WO2020038680A1 - Stator für eine elektrische maschine - Google Patents

Stator für eine elektrische maschine Download PDF

Info

Publication number
WO2020038680A1
WO2020038680A1 PCT/EP2019/069816 EP2019069816W WO2020038680A1 WO 2020038680 A1 WO2020038680 A1 WO 2020038680A1 EP 2019069816 W EP2019069816 W EP 2019069816W WO 2020038680 A1 WO2020038680 A1 WO 2020038680A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
winding head
winding
enveloping
casting
Prior art date
Application number
PCT/EP2019/069816
Other languages
English (en)
French (fr)
Inventor
Thorsten Rienecker
Uwe Burmeister
Philipp Schlag
Daniel Winkle
Original Assignee
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke Aktiengesellschaft filed Critical Bayerische Motoren Werke Aktiengesellschaft
Priority to US17/269,657 priority Critical patent/US20210184530A1/en
Priority to CN201980043002.XA priority patent/CN112335160B/zh
Publication of WO2020038680A1 publication Critical patent/WO2020038680A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/10Applying solid insulation to windings, stators or rotors
    • H02K15/105Applying solid insulation to windings, stators or rotors to the windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/38Windings characterised by the shape, form or construction of the insulation around winding heads, equalising connectors, or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto
    • H02K3/505Fastening of winding heads, equalising connectors, or connections thereto for large machine windings, e.g. bar windings

