WO2020038419A1 - 脱离定位机构及机器人定位系统 - Google Patents

脱离定位机构及机器人定位系统 Download PDF

Info

Publication number
WO2020038419A1
WO2020038419A1 PCT/CN2019/101861 CN2019101861W WO2020038419A1 WO 2020038419 A1 WO2020038419 A1 WO 2020038419A1 CN 2019101861 W CN2019101861 W CN 2019101861W WO 2020038419 A1 WO2020038419 A1 WO 2020038419A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
robot
assembly
mounting member
fixed
Prior art date
Application number
PCT/CN2019/101861
Other languages
English (en)
French (fr)
Inventor
沙尧尧
Original Assignee
西门子数控(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西门子数控(南京)有限公司 filed Critical 西门子数控(南京)有限公司
Priority to EP19851903.5A priority Critical patent/EP3834983B1/en
Priority to US17/270,521 priority patent/US20210316420A1/en
Publication of WO2020038419A1 publication Critical patent/WO2020038419A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/0061Tools for holding the circuit boards during processing; handling transport of printed circuit boards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B11/00Work holders not covered by any preceding group in the subclass, e.g. magnetic work holders, vacuum work holders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/04Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for assembling or disassembling parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0052Gripping heads and other end effectors multiple gripper units or multiple end effectors
    • B25J15/0057Gripping heads and other end effectors multiple gripper units or multiple end effectors mounted on a turret
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/02Gripping heads and other end effectors servo-actuated
    • B25J15/0253Gripping heads and other end effectors servo-actuated comprising parallel grippers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/0061Tools for holding the circuit boards during processing; handling transport of printed circuit boards
    • H05K13/0069Holders for printed circuit boards

