0以上であることが好ましい。すなわち、n≧ni+1であることが好ましい。n≧ni+1であれば、各層の側端面から入射した光が、第1の主面12a側とは反対側の層に伝播されることを抑制できる。
 第1の透明基材12が単層構造である場合に第1の透明基材12を構成する材料、及び第1の透明基材12が多層構造である場合に前記x個の層のうち最も第1の主面12a側の層を構成する材料は、以下の屈折率nが後述する式1を満たすように選定される。
 n:第1の透明基材12が単層構造である場合は、第1の透明基材12の屈折率を示し、第1の透明基材12が多層構造である場合は、前記x個の層のうち最も第1の主面12a側の層の屈折率を示す。
 nとしては、式1を満たす限り特に制限はないが、1.35~1.60であってよく、さらには1.45~1.55が好ましい。
 第1の透明基材12としては、ガラス基材、透明樹脂基材、これらの基材の一方面又は両面に機能層が積層された機能層付きガラス基材若しくは透明樹脂基材、これらの基材の少なくとも1種が複数積層された積層体等が挙げられる。前記積層体において、複数の基材は直接積層されてもよく接着層を介して積層されてもよい。接着層としては、例えば、後述する第四実施形態における第1の接着層と同様のものが挙げられる。
 ガラス基材を構成するガラスとしては、特に限定されず、例えばソーダライムガラス、無アルカリガラス、ホウケイ酸ガラス、アルミノケイ酸塩ガラスが挙げられる。ガラス基材は、機械的強度を向上させるために、化学強化ガラス、物理強化ガラス等の強化ガラス基材であってもよい。軽量性と強度との両立の点から、化学強化ガラス基材が好ましい。
 ガラス基材は、紫外線(以下、UVとも記す。)吸収ガラス基材であってもよい。UV吸収ガラス基材とは、UV吸収剤を含むガラス基材を意味する。第1の透明基材12がUV吸収ガラス基材を含むものであれば、発光装置90以外の光源からの光、例えば太陽光等によって蛍光体が発光したり劣化したりすることを抑制できる。加えて、外部への励起光の漏れも抑制できる。
 UV吸収剤としては、波長400nm以上の紫外線を吸収可能なものであればよく、種々のUV吸収剤の中から適宜選択し得る。UV吸収剤は、波長400nm以外の紫外線、例えば波長400nm未満の紫外線も吸収可能なものであってもよい。また、紫外線のみでなく、発光装置90から放出される波長をも吸収可能であると、上述した外光からの光による蛍光体層の発光及び発光装置90からの光の表示システム外への放出の両方を抑制できるため、さらに好ましい。このとき、UV吸収剤は、波長450nm以下の紫外線を吸収可能なものであると好ましく、波長430nm以下の紫外線を吸収可能なものであると可視光線透過率も保持できるため、より好ましい。
 ガラス基材に積層し得る機能層としては、低屈折率層(シリケート層、フッ化物層等)やUV吸収層等が挙げられる。
 透明樹脂基材を構成する透明樹脂としては、例えば硬化性樹脂の硬化物や熱可塑性樹脂が挙げられ、熱可塑性樹脂が好ましい。熱可塑性樹脂としては、ポリカーボネート、熱可塑性ポリエステル(ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリメチルメタクリレート等が挙げられる。
 透明樹脂基材に積層し得る機能層としては、ハードコート層、低屈折率層(シリケート層、フッ化物層等)やUV吸収層等が挙げられる。
 このとき、第1の透明基材12上にUV吸収層が積層される場合には、当該UV吸収層と蛍光体層11との間に、蛍光体層11よりも低屈折率の層を備えておくことが好ましい。
 第1の透明基材12は、耐久性が優れる点から、ガラス基材を含むことが好ましい。
 ガラス基材を含む第1の透明基材12の具体例としては、ガラス基材、シリケート層/ガラス基材、ポリエチレンテレフタレート基材/接着層/ガラス基材、ガラス基材/UV吸収層等が挙げられる。ここで、シリケート層/ガラス基材は、第1の主面12a側から、シリケート層とガラス基材とがこの順に積層された基材を示す。他の基材も同様である。
 第1の透明基材12としては、スクリーン10に表示された映像の視認性及びスクリーン10の向こう側の光景の視認性の点から、複屈折がないものが好ましい。第1の透明基材12は、平板状でもよく、湾曲部を有する形状であってもよい。
 第1の透明基材12の厚さは、その機械的強度が保たれる厚さであればよい。その厚さは、例えば0.5mm以上であってよく、1mm以上であってよく、2mm以上であってよい。また、その厚さは、例えば10mm以下であってよく、5mm以下であってよい。
 第1の透明基材12は、発光装置90が放射する光の透過率、つまり蛍光体層11中の蛍光体を励起させる励起光の透過率が、50%以上であることが好ましく、80%以上であることがより好ましい。励起光の透過率が前記下限値以上であれば、第1の透明基材12に入射した励起光が充分に蛍光体層11に伝播し、蛍光体層11の発光強度が充分に強くなり、映像の視認性がより優れる。
 一方で、第1の透明基材12として、励起光の透過率が0~20%の基材(以下、低透過率基材ともいう。)を用いてもよい。このとき、低透過率基材の励起光の透過率は、5~15%であることがより好ましい。
 励起光の波長の光の透過率は、分光光度計を使用して測定される。
 第1の透明基材12の可視光線透過率は、80%以上が好ましく、85%以上がより好ましい。可視光線透過率が前記下限値以上であれば、スクリーン10に表示された映像を第1の透明基材12側から視認する場合に、映像の視認性がより優れる。
 第1の透明基材12の可視光線透過率は、次の方法によって求められる。
 分光光度計を使用して、入射角0゜で入射した入射光に対する、もう一方の面に透過した全透過光のうち、波長380nm~780nmにおける分光透過率を測定する。この測定値に、CIE昼光D65のスペクトルと視感度の波長分布から得られる重化係数を乗じて、平均することにより、可視光線透過率が求められる。
 「入射角」は、光の入射方向と、光の入射面の法線とがなす角度である。
 ここで、第1の透明基材12として、有効光路長が25~200cmであり、厚さが0.5~10mmであり、前記有効光路長での、可視光域の平均内部透過率が80%以上であり、かつ、JIS Z 8701(附属書)でのXYZ表色系における三刺激値のY値が90%以上のガラス板を用いてもよい。当該ガラス板を用いた場合、光の利用効率を高められる。ここで、有効光路長とは、光が入射する端面から反対側の端面までの距離を指し、図1に示す第1の透明基材12の場合、第1の主面12aに対して水平方向の長さに相当する。
(蛍光体層)
 蛍光体層11は、蛍光体を含む。また、蛍光体層11のマトリックスの屈折率nは後述する式1を満たす。
 nとしては、式1を満たす限り特に制限はないが、1.4~2.0であってよく、さらには1.45~1.80であってよい。
 蛍光体層11は、典型的には、蛍光体以外に、蛍光体層11のマトリックスを形成する成分(以下、マトリックス成分とも記す。)を含む。
 蛍光体層11がマトリックス成分を含む場合、蛍光体は、マトリックス成分と相溶するものでもよく、マトリックス成分と相溶しないものであってもよい。蛍光体がマトリックス成分と相溶する場合、蛍光体は、蛍光体層11のマトリックスに溶解する。蛍光体がマトリックス成分と相溶しない場合、蛍光体は、蛍光体層11のマトリックスに溶解せず、マトリックス中に分散する。
 蛍光体としては、種々の蛍光体の中から適宜選定でき、例えば(A)希土類錯体、(B)蛍光染料、(C)半導体ナノ粒子、(D)無機蛍光体等が挙げられる。(A)~(D)のうちの2種以上を併用して発光色調を調整してもよい。さらに、(A)又は(B)を顔料化したものであってもよい。
 このとき、色調の異なる蛍光体からなる複数のパターンを作成して、複数色表示を行えるようにしてもよい。さらには、異なる励起波長を有する蛍光体からなる複数のパターンを作製して、発光装置90から複数波長の光を照射した際に複数パターンの表示を行えるようにしてもよい。
 上記(A)希土類錯体としては、発光装置90からの入射光で蛍光発光する希土類錯体であって、蛍光体層11の透明性を維持し得るものが好ましい。例えば、Eu錯体、Sm錯体、Pr錯体、Tb錯体化合物等の希土類錯体化合物が好ましい。なかでも、蛍光体層11の透明性を損なうことなく、少量配合で良好な蛍光発光特性を示すことから、Eu錯体、Tb錯体等の希土類錯体化合物を用いることが好ましい。
 具体的な希土類錯体化合物としては、トリス(3,4,7,8-テトラメチル-1,10-フェナントロリナート)イリジウム(III)、トリス(2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリナート)イリジウム(III)六フッ化リン酸三塩、トリス(トリフルオロアセチルアセトナート)テルビウム(III)、トリス(トリフルオロアセチルアセトナート)モノ(1,10-フェナントロリナート)テルビウム(III)、トリス(4,4,4-トリフルオロ-1-(2-チエニル)-1,3-ブタンジオネート-O,O’)ビス(トリフェニルホスフィンオキシド-O-)ユーロピウム)、トリス[4,4,4-トリフロロ-1-(2-チエニル)-1,3-ブタンジオナト-0,0’](安息香酸)ユウロピウム、トリス[1,1,5,5,5-ヘキサフロロ-1,3-ペンタンジオナト-0,0’]ビス(トリフェニルホスフィンオキシド-O-)ユウロピウム、トリス(トリフルオロアセチルアセトナート)モノ(1,10-フェナントロリナート)ユーロピウム(III)、トリス(ヘキサフルオロアセチルアセトナート)モノ(1,10-フェナントロリナート)ユーロピウム(III)が挙げられる。
 これらの希土類錯体は、2種以上を併用して発光色調を調整してもよい。
 上記(B)蛍光染料としては、例えば、(カルバゾール-ナフタルイミド)、(アセトニトリル-トリフェニレンアミン)、アリールスルホネートシアニン、ペリレン、クマリン、トリス(4,4,4-トリフルオロ-1-(2-チエニル)-1,3-ブタンジオネート-O,O’)ビス(トリフェニルフォスフィンオキシド-O-)ユーロピウムが挙げられる。
 蛍光染料は、2種以上、例えば青色系蛍光染料、緑色系蛍光染料及び赤色系蛍光染料からなる群から選ばれる2種以上の蛍光染料を組み合わせてもよい。青色系蛍光染料としては、例えば、ナフタルイミド系材料、4,4’-ビス(2-ベンゾオキサゾリル)スチルベン、2,5-ジヒドロキシテレフタル酸ジエチルが挙げられる。緑色系蛍光染料としては、例えば、2-(3-オキソインドリン-1-イリデン)メチルキノリンが挙げられる。
 蛍光染料としては、紫外線に対する耐久性が高く、これを用いた蛍光体層11の耐候性が優れることから、ナフタルイミド骨格を有する化合物、又はクマリン骨格を有する化合物が好ましい。
 上記ナフタルイミド骨格を有する化合物としては、例えば、4-ブロモ-1,8-ナフタルイミド、4-アミノ-1,8-ナフタルイミド、4-メトキシ-N-メチルナフタル酸イミド、ナフタルイミド、4-アミノナフタルイミド、N-メチル-4-アミノナフタルイミド、N-エチル-4-アミノナフタルイミド、N-プロピル-4-アミノナフタルイミド、N-n-ブチル-4-アミノナフタルイミド、4-アセチルアミノナフタルイミド、N-メチル-4-アセチルアミノナフタルイミド、N-エチル-4-アセチルアミノナフタルイミド、N-プロピル-4-アセチルアミノナフタルイミド、N-n-ブチル-4-アセチルアミノナフタルイミド、N-メチル-4-メトキシナフタルイミド、N-エチル-4-メトキシナフタルイミド、N-プロピル-4-メトキシナフタルイミド、N-n-ブチル-4-メトキシナフタルイミド、N-メチル-4-エトキシナフタルイミド、N-エチル-4-エトキシナフタルイミド、N-プロピル-4-エトキシナフタルイミド、N-n-ブチル-4-エトキシナフタルイミド、Lumogen F Violet570(BASFジャパン社製)、Lumogen F Blue650(BASFジャパン社製)が挙げられる。