Definitions

  • the present invention relates to a stator for an electrical machine, an enveloping element for a stator and a method for producing a coil.
  • the electrical conductors for producing the windings of, for example, stators of electric motors are usually produced using enamelled wire.
  • the paint is used for electrical insulation. To connect the individual conductors, this insulation is stripped at the corresponding contact points. After the connection has been established (e.g. by welding, soldering or (hot) crimping etc.), the joint must be insulated again. This can e.g. B. done by powder coating or casting with a casting resin. When the resin is cast around it, the stator is positioned, for example, in a device. The casting resin is then poured into the device. After the resin has hardened, the device is removed again.
  • the disadvantage of this is that molds of this type wear out, become dirty and have to be cleaned or have to be replaced from time to time.
  • a stator for an electrical machine comprises a shaped bar winding, the shaped bar winding being formed by a large number of shaped bars which in the area of a winding head or have contact points, at least the connection or contact points being encased by a potting layer and wherein a thickness of the potting layer is predetermined by a covering element which is arranged or fastened to the winding head close to the contour.
  • the expression “close to the contour” is to be understood in particular to mean that a shape of the enveloping element follows the shape of the corresponding winding head as far as possible, as a result of which in particular a casting layer or a casting layer with an essentially constant thickness or wall thickness is produced.
  • the enveloping element is arranged directly, in other words directly, on the winding head or also indirectly, in particular via the casting layer, on the winding head.
  • a corresponding shaped wire is bent two or three dimensions to form a hairpin and inserted into a stator laminated core.
  • the actual winding head is then shaped by interlacing the hairpins.
  • the ends of the hairpins are, for example, crossed in opposite directions according to the desired circuit diagram, cut to the correct length and then welded - with the aforementioned connection points being created - so that a coil runs through the stator.
  • the enveloping element expediently comprises an end section which is essentially transverse to a longitudinal axis of the stator or a stator core, cf. the aforementioned laminated core is oriented, and an inner and an outer envelope section, which extend along the longitudinal axis.
  • the inner sleeve section and the outer sleeve section are arranged radially with respect to one another with respect to the longitudinal axis and, together with the end section, form an arrangement space or a “sleeve” for the winding head.
  • the end section and the two envelope sections are preferably closed, that is to say they have no openings or the like, which among other things has advantages in terms of production costs.
  • the enveloping element is preferably connected, at least in regions, to the at least one winding head via the casting layer.
  • the enveloping element is expediently fastened, at least in some areas, to the winding head via the potting layer. It is particularly advantageous here that the shape of the envelope element, which is close to the contour, enables a thin but also uniform casting layer, which is above all light.
  • the potting layer between the enveloping element and the winding overhang is preferably formed over the entire surface.
  • the enveloping element has pockets and / or undercuts or forms them. This enables the enveloping element to follow a geometry or an outer contour of the end winding, advantageously with a close contour.
  • the enveloping element is adapted to the shape of the winding head or follows it.
  • a potting material or, in particular, a casting resin is used in a resource-saving manner.
  • the enveloping element can also have indentations or generally projections and / or recesses.
  • Typical casting layer thicknesses are z. B. in a range of about 1 to 5 mm.
  • the thickness of the encapsulation layer is “zero”, so to speak, that is if the conductor elements, in particular the shaped rods, lie directly against the enveloping element. In this case, the insulation takes place directly through the envelope element. Because the wrapping element remains on the end winding, this is not a problem.
  • the envelope element is flexible, at least in some areas.
  • the envelope element receives its final stiffness only after the casting layer has hardened. This can be advantageous with regard to the production of the enveloping element, since shape and position tolerances can possibly be larger.
  • the wrapping element is a solid form that can be pushed onto the winding head.
  • the envelope element is preferably formed from a plastic, in particular a plastic which itself has good electrical insulation properties.
  • the enveloping element is designed such that it is also non-positively attached to the winding head.
  • the enveloping element is not exclusively attached to the winding head via the casting compound. This can be advantageous with regard to assembly, since the cover element also “holds” on the corresponding winding head, so to speak, although no potting compound or casting resin has yet been arranged, for example injected.
  • the invention is also directed to an enveloping element for a stator according to the invention.
  • the invention further relates to a method for producing a coil, in particular for producing or isolating a stator of an electrical machine, comprising the steps:
  • the method comprises the steps:
  • the envelope element is filled, for example, with (casting) resin. Then the coil, in particular a stator of an electrical machine, with the to be cast winding head immersed in the resin. The resin can then harden and the covering element remains on the stator.
  • the method comprises the steps:
  • the envelope element is first positioned on the stator and then filled with (casting) resin.
  • the casing element expediently has no fill openings or the like for the resin.
  • the resin is advantageously introduced into a gap which is in any case present between the winding head and the enveloping element.
  • the possibility of filling the casting cap at different times or in different ways is a great advantage in terms of production technology.
  • the envelope element itself can be designed the same in both cases.
  • the use of the enveloping element which remains on the coil or on the stator even after casting, significantly increases the stability of the stator, in particular also in comparison to a powder coating, in particular the mechanical stability, for example in the event of vibrations.
  • It is preferably a stator of an electrical machine of a motor vehicle, in particular an electric or hyrid vehicle. It is also advantageous that, unlike with a conventional injection mold, undercuts and the like can also be produced without problems, as a result of which an optimal adaptation of a shape of the enveloping element to a shape of the winding head is possible. In addition, there is no need to clean the injection mold, its maintenance, etc., so that the proposed solution is also interesting in terms of cost. Further advantages and features result from the following description of embodiments of a stator or an envelope element with reference to the attached figures. Different features can be combined with one another in the context of the invention.
  • FIG. 1 shows a section through an embodiment of an enveloping element in a schematic representation
  • Fig. 4 a plan view of a further schematic view of a
  • Embodiment of an enveloping element Embodiment of an enveloping element.
  • the reference number 1 denotes a casting compound with which the envelope element 20 is filled.
  • a stator with its winding head can be immersed in an envelope element 20 prepared in this way. After the casting compound 1, for example the casting resin, has hardened, the enveloping element 20 then remains on the stator or on the end winding.
  • the reference symbol A also outlines an arrangement direction. In particular, this means a direction along which the enveloping element 20 can be pushed onto a winding head. As already mentioned, but can also counter this Arrangement direction A of the winding head can be moved into the enveloping element 20.
  • FIG. 2 shows a schematic view of a stator 10, which has a winding head 12 on each end.
  • the stator extends along a longitudinal axis L or along a stator axis S.
  • the stator 10 sketched here has, for example, a shaped bar winding, the shaped bars or hair pins being pushed into a stator core from the right side. In the left part, the shaped bars are then interlaced or also connected to the winding head 12 outlined there. In this area, which is shown in section, a filling element 20 is now pushed onto the winding head 12 along the arrangement direction A, so that a casting layer 2 is formed around the winding head 12 after the casting.
  • a shape of the fill element 20, in particular its arrangement space, which is formed by the end section and the inner and outer fill section, cf. in this regard also FIG. 1 follows a shape of the winding head 12.
  • a phase connection 14 which serves for the electrical contacting of the stator 10.
  • FIG 3 shows a further schematic illustration of a filling element 20, wherein it can be seen in the embodiment shown here that the filling element 20 can have pockets 28 which extend from an end section 22 or from an outer filling section 26 extend radially or axially away.
  • FIG. 4 shows, similar to FIG. 3, a multiplicity of pockets 28, wherein it can be seen that the pockets 28 extend along a longitudinal axis L or an arrangement direction A.
  • a filling element 20 is shown here in a plan view (viewed along the arrangement direction A).
  • the pockets 28 extend radially and axially to the longitudinal axis L of the filling element 20.
  • pockets of this type serve to ensure that the filling element can follow the shape or geometry of the winding head underneath as precisely as possible.
  • the winding head is connected, for example, to a phase connection module, as outlined in FIG. 2 (reference number 14 there), it can happen that some shaped rods “protrude” from the winding head.
  • the pockets 28 or also bulges, undercuts and the like nevertheless enable the casting layer to have a uniform thickness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

Stator für eine elektrische Maschine, umfassend eine Formstabwicklung, wobei die Formstabwicklung durch eine Vielzahl von Formstäben gebildet ist, welche im Bereich eines Wickelkopfes Verbindungsstellen aufweisen, wobei die Verbindungsstellen von einer Vergussschicht umhüllt sind, und wobei eine Dicke der Vergussschicht durch eine Hüllelement vorgegeben ist, welches an dem Wickelkopf konturnah angeordnet ist.