Definitions

  • the utility model relates to the field of automatic production design, in particular to a detachment positioning mechanism and a robot positioning system.
  • robots are used to assemble parts between assemblies in actual production.
  • the robot In order to complete the assembly between the assembly parts, the robot usually needs to have a positioning function.
  • the positioning accuracy is not high. Therefore, for certain assembly scenarios that require precise positioning, such as the assembly of circuit board components, the existing positioning methods are not suitable, because the robot will be affected by the vibration of the moving parts in the system, which will eventually cause the robot to fail to perform high positioning. Precision assembly.
  • the present application provides a detachment positioning mechanism and a robot positioning system, which solve the technical problem that the robot cannot perform high-precision assembly due to the vibration of the moving parts in the system in the prior art.
  • the present application provides a disengagement positioning mechanism, which includes a fixed portion, at least one guide rod, a moving portion, a power portion, and a positioning member.
  • a disengagement positioning mechanism which includes a fixed portion, at least one guide rod, a moving portion, a power portion, and a positioning member.
  • One end of the at least one guide rod is fixed to the fixed portion, and the moving portion is disposed on the at least one guide rod, and the moving portion can slide along the at least one guide rod to push and place the conveying portion.
  • the first assembly on the mechanism is disengaged from the transfer mechanism.
  • the power section drives the moving section to slide along the at least one guide rod.
  • the positioning member is disposed on the moving portion, and the positioning member is adapted to position the first mounting member that has been separated from the conveying mechanism.
  • this embodiment provides a specific structure of the disengagement positioning mechanism.
  • the disengagement positioning mechanism can disengage the first mounting member from the transfer mechanism so that the vibration of the transfer mechanism is no longer
  • the spatial position of the first assembly member affects.
  • the first assembly is positioned to achieve high-precision assembly.
  • the positioning member includes a plurality of positioning pins, one end of the plurality of positioning pins is fixed to the moving part, and the other end of the plurality of positioning pins is connected to the first mounting member.
  • the corresponding positioning holes are inserted to realize positioning of the first assembly.
  • a first limiting structure is provided on the plurality of positioning pins, and an end surface of the positioning pin is in abutment with the first assembly member to be inserted to realize the limitation of the first assembly member.
  • This embodiment provides a specific structure of the positioning member.
  • the positioning pin cooperates with the positioning hole to realize positioning of the first mounting member.
  • the first assembly ensures the accuracy and consistency of the initial spatial position by the positioning member.
  • the present application also provides a robot positioning system, which includes the disengagement positioning mechanism, a positioning portion, and a robot, and the positioning portion can place at least one first Two mounting parts, the robot is adapted to grab the at least one second mounting part from the positioning part, and fit the captured second mounting part to the first fixing part fixed by the disengaging positioning mechanism On a fitting.
  • a robot positioning system which includes the disengagement positioning mechanism, a positioning portion, and a robot, and the positioning portion can place at least one first Two mounting parts, the robot is adapted to grab the at least one second mounting part from the positioning part, and fit the captured second mounting part to the first fixing part fixed by the disengaging positioning mechanism On a fitting.
  • a robot positioning system using the disengagement positioning mechanism is provided.
  • the robot positioning system positions the first assembly and the second assembly, respectively. The space position accuracy and consistency of the second assembly are ensured.
  • the positioning portion includes at least one positioning plate, and each of the positioning plates is provided with a positioning groove corresponding to an outer contour of the at least one second fitting.
  • This embodiment provides a positioning structure of a positioning plate, that is, a positioning groove. The precision requirement for positioning the second assembly can be met.
  • the robot positioning system further includes a fixing frame, and the positioning portion and the disengagement positioning mechanism are fixedly mounted on the fixing frame.
  • This embodiment provides a structure of the fixing frame, the purpose of which is to enable a physical connection between the positioning portion and the disengagement positioning mechanism to ensure a spatial positional relationship between the two.
  • the robot positioning system further includes a connecting arm, one end of which is fixed to the fixing frame, and the other end of which is fixed to the robot.
  • This embodiment provides the connecting arm, and two ends of the connecting arm are respectively physically rigidly connected to the robot and the fixing frame to ensure a spatial positional relationship between the two.
  • the robot has an end effector, and the end effector includes a connecting portion and a plurality of grasping mechanisms, the connecting portion is connected to the robot, and the connecting portion extends along a Axis rotation.
  • the plurality of grasping mechanisms are provided on the connecting portion along a circumference of the axis, and the connecting portion drives to rotate along the axis to allow each of the grasping mechanisms to independently grasp the second assembly.
  • the grasping mechanism includes an air gripper and two clamps, one end of the air gripper is fixed on the connecting portion, and the other end is provided with two opposite or opposite sides along a degree of freedom. Fingers sliding back.
  • the two clamps are respectively fixed on a pair of the claw fingers, and the two clamps are driven by the two claw fingers to slide toward or away from each other along the degree of freedom to realize the Crawl.
  • This embodiment provides a specific structure of the grasping mechanism.
  • the grasping mechanism is used for grasping and assembling the first assembly.
  • a second limiting structure is disposed on the jig, and an end surface of the second limiting structure is in abutment with the second fitting part being grasped to realize the second fitting part. And the end surface of the second limiting structure is perpendicular to the assembly direction of the second assembly.
  • This embodiment provides the second limiting structure, which can effectively prevent the second assembly from sliding on the grasping mechanism, and ensure the accurate spatial position of the second assembly during the assembly process. Sex.
  • FIG. 1 is a schematic structural diagram of a disengagement positioning mechanism according to the present invention.
  • FIG. 2 is a schematic structural diagram of a positioning pin according to the present invention.
  • FIG. 3 is a schematic diagram of an overall structure of an embodiment of a robot positioning system according to the present invention.
  • FIG. 4 is a schematic structural diagram of another embodiment of a robot positioning system according to the present invention.
  • FIG. 5 is a schematic structural diagram of a positioning plate according to the present invention.
  • FIG. 6 is a schematic structural diagram of a robot according to the present invention.
  • FIG. 7 is a schematic structural diagram of a grasping mechanism according to the present invention.
  • FIG. 8 is a schematic structural diagram of a jig according to the present invention.
  • the error accuracy of the assembly is generally controlled between 0.2 and 0.3 mm.
  • the assembly accuracy of the robot itself can meet the needs, the assembly parts are transferred by the transfer mechanism on the production line, and the positioning accuracy of the assembly parts before the robot can't be grasped can not be guaranteed.
  • the main reason is that the vibration of the production line will affect the accuracy of the robot during gripping and the subsequent assembly of the robot.
  • the present application provides a robot positioning system, which on the one hand positions the assembly to ensure the accurate position of the assembly in space. On the other hand, the system needs to remove the influence of the vibration of the transmission mechanism on the assembly, so as to achieve high-precision assembly of the assembly using a robot.
  • FIG. 1 is a schematic structural diagram of a disengagement positioning mechanism according to the present invention.
  • the present application provides a disengagement positioning mechanism 5 including a fixing portion 51, at least one guide rod 52, a moving portion 53, a power portion 54, and a positioning member 55.
  • One end of the guide rod 52 is fixed to the fixing portion 51.
  • the moving portion 53 is provided on the guide rod 52, and the moving portion 53 can slide along the guide rod 52 to push the first mounting member 2 placed on the transfer mechanism 3 away from the transfer mechanism 3.
  • the power section 54 drives the moving section 53 to slide along the guide rod 52, and a positioning member 55 is provided on the moving section 53.
  • the positioning member 55 is adapted to position the first assembly 2 that has been separated from the conveying mechanism 3.
  • the moving part 53 slides along the guide rod 52 and is driven by a power part 54 which uses a pneumatic system.
  • the four guide rods 52 are provided at four diagonal corners of the fixed portion 51, and the purpose thereof is to make the sliding of the moving portion 53 more stable.
  • the sliding of the moving part 53 can push the first mounting member 2 away from the conveying mechanism 3, so that the first mounting member 2 is no longer affected by the vibration of the conveying mechanism 3.