 上記クマリン骨格を有する化合物としては、例えば、クマリン環7位に電子供与性置換基を有する誘導体が挙げられる。具体的には、クマリン環7位にアミノ基を持つことを特徴とする誘導体である3-(2’-ベンゾチアゾリル)-7-ジエチルアミノクマリン(クマリン6)、3-(2’-ベンゾイミダゾリル)-7-N,N-ジエチルアミノクマリン(クマリン7)、3-(2’-N-メチルベンゾイミダゾリル)-7-N,N-ジエチルアミノクマリン(クマリン30)や、2,3,5,6-1H,4H-テトラヒドロ-8-トリフルオロメチルキノリジン(9,9a,1-gh)クマリン(クマリン153)等のクマリン色素、ベーシックイエロー51等のクマリン色素染料、また、クマリン環7位にヒドロキシ基を持つことを特徴とする7-ヒドロキシクマリン、3-シアノ-7-ヒドロキシクマリン、7-ヒドロキシ-4-メチルクマリン、7-ジエチルアミノ-4-メチルクマリン、7-ジメチルアミノシクロペンタ[c]-クマリン、1,2,4,5,3H,6H,10H-テトラヒドロ-8-メチル[1]ベンゾピラノ[9,9a,1-gH]キノリジン-10-オン、7-アミノ-4-トリフルオロメチルクマリン、1,2,4,5,3H,6H,10H-テトラヒドロ-9-シアノ[1]ベンゾピラノ[9,9a,1-gH]キノリジン-10-オン、1,2,4,5,3H,6H,10H-テトラヒドロ-9-カルボ-t-ブトキシ[1]ベンゾピラノ[9,9a,1-gH]キノリジン-10-オン、7-エチルアミノ-6-メチル-4-トリフルオロメチルクマリン、1,2,4,5,3H,6H,10H-テトラヒドロ-9-カルボエトキシ[1]ベンゾピラノ[9,9a,1-gH]キノリジン-10-オン、7-ジエチルアミノ-3-(1-メチルベンズイミダゾリル)クマリン、7-ジメチルアミノ-4-トリフルオロメチルクマリン、1,2,4,5,3H,6H,10H-テトラヒドロ-9-カルボキシ[1]ベンゾピラノ[9,9a,1-gH]キノリジン-10-オン、1,2,4,5,3H,6H,10H-テトラヒドロ-9-アセチル[1]ベンゾピラノ[9,9a,1-gH]キノリジン-10-オン、3-(2-ベンズイミダゾリル)-7-N,N-ジエチルアミノクマリン、1,2,4,5,3H,6H,10H-テトラヒドロ-8-トリフルオロメチル[1]ベンゾピラノ[9,9a,1-gH]キノリジン-10-オン、3-(2-ベンゾチアゾリル)-7-ジエチルアミノクマリン、7-ジエチルアミノクマリン、7-ジエチルアミノ-4-トリフルオロメチルクマリン、2,3,6,7-テトラヒドロ-9-(トリフルオロメチル)-1H,5H,11H-[1]ベンゾピラノ[6,7,8-ij]キノリジン-11-オン、7-アミノ-4-メチルクマリン、4,6-ジメチル-7-エチルアミノクマリン等が挙げられる。
 蛍光染料としては、波長400nm付近の励起光により容易に励起できる点で、テレフタル酸エステル構造を有する蛍光体が好ましい。例えば、下式(1-1)で表される化合物、下式(1-2)で表される化合物が挙げられる。
   R11-O-CO-Ph-CO-OR12 ・・・(1-1)
   R13-O-CO-Ph-CO-OR14 ・・・(1-2)
 ここで、R11~R14はそれぞれ独立に有機基を示し、Phは1~4個の水酸基を有するフェニレン基を示し、Phは1~4個のアミノ基を有するフェニレン基を示す。
 R11~R14の有機基としては、炭化水素基が好ましく、炭化水素基の炭素数は1~10がより好ましく、1~5がさらに好ましく、1~3が特に好ましい。炭化水素基はアルキル基が好ましい。
 Phが有する水酸基の数は、1又は2個が好ましい。水酸基の結合位置は、ベンゼン環の2位及び5位のいずれかが好ましい。
 Phにおけるアミノ基としては、例えば-NR1516で表される基が挙げられる。R15及びR16はそれぞれ独立に、水素原子又は有機基を示す。有機基としては、R11~R14の場合と同様のものが挙げられる。R15及びR16はそれぞれ水素原子が好ましい。
 式(1-1)で表される化合物としては、例えば、ジエチル-2,5-ジヒドロキシテレフタレート、ジメチル-2,5-ジヒドロキシテレフタレート等が挙げられる。なかでも、コントラストがより一層高い映像を表示できることから、ジエチル-2,5-ジヒドロキシテレフタレートが好ましい。
 式(1-2)で表される化合物としては、ジエチル-2,5-ジアミノテレフタレートが好ましい。これらの蛍光体は2種以上を併用してもよい。
 上記(C)半導体ナノ粒子は、半導体材料の結晶で構成され、量子閉じ込め効果を有する所定の大きさの粒子をいい、その粒径が数nm~数十nm程度の微粒子であり、量子ドット効果が得られるものを指す。このような効果が得られる微粒子の材料としては、ZnO、Si、ZnSが挙げられる。またコア/シェル構造といわれる構造を有する粒子であってもよい。
 半導体ナノ粒子のコア部の材料としては、炭素、ケイ素、ゲルマニウム、スズ等の長周期型周期表(以下では、長周期型周期表を省略する場合もある。)第14族元素の単体;リン(黒リン)等の第15族元素の単体;セレン、テルル等の第16族元素の単体;炭化ケイ素(SiC)等の複数の第14族元素からなる化合物;酸化スズ(IV)(SnO)、硫化スズ(II、IV)(Sn(II)Sn(IV)S)、硫化スズ(IV)(SnS)、硫化スズ(II)(SnS)、セレン化スズ(II)(SnSe)、テルル化スズ(II)(SnTe)、硫化鉛(II)(PbS)、セレン化鉛(II)(PbSe)、テルル化鉛(II)(PbTe)等の第14族元素と第16族元素との化合物;窒化ホウ素(BN)、リン化ホウ素(BP)、ヒ化ホウ素(BAs)、窒化アルミニウム(AlN)、リン化アルミニウム(AlP)、ヒ化アルミニウム(AlAs)、アンチモン化アルミニウム(AlSb)、窒化ガリウム(GaN)、リン化ガリウム(GaP)、ヒ化ガリウム(GaAs)、アンチモン化ガリウム(GaSb)、窒化インジウム(InN)、リン化インジウム(InP)、ヒ化インジウム(InAs)、アンチモン化インジウム(InSb)等の第13族元素と第15族元素との化合物(あるいはIII-V族化合物半導体);硫化アルミニウム(Al)、セレン化アルミニウム(AlSe)、硫化ガリウム(Ga)、セレン化ガリウム(GaSe)、テルル化ガリウム(GaTe)、酸化インジウム(In)、硫化インジウム(In)、セレン化インジウム(InSe)、テルル化インジウム(InTe)等の第13族元素と第16族元素との化合物;塩化タリウム(I)(TlCl)、臭化タリウム(I)(TlBr)、ヨウ化タリウム(I)(TlI)等の第13族元素と第17族元素との化合物;酸化亜鉛(ZnO)、硫化亜鉛(ZnS)、セレン化亜鉛(ZnSe)、テルル化亜鉛(ZnTe)、酸化カドミウム(CdO)、硫化カドミウム(CdS)、セレン化カドミウム(CdSe)、テルル化カドミウム(CdTe)、硫化水銀(HgS)、セレン化水銀(HgSe)、テルル化水銀(HgTe)等の第12族元素と第16族元素との化合物(あるいはII-VI族化合物半導体)、硫化ヒ素(III)(As)、セレン化ヒ素(III)(AsSe)、テルル化ヒ素(III)(AsTe)、硫化アンチモン(III)(Sb)、セレン化アンチモン(III)(SbSe)、テルル化アンチモン(III)(SbTe)、硫化ビスマス(III)(Bi)、セレン化ビスマス(III)(BiSe)、テルル化ビスマス(III)(BiTe)等の第15族元素と第16族元素との化合物;酸化銅(I)(CuO)、セレン化銅(I)(CuSe)等の第11族元素と第16族元素との化合物;塩化銅(I)(CuCl)、臭化銅(I)(CuBr)、ヨウ化銅(I)(CuI)、塩化銀(AgCl)、臭化銀(AgBr)等の第11族元素と第17族元素との化合物;酸化ニッケル(II)(NiO)等の第10族元素と第16族元素との化合物;酸化コバルト(II)(CoO)、硫化コバルト(II)(CoS)等の第9族元素と第16族元素との化合物、四酸化三鉄(Fe)、硫化鉄(II)(FeS)等の第8族元素と第16族元素との化合物;酸化マンガン(II)(MnO)等の第7族元素と第16族元素との化合物;硫化モリブデン(IV)(MoS)、酸化タングステン(IV)(WO)等の第6族元素と第16族元素との化合物;酸化バナジウム(II)(VO)、酸化バナジウム(IV)(VO)、酸化タンタル(V)(Ta)等の第5族元素と第16族元素との化合物;酸化チタン(TiO、Ti、Ti、Ti等)等の第4族元素と第16族元素との化合物;硫化マグネシウム(MgS)、セレン化マグネシウム(MgSe)等の第2族元素と第16族元素との化合物;酸化カドミウム(II)クロム(III)(CdCr)、セレン化カドミウム(II)クロム(III)(CdCrSe)、硫化銅(II)クロム(III)(CuCr)、セレン化水銀(II)クロム(III)(HgCrSe)等のカルコゲンスピネル類、バリウムチタネート(BaTiO)等が挙げられる。これらコア部の構成材料は、2種以上を組み合わせて用いてもよい。
 半導体ナノ粒子のシェル部としては、コア部の保護膜として機能する材料であれば、特に制限はなく使用できる。シェル部は、バンドギャップ(禁制帯幅)が、コア部のバンドギャップよりも大きな半導体を含むことが好ましい。シェル部にこのような半導体を用いることによって、半導体ナノ粒子にエネルギー的な障壁が形成され、良好な発光性能を得ることができる。シェルに好ましく用いられる半導体材料は、用いられるコアのバンドギャップにも依存するが、例えば、ZnO、ZnS、ZnSe、ZnTe、CdO、CdS、CdSe、CdTe、MgS、MgSe、GaAs、GaN、GaP、GaAs、GaSb、HgO、HgS、HgSe、HgTe、InAs、InN、InP、InSb、AlAs、AlN、AlP、及びAlSbからなる群から選択される1種またはそれ以上の半導体、またはそれらの合金もしくは混晶が好ましく用いられる。
 これらシェル部の材料の中でも、輝度向上の観点から、ZnS、ZnSe、ZnTe、CdSeが好ましい。
 上記(D)無機蛍光体としては、以下に示すような、酸化物、窒化物、硫化物、酸硫化物、希土類硫化物、アルミン酸塩化物及びハロリン酸塩化物からなる群から選ばれた少なくとも1種が挙げられる。以下の無機蛍光体において、XはCl及び/又はBrを示し、xは、1~50の整数を示し、YAGはイットリウムアルミニウムガーネットを示す。