Description

Stator für eine elektrische Maschine
Die vorliegende Erfindung betrifft einen Stator für eine elektrische Maschine, ein Hüllelement für einen Stator sowie ein Verfahren zum Herstellen einer Spule.
Die elektrischen Leiter zum Herstellen der Wicklungen von beispielsweise Statoren von Elektromotoren werden meist durch Lackdraht hergestellt. Der Lack dient hier zur elektrischen Isolation. Zum Verbinden der einzelnen Leiter wird diese Isolation an den entsprechenden Kontaktstellen abisoliert. Nach dem Herstellen der Verbindung (z. B. durch Schweißen, Löten oder (Heiß- )Crimpen etc.) muss die Fügestelle wieder isoliert werden. Dies kann z. B. durch Pulverbeschichten oder Umgießen mit einem Gießharz geschehen. Beim Umgießen mit dem Harz wird der Stator beispielsweise in einer Vorrich- tung positioniert. Anschließend wird das Gießharz in die Vorrichtung einge- füllt. Nach dem Aushärten des Harzes wird die Vorrichtung wieder entfernt. Nachteilig daran ist, dass derartige Gießformen verschleißen, verschmutzen und gereinigt bzw. von Zeit zu Zeit auch ausgetauscht werden müssen.
Es ist daher eine Aufgabe der vorliegenden Erfindung, einen Stator, ein Hül- lelement sowie ein Verfahren zur Herstellung einer Spule anzugeben, welche eine effektive, schnelle und kostengünstige Isolation von Statoren bzw. Spu- len ermöglichen.
Diese Aufgabe wird durch einen Stator gemäß Anspruch 1 , ein Hüllelement gemäß Anspruch 6 sowie durch ein Verfahren gemäß Anspruch 7 gelöst. Weitere Vorteile und Merkmale ergeben sich aus den Unteransprüchen so- wie der Beschreibung und den beigefügten Figuren.
Erfindungsgemäß umfasst ein Stator für eine elektrische Maschine eine Formstabwicklung, wobei die Formstabwicklung durch eine Vielzahl von Formstäben gebildet ist, welche im Bereich eines Wickelkopfes Verbindungs- oder Kontaktstellen aufweisen, wobei zumindest die Verbindungs- oder Kon- taktstellen von einer Vergussschicht umhüllt sind und wobei eine Dicke der Vergussschicht durch ein Hüllelement vorgegeben ist, welches an dem Wi- ckelkopf konturnah angeordnet bzw. befestigt ist. Dabei ist der Ausdruck „konturnah“ insbesondere dahingehend zu verstehen, dass eine Form des Hüllelements einer Form des entsprechenden Wickelkopfes möglichst folgt, wodurch insbesondere eine möglichst gleichmäßig dicke Vergussschicht bzw. eine Vergussschicht mit einer im Wesentlichen konstanten Dicke oder Wandstärke erzeugt wird. Das Hüllelement ist dabei direkt, mit anderen Wor- ten unmittelbar, am Wickelkopf bzw. auch mittelbar, insbesondere über die Vergussschicht, am Wickelkopf angeordnet. Bei der Formstab- oder auch Hairpin-Technologie wird ein entsprechender Formdraht zwei- bzw. dreidi- mensional zu einem Hairpin gebogen und in ein Statorblechpaket des Stators eingefügt. Der eigentliche Wickelkopf wird dann durch Verschränken der Hairpins geformt. Hierzu werden die Enden der Hairpins gemäß dem ge- wünschten Schaltschema beispielsweise gegenläufig verschränkt, auf die richtige Länge geschnitten und anschließend verschweißt - wobei die vorge- nannten Verbindungsstellen entstehen - , sodass eine durch den Stator ver- laufende Spule entsteht.
Zweckmäßigerweise umfasst das Hüllelement einen Stirnabschnitt, welcher im Wesentlichen quer zu einer Längsachse des Stators bzw. eines Stator- kerns, vgl. das vorgenannte Blechpaket, orientiert ist, sowie einen inneren und einen äußeren Hüllabschnitt, welche sich entlang der Längsachse er- strecken. Der innere Hüllabschnitt und der äußere Hüllabschnitt sind in Be- zug auf die Längsachse radial zueinander angeordnet und formen zusam- men mit dem Stirnabschnitt einen Anordnungsraum bzw. eine„Hülle“ für den Wickelkopf. Bevorzugt sind der Stirnabschnitt sowie die beiden Hüllabschnit- te geschlossen, weisen also keine Öffnungen oder dergleichen auf, was un- ter anderem hinsichtlich der Herstellkosten Vorteile mit sich bringt. Bevorzugt ist das Hüllelement, zumindest bereichsweise, über die Verguss- schicht mit dem zumindest einen Wickelkopf verbunden. Zweckmäßiger- weise ist das Hüllelement, zumindest bereichsweise, über die Vergussschicht an dem Wickelkopf befestigt. Hierbei ist besonders von Vorteil, dass durch die konturnahe Form des Hüllelements eine dünne, aber auch gleichmäßige, Vergussschicht ermöglicht wird, welche vor allem auch leicht ist. Bevorzugt ist die Vergussschicht zwischen dem Hüllelement und dem Wickelkopf voll- flächig ausgebildet.