  • the positioning member 55 is responsible for positioning the first assembly 2 detached from the conveying mechanism 3. At this time, the first assembly 2 is in a relatively static state, which helps the robot 6 to accurately grasp the first assembly 2 and perform high Accurate assembly.
  • FIG. 2 is a schematic structural diagram of a positioning pin according to the present invention.
  • the positioning member 55 includes a plurality of positioning pins 551, one end of the plurality of positioning pins 551 is fixed to the moving portion 53, and the other end of the plurality of positioning pins 551 is connected to the first portion.
  • the corresponding positioning holes 21 provided on one of the mounting parts 2 are inserted to realize positioning of the first mounting part 2.
  • a plurality of positioning pins 551 are provided with a first limiting structure 552, and an end surface of the first limiting structure 552 is in abutment with the inserted first mounting member 2 to realize the limitation of the first mounting member 2.
  • This embodiment provides a positioning manner and a specific structure of the positioning pin 551.
  • the longitudinal direction of the positioning pin 551 is the same as the sliding direction of the moving portion 53. After the moving part 53 is pushed, the positioning pin 551 also moves along the sliding direction of the moving part 53, and thus the positioning after the positioning pin 551 is inserted into the positioning hole 21 is achieved.
  • the first mounting member 2 can still slide along the length direction of the positioning pin 551, and the first limiting structure 552 can limit the sliding of the first mounting member 2 in one direction (that is, the direction of gravity). Prevent the first assembly 2 from continuing to slide. Specifically, as shown in the circuit board assembly scene shown in FIG. 1 and FIG.
  • the first assembling part 2 is equivalent to the circuit board in the figure, and the four corners of the circuit board are respectively provided with corresponding positioning holes 21.
  • the positioning pins 511 are four and are respectively disposed at four diagonal corners of the moving portion 53, and each positioning pin 511 is located at the same height and is respectively provided with a first limiting structure 552. After the positioning hole 21 of the circuit board is connected with the positioning pin 511, the circuit board will continue to slide along the length direction of the positioning pin 511 and be limited by the first limiting structure 552.
  • the first limiting structure 552 is a stepped structure on the positioning pin 551 that abuts the circuit board.
  • the power part 54 drives the moving part 53 to slide, and the moving part 53 is fixed to the positioning pin 551. Finally, the circuit board that the first limiting structure 552 abuts will also be driven by the power part 54 The circuit board is pushed away from the conveying mechanism 3.
  • FIG. 3 is a schematic diagram of the overall structure of an embodiment of the robot positioning system according to the present invention.
  • FIG. 4 is a schematic structural diagram of another embodiment of a robot positioning system according to the present invention.
  • the present application further provides a robot positioning system.
  • the robot positioning system includes a detachment positioning mechanism 5, a positioning unit 1, and a robot 6.
  • At least one second fitting 4 can be placed on the part 1.
  • the robot 6 is adapted to grab at least one second mounting member 4 from the positioning portion 1 and assemble the captured second mounting member 4 to the first mounting member 2 fixed by the disengaging positioning mechanism 5.
  • a robot positioning system is disclosed in this embodiment.
  • the positioning part 1 is used for precise positioning of the second mounting part 4, and the positioned second mounting part 4 can be accurately grasped by the robot 6.
  • the disengagement and positioning mechanism 5 is used for disengaging the first assembly 2 from the transfer mechanism 3 on the one hand, and eliminating the vibration of the transfer mechanism 3 to the first assembly 2 due to transmission.
  • the detachment conveying mechanism 3 precisely positions the first fitting 2.
  • the accuracy of the movement trajectory of the robot 6 can be controlled within the allowable range.
  • FIG. 5 is a schematic structural diagram of a positioning plate according to the present invention.
  • the positioning portion 1 includes at least one positioning plate 11, and each positioning plate 11 is provided with a positioning groove 12 corresponding to an outer contour of the second mounting member 4.
  • This embodiment discloses a specific positioning structure of the positioning portion 1. It is pointed out that in order to improve production efficiency, a plurality of positioning plates 11 are provided, and each positioning plate 11 is also provided with a plurality of positioning grooves 12 correspondingly.
  • the positioning groove 12 locates each second assembly 4 by the outer contour of the second assembly 4.
  • the robot positioning system further includes a fixing frame 7 on which the positioning portion 1 and the disengagement positioning mechanism 5 are fixedly mounted.
  • This embodiment provides a specific embodiment of the fixed positioning portion 1 and the disengaged positioning mechanism 5.
  • a fixing frame 7 is used to physically and rigidly connect the positioning portion 1 and the disengagement positioning mechanism 5.
  • the robot positioning system further includes a connecting arm 71, one end of which is fixed to the fixing frame 7, and the other end of which is fixed to the robot 6.
  • This embodiment provides a fixed embodiment of the robot 6. According to this embodiment, a physical rigid connection is established between the robot 6 and the positioning unit 1 and the detachment positioning mechanism 5, so that the positional relationship between the three is more accurate.
  • FIG. 6 is a schematic structural diagram of a robot according to the present invention.
  • the robot 6 has an end effector 61, and the end effector 61 includes a connection portion 611 and a plurality of grasping mechanisms 612.
  • the connection portion 611 is connected to the robot 6 and is connected.
  • the portion 611 rotates along an axis 613.
  • a plurality of grasping mechanisms 612 are provided on the connecting portion 611 along the circumference of the axis 613, and are driven to rotate along the axis 613 by the connecting portion 611.
  • Each grasping mechanism 612 can independently grasp the second assembly 4 for assembly.
  • This embodiment provides a specific structure of the end effector 61.
  • the end effector 61 can simultaneously grasp and assemble multiple second assembly parts 4 at a time, thereby greatly improving production efficiency. However, it must be based on the precise positioning of the second assembly 4 and the first assembly 2.
  • FIG. 7 is a schematic structural diagram of a grasping mechanism according to the present invention.
  • the grasping mechanism 612 includes an air gripper 614 and two clamps 615.
  • One end of the air gripper 614 is fixed on the connecting portion 611, and two other ends are provided on the other end.
  • Claw fingers 615 sliding toward or away from each other with one degree of freedom.
  • the two clamps 615 are respectively fixed on a pair of the claw fingers, and the two clamps 615 are driven by the two claw fingers to slide toward or away from each other along the degree of freedom to grasp the second mounting member 4.
  • This embodiment provides a specific structure of the grasping mechanism 612 for grasping the second mounting member 4 and assembling it to the first mounting member 2.
  • FIG. 8 is a schematic structural diagram of the clamp according to the present invention.
  • a second limiting structure 616 is provided on the clamp 615, and an end surface of the second limiting structure 616 is in abutment with the grasped second assembly 4 to realize the second The position of the assembly 4 is limited, and the end surface of the second positioning structure 616 is perpendicular to the assembly direction of the second assembly 4.
  • This embodiment provides a specific structure of the clamp 615. It should be particularly pointed out that the structure of the clamp 615 restricts the sliding of the second assembly 4 during assembly by the second limiting structure 616, so that the positioning is more accurate.
  • the positioning of the second assembly 4 and the disengagement of the positioning mechanism 5 by the positioning unit 1 are performed after the first assembly 2 is separated from the conveying mechanism 3, so that the second assembly 4, the first assembly 2, and the robot 6 are all In a relatively stable position in space.
  • the technical problem that the robot in the prior art is affected by the vibration of the moving parts in the system, and the robot 6 cannot perform high-precision assembly is solved.
  • This application also discloses a specific structure of the detachment positioning mechanism 5 and a specific structure of the positioning pin 551 in the detachment positioning mechanism 5.
  • the disengaging positioning mechanism 5 achieves the purpose of disengaging the first mounting member 2 from the conveying mechanism 3 and accurately positioning the first mounting member 2.
  • the present application also provides a specific structure of the positioning plate 11 in the positioning portion 1.
  • the present application further discloses the structure of the positioning groove 12 of the positioning plate 11 for positioning the second mounting member 4.
  • the present application provides a fixing frame 7 and a connecting arm 71 for establishing a more stable and accurate positional relationship between the first assembly 2 and the second assembly 4 and the robot 6.
  • the present application further provides a specific structure of the end effector 61, which greatly improves the production efficiency under the condition of accurately positioning the assembly parts.
  • the second limiting structure 616 further limits the grasping of the second assembly 4 to ensure the precise position of the second assembly 4 when grasping.