 (Ag,Cu)GaS、(Al,Ca)Ga:(Ce3+,Sn2+)、BaAl13:Eu2+、BaAl1219:Mn2+、BaB18、(Ba,Ca,Mg)(POCl:Eu2+、(Ba,Ca,Mg)10(POCl:Eu2+、BaEr、BaF、BaFBr:Eu2+、BaFCl:Eu2+、BaFCl:Sm2+、BaF:Sm2+、BaFI:Eu2+、BaFX:Eu2+、Ba(Gd,Eu)NbO、BaLaMgW12、BaMgAl1423:Eu2+、BaMgAl1424:Eu2+、BaMgAl1627:Eu2+、BaMgAl1627:Eu2+,Mn2+、BaMgSi:Eu2+、(Ba,Mg,Zn)Si:Pb2+、Ba(PO:Eu2+、BaSi:Pb2+、BaSO:Eu2+、BaSO:Pb2+、(Ba,Sr,Zn,Mg)Si:Pb2+、BaWO、CaF、CaF:(Eu2+,Mn2+,Sm2+)、CaLa12、CaMgAl1119:Tb3+、CaMgSiO:Ce3+、(Ca,Mg)SiO:Ti、CaSb1112、CaSiO:(Pb2+,Mn2+)、3(Ca,Sr,Ba)(PO・(Ca,Sr,Ba)X:(Sb3+,Mn2+)、(Ca,Sr)(PO:Sn2+、(Ca,Sr)S:(Bi3+,Ce3+)、Cd、Cd:Mn2+、3Cd(PO・CdCl:Mn2+、Cd(PO)3Cl:Mn2+、CdS:(Cl,Te)、CdWO、Ce3+、CeMgAl1119:Tb3+、LaS:Tb3+、La・0.2SiO・0.9P:(Ce3+,Tb3+)、LiWO、3.5MgO・0.5MgF・GeO:Mn4+、MgS、MgS:Eu2+、MgSiO、MgSiO:Mn2+、MgSiO:Tb3+、Si:(Ag,Ga,Cu,Al)、Sm2+、Sm3+、Sn2+、SnO:Eu2+、SrAl1425:Eu2+、SrBF:Eu2+、(Sr,Ba)AlSi:Eu2+、(Sr,Ba,Mg)Si:Pb2+、(Sr,Ba)MgSi:Eu2+、(Sr,Ca,Ba)10(POCl:Eu2+、(Sr,Ca)10(PO)Cl・nB:Eu2+、(Sr,Ca)10(POCl:Eu2+、(Sr,Ca)(PO:Sn2+、SrCl(PO:Eu2+、SrFB3.5:Eu2+、SrF:Sm2+、Sr0.96Mg0.81Al5.440.0210:Eu2+、SrMgAl1017:Eu2+、(Sr,Mg)(PO:Cu2+、(Sr,Mg):Eu2+、(Sr,Mg)(PO:Sn2+、SrMg(SiO:Eu2+、SrO、2SrO・0.84P・0.16B:Eu2+、3Sr(PO・CaCl:Eu2+、Sr(POCl:Eu2+、Sr10(POCl:Eu2+、Sr(PO:Eu2+、Sr(POF:(Sb3+,Sn2+,Mn2+)、3Sr(PO・SrCl:Eu2+、Sr:Eu2+、Sr:(Eu2+,Sn2+)、3Sr(PO・SrF:(Sn2+,Mn2+)、WO 2-、WO 6-、Y3+、Y(Al,Ga)12:(Tb3+,Ce3+)、YAl(BO):(Tb3+,Yb3+)、YAlGa12:(Tb3+,Ce3+)、YAlO:Ce3+、YAl12:(Ce3+,Nd3+,Tb3+)、YAl12、YAl、YAlO、YAlO:(Er3+,Eu3+,Ho3+,Nd3+,Tm3+)、YBO:Eu3+、Y0.8Er0.2、YF、YF:(Eu3+,Pr3+)、Y0.65Gd0.35BO:Eu3+、(Y,Gd)S:Tb3+、Y(P,V)O:Eu2+、Y、Y・Al:Tb3+、Y・nAl:Tb3+、Y:(Eu3+,Bi3+)、YS:(Eu3+,Tb3+,Sm3+,Yb3+,Bi3+)、(Zn,Cd,Mg)SiO:Mn2+、(Zn,Cd)S、(Zn,Cd)S:(Ag,Au,Al,C
l,Ni,Cu,Ga)、(Zn,Mg)F:Mn2+、(Zn1/2,Mg1/2(PO:Mn2+、Zn(Mg)(PO:Mn2+、ZnO:(Cu,Zn,Eu3+)、Zn(OH)、Zn(PO:Mn2+、ZnS、ZnS:(Ag,Al,Cl,Cu,Ga,In,Ni,Mn,I,DyF,ErF,Er3+)、Zn(S,Se)、Zn(S,Se):(Ag,Cl)、ZnSe、ZnSe:Mn2+、ZnSiO:(Mn2+,As,Ti)、ZnTe、ZnTe:O、ZnWO、ZnS:Ag、ZnS:Ag,Al、ZnS:Ag,Cu,Ga,Cl、ZnS:AlIn、ZnS:ZnIn、(Ba,Eu)MgAl1017、(Sr,Ca,Ba,Mg)10(POCl17:Eu、Sr10(POCl12:Eu、(Ba,Sr,Eu)(Mg,Mn)Al1017、(Mg,Zn)Ga:Mn、10(Sr,Ca,Ba,Eu)・6PO・Cl、BaMgAl1625:Eu、ZnS:Cl,Al、(Zn,Cd)S:Cu,Al、YAl12:Tb、Y(Al,Ga)12:Tb、YSiO:Tb、ZnSiO:Mn、ZnS:CuZnSiO:Mn、GdS:Tb、(Zn,Cd)S:Ag、YS:Tb、ZnS:Cu,AlIn、(Zn,Cd)S:AgIn、(Zn,Mn)SiO、BaAl1219:Mn、(Ba,Sr,Mg)O・aAl:Mn、LaPO:Ce,Tb、3(Ba,Mg,Eu,Mn)O・8Al、La・0.2SiO・0.9P:Ce,Tb、CeMgAl1119:Tb、(Y,La)S:(Eu,Sm)、Y:Eu、Zn(PO:Mn、(Zn,Cd)S:AgIn、(Y,Gd,Eu)BO、(Y,Gd,Eu)、(Y,La,Gd,Ln)(PO,VO):(Sm,Eu,Dy,Bi)、YAG:(Ce3+,Yb3+)、KCa(PO)F:Eu2+、(Ca1-x-y, Sr, Eu(SiOCl
 これらの無機蛍光体は2種以上が併用されてもよい。
 無機蛍光体は典型的には粒子状である。蛍光体が無機蛍光体を含む場合、蛍光体層11は典型的には、マトリックスと、マトリックス中に分散された粒子状の無機蛍光体(以下、無機蛍光体粒子とも記す。)とを含む。
 蛍光体層11中の無機蛍光体粒子の平均分散粒子径は、0.01~15μmが好ましく、0.1~1μmがより好ましい。該平均分散粒子径が前記範囲の下限値以上であれば、マトリックス中への分散性がより優れる。該平均分散粒子径が前記範囲の上限値以下であれば、蛍光体層11の透明性がより優れる。
 蛍光体層11中の無機蛍光体粒子の平均分散粒子径は、以下のように求める。蛍光体層11の被膜の断面又は表面を走査型電子顕微鏡(FE-SEM)等の顕微鏡により観察し、顕微鏡像内に存在するn個(n=20以上)の分散粒子の画像を撮影し、ソフトウェアを用いて二値化して分散粒子の面積を求め、分散粒子の面積を円とした場合の直径を分散粒子径とし、その平均値を平均分散粒子径とする。
 無機蛍光体粒子の屈折率とマトリックスの屈折率nとの差の絶対値は、蛍光体層11の透明性に優れる点から、0.5以内が好ましく、0.3以内がより好ましく、0.1以内が特に好ましい。下限は特に限定されず、0であってもよい。
 無機蛍光体粒子の屈折率は一般に、1.7~2.3程度である。
 マトリックス成分は、マトリックスの屈折率nが後述する式1を満たすように選定される。マトリックス成分としては、例えば、加水分解性金属化合物の加水分解縮合物、樹脂、それらの混合物、又はそれらのいずれかと添加剤との複合材料が挙げられる。
 上記加水分解性金属化合物とは、金属原子と、該金属原子に結合した1以上の加水分解性基とを有する化合物(以下、未加水分解物ともいう。)群、及びこのような化合物群の1種又は2種以上の部分加水分解(共)縮合物の総称である。
 前記加水分解性金属化合物の1種又は2種以上が加水分解すると、金属原子と、金属原子に結合した水酸基とを有する化合物群が生成し、水酸基同士が脱水縮合して縮合物が生成する。この縮合物の骨格は、金属原子と酸素原子との繰り返しからなる。
 未加水分解物は、金属原子に結合した非加水分解性基をさらに有していてもよい。未加水分解物が非加水分解性基を有する場合、生成する縮合物も、金属原子に結合した非加水分解性基を有するものとなる。
 上記金属原子における金属としては、例えばケイ素、スズ、チタン、アルミニウム、ジルコニウム、鉄、ニッケル、銅、マグネシウム、アンチモンが挙げられる。
 加水分解性基としては、例えばアルコキシ基、アルケニルオキシ基、アシル基、アシルオキシ基、オキシム基、アミド基、アミノ基、イミノキシ基、アミノキシ基、アルキル置換アミノ基、イソシアネート基、塩素原子が挙げられる。
 非加水分解性基としては、例えばアルキル基、アリール基等の炭化水素基、ハロゲン化アルキル基、ハロゲン化アリール基等が挙げられる。アルキル基としては、例えば炭素数1~10のアルキル基が挙げられる。アリール基としては、例えばフェニル基、ナフチル基、フェネチル基が挙げられる。
 上記加水分解性金属化合物としては、前記金属のアルコキシド、カルボン酸塩、オルガノシロキシド、アセチルアセトナート錯体、硫酸塩、硝酸塩、これらの部分縮合物、これらの2種以上の混合物等が挙げられる。具体例としては、テトラメトキシシラン、テトラエトキシシラン、ジブチルチンジエトキシド、テトライソプロポキシチタネート、テトラブチルチタネート、テトラ(2-エチルヘキシル)チタネート、アルミニウムトリエトキシド等のアルコキシド;ジブチル-ビス(トリエトキシシロキシ)チン等のオルガノシロキシド;ジブチルチンジアセテート、ブチルチントリアセテート、ジブチルチンジラウレート、ジブチルチンジオクトエート、ジオクチルチンジラウレート、エチルアルミニウムジアセテート等のカルボン酸塩;等が挙げられる。これらの加水分解性金属化合物は2種以上を併用してもよい。
 上記加水分解性金属化合物は、緻密なTiO構造又はSiO構造を形成する点から、4官能性加水分解性チタン化合物又は4官能性加水分解性ケイ素化合物を含むことが好ましい。4官能性加水分解性チタン化合物としては、テトライソプロポキシチタネート、テトラブチルチタネート、テトラ(2-エチルヘキシル)チタネート等のチタンテトラアルコキシド等が挙げられる。4官能性加水分解性ケイ素化合物としては、テトラメトキシシラン、テトラエトキシシラン、テトラn-プロポキシシラン等のテトラアルコキシシラン、テトラn-ブチルオキシシラン等が挙げられる。チタンテトラアルコキシドやテトラアルコキシシランにおける4つのアルコキシ基はそれぞれ同じでもよく異なってもよい。アルコキシ基の炭素数は、例えば1~4である。
 上記樹脂としては、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂等が挙げられ、塗工性に優れる点から、熱可塑性樹脂が好ましい。
 熱可塑性樹脂としては、シリコーン樹脂、アクリル樹脂、ポリエステル樹脂(ポリエチレンテレフタレート樹脂等)、ポリウレタン樹脂、硫黄含有ポリウレタン樹脂、ポリウレタンアクリレート樹脂、ポリカーボネート樹脂、ポリビニルアセタール樹脂(ポリビニルブチラール樹脂等)、シクロオレフィン樹脂、フルオレン環含有樹脂、ポリビニルアルコール樹脂、エチレン-酢酸ビニル共重合樹脂、エチレン-アクリル共重合樹脂、塩化ビニル樹脂、アイオノマー等が挙げられる。シリコーン樹脂としては、ポリジメチルシロキサン、ポリメチルフェニルシロキサン、ポリシラン、シルセスキオキサン等が挙げられる。
 これらの樹脂は2種以上が併用されてもよい。
 添加剤としては、屈折率調整剤、シランカップリング剤、分散剤、レべリング剤、消泡剤、可塑剤等が挙げられる。これらの添加剤は、2種以上が併用されてもよい。
 なお、複合材料を構成する添加剤は、加水分解性金属化合物の加水分解縮合物又は樹脂又はそれらの混合物(以下、これらを総称して、ベース成分とも記す。)と複合化されたときに、ベース成分の透明性を損なわないものが好ましい。具体的には、ベース成分に相溶可能な成分であるか、又は100nm未満の平均粒子径でベース成分に分散可能な成分であることが好ましい。ベース成分に分散可能な成分の平均粒子径は、1~70nmが好ましい。ベース成分に分散可能な成分の平均粒子径は、ガス吸着法、動的光散乱法、透過型電子顕微鏡や走査型電子顕微鏡により測定される。
 屈折率調整剤は、マトリックスの屈折率nを調整するものである。