Gemäß einer Ausführungsform weist das Hüllelement Taschen und/oder Hin- terschnitte auf bzw. bildet diese aus. Dies ermöglicht, dass das Hüllelement einer Geometrie bzw. einer Außenkontur des Wickelkopfes, mit Vorteil also konturnah, folgen kann. Mit anderen Worten ist das Hüllelement, wie bereits erwähnt, an die Form des Wickelkopfes angepasst bzw. folgt dieser. Hier- durch wird insbesondere auch erreicht, dass ein Vergussmaterial bzw. insbe- sondere ein Gießharz ressourcenschonend eingesetzt wird. Hierzu kann das Hüllelement neben den Taschen oder Ausbuchtungen auch Einbuchtungen bzw. allgemein Vor- und/oder Rücksprünge aufweisen. Typische Verguss- schichtdicken liegen dabei z. B. in einem Bereich von etwa 1 bis 5 mm. Da- bei ist es aber auch unproblematisch, wenn eine Dicke der Vergussschicht sozusagen„null“ beträgt, wenn also die Leiterelemente, insbesondere die Formstäbe, direkt an dem Hüllelement anliegen. In diesem Fall erfolgt die Isolation unmittelbar durch das Hüllelement. Dadurch dass das Hüllelement am Wickelkopf verbleibt ist dies aber unproblematisch.
Gemäß einer Ausführungsform ist das Hüllelement zumindest bereichsweise flexibel ausgebildet. In diesem Fall erhält das Hüllelement seine finale Stei figkeit erst nach einem Aushärten der Vergussschicht. Dies kann hinsichtlich der Herstellung des Hüllelements vorteilhaft sein, da Form- und Lagetoleran- zen ggf. größer ausfallen können. Alternativ handelt es sich bei dem Hül- lelement aber um eine feste Form, welche auf den Wickelkopf geschoben werden kann. Bevorzugt ist das Hüllelement aus einem Kunststoff gebildet, insbesondere einem Kunststoff, welcher selbst gute elektrische Isolationsei- genschaften aufweist.
Gemäß einer Ausführungsform ist das Hüllelement derart ausgebildet, dass es auch kraftschlüssig an dem Wickelkopf befestigt ist. In diesem Fall ist das Hüllelement nicht ausschließlich über die Vergussmasse an dem Wickelkopf befestigt. Dies kann hinsichtlich der Montage vorteilhaft sein, da das Hül- lelement auf dem entsprechenden Wickelkopf sozusagen auch„hält“, obwohl noch keine Vergussmasse bzw. noch kein Gießharz angeordnet, beispiels- weise eingespritzt, ist.
Die Erfindung richtet sich auch auf ein Hüllelement für einen erfindungsge- mäßen Stator.
Weiter richtet sich die Erfindung auf ein Verfahren zum Herstellen einer Spu- le, insbesondere zum Herstellen bzw. Isolieren eines Stators einer elektri- schen Maschine, umfassend die Schritte:
- Bereitstellen einer Spule, welche zumindest einen Wickelkopf auf- weist;
- Verwenden eines Hüllelements zum Formen einer Vergussschicht auf dem zumindest einen Wickelkopf.
An dieser Stelle sei erwähnt, dass die im Zusammenhang mit dem Stator erwähnten Vorteile analog und entsprechend für das Verfahren sowie für das Hüllelement gelten sowie umgekehrt und untereinander.
Gemäß einer Ausführungsform umfasst das Verfahren die Schritte:
- Einbringen von Vergussmasse in das Hüllelement vor dem Anbringen des Hüllelements an dem zumindest einen Wickelkopf;
- Eintauchen des zumindest einen Wickelkopfes in das Hüllelement.
Das Hüllelement wird beispielsweise mit (Gieß-)Harz befüllt. Anschließend wird die Spule, insbesondere ein Stator einer elektrischen Maschine, mit dem zu vergießenden Wickelkopf in das Harz eingetaucht. Anschließend kann das Harz aushärten und das Hüllelement verbleibt am Stator.
Gemäß einer Ausführungsform umfasst das Verfahren die Schritte:
- Anordnen des Hüllelements an dem zumindest einen Wickelkopf;
- Einbringen von Vergussmasse zwischen das Hüllelement und den zumindest einen Wickelkopf.
In diesem Fall wird das Hüllelement also zuerst am Stator positioniert und anschließend mit (Gieß-)Harz befüllt. Zweckmäßigerweise weist das Hül- lelement keine Einfüllöffnungen oder dergleichen für das Harz auf. Stattdes- sen wird das Harz gemäß einer Ausführungsform mit Vorteil in einen Spalt eingebracht, welcher zwischen dem Wickelkopf und dem Hüllelement ohne- hin vorhanden ist.
Die Möglichkeit, die Vergusskappe zu unterschiedlichen Zeitpunkten bzw. auf unterschiedliche Art und Weise zu befüllen ist ein großer produktionstechni- scher Vorteil. Das Hüllelement selbst kann in beiden Fällen gleich gestaltet sein.
Das Verwenden des Hüllelements, welches auch nach dem Vergießen an der Spule bzw. am Stator verbleibt, erhöht, insbesondere auch im Vergleich zu einer Pulverbeschichtung, deutlich die Stabilität des Stators, insbesondere die mechanische Stabilität, beispielsweise bei Schwingungen. Bevorzugt handelt es sich um einen Stator einer elektrischen Maschine eines Kraftfahr- zeugs, insbesondere eines Elektro- oder Hyridfahrzeugs. Vorteilhaft ist auch, dass anders als bei einer konventionellen Spritzgussform auch unproblema- tisch Hinterschnitte und dergleichen erzeugt werden können, wodurch eine optimale Anpassung einer Form des Hüllelements an eine Form des Wickel- kopfes möglich ist. Zudem entfällt das Reinigen des Spritzgusswerkzeugs, dessen Wartung etc., sodass die vorgeschlagene Lösung auch kostentech- nisch interessant ist. Weitere Vorteile und Merkmale ergeben sich aus der nachfolgenden Be- schreibung von Ausführungsformen eines Stators bzw. eines Hüllelements mit Bezug auf die beigefügten Figuren. Verschiedene Merkmale können da- bei im Rahmen der Erfindung miteinander kombiniert werden.