Abstract

一种脱离定位机构(5)及机器人定位系统,脱离定位机构(5)包括一固定部(51)、至少一根导杆(52)、一移动部(53)、一动力部(54)、一定位件(55),导杆(52)一端与固定部(51)固定,移动部(53)设置在导杆(52)上,移动部(53)能够沿导杆(52)滑动以推动置于传送机构(3)上的第一装配件(2)与传送机构(3)脱离。机器人定位系统包括脱离定位机构(5)。

Description

脱离定位机构及机器人定位系统 技术领域
本实用新型涉及自动化生产设计领域,尤其是指一种脱离定位机构及机器人定位系统。
背景技术
在现代化生产过程中,由于人工成本不断攀升,很多重复性的生产工作逐渐被自动化设备予以取代。传统的自动化设备(例如非标插件机)虽然可以快速进行流程化生产并且有效的降低人工成本,但是由于其机械结构的局限性和控制系统的复杂性导致通用性不高。因此,开始利用机器人来代替传统的自动化设备。例如,利用码垛机器人、码袋机器人等进行物料的码放等。
随着科技的发展,为了更好地满足不同产品装配的需要,增强自动化设备的灵活性,开始在实际生产中使用机器人进行装配件之间的装配。为了完成装配件之间的装配,机器人通常需要具备定位功能,上述的码垛机器人等虽然也需要进行定位,但是其定位精度要求不高。因此对于某些需要精确定位的装配场景,例如电路板元器件的装配等,已有的定位方式就不太适用了,因为机器人会受到系统中运动部件振动的影响,最终会导致机器人无法进行高精度的装配。
实用新型内容
本申请提供了一种脱离定位机构及机器人定位系统,解决了现有技术中机器人由于受到系统中运动部件的振动,导致机器人无法进行高精度装配的技术问题。
在一可选实施方式中,本申请提供了一种脱离定位机构,包括一固定部、至少一根导杆、一移动部、一动力部,以及一定位件。所述至少一根导杆的一端与所述固定部固定,所述移动部设置在所述至少一根导杆上,所述移动部能够沿所述至少一根导杆滑动以推动置于传送机构上的第一装配件与传送机构脱离。所述动力部驱动所述移动部沿所述至少一根导杆滑动。所述定位件设置在所述移动部上,所述定位件适于将已脱离所述传送机构的所述第一装配件定位。
可见,本实施方式提供了一种所述脱离定位机构的具体结构,所述脱离定位机构可以将所述第一装配件与所述传送机构进行脱离,以使所述传送机构的振动不再对所述第一装配件的空间位置造成影响。与此同时,将所述第一装配件进行定位进而实现高精度的装配。
在另一可选实施方式中,所述定位件包括复数个定位销,所述复数个定位销的一端与所述移动部固定,所述复数定位销的另一端与所述第一装配件上对应设置的定位孔插接实现对所述第一装配 件的定位。所述复数个定位销上设置有一第一限位结构,其端面与插接的所述第一装配件相抵实现对所述第一装配件的限位。
本实施方式提供了一种所述定位件的具体结构。所述定位销与所述定位孔配合实现对所述第一装配件的定位。所述第一装配件通过所述定位件确保了初始空间位置的精度和一致性。
在另一可选实施方式中,本申请还提供了一种机器人定位系统,所述机器人定位系统包括所述的脱离定位机构、一定位部、一机器人,所述定位部上能够放置至少一个第二装配件,所述机器人适于从所述定位部上抓取所述至少一个第二装配件,并且将抓取的所述第二装配件装配到由所述脱离定位机构固定的所述第一装配件上。
在本实施方式中提供了一种采用所述脱离定位机构的机器人定位系统。所述机器人定位系统分别对所述第一装配件和第二装配件进行定位。确保了所述第二装配件的空间位置精度和一致性。
在另一可选实施方式中,所述定位部包括至少一个定位板,每个所述定位板上设置有与所述至少一个第二装配件外轮廓对应的定位槽。本实施方式中提供了一种定位板的定位结构,即定位槽。可以满足对所述第二装配件定位的精度要求。
在另一可选实施方式中,所述机器人定位系统还包括一固定架,所述固定架上固定安装所述定位部与所述脱离定位机构。本实施方式提供了所述固定架的结构,其目的在于使所述定位部与所述脱离定位机构之间实现物理连接确保二者之间的空间位置关系。
在另一可选实施方式中,所述机器人定位系统进一步包括一连接臂,其一端与所述固定架固定,另一端与所述机器人固定。本实施方式提供了一所述连接臂,所述连接臂的两端分别物理刚性连接所述机器人和所述固定架,确保了二者之间的空间位置关系。
在另一可选实施方式中,所述机器人具有一末端执行机构,所述末端执行机构包括一连接部和复数个抓取机构,所述连接部与所述机器人连接,所述连接部沿一轴线旋转。所述复数个抓取机构沿所述轴线周圈设置在所述连接部上,所述连接部带动沿所述轴线转动以允许每个所述抓取机构独立抓取所述第二装配件。本实施方式提供了一种所述末端执行机构,大幅提高了所述机器人的装配效率。
在另一可选实施方式中,所述抓取机构包括一气爪和两个夹具,所述气爪一端固定在所述连接部上,另一端上设置有两个可沿一自由度相向或相背滑动的爪指。所述两个夹具分别固定在一对所述爪指上,且所述两个夹具分别由两个所述爪指带动沿所述自由度相向或相背滑动实现对所述第二装配件的抓取。本实施方式提供了一种所述抓取机构的具体结构。所述抓取机构用于对所述第一装配件的抓取和装配。
在另一可选实施方式中,所述夹具上设置有一第二限位结构,所述第二限位结构的端面与被抓取的所述第二装配件相抵实现对所述第二装配件的限位,且所述第二限位结构的端面与所述第二装配件的装配方向垂直。本实施方式提供了一种所述第二限位结构,该结构可以有效的防止所述第二装配件在所述抓取机构滑动,确保所述第二装配件在装配过程中空间位置的准确性。