 nは第1の透明基材12における屈折率nと同じかそれよりも高いため、屈折率調整剤としては、典型的には、ベース成分よりも高屈折率の材料が用いられる。このような高屈折材料としては、ZrO、TiO、Sb等が挙げられる。高屈折材料の屈折率は、例えば1.7~3.0である。
 複合材料中の屈折率調整剤の割合は、nが後述する式1を満たすように設定される。
 蛍光体層11は、蛍光体及びマトリックス成分以外に、無機フィラー、分散剤等を含んでいてもよい。
 マトリックス成分に対する蛍光体の含有割合は、0.01~50質量%が好ましく、0.1~30質量%がより好ましく、0.5~15質量%が特に好ましい。蛍光体の割合が前記範囲の下限値以上であれば、蛍光体層11から発生する蛍光の強度が充分に強く、映像の視認性がより優れる。蛍光体の含有割合が前記範囲の上限値以下であれば、蛍光体のマトリックス成分に対る相溶性又は分散性がより優れる。
 蛍光体層11の総質量に対するマトリックス成分及び蛍光体の合計の割合は、90質量%以上が好ましく、95質量%以上がより好ましい。上限は特に限定されず、100質量%であってもよい。
 蛍光体層11の厚さは、0.5~50μmが好ましく、0.7~15μmがより好ましく、1~10μmが特に好ましい。該厚さが前記下限値以上であれば、蛍光体層11から発生する蛍光の強度が充分に強く、映像の視認性がより優れる。該厚さが前記上限値以下であれば、蛍光体層11の透明性、耐クラック性がより優れる。蛍光体層11の厚さは、接触式の粗さ・形状測定機により測定される。
 スクリーン10においては、nとnとが下記式1を満たす。
 n-n>0 ・・・式1
 一般に、屈折率の異なる2層の界面において、相対的に低屈折率の層内を伝播する光は、相対的に高屈折率の層へ伝播しやすく、逆に、高屈折率の層内を伝播する光は低高屈折率の層へ伝播しにくい。
 発光装置90から放射された光(蛍光体の励起光)は、第1の透明基材12の側端面から入射する。第1の透明基材12が単層構造である場合、入射した光は第1の透明基材12全体に伝播する。第1の透明基材12が多層構造である場合、前記したとおりn≧ni+1であるので、最も第1の主面12a側の層(第1層)に入射した光は第1層全体に伝播する。第1層以外の層に入射した光は、その層及びその層よりも第1の主面12a側の層に伝播する。
 第1の透明基材12の第1の主面12aに伝播した光は、nとnとが式1を満たしている(n-nが0を超える)ので、容易に蛍光体層11に伝播する。これにより、所定パターンで形成された蛍光体層11が発光し、スクリーン10に映像が表示される。
 n-nは、蛍光体層11に光がより伝播しやすく、より高輝度の映像が得られる点から、0.05以上が好ましく、0.1以上が特に好ましい。n-nの上限は、特に制限はないが、例えば0.3である。
 スクリーン10の全光線透過率は、5~100%が好ましく、50~95%がより好ましく、70~92%が特に好ましい。全光線透過率が前記下限値以上であれば、スクリーン10の透明感や背景の視認性がより優れる。
 スクリーン10の全光線透過率は、平面視において蛍光体層11が存在している部分の全光線透過率である。
 スクリーン10の全光線透過率は、JIS K 7361:1997(対応国際規格:ISO 13468-1:1996)に記載された方法によって測定される、通常の全光線透過率である。
 スクリーン10の全光線透過率は、材料の種類、屈折率等によって調整できる。
 スクリーン10のヘーズ(Haze)は、0~60%が好ましく、0.1~20%がより好ましく、0.3~5%が特に好ましい。ヘーズが前記上限値以下であれば、スクリーン10の透明感や背景の視認性がより優れる。
 スクリーン10のヘーズは、平面視において蛍光体層11が存在している部分のヘーズである。
 スクリーン10のヘーズは、JIS K 7136:2000(対応国際規格:ISO 14782:1999)に記載された方法により、JIS Z 8781-2:2012(対応国際規格ISO 11664-2:2007)に準拠したCIE標準イルミナントD65を用いて25℃で測定される、通常のヘーズである。
 スクリーン10のヘーズは、材料の種類、屈折率等によって調整できる。
 スクリーン10は、例えば、以下の方法により製造できる。
 蛍光体と、マトリックス成分又はその前駆体と、液状媒体とを含む蛍光体層用組成物を調製し、第1の透明基材12の第1の主面12aに前記蛍光体層用組成物を所定パターンで塗布し、乾燥して蛍光体層11を形成する方法。
 マトリックス成分の前駆体としては、例えば、前記加水分解性金属化合物が挙げられる。蛍光体層用組成物がマトリックス成分の前駆体を含む場合、塗布した蛍光体層用組成物を乾燥する際に、前駆体がマトリックス成分となる。例えば加水分解性金属化合物の加水分解及び縮合が進行し、加水分解縮合物となる。
 液状媒体としては、マトリックス成分又はその前駆体を溶解可能なものであればよく、例えば水、有機溶剤、それらの混合物が挙げられる。有機溶剤としては、例えばメチルエチルケトン、シクロペンタノンが挙げられる。
 蛍光体が上記(D)無機蛍光体粒子を含む場合、蛍光体層用組成物中の無機蛍光体粒子の平均1次粒子径は、0.01~15μmが好ましく、0.1~1μmがより好ましい。該無機蛍光体粒子の平均1次粒子径が前記範囲内であれば、蛍光体層11中の無機蛍光体粒子の平均分散粒子径が前記の好ましい範囲内となりやすい。
 蛍光体層用組成物中の無機蛍光体粒子の平均1次粒子径は、レーザ回折・散乱法によって求められる個数基準累積50%径(D50)である。すなわち、レーザ回折・散乱法によって粒度分布を測定し、粒子の集団の全個数を100%として累積カーブを求め、その累積カーブ上で累積個数が50%となる点の粒子径である。
 蛍光体層用組成物の塗布方法としては、蛍光体層用組成物を所定パターンで塗布可能であればよく、スクリーン印刷、ダイコート、インクジェット印刷等が挙げられる。乾燥条件は、例えば80~150℃、1~10分間である。
 表示システム1は、前記したようにスクリーン10を製造し、スクリーン10の端部に発光装置90を配置することにより製造できる。
 発光装置90としては、蛍光体の励起光を含む光を放射できるものであればよく、発光ダイオード(LED)、レーザ、キセノンランプ等の公知の発光装置を用いることができる。発光装置90としては、小型化、コストの点から、LEDが好ましい。
 発光装置90の光の出射面の大きさは、安全性の点から、スクリーン10の端部の断面積以下であることが好ましい。
 発光装置90から放射される光の波長は、例えば350~445nmであり、具体的には、365nm、380nm、405nm又は430nmが挙げられる。発光装置90から、複数の波長の光が同時に放射されてもよい。光の出力は、例えば0.05~5Wである。
 このとき、発光装置90をスクリーン10に複数台配置してもよく、さらには、発光装置90をスクリーン10の複数の端部(例えば図1において、紙面に対して水平な方向と垂直な方向)に配置してもよい。
 以上説明した表示システム1にあっては、スクリーン10が蛍光体層11と第1の透明基材12とを備え、蛍光体層11が第1の透明基材12の第1の主面12aに接しており、前記式1を満たすので、スクリーン10の端部に配置された発光装置90から光を放射させたときに、この光が第1の透明基材12を通って蛍光体層11に伝播し、蛍光体層11が発光して、蛍光体層11の平面視での形状に対応した映像(文字、模様等)が表示されるようになっている。
 発光装置90がスクリーン10の端部に配置されているので、発光装置90とスクリーン10との間に光を反射するような物体が入り込むことがない。したがって、反射光が映像の視認者の眼や肌に当たり、視認者を危険にさらすおそれがなく、安全性に優れる。
〔第二実施形態〕
 図2Aは、本発明の第二実施形態に係る表示システム2の模式断面図である。なお、以下に示す実施形態において、前出の実施形態に対応する構成要素には同一の符号を付してその詳細な説明を省略する。
 本実施形態の表示システム2は、スクリーン20(自発光型スクリーン)と、発光装置90とを備える。
 図2Aにおけるスクリーン20は、蛍光体層11と、第1の非蛍光体層13と、第1の透明基材12とを備える。蛍光体層11及び第1の非蛍光体層13は、第1の透明基材12の第1の主面12a側に配置されている。蛍光体層11は、所定パターンで第1の非蛍光体層13の中に形成されている。
 蛍光体層11の第1の透明基材12側の表面と、第1の非蛍光体層13の第1の透明基材12側の表面とは面一に形成されており、蛍光体層11及び第1の非蛍光体層13の両方が第1の透明基材12の第1の主面12aに接している。
 第1の非蛍光体層13の厚さは蛍光体層11の厚さよりも厚く、蛍光体層11の第1の透明基材12と接する面以外の面は第1の非蛍光体層13で覆われている。
 発光装置90は、スクリーン20の端部に配置されている。本実施形態では、発光装置90は、第1の透明基材12の側端面及び第1の非蛍光体層13の側端面に接している。
 発光装置90は、第1の透明基材12の側端面のみと接していてもよく、第1の非蛍光体層13の側端面のみと接していてもよい。
 第1の透明基材12の励起光波長における吸収が大きい場合は、発光装置90は、スクリーン20の端部の厚さ方向において、蛍光体層11又は第1の非蛍光体層13に対応する位置(図2A中、蛍光体層11又は第1の非蛍光体層13の下方)、例えば第1の非蛍光体層13の側端面に接する位置に配置されることが好ましい。
 また、第1の透明基材12として低透過率基材を用いた場合にも、発光装置90は、スクリーン20の端部の厚さ方向において、蛍光体層11又は第1の非蛍光体層13に対応する位置、例えば蛍光体層11の側端面に接する位置に配置されることが好ましい。
 図2Bに、表示システム2の変形例を示す。この表示システム2Bは、スクリーン20の代わりに、スクリーン20Bを備える以外は、表示システム2と同様である。
 図2Bにおけるスクリーン20Bは、蛍光体層11と、第1の非蛍光体層13と、第2の非蛍光体層23と、第1の透明基材12とを備える。
 第2の非蛍光体層23は、第1の非蛍光体層13の第1の透明基材12側とは反対側に設けられる。
(非蛍光体層)
 第1の非蛍光体層13及び第2の非蛍光体層23は、蛍光体を含まない。
 第1の非蛍光体層13は、典型的には、第1の非蛍光体層13のマトリックスを形成する成分(マトリックス成分)を含む。そのマトリックス成分としては、蛍光体層11のマトリックス成分と同様のものを例示できる。第1の非蛍光体層13のマトリックス成分と、蛍光体層11のマトリックス成分とは同じであっても異なっていてもよいが、両者のマトリックス成分とが同じであると、蛍光体層11と第1の非蛍光体層13との境界が視認されにくくなるので、好ましい。
 第1の非蛍光体層13は、マトリックス成分以外に、無機フィラー、UV吸収剤等を含んでいてもよい。第1の非蛍光体層13がUV吸収剤を含む場合は、蛍光体層11との間に蛍光体層11よりも低屈折率の層を備えておくと、蛍光体を励起する光を蛍光体層11に効率的に集められるので好ましい。
 ここで、蛍光体層11、第1の非蛍光体層13及び第2の非蛍光体層23の少なくとも1つのマトリックス成分は、吸水率が低いことが好ましい。具体的には、吸水率は0.8質量%以下が好ましい。吸水率が前記範囲であれば、蛍光体が層内の水分に溶解、イオン化して層内を拡散することを防止できる結果、蛍光体の光劣化を抑制でき、耐久性が向上する。吸水率は、0.3質量%以下が好ましく、0.1質量%以下がさらに好ましい。その下限は、限定されないが、該吸水率は、通常、0質量%以上である。