Es zeigen:
Fig. 1 : einen Schnitt durch eine Ausführungsform eines Hüllelements in einer schematischen Darstellung;
Fig. 2: eine Seitenansicht eines Stators mit einem daran angeordneten
Hüllelement in einer schematischen Ansicht;
Fig. 3: eine weitere schematische Ansicht einer Ausführungsform ei- nes Hüllelements;
Fig. 4: eine Draufsicht auf eine weitere schematische Ansicht einer
Ausführungsform eines Hüllelements.
Fig. 1 zeigt in einer Schnittdarstellung ein Hüllelement 20, welches einen etwa kreisringförmigen Stirnabschnitt 22 aufweist, von welchem sich ein in- nerer Hüllabschnitt 24 sowie ein äußerer Hüllabschnitt 26 entlang einer Längsachse L erstrecken. Die Längsachse L verläuft parallel bzw. auf einer hier nicht weiter dargestellten Statorachse. Mit dem Bezugszeichen 1 ist eine Vergussmasse bezeichnet, mit der das Hüllelement 20 befüllt ist. So kann beispielsweise in ein derart vorbereitetes Hüllelement 20 ein Stator mit sei- nem Wickelkopf eingetaucht werden. Nachdem die Vergussmasse 1 , bei spielsweise das Gießharz, ausgehärtet ist, verbleibt dann das Hüllelement 20 an dem Stator bzw. an dem Wickelkopf. Mit dem Bezugszeichen A ist weiter noch eine Anordnungsrichtung skizziert. Insbesondere ist damit eine Rich- tung gemeint, entlang derer das Hüllelement 20 auf einen Wickelkopf ge- schoben werden kann. Wie bereits erwähnt, kann aber auch entgegen dieser Anordnungsrichtung A der Wickelkopf in das Hüllelement 20 hinein bewegt werden.
Fig. 2 zeigt eine schematische Ansicht eines Stators 10, welcher stirnseitig je einen Wickelkopf 12 aufweist. Der Stator erstreckt sich entlang einer Längs- achse L bzw. entlang einer Statorachse S. Der hier skizzierte Stator 10 weist beispielsweise eine Formstabwicklung auf, wobei die Formstäbe bzw. Hair- pins von der rechten Seite her in einen Statorkern eingeschoben sind. Im linken Teil sind die Formstäbe dann zu dem dort skizzierten Wickelkopf 12 verschränkt bzw. auch verschaltet. In diesem Bereich, welcher geschnitten dargestellt ist, ist nun ein Flüllelement 20 entlang der Anordnungsrichtung A auf den Wickelkopf 12 geschoben, sodass nach dem Vergießen um den Wi- ckelkopf 12 herum eine Vergussschicht 2 geformt ist. Zumindest schematisch ist zu erkennen, dass eine Form des Flüllelements 20, insbesondere dessen Anordnungsraum, welcher durch den Stirnabschnitt sowie den inneren und den äußeren Fl ül labschnitt gebildet wird, vgl. diesbezüglich auch die Fig. 1 , einer Form des Wickelkopfes 12 folgt. Im Bereich des Wickelkopfes 12 ist weiter noch ein Phasenanschluss 14 vorgesehen, der der elektrischen Kon- taktierung des Stators 10 dient.
Fig. 3 zeigt in einer weiteren schematischen Darstellung ein Flüllelement 20, wobei in der hier gezeigten Ausführungsform zu erkennen ist, dass das FHül- lelement 20 Taschen 28 aufweisen kann, welche sich von einem Stirnab- schnitt 22 oder von einem äußeren Fl ül labschnitt 26 radial bzw. axial weg erstrecken.
Fig. 4 zeigt, ähnlich wie die Fig. 3, eine Vielzahl von Taschen 28, wobei zu erkennen ist, dass sich die Taschen 28 entlang einer Längsachse L bzw. ei- ner Anordnungsrichtung A erstrecken. Ein Flüllelement 20 ist hier in einer Draufsicht gezeigt (entlang der Anordnungsrichtung A gesehen). Die Ta- schen 28 erstrecken sich radial und axial zur Längsachse L des Flüllelements 20. Grundsätzlich dienen derartige Taschen dazu, dass das Flüllelement möglichst exakt einer Form bzw. Geometrie des darunter liegenden Wickel- kopfes folgen kann. Gerade wenn der Wickelkopf beispielsweise mit einer Phasenanschlussbaugruppe, wie in der Figur 2 skizziert (dort Bezugszeichen 14), verbunden wird, kann es Vorkommen, dass einige Formstäbe quasi vom Wickelkopf„wegstehen“. Die Taschen 28 bzw. auch Ausbuchtungen, Hinter- schnitte und dergleichen ermöglichen dennoch eine gleichmäßige Dicke der Vergussschicht.
Bezugszeichenliste
1 Vergussmasse
2 Vergussschicht
10 Spule, Stator
12 Wickel köpf
14 Phasenanschluss
20 Hüllelement
22 Stirnabschnitt
24 innerer Hüllabschnitt
26 äußerer Hüllabschnitt
28 Tasche
L Längsachse
S Statorachse
A Anordnungsrichtung