附图说明
下面将通过参照附图详细描述本实用新型的优选实施例,使本领域的普通技术人员更清楚本实用新型的上述及其它特征和优点,附图中:
图1为本实用新型所述脱离定位机构的结构示意图;
图2为本实用新型所述定位销的结构示意图;
图3为本实用新型所述机器人定位系统一实施方式的整体结构示意图;
图4为本实用新型所述机器人定位系统另一实施方式的结构示意图;
图5为本实用新型所述定位板的结构示意图;
图6为本实用新型所述机器人的结构示意图;
图7为本实用新型所述抓取机构的结构示意图;
图8为本实用新型所述夹具的结构示意图;
其中,附图标记如下:
标号 含义
1 定位部
11 定位板
12 定位槽
2 第一装配件
21 定位孔
3 传送机构
4 第二装配件
5 脱离定位机构
51 固定部
52 导杆
53 移动部
54 动力部
55 定位件
551 定位销
552 第一限位结构
6 机器人
61 末端执行机构
611 连接部
612 抓取机构
613 轴线
614 气爪
615 夹具
616 第二限位结构
7 固定架
71 连接臂
具体实施方式
申请人发现人工进行设备组装的生产方式,由于社会人力成本的不断上升而急剧增加。另外,组装人员的熟练度和流动性都会影响设备的产量和稳定性。自动化生产则具有速度快,稳定性强等特点。虽然自动化生产组装的优点颇多,但是自动化生产如果采用非标设备进行生产,由于每种非标设备只针对特定的设备开发则会导致通用性差,当产品更新后非标设备可能无法满足生产的要求。机器人可以根据不同的产品更改其末端执行机构和所述末端执行机构的装配轨迹来完成不同产品的装配,通用性好并且效率高。但是现阶段的机器人主要应用在码垛、码袋、焊接等领域。上述机器人的应用场景对精度的要求都不高。在对精度要求比较高的场景下,比如电路板装配,装配件的误差精度一般控制在0.2到0.3毫米。虽然机器人自身的装配精度可以满足需要,但是装配件在生产线上通过传送机构进行传送,装配件在机器人抓取前的定位精度无法确保。主要是因为生产线的振动会影响机器人抓取时的精度并影响之后的机器人装配。为了解决上述问题,本申请提供一种机器人定位系统,该系统一方面对装配件进行定位用于保证装配件在空间中的准确位置。另一方面,所述系统需要清除传送机构振动对装配件的影响,从而实现装配件利用机器人进行高精度装配。
为了对实用新型的技术特征、目的和效果有更加清楚的理解,现对照附图说明本实用新型的具体实施方式,在各图中相同的标号表示相同的部分。在表示各实施方式的附图中,相同的后两位数 字表示结构相同或结构相似但功能相同的部件。
为使图面简洁,各图中的只示意性地表示出了与本实用新型相关的部分,它们并不代表其作为产品的实际结构。另外,以使图面简洁便于理解,在有些图中具有相同结构或功能的部件,仅示意性地绘示了其中的一个,或仅标出了其中的一个。
图1为本实用新型所述脱离定位机构的结构示意图。如图1所示,本申请提供了一种脱离定位机构5,包括一固定部51、至少一根导杆52、一移动部53、一动力部54和定位件55。导杆52的一端与固定部51固定。移动部53设置在导杆52上,移动部53能够沿导杆52滑动以推动置于传送机构3上的第一装配件2与传送机构3脱离。动力部54驱动移动部53沿导杆52滑动,定位件55设置在移动部53上,定位件55适于将已脱离传送机构3的第一装配件2定位。
在本实施方式中提供了一种脱离定位机构5的具体结构。移动部53沿导杆52滑动并通过动力部54进行驱动,动力部54采用气动系统。导杆52为四个并且设置于固定部51的四个对角,其目的在于使移动部53的滑动更加平稳。移动部53的滑动可以推动第一装配件2与传送机构3脱离,目的在于使第一装配件2不再受到传送机构3振动的影响。定位件55则负责对脱离传送机构3的第一装配件2进行定位,此时第一装配件2处于相对的静止状态有助于机器人6对第一装配件2进行准确的抓取并进行高精确的装配。
图2为本实用新型所述定位销的结构示意图。如图1与图2所示,在另一可选实施方式中,定位件55包括复数个定位销551,复数个定位销551的一端与移动部53固定,复数定位销551的另一端与第一装配件2上对应设置的定位孔21插接实现对第一装配件2的定位。复数个定位销551上设置有一第一限位结构552,第一限位结构552端面与插接的第一装配件2相抵实现对第一装配件2的限位。
本实施方式提供了定位销551的定位方式和具体结构。定位销551的长度方向与移动部53的滑动方向相同。移动部53被推动后定位销551也一同沿移动部53的滑动方向移动,并由此实现了定位销551与定位孔21插接后的定位。需要指出的是此时第一装配件2仍可以沿定位销551的长度方向滑动,第一限位结构552可以对第一装配件2的滑动进行一个方向上的限位(即重力方向),阻止第一装配件2持续下滑。具体而言,如图1和图2所示的电路板装配场景,第一装配件2相当于图中的电路板,并且所述电路板的四个角分别设置有对应的定位孔21。定位销511为四个并分别设置在移动部53的四个对角,并且每个定位销511位于同一高度分别设置有第一限位结构552。所述电路板的定位孔21与定位销511穿接后,所述电路板会继续沿定位销511的长度方向滑动被第一限位结构552限位。第一限位结构552为定位销551上的一个台阶结构与电路板相抵。由于移动部53与定位销551固定,动力部54驱动移动部53滑动,而移动部53与定位销551固定,最终第一限位 结构552相抵的所述电路板也会被动力部54带动将所述电路板推离传送机构3。