 吸水率が低いマトリックス成分は、上述した加水分解性金属化合物の加水分解縮合物、有機材料又はそれらの混合物からなることが好ましい。
 有機材料の吸水率は、以下の方法により測定できる。
 まず、マトリックスが有機材料である層を、該有機材料を溶解可能な溶媒中に浸漬し、溶解させる。次に、その溶液の10gを、キャスティング法により、アルミニウム製のカップ内に設置し、該カップを110℃で5分間加熱し、溶媒を除去後、室温で1時間放置する。次いで、該カップから、固形物を回収する。得られた固形物から1gの評価試料を採取し、カールフィッシャー装置(CA-200 Moisturemeter:エーピーアイコーポレーション社製)を用いて、試料中の水分量(g)を測定する。測定した水分量から、下式により吸水率を算出する。
   吸水率(%)=(水分量(g)×100)/試料の質量(g)
 本測定方法は、接着層を構成する樹脂にも適用できる。
 有機材料としては、公知の有機材料のなかから、吸水率が低いものを適宜選定できる。有機材料は、典型的には樹脂である。樹脂は、直鎖状であってもよく、直鎖状でなくてもよい。樹脂は、架橋構造を含んでいてもよく含んでいなくてもよい。なお直鎖状とは、主鎖が直鎖状であることを意味し、側鎖の有無を限定するものではない。
 樹脂の例としては、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリウレタンアクリレート樹脂、ポリカーボネート樹脂、ポリビニルブチラール樹脂、シクロオレフィン樹脂、エチレン・酢酸ビニル共重合樹脂、フルオレン環含有樹脂が挙げられる。これらの樹脂はそれぞれ、種々の吸水率のものが存在するが、疎水性が高いほど、又は水酸基等の親水基の含有量が少ないほど、もしくは結晶化度が高いほど吸水率が低い傾向があり、吸水率が0.8質量%以下のものを選択することが好ましい。
 シクロオレフィン樹脂としては、例えば下式a又はbで示される重合体が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 ただし、上記式a、b中、R及びRはそれぞれ独立に、金属及び金属酸化物のいずれかと反応する官能基、水素原子、又はハロゲン原子を示す。
 金属及び金属酸化物のいずれかと反応する官能基としては、例えばアルコキシ基、イソシアネート基、エポキシ基、シラノール基、カルボニル基、アミノ基、水酸基等が挙げられる。この官能基を有することで、シクロオレフィン主骨格により疎水性(低吸水率)を担保しつつ、他の層との密着性を高めることができる。
 第1の非蛍光体層13のマトリックスの屈折率nは後述する式2を満たす。
 nとしては、式2を満たす限り特に制限はないが、1.4~2.0であってよく、さらには1.45~1.8であってよい。
 第1の非蛍光体層13の総質量に対するマトリックス成分の割合は、10質量%以上が好ましく、20質量%以上がより好ましい。上限は特に限定されず、100質量%であってもよい。
 第1の非蛍光体層13の厚さは、0.5~70μmが好ましく、0.7~20μmがより好ましく、1~15μmが特に好ましい。該厚さが前記下限値以上であれば、蛍光体層11の印刷パターンの境界が視認されることを抑制しやすくなり、スクリーン20の透明性を保つことができる。該厚さが前記上限値以下であれば、スクリーン20の透明性がより優れる。
 第1の非蛍光体層13の厚さは、平面視において蛍光体層11が存在していない部分の厚さ(第1の主面12aから第1の非蛍光体層13の表面までの距離)である。
 第1の非蛍光体層13の厚さは、接触式の粗さ・形状測定機により測定される。
 第2の非蛍光体層23は、第1の非蛍光体層13の保護層であり、典型的にはハードコート層である。第2の非蛍光体層23は、マトリックスを形成する成分(マトリックス成分)を含む。第2の非蛍光体層23のマトリックス成分としては、蛍光体層11のマトリックス成分及び第1の非蛍光体層13のマトリックス成分と同様のものを例示できる。第2の非蛍光体層23のマトリックス成分と、第1の非蛍光体層13のマトリックス成分とは同じであっても異なっていてもよいが、かかる両者のマトリックス成分が同じであると、第1の非蛍光体層13と第2の非蛍光体層23との境界における透明性を保ちやすくなり、透明性に優れたスクリーン20Bを得やすくなるので好ましい。
 第2の非蛍光体層23の厚さは、0.5μm~1mmが好ましく、1~50μmがより好ましく、2~25μmが特に好ましい。該厚さが前記下限値以上であれば、スクリーンとして使用する際の耐擦傷性に優れる。また、蛍光体層11内にキズや異物による凹凸が生じた場合でも、第2の非蛍光体層23が凹凸を埋めて平坦化できるので、励起光が外部に漏れることを抑制できる。
 2の非蛍光体層23のマトリックスの屈折率nは下記式3を満たすことが好ましい。
 n≧n ・・・式3
 nとしては、式3を満たす限り特に制限はないが、n=nであることが、スクリーン20Bの透明性の点から好ましい。
 スクリーン20,20Bにおいては、nとnとが前記式1を満たす。
 また、スクリーン20,20Bにおいては、nとnとが下記式2を満たすことが好ましい。
 n≧n ・・・式2
 前記したとおり、屈折率の異なる2層の界面において、相対的に低屈折率の層内を伝播する光は、相対的に高屈折率の層へ伝播しやすく、逆に、高屈折率の層内を伝播する光は低高屈折率の層へ伝播しにくい。
 発光装置90から放射された光(蛍光体の励起光)は、第1の透明基材12及び第1の非蛍光体層13のそれぞれの側端面から入射する。第1の透明基材12に入射した光は前記のとおり、容易に蛍光体層11に伝播する。第1の非蛍光体層13に入射した光は、nとnとが式1を満たしているので、第1の透明基材12には伝播しにくく、主に第1の非蛍光体層13内を伝播する。特にnとnとが式2を満たしていれば、第1の非蛍光体層13内を伝播した光は、容易に蛍光体層11に伝播する。光が蛍光体層11に伝播することにより、所定パターンで形成された蛍光体層11が発光し、スクリーン20,20Bに映像が表示される。
 n-nは0を超える。n-nの好ましい値は前記と同様である。
 n-nは、第1の非蛍光体層13内の光が第1の透明基材12に伝播しにくく、より高輝度の映像が得られる点から、0.01以上が好ましく、0.1以上がより好ましく、0.2以上が特に好ましい。n-nの上限は、特に制限はないが、例えば0.3である。
 n-nは0以上であることが好ましく、0を超えることがより好ましい。例えば0.01以上が好ましく、0.1以上がより好ましい。n-nの上限は、特に制限はないが、例えば0.2である。
 第1の非蛍光体層13及び蛍光体層11は、その内部が複数領域に分割されていてもよい。分割された各領域に対し、発光装置90から光を照射して、複数パターンの表示を行うことも可能である。
 スクリーン20,20Bの好ましい全光線透過率は前記と同様である。また、スクリーン20,20Bの好ましいヘーズは前記と同様である。
 スクリーン20,20Bは、例えば、以下の方法により製造できる。
 蛍光体と、マトリックス成分又はその前駆体と、液状媒体とを含む蛍光体層用組成物を調製し、
 第1の透明基材12の第1の主面12aに前記蛍光体層用組成物を所定パターンで塗布し、乾燥して蛍光体層11を形成し、
 マトリックス成分又はその前駆体と、液状媒体とを含み、蛍光体を含まない非蛍光体層用組成物を調製し、
 前記蛍光体層11が形成された第1の主面12aに前記非蛍光体層用組成物を塗布し、乾燥して第1の非蛍光体層13を形成し、
 必要に応じて、第1の非蛍光体層13上に、さらに前記非蛍光体層用組成物を塗布し、乾燥して第2の非蛍光体層23を形成する方法。
 蛍光体層用組成物は前記と同様である。蛍光体層11は前記と同様にして形成できる。
 非蛍光体層用組成物は、蛍光体を含まない以外は蛍光体層用組成物と同様である。また、非蛍光体層用組成物として、公知のハードコート層形成用組成物を用いてもよい。
 非蛍光体層用組成物の塗布方法としては、特に制限はなく、スプレーコート、ダイコート、バーコート等の公知の塗布方法を用いることができる。乾燥条件は、例えば80~150℃、1~10分間である。
 表示システム2,2Bは、前記したようにスクリーン20,20Bを製造し、スクリーン20,20Bの端部に発光装置90を配置することにより製造できる。
 以上説明した表示システム2,2Bにあっては、スクリーン20,20Bが蛍光体層11と第1の非蛍光体層13と第1の透明基材12とを備え、蛍光体層11が所定パターンで第1の非蛍光体層13の中に形成されており、蛍光体層11及び第1の非蛍光体層13の両方が第1の透明基材12の第1の主面12aに接しており、前記式1を満たすので、スクリーン20,20Bの端部に配置された発光装置90から光を放射させたときに、この光が第1の透明基材12又は第1の非蛍光体層13を通って蛍光体層11に伝播し、蛍光体層11が発光して、蛍光体層11の平面視での形状に対応した映像が表示されるようになっている。
 発光装置90がスクリーン20,20Bの端部に配置されているので、発光装置90とスクリーン20,20Bとの間に光を反射するような物体が入り込むことがない。したがって、反射光が映像の視認者の眼や肌に当たり、視認者を危険にさらすおそれがなく、安全性に優れる。
 また、蛍光体層11が第1の非蛍光体層13の中に形成されているので、表面を平坦化することで異物やキズの影響を抑制できるとともに、スクリーン20,20Bの透明性を高くできる。
〔第三実施形態〕
 図3は、本発明の第三実施形態に係る表示システム3の模式断面図である。
 本実施形態の表示システム3は、スクリーン30(自発光型スクリーン)と、発光装置90とを備える。
 スクリーン30は、蛍光体層11と、第1の透明基材12と、第2の透明基材14とを備える。蛍光体層11は、第1の透明基材12の第1の主面12aに接している。また、蛍光体層11は、所定パターンで形成されている。
 第2の透明基材14は、蛍光体層11の第1の透明基材12側とは反対側に配置されている。第1の透明基材12と第2の透明基材14との間に蛍光体層11が配置されているともいえる。
 第1の透明基材12と第2の透明基材14との間には、これらの透明基材12,14に接してスペーサ15が配置されている。スペーサ15によって、第1の透明基材12と第2の透明基材14との間に空間Sが形成されている。
 発光装置90は、スクリーン30の端部に配置されている。本実施形態では、発光装置90は、第1の透明基材12の側端面に接している。
(第2の透明基材)
 第2の透明基材14は、単層構造及び多層構造のいずれでもよい。
 第2の透明基材14としては、ガラス基材、透明樹脂基材、ガラス基材の一方面又は両面に機能層が積層された機能層付きガラス基材、透明樹脂基材の一方面又は両面に機能層が積層された機能層付き透明樹脂基材、これらの基材の1以上が複数積層された積層体等が挙げられる。前記積層体において、複数の基材は直接積層されてもよく接着層を介して積層されてもよい。接着層としては、例えば、後述する第四実施形態における第1の接着層と同様のものが挙げられる。
 ガラス基材としては、前記と同様のものが挙げられる。
 ガラス基材は、UV吸収ガラス基材であってもよい。第1の透明基材12及び第2の透明基材14の少なくとも一方がUV吸収ガラス基材を含むものであれば、外部への励起光の漏れを抑制できる。