Claims

Patentansprüche
1. Stator (10) für eine elektrische Maschine,
umfassend eine Formstabwicklung,
wobei die Formstabwicklung durch eine Vielzahl von Formstäben gebil det ist, welche im Bereich eines Wickelkopfes (12) Verbindungsstellen aufweisen,
wobei die Verbindungsstellen von einer Vergussschicht (2) umhüllt sind, und
wobei eine Dicke der Vergussschicht (2) durch eine Flüllelement (20) vorgegeben ist, welches an dem Wickelkopf (12) konturnah angeordnet ist.
2. Stator (10) nach Anspruch 1 ,
wobei das Flüllelement (20) über die Vergussschicht (2) mit dem Wi- ckelkopf (12) verbunden ist.
3. Stator (10) nach Anspruch 1 oder 2,
wobei das Flüllelement (20) Taschen (28) und/oder FHinterschnitte auf- weist oder ausbildet.
4. Stator (10) nach einem der vorhergehenden Ansprüche,
wobei das Flüllelement (20) zumindest bereichsweise flexibel ausgebil- det ist.
5. Stator (10) nach einem der vorhergehenden Ansprüche,
wobei das Flüllelement (20) derart ausgebildet ist, dass es auch kraft- schlüssig an dem Wickelkopf (12) befestigt ist.
6. Flüllelement (20) für einen Stator (10) nach einem der vorhergehenden Ansprüche.
7. Verfahren zur Herstellung einer Spule,
umfassend die Schritte:
Bereitstellen einer Spule (10), welche zumindest einen Wickelkopf (12) aufweist;
- Verwenden eines Hüllelements (20) zum Formen einer Verguss- schicht (2) auf dem zumindest einen Wickelkopf (12).
8. Verfahren nach Anspruch 7,
umfassend die Schritte:
Einbringen von Vergussmasse (1 ) in das Hüllelement (20) vor dem Anbringen des Hüllelements (20) an dem zumindest einen Wickel- kopf (12);
Eintauchen des zumindest einen Wickelkopfes (12) in das Hüllele- ment (20).
9. Verfahren nach Anspruch 7,
umfassend die Schritte:
- Anordnen des Hüllelements (20) an dem zumindest einen Wickel- kopf (12);
Einbringen von Vergussmasse (1 ) zwischen das Hüllelement (20) und den zumindest einen Wickelkopf (12).
PCT/EP2019/069816 2018-08-21 2019-07-23 Stator für eine elektrische maschine WO2020038680A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/269,657 US20210184530A1 (en) 2018-08-21 2019-07-23 Stator for an Electric Machine
CN201980043002.XA CN112335160B (zh) 2018-08-21 2019-07-23 用于电机的定子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018214081.2 2018-08-21
DE102018214081.2A DE102018214081A1 (de) 2018-08-21 2018-08-21 Stator für eine elektrische Maschine