图3为本实用新型所述机器人定位系统一实施方式的整体结构示意图。图4为本实用新型所述机器人定位系统另一实施方式的结构示意图。如图3和图4所示,在另一可选实施方式中,本申请还提供了一种机器人定位系统,所述机器人定位系统包括脱离定位机构5、一定位部1、一机器人6,定位部1上能够放置至少一个第二装配件4。机器人6适于从定位部1上抓取至少一个第二装配件4,并且将抓取的第二装配件4装配到由脱离定位机构5固定的第一装配件2上。
在本实施方式中公开了一种机器人定位系统。其中,定位部1用于对第二装配件4进行精确定位,定位后的第二装配件4可以通过机器人6进行精确的抓取。脱离定位机构5则用于一方面使第一装配件2脱离传送机构3,消除了传送机构3由于传动对第一装配件2产生的振动。另一方面,脱离传送机构3对第一装配件2进行精确定位。机器人6的运动轨迹精度可以控制在允许的范围内,当第二装配件4和第一装配件2在同一空间中处于一个相对稳定且精确的位置时,便可以最终实现装配件之间的高精度装配。
图5为本实用新型所述定位板的结构示意图。如图5所示,在另一可选实施方式中,定位部1包括至少一个定位板11,每个定位板11上设置有与第二装配件4外轮廓对应的定位槽12。本实施方式公开了定位部1的具体定位结构,需要指出是为了提高生产效率,定位板11设置有多个,且每个定位板11也会对应设置有多个定位槽12。定位槽12通过第二装配件4的外轮廓对每个第二装配件4进行定位。
如图3和图4所示,在另一可选实施方式中,所述机器人定位系统还包括一固定架7,固定架7上固定安装定位部1与脱离定位机构5。本实施方式提供了一种固定定位部1与脱离定位机构5的具体实施方式。为了更好的使定位部1与脱离定位机构5之间建立更加精确的位置关系,采用固定架7对定位部1与脱离定位机构5进行物理的刚性连接。
如图3和图4所示,在另一可选实施方式中,所述机器人定位系统进一步包括一连接臂71,其一端与固定架7固定,另一端与机器人6固定。本实施方式提供了一种机器人6的固定实施方式。通过本实施方式将机器人6与定位部1以及脱离定位机构5之间建立物理的刚性连接,从而使三者之间的位置关系更加精确。
图6为本实用新型所述机器人的结构示意图。如图6所示,在另一可选实施方式中,机器人6具有一末端执行机构61,末端执行机构61包括一连接部611、复数个抓取机构612,连接部611与机器人6连接,连接部611沿一轴线613旋转。复数个抓取机构612沿轴线613周圈设置在连接部611上,并由连接部611带动沿轴线613转动,每个抓取机构612可独立抓取第二装配件4装配。本实施方式提供了一种末端执行机构61的具体结构,通过末端执行机构61可以一次同时抓取装配多 个第二装配件4,大幅提高生产效率。但是必须基于对第二装配件4和第一装配件2的精确定位下。
图7为本实用新型所述抓取机构的结构示意图。如图7所示,在另一可选实施方式中,抓取机构612包括一气爪614和两个夹具615,气爪614的一端固定在连接部611上,另一端上设置有两个可沿一自由度相向或相背滑动的爪指615。两个夹具615分别固定在一对所述爪指上,且两个夹具615分别由两个所述爪指带动沿所述自由度相向或相背滑动实现对第二装配件4的抓取。本实施方式提供了抓取机构612的具体结构用于抓取第二装配件4并装配到第一装配件2上。
图8为本实用新型所述夹具的结构示意图。如图8所示,在另一可选实施方式中,夹具615上设置有一第二限位结构616,第二限位结构616的端面与被抓取的第二装配件4相抵实现对第二装配件4的限位,且第二限位结构616的端面与第二装配件4的装配方向垂直。本实施方式提供了一种夹具615的具体结构,需要特别指出的是该夹具615的结构通过第二限位结构616限制了对第二装配件4装配时的滑动,使定位更加精确。
本申请的具体有益效果如下:
本申请通过定位部1对第二装配件4的定位和脱离定位机构5将第一装配件2脱离传送机构3后进行定位,使第二装配件4、第一装配件2以及机器人6本体均处于空间位置相对稳定的状态。解决了现有技术中机器人由于受到系统中运动部件振动的影响,导致机器人6无法进行高精度的装配的技术问题。
本申请还公开了脱离定位机构5的一种具体结构,以及脱离定位机构5中定位销551的具体结构。脱离定位机构5实现了使第一装配件2脱离传送机构3并对第一装配件2进行精确定位的目的。
本申请还提供了定位部1中定位板11的具体结构,另外本申请还进一步的公开了定位板11实现对第二装配件4定位的定位槽12结构。
本申请提供了固定架7和连接臂71用于使第一装配件2和第二装配件4,以及机器人6之间建立更加稳定准确的位置关系。
本申请还进一步提供了一种末端执行机构61的具体结构,在对装配件精确定位的条件下,大幅提高了生产效率。第二限位结构616则进一步对抓取第二装配件4进行限位,取保了第二装配件4在抓取时的精确位置。
在本文中,“示意性”表示“充当实例、例子或说明”,不应将在本文中被描述为“示意性”的任何图示、实施方式解释为一种更优选的或更具优点的技术方案。
应当理解,虽然本说明书是按照各个实施方式描述的,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体, 各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本实用新型的可行性实施方式的具体说明,它们并非用以限制本实用新型的保护范围,凡未脱离本实用新型技艺精神所作的等效实施方式或变更均应包含在本实用新型的保护范围之内。