 ガラス基材に積層し得る機能層としては、前記と同様のものが挙げられる。
 透明樹脂基材としては、前記と同様のものが挙げられる。透明樹脂基材に積層し得る機能層としては、前記と同様のものが挙げられる。
 第2の透明基材14は、耐久性が優れる点から、ガラス基材を含むことが好ましい。ガラス基材を含む第2の透明基材14の具体例としては、前記したガラス基材を含む第1の透明基材12の具体例と同様のものが挙げられる。
 第2の透明基材14としては、スクリーン30に表示された映像の視認性及びスクリーン30の向こう側の光景の視認性の点から、複屈折がないものが好ましい。第2の透明基材14は、平板状でもよく、湾曲部を有する形状であってもよい。
 第2の透明基材14の厚さは、第2の透明基材14の耐久性が保たれる厚さであればよい。該厚さは、例えば0.5mm以上であってよく、1mm以上であってよく、2mm以上であってよい。また、該厚さは、例えば10mm以下であってよく、5mm以下であってよい。
 第2の透明基材14の可視光線透過率は、50%以上が好ましく、80%以上がより好ましい。可視光線透過率が前記下限値以上であれば、スクリーン30に表示された映像を第2の透明基材14側から視認する場合に、映像の視認性がより優れる。
 第2の透明基材14の可視光線透過率は、第1の透明基材12の可視光線透過率と同様の方法によって求められる。
 スペーサ15の材質としては、アルミニウム等の金属若しくは合金、樹脂等が挙げられる。スペーサ15の高さ、つまり第1の透明基材12と第2の透明基材14との間の距離は、例えば、0.1~10mmである。
 スクリーン30の好ましい全光線透過率は前記と同様である。また、スクリーン30の好ましいヘーズは前記と同様である。
 スクリーン30は、例えば、以下の方法により製造できる。
 蛍光体と、マトリックス成分又はその前駆体と、液状媒体とを含む蛍光体層用組成物を調製し、
 第1の透明基材12の第1の主面12aに前記蛍光体層用組成物を所定パターンで塗布し、乾燥して蛍光体層11を形成し、
 前記蛍光体層11が形成された第1の主面12aの上に、スペーサ15を介して第2の透明基材14を配置する方法。
 蛍光体層用組成物は前記と同様である。蛍光体層11は前記と同様にして形成できる。
 表示システム3は、前記したようにスクリーン30を製造し、スクリーン30の端部に発光装置90を配置することにより製造できる。
 以上説明した表示システム3にあっては、スクリーン30が蛍光体層11と第1の透明基材12と第2の透明基材とを備え、蛍光体層11が第1の透明基材12の第1の主面12aに接しており、前記式1を満たすので、スクリーン30の端部に配置された発光装置90から光を放射させたときに、この光が第1の透明基材12を通って蛍光体層11に伝播し、蛍光体層11が発光して、蛍光体層11の平面視での形状に対応した映像が表示されるようになっている。
 発光装置90がスクリーン30の端部に配置されているので、発光装置90とスクリーン30との間に光を反射するような物体が入り込むことがない。したがって、反射光が映像の視認者の眼や肌に当たり、視認者を危険にさらすおそれがなく、安全性に優れる。
 また、蛍光体層11が第1の透明基材12と第2の透明基材14との間に配置されているので、耐湿性が優れる。
〔第四実施形態〕
 図4Aは、本発明の第四実施形態に係る表示システム4の模式断面図である。
 本実施形態の表示システム4は、スクリーン40(自発光型スクリーン)と、発光装置90とを備える。
 図4Aに示すとおり、スクリーン40は、蛍光体層11と、第1の非蛍光体層13と、第1の透明基材12と、第2の透明基材14と、第1の接着層41とを備える。
 蛍光体層11及び第1の非蛍光体層13は、第1の透明基材12の第1の主面12a側に配置されている。蛍光体層11は、所定パターンで第1の非蛍光体層13の中に形成されている。
 光体層11の第1の透明基材12側の表面と、第1の非蛍光体層13の第1の透明基材12側の表面とは面一に形成されており、蛍光体層11及び第1の非蛍光体層13の両方が第1の透明基材12の第1の主面12aに接している。
 第1の非蛍光体層13の厚さは蛍光体層11の厚さよりも厚く、蛍光体層11の第1の透明基材12と接する面以外の面は第1の非蛍光体層13で覆われている。
 第2の透明基材14は、蛍光体層11及び第1の非蛍光体層13の第1の透明基材12側とは反対側に配置されている。第1の透明基材12と第2の透明基材14との間に蛍光体層11及び第1の非蛍光体層13が配置されているともいえる。
 第1の接着層41は、第2の透明基材14と第1の非蛍光体層13とを接着している。
 発光装置90は、スクリーン40の端部に配置されている。本実施形態では、発光装置90は、第1の透明基材12の側端面及び第1の非蛍光体層13の側端面に接している。
 図4Bに、表示システム4の変形例を示す。この表示システム4Bは、スクリーン40の代わりに、スクリーン40Bを備える以外は、表示システム4と同様である。
 図4Bにおけるスクリーン40Bは、第1の透明基材12の代わりに、蛍光体層11側から、第1基材42、第2の接着層43及び第2基材44がこの順に積層された第1の透明基材12Bを備える以外は、スクリーン40と同様である。
(第1の接着層)
 第1の接着層41は、典型的には、樹脂を含み、蛍光体を含まない。すなわち、第1の接着層41は、第1の非蛍光体層13及び/又は第2の非蛍光体層23としても機能しうる層である。
 樹脂としては、合わせガラスの中間膜等に用いられる樹脂を用いることができる。例えば、ポリビニルアセタール樹脂、エチレン-酢酸ビニル共重合樹脂、アイオノマー、エチレン-アクリル共重合樹脂、ポリウレタン樹脂、硫黄含有ポリウレタン樹脂、ポリビニルアルコール樹脂、塩化ビニル樹脂、ポリエチレンテレフタレート樹脂等の熱可塑性樹脂が挙げられる。これらの樹脂は、2種以上が併用されてもよい。
 樹脂としては、上記の中でも、ポリビニルアセタール樹脂、エチレン-酢酸ビニル共重合樹脂、アイオノマーが好ましい。
 ポリビニルアセタール樹脂は、ポリビニルアルコールをアルデヒドでアセタール化した樹脂である。ポリビニルアセタール樹脂としてはポリビニルブチラール樹脂が好ましい。
 ポリビニルアセタール樹脂のアセタール化度は、40~85モル%が好ましく、60~75モル%がより好ましい。
 ポリビニルアセタール樹脂の水酸基量は、15~35モル%が好ましい。
 アセタール化度及び水酸基量は、JIS K6728「ポリビニルブチラール試験方法」に準拠して測定できる。
 第1の接着層41は、樹脂とともに、可塑剤を含んでいてもよい。可塑剤としては、例えば、一塩基性有機酸エステル、多塩基性有機酸エステル等の有機エステル可塑剤、有機リン酸可塑剤、有機亜リン酸可塑剤等のリン酸可塑剤が挙げられる。
 有機エステル可塑剤としては、例えばトリエチレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-2-エチルヘキサノエート、トリエチレングリコールジカプリレート、トリエチレングリコールジ-n-オクタノエート、トリエチレングリコールジ-n-ヘプタノエート、テトラエチレングリコールジ-n-ヘプタノエート、テトラエチレングリコールジ-2-エチルヘキサノエート、ジブチルセバケート、ジオクチルアゼレート、ジブチルカルビトールアジペート、エチレングリコールジ-2-エチルブチレート、1,3-プロピレングリコールジ-2-エチルブチレート、1,4-ブチレングリコールジ-2-エチルブチレート、ジエチレングリコールジ-2-エチルブチレート、ジエチレングリコールジ-2-エチルヘキサノエート、ジプロピレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-2-エチルペンタノエート、テトラエチレングリコールジ-2-エチルブチレート、ジエチレングリコールジカプリエート、アジピン酸ジヘキシル、アジピン酸ジオクチル、アジピン酸ヘキシルシクロヘキシル、アジピン酸ジイソノニル、アジピン酸ヘプチルノニル、セバシン酸ジブチル、油変性セバシン酸アルキド、リン酸エステルとアジピン酸エステルとの混合物、アジピン酸エステル、炭素数4~9のアルキルアルコール及び炭素数4~9の環状アルコールから作製された混合型アジピン酸エステル、アジピン酸ヘキシル等の炭素数6~8のアジピン酸エステルが挙げられる。
 機エステル可塑剤のうち、多塩基性有機酸エステルとしては、アジピン酸、セバシン酸、アゼライン酸等の多塩基性有機酸と、炭素数4~8の直鎖又は分岐構造を有するアルコールとのエステル化合物が好ましい。
 有機リン酸可塑剤としては、例えば、トリブトキシエチルホスフェート、イソデシルフェニルホスフェート、トリイソプロピルホスフェートが挙げられる。
 第1の接着層41は、樹脂及び可塑剤以外の他の成分をさらに含んでもよい。
 他の成分としては、例えばUV吸収剤、接着力調整剤、酸化防止剤が挙げられる。
 第1の接着層41中の樹脂の含有量は、第1の接着層41の総質量に対し、10質量%以上が好ましく、50質量%以上がより好ましい。樹脂の含有量が前記下限値以上であれば、第1の透明基材12と第2の透明基材14との間の接着強度がより優れる。上記樹脂の含有量の上限は特に限定されず、100質量%であってもよい。
 第1の接着層41が可塑剤を含む場合、可塑剤の含有量は、樹脂100質量部に対して30~90質量部が好ましい。
 第1の接着層41の厚さは、0.1~3.0mmが好ましく、0.3~1.0mmがより好ましい。該厚さが前記範囲の下限値以上であれば、スクリーン40の強度がより優れる。該厚さが前記範囲の上限値以下であれば、第1の透明基材12と第2の透明基材14との間の接着強度がより優れる。
 第1基材42としては、ガラス基材、透明樹脂基材等が挙げられる。ガラス基材、透明樹脂基材はそれぞれ前記と同様のものが挙げられる。
 第2の接着層43としては、第1の接着層41と同様のものが挙げられる。
 第2基材44としては、第1基材42と同様のものが挙げられる。
 スクリーン40においては、典型的には、第1の透明基材12及び第2の透明基材14の両方がガラス基材である。
 スクリーン40Bにおいては、第1の透明基材12Bを構成する第1基材42、第2の接着層43及び第2基材44が以下の関係を満たす。
 第1基材42の屈折率≧第2の接着層43の屈折率≧第2基材44の屈折率。
 (第1基材42の屈折率-第2の接着層43の屈折率)、(第2の接着層43の屈折率-第2基材44の屈折率)はそれぞれ前記(n-ni+1)に相当する。
 第1基材42の屈折率は前記nに相当する。
 第1の透明基材12Bにおいては、典型的には、第1基材42が透明樹脂基材であり、第2基材44及び第2の透明基材14の両方がガラス基材である。
 スクリーン40,40Bの好ましい全光線透過率は前記と同様である。
 スクリーン40,40Bの好ましいヘーズは前記と同様である。
 スクリーン40は、例えば、以下の方法により製造できる。
 蛍光体と、マトリックス成分又はその前駆体と、液状媒体とを含む蛍光体層用組成物を調製し、
 第1の透明基材12の一方面(第1の主面12aに相当)に前記蛍光体層用組成物を所定パターンで塗布し、乾燥して蛍光体層11を形成し、
 マトリックス成分又はその前駆体と、液状媒体とを含み、蛍光体を含まない非蛍光体層用組成物を調製し、