Publications (1)

Publication Number Publication Date
WO2020038680A1 true WO2020038680A1 (de) 2020-02-27

Family

ID=67439217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/069816 WO2020038680A1 (de) 2018-08-21 2019-07-23 Stator für eine elektrische maschine

Country Status (4)

Country Link
US (1) US20210184530A1 (de)
CN (1) CN112335160B (de)
DE (1) DE102018214081A1 (de)
WO (1) WO2020038680A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020109019A1 (de) 2020-04-01 2021-10-07 Bayerische Motoren Werke Aktiengesellschaft Rotor sowie elektrische Maschine
DE102020109021A1 (de) 2020-04-01 2021-10-07 Bayerische Motoren Werke Aktiengesellschaft Rotor sowie elektrische Maschine
DE102021203188A1 (de) * 2021-03-30 2022-10-06 Valeo Siemens Eautomotive Germany Gmbh Verfahren zur Herstellung eines Stators für eine elektrische rotierende Maschine, Stator, elektrische rotierende Maschine und Fahrzeug
DE102021206120A1 (de) * 2021-06-16 2022-12-22 Valeo Eautomotive Germany Gmbh Verfahren zur Herstellung eines Stators für eine elektrische Maschine, Stator für eine elektrische Maschine und elektrische Maschine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2333241A1 (de) * 1973-06-29 1975-01-30 Siemens Ag Verfahren zur herstellung eines betriebsmaessig spaltrohrlosen elektromotors mit vergossener staenderwicklung
DE2408782A1 (de) * 1974-02-23 1975-08-28 Richard Halm Verfahren und vorrichtung zum herstellen eines elektromotors und damit hergestellter elektromotor
US3919572A (en) * 1973-12-26 1975-11-11 Rotron Inc Electrical motor construction
JPS58224546A (ja) * 1982-06-21 1983-12-26 Toshiba Corp 絶縁線輪接続部の製造方法
JP2002272047A (ja) * 2001-03-14 2002-09-20 Matsushita Electric Ind Co Ltd モータとその製造方法、これらを用いた圧縮機
WO2017121520A1 (de) * 2016-01-11 2017-07-20 Bayerische Motoren Werke Aktiengesellschaft Elektrische maschine