Claims (9)

  1. 一种脱离定位机构(5),其特征在于,包括:
    一固定部(51);
    至少一根导杆(52),所述至少一根导杆(52)的一端与所述固定部(51)固定;
    一移动部(53),其设置在所述至少一根导杆(52)上,所述移动部(53)能够沿所述至少一根导杆(52)滑动以推动置于传送机构(3)上的第一装配件(2)与传送机构(3)脱离;
    一动力部(54),其驱动所述移动部(53)沿所述至少一根导杆(52)滑动;和
    一定位件(55),其设置在所述移动部(53)上,所述定位件(55)适于将已脱离所述传送机构(3)的所述第一装配件(2)定位。
  2. 根据权利要求1所述的脱离定位机构(5),其特征在于,所述定位件(55)包括:
    复数个定位销(551),所述复数个定位销(551)的一端与所述移动部(53)固定,所述复数定位销(551)的另一端与所述第一装配件(2)上对应设置的定位孔(21)插接实现对所述第一装配件(2)的定位;
    所述复数个定位销(551)上设置有:
    一第一限位结构(552),其端面与插接的所述第一装配件(2)相抵实现对所述第一装配件(2)的限位。
  3. 机器人定位系统,其特征在于,所述机器人定位系统包括:
    如权利要求1或2所述的脱离定位机构(5);
    一定位部(1),其上能够放置至少一个第二装配件(4);以及,
    一机器人(6),所述机器人(6)适于从所述定位部(1)上抓取所述至少一个第二装配件(4),并且将抓取的所述第二装配件(4)装配到由所述脱离定位机构(5)固定的所述第一装配件(2)上。
  4. 根据权利要求3所述的机器人定位系统,其特征在于,所述定位部(1)包括:
    至少一个定位板(11),每个所述定位板(11)上设置有与所述至少一个第二装配件(4)外轮廓对应的定位槽(12)。
  5. 根据权利要求3所述的机器人定位系统,其特征在于,所述机器人定位系统还包括:
    一固定架(7),其上固定安装所述定位部(1)与所述脱离定位机构(5)。
  6. 根据权利要求5所述的机器人定位系统,其特征在于,进一步包括:
    一连接臂(71),其一端与所述固定架(7)固定,另一端与所述机器人(6)固定。
  7. 根据权利要求3所述的机器人定位系统,其特征在于,所述机器人(6)具有:
    一末端执行机构(61),所述末端执行机构(61)包括:
    一连接部(611),其与所述机器人(6)连接,所述连接部(611)沿一轴线(613)旋转;和
    复数个抓取机构(612),所述复数个抓取机构(612)沿所述轴线(613)周圈设置在所述连接部(611)上,所述连接部(611)带动沿所述轴线(613)转动以允许每个所述抓取机构(612)独立抓取所述第二装配件(4)。
  8. 根据权利要求7所述的机器人定位系统,其特征在于,所述抓取机构(612)包括:
    一气爪(614),其一端固定在所述连接部(611)上,另一端上设置有两个可沿一自由度相向或相背滑动的爪指;和
    两个夹具(615),所述两个夹具(615)分别固定在一对所述爪指上,且所述两个夹具(615)分别由两个所述爪指带动沿所述自由度相向或相背滑动实现对所述第二装配件(4)的抓取。
  9. 根据权利要求8所述的机器人定位系统,其特征在于,所述夹具(615)上设置有:
    一第二限位结构(616),其端面与被抓取的所述第二装配件(4)相抵实现对所述第二装配件(4)的限位,且所述第二限位结构(616)的端面与所述第二装配件(4)的装配方向垂直。
PCT/CN2019/101861 2018-08-23 2019-08-21 脱离定位机构及机器人定位系统 WO2020038419A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19851903.5A EP3834983B1 (en) 2018-08-23 2019-08-21 Separation positioning mechanism and robot positioning system
US17/270,521 US20210316420A1 (en) 2018-08-23 2019-08-21 Separation positioning mechanism and robot positioning system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201821372715.X 2018-08-23
CN201821372715.XU CN208556566U (zh) 2018-08-23 2018-08-23 脱离定位机构及机器人定位系统