 前記蛍光体層11が形成された第1の透明基材12の一方面に前記非蛍光体層用組成物を塗布し、乾燥して第1の非蛍光体層13を形成し、第1の透明基材12と蛍光体層11と第1の非蛍光体層13とを備える積層体を得て、
 前記積層体の第1の非蛍光体層13側の面と、第2の透明基材14とを、第1の接着層41を介して貼り合わせる方法。
 スクリーン40Bは、例えば、以下の方法により製造できる。
 第1基材42の一方面(第1の主面12aに相当)に、上記と同様にして蛍光体層11を形成し、
 前記蛍光体層11が形成された第1基材42の一方面に、上記と同様にして第1の非蛍光体層13を形成し、第1基材42と蛍光体層11と第1の非蛍光体層13とを備える積層体を得て、
 前記積層体の第1基材42側の面と、第2基材44とを、第2の接着層43を介して貼り合せ、前記積層体の第1の非蛍光体層13側の面と、第2の透明基材14とを、第1の接着層41を介して貼り合わせる方法。
 蛍光体層用組成物及び非蛍光体層用組成物はそれぞれ前記と同様である。また、蛍光体層11及び第1の非蛍光体層13はそれぞれ前記と同様にして形成できる。
 前記積層体と第2基材44及び第2の透明基材14との貼り合わせは、公知の合わせガラスの製造と同様にして実施できる。例えば、第2の透明基材14と、第1の接着層41と、前記積層体と、第2の接着層43と、第2基材44とを、所望の層構成となるように重ねて積層物とし、この積層物を減圧下で加熱して仮接着し、さらに加圧下で加熱して本接着する方法が挙げられる。仮接着の条件は、例えば圧力0.07~0.10MPa、温度70~130℃であってよい。本接着の条件は、例えば圧力0.5~1.5MPa、温度80~150℃であってよい。
 表示システム4,4Bは、前記したようにスクリーン40,40Bを製造し、スクリーン40,40Bの端部に発光装置90を配置することにより製造できる。
 以上説明した表示システム4にあっては、スクリーン40が蛍光体層11と第1の非蛍光体層13と第1の透明基材12と第2の透明基材とを備え、蛍光体層11が所定パターンで第1の非蛍光体層13の中に形成されており、蛍光体層11及び第1の非蛍光体層13の両方が第1の透明基材12の第1の主面12aに接しており、前記式1を満たすので、スクリーン40の端部に配置された発光装置90から光を放射させたときに、この光が第1の透明基材12又は第1の非蛍光体層13を通って蛍光体層11に伝播し、蛍光体層11が発光して、蛍光体層11の平面視での形状に対応した映像が表示されるようになっている。
 発光装置90がスクリーン40の端部に配置されているので、発光装置90とスクリーン40との間に光を反射するような物体が入り込むことがない。したがって、反射光が映像の視認者の眼や肌に当たり、視認者を危険にさらすおそれがなく、安全性に優れる。
 また、蛍光体層11が第1の透明基材12と第2の透明基材14との間に配置されているので、耐擦傷性が優れる。
 以上、本発明の自発光型スクリーン及び表示システムについて、実施形態を示して説明したが、本発明は上記実施形態に限定されない。上記実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明を逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。
 例えば、本発明の自発光型スクリーンは、蛍光体層11と第1の非蛍光体層13とを備え、第1の透明基材12を備えないものであってもよい。この場合、自発光型スクリーンは、下記式4を満たすことが好ましい。
 n≧n ・・・式4
 n-nの値は前記したとおりである。
 この場合、発光装置90は、第1の非蛍光体層13の側端面に接して配置され、発光装置90から放射された光は、第1の非蛍光体層13を通って蛍光体層11に伝播する。
 このような自発光型スクリーンは、例えば、第二実施形態のスクリーン20から第1の透明基材12を剥離することにより製造できる。
 本発明の自発光型スクリーンは、蛍光体層11、第1の非蛍光体層13、第1の透明基材12及び第2の透明基材14以外の他の層をさらに有していてもよい。例えば、第1の透明基材12の第1の主面12aとは反対側の第2の主面の上に、第1の透明基材12の屈折率(多層構造の場合は最も第2の主面側の層の屈折率)よりも高屈折率の層をさらに有していてもよい。他の層としては、例えばハードコート層、UV吸収層、反射防止層等が挙げられる。
 本発明の表示システムは、本発明の自発光型スクリーン及び発光装置のほか、フレーム、ミラー、レンズ等を備えることができる。
〔用途〕
 本発明の自発光型スクリーン及び表示システムは、単体で屋外、屋内等の任意の場所に設置されてもよく、自動車等の車両や建築物の一部として用いられてもよい。例えば、本発明の自発光型スクリーンを、自動車のフロントガラス、リアガラス、サイドガラス及び天井ガラス、建築物の窓ガラス等に適用できる。建築物は膜構造建築物であってもよい。膜構造建築物は、屋根、壁等の少なくとも一部を膜材で構成した建築物であり、運動施設、温室、アトリウム等に使用される。
 図5に、本発明の表示システムを備えた自動車の一例を示す。図5において、自動車の乗員から見て車両前方をFR、車両後方をRR、車両右側をRH、車両左側をLHで示す。自動車は、略左右対称の部材で構成されているので、構成の理解を容易にするために、左右の部材に同じ符号を付して説明する。
 この例の自動車60は、筐体62と、窓部64とを備える。なお、自動車60の筐体62及び窓部64の構成は、図5に示す構成に限定するものではない。サイドドアの数等は任意に変更が可能である。
 筐体62は、ボディ65及びサイドドア部66等を備える。ボディ65は、ルーフ73、右後フェンダ74、左後フェンダ74(図示せず)、後リッド75、及びフロア部等を備える。サイドドア部66は、右前サイドドア71、左前サイドドア71(図示せず)、右後サイドドア72、及び左後サイドドア72(図示せず)を備える。
 窓部64は、前ウインドガラス81、後ウインドガラス82、右前サイドドア窓ガラス83、左前サイドドア窓ガラス83(図示せず)、右後サイドドア窓ガラス84、及び左後サイドドア窓ガラス84(図示せず)を備える。
 右前サイドドア窓ガラス83は、第二実施形態のスクリーン20である。また、右前サイドドア71には、右前サイドドア窓ガラス83の端部と接する位置に、発光装置90(図示せず)が配置されている。
 この例において、蛍光体層11は、「Thanks」とのパターンで形成されている。自動車60の運転者の操作等によって発光装置90から光が放射されると、右前サイドドア窓ガラス83に「Thanks」と表示される。なお、蛍光体層11のパターンは、この例に示すパターンに限定するものではなく、任意に変更が可能である。
 以下、本発明の実施例について具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 (実施例1)
 以下の方法により、図2に示す構成の自発光型スクリーンを製造した。
 まず、第1の透明基材として、縦100mm、横100mm、厚さ2mmのソーダライムガラスを準備した。
 次に、蛍光体層のマトリックス成分としてフルオレン環含有ポリマー(大阪ガスケミカル社商品名:OKP850、以下、OKP850という。)を用い、シクロペンタノン溶媒に溶解させて、樹脂濃度2.0質量%のマトリックス溶液を調製した。このマトリックス溶液に蛍光錯体顔料(セントラルテクノ社商品名:ルミシスG3300)を加え、混合してペースト状の蛍光体層用組成物を調製した。蛍光錯体顔料の配合量は、OKP850に対して5質量%とした。
 前記蛍光体層用組成物を第1の透明基材12の第1の主面12aの中央部に、スクリーン印刷により15mm×50mmの四角形状のパターンで塗布し、110℃で乾燥して蛍光体層11を形成した。蛍光体層11の厚みは約6μmであった。
 次に、シクロオレフィン含有ポリマー(日本ゼオン社製、以下、COPという。)をシクロヘキサン溶媒に溶解させて、樹脂濃度10質量%の非蛍光体層用組成物を調製した。
 前記非蛍光体層用組成物を上記蛍光体層11の上に、バーコートにより塗布し、110℃で乾燥して第1の非蛍光体層13を形成した。第1の非蛍光体層13の表面は平坦であった。第1の非蛍光体層の厚さ(平面視において蛍光体層11が存在していない部分における、第1の透明基材12の第1の主面12aから第1の非蛍光体層13の表面までの距離)は12μmであった。
 得られた自発光型スクリーンについて、以下の評価を実施した。結果を表1に示す。
 (屈折率評価)
 高屈折率樹脂の屈折率を、メトリコン社製プリズムカップラーを用いて測定した。
 (吸水率評価)
 以下の方法により、蛍光体層及び非蛍光体層のマトリックス成分として使用した樹脂に含まれる吸水率を測定した。
 まず、マトリックス成分として使用した樹脂を希釈溶媒(蛍光体層:シクロペンタノン、非蛍光体層:シクロヘキサン)に溶解して、粘稠な溶液を作製した。得られた溶液をキャスティング法により、アルミニウム製のカップ内に注ぎ、次いで、カップを110℃で5分間加熱し、希釈溶媒を除去した。その後、カップから固形物を回収した。固形物は自立膜の形態であった。
 室温(25℃)、相対湿度60%で1時間放置した後、得られた自立膜から1gの評価試料を採取した。また、カールフィッシャー装置(CA-200 Moisturemeter:エーピーアイコーポレーション社製)を用いて試料中の水分量を測定した。得られた水分量を用いて、下記式より、樹脂の吸水率(質量%)を求めた。
  吸水率(%)=(水分量(g)×100)/試料(g)
 (光学評価)
 自発光型スクリーンの全光線透過率(%)を、JIS K 7361:1997(対応国際規格ISO 13468-1:1996)に記載された方法によって測定した。
 自発光型スクリーンのヘーズを、JIS K 7136:2000(対応国際規格:ISO 14782:1999)に記載された方法によって測定した。
 (表示輝度評価)
 自発光型スクリーンの端部に、発光装置90としてテープ型LED(波長405nm、5050SMDのLEDチップが60led/m搭載、12V)を配置して表示システムを作製した。テープ型LEDは、光の出射面が、第1の透明基材12の側端面又は第1の非蛍光体層13の側端面に接するように配置した。
 テープ型LEDが第1の透明基材12の側端面のみに接している場合(ガラス入射)、テープ型LEDが第1の非蛍光体層13の側端面のみに接している場合(樹脂入射)のいずれの場合においても、テープ型LEDから光を放射させたときに蛍光体層11全体が発光した。発光時の蛍光体層11の輝度を、自発光型スクリーンから50cm離れた場所から輝度計(コニカミノルタ社、CS-100A)を用いて測定した。
Figure JPOXMLDOC01-appb-T000002
 例1の自発光型スクリーンでは、端部から光を入射させることによって蛍光体層11を発光させることができた。また、例1の自発光型スクリーンは、透明性にも優れていた。
 さらに、例1の自発光型スクリーンでは、テープ型LEDから光を放射させていないときは、蛍光体層11と第1の非蛍光体層13との境界は視認されなかった。
 上記結果から、本発明の自発光型スクリーンでは、端部から光を入射させることによって、蛍光体層を発光させ、映像を表示できることが確認できた。したがって、本発明の自発光型スクリーンによれば、映像を表示させるための光の反射光が視認者を危険にさらすおそれがなく、安全性に優れた表示システムを構築できる。