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1015914B (de) * 1953-09-03 1957-09-19 Gen Electric Befestigung der Wickelkoepfe dynamoelektrischer Maschinen
FR1489751A (fr) * 1966-04-07 1967-07-28 Fives Lille Cail Perfectionnement à l'isolation des jonctions des sections de bobinage des machines électriques de grande puissance
FI60625C (fi) * 1978-06-13 1982-02-10 Stroemberg Oy Ab Foerfarande foer framstaellning av en stoedkonstruktion foer lindningen i elektrisk maskin
JPS55117447A (en) * 1979-03-05 1980-09-09 Hitachi Ltd Insulating method of connecting portion of armature coil
JPS57126251A (en) * 1981-01-26 1982-08-05 Mitsubishi Electric Corp Insulating method for coil end
JPS57134913A (en) * 1981-02-16 1982-08-20 Toshiba Corp Insulation processing for winding connecting portion in electric machine
JPS605138B2 (ja) * 1981-06-30 1985-02-08 株式会社東芝 電機巻線接続部の絶縁処理方法
JPS58172948A (ja) * 1982-03-31 1983-10-11 Toshiba Corp 回転子巻線接続部の絶縁方法
JPS59129556A (ja) * 1983-01-17 1984-07-25 Toshiba Corp 回転電機巻線の製造方法
FR2734960A1 (fr) * 1995-02-14 1996-12-06 Plumer Sa Moteur electrique a courant alternatif
JP3921859B2 (ja) * 1999-01-18 2007-05-30 株式会社デンソー 接合部の絶縁構造、回転電機の絶縁構造およびその製造方法
DE10123102A1 (de) * 2001-05-12 2003-01-09 Sachsenwerk Gmbh Schloßisolierung bei der Stabverbindung von Wicklungen elektrischer Maschinen
JP2005020842A (ja) * 2003-06-24 2005-01-20 Toshiba Corp 回転電機接続部の絶縁処理方法および絶縁装置
JP5093366B2 (ja) * 2009-06-26 2012-12-12 トヨタ自動車株式会社 固定子構造及び固定子製造方法
CN107210639A (zh) * 2015-01-13 2017-09-26 三菱电机株式会社 电动机的定子以及电动机
JP6450597B2 (ja) * 2015-01-19 2019-01-09 株式会社東芝 回転電機のコイル絶縁構造体およびその製造方法ならびにこのコイル絶縁構造体を具備してなる回転電機
JP2016178783A (ja) * 2015-03-19 2016-10-06 日本電産コパル株式会社 ステータ、回転電機、車両、ステータの製造方法
JP6583105B2 (ja) * 2016-04-07 2019-10-02 トヨタ自動車株式会社 コイルエンドの形成方法
DE102016222611A1 (de) * 2016-11-17 2018-05-17 Volkswagen Aktiengesellschaft Vorrichtung zur Verschaltung der Verdrahtung eines Stators einer elektrischen Maschine, Stator einer elektrischen Maschine und Verfahren zur Verschaltung der Verdrahtung eines Stators einer elektrischen Maschine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2333241A1 (de) * 1973-06-29 1975-01-30 Siemens Ag Verfahren zur herstellung eines betriebsmaessig spaltrohrlosen elektromotors mit vergossener staenderwicklung
US3919572A (en) * 1973-12-26 1975-11-11 Rotron Inc Electrical motor construction
DE2408782A1 (de) * 1974-02-23 1975-08-28 Richard Halm Verfahren und vorrichtung zum herstellen eines elektromotors und damit hergestellter elektromotor
JPS58224546A (ja) * 1982-06-21 1983-12-26 Toshiba Corp 絶縁線輪接続部の製造方法
JP2002272047A (ja) * 2001-03-14 2002-09-20 Matsushita Electric Ind Co Ltd モータとその製造方法、これらを用いた圧縮機
WO2017121520A1 (de) * 2016-01-11 2017-07-20 Bayerische Motoren Werke Aktiengesellschaft Elektrische maschine

Also Published As

Publication number Publication date
US20210184530A1 (en) 2021-06-17
CN112335160B (zh) 2024-01-26
CN112335160A (zh) 2021-02-05
DE102018214081A1 (de) 2020-02-27

Similar Documents

Publication Publication Date Title
WO2020038680A1 (de) Stator für eine elektrische maschine
EP2649710B1 (de) Verfahren zur herstellung eines stators
DE112017006283T5 (de) System und Verfahren zur Statorspaltvergießung unter Nutzung von eingespritztem Polymer
EP2071707A1 (de) Dynamoelektrische Maschine mit Zahnspulen
DE102011090122B4 (de) Klemmbare Heizvorrichtung
DE102015216840A1 (de) Stator mit isolierter Stabwicklung für eine elektrische Maschine
EP2541740A1 (de) Stator
DE102018213759A1 (de) Stableiter, Stator, Elektromotor, sowie Verfahren zur Herstellung eines Stators
CH626197A5 (de)
DE2104121A1 (de) Lauferteil fur einen Elektromotor
DE102013201320B4 (de) Verfahren zum Herstellen eines Stators und Stator
DE102017222615A1 (de) Rotor sowie Verfahren zum Herstellen eines Rotors
DE102019114764A1 (de) Verfahren zur Herstellung eines Stators für eine elektrische Maschine, Stator für eine elektrische Maschine, elektrische Maschine und Kraftfahrzeug aufweisend eine elektrische Maschine
DE19808659A1 (de) Elektromotor und Vorrichtung zur Herstellung
DE102006029628A1 (de) Hauptelement für eine elektrische Maschine
DE102006017081A1 (de) Stator für einen Elektromotor und Verfahren zur Herstellung
WO2010130337A2 (de) Verfahren zur herstellung einer scheibenwicklung
WO2021074058A1 (de) Leitersegment einer spulenanordnung einer rotierenden elektrischen maschine
EP2452416B1 (de) Elektrische maschine sowie verfahren zur herstellung der elektrischen maschine mit zumindest einer wickelung
CH439471A (de) Verfahren zur Herstellung unregelmässig geformter, isolierter Spulen für elektrische Maschinen
DE10121043A1 (de) Ringförmiges elektromagnetisches Element für eine elektrische Maschine und Verfahren zur Herstellung des Elements
EP1708316B1 (de) Verfahren zur Herstellung eines Ankers für eine elektrische Maschine
EP3130441B1 (de) Verbinder und verfahren zur herstellung eines verbinders
DE2443255A1 (de) Bandwickel-magnetkern
DE102011018637A1 (de) Segmentierter Stator einer elektrischen Maschine sowie Einzelsegment und Verschaltungsring für einen segmentierten Stator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19744679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19744679

Country of ref document: EP

Kind code of ref document: A1