Publications (1)

Publication Number Publication Date
WO2020038419A1 true WO2020038419A1 (zh) 2020-02-27

Family

ID=65451349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101861 WO2020038419A1 (zh) 2018-08-23 2019-08-21 脱离定位机构及机器人定位系统

Country Status (4)

Country Link
US (1) US20210316420A1 (zh)
EP (1) EP3834983B1 (zh)
CN (1) CN208556566U (zh)
WO (1) WO2020038419A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115722889A (zh) * 2022-11-29 2023-03-03 陕西法士特齿轮有限责任公司 一种轴系零件搬运手爪及机器人

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208556566U (zh) * 2018-08-23 2019-03-01 西门子数控(南京)有限公司 脱离定位机构及机器人定位系统
CN111761532A (zh) * 2020-07-10 2020-10-13 姚春霞 一种ic芯片的测试固定结构及其使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655676A (en) * 1983-07-11 1987-04-07 Asea Aktiebolag Robot installation
CN105643650A (zh) * 2016-02-29 2016-06-08 上海发那科机器人有限公司 一种可改变姿态的气门装配机器人手爪及其工作过程
CN107127542A (zh) * 2017-06-03 2017-09-05 广东星徽精密制造股份有限公司 一种缓冲器与滑轨的自动装配机
CN107470891A (zh) * 2017-08-29 2017-12-15 浙江思玛特机器人科技有限公司 一种刹车片自动拆卸流水线
CN208556566U (zh) * 2018-08-23 2019-03-01 西门子数控(南京)有限公司 脱离定位机构及机器人定位系统
CN209239402U (zh) * 2018-11-27 2019-08-13 上海恺杰汽车塑料零部件有限公司 一种汽车内饰面板触点装配设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107738065B (zh) * 2017-11-23 2020-02-18 广东恒鑫智能装备股份有限公司 洗衣机内外筒套装机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655676A (en) * 1983-07-11 1987-04-07 Asea Aktiebolag Robot installation
CN105643650A (zh) * 2016-02-29 2016-06-08 上海发那科机器人有限公司 一种可改变姿态的气门装配机器人手爪及其工作过程
CN107127542A (zh) * 2017-06-03 2017-09-05 广东星徽精密制造股份有限公司 一种缓冲器与滑轨的自动装配机
CN107470891A (zh) * 2017-08-29 2017-12-15 浙江思玛特机器人科技有限公司 一种刹车片自动拆卸流水线
CN208556566U (zh) * 2018-08-23 2019-03-01 西门子数控(南京)有限公司 脱离定位机构及机器人定位系统
CN209239402U (zh) * 2018-11-27 2019-08-13 上海恺杰汽车塑料零部件有限公司 一种汽车内饰面板触点装配设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115722889A (zh) * 2022-11-29 2023-03-03 陕西法士特齿轮有限责任公司 一种轴系零件搬运手爪及机器人

Also Published As

Publication number Publication date
CN208556566U (zh) 2019-03-01
EP3834983A4 (en) 2022-04-27
EP3834983A1 (en) 2021-06-16
US20210316420A1 (en) 2021-10-14
EP3834983B1 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
WO2020038419A1 (zh) 脱离定位机构及机器人定位系统
TWI527657B (zh) 夾持裝置
CN104625676A (zh) 轴孔装配工业机器人系统及其工作方法
CN211607252U (zh) 一种基于机器视觉识别的全自动机械手插件系统
CN106003007A (zh) 一种应用于夹持杆件的联动式机械臂
JP2013094930A (ja) ロボットハンド及びフィンガー交換装置
US20170008165A1 (en) Industrial robot and base unit of the same
CN111745671A (zh) 一种机器人取放料机构
CN103895007A (zh) 一种二平动并联机器人
WO2019075878A1 (zh) 一种大口径光学元件精密洁净装配的自动化抓取装置与方法
CN103895008A (zh) 一种仅含转动副的空间三平动并联机器人机构
JP6219951B2 (ja) 部品組付装置における基板に部品を組み付ける方法及び部品組付装置
CN212887236U (zh) 一种管道固定夹具
CN105171761A (zh) 一种气动手爪装置
CN212736039U (zh) 一种机器人取放料机构
CN211439972U (zh) 一种搬运机器人用搬运托爪结构
TWM555789U (zh) 機械手視覺夾爪環型快拆模組
CN209999221U (zh) 一种高精度定位板材机械手
JP2012110976A (ja) 把持装置
CN207807777U (zh) 机械手夹具
CN213765911U (zh) 一种机械臂用调节夹具
CN108247948B (zh) 一种立式注塑机自动上料系统的抓取装置
CN219649917U (zh) 一种机械手爪
CN220863750U (zh) 一种多工位自动化治具平台
CN104276407A (zh) 鼠标的滚轮模组的取放装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019851903

Country of ref document: EP

Effective date: 20210308