 1,2,2B,3,4,4B:表示システム、10,20,20B,30,40,40B:スクリーン(自発光型スクリーン)、11:蛍光体層、12:第1の透明基材、12a:第1の透明基材の第1の主面、13:第1の非蛍光体層、14:第2の透明基材、15:スペーサ、23:第2の非蛍光体層、41:第1の接着層、42:第1基材、43:第2の接着層、44:第2基材、90:発光装置
 なお、2018年8月21日に出願された日本特許出願2018-154815号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (15)

  1.  蛍光体を含む蛍光体層と、第1の透明基材とを備え、
     前記蛍光体層は、前記第1の透明基材の第1の主面に接しており、
     前記第1の透明基材は、単層構造、又はx個(xは2以上の整数である。)の層が積層された多層構造であり、かつ下記式1を満たすことを特徴とする自発光型スクリーン。
     n-n>0 ・・・式1
     ここで、nは、前記第1の透明基材が単層構造である場合は、前記第1の透明基材の屈折率を示し、前記第1の透明基材が多層構造である場合は、前記x個の層のうち最も前記第1の主面側の層の屈折率を示し、nは、前記蛍光体層のマトリックスの屈折率を示す。
  2.  前記蛍光体層が所定パターンで形成されている請求項1に記載の自発光型スクリーン。
  3.  蛍光体を含まない第1の非蛍光体層をさらに備え、
     前記蛍光体層は、前記第1の非蛍光体層の中に形成されており、前記蛍光体層及び前記第1の非蛍光体層の両方が前記第1の透明基材の第1の主面に接しており、かつ下記式2を満たす請求項2に記載の自発光型スクリーン。
     n≧n ・・・式2
     ここで、nは前記と同義であり、nは、前記第1の非蛍光体層のマトリックスの屈折率を示す。
  4.  前記式2において、n=nである請求項3に記載の自発光型スクリーン。
  5.  前記第1の非蛍光体層上に、蛍光体を含まない第2の非蛍光体層をさらに備え、下記式3を満たす請求項3又は4に記載の自発光型スクリーン。
     n≧n ・・・式3
     ここで、nは前記と同義であり、nは、前記第2の非蛍光体層のマトリックスの屈折率を示す。
  6.  前記蛍光体層のマトリックス、前記第1の非蛍光体層のマトリックス及び前記第2の非蛍光体層のマトリックスからなる群より選ばれる1種以上の吸水率が0.8質量%以下である請求項5に記載の自発光型スクリーン。
  7.  前記第1の非蛍光体層のマトリックス成分と、前記第2の非蛍光体層のマトリックス成分とが同じである請求項5又は6に記載の自発光型スクリーン。
  8.  前記マトリックス成分が、加水分解性金属化合物の加水分解縮合物、樹脂、又はそれらの混合物を含む請求項7に記載の自発光型スクリーン。
  9.  前記蛍光体層の厚さが0.5~50μmである請求項1~8のいずれか一項に記載の自発光型スクリーン。
  10.  前記蛍光体が無機蛍光体を含む請求項1~9のいずれか一項に記載の自発光型スクリーン。
  11.  第2の透明基材をさらに備え、前記第2の透明基材は、前記蛍光体層の前記第1の透明基材側とは反対側に配置されている請求項1~10のいずれか一項に記載の自発光型スクリーン。
  12.  前記第1の透明基材及び前記第2の透明基材の少なくとも一方が紫外線吸収ガラス基材を含む請求項11に記載の自発光型スクリーン。
  13.  蛍光体を含む蛍光体層と、蛍光体を含まない第1の非蛍光体層とを備え、
     前記蛍光体層は、所定パターンで前記第1の非蛍光体層の中に形成されており、
     下記式4を満たす、自発光型スクリーン。
     n≧n ・・・式4
     ここで、nは、前記蛍光体層のマトリックスの屈折率を示し、nは、前記第1の非蛍光体層のマトリックスの屈折率を示す。
  14.  全光線透過率が50~90%であり、かつヘーズが0.1~20%である請求項1~13のいずれか一項に記載の自発光型スクリーン。
  15.  請求項1~14のいずれか一項に記載の自発光型スクリーンと、発光装置とを備え、
     前記発光装置は、前記自発光型スクリーンの端部に配置されている、表示システム。
PCT/JP2019/032058 2018-08-21 2019-08-15 自発光型スクリーン及び表示システム WO2020040038A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-154815 2018-08-21
JP2018154815A JP2021182018A (ja) 2018-08-21 2018-08-21 自発光型スクリーン及び表示システム

Publications (1)

Publication Number Publication Date
WO2020040038A1 true WO2020040038A1 (ja) 2020-02-27

Family

ID=69592789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032058 WO2020040038A1 (ja) 2018-08-21 2019-08-15 自発光型スクリーン及び表示システム

Country Status (2)

Country Link
JP (1) JP2021182018A (ja)
WO (1) WO2020040038A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4791745A (en) * 1987-03-20 1988-12-20 Pohn Mac R Black light display system
JPH06166538A (ja) * 1992-07-21 1994-06-14 Corning Inc 紫外線吸収ガラス
JPH10268813A (ja) * 1997-03-26 1998-10-09 Mitsuboshi Belting Ltd 発光塗料とこれを用いた面発光表示板
JP2006059723A (ja) * 2004-08-20 2006-03-02 Kuriotekku:Kk 発光用エレメント、これを備えた発光装置および表示装置
EP1793261A1 (en) * 2005-12-01 2007-06-06 C.R.F. Societa Consortile per Azioni Transparent display based on photoluminescent material
WO2016175176A1 (ja) * 2015-04-30 2016-11-03 富士フイルム株式会社 透明スクリーン
JP2017183118A (ja) * 2016-03-30 2017-10-05 大日本印刷株式会社 導光板および照明装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4791745A (en) * 1987-03-20 1988-12-20 Pohn Mac R Black light display system
JPH06166538A (ja) * 1992-07-21 1994-06-14 Corning Inc 紫外線吸収ガラス
JPH10268813A (ja) * 1997-03-26 1998-10-09 Mitsuboshi Belting Ltd 発光塗料とこれを用いた面発光表示板
JP2006059723A (ja) * 2004-08-20 2006-03-02 Kuriotekku:Kk 発光用エレメント、これを備えた発光装置および表示装置
EP1793261A1 (en) * 2005-12-01 2007-06-06 C.R.F. Societa Consortile per Azioni Transparent display based on photoluminescent material
WO2016175176A1 (ja) * 2015-04-30 2016-11-03 富士フイルム株式会社 透明スクリーン
JP2017183118A (ja) * 2016-03-30 2017-10-05 大日本印刷株式会社 導光板および照明装置

Also Published As

Publication number Publication date
JP2021182018A (ja) 2021-11-25

Similar Documents

Publication Publication Date Title
KR101767292B1 (ko) 헤드-업 디스플레이로서 복합 창유리
US10562275B2 (en) Glass pane as head-up display
JP6192281B2 (ja) 発光シート、合わせガラス用中間膜及び合わせガラス
KR102558338B1 (ko) 파장 변환 시트 및 백라이트 유닛
JP2011518704A (ja) ヘッドアップ表示デバイス
RU2700354C2 (ru) Пленка промежуточного слоя для ламинированного стекла и ламинированное стекло
WO2018211979A1 (ja) 自発光型スクリーン
JP6188301B2 (ja) 合わせガラス用中間膜、合わせガラス、及び、ディスプレイ装置
JP6862814B2 (ja) 量子ドットシートを有するバックライト、及び該バックライトを備えた液晶表示装置
WO2020040038A1 (ja) 自発光型スクリーン及び表示システム
JP6362500B2 (ja) 合わせガラス用中間膜、合わせガラス及び車両
US7329983B2 (en) High mechanical and optical performance illumination system
CN108943933B (zh) 光学膜、窗膜和抬头显示设备
JP2020030279A (ja) 自発光型スクリーン及び表示システム
US10191280B2 (en) Glass panel for display system
US11639085B2 (en) Luminescent glazings
JP2018177637A (ja) 合わせガラス用中間膜、合わせガラス及び車両
US10075683B2 (en) Glass panel for display system
TW202227591A (zh) 與夜視設備兼容的裝置
JP2020118701A (ja) 自発光型スクリーン
WO2019188831A1 (ja) 波長変換部材及びその製造方法
JP2016069216A (ja) 合わせガラス用中間膜及び合わせガラス
JP2020091390A (ja) 波長変換シート及び発光デバイス
JP2015218224A (ja) 発光シート、合わせガラス用中間膜、合わせガラス、ディスプレイ装置、及び、発光粒子分散液
KR20070021993A (ko) 투명기판에 일체화된 발광재료

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19851526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP