WO2020038387A1 - 高活性sting蛋白激动剂 - Google Patents

高活性sting蛋白激动剂 Download PDF

Info

Publication number
WO2020038387A1
WO2020038387A1 PCT/CN2019/101707 CN2019101707W WO2020038387A1 WO 2020038387 A1 WO2020038387 A1 WO 2020038387A1 CN 2019101707 W CN2019101707 W CN 2019101707W WO 2020038387 A1 WO2020038387 A1 WO 2020038387A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkylene
alkyl
membered
compound
group
Prior art date
Application number
PCT/CN2019/101707
Other languages
English (en)
French (fr)
Inventor
陈宇锋
陈凯旋
李磐
刘灿丰
王骥
邱庆崇
路杨
Original Assignee
杭州阿诺生物医药科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州阿诺生物医药科技有限公司 filed Critical 杭州阿诺生物医药科技有限公司
Priority to CN201980005215.3A priority Critical patent/CN111386275B/zh
Priority to CN202011579538.4A priority patent/CN112679520B/zh
Priority to AU2019326633A priority patent/AU2019326633B2/en
Priority to CA3110436A priority patent/CA3110436C/en
Priority to JP2021532508A priority patent/JP2021534250A/ja
Priority to EP19851013.3A priority patent/EP3842437B1/en
Priority to CN202011579526.1A priority patent/CN112661772B/zh
Priority to KR1020217008506A priority patent/KR102583738B1/ko
Publication of WO2020038387A1 publication Critical patent/WO2020038387A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/06Peri-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53831,4-Oxazines, e.g. morpholine ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • A61K31/551Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having two nitrogen atoms, e.g. dilazep
    • A61K31/55131,4-Benzodiazepines, e.g. diazepam or clozapine
    • A61K31/55171,4-Benzodiazepines, e.g. diazepam or clozapine condensed with five-membered rings having nitrogen as a ring hetero atom, e.g. imidazobenzodiazepines, triazolam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • A61K31/553Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having at least one nitrogen and one oxygen as ring hetero atoms, e.g. loxapine, staurosporine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/06Peri-condensed systems

Definitions

  • the invention relates to a heterocyclic compound, in particular to a highly active STING protein agonist and use thereof.
  • TME tumor microenvironment
  • cytokines are a large class of proteins that can regulate immune responses. They can directly activate immune effector cells or stimulate tumor stromal cells, resulting in chemokines and adhesion molecules for the recruitment of lymphocytes. These functions indicate that depending on the tumor microenvironment, targeting cytokines can also be an effective approach to tumor immunotherapy.
  • STING Interferon Gene Stimulating Protein
  • the interferon gene-stimulating protein is a transmembrane protein, which usually cross-links to form a dimer in the 152-173 region and is in a self-inhibitory state.
  • the molecular configuration changes and is activated, recruiting TANK-binding kinase 1 in the cytoplasm, mediating the phosphorylation of IRF3 by TBK1, leading to the formation of interferon- ⁇ and other cytokines.
  • IFN ⁇ production is a hallmark of STING activation.
  • Type I IFN plays a key role in the activation of tumor-activated T cells.
  • STING not only induces the expression of type I interferon genes, but also plays an important role in the natural immune signaling pathway; STING agonists can activate immune stimulating cells including dendritic cells, change the tumor microenvironment and induce tumor-specific T The production of cells.
  • a flavonoid vascular disrupting agent, DMXAA induces the production of IFN- ⁇ and other natural cytokines by activating the mouse-derived STING protein, and effectively inhibits the growth of a variety of solid tumors.
  • MLRR-S2 CDA causes changes in the microenvironment of a variety of solid tumors, activates effective tumor-induced CD8 + T cells, and has a long-lasting therapeutic effect.
  • STING pathway can effectively activate the body's natural immune system. It is one of the few signaling pathways that has been proven to induce the production of cytokines interferon. This pathway is essential in natural immunity. . Infiltration of lymphocytes into tumor tissue is the key to the success of immunotherapy. The activation of the target pathway also promotes the infiltration and response of effector T cells in the tumor microenvironment. Therefore, this target has gradually become an important target for antitumor therapy, especially immunotherapy research. In multiple mouse vaccination models, it is effective for a variety of refractory and metastatic solid tumors. Not only the tumors injected directly disappear, but tumor growth in other parts is also significantly inhibited, and tumors can even be prevented.
  • the invention provides a compound having STING protein agonist activity.
  • An object of the present invention is to provide a compound having a structure of formula (I),
  • W represents (CR a R a ' ) m , where any CR a R a' is optionally replaced by 0, 1 or 2 O, S or NR b ;
  • R 1 and R 2 are each independently selected from hydrogen, halogen, hydroxyl, amino, mercapto, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 1 -C 6 alkylthio, C 1- C 6 alkylamino, (diC 1 -C 6 alkyl) amino, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl,-(C 0 -C 6 alkylene)-(C 3- C 6 cycloalkyl),-(C 0 -C 6 alkylene)-(4-7 membered heterocycloalkyl),-(C 0 -C 6 alkylene)-(6-12 membered aryl) , And-(C 0 -C 6 alkylene)-(5-12 membered heteroaryl), or a ring common to R 1 and R 2 and adjacent atoms is synthesized into a 3-6 membered ring.
  • Optionally also contains 0, 1 or 2 hetero
  • R 3 and R 4 are cyclized together to form a 5-8 membered ring, which optionally contains 0, 1, 2, 3, or 4 heteroatoms selected from O, S, and N;
  • R 4 and R 5 are cyclized together to form a 5-8 membered ring, and the ring arbitrarily contains 0, 1, 2, 3 or 4 heteroatoms selected from O, S and N;
  • Cy represents a 6-12 membered aryl group or a 5-12 membered heteroaryl group
  • n represents an integer of 1, 2 or 3;
  • R a and R a ′ each independently represent hydrogen, halogen, hydroxy, C 1 -C 6 alkyl, C 1 -C 6 alkylthio,-(C 0 -C 6 alkylene)-(C 3- C 6 cycloalkyl),-(C 0 -C 6 alkylene)-(4-7 membered heterocycloalkyl),-(C 0 -C 6 alkylene)-(6-12 membered aryl) ,-(C 0 -C 6 alkylene)-(5-12 membered heteroaryl), -NR e R e ' , -NR e COR e' , -NR e SO 2 R e ' , -OR e or -OCOR e , or R a and R a ′ and adjacent atoms are cyclic to form a 3-6 membered ring, and the ring optionally contains 0, 1 or 2 selected from O, N and S Heteroatom; or any
  • R b each independently represents hydrogen, C 1 -C 6 alkyl,-(C 0 -C 6 alkylene)-(C 3 -C 6 cycloalkyl),-(C 0 -C 6 alkylene) -(4-7 membered heterocycloalkyl),-(C 0 -C 6 alkylene)-(6-12 membered aryl),-(C 0 -C 6 alkylene)-(5-12 member (Heteroaryl),-(C 0 -C 6 alkylene)-(6-12 membered aryl), -C (O) R f , -SO 2 R f , -SOR f , -C (O) OR f or -C (O) NR f R f ' ;
  • R c, R c ', R c ", R d, R d', R e, R e ', R f, R f' independently represent hydrogen, C 1 -C 6 alkyl, - (C 0 - C 6 alkylene)-(C 3 -C 6 cycloalkyl),-(C 0 -C 6 alkylene)-(4-7 membered heterocycloalkyl),-(C 0 -C 6 alkylene Group)-(6-12 membered aryl), or-(C 0 -C 6 alkylene)-(5-12 membered heteroaryl), or when the above substituents are commonly connected to one N atom, Optionally connected with the connected N atoms to form a 3-8 membered ring;
  • alkyl, alkylene, aryl, heteroaryl, ring, cycloalkyl, heterocycloalkyl, alkenyl, alkynyl, and alkoxy groups described above they are each optionally independently 0, 1, 2, 3 or 4 substituents selected from the group consisting of: halogen, hydroxy, cyano, carboxyl, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, sulfonate, -OR g , -SR g , -NR g R g ' , -NR g COR g' , -NR g COOR g ' , -COR g , -CO 2 R g , -SOR g , -SO 2 R g ,- OCONR g R g ' -, -OCOR g , -CONR g R g' , -NR g SO 2 R g ' ,
  • aryl and heteroaryl groups or when the number of substituents is 2, two adjacent substituents are optionally cyclic with each other to form a 5-6 membered saturated or unsaturated carbocyclic ring.
  • a heterocyclic ring wherein the heterocyclic ring is a ring containing 0, 1, 2, 3, or 4 heteroatoms of O, S, and N;
  • R g and R g ′ are each independently hydrogen, or optionally 0, 1, 2, 3, or 4 selected from hydroxyl, halogen, nitro, C 1 -C 6 alkyl, halogenated (C 1- C 6 alkyl), amino, sulfonyl, cyano, C 1 -C 6 alkoxy, C 1 -C 6 alkylthio, C 1 -C 6 amino, and (di-C 1 -C 6 The following groups substituted by a group of an alkyl) amino group: C 1 -C 6 alkyl,-(C 0 -C 6 alkylene)-(C 3 -C 6 cycloalkyl),-(C 0- C 6 alkylene) -O- (C 1 -C 6 alkyl),-(C 0 -C 6 alkylene) -O-CO (C 1 -C 6 alkyl),-(C 0 -C 6 alkylene) -C (O) O (C 1 -C 6 alky
  • the 6-12-membered aryl group is preferably a phenyl group; the 5-12-membered heteroaryl group is preferably a pyridyl group, an imidazolyl group, or a pyrazolyl group; or the above-mentioned 6-12-membered aryl group or 5-
  • a 12-membered heteroaryl group when the number of substituents is 2, two adjacent substituents can also be cyclic with each other to form a 5-6 membered saturated or unsaturated carbocyclic or heterocyclic ring.
  • Another object of the present invention is to provide a compound having the structure of formula (II),
  • a and B each independently represent CR a R a ' , NR b , O, or S; R 1 , R 2 , R 3 , R 4 , R 5 , X, Cy, R a , R a' , R b Is as defined by formula (I).
  • Another object of the present invention is to provide a compound having the structure of formula (III),
  • R 1 , R 3 , R 4 , R 5 , W, X, and Cy have the meanings defined by formula (I);
  • R 2 represents hydrogen or C 1 -C 6 alkyl, and R 1 and R 2 represent different Substituents.
  • Another object of the present invention is to provide a compound having the structure of formula (IV),
  • R 1 , R 3 , R 4 , R 5 , X, Cy, A, B have the meaning as defined in formula (II), R 2 represents hydrogen or C 1 -C 6 alkyl, and R 1 and R 2 represent different Substituents.
  • R 4 is preferably -CONR c R c '
  • R c are independently preferably hydrogen or C 1- C 6 alkyl.
  • X is preferably -NR d C (O)-, and R d is preferably hydrogen or C 1 -C 6 alkyl.
  • the Cys are each independently selected from phenyl, pyridyl, pyrazolyl, pyrimidinyl, pyrazinyl, Furyl, thiazolyl, oxazolyl, imidazolyl, thienyl, triazolyl, tetrazolyl; preferably pyrazolyl, imidazolyl, oxazolyl, triazolyl, and tetrazolyl; It is preferably imidazolyl; and Cy may be independently substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of halogen, hydroxy, cyano, carboxyl, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, sulfo, C 1 -C 6 alkoxy, -amino, nitro, (C 1 -C 6 alkyl) amino, and (diC 1
  • R 1 is preferably C 1 -C 6 alkyl, C 2 -C 6 alkenyl,-(C 0 -C 6 Alkylene)-(C 3 -C 6 cycloalkyl),-(C 0 -C 6 alkylene)-(4-7 membered heterocycloalkyl), or-(C 0 -C 6 alkylene )-(6-12 membered aryl); more preferably: C 1 -C 6 alkyl, C 2 -C 6 alkenyl, or-(C 0 -C 6 alkylene)-(C 3 -C 6 Cycloalkyl); most preferably: C 1 -C 6 alkyl, or C 2 -C 6 alkenyl; and it is optionally substituted with a substituent selected from: -NR g COR g ' ; and R g is preferably hydrogen or C 1 -C 6 alkyl
  • the 6-12-membered aryl group is preferably a phenyl group; the 5-12-membered heteroaryl group is preferably a pyridyl group, an imidazolyl group, or a pyrazolyl group; For a -12-membered heteroaryl group, when the number of substituents is 2, two adjacent substituents can also be cyclic with each other to form a 5-6-membered saturated or unsaturated carbocyclic or heterocyclic ring.
  • R 1 has the structure:-(C 1 -C 6 alkylene) -NR g COR g ' ,-(C 2 -C 6 alkenylene) -NR g COR g ' , wherein R g is preferably hydrogen or C 1 -C 6 alkyl; R g' is preferably selected from 0, 1, 2, 3 or 4 selected from hydroxyl, halogen , Nitro, C 1 -C 6 alkyl, halo (C 1 -C 6 alkyl), amino, sulfonyl, cyano, C 1 -C 6 alkoxy, C 1 -C 6 alkylthio , C 1 -C 6 amino, and (di C 1 -C 6 alkyl) amino substituents:-(C 0 -C 6 alkylene)-(6-12 membered aryl) ,-(C 0 -C 6 alkylene)-(5-12
  • R 2 is preferably hydrogen or C 1 -C 6 alkyl.
  • R 3 and R 5 are each independently preferably hydrogen, halogen or C 1 -C 6 alkyl.
  • W represents (CR a R a ' ) m , where any CR a R a' can be replaced by 0, 1 or 2 O, S or NR b ;
  • R 2 independently represents hydrogen, halogen, hydroxyl, amino, mercapto, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 1 -C 6 alkylthio, C 1 -C 6 alkylamino , (Di-C 1 -C 6 alkyl) amino, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl,-(C 0 -C 6 alkylene)-(C 3 -C 6 cycloalkyl ),-(C 0 -C 6 alkylene)-(4-7 membered heterocycloalkyl),-(C 0 -C 6 alkylene)-(6-12 membered aryl), or-(C 0 -C 6 alkylene)-(5-12 membered heteroaryl);
  • Cy represents a 6-12 membered aryl group and a 5-12 membered heteroaryl group
  • n represents an integer of 1, 2 or 3;
  • R a and R a ′ each independently represent hydrogen, halogen, hydroxy, C 1 -C 6 alkyl, C 1 -C 6 alkylthio,-(C 0 -C 6 alkylene)-(C 3- C 6 cycloalkyl),-(C 0 -C 6 alkylene)-(4-7 membered heterocycloalkyl),-(C 0 -C 6 alkylene)-(6-12 membered aryl) ,-(C 0 -C 6 alkylene)-(5-12 membered heteroaryl), -NR e R e ' , -NR e COR e' , -NR e SO 2 R e ' , -OR e , Or -OCOR e , or the ring common to Ra and Ra ' and the adjacent atoms is synthesized into a 3-6 membered ring, and the ring optionally contains 0, 1 or 2 selected from O, N and S Heteroatom
  • R b each independently represents hydrogen, C 1 -C 6 alkyl,-(C 0 -C 6 alkylene)-(C 3 -C 6 cycloalkyl),-(C 0 -C 6 alkylene) -(4-7 membered heterocycloalkyl),-(C 0 -C 6 alkylene)-(6-12 membered aryl),-(C 0 -C 6 alkylene)-(5-12 member Heteroaryl), -C (O) R f , -SO 2 R f , -SOR f , -C (O) OR f , or -C (O) NR f R f ' ;
  • G represents O or NR c ;
  • R c , R c ′ , R c ′′ , Rd , R e , Re e ′ , R f , R f ′ each independently represent hydrogen, C 1 -C 6 alkyl,-(C 0 -C 6 alkylene Group)-(C 3 -C 6 cycloalkyl),-(C 0 -C 6 alkylene)-(4-7 membered heterocycloalkyl),-(C 0 -C 6 alkylene)-( 6-12-membered aryl), or-(C 0 -C 6 alkylene)-(5-12-membered heteroaryl), or when the above substituents are commonly connected to an N atom, it can be connected to the N atoms ring each other to form a 3-8 membered ring;
  • alkyl, alkylene, aryl, heteroaryl, ring, cycloalkyl, heterocycloalkyl, alkenyl, alkynyl, and alkoxy groups they are each optionally independently 0, 1, 2, 3 or 4 substituents selected from the group consisting of: halogen, oxo, hydroxyl, cyano, carboxyl, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, sulfo Acid group, C 1 -C 6 alkoxy group, -OR g , -SR g , -N (R g ) (R g ' ), -NR g COR g' , -NR g COOR g ' , -COR g , -CO 2 R g , -SOR g , -SO 2 R g , -OCONR g R g ' -, -OCOR g
  • Said heterocyclic ring is a ring containing 0, 1, 2, 3 or 4 heteroatoms selected from O, S and N;
  • R g and R g ′ are each independently hydrogen or optionally 0, 1, 2, 3, or 4 selected from hydroxyl, halogen, nitro, C 1 -C 6 alkyl, and halogenated (C 1 -C 6 alkyl), amino, sulfonyl, cyano, C 1 -C 6 alkoxy, C 1 -C 6 alkylthio, C 1 -C 6 amino, and (diC 1 -C 6 alkyl The following groups substituted by a group of amino): C 1 -C 6 alkyl,-(C 0 -C 6 alkylene)-(C 3 -C 6 cycloalkyl), halo (C 1- C 6 alkyl),-(C 0 -C 6 alkyl) -OH,-(C 0 -C 6 alkylene) -O- (C 1 -C 6 alkyl),-(C 0 -C 6 Alkylene) -O-CO (C 1 -C 6 alkyl
  • Y represents optionally 0, 1, 2, 3, or 4 selected from the group consisting of hydroxyl, halogen, nitro, C 1 -C 6 alkyl, halo (C 1 -C 6 alkyl), amino, sulfonyl, The following groups substituted with a group of cyano, C 1 -C 6 alkoxy, C 1 -C 6 alkylthio, C 1 -C 6 amino, and (diC 1 -C 6 alkyl) amino : -C 1 -C 6 alkylene-,-(C 0 -C 6 alkylene)-(C 3 -C 6 cycloalkyl)-(C 0 -C 6 alkylene),-(C 0 -C 6 alkylene)-(4-7 membered heterocycloalkyl)-(C 0 -C 6 alkylene),-(C 0 -C 6 alkylene)-(6-12 membered aryl) -(C 0 -C 6 alky
  • Z represents optionally 0, 1, 2, 3, or 4 selected from the group consisting of hydroxyl, halogen, nitro, C 1 -C 6 alkyl, halo (C 1 -C 6 alkyl), amino, sulfonyl, The following groups substituted with a group of cyano, C 1 -C 6 alkoxy, C 1 -C 6 alkylthio, C 1 -C 6 amino, and (diC 1 -C 6 alkyl) amino : C 1 -C 6 alkyl,-(C 0 -C 6 alkylene)-(C 3 -C 6 cycloalkyl),-(C 0 -C 6 alkylene) -O- (C 1- C 6 alkyl),-(C 0 -C 6 alkylene) -O-CO (C 1 -C 6 alkyl),-(C 0 -C 6 alkylene) -C (O) O (C 1- C 6 alkyl),-(C 0 -C 6
  • the 6-12-membered aryl group is preferably a phenyl group; the 5-12-membered heteroaryl group is preferably a pyridyl group, an imidazolyl group, or a pyrazolyl group; or the above-mentioned 6-12-membered aryl group or 5-
  • a 12-membered heteroaryl group when the number of substituents is 2, two adjacent substituents can also be cyclic with each other to form a 5-6 membered saturated or unsaturated carbocyclic or heterocyclic ring.
  • R 2 is selected from hydrogen or C 1 -C 6 alkyl
  • W, R 3 , R 5 , R c , R c ′ , Rd , G, Z, Y, and Cy all have the formula (V). definition.
  • G is preferably O or NH.
  • Y is preferably the following substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of hydroxyl, halogen, and C 1 -C 6 alkyl.
  • substituents selected from the group consisting of hydroxyl, halogen, and C 1 -C 6 alkyl.
  • W is preferably -CR a R a ' -O, -O-CR a R a'- , -C (O) -NR b -or- NR b -C (O) -, wherein R a, R a ', R b each independently represent hydrogen, C 1 -C 6 alkyl, or C 3 -C 6 cycloalkyl.
  • Z is preferably -O- (C 0 -C 6 alkylene)-(6-12 membered aryl),-(C 0 -C 6 Alkylene)-(6-12 membered aryl),-(C 2 -C 6 alkenylene)-(6-12 membered aryl),-(C 0 -C 6 alkylene)-(5- 12-membered heteroaryl),-(C 2 -C 6 alkenylene)-(5-12 membered heteroaryl), -O- (C 2 -C 6 alkenylene)-(6-12 membered aryl group ),-(C 0 -C 6 alkylene) -O- (6-12 membered aryl), -O- (C 0 -C 6 alkylene)-(5-12 membered heteroaryl),- O- (C 2 -C 6 alkenylene)-(5-12 membered heteroaryl), or
  • R 2 is preferably hydrogen or C 1 -C 6 alkyl.
  • R 3 and R 5 are each independently preferably halogen, hydrogen, or C 1 -C 6 alkyl.
  • R c and R c ′ are preferably hydrogen or C 1 -C 6 alkyl.
  • R d is preferably hydrogen or C 1 -C 6 alkyl.
  • Cy is preferably a pyrazolyl group, and may be optionally substituted with 0, 1, 2 or 3 C 1 -C 6 alkyl groups.
  • the present invention also provides a compound having the following structure:
  • salts, solvates, and hydrates of a compound are alternative forms of the compound, and they can all be converted into the compound under certain conditions. Therefore, special attention is paid to When it comes to a compound, it generally includes its pharmaceutically acceptable salts, and further includes its solvate and hydrate.
  • the pharmaceutically acceptable salts according to the present invention can be formed using, for example, the following inorganic or organic acids: "Pharmaceutically acceptable salts" refers to such salts, which are suitable for contact with humans and relatively low within the scope of reasonable medical judgment. Waiting for animal tissue without undue toxicity, irritation, allergic reactions, etc., is a reasonable benefit / risk ratio.
  • the salts can be prepared in situ during the final isolation and purification of the compounds of the invention, or they can be prepared separately by reacting a free base or free acid with a suitable reagent, as outlined below. For example, the free base function can be reacted with a suitable acid.
  • suitable pharmaceutically acceptable salts thereof may include metal salts, such as alkali metal salts (such as sodium or potassium salts); and alkaline earth metal salts (such as calcium or magnesium salts).
  • metal salts such as alkali metal salts (such as sodium or potassium salts); and alkaline earth metal salts (such as calcium or magnesium salts).
  • pharmaceutically acceptable non-toxic acid addition salts are amino and inorganic acids (e.g., hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid, and perchloric acid) or organic acids (e.g., acetic acid, oxalic acid, maleic acid, tartaric acid, Citric acid, succinic acid or malonic acid), or by using other methods in the art such as ion exchange.
  • salts include adipate, sodium alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, Camphor sulfonate, citrate, cyclopentanepropionate, digluconate, dodecyl sulfate, ethanesulfonate, formate, fumarate, glucoheptanoate, glycerol Phosphate, gluconate, hernisulfate, heptanoate, hexanoate, hydroiodate, 2-hydroxy-ethanesulfonate, lactate, lactate, laurate, lauryl sulfate, malate Salt, maleate, malonate, mesylate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pipate, pectate Salt,
  • Representative alkali metal or alkaline earth metal salts include salts of sodium, lithium, potassium, calcium, magnesium, and the like.
  • Other pharmaceutically acceptable salts include, where appropriate, non-toxic ammonium salts, quaternary ammonium salts, and amine cations formed with counterions, such as halides, hydroxides, carboxylates, sulfates, phosphates, nitrates, lower grades Alkyl sulfonates and aryl sulfonates.
  • the pharmaceutically acceptable salts of the present invention can be prepared by a conventional method, for example, by dissolving a compound of the present invention in a water-miscible organic solvent such as acetone, methanol, ethanol, and acetonitrile, and adding an excess of an organic acid or an inorganic compound thereto. Aqueous acid solution so that the salt is precipitated from the resulting mixture, the solvent and the remaining free acid are removed therefrom, and the precipitated salt is then separated.
  • a water-miscible organic solvent such as acetone, methanol, ethanol, and acetonitrile
  • the precursor or metabolite according to the present invention may be a precursor or metabolite known in the art, as long as the precursor or metabolite is converted into a compound through in vivo metabolism.
  • prodrugs refer to those prodrugs of the compounds of the present invention, which are suitable for contact with human and lower animal tissues without undue toxicity, irritation, allergic reactions, etc., within the scope of reasonable medical judgment, A reasonable benefit / risk ratio and effective for its intended use.
  • prodrug refers to a compound that is rapidly transformed in vivo to produce the parent compound of the above formula, for example by metabolism in vivo, or N-demethylation of a compound of the invention.
  • solvate means the physical association of a compound of the invention with one or more solvent molecules, whether organic or inorganic. This physical association includes hydrogen bonding. In some cases, such as when one or more solvent molecules are incorporated into the crystal lattice of a crystalline solid, the solvate will be able to be separated.
  • the solvent molecules in the solvate may exist in a regular arrangement and / or a disorderly arrangement.
  • the solvate may include stoichiometric or non-stoichiometric solvent molecules.
  • “Solvate” encompasses both a solution phase and a separable solvate. Exemplary solvates include, but are not limited to, hydrates, ethanolates, methanolates, and isopropanolates. Solvation methods are well known in the art.
  • the "stereoisomerism" described in the present invention is divided into conformational isomerism and conformational isomerism.
  • Configurational isomerism can also be divided into cis-trans isomerism and optical isomerism (that is, optical isomerism).
  • a certain configuration of organic matter molecules is caused by the rotation or distortion of carbon and carbon single bonds, which causes each atom or atomic group of the molecule to produce a different arrangement in space.
  • a common phenomenon is the structure of alkanes and naphthenes. Such as the chair conformation and boat conformation appearing in the cyclohexane structure.
  • Stepoisomers mean that when the compounds of the invention contain one or more asymmetric centers, they can be used as racemates and racemic mixtures, single enantiomers, diastereomeric mixtures and single Diastereomers.
  • the compounds of the present invention have asymmetric centers, and each asymmetric center produces two optical isomers.
  • the scope of the present invention includes all possible mixtures of optical isomers and diastereomers and pure or partially pure compounds .
  • the compounds according to the invention may exist in the form of tautomers, which have different points of attachment of hydrogen through one or more double bond shifts. For example, a ketone and its enol form are keto-enol tautomers.
  • the “isotopic derivative” in the present invention refers to a molecule in which a compound is labeled with an isotope in this patent.
  • isotopes are: hydrogen isotopes, 2 H and 3 H; carbon isotopes: 11 C, 13 C and 14 C; chlorine isotopes: 35 Cl and 37 Cl; fluorine isotopes: 18 F; iodine isotopes: 123 I And 125 I; nitrogen isotopes: 13 N and 15 N; oxygen isotopes: 15 O, 17 O and 18 O; and sulfur isotope 35 S.
  • isotope-labeled compounds can be used to study the distribution of pharmaceutical molecules in tissues.
  • deuterium 3 H and carbon 13 C are more widely used because they are easy to label and convenient to detect.
  • Some heavier isotopes such as deuterium (2 H), substituent can enhance metabolic stability, half-life extending so as to achieve a reduced dose of the head and provide a therapeutic advantage.
  • Isotopically-labeled compounds generally start with labeled starting materials, and their synthesis is accomplished using known synthetic techniques as well as synthesizing non-isotopically-labeled compounds.
  • the invention also provides the use of a compound of the invention in the manufacture of a medicament for the prevention and / or treatment of cancer, tumors, inflammatory diseases, autoimmune diseases or immune-mediated diseases.
  • the present invention provides a pharmaceutical composition for preventing and / or treating cancer, tumor, inflammatory disease, autoimmune disease, neurodegenerative disease, attention-related disease, or immune-mediated disease, which comprises the invention Compound as active ingredient.
  • the invention also provides a method for stimulating a STING protein, which comprises exposing a compound or a pharmaceutical composition or pharmaceutical formulation of the invention to the STING protein.
  • the invention also provides a method for preventing and / or treating a disease that can be prevented and / or treated by agonizing STING protein, which comprises administering a compound or a pharmaceutical composition of the invention to a subject in need thereof.
  • the present invention provides a method for preventing and / or treating cancer, tumor, inflammatory disease, autoimmune disease, neurodegenerative disease, attention-related disease, or immune-mediated disease.
  • a mammal in need thereof administers a compound of the invention.
  • inflammatory diseases may include, but are not limited to, arthritis, rheumatoid arthritis, spinal arthritis, gouty arthritis, osteoarthritis, juvenile arthritis , Other arthritic conditions, lupus, systemic lupus erythematosus (SLE), skin-related diseases, psoriasis, eczema, dermatitis, allergic dermatitis, pain, lung disease, pulmonary inflammation, adult respiratory distress syndrome (ARDS) , Pulmonary sarcoidosis, chronic pulmonary inflammatory disease, chronic obstructive pulmonary disease (COPD), cardiovascular disease, atherosclerosis, myocardial infarction, congestive heart failure, myocardial ischemia-reperfusion injury, inflammatory bowel disease, Crohn's disease, ulcerative colitis, irritable bowel syndrome, asthma, Sjogren's syndrome, autoimmune thyroid disease, urticaria (rubella), multiple sclerosis, sclero
  • cancer or tumor may include, but are not limited to, skin cancer, bladder cancer, ovarian cancer, breast cancer, stomach cancer, pancreatic cancer, prostate cancer, colon cancer, lung cancer, bone cancer, brain cancer, neuroblastoma, rectal cancer , Colon cancer, familial adenomatous polyposis cancer, hereditary nonpolyposis colorectal cancer, esophageal cancer, lip cancer, laryngeal cancer, hypopharyngeal cancer, tongue cancer, salivary gland cancer, gastric cancer, adenocarcinoma, medullary thyroid cancer Papillary thyroid cancer, kidney cancer, renal parenchymal cancer, ovarian cancer, cervical cancer, uterine body cancer, endometrial cancer, chorionic cancer, pancreatic cancer, prostate cancer, testicular cancer, urinary cancer, melanoma, brain tumors such as Glioblastoma, astrocytoma, meningiomas, neuroblastoma and peripheral neuroectodermal tumors, Ho
  • the compound of the present invention or a pharmaceutically acceptable salt thereof when administered in combination with another anticancer agent or an immune checkpoint inhibitor for treating cancer or tumor, the compound of the present invention or a pharmaceutically acceptable salt thereof can provide an enhanced anticancer effect. .
  • anti-cancer agents for treating cancer or tumors may include, but are not limited to, cell signal transduction inhibitors, chlorambucil, melphalan, cyclophosphamide, ifosfamide, busulfan, carbohydrate Mustine, lomustine, streptozotocin, cisplatin, carboplatin, oxaliplatin, dacarbazine, temozolomide, procarbazine, methotrexate, fluorouracil, cytarabine, gemcitabine, Mercaptopurine, Fludarabine, Vincristine, Vincristine, Vincristine, Paclitaxel, Docetaxel, Topotecan, Irinotecan, Etoposide, Trabetidine, Dactinomycin, Doxorubicin , Epirubicin, daunorubicin, mitoxantrone, bleomycin, mitomycin C, ixapilone, tamoxifen, flutamide,
  • the compound of the present invention or a pharmaceutically acceptable salt thereof when administered in combination with another therapeutic agent for treating an inflammatory disease, an autoimmune disease, and an immune-mediated disease, the compound of the present invention or a pharmaceutically acceptable salt thereof can provide an enhancement Therapeutic effect.
  • therapeutic agents for treating inflammatory diseases, autoimmune diseases, and immune-mediated diseases may include, but are not limited to, steroidal drugs (e.g., prednisone, hydroponicone, methylhydroponicone Cortisone, cortisone, hydroxycortisone, betamethasone, dexamethasone, etc.), methotrexate, leflunomide, anti-TNF ⁇ agents (e.g., etanercept, infliximab, adali Monoclonal antibodies, etc.), calcineurin inhibitors (e.g., tacrolimus, pimecrolimus, etc.) and antihistamines (e.g., diphenhydramine, hydroxyzine, loratadine, ebas Tintin, ketotifen, cetirizine, levoctirizine, fexofenadine, etc.), and at least one therapeutic agent selected therefrom may be included in the pharmaceutical composition of the present invention.
  • steroidal drugs
  • the compound of the present invention or a pharmaceutically acceptable salt thereof can be administered orally or parenterally as an active ingredient, and the effective amount thereof ranges from 0.1 to 2,000 mg / kg body weight per day in the case of mammals including humans (about 70 kg in body weight), It is preferably 1 to 1,000 mg / kg body weight / day, and is administered in single or 4 divided doses per day, or with / without following a predetermined time.
  • the dosage of the active ingredient can be adjusted according to a number of related factors, such as the condition of the subject to be treated, the type and severity of the disease, the rate of administration and the opinion of the doctor. In some cases, an amount smaller than the above dose may be appropriate. An amount greater than the above dose can be used if it does not cause harmful side effects and the amount can be administered in divided doses daily.
  • the present invention also provides a method for preventing and / or treating tumor, cancer, viral infection, organ transplant rejection, neurodegenerative disease, attention-related disease or autoimmune disease.
  • a mammal in need administers a compound of the invention or a pharmaceutical composition of the invention.
  • the present invention also provides a method for activating a STING protein, which comprises exposing a compound or a pharmaceutical composition or a pharmaceutical preparation of the present invention to the STING protein.
  • the present invention also provides a method for preventing and / or treating a disease that can be prevented and / or treated by agonizing STING protein, which comprises administering the compound of the present invention or the present invention to a subject in need thereof.
  • Pharmaceutical composition comprising
  • the pharmaceutical composition of the present invention can be formulated into a dosage form for oral administration or parenteral administration (including intramuscular, intravenous and subcutaneous routes, intratumoral injection) according to any one of the conventional methods, such as tablets, granules, powders , Capsule, syrup, emulsion, microemulsion, solution or suspension.
  • the pharmaceutical composition of the present invention for oral administration can be prepared by mixing the active ingredient with a carrier such as: cellulose, calcium silicate, corn starch, lactose, sucrose, dextrose, calcium phosphate, stearic acid, hard Magnesium stearate, calcium stearate, gelatin, talc, surfactant, suspending agent, emulsifier and diluent.
  • a carrier such as: cellulose, calcium silicate, corn starch, lactose, sucrose, dextrose, calcium phosphate, stearic acid, hard Magnesium stearate, calcium stearate, gelatin, talc, surfactant, suspending agent, emulsifier and diluent.
  • carriers used in the injection composition of the present invention are water, saline solution, glucose solution, glucose-like solution, alcohol, glycol, ether (e.g., polyethylene glycol 400), oil, Fatty acids, fatty acid esters, glycerides
  • the compounds of the present invention can be prepared in a variety of ways known to those skilled in the art of organic synthesis.
  • the following methods and synthetic methods known in the field of organic synthetic chemistry can be used or through variations thereof known to those skilled in the art.
  • Synthesis of compounds of the invention. Preferred methods include, but are not limited to, those described below.
  • the reaction is carried out in a solvent or solvent mixture suitable for the kit materials used and the transformations effected.
  • Those skilled in the art of organic synthesis will understand that the functionality present on the molecule is consistent with the proposed transformation. This sometimes requires judgment to change the order or starting materials of the synthetic steps to obtain the desired compound of the invention.
  • the present invention describes the cis- and trans- (or E- and Z-) geometric isomers of the compounds of the present invention, and they can be separated into mixtures of isomers or in separate isomer forms.
  • the compounds of the invention can be isolated in optically active or racemic forms.
  • the compounds of the present invention can exist in a variety of tautomeric forms in which hydrogen atoms are transposed to other parts of the molecule and as a result the chemical bonds between the atoms of the molecule are rearranged. It should be understood that all tautomeric forms that may exist are included in the present invention.
  • the definitions of the substituents of the present invention are independent and not related to each other.
  • R a (or R a ) in the substituent they are independent in the definition of different substituents. .
  • R a (or R a ) when R a (or R a ) is selected from one kind of substituents, it does not mean that R a (or R a ) has the same definition in other substituents.
  • R a R a ' when the definition of R a (or R a ') is selected from hydrogen, it does not mean that -C (O) -NR In a R a ', R a (or R a ') must be hydrogen.
  • substituent when a substituent is labeled as "optionally substituted", the substituent is selected from, for example, an alkyl, cycloalkyl, aryl, heterocyclyl, halogen, hydroxy, Alkoxy, oxo, alkanoyl, aryloxy, alkanoyloxy, amino, alkylamino, arylamino, arylalkylamino, disubstituted amine groups (of which 2 amino substituents are selected (From alkyl, aryl or arylalkyl), alkanoylamino, aroylamino, aralkanoylamino, substituted alkanoylamino, substituted arylamino, substituted aralkanoylamino, thio, alkyl Thio, arylthio, arylalkylthio, arylthiocarbonyl, arylalkylthiocarbonyl, alkylsulfonyl
  • alkyl or "alkylene” as used herein is intended to include branched and straight chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms.
  • C1-C6 alkyl means an alkyl group having 1 to 6 carbon atoms.
  • alkyl include, but are not limited to, methyl (Me), ethyl (Et), propyl (such as n-propyl and isopropyl), butyl (such as n-butyl, isobutyl, tert-butyl), and Amyl (e.g. n-pentyl, isopentyl, neopentyl).
  • alkenyl refers to a straight or branched chain hydrocarbon group containing one or more double bonds and usually 2 to 20 carbon atoms in length.
  • C2-C6 alkenyl contains two to six carbon atoms.
  • Alkenyl includes, but is not limited to, for example, vinyl, propenyl, butenyl, 1-methyl-2-buten-1-yl, and the like.
  • alkynyl refers to a straight or branched chain hydrocarbon group containing one or more triple bonds and typically 2 to 20 carbon atoms in length.
  • a "C2-C6 alkynyl” contains two to six carbon atoms.
  • Representative alkynyl groups include, but are not limited to, for example, ethynyl, 1-propynyl, 1-butynyl, and the like.
  • alkoxy refers to -O-alkyl.
  • C1-C6 alkoxy (or alkyloxy) is intended to include C1, C2, C3, C4, C5, C6 alkoxy.
  • alkoxy include, but are not limited to, methoxy, ethoxy, propoxy (such as n-propoxy and isopropoxy), and tert-butoxy.
  • alkylthio or “thioalkoxy” means an alkyl group, as defined above, having a specified number of carbon atoms attached via a sulfur bridge; for example, methyl-S- and ethyl-S-.
  • aryl alone or as part of a larger portion such as “aralkyl”, “aralkoxy” or “aryloxyalkyl” refers to a monocyclic ring having a total of 5 to 12 ring members , Bicyclic or tricyclic ring systems, wherein at least one ring in the system is aromatic and wherein each ring in the system contains 3 to 7 ring members.
  • aryl refers to an aromatic ring system including, but not limited to, phenyl, biphenyl, indanyl, 1-naphthyl, 2-naphthyl, and tetrahydronaphthalene base.
  • aralkyl or "arylalkyl” refers to an alkyl residue attached to an aryl ring. Non-limiting examples include benzyl, phenethyl, and the like. A fused aryl group may be attached to another group at a suitable position on a cycloalkyl ring or an aromatic ring. For example, a dashed line drawn from a ring system indicates that a bond can be attached to any suitable ring atom.
  • cycloalkyl refers to a monocyclic or bicyclic cyclic alkyl.
  • Monocyclic cyclic alkyl refers to C3-C8 cyclic alkyl, including but not limited to cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and norbornyl.
  • Branched cycloalkyls such as 1-methylcyclopropyl and 2-methylcyclopropyl are included in the definition of "cycloalkyl”.
  • Bicyclic cyclic alkyl groups include bridged, spiro or fused cycloalkyl.
  • cycloalkenyl refers to a monocyclic or bicyclic cyclic alkenyl.
  • Monocyclic cyclic alkenyl refers to C3-C8 cyclic alkenyl, including but not limited to cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl and norbornenyl.
  • Branched cycloalkenyl groups such as 1-methylcyclopropenyl and 2-methylcyclopropenyl are included in the definition of "cycloalkenyl”.
  • Bicyclic cyclic alkenyl includes cyclic alkenyl of bridged, spiro or fused rings.
  • Halo or halogen includes fluorine, chlorine, bromine and iodine.
  • Haloalkyl is intended to include branched and straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms and substituted with one or more halogens. Examples of haloalkyl include, but are not limited to, fluoromethyl, difluoromethyl, trifluoromethyl, trichloromethyl, pentafluoroethyl, pentachloroethyl, 2,2,2-trifluoroethyl, heptafluoro Propyl and heptachloropropyl.
  • halogenated alkyl group also include a "fluoroalkyl group" which is intended to include branched and straight-chain saturated aliphatic hydrocarbon groups having a specified number of carbon atoms and substituted with one or more fluorine atoms.
  • Haloalkoxy or "haloalkyloxy” means a haloalkyl group, as defined above, connected via an oxygen bridge with a specified number of carbon atoms.
  • C1-C6 haloalkoxy is intended to include C1, C2, C3, C4, C5, C6 haloalkoxy.
  • Examples of haloalkoxy include, but are not limited to, trifluoromethoxy, 2,2,2-trifluoroethoxy, and pentafluoroethoxy.
  • haloalkylthio or “thiohaloalkoxy” refers to a haloalkyl group, as defined above, having a specified number of carbon atoms attached via a sulfur bridge; for example, trifluoromethyl-S- and pentafluoroethyl -S-.
  • Cx1-Cx2 is used when referring to some substituent groups, which means that the number of carbon atoms in the substituent group may be x1 to x2.
  • C0-C8 indicates that the group contains 0, 1, 2, 3, 4, 5, 6, 7, or 8 carbon atoms
  • C1-C8 indicates that the group contains 1, 2, 3, 4, 5 , 6, 7, or 8 carbon atoms
  • C2-C8 means that the group contains 2, 3, 4, 5, 6, 7, or 8 carbon atoms
  • C3-C8 means that the group contains 3, 4, 5 , 6, 7, or 8 carbon atoms
  • C4-C8 means that the group contains 4, 5, 6, 7, or 8 carbon atoms
  • C0-C6 means that the group contains 0, 1, 2, 3, 4 , 5 or 6 carbon atoms
  • C1-C6 means that the group contains 1, 2, 3, 4, 5, or 6 carbon atoms
  • C2-C6 means that the group contains 2, 3, 4, 5, or 6 Carbon atoms
  • C3-C6 means that the group contains 3, 4, 5, or 6
  • x1-x2-membered ring is used when referring to cyclic groups (such as aryl, heteroaryl, cycloalkyl, and heterocycloalkyl), which means that the ring atoms of the group The number can be x1 to x2.
  • the 3-12 membered cyclic group may be a 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 membered ring, and the number of ring atoms thereof may be 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12; 3-6 membered rings indicate that the cyclic group can be 3, 4, 5, or 6 membered rings, and the number of ring atoms can be 3, 4, 5, or 6 ; 3-8 membered ring means that the cyclic group can be 3, 4, 5, 6, 7, or 8 membered ring, and the number of ring atoms can be 3, 4, 5, 6, 7, or 8; 3-9 A membered ring means that the cyclic group may be a 3, 4, 5, 6, 7, 8, or 9-membered ring, and the number of ring atoms may be 3, 4, 5, 6, 7, 8, or 9; 4-7 A 5-membered ring means that the cyclic group can be 4, 5, 6, or 7-membered ring, and the number of ring atoms can be 4, 5, 6, or 7; a 5- to 8
  • the ring atom may be a carbon atom or a heteroatom, for example, a heteroatom selected from N, O, and S.
  • the heterocyclic ring may contain 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more ring heteroatoms, such as selected from N, O, and S Heteroatoms.
  • one or more halogens may each be independently selected from fluorine, chlorine, bromine, and iodine.
  • heteroaryl means a stable 3-, 4-, 5-, 6-, or 7-membered aromatic monocyclic or aromatic bicyclic or 7-, 8-, 9-, 10-, 11-, 12-membered
  • An aromatic polycyclic heterocyclic ring that is fully unsaturated, partially unsaturated, and that contains carbon atoms and one, two, three, or four heteroatoms independently selected from N, O, and S; and includes Any of the following polycyclic groups, wherein any heterocyclic ring defined above is fused with a benzene ring.
  • Nitrogen and sulfur heteroatoms can optionally be oxidized. The nitrogen atom is substituted or unsubstituted (ie N or NR, where R is H or, if defined, another substituent).
  • a heterocyclic ring can be attached to its pendant group at any heteroatom or carbon atom that results in a stable structure. If the resulting compound is stable, the heterocyclyl groups described herein may be substituted on a carbon or nitrogen atom.
  • the nitrogen in the heterocycle may optionally be quaternized.
  • the total number of S and O atoms in the heterocycle exceeds 1, these heteroatoms are not adjacent to each other.
  • the total number of S and O atoms in the heterocyclic ring is not greater than one.
  • heterocyclic it is intended to include heteroaryl.
  • arylheterocyclyl examples include, but are not limited to, acridinyl, azetidinyl, azaocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothienyl, benzoxan Oxazolyl, benzoxazoline, benzothiazolyl, benzotriazolyl, benzotetrazolyl, benzoisoxazolyl, benzoisothiazolyl, benzimidazoline, carbazolyl, 4aH-carbazolyl, carbolinyl, chromanyl, chromenyl, fluorenyl, decahydroquinolinyl, 2H, 6H-1,5,2-dithiazinyl, dihydrofuro [2, 3-b] tetrahydrofuryl, furyl, furoxanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazoly
  • heteroaryl may also include biaryl structures formed by the “aryl” and monocyclic “heteroaryl” as defined above, such as, but not limited to, "-phenylbipyridyl-", “- "Phenylbipyrimidinyl”, “-pyridylbiphenyl”, “-pyridylbipyrimidin-”, “-pyrimidylbiphenyl-”; wherein the present invention also includes fused rings containing Spiro compounds.
  • heterocycloalkyl refers to a monocyclic heterocycloalkyl system, or a bicyclic heterocycloalkyl system, and also includes a spiro heterocyclic or bridged heterocycloalkyl.
  • a monocyclic heterocycloalkyl group refers to a 3-8 membered cyclic alkyl system containing at least one saturated or unsaturated but not aromatic member selected from O, N, S, and P.
  • a bicyclic heterocycloalkyl system refers to a heterocycloalkyl fused to a phenyl, or a cycloalkyl, or a cycloalkenyl, or a heterocycloalkyl, or a heteroaryl.
  • bridged cycloalkyl refers to a polycyclic compound that shares two or more carbon atoms. Can be divided into bicyclic bridged cyclic hydrocarbons and polycyclic bridged cyclic hydrocarbons. The former is composed of two alicyclic rings sharing two or more carbon atoms; the latter is a bridged ring hydrocarbon composed of three or more rings.
  • spirocycloalkyl refers to polycyclic hydrocarbons that share a single carbon atom (called a spiro atom) between monocyclic rings.
  • bridged heterocyclic group refers to a polycyclic compound that shares two or more carbon atoms, and the ring contains at least one atom selected from O, N, and S. Can be divided into bicyclic bridged heterocyclic ring and polycyclic bridged heterocyclic ring.
  • heterospirocyclyl refers to a polycyclic hydrocarbon that shares one carbon atom (called a spiro atom) between single rings, and the ring contains at least one atom selected from O, N, and S.
  • substitution means that at least one hydrogen atom is replaced by a non-hydrogen group, provided that the normal valence is maintained and the substitution results in a stable compound.
  • nitrogen atoms such as amines
  • these nitrogen atoms can be converted to N-oxides by treatment with an oxidant (such as mCPBA and / or hydrogen peroxide) to obtain other compounds of the invention .
  • an oxidant such as mCPBA and / or hydrogen peroxide
  • the nitrogen atoms shown and claimed are considered to encompass both the nitrogen shown and its N-oxides to obtain the derivatives of the invention.
  • any variable occurs more than one time in any composition or formula of a compound, its definition at each occurrence is independent of its definition at every other occurrence.
  • the group may be optionally substituted with up to three R groups, and R is independently selected from the definition of R at each occurrence.
  • combinations of substituents and / or variables are allowed to exist only if the above combination results in a stable compound.
  • patient refers to an organism that is treated by the methods of the invention.
  • organisms preferably include, but are not limited to, mammals (e.g., rodents, apes / monkeys, horses, cattle, pigs, dogs, cats, etc.) and most preferably humans.
  • the term "effective amount” means the amount of a drug or agent (ie, a compound of the invention) that will elicit, for example, a biological or medical response from a tissue, system, animal or human sought by a researcher or clinician.
  • therapeutically effective amount means an amount that results in an improved treatment, cure, prevention, or alleviation of a disease, disorder, or side effect, or a reduction in disease compared to a corresponding subject who has not received the amount described above. Or the rate of progression of the condition.
  • An effective amount can be administered in one or more administrations, administrations or doses and is not intended to be limited by a particular formulation or route of administration. The term also includes within its scope an effective amount that enhances normal physiological functions.
  • treatment includes any effect that results in amelioration of a condition, disease, disorder, etc., such as reducing, reducing, modulating, improving or eliminating, or improving its symptoms.
  • pharmaceutical is used herein to refer to those compounds, substances, compositions and / or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with human and animal tissues without excessive toxicity, irritation Sexual, allergic reactions, and / or other problems or complications, commensurate with a reasonable benefit / risk ratio.
  • the phrase "pharmaceutically acceptable carrier” means a pharmaceutical substance, composition, or vehicle, such as a liquid or solid filler, diluent, excipient, manufacturing aid (e.g., lubricant, talc, magnesium stearate, Calcium stearate or zinc stearate or stearic acid) or a solvent-encapsulating substance that involves carrying or transporting a subject compound from one organ or body part to another organ or body part.
  • manufacturing aid e.g., lubricant, talc, magnesium stearate, Calcium stearate or zinc stearate or stearic acid
  • solvent-encapsulating substance that involves carrying or transporting a subject compound from one organ or body part to another organ or body part.
  • Each carrier must be “acceptable” in the sense that it is compatible with the other ingredients of the formulation and not harmful to the patient.
  • composition means a composition comprising a compound of the invention and at least one other pharmaceutically acceptable carrier.
  • “Pharmaceutical carrier” means a medium commonly accepted in the art for the delivery of a biologically active agent to an animal, particularly a mammal, and includes (i.e.) an adjuvant, excipient, or vehicle such as a diluent, preservative , Fillers, flow regulators, disintegrants, wetting agents, emulsifiers, suspending agents, sweeteners, flavoring agents, fragrances, antibacterial agents, antifungals, lubricants and dispersants, depending on Mode of administration and the nature of the dosage form.
  • an adjuvant, excipient, or vehicle such as a diluent, preservative , Fillers, flow regulators, disintegrants, wetting agents, emulsifiers, suspending agents, sweeteners, flavoring agents, fragrances, antibacterial agents, antifungals, lubricants and dispersants, depending on Mode of administration and the nature
  • acceptable refers to a prescription component or active ingredient that does not unduly adversely affect the health of a general therapeutic target.
  • cancer refers to the abnormal growth of a cell that cannot be controlled and is able to metastasize (spread) under certain conditions.
  • This type of cancer includes, but is not limited to, solid tumors (such as bladder, intestine, brain, chest, uterus, heart, kidney, lung, lymphoid tissue (lymphoma), ovary, pancreas or other endocrine organs (such as thyroid), prostate , Skin (melanoma) or hematoma (such as non-white blood leukemia).
  • combined administration refers to the administration of several selected therapeutic agents to a patient in the same or different modes of administration at the same or different times.
  • enhancing means that the expected result can be increased or extended in terms of potency or duration. Therefore, in terms of enhancing the therapeutic effect of a drug, the term “enhancing” refers to the ability of a drug to increase or extend its potency or duration in the system. As used herein, “synergy value” refers to the ability to maximize the ability of another therapeutic agent in an ideal system.
  • immune disease refers to a disease or condition that has an adverse or adverse reaction to an endogenous or exogenous antigen.
  • cell dysfunction or as a result, damage and dysfunction, or damage to organs or tissues that may produce immune symptoms.
  • kit is synonymous with “product packaging”.
  • subject or “patient” includes mammals and non-mammals.
  • Mammals include, but are not limited to, mammals: humans, non-human primates such as orangutans, apes, and monkeys; agricultural animals such as cattle, horses, goats, sheep, and pigs; domestic animals such as rabbits and dogs; experimental animals including rodents, Such as rats, mice and guinea pigs.
  • Non-mammalian animals include, but are not limited to, birds, fish, and the like. In a preferred example, the mammal selected is human.
  • treatment include alleviating, inhibiting or improving the symptoms or conditions of a disease; inhibiting the occurrence of complications; improving or preventing a potential metabolic syndrome; inhibiting the production of a disease or condition, Such as controlling the development of a disease or condition; reducing the disease or symptom; reducing the disease or symptom; reducing the complications caused by the disease or symptom, or preventing and / or treating the symptoms caused by the disease or symptom.
  • a certain compound or pharmaceutical composition after administration, can improve a certain disease, symptom, or condition, especially its severity, delay onset, slow the progression of the disease, or reduce the duration of the disease. Whether fixed or temporary, continuous or intermittent, can be attributed to or related to the circumstances of the administration.
  • Suitable routes of administration include, but are not limited to, oral, intravenous, rectal, aerosol, parenteral, ocular, pulmonary, transdermal, vaginal, and ear canal , Nasal administration and local administration.
  • parenteral administration includes intramuscular injection, subcutaneous injection, intravenous injection, intramedullary injection, ventricular injection, intraperitoneal injection, intralymphatic injection, and intranasal injection.
  • the compounds described herein are administered locally rather than systemically.
  • the depot formulation is administered by implantation (for example, subcutaneously or intramuscularly) or by intramuscular injection.
  • the drug is administered through a targeted drug delivery system.
  • liposomes are encapsulated by organ-specific antibodies. In such a specific embodiment, the liposomes are selectively directed to specific organs and absorbed.
  • the invention also provides a pharmaceutical composition
  • a pharmaceutical composition comprising a therapeutically effective amount of one or more compounds of the invention formulated with one or more pharmaceutically acceptable carriers (additives) and / or diluents, and optionally one One or more of the other therapeutic agents described above.
  • the compounds of the present invention can be administered by any suitable means for any of the aforementioned uses, such as orally, such as tablets, pills, powders, granules, elixirs, elixirs, suspensions (including nanosuspensions, microsuspensions, spray-dried Dispersions), syrups and emulsions; sublingual; buccal; parenteral, such as by subcutaneous, intravenous, intramuscular or intrasternal injection or infusion techniques (e.g., in sterile injectable aqueous or non-aqueous solutions or suspensions Liquid form); nasal, including administration to the nasal membrane, such as by inhalation spray; topical, such as in the form of a cream or ointment; or rectal, such as in the form of a suppository; or intratumoral injection. They can be administered alone, but are usually administered using a pharmaceutical carrier selected based on the chosen route of administration and standard pharmaceutical practice.
  • Pharmaceutical carriers are formulated according to many factors within the scope of those skilled in the art. These factors include, but are not limited to: the type and nature of the active agent formulated; the subject to which the active agent-containing composition is to be administered; the intended route of administration of the composition; and the targeted therapeutic indication. Pharmaceutical carriers include aqueous and non-aqueous liquid media and various solid and semi-solid dosage forms.
  • the aforementioned carrier may include many different ingredients and additives in addition to the active agent, and the other ingredients mentioned above are included in the formulation for various reasons known to those skilled in the art, such as stabilizing the active agent, the binder, and the like.
  • suitable pharmaceutical carriers and factors involved in carrier selection can be found in a number of readily available sources, such as Allen LVJr.et. Remington: The Science and Practice of Pharmacy (2 Volumes), 22nd Edition (2012 ), Pharmaceutical Press.
  • the dosage regimen of the compounds of the present invention will vary depending on known factors, such as the pharmacodynamic properties of a particular agent and its mode and route of administration; the recipient's species, age, sex, health status, medical condition, and weight The nature and extent of symptoms; the type of concurrent treatment; the frequency of treatment; the route of administration, the patient's renal and liver function, and the desired effect.
  • the daily oral dose of each active ingredient should be about 0.001 mg / day to about 10-5000 mg / day, preferably about 0.01 mg / day to about 1000 mg / day, and most preferably The ground is about 0.1 mg / day to about 250 mg / day.
  • the most preferred intravenous dose should be from about 0.01 mg / kg / minute to about 10 mg / kg / minute.
  • the compounds of the invention may be administered in a single daily dose, or the total daily dosage may be administered in divided doses of two, three or four times daily.
  • the compound is generally in a suitable pharmaceutical diluent, excipient, or carrier (herein appropriately selected in accordance with the intended form of administration (e.g. oral tablets, capsules, elixirs, and syrups) and consistent with conventional pharmaceutical practice (Collectively referred to as drug carriers).
  • a suitable pharmaceutical diluent, excipient, or carrier herein appropriately selected in accordance with the intended form of administration (e.g. oral tablets, capsules, elixirs, and syrups) and consistent with conventional pharmaceutical practice (Collectively referred to as drug carriers).
  • Dosage forms suitable for administration may contain from about 1 mg to about 2000 mg of active ingredient / dosage unit.
  • the active ingredient will generally be present in an amount of about 0.1 to 95% by weight based on the total weight of the composition.
  • a typical capsule for oral administration contains at least one compound of the invention (250 mg), lactose (75 mg) and magnesium stearate (15 mg). The mixture was passed through a 60 mesh screen and packaged into gelatin capsules of size 1.
  • a typical injectable preparation can be prepared by aseptically placing at least one compound of the invention (250 mg) in a bottle, lyophilizing and sealing aseptically. For use, the contents of the bottle were mixed with 2 mL of physiological saline to produce an injectable preparation.
  • the scope of the invention includes (either alone or in combination with a pharmaceutical carrier) a pharmaceutical composition comprising a therapeutically effective amount of at least one compound of the invention as an active ingredient.
  • a pharmaceutical composition comprising a therapeutically effective amount of at least one compound of the invention as an active ingredient.
  • the compounds of the invention can be used alone, in combination with other compounds of the invention, or in combination with one or more other therapeutic agents (e.g., anticancer agents or other pharmaceutically active substances).
  • the compound of the invention (which can be used in a suitable hydrated form) and / or the pharmaceutical composition of the present invention is formulated into a pharmaceutical dosage form by conventional methods known to those skilled in the art.
  • the actual dosage level of the active ingredient in the pharmaceutical composition of the present invention can be altered to obtain an amount of the active ingredient that is effective for achieving the desired therapeutic response, composition, and mode of administration of a particular patient, but is not toxic to the patient.
  • the selected dosage level will depend on a number of factors, including the activity of the particular compound of the invention or its ester, salt or amide used; the route of administration; the time of administration; the excretion rate of the particular compound used; the rate and extent of absorption
  • the duration of treatment; other drugs, compounds, and / or substances used in combination with the particular compound used; the age, sex, weight, condition, general health, and previous medical history of the patient being treated are factors well known in the medical field.
  • a physician or veterinarian having ordinary skill in the art can easily determine and prescribe an effective amount of the desired pharmaceutical composition. For example, in order to achieve the desired therapeutic effect, a physician or veterinarian can start a comparison of a compound of the invention used in a pharmaceutical composition at a lower level than desired, and gradually increase the dose until the desired effect is achieved.
  • a suitable daily dose of a compound of the invention will be that amount of the compound that is the lowest dose effective to produce a therapeutic effect.
  • Such an effective dose usually depends on the factors mentioned above.
  • oral, intravenous, intraventricular, and subcutaneous doses of a compound of the invention for a patient range from about 0.01 to about 50 mg / kg body weight / day.
  • an effective daily dose of the active compound may be administered separately in two, three, four, five, six or more sub-doses at appropriate intervals throughout the day, optionally in unit dosage form.
  • the medication is administered once daily.
  • the compound of the present invention can be administered alone, the compound is preferably administered in the form of a pharmaceutical preparation (composition).
  • kits / product packaging are also described here. These kits can consist of conveyors, kits, or container boxes.
  • the container boxes can be divided into compartments to accommodate one or more containers, such as vials, test tubes, and the like. Each container contains A single component of the method. Suitable containers include bottles, vials, syringes and test tubes.
  • the container is made of an acceptable material such as glass or plastic.
  • the container may contain one or more of the compounds described herein, which may exist as a pharmaceutical component or as a mixture with other ingredients described herein.
  • the container may have a sterile outlet (for example, the container may be an IV bag or bottle, and the stopper may be punctured by a hypodermic needle).
  • kits may carry a compound with instructions, labels, or instructions for use as described herein.
  • a typical kit may include one or more containers, each container contains one or more materials (such as reagents, or concentrated mother liquors) to meet the needs of commercial promotion and users' use of compounds. Or device). These materials include, but are not limited to, buffers, diluents, filters, needles, syringes, conveyors, bags, containers, bottles and / or test tubes, with a list of contents and / or instructions for use, and instructions for the built-in packaging. The entire set of instructions should be included.
  • the label can be displayed on or closely related to the container.
  • a label appears on a container, it means that the label's letters, numbers, or other features are pasted, molded, and engraved on the container; the label can also appear in a container box or transport box containing multiple containers, such as in a product insert.
  • a label can be used to indicate a specific therapeutic use of the contents.
  • the label may also indicate instructions for use of the content, such as those described in the methods above.
  • Compound 1 is prepared by the following steps:
  • Step 1 Dissolve N-tert-butoxycarbonyl-N'-benzyloxycarbonyl-L-ornithine 1a (25 g, 68 mmol) and triethylamine (11.5 mL, 81.9 mmol) in tetrahydrofuran (100 mL).
  • Isobutyl chloroformate (10 mL, 79 mmol) was added dropwise under an ice bath, and the mixture was stirred for half an hour under the ice bath.
  • Sodium borohydride (7.8 g, 205 mmol) was sequentially added, and water (3 mL) was slowly added dropwise, and the stirring was continued in the ice bath. 2 hours. The reaction was monitored by LC-MS.
  • Second step Compound 1b (20 g, 56 mmol) was dissolved in dichloromethane (200 mL), hydrogen chloride-1,4 dioxane solution (70 mL, 280 mmol) was added, and the mixture was stirred at room temperature overnight. The end of the reaction was monitored by LC-MS. The solvent was spin-dried to obtain compound 1c (13 g) as a colorless oily liquid with a yield of 93%.
  • ESI-MS (m / z): 253.6 [M + H] + .
  • Step 3 Dissolve 3-fluoro-4-hydroxybenzonitrile 1d (13.7 g, 100 mmol) in concentrated sulfuric acid (200 mL), add nitric acid (50 mL) dropwise in an ice bath, and stir the reaction mixture for three hours in an ice bath. The end of the reaction was monitored by LC-MS. The reaction mixture was slowly poured into ice water, and the aqueous phase (300 mL * 3) was extracted with ethyl acetate. The organic phases were combined, dried over anhydrous sodium sulfate, filtered, and concentrated to obtain compound 1e (15 g). Brown solid, 82% yield.
  • Step 4 Compound 1e (15 g, 82 mmol) was dissolved in dichloromethane (100 mL), and oxalyl chloride (13.7 mL, 163 mmol) was added dropwise under an ice bath. The reaction mixture was stirred for 30 minutes in an ice bath and then raised to 80 ° C Stir for two hours. The reaction was monitored by LC-MS. The reaction mixture was poured into ice water, and the aqueous phase (250 mL * 3) was extracted with ethyl acetate. The organic phases were combined, dried over anhydrous sodium sulfate, filtered, and concentrated to give compound 1f (11.3 g), yellow. Solid, yield 69%.
  • Step 5 Take compound 1f (5g, 25mmol) and dissolve it in N, N-dimethylformamide (20mL), and then add compound 1c (13g, 51mmol) and potassium carbonate (6.9g, 50mmol) in order. The reaction mixture was stirred at 60 ° C overnight. The reaction was monitored by LC-MS. Water (100 mL) was added, and the aqueous phase (150 mL * 3) was extracted with ethyl acetate. The organic phases were combined and separated by silica gel column chromatography to obtain the compound 1 g (6.1 g) as a yellow oily liquid. %. ESI-MS (m / z): 417.6 [M + H] + .
  • Step 6 Dissolve 1 g (6 g, 14 mmol) of compound in N, N-dimethylformamide (15 mL), and add cesium carbonate (9.2 g, 28 mmol). The reaction mixture was stirred at 60 ° C for 2 hours. The end of the reaction was monitored by LC-MS. Water (100 mL) was added. The aqueous phase (150 mL * 3) was extracted with ethyl acetate. The organic phases were combined and separated by silica gel column chromatography to obtain the compound 1h (4.7 g), yellow solid, 82% yield.
  • Step 8 Dissolve Compound 1i (3.8 g, 10 mmol) in methanol (60 mL), add cyanogen bromide (5.4 g, 51 mmol), and stir at 60 ° C. overnight. After the reaction was monitored by LC-MS, the reaction solution was concentrated, ethyl acetate (150 mL) and saturated sodium carbonate aqueous solution (150 mL) were added, and the layers were extracted. The aqueous phase was further extracted twice with ethyl acetate (100 mL), and the organic phases were combined. Dry over anhydrous sodium sulfate, filter, and concentrate to give compound 1j (3.5 g) as a pale yellow solid with a yield of 86%.
  • ESI-MS (m / z): 392.6 [M + H] + .
  • Step 9 Dissolve Compound 1j (3.5g, 9mmol) in N, N-dimethylformamide (20mL), add sodium hydroxide (1g, 25mmol), and slowly add 30% hydrogen peroxide (12mL) in an ice bath. ), Warm to room temperature and stir for half an hour. The end of the reaction was monitored by LC-MS. Water (100 mL) was added to the reaction mixture, and the aqueous phase (150 mL * 3) was extracted with ethyl acetate. And concentrated to give compound 1k (2.8 g) as a yellow solid with a yield of 76%. ESI-MS (m / z): 410.5 [M + H] + .
  • Step 10 Dissolve 1-ethyl-3-methylpyrazole-5-carboxylic acid (1.6g, 10.3mmol) in N, N-dimethylformamide (8mL), and then add HATU (3.9g) in this order. , 10.3 mmol), HOBt (700 mg, 5.2 mmol), triethylamine (2.8 mL, 20 mmol), and the reaction mixture was stirred at room temperature for half an hour. Compound 1k (2.8 g, 6.8 mmol) was further added, and the mixture was stirred at 60 ° C for 5 hours. The end of the reaction was monitored by LC-MS.
  • Compound 2 is prepared by the following steps:
  • Step 1 Dissolve N-tert-butoxycarbonyl-N'-benzyloxycarbonyl-D-ornithine 2a (25g, 68mmol) and triethylamine (11.5mL, 81.9mmol) in tetrahydrofuran (100mL).
  • Isobutyl chloroformate (10 mL, 79 mmol) was added dropwise under an ice bath, and stirred for half an hour under the ice bath.
  • Sodium borohydride (7.8 g, 205 mmol) were sequentially added, and the ice bath was continued. Stir for 2 hours. The reaction was monitored by LC-MS.
  • Step 2 Dissolve compound 2b (22 g, 56 mmol) in dichloromethane (200 mL), add hydrogen chloride-1,4 dioxane solution (75 mL, 300 mmol), and stir at room temperature overnight.
  • LC-MS monitored the end of the reaction.
  • the reaction solution was concentrated to obtain compound 2c (13.5 g) as a colorless oily liquid with a yield of 86%.
  • Step 3 Dissolve compound 1f (5.3g, 26.5mmol) in N, N-dimethylformamide (20mL), add compound 2c (13.4g, 53mmol)), potassium carbonate (7.4g, 54mmol) in order. .
  • the reaction mixture was stirred at 60 ° C overnight. The end of the reaction was monitored by LC-MS. Water (150 mL) was added, and the aqueous phase (150 mL * 3) was extracted with ethyl acetate. The organic phases were combined, dried over anhydrous sodium sulfate, and concentrated by filtration. The residue was purified by silica gel column chromatography to obtain compound 2d (6.9 g) as a yellow oily liquid with a yield of 63%.
  • ESI-MS (m / z): 417.6 [M + H] + .
  • Step 4 Compound 2d (6.9 g, 16.5 mmol) was dissolved in N, N-dimethylformamide (15 mL), and cesium carbonate (10.8 g, 33 mmol) was added. The reaction mixture was stirred at 60 ° C for 2 hours. The end of the reaction was monitored by LC-MS. Water (150 mL) was added, and the aqueous phase (150 mL * 3) was extracted with ethyl acetate. The organic phases were combined, dried over anhydrous sodium sulfate, and concentrated by filtration. The residue was purified by silica gel column chromatography to obtain compound 2e (4.4 g) as a yellow solid in a yield of 67%. ESI-MS (m / z): 397.7 [M + H] + .
  • Step 5 Compound 2e (4.4 g, 11.1 mmol) was dissolved in methanol (100 mL), and ammonia water (20 mL) was added. Another sodium dithionite (9.6 g, 55 mmol) was dissolved in 20 mL of water, and the reaction solution was slowly added at room temperature, followed by stirring at room temperature for half an hour. LC-MS was used to monitor the end of the reaction. Water (200 mL) was added to the reaction mixture. The aqueous phase (200 mL * 3) was extracted with ethyl acetate. The organic phases were combined, dried over anhydrous sodium sulfate, filtered, and concentrated to give compound 2f (3.5 g). , Pale yellow solid, yield 86%. ESI-MS (m / z): 367.7 [M + H] + .
  • Step 6 Dissolve compound 2f (3.5 g, 9.5 mmol) in methanol (60 mL), add cyanogen bromide (5.05 g, 47.6 mmol), and stir overnight at 60 ° C. After the reaction was monitored by LC-MS, the reaction solution was concentrated, ethyl acetate (150 mL) and saturated sodium carbonate aqueous solution (150 mL) were added, and the layers were extracted. The aqueous phase was further extracted twice with ethyl acetate (100 mL), and the organic phases were combined. Dry over anhydrous sodium sulfate, filter, and concentrate to give compound 2g (3.4g) as a pale yellow solid with a yield of 91%.
  • ESI-MS (m / z): 392.6 [M + H] + .
  • Step 7 Dissolve 2g (3.4g, 8.7mmol) of the compound in N, N-dimethylformamide (20mL), add sodium hydroxide (1g, 25mmol), and slowly add 30% hydrogen peroxide in an ice bath ( 12mL), warmed to room temperature and stirred for half an hour, the end of the reaction was monitored by LC-MS, water (100mL) was added to the reaction mixture, and the aqueous phase (150mL * 3) was extracted with ethyl acetate. The organic phases were combined and dried over anhydrous sodium sulfate. Filtration and concentration gave compound 2h (2.7 g) as a pale yellow solid in 76% yield.
  • ESI-MS (m / z): 410.5 [M + H] + .
  • Step 8 Dissolve 1-ethyl-3-methyl-pyrazole-5-carboxylic acid (1.5g, 9.7mmol) in N, N-dimethylformamide (8mL), and then add HATU (3.8 g, 10 mmol), HOBt (670 mg, 5 mmol), triethylamine (2.8 mL, 20 mmol), and the reaction mixture was stirred at room temperature for half an hour. Compound 2h (2.7 g, 6.6 mmol) was added again, and the mixture was stirred at 60 ° C for 5 hours. LC-MS monitored the end of the reaction.
  • Compound 3 is prepared by the following steps:
  • Step 1 Dissolve 4-chloro-3-fluoro-5-nitrobenzonitrile 1f (10.0 g, 49.86 mmol) in acetonitrile (100 mL), and add 2-amino-2-methyl-1 at room temperature. 3-propanediol 3a (26.21 g, 249.31 mmol) and cesium carbonate (24.37 g, 74.79 mmol). The reaction mixture was stirred at 70 ° C for 7 hours. Dilute with water (400 mL), extract the aqueous phase with ethyl acetate (3 ⁇ 300 mL), combine the organic phases, wash with saturated brine (3 ⁇ 100 mL), dry over anhydrous sodium sulfate, and concentrate by filtration.
  • Second step Compound 3b (8 g, 31.20 mmol) was dissolved in methanol (80 ml), sodium hydroxide (3.85 g, 96.30 mmol) was added, and 30% hydrogen peroxide (5.46 g, 48.15 mmol) was slowly dropped at 50 ° C. The reaction mixture was stirred at 50 ° C for 2 hours and then cooled to room temperature. Dilute with water (100 mL), extract the aqueous phase with ethyl acetate (3 ⁇ 200 mL), combine the organic phases, wash with saturated brine (100 mL * 3), dry over anhydrous sodium sulfate, and concentrate by filtration.
  • Step 3 Dissolve compound 3c (8g, 29.94mmol) in N, N-dimethylformamide (80mL), add imidazole (8.15g, 119.74mmol), and tert-butyldimethylchlorosilane (13.54) in this order. g, 89.81 mmol).
  • the reaction mixture was stirred at 0 ° C for 2 hours.
  • Water (300 mL) was added to dilute the reaction solution, and the mixture was extracted with ethyl acetate (3 ⁇ 200 mL). The organic phases were combined.
  • Step 6 Dissolve compound 3f (1.5g, 4.02mmol) in N, N-dimethylformamide (8ml), and add 1-ethyl 3-methyl-1-hydropyrazole-5-carboxyl in order Acid (990.53mg, 6.43mmol), N, N-diisopropylethylamine (1.56g, 12.05mmol) and 2- (7-azobenzotriazole) -N, N, N, N-tetra Methyl urea hexafluorophosphate (3.05 g, 8.03 mmol). The reaction was stopped at 60 ° C for 2 hours, and then cooled to room temperature.
  • Compound 4 is prepared by the following steps:
  • Step 1 Compound 1 (2.5 g, 4.6 mmol) was added to a hydrobromic acid-acetic acid solution (50 mL), and the mixture was stirred at room temperature for half an hour. The end of the reaction was monitored by LC-MS. Ether (50 mL) was added, filtered, and then ether ( 30 mL * 3) After washing the filter cake, the filter cake was dried to obtain compound 4a (1.8 g) as a white solid with a yield of 96%.
  • Step 2 Take compound 4a (50mg, 0.12mmol) in dichloromethane (10mL), add triethylamine (25mg, 0.25mmol) and di-tert-butyl dicarbonate (53mg, 0.24mmol) in this order, and stir at room temperature Two hours later, the reaction was monitored by LC-MS. The reaction solution was concentrated, and the residue was separated by reverse phase preparative chromatography to obtain compound 4 (40 mg) as a white solid with a yield of 64%.
  • Compound 5 is prepared by the following steps:
  • Step 1 Dissolve Compound 3 (100 mg, 0.25 ummol) in tetrahydrofuran (5 mL), add DMP (212 mg, 0.5 mmol) in portions at 0 ° C, and react at room temperature for 2 hours. Dilute with water (20 mL), extract the aqueous phase with ethyl acetate (3 ⁇ 50 mL), combine the organic phases, dry over anhydrous sodium sulfate, filter and concentrate to obtain the crude compound 5a, and use it directly in the next step.
  • Step 2 Dissolve compound 5a (crude) in dichloromethane (5mL), add ethoxyformylmethylenetriphenylphosphine (131mg, 0.37mmol) in batches at 0 ° C, and react at room temperature for 12 hour. Dilute with water (10 mL), extract the aqueous phase with ethyl acetate (3 x 50 mL), combine the organic phases, dry over anhydrous sodium sulfate, and concentrate by filtration. The residue was separated by reverse HPLC to obtain compound 5 (13 mg) as a white solid with a yield of 11% in two steps.
  • Compound 6 is prepared by the following steps:
  • Step 1 Dissolve 4-chloro-3-fluoro-5-nitrobenzonitrile 1f (4g, 20mmol) and compound 6a (10g, 37.21mmol) in acetonitrile (150mL), and add potassium carbonate (8.3g, 60mmol) ), Reacted at 70 ° C for 24 hours under nitrogen protection, the reaction was completed by spot plate, cooled to room temperature, the reaction was filtered through a solid pad of silica gel, the solid was washed with dichloromethane (100 mL), the filtrate was concentrated, and the residue was purified by column chromatography to obtain compound 6b (4.3 g), yellow oil, yield 54.4%.
  • ESI-LC-MS (m / z): 397.5 [M + H] + .
  • Step 2 Dissolve compound 6b (4.3g, 10.85mmol) in anhydrous tetrahydrofuran (40mL), slowly add lithium borohydride (354mg, 16.27mmol) under an ice bath, and then warm to room temperature for 30 minutes. TLC shows the reaction complete. Aqueous ammonium chloride solution (10 mL) was slowly added dropwise at 0 ° C until the reaction system was free of air bubbles, poured into water (50 mL), and extracted with ethyl acetate (50 mL * 3).
  • Step 4 Dissolve compound 6d (2g, 5.75mmol) in methanol (20mL), add ammonia water (5mL), and fuse powder (5.7g, 17.3mmol) in water (2mL) to slowly drop into the reaction system. After 30 minutes, the reaction was monitored by LC-MS. The reaction was completed, poured into water (50 mL), and extracted with ethyl acetate (50 mL * 3). The organic phase was washed three times with saturated brine, dried over sodium sulfate, and concentrated by filtration to obtain compound 6e (530 mg). Brown Oil, yield 30%, ESI-LC-MS (m / z): 319.6 [M + H] + .
  • Step 5 Take compound 6e (530 mg, 1.67 mmol) in methanol (10 mL), add cyanogen bromide (550 mg, 5 mmol), and react at room temperature overnight. LC-MS monitors the reaction to completion, the reaction solution is concentrated, and the residue is silica gel Purification by column chromatography gave compound 6f (550 mg) as a brown solid with a yield of 96.2%.
  • Step 6 Compound 6f (550 mg, 1.6 mmol) was dissolved in tetrahydrofuran (10 mL), and 1-ethyl-3-methylpyrazole-5-carboxylic acid (250 mg, 1.6 mmol), and HOBt (219 mg, 1.6 mmol), HATU (617 mg, 1.6 mmol) and TEA (0.67 mL, 4.86 mmol). After the addition, the reaction was allowed to proceed at room temperature overnight, and the reaction was monitored by LC-MS to completion. The reaction solution was diluted with water (20 mL), and extracted with ethyl acetate (15 mL * 3).
  • Step 7 Dissolve 6g of the compound (20mg, 41.71umol) in DMSO (2mL), add NaOH (5mg, 125.12umol) at 0 ° C, and then slowly drop H 2 O 2 (30% wt in water, 0.2mL). After the dropwise addition was completed, the temperature was raised to room temperature for 30 minutes, and the reaction was monitored by LC-MS. The reaction solution was directly purified by reverse preparative chromatography to obtain compound 6 (6.8 mg) as a white solid with a yield of 32.8%.
  • Compound 7 is prepared by the following steps:
  • Step 1 Dissolve compound 6 (530mg, 1.07mmol) in tetrahydrofuran (10mL), dropwise add hydrogen chloride dioxane solution (4N, 10mL), and react at room temperature overnight.
  • LC-MS monitors the reaction to completion.
  • the reaction solution is concentrated to obtain Compound 7a (430 mg), pale yellow solid, yield 93%, ESI-LC-MS (m / z): 396.6 [M + H] + .
  • Second step Dissolve compound 7a (50mg, 115.24umol) in tetrahydrofuran (5mL), add phenoxyacetic acid (17.5mg, 115.24umol), HOBt (17.1mg, 126.76umol), HATU (48.2mg, 126.76umol) in order. ) And TEA (35mg, 345.71umol), reacted at room temperature overnight after the addition, and the reaction was monitored by LC-MS for completion. The reaction solution was directly separated by reverse phase preparative chromatography to obtain compound 7 (13.8 mg) as a white solid with a yield of 22.53%.
  • Compound 8 is prepared by the following steps:
  • Step 1 CDI (1.5 g, 9.25 mmol) was dissolved in anhydrous tetrahydrofuran (15 mL), and a solution of compound 8a (1 g, 9.17 mmol) in tetrahydrofuran (2 mL) was added dropwise. After the dropwise addition, the reaction was performed at room temperature for 2 hours. TLC The reaction is complete. The reaction solution was diluted with water (30 mL), and extracted with dichloromethane (15 mL * 2). The organic phase was washed three times with saturated brine, dried over sodium sulfate, filtered and concentrated. The residue was sampled through the column to obtain compound 8b (1.2 g), a white solid, The yield was 64%. ESI-LC-MS (m / z): 204.6 [M + H] + .
  • Step 2 Add compound 7a (30mg, 69.14umol) to DMF (3mL), then add triethylamine (21mg, 207.43umol), DBU (21mg, 138.28umol), and 8b (28.1mg, 138.28umol).
  • a solution of DMF (0.5 mL) was reacted at 50 ° C overnight, and the reaction was monitored by LC-MS to completion.
  • the reaction solution was separated by reverse preparative chromatography to obtain compound 8 (12.6 mg) as a white solid with a yield of 34.22%.
  • Compound 9 is prepared by the following steps:
  • Step 1 CDI (750mg, 4.63mmol) was dissolved in anhydrous tetrahydrofuran (10mL), and a solution of compound 9a (500mg, 4.6mmol) in tetrahydrofuran (1mL) was added dropwise. After the dropwise addition, the reaction at room temperature for 2 hours, TLC showed The reaction is complete. The reaction solution was diluted with water (20 mL), and extracted with dichloromethane (10 mL * 2). The organic phase was washed three times with saturated brine, dried over sodium sulfate, and concentrated by filtration. The residue was subjected to silica gel column chromatography to obtain compound 9b (560 mg) as a pale yellow oil with a yield of 60%. ESI-LC-MS (m / z): 204.6 [M + H] + .
  • Step 2 Add compound 7a (40mg, 92.19umol) to DMF (3mL), then add triethylamine (28mg, 276.57umol), DBU (28mg, 184.38umol), and 9b (37.5mg, 184.38umol).
  • a solution of DMF (0.5 mL) was reacted at 50 ° C overnight, and the reaction was monitored by LC-MS to completion.
  • the reaction solution was separated by reverse preparative chromatography to obtain compound 9 (7.5 mg) as a white solid with a yield of 15.28%.
  • Compound 10 is prepared by the following steps:
  • Step 1 CDI (750mg, 4.63mmol) was dissolved in anhydrous tetrahydrofuran (10mL), and a solution of 10a (500mg, 4.6mmol) in tetrahydrofuran (1mL) was added dropwise. After the dropwise addition, the reaction was performed at room temperature for 2 hours. The reaction is complete. The reaction solution was diluted with water (20 mL), and extracted with dichloromethane (10 mL * 2). The organic phase was washed three times with saturated brine, dried over sodium sulfate, and concentrated by filtration. The residue was purified by silica gel column chromatography to obtain compound 10b (510 mg) as a pale yellow oil with a yield of 54.6%. ESI-LC-MS (m / z): 204.6 [M + H] + .
  • Step 2 Add compound 7a (40mg, 92.19umol) to DMF (3mL), then add triethylamine (28mg, 276.57umol), DBU (28mg, 184.38umol), and 10b (37.5mg, 184.38umol).
  • a solution of DMF (0.5 mL) was reacted at 50 ° C overnight, and the reaction was monitored by LC-MS to completion.
  • the reaction solution was separated by reverse preparative chromatography to obtain compound 10 (13 mg) as a white solid with a yield of 26.5%.
  • Compound 11 is prepared by the following steps:
  • Step 1 Dissolve compound 1f (500mg, 2.49mmol) in acetonitrile (20mL), add ethanolamine (304.6mg, 4.99mmol) and potassium carbonate (861.4mg, 6.23mmol) in sequence, and react at 70 ° C for 2 hours after the addition. TLC showed the reaction was complete. After cooling to room temperature, the solid was removed by filtration. The filtrate was purified by silica gel column chromatography to obtain compound 11a (520 mg) as a yellow solid with a yield of 92.8%.
  • Second step Compound 11a (520mg, 2.31mmol) was dissolved in acetonitrile (10mL), cesium carbonate (1.5g, 4.62mmol) was added, and the reaction was performed at 70 ° C overnight. The spot showed that some raw materials remained, cooled to room temperature, solid It was removed by filtration, and the filtrate was concentrated and purified by silica gel column chromatography to obtain compound 11b (170 mg) as a yellow solid with a yield of 36% and a purity of 100%.
  • the third step Compound 11b (170 mg, 0.83 mmol) was dissolved in methanol and dichloromethane to obtain a mixed solvent (5/1, 12 mL), ammonia water (3 mL) was added, and a safety powder (433 mg, 2.49 mmol) was added dropwise. Aqueous solution (1 mL) was stirred at room temperature for 30 minutes after the addition was completed. The reaction solution was poured into saturated brine (20 mL), extracted with ethyl acetate (10 mL * 5), and the organic phase was dried over anhydrous sodium sulfate, filtered, and concentrated to obtain compound 11c (108 mg) as a pink solid with a yield of 74.4%.
  • ESI-LC-MS (m / z): 176.4 [M + H] + .
  • Step 4 Dissolve Compound 11c (108mg, 616.48umol) in 1,4-dioxane (5mL) and add 1-ethyl-3-methyl-1H-pyrazole-5-carbonyl isothiocyanate Acid ester (0.4M dioxane solution, 1.7mL, 678.13umol), reacted for 1 hour at room temperature, LC-MS monitored the reaction of the raw materials was complete, DCC (140mg, 678.12umol) was added to the above reaction solution, and reacted at 80 ° C for 1 hour , LC-MS monitored the completion of the intermediate state reaction. The reaction solution was directly concentrated to obtain a crude compound 11d (200 mg) as a red oil, which was directly used in the next step.
  • ESI-LC-MS (m / z): 337.5 [M + H] + .
  • Step 5 Dissolve compound 11d (200 mg, crude product) in DMSO (10 mL), add sodium hydroxide (71.4 mg, 1.78 mmol), and slowly add 30% hydrogen peroxide (1 mL) dropwise at 0 ° C. After the addition is completed, 60 The reaction was carried out at 30 ° C for 30 minutes, and the reaction was monitored by LC-MS. The reaction solution was cooled to room temperature, and a saturated sodium sulfite solution (3 mL) was slowly added dropwise, then poured into saturated brine (15 mL), and extracted with ethyl acetate (10 mL * 5). The organic phase was dried over anhydrous sodium sulfate, filtered, and concentrated.
  • Compound 12 is prepared by the following steps:
  • Step 1 Dissolve 1f (500mg, 2.49mmol) in acetonitrile (20mL), and add L-aminopropanol (374.5mg, 4.99mmol) and potassium carbonate (861.4mg, 6.23mmol) in sequence.
  • the reaction is completed at 70 ° C Overnight, the spots showed complete reaction.
  • the reaction solution was cooled to room temperature, the solid was removed by filtration, the filtrate was concentrated, and the residue was purified by silica gel column chromatography to obtain compound 12a (550 mg) as a yellow solid with a yield of 92% and a purity of 100%.
  • Second step Compound 12a (550 mg, 2.3 mmol) was dissolved in acetonitrile (10 mL), cesium carbonate (1.5 g, 4.62 mmol) was added, and the reaction was performed at 70 ° C for 2 hours. The reaction solution was cooled to room temperature, the solid was removed by filtration, and the filtrate was concentrated. The residue was subjected to silica gel column chromatography to obtain compound 12b (390 mg) as a yellow solid with a yield of 77.38% and a purity of 100%.
  • Step 4 Dissolve Compound 12c (200mg, 1.06mmol) in 1,4-dioxane (10mL) and add 1-ethyl-3-methyl-1H-pyrazole-5-carbonyl isothiocyanate Acid ester (0.4N dioxane solution, 3 mL, 1.17 mmol), reacted at room temperature for 1 hour, LC-MS monitored the reaction of the raw materials was complete, DCC (240 mg, 1.17 mmol) was added to the above reaction solution, and reacted at 80 ° C for 1 hour , LC-MS monitored the completion of the intermediate state reaction. The reaction solution was directly concentrated to obtain crude compound 12d (350 mg) as a red oil, which was directly used in the next step.
  • ESI-LC-MS (m / z): 351.6 [M + H] + .
  • Step 5 Dissolve Compound 12d (350mg, crude) in DMSO (10mL), add sodium hydroxide (102.7mg, 2.57mmol), and slowly add 30% hydrogen peroxide (2mL) dropwise at 0 ° C. The reaction was allowed to proceed to 60 ° C for 30 minutes, and the reaction was monitored by LC-MS. The reaction solution was cooled to room temperature, and a saturated sodium sulfite solution (5 mL) was slowly added dropwise, then poured into saturated brine (15 mL), and extracted with ethyl acetate (10 mL * 5). The organic phase was dried over anhydrous sodium sulfate, filtered and concentrated.
  • Compound 13 is prepared by the following steps:
  • Step 1 Dissolve compound 6g (700mg, 1.46mmol) in tetrahydrofuran (10mL), dropwise add hydrogen chloride dioxane solution (4M, 10mL), and react at room temperature overnight.
  • LC-MS monitors the reaction to completion.
  • the reaction solution was concentrated to obtain compound 13a (610 mg) as a khaki solid with a yield of 100%.
  • Step 2 Take compound 13a (300mg, 721.37umol) and add it to tetrahydrofuran (10mL), then add benzyloxycarbonyl succinimide (198mg, 793.51umol) and triethylamine (219mg, 2.16mmol) at room temperature. After 2 hours of reaction, the reaction was monitored by LC-MS. The reaction solution was directly concentrated, and the residue was purified by silica gel column chromatography to obtain compound 13 (210 mg) as a pale yellow solid with a yield of 56.7%.
  • Compound 14 is prepared by the following steps:
  • Step 1 Dissolve compound 13 (40mg, 77.89umol) in DMSO (2mL), add sodium hydroxide (9mg, 233.67umol), and slowly add 30% hydrogen peroxide (0.6mL) at 0 ° C. The reaction was performed at 0 ° C for 1 hour, and the reaction was monitored by LC-MS. The reaction solution was directly separated by reverse preparative chromatography to obtain compound 14 (14 mg) as a white solid with a yield of 34%.
  • Compound 15 is prepared by the following steps:
  • Step 1 Dissolve cinnamic acid (18 mg, 125.8 umol) in DMF (2 mL), and add HOBt (17 mg, 125.8 umol), HATU (47.8 mg, 125.8 umol), and TEA (38.1 mg, 377 umol) in this order. After reacting at room temperature for 1 hour, compound 7a (50 mg, 125.8 umol) was added, and the reaction was allowed to proceed overnight at room temperature. The reaction was monitored by LC-MS for completion. The reaction solution was directly purified by reverse preparative liquid chromatography to obtain product 15 (6.8 mg) with a purity of 99% and a yield of 7%.
  • Compound 16 is prepared by the following steps:
  • Second step Compound 16b (520 mg) was dissolved in acetonitrile (10 mL), cesium carbonate (2.12 g, 6.52 mmol) was added, and the reaction was performed at 70 ° C. for 6 hours. After cooling to room temperature, the reaction solution was filtered through celite, the filter cake was washed with ethyl acetate (3 ⁇ 10 mL), and the organic phases were combined and concentrated to obtain a crude product 16c (440 mg) with a purity of 77%, which was directly used in the next reaction.
  • Step 4 Dissolve compound 16d (200 mg, 1.06 mmol) in 1,4-dioxane (10 mL) and add 1-ethyl-3-methyl-1H-pyrazole-5-carbonyl isothiocyanate Acid ester (0.4M dioxane solution, 3 mL, 1.17 mmol), reacted at room temperature for 1 hour.
  • the reaction solution was filtered through celite, and the filter cake was washed with ethyl acetate (3 ⁇ 10 mL).
  • the organic phases were combined and concentrated to obtain a crude product 16e (240 mg) with a purity of 82%, which was directly used in the next step.
  • ESI-LC-MS (m / z): 351.2 [M + H] + .
  • Compound 17 is prepared by the following steps:
  • Step 1 Dissolve compounds 1f (6.0g, 30mmol) and 17a (16.0g, 60mmol) in acetonitrile (150mL), add potassium carbonate (12.4g, 90mmol), and react at 70 ° C for 24 hours under nitrogen protection. TLC monitoring The reaction was completed, cooled to room temperature, the reaction solution was filtered through a silica gel pad, the solid was washed with dichloromethane (100 mL), and the filtrate was concentrated and purified by silica gel column chromatography to obtain compound 17b (8.2 g) as a yellow oil with a yield of 63%.
  • ESI-MS (m / z): 431.2 [M + H] + .
  • Step 3 Dissolve compound 17c (3.9 g, obtained from the second step) in methanol (30 mL), add ammonia (5 mL), and dithionite (5.5 g, 31.67 mmol) in water (2 mL) slowly. Drop into the reaction system. After 30 minutes, the reaction was monitored by LC-MS. The reaction was completed, poured into water (50 mL), and the aqueous phase was extracted with ethyl acetate (50 mL * 3). The organic phases were combined, washed once with saturated brine, dried over anhydrous sodium sulfate, filtered, and concentrated.
  • Step 4 Dissolve compound 17d (700mg, 1.84mmol) in 1,4-dioxane (10mL), add 17e (333mg, 1.84mmol), react at room temperature for 1 hour, then add DCC (379mg, 1.84 mmol), and the reaction was monitored by LC-MS after 6 hours.
  • the reaction solution was filtered through celite, and the filter cake was washed with ethyl acetate (10 mL * 3), and the filtrate was concentrated to obtain a crude product 17f (970 mg) with a purity of 61%. It was used in the next step without further purification.
  • Step 5 Dissolve the crude 17f (700mg, obtained from the fourth step) in dimethyl sulfoxide (5mL), add sodium hydroxide (200mg, 5mmol), and slowly add 30% hydrogen peroxide (0.5 mL), and the reaction was completed after 30 minutes.
  • the reaction solution was purified by liquid-phase preparative HPLC to obtain 17 (400 mg).
  • Compound 18 is prepared by the following steps:
  • Step 2 Dissolve Compound 18a (80mg) in N, N-dimethylformamide (2mL), and add 8b (76mg, 0.38mmol), 1,8-diazabicyclo [5.4.0].
  • 8b 76mg, 0.38mmol
  • One-carbon-7-ene 57 mg, 0.38 mmol
  • triethylamine 57 mg, 0.56 mmol
  • the reaction was monitored by LC-MS for completion, and the reaction solution was directly purified by preparative liquid HPLC to obtain product 18 (29 mg) as a white solid.
  • Compound 19 is prepared by the following steps:
  • Step 1 Dissolve compound 18a (80mg) in N, N-dimethylformamide (2mL), and add 9b (76mg, 0.37mmol), 1,8-diazabicyclo [5.4.0] One-carbon-7-ene (57 mg, 0.38 mmol), triethylamine (57 mg, 0.56 mmol), and the reaction system was stirred at 50 ° C overnight. The reaction was monitored by LC-MS for completion, and the reaction solution was purified by preparative liquid HPLC to obtain product 19 (26 mg) as a white solid.
  • Compound 20 is prepared by the following steps:
  • Step 1 Dissolve compound 18a (80mg) in N, N-dimethylformamide (2mL), and add 10b (76mg, 0.38mmol), 1,8-diazabicyclo [5.4.0] One-carbon-7-ene (57 mg, 0.38 mmol), triethylamine (57 mg, 0.56 mmol), and the reaction system was stirred at 50 ° C overnight.
  • LC-MS monitored the completion of the reaction, and the reaction solution was purified by preparative liquid HPLC to obtain product 20 (38 mg) as a white solid.
  • Compound 21 is prepared by the following steps:
  • Step 1 Dissolve compound 1f (1g, 4.99mmol) in acetonitrile (20mL), and add 2-amino-2methyl-1-propanol (889mg, 9.97mmol), potassium carbonate (2.07g, 14.96mmol) in this order. ), React at 70 ° C overnight after the addition. The reaction was monitored by TLC. The reaction was cooled to room temperature, the solid was removed by filtration, and the filtrate was concentrated and purified by silica gel column chromatography to obtain compound 21a (1.2 g) with a yield of 95%.
  • Step 2 Dissolve compound 21a (1.2 g, 4.74 mmol) in acetonitrile (20 mL), add cesium carbonate (4.63 g, 14.22 mmol), and react at 70 ° C for 2 hours. The reaction was monitored by TLC, and the reaction was cooled to room temperature. The solid was removed by filtration. The filtrate was concentrated and purified by silica gel column chromatography to obtain compound 21b (1.0 g) with a yield of 90%. ESI-MS (m / z): 234.2 [M + H] + .
  • Step 3 Dissolve compound 21b (1.0g, 4.29mmol) in a mixed solvent (5: 1, 24mL) of methanol and dichloromethane, add ammonia (5mL), and dropwise add insurance powder (4.1g, 23.5mmol) ) Aqueous solution (10 mL), and stirred at room temperature for 30 minutes. The reaction was monitored by TLC. The reaction was completed, poured into saturated brine (30 mL), and extracted with ethyl acetate (15 mL * 5). The organic phases were combined, dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated. Compound 21c (360 mg), white solid, 37% yield, ESI-MS (m / z): 204.2 [M + H] + .
  • Step 4 Dissolve compound 21c (360mg, 1.77mmol) in 1,4-dioxane (10mL), add 17e (0.4N dioxane solution, 4.42mL, 1.77mmol), and react at room temperature 1 hour.
  • LC-MS was used to monitor the reaction of the starting materials.
  • DCC 365 mg, 1.77 mmol
  • LC-MS was used to monitor the completion of the intermediate reaction.
  • the reaction solution was concentrated and purified by silica gel column chromatography to obtain compound 21d (360 mg) with a yield of 55%.
  • ESI-MS (m / z): 365.4 [M + H] + .
  • Step 5 Dissolve compound 21d (360 mg, 0.98 mmol) in dimethyl sulfoxide (10 mL), add sodium hydroxide (102 mg, 2.57 mmol), and slowly add 30% hydrogen peroxide (2 mL) dropwise at 0 ° C. After the addition was completed, the reaction was carried out at 60 ° C for 30 minutes. The reaction was monitored by LC-MS. The reaction was cooled to room temperature. Saturated sodium sulfite solution (5mL) was slowly added dropwise, then poured into saturated brine (15mL), and extracted with ethyl acetate (10mL * 5). The organic phases were combined and dried over anhydrous sodium sulfate.
  • Compound 22 is prepared by the following steps:
  • Step 1 Dissolve compound 1f (1g, 4.99mmol) in acetonitrile (20mL), and add (S) -3-amino-1-butanol (889mg, 9.97mmol), potassium carbonate (2.07g, 14.96mmol) ), React at 70 ° C overnight after the addition.
  • the reaction was monitored by TLC for completion, cooled to room temperature, solids were removed by filtration, and the filtrate was concentrated and purified by silica gel column chromatography to obtain compound 22a (1.2 g) with a yield of 95%.
  • Second step Compound 22a (1.2 g, 4.74 mmol) was dissolved in acetonitrile (20 mL), and cesium carbonate (4.63 g, 14.22 mmol) was added, and reacted at 70 ° C for 2 hours. The reaction was monitored by TLC, and the reaction was cooled to room temperature. The solid was removed by filtration. The filtrate was concentrated and purified by silica gel column chromatography to obtain compound 22b (1.1 g) with a yield of 99%.
  • Step 3 Dissolve compound 22b (1.1g, 4.72mmol) in methanol (5mL), add aqueous ammonia (5mL), and then drop the aqueous solution (10mL) of insurance powder (4.1g, 23.5mmol), and stir at room temperature. 30 minutes. The reaction was monitored by TLC. The reaction was completed, poured into saturated brine (30 mL), and extracted with ethyl acetate (15 mL * 5). The organic phases were combined, dried over anhydrous sodium sulfate, filtered, and the residue was separated and purified by silica gel column chromatography. Compound 22c (200 mg) was obtained as a white solid in 21% yield. ESI-MS (m / z): 204.2 [M + H] + .
  • Step 4 Dissolve compound 22c (200mg, 0.98mmol) in 1,4-dioxane (10mL), add 17e (0.4N dioxane solution, 2.45mL, 0.98mmol), and react at room temperature 1 Hours, LC-MS monitored the completion of the reaction of the starting materials. DCC (203 mg, 0.98 mmol) was added to the reaction solution, and the reaction was performed at 80 ° C for 1 hour. LC-MS monitored the completion of the intermediate state reaction. The reaction solution was concentrated, and the residue was separated and purified by silica gel column chromatography to obtain compound 22d (200 mg) with a yield of 56%. ESI-MS (m / z): 365.4 [M + H] + .
  • Step 5 Compound 22d (200 mg, 0.55 mmol) was dissolved in dimethyl sulfoxide (10 mL), sodium hydroxide (105 mg, 2.75 mmol) was added, and 30% hydrogen peroxide (2 mL) was slowly added dropwise at 0 ° C. After the addition is completed, it should be 30 minutes at 60 ° C. The reaction was monitored by LC-MS. The reaction was cooled to room temperature. Saturated sodium sulfite solution (5mL) was slowly added dropwise, then poured into saturated brine (15mL), extracted with ethyl acetate (10mL * 5), and the organic phases were combined.
  • Compound 23 is prepared by the following steps:
  • Step 1 Dissolve compound 1f (500mg, 2.49mmol) and compound 23a (514mg, 4.99mmol) in acetonitrile (10mL), add potassium carbonate (1.03g, 7.48mmol), and react at 70 ° C until TLC shows that the raw material reaction is complete. Add cesium carbonate (2.43g, 7.48mmol), continue stirring at 70 ° C (about 2 hours), TLC shows that the intermediate reaction is complete, cool to room temperature, filter to remove solids, rinse the filter cake with ethyl acetate, concentrate the filtrate, and residue Compound 23b (517 mg) was isolated and purified by silica gel column chromatography as a red solid with a yield of 84%.
  • Step 2 Dissolve compound 23b (517mg, 2.09mmol) in a mixed solvent of methanol (30mL) and ammonia (3mL), and dropwise add an aqueous solution (3mL) of insurance powder (1.82g, 10.46mmol).
  • the reaction was carried out at room temperature for 30 minutes. TLC showed that the reaction of the raw materials was complete.
  • the methanol was concentrated to remove it, and then water (20 mL) was added.
  • the mixture was extracted with ethyl acetate (15 mL * 3). The organic phases were combined, washed once with saturated brine, dried over anhydrous sodium sulfate, filtered, and concentrated. Drying gave compound 23c (414 mg) as a pale yellow solid in 91% yield.
  • ESI-MS (m / z): 296.7 [M + H] + .
  • Step 3 Dissolve compound 23c (414mg, 1.91mmol) in 1,4-dioxane (5ml), add 17e (0.4N dioxane solution, 4.8mL, 1.91mmol), and react at room temperature for 1 After 1 hour, LC-MS monitoring showed that the reaction of the starting materials completely formed an intermediate state. DCC (394 mg, 1.91 mmol) was added and reacted at 80 ° C for 2 hours. LC-MS was used to monitor the disappearance of intermediate products. The reaction solution was concentrated to give crude compound 23d (990 mg) as a brown oily liquid. ESI-MS (m / z): 492.6 [M + MeOH] + .
  • Step 4 Dissolve compound 23d (155 mg, obtained from the third step) in dimethyl sulfoxide (3 mL), add sodium hydroxide (60 mg, 1.51 mmol), and slowly add 30% hydrogen peroxide (0.6 mL) dropwise. After the dropwise addition was completed, the reaction was carried out at 50 ° C for 30 minutes. The reaction was monitored by LC-MS, and the reaction solution was directly filtered. The filtrate was purified by reverse preparative HPLC to obtain compound 23 (38 mg) as a white powder.
  • Compound 24 is prepared by the following steps:
  • Second step Compound 24b (570mg, 1.93mmol) was dissolved in a mixed solvent of methanol (30mL) and ammonia (3mL), and an aqueous solution (3mL) of insurance powder (1.68g, 9.65mmol) was added dropwise. The reaction was carried out at room temperature for 30 minutes. TLC showed that the reaction of the raw materials was complete. The methanol was concentrated and removed, and then water (20 mL) and ethyl acetate (15 mL * 3) were added for extraction. The organic phase was washed with saturated brine, dried over sodium sulfate, filtered and concentrated. The residue was separated and purified by silica gel column chromatography. Compound 24c (431 mg), pale yellow solid, 85% yield.
  • Step 3 Dissolve compound 24c (431mg, 1.62mmol) in 1,4-dioxane (5ml), add 17e (0.4N dioxane solution, 4.0mL, 1.62mmol), and react at room temperature for 1 hour. .
  • LC-MS monitoring showed that the reaction of the starting materials completely formed an intermediate state.
  • DCC (335 mg, 1.62 mmol) was added and reacted at 80 ° C for 2 hours.
  • LC-MS was used to monitor the disappearance of intermediate products.
  • the reaction solution was spin-dried to obtain crude compound 24d (820 mg), brown oily liquid, ESI-MS (m / z): 427.4 [M + H] + . Used without further processing for the next reaction.
  • Step 4 Dissolve compound 24d (118mg, obtained from the third step) in dimethyl sulfoxide (3mL), add sodium hydroxide (55mg, 1.38mmol), warm to 50 ° C, and slowly add 30% hydrogen peroxide dropwise. (0.6 mL), the addition was completed, and the reaction was carried out at 50 ° C for 30 minutes. The reaction was monitored by LC-MS. The reaction solution was filtered directly. The filtrate was purified by acidic reverse preparative HPLC to obtain compound 24 (22 mg) as a white powder. The two-step reaction yield was 21%.
  • Compound 25 is prepared by the following steps:
  • Step 1 Compound 25a (4 g, 19.68 mmol) was dissolved in tetrahydrofuran (20 mL), and a 4N solution of dioxane hydrochloride (10 mL) was added, followed by stirring at room temperature for 2 hours. The reaction system was concentrated to remove the solvent, and petroleum ether (20 mL) was added to the residue, which was stirred to give a white solid, which was filtered, and the filter cake was dried to obtain compound 25b (1.8 g) as a white solid with a yield of 65%.
  • Second step Compound 1f (1.3 g, 6.48 mmol) and compound 25b (1.8 g, 12.96 mmol) were dissolved in acetonitrile (15 mL), potassium carbonate (2.69 g, 19.45 mmol) was added, and the mixture was reacted at 70 ° C overnight. TLC showed that the reaction of the raw materials was complete, cooled to room temperature, filtered to remove the solid, rinsed with dichloromethane, and the filtrate was spin-dried to obtain compound 25c (1.6 g) as a yellow solid with a yield of 92%.
  • Step 4 Dissolve compound 25d (700mg, 2.83mmol) in a mixed solvent of methanol (20mL) and ammonia (5mL), and dropwise add an aqueous solution (2mL) of insurance powder (1.48g, 8.49mmol). After reacting at room temperature for 30 minutes, the reaction solution changed from yellow to pink. TLC showed that the reaction of the raw materials was complete. Water (20 mL) was added to the reaction solution and extracted with ethyl acetate (15 mL * 3). The organic phases were combined, washed with saturated brine, dried over anhydrous sodium sulfate, filtered, and the filtrate was spin-dried to obtain compound 25e (510 mg), red solid, 83% yield. ESI-MS (m / z): 218.6 [M + H] + .
  • Step 5 Dissolve compound 25e (200mg, 0.92mmol) in 1,4-dioxane (5mL), add 17e (0.4N dioxane solution, 2.5mL, 1.01mmol), and stir at room temperature for 10 minutes LC-MS showed that the reaction of the starting materials was complete and an intermediate state was formed. DCC (209 mg, 1.01 mmol) was added, and the reaction was carried out at 80 ° C for 2 hours. The intermediate state disappeared by LC-MS and a product was formed. The reaction solution was directly concentrated to obtain a crude compound 25f (300 mg) as a red oil. ESI-MS (m / z): 379.5 [M + H] + . Used without further purification for the next reaction.
  • Step 6 Dissolve 25f (300mg, obtained from step 5) in dimethyl sulfoxide (4mL), add sodium hydroxide (87mg, 2.19mmol), stir at room temperature for 5 minutes, and slowly add 30% hydrogen peroxide ( 1.5 mL), and the reaction was completed at room temperature for 30 minutes. The reaction was monitored by LC-MS to complete the reaction, and the reaction solution was directly filtered. The filtrate was purified by reverse preparative HPLC to obtain compound 25 (117 mg) as a white powder. The yield in two steps was 32%.
  • Compound 26 is prepared by the following steps:
  • Step 1 Dissolve compound 26a (444mg, 4.99mmol) and compound 1f (500mg, 2.49mmol) in acetonitrile (10mL), add potassium carbonate (861mg, 6.23mmol), and react at 70 ° C for 2 hours. TLC shows the reaction of the raw materials complete. Cesium carbonate (1.62 g, 4.99 mmol) was added, and stirring was continued at 70 ° C for 2 hours. TLC showed that the intermediate reaction was complete. Cool to room temperature, filter to remove the solid, rinse with dichloromethane, and concentrate the filtrate to give compound 26b (500 mg) as a yellow solid. Used without further purification for the next reaction.
  • Step 2 Dissolve Compound 26b (500mg, obtained from the first reaction) in a mixed solvent of methanol (20mL) and ammonia (5mL), and dropwise add an aqueous solution (3mL) of insurance powder (1.49g, 8.58mmol). After the dropwise addition was completed, the reaction was carried out at room temperature for 30 minutes. TLC showed that the reaction of the raw materials was complete. Water (20 mL) was added to the reaction solution, and the mixture was extracted with ethyl acetate (15 mL * 3). The organic phases were combined, washed with saturated brine, dried over anhydrous sodium sulfate, filtered, and the solvent was concentrated to obtain compound 26c (250 mg). , Red solid. ESI-MS (m / z): 204.6 [M + H] + . Used without further purification for the next reaction.
  • Step 3 Dissolve compound 26c (250mg, obtained from the second step) in 1,4-dioxane (10ml), add 17e (0.4N dioxane solution, 3.4mL, 1.35mmol), The reaction was carried out at room temperature for 20 minutes. LC-MS showed that the reaction of the starting materials was completely intermediate. DCC (279 mg, 1.35 mmol) was added and reacted at 80 ° C for 2 hours. LC-MS was used to monitor the disappearance of intermediate products. The solvent was concentrated to remove the crude compound 26d (400 mg) as a brown oil. ESI-MS (m / z): 365.5 [M + H] + . Used without further purification for the next reaction.
  • Step 4 Dissolve compound 26d (400mg, 1.10mmol) in dimethyl sulfoxide (10mL), add sodium hydroxide (131mg, 3.29mmol), stir at room temperature for 5 minutes, and slowly add 30% hydrogen peroxide (2mL). After the dropwise addition was completed, the reaction was carried out at room temperature for 30 minutes. The reaction was monitored by LC-MS. The reaction solution was directly filtered. The filtrate was purified by acidic reverse preparative HPLC to obtain compound 26 (145 mg) as a white powder. The yield of the four-step reaction was 15%.
  • Compound 27 is prepared by the following steps:
  • Step 1 Dissolve compound 27a (500mg, 2.49mmol) and 1f (514mg, 4.99mmol) in acetonitrile (20mL), add potassium carbonate (861mg, 6.23mmol), and react at 70 ° C for 2 hours. TLC shows that the raw material reaction is complete . Add cesium carbonate (1.62 g, 4.99 mmol) and continue stirring at 70 ° C for 2 hours. TLC showed that the intermediate reaction was complete. Cooled to room temperature, filtered to remove the solid, rinsed with dichloromethane, and concentrated the filtrate. The residue was separated and purified by silica gel column chromatography to obtain compound 27b (550 mg) as a yellow solid with a yield of 89%.
  • Second step Compound 27b (550mg, 2.22mmol) was dissolved in a mixed solvent of methanol (10mL) and ammonia (3mL), and an aqueous solution (2mL) of insurance powder (1.55g, 8.9mmol) was added dropwise. After reacting at room temperature for 30 minutes, TLC showed that the reaction of the starting materials was complete. 20 mL of water was added to the reaction solution, and extracted with ethyl acetate (15 mL * 3). The organic phases were combined, washed with saturated brine, dried over anhydrous sodium sulfate, filtered, and concentrated to remove the solvent to obtain compound 27c (250 mg) as a red solid.
  • ESI-MS (m / z): 218.7 [M + H] + . Used without further purification for the next reaction.
  • Step 3 Dissolve compound 27c (250mg, obtained from the second step) in 1,4-dioxane (10mL), add 17e (0.4N dioxane solution, 3.2mL, 1.28mmol), The reaction was carried out at room temperature for 20 minutes. LC-MS monitoring showed that the reaction of the starting materials completely formed an intermediate state. DCC (261 mg, 1.26 mmol) was added and reacted at 80 ° C for 2 hours. LC-MS was used to monitor the formation of intermediate disappeared products. The solvent was spin-dried to give compound 27d (390 mg), crude, red oil. ESI-MS (m / z): 379.5 [M + H] + . Used without further purification for the next reaction.
  • Step 4 Dissolve compound 27d (390mg, obtained from the third step) in dimethyl sulfoxide (5mL), add sodium hydroxide (123mg, 3.09mmol), stir for 5 minutes at room temperature, and slowly add 30% hydrogen peroxide dropwise. (2 mL), and the reaction was completed at room temperature for 30 minutes. The reaction was monitored by LC-MS, and the reaction solution was filtered. The filtrate was purified by reverse preparative HPLC to obtain compound 27 (100 mg) as a white powder. The yield in three steps was 12%.
  • Compound 28 is prepared by the following steps:
  • Step 1 Dissolve compounds 28a (500mg, 2.49mmol) and 1f (434mg, 4.99mmol) in acetonitrile (20mL), add potassium carbonate (861mg, 6.23mmol), and react at 70 ° C for 2 hours. TLC shows that the reaction of the raw materials is complete . Cesium carbonate (1.62 g, 4.99 mmol) was added, and stirring was continued at 70 ° C for 24 hours. TLC showed that the intermediate reaction was complete. Cooled to room temperature, filtered to remove solids, rinsed with dichloromethane, and concentrated the filtrate. The residue was separated and purified by silica gel column chromatography to obtain compound 28b (180 mg) as a yellow solid with a yield of 31%.
  • Second step Dissolve compound 28b (180mg, 2.14mmol) in a mixed solvent of methanol (10mL) and ammonia (3mL), and dropwise add an aqueous solution (2mL) of insurance powder (407mg, 2.34mmol). After the addition is complete, room temperature Reaction for 30 minutes. TLC showed that the reaction of the raw materials was complete. 20 mL of water was added to the reaction solution, and extracted with ethyl acetate (15 mL * 3).
  • Step 3 Dissolve compound 28c (120 mg, obtained from the second step) in 1,4-dioxane (10 mL), add 17e (0.4N dioxane solution, 1.6 mL, 0.65 mmol), The reaction was carried out at room temperature for 20 minutes, and the reaction of the starting materials was monitored by LC-MS to completely form an intermediate state. DCC (135 mg, 0.66 mmol) was added, and the reaction was performed at 80 ° C for 2 hours. LC-MS was used to monitor the disappearance of intermediate products. The solvent was concentrated and the compound 28d (200 mg) was obtained as a crude product as a brown oil. ESI-MS (m / z): 363.4 [M + H] + . Used without further purification for the next reaction.
  • Step 4 Dissolve compound 28d (200 mg, obtained from the third step) in dimethyl sulfoxide (4 mL), add sodium hydroxide (66 mg, 1.66 mmol), stir at room temperature for 5 minutes, and slowly add 30% hydrogen peroxide dropwise. (1 mL), and the reaction was completed at room temperature for 30 minutes. The reaction was monitored by LC-MS. The reaction solution was directly filtered. The filtrate was purified by reverse preparative HPLC to obtain compound 28 (52 mg) as a white powder. The yield in the three-step reaction was 6%.
  • Compound 29 is prepared by the following steps:
  • Step 1 Compound 3 (50 mg, 0.13 mmol) was dissolved in dichloromethane (3 mL), and triethylamine (73 mg, 0.72 mmol) and methanesulfonic anhydride (67 mg, 0.38 mmol) were added. The reaction was carried out at room temperature for 0.5 hours, and the reaction was monitored by LC-MS. Dilute with water (10 mL), extract the aqueous phase with ethyl acetate (20 mL * 3), combine the organic phases, wash with saturated brine (20 mL * 3), dry over anhydrous sodium sulfate, filter, and concentrate to obtain compound 29a (30 mg). Yellow solid. ESI-MS (m / z): 477 [M + H] + . Used without further purification for the next reaction.
  • Second step Compound 29a (30 mg, obtained from the first reaction) was dissolved in acetonitrile (3 mL), and then potassium carbonate (17 mg, 0.13 mmol) and 29b (43 mg, 0.31 mmol) were added. After 5 hours of reaction at 40 ° C, the reaction was monitored by LC-MS. Dilute with water (10 mL), extract the aqueous phase with ethyl acetate (20 mL * 3), combine the organic phases, wash with saturated brine (20 mL * 3), dry over anhydrous sodium sulfate, filter, and concentrate. The residue is prepared by liquid phase Purification by HPLC gave compound 29 (5 mg) in a two-step reaction yield of 7%.
  • Compound 30 is prepared by the following steps:
  • Step 1 Dissolve compound 1f (500mg, 2.49mmol) and compound 30a (903mg, 4.99mmol) in acetonitrile (10mL), add potassium carbonate (1.03g, 7.48mmol), and react at 70 ° C until TLC shows that the raw material reaction is complete. Add cesium carbonate (2.43 g, 7.48 mmol) and continue stirring at 70 ° C for about 2 hours. TLC shows that the intermediate reaction is complete. After cooling to room temperature, the solid was removed by filtration, the filter cake was rinsed with ethyl acetate, and the filtrate was concentrated. The residue was separated and purified by silica gel column chromatography to obtain compound 30b (670 mg) as a yellow solid with a yield of 83%.
  • Step 2 Dissolve compound 30b (670 mg, 1.94 mmol) in a mixed solvent of methanol (30 mL) and ammonia (3 mL), and dropwise add an aqueous solution (3 mL) of insurance powder (1.69 g, 9.70 mmol).
  • the reaction was carried out at room temperature for 30 minutes. TLC showed that the reaction of the raw materials was complete.
  • the methanol was concentrated to remove it, then water (20 mL) was added, and the mixture was extracted with ethyl acetate (15 mL * 3). The organic phases were combined, washed with saturated brine, dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated to obtain compound 30c ( 540 mg), red solid.
  • Step 3 Dissolve compound 30c (100mg, obtained from the second step) in 1,4-dioxane (5mL), add 17e (0.4N dioxane solution, 0.85mL, 0.338mmol), The reaction was performed at room temperature for 1 hour, and the reaction of the starting materials was monitored by LC-MS (the intermediate state was formed). DCC (70mg, 0.34mmol) was added and reacted at 80 ° C for 2 hours. LC-MS monitored the disappearance of the intermediate state and the product was formed. The solvent was concentrated to remove the crude compound 30d (220mg), brown oily liquid, ESI-MS (m / z): 457.6 [M + H] + . Used without further purification for the next reaction.
  • Step 4 Dissolve compound 30d (220mg, obtained from the third step) in dimethyl sulfoxide (3mL), add sodium hydroxide (60mg, 1.49mmol), warm to 50 ° C, and slowly add 30% hydrogen peroxide dropwise. (0.6 mL), the addition was completed, and the reaction was carried out at 50 ° C for 30 minutes. The reaction was monitored by LC-MS for completion. After cooling to room temperature, the reaction solution was filtered. The filtrate was purified by reverse preparative HPLC to obtain compound 30 (30 mg) as a white powder. The yield of the three-step reaction was 16%.
  • Compound 31 is prepared by the following steps:
  • Step 1 Dissolve cinnamic acid 31a (45mg, 0.30mmol) in N, N-dimethylformamide (3mL), add HATU (154mg, 0.41mmol), HOBt (28mg, 0.20mmol) at room temperature, and protect with nitrogen After stirring for 30 minutes, triethylamine (123 mg, 1.22 mmol) was added, and after stirring at room temperature for 10 minutes, compound 4a (100 mg, 0.20 mmol) was added. The reaction solution was stirred at room temperature overnight, and the reaction was detected to be complete by LC-MS. The reaction solution was directly purified by reverse preparative HPLC to obtain compound 31 (22 mg) as a white solid with a yield of 13%.
  • Compound 32 is prepared by the following steps:
  • Step 1 Dissolve compound 4a (100 mg) and compound 8b (103 mg, 0.51 mmol) in N, N-dimethylformamide (3 mL), add triethylamine (77 mg, 0.76 mmol) and 1,8-di Azabicyclo [5.4.0] undec-7-ene (77 mg, 0.51 mmol) was stirred overnight at 50 ° C. LC-MS showed that the reaction of the starting materials was complete. Water (15 mL) was added to the reaction solution, and then the layers were separated and extracted with ethyl acetate (15 mL * 3). The organic phases were combined, dried over anhydrous sodium sulfate, filtered and concentrated.
  • Compound 33 is prepared by the following steps:
  • Step 1 Dissolve compound 33a (58mg, 0.38mmol), HATU (144mg, 0.38mmol) and HOBt (26mg, 0.19mmol) in N, N-dimethylformamide (3mL), and stir at room temperature for 30 minutes Triethylamine (57 mg, 0.57 mmol) was added, and after stirring for 10 minutes, compound 4a (100 mg) was added and stirred at room temperature overnight.
  • LC-MS monitored the completion of the reaction of the starting materials, and the reaction solution was directly purified by reverse preparative HPLC to obtain compound 33 (15 mg) as a white solid.
  • Compound 34 is prepared by the following steps:
  • Step 1 Compound 29a (50 mg, 0.11 mmol) was dissolved in acetonitrile (3 mL), and potassium carbonate (29 mg, 0.21 mmol) and 34a (397 mg, 2.62 mmol) were added. The reaction was carried out at 40 ° C for 3 hours, and the reaction was monitored by LC-MS. Dilute with water (10 mL), extract the aqueous phase with ethyl acetate (20 mL * 3), combine the organic phases, wash with saturated brine, dry over anhydrous sodium sulfate, filter, and concentrate, and purify the residue by preparative HPLC to obtain compound 34 (14 mg) The yield is 26%.
  • Compound 35 is prepared by the following steps:
  • Step 1 Dissolve compound 18a (30mg) in N, N-dimethylformamide (2mL), add 35a (11mg, 0.07mmol), HATU (27mg, 0.07mmol), HOBt (9mg, 0.07mmol) in this order. ) And triethylamine (21 mg, 0.21 mmol), and stirred at room temperature overnight. The reaction was monitored by TLC for completion. The reaction solution was directly purified by preparative HPLC to obtain compound 35 (8 mg).
  • Compound 36 is prepared by the following steps:
  • Step 1 Dissolve compound 18a (30mg) in N, N-dimethylformamide (2mL), and add 36a (11mg, 0.07mmol), HATU (27mg, 0.07mmol), HOBt (9mg, 0.07mmol) in this order. ) And triethylamine (21 mg, 0.21 mmol), and stirred at room temperature overnight. The reaction was monitored by TLC for completion. The reaction solution was directly purified by reverse preparative HPLC to obtain compound 36 (8 mg).
  • Compound 37 is prepared by the following steps:
  • Step 1 Dissolve compounds 7a (75mg) and 37a (30mg, 0.17mmol) in N, N-dimethylformamide (3mL), and add HATU (72mg, 0.19mmol) and HOBt (26mg, 0.19mmol) It was reacted with triethylamine (53 mg, 0.52 mmol) at room temperature overnight. LC-MS was used to monitor the completion of the reaction. The reaction solution was directly purified by preparative HPLC to obtain compound 37 (25 mg) as a white powder.
  • Compound 38 is prepared by the following steps:
  • Step 1 Dissolve compounds 7a (78 mg) and 38a (30 mg, 0.18 mmol) in N, N-dimethylformamide (3 mL), and add HATU (75 mg, 0.20 mmol) and HOBt (27 mg, 0.20 mmol) It was reacted with triethylamine (55 mg, 0.54 mmol) at room temperature overnight. LC-MS monitored the completion of the reaction. The reaction solution was directly purified by preparative HPLC to obtain compound 38 (20 mg) as a white powder.
  • Compound 39 is prepared by the following steps:
  • Step 1 Dissolve compounds 7a (73 mg) and 39a (30 mg, 0.17 mmol) in N, N-dimethylformamide (3 mL), and add HATU (70 mg, 0.18 mmol) and HOBt (25 mg, 0.18 mmol) It was reacted with triethylamine (51 mg, 0.51 mmol) at room temperature overnight, and the starting material was monitored by LC-MS for completion. The reaction solution was directly purified by preparative HPLC to obtain compound 39 (21 mg) as a white powder.
  • Compound 40 is prepared by the following steps:
  • Step 1 Dissolve compounds 7a (133mg) and 40a (50mg, 0.33mmol) in N, N-dimethylformamide (3mL), add HATU (127mg, 0.33mmol), and HOBt (45mg, 0.33mmol) It was reacted with triethylamine (102 mg, 1 mmol) at room temperature overnight. LC-MS monitored the completion of the reaction. The reaction solution was directly purified by preparative HPLC to obtain compound 40 (17 mg) as a white powder.
  • Compound 41 is prepared by the following steps:
  • Step 1 Dissolve compound 4a (100 mg) and compound 9b (103 mg, 0.51 mmol) in N, N-dimethylformamide (3 mL), add triethylamine (64 mg, 0.64 mmol) and 1,8-di Azabicyclo [5.4.0] undec-7-ene (77 mg, 0.51 mmol) was stirred at 50 ° C overnight. LC-MS showed that the starting material was complete. Water (15 mL) was added to the reaction solution, and then the mixture was extracted and separated with ethyl acetate (15 mL * 3). The organic phases were combined, dried over anhydrous sodium sulfate, filtered and concentrated. The residue was separated and purified by silica gel column chromatography to obtain compound 41.
  • Compound 42 is prepared by the following steps:
  • Compound 43 is prepared by the following steps:
  • Step 2 Dissolve compound 43b (4.0g, 15.4mmol), compound N'-Cbz-L-ornithine 43c (4.9g, 18.5mmol) and triethylamine (3.1g, 30.8mmol) in methanol (100mL) ), Stirred at 80 ° C. for 3 hours, and the reaction was monitored by TLC for completion. The reaction was concentrated to give compound 43d (4.3 g) as a red oil. Used without further purification for the next reaction. ESI-MS (m / z): 490.9 [M + H] + .
  • Step 3 Compound 43d (4.3g, obtained from the second step) and iron powder (0.94g, 16.7mmol) were added to acetic acid (30mL) and reacted at 80 ° C for 3 hours. The reaction was monitored by LC-MS for completion . The reaction solution was poured into water (20 mL) and extracted with ethyl acetate (15 mL * 3). The organic phases were combined, washed with saturated sodium bicarbonate (10 mL) and brine (10 mL), dried over anhydrous sodium sulfate, and concentrated by filtration.
  • Step 5 Compound 43f (1.6 g, 3.73 mmol) was dissolved in N, N-dimethylformamide (30 mL), and cesium carbonate (2.4 g, 7.48 mmol) and methyl iodide (0.8 g, 5.6 mmol) were added. Then, the reaction temperature was raised to 90 ° C for 8 hours, and the reaction was monitored by LC-MS. The reaction solution was cooled to room temperature, poured into water (15 mL), and extracted with ethyl acetate (15 mL * 4). The organic phases were combined, washed with saturated brine (10 mL), dried over anhydrous sodium sulfate, and concentrated by filtration.
  • Step 6 Dissolve 43g (2.6g, 5.88mmol) of the compound in a mixed solvent of methanol (50mL) and ammonia (18mL), dropwise add an aqueous solution (20mL) of insurance powder (10.2g, 58.8mmol), and then at room temperature The reaction was continued for 1 hour, and the reaction was monitored by LC-MS to completion. The reaction solution was poured into water (200 mL) and extracted with ethyl acetate (80 mL * 4). The organic phases were combined, washed with saturated brine (40 mL), dried over anhydrous sodium sulfate, filtered and concentrated.
  • Step 7 Dissolve compound 43h (250mg, 0.61mmol) in 1,4-dioxane solution (10mL), add 17e (0.4N dioxane solution, 1.7mL, 0.67mmol), and react at room temperature.
  • LC-MS monitoring showed that the reaction of the starting materials completely formed an intermediate state.
  • EDCI 140 mg, 0.15 mmol was added and reacted at 80 ° C for 4 hours. The intermediate state disappeared by LC-MS and the product was formed.
  • the reaction solution was cooled to room temperature, poured into water (50 mL), and extracted with ethyl acetate (30 mL * 4).
  • Step 8 Dissolve compound 43i (260mg, 0.45mmol) in a mixed solution of methanol (10mL) and tetrahydrofuran (10mL), add 1N aqueous solution of sodium hydroxide (1.82mL, 1.82mmol) dropwise, and react at room temperature for 48 At TLC, the reaction was monitored for completion. The reaction solution was concentrated, and the residue was dissolved in water. The pH was adjusted to 3 to 4 with a 2N aqueous solution of hydrochloric acid. Solids were generated, filtered, and the filter cake was dried to obtain compound 43j (165 mg) as a white solid with a yield of 65%.
  • Compound 44 is prepared by the following steps:
  • Step 1 Compound 27c (600 mg, 2.76 mmol) was dissolved in methanol (10 mL), bromocyanine (1.46 g, 13.81 mmol) was added, and the mixture was stirred at room temperature overnight. LCMS showed that the reaction of the starting materials was complete. The reaction solution was directly concentrated and purified by crude silica gel column chromatography to obtain compound 44a (500 mg) as a white solid with a yield of 74%. ESI-MS (m / z): 243.2 [M + H] + .
  • Second step Compound 44a (50 mg, 0.21 mmol), 1-ethyl-4-fluoro-3-methyl-1H-pyrazole-5-carboxylic acid (39 mg, 0.22 mmol), HATU (94 mg, 0.24 mmol) ), HOAt (33 mg, 0.24 umol) was dissolved in THF (10 mL), TEA (0.09 mL, 0.62 mmol) was added, and the mixture was stirred overnight at room temperature. The raw material reaction was monitored by LCMS. The reaction solution was concentrated to obtain 80 mg of a crude product, which was directly used in the next reaction. ESI-MS (m / z): 397.2 [M + H] + .
  • Step 3 Dissolve the crude product from the previous step (80mg) in DMSO (3mL), add NaOH (24mg, 0.60mmol), warm to 60 °C, slowly add hydrogen peroxide (30% wt, 1mL), and react at 60 °C 5. In minutes, LCMS monitored the completion of the reaction. The reaction solution was directly purified by reverse HPLC to obtain compound 44 (17 mg) as a white solid. The yield of the two-step reaction was 20%.
  • Compound 45 is prepared by the following steps:
  • Step 1 Compound 44a (50 mg, 0.20 mmol), 4-chloro-1-ethyl-3-methyl-1H-pyrazole-5-carboxylic acid (42 mg, 0.22 mmol), HATU (94 mg, 0.24 mmol) ), HOAt (33 mg, 0.24 mmol) was dissolved in THF (10 mL), TEA (0.09 mL, 0.62 mmol) was added, and the mixture was stirred at room temperature overnight. LCMS monitored the reaction of the raw materials to complete. The reaction solution was concentrated to obtain 80 mg of a crude product, which was directly used in the next reaction. ESI-MS (m / z): 413.3 [M + H] + .
  • Step 2 Dissolve the crude product from the previous step (80mg) in DMSO (3mL), add NaOH (23mg, 0.58mmol), warm to 60 °C, slowly add hydrogen peroxide (30% wt, 1mL), and react at 60 °C 5. In minutes, LCMS monitored the completion of the reaction. The reaction solution was directly purified by reverse preparative HPLC to obtain compound 45 (13 mg) as a white solid. The yield of the two-step reaction was 15%.
  • Compound 46 is prepared by the following steps:
  • Step 1 Compound 44a (50 mg, 0.20 mmol), 4-bromo-1-ethyl-3-methyl-1H-pyrazole-5-carboxylic acid (52 mg, 0.22 mmol), HATU (94 mg, 0.24 mmol) ), HOAt (33 mg, 0.24 mmol) was dissolved in THF (10 mL), TEA (0.09 mL, 0.62 mmol) was added, and the mixture was stirred at room temperature overnight. The raw material reaction was monitored by LCMS. The reaction solution was concentrated to obtain 46a (crude, 90 mg), which was directly used in the next reaction. ESI-MS (m / z): 457.4 [M + H] + .
  • Step 2 Dissolve 46a (crude, 80mg, obtained from step 1) in DMSO (3mL), add NaOH (23mg, 0.59mmol), warm to 60 ° C, and slowly add hydrogen peroxide (30% wt, 1mL). The reaction was carried out at 60 ° C for 5 minutes, and the reaction was monitored by LCMS. The reaction solution was directly purified by reverse preparative HPLC to obtain compound 46 (7 mg) as a white solid with a yield of 7% in two steps.
  • Compound 47 is prepared by the following steps:
  • Step 1 Compound 26c (1.0 g, 4.92 mmol) was dissolved in methanol (20 mL), bromocyanine (2.61 g, 24.6 mmol) was added, and the mixture was reacted at room temperature overnight. LCMS monitored the reaction of the starting materials to complete. The reaction solution was concentrated and purified by crude silica gel column chromatography to obtain compound 47a (1.0 g) as an off-white solid with a yield of 89%. ESI-MS (m / z): 229.2 [M + H] + .
  • Step 3 Dissolve 47b (crude, 80mg, obtained in step 2) in DMSO (3mL), add NaOH (25mg, 0.62mmol), warm to 60 ° C, and slowly add hydrogen peroxide (30% wt, 1mL). The reaction was carried out at 60 ° C for 5 minutes, and the reaction was monitored by LCMS. The reaction solution was directly purified by reverse preparative HPLC to obtain compound 47 (18 mg) as a white solid. The yield of the two-step reaction was 20%.
  • Compound 48 is prepared by the following steps:
  • Step 1 Compound 47a (50 mg, 0.22 mmol), 4-chloro-1-ethyl-3-methyl-1H-pyrazole-5-carboxylic acid (45 mg, 0.24 mmol), HATU (99 mg, 0.26 mmol) ), HOAt (35 mg, 0.26 mmol) was dissolved in THF (10 mL), TEA (0.09 mL, 0.65 mmol) was added, and the mixture was stirred at room temperature overnight. LCMS monitored the reaction of the starting materials to complete. The reaction solution was concentrated to obtain 48a (crude, 80 mg), which was directly used in the next reaction. MS (ESI): m / z 399.3 [M + H] + .
  • Second step Dissolve 48a (crude, 80mg, obtained from the first step) in DMSO (3mL), add NaOH (24mg, 0.60mmol), warm to 60 ° C, and slowly add hydrogen peroxide (30% wt, 1mL). The reaction was carried out at 60 ° C for 5 minutes, and the reaction was monitored by LCMS. The reaction solution was directly purified by reverse preparative HPLC to obtain compound 48 (24 mg) as a white solid with a yield of 29% in two steps.
  • Compound 49 is prepared by the following steps:
  • Step 1 Compound 47a (50 mg, 0.22 mmol), 4-bromo-1-ethyl-3-methyl-1H-pyrazole-5-carboxylic acid (56 mg, 0.24 mmol), HATU (99 mg, 0.26 mmol) ), HOAt (35 mg, 0.26 mmol) was dissolved in THF (10 mL), TEA (0.09 mL, 0.65 mmol) was added, and the mixture was stirred at room temperature overnight. LCMS monitored the reaction of the starting materials to complete. The reaction solution was concentrated to obtain 49a (crude, 90 mg), which was directly used in the next reaction. ESI-MS (m / z): 443.2 [M + H] + .
  • Step 2 Dissolve 49a (crude, 90mg, obtained from step 1) in DMSO (3mL), add NaOH (24mg, 0.61mmol), warm to 60 ° C, and slowly add hydrogen peroxide (30% wt, 1mL). The reaction was carried out at 60 ° C for 5 minutes, and the reaction was monitored by LCMS.
  • Compound 50 is prepared by the following steps:
  • Step 1 Dissolve compound 1j (3.0 g, 7.66 mmol), compound 50a (1.56 g, 8.05 mmol) in THF (30 mL), add HATU (3.21 g, 8.43 mmol), HOAt (1.15 g, 8.43 mmol) TEA (2.12 mL, 15.33 mmol), stirred overnight at room temperature, LCMS monitored the reaction of the starting materials to complete. The reaction solution was concentrated, the residue was dispersed with ethyl acetate (100 mL), and the organic phase was washed with a saturated ammonium chloride solution, a saturated sodium chloride solution, and dried over anhydrous sodium sulfate. Filtration and concentration gave dry compound 50b (4.0 g). The crude product was used directly in the next reaction. ESI-MS (m / z): 568.5 [M + H] + .
  • Second step Dissolve compound 50b (4.0 g, obtained from the first step) in DMSO (40 mL), add NaOH (845 mg, 21 mmol), warm to 60 ° C, and slowly add hydrogen peroxide (30% wt, 10 mL). Stir at 60 ° C for 10 minutes.
  • LCMS monitors the completion of the reaction.
  • the reaction solution was cooled to room temperature, BOC anhydride (2.31 g, 10.57 mmol) was added, and the mixture was stirred at room temperature for 30 minutes. The conversion was monitored by LCMS.
  • Step 3 Dissolve compound 50c (1.8 g, 3.26 mmol) in methanol (20 mL), add dioxane hydrochloride solution (4N, 5 mL), and stir at room temperature for 4 hours.
  • LCMS monitors the reaction of the raw materials to complete.
  • the reaction solution was directly concentrated under reduced pressure to obtain Compound 50 (1.5 g) as a white solid with a yield of 94%.
  • Compound 51 is prepared by the following steps:
  • Step 1 Compound 1j (3.0 g, 7.66 mmol), compound 51a (1.45 g, 8.05 mmol) were dissolved in THF (30 mL), and HATU (3.21 g, 8.43 mmol) and HOAt (1.15 g, 8.43 mmol) were added.
  • TEA (2.12 mL, 15.33 mmol)
  • LCMS monitored the reaction of the starting materials to complete.
  • the reaction solution was concentrated, the residue was dispersed with ethyl acetate (100 mL), and the organic phase was washed with a saturated ammonium chloride solution, a saturated sodium chloride solution, and dried over anhydrous sodium sulfate. Filtration and concentration gave dry compound 51b (4.0 g).
  • the crude product was used directly in the next reaction.
  • ESI-MS (m / z): 554.8 [M + H] + .
  • Second step Dissolve compound 51b (4.0 g, obtained from the first step) in DMSO (40 mL), add NaOH (845 mg, 21.14 mmol), raise the temperature to 60 ° C, and slowly add hydrogen peroxide (30% wt, 10 mL) dropwise. Stir at 60 ° C for 10 minutes.
  • LCMS monitors the completion of the reaction. The reaction solution was cooled to room temperature, BOC anhydride (2.37 g, 10.84 mmol) was added, and the mixture was stirred at room temperature for 30 minutes. The conversion was monitored by LCMS.
  • Step 3 Dissolve compound 51c (1.4 g, 2.60 mmol) in methanol (20 mL), add dioxane hydrochloride solution (4N, 7 mL), and stir at room temperature for 6 hours.
  • LCMS monitors the reaction of the raw materials to complete.
  • the reaction solution was directly concentrated under reduced pressure to obtain compound 51 (1.1 g) as a white solid with a yield of 89%.
  • Compound 52 is prepared by the following steps:
  • Step 1 Dissolve compound 1f (2.0g, 9.97mmol) and 52a (1.36g, 14.96mmol) in acetonitrile (50mL), add potassium carbonate (3.45g, 24.93mmol), and react at 80 ° C for 4 hours. TLC shows The reaction of the raw materials is complete. Cesium carbonate (1.62 g, 4.99 mmol) was added, and stirring was continued at 80 ° C overnight. The reaction solution was cooled to room temperature, filtered to remove solids, rinsed with dichloromethane, and the filtrate was concentrated. The residue was purified by silica gel column chromatography to obtain compound 52b (800 mg) as a yellow solid with a yield of 34%.
  • Second ⁇ Compound 52b (800mg, 3.40mmol) was dissolved in a mixed solvent of methanol (20mL) and ammonia (4mL), and an aqueous solution (2mL) of insurance powder (1.78g, 10.2mmol) was added dropwise. After reacting at room temperature for 30 minutes, LCMS showed that the reaction of the starting materials was complete. The reaction solution was diluted with water (20 mL), concentrated under reduced pressure to remove methanol, and the remaining aqueous phase was extracted with ethyl acetate (15 mL * 3). The organic phase was washed with saturated brine, dried over sodium sulfate, and concentrated by filtration to obtain compound 52c (500 mg) as a red solid with a yield of 71%. ESI-MS (m / z): 206.2 [M + H] + .
  • Compound 53 is prepared by the following steps:
  • Step 1 Dissolve compound 1f (800 mg, 3.99 mmol) and 3-amino-2,2-difluoro-prop-1-ol 53a (509 mg, 4.59 mmol) in acetonitrile (10 mL), and add potassium carbonate (1.10 g, 7.98 mmol), reacted at 70 ° C for 4 hours, and TLC showed that the reaction of the starting materials was complete.
  • the reaction solution was cooled to room temperature, filtered, and concentrated. The residue was purified by silica gel column chromatography to obtain compound 53b (350 mg) as a yellow oil in a yield of 31%.
  • Second ⁇ Compound 53b (350 mg, 1.27 mmol) was dissolved in acetonitrile (10 mL), cesium carbonate (621 mg, 1.91 mmol) was added, and reacted at 70 ° C for 2 hours. TLC showed that the reaction of the raw materials was complete. The reaction solution was cooled to room temperature, filtered, and concentrated. The residue was purified by silica gel column chromatography to obtain compound 53c (200 mg) as a yellow oil in a yield of 61%.
  • Step 3 Dissolve compound 53c (200mg, 0.78mmol) in a mixed solution of methanol (10mL) and aqueous ammonia (2mL), and dropwise add an aqueous solution (2mL) of insurance powder (409mg, 2.35mmol). After the dropwise addition is completed, room temperature After reacting for 10 minutes, LCMS showed that the reaction of the starting materials was complete. The reaction solution was concentrated and the residue was purified by silica gel column chromatography to obtain compound 53d (60 mg) as a white solid with a yield of 34%. ESI-MS (m / z): 226.1 [M + H] + .
  • Compound 54 is prepared by the following steps:
  • Step 1 Take compound 25e (1.94 g, 8.94 mmol) in methanol (30 mL), add cyanogen bromide (2.84 g, 26.79 mmol), and react overnight at room temperature. The reaction was monitored by LC-MS for completion. The reaction solution was concentrated to remove methanol, ethyl acetate (80 mL) and saturated sodium carbonate solution (40 mL) were added, and the layers were extracted. The aqueous phase was extracted with ethyl acetate (50 mL * 2). The organic phases were combined, washed with saturated brine, and anhydrous sulfuric acid. Sodium was dried, filtered, and concentrated. The residue was purified by silica gel column chromatography to obtain compound 54a (1.68 g) as a yellow solid with a reaction yield of 77%. ESI-MS (m / z): 243.6 [M + H] + .
  • Second step Compound 54a (300mg, 1.24mmol) was dissolved in tetrahydrofuran (8mL), and 1-ethyl-4-fluoro-3-methylpyrazole-5-carboxylic acid (214mg, 1.24mmol) was added in sequence.
  • HOBt (84mg, 0.62mmol)
  • HATU (471mg, 1.24mmol)
  • triethylamine 0.52mL, 3.72mmol
  • Step 3 Dissolve compound 54b (150 mg, 0.37 mmol) in dimethyl sulfoxide (3 mL), add NaOH (50 mg, 1.25 mmol), and slowly add 30% hydrogen peroxide (1.5 mL) dropwise at 60 ° C. After completion of the reaction for 30 minutes, the reaction was monitored by LC-MS. The reaction solution was directly purified by reverse preparative HPLC to obtain compound 54 (40 mg) as a white solid with a yield of 26%.
  • Compound 55 is prepared by the following steps:
  • Step 1 Dissolve compound 54a (200 mg, 0.83 mmol) in tetrahydrofuran (8 mL), and add 1-ethyl-4-chloro-3-methylpyrazole-5-carboxylic acid (155 mg, 0.83 mmol) in sequence.
  • HOBt 55mg, 0.42mmol
  • HATU 315mg, 0.83mmol
  • triethylamine 0.33mL, 2.55mmol
  • Step 6 Dissolve compound 55a (224mg, 0.54mmol) in dimethyl sulfoxide (4mL), add NaOH (65mg, 1.62mmol), and slowly add 30% hydrogen peroxide (2mL) dropwise at 60 ° C. The addition is complete. After 30 minutes of reaction, the reaction was monitored by LC-MS. The reaction solution was directly purified by reverse preparative HPLC to obtain compound 55 (45 mg) as a white solid with a yield of 20%.
  • Compound 56 is prepared by the following steps:
  • Step 1 Dissolve compound 54a (200 mg, 0.83 mmol) in tetrahydrofuran (8 mL), and add 1-ethyl-4-bromo-3-methylpyrazole-5-carboxylic acid (191 mg, 0.83 mmol) in sequence.
  • HOBt 55mg, 0.42mmol
  • HATU 315mg, 0.83mmol
  • triethylamine 0.33mL, 2.55mmol
  • Second step Compound 56a (180 mg, 0.39 mmol) was dissolved in dimethyl sulfoxide (3 mL), NaOH (50 mg, 1.25 mmol) was added, and 30% hydrogen peroxide (1.5 mL) was slowly added dropwise at 60 ° C. After the reaction was completed for 30 minutes, the reaction was monitored by LC-MS. The reaction solution was directly purified by reverse preparative HPLC to obtain compound 56 (53 mg) as a white solid with a yield of 29%.
  • Step 1 Add compound 1f (1.00g, 5.00mmol) and compound 3-amino-1-propanol (562mg, 7.50mmol) to acetonitrile (15mL), add potassium carbonate (1.4g, 10.00mmol), nitrogen The reaction was carried out at 70 ° C for 16 hours under protection, and the reaction was monitored by TLC. The reaction solution was cooled to room temperature, filtered through a pad of silica gel, and the solid was washed with dichloromethane (100 mL). The filtrate was concentrated and purified by silica gel column chromatography to obtain compound 57a (1.05 g). , Yellow oil, yield 87%. ESI-MS (m / z): 240.5 [M + H] + .
  • Second step Compound 57a (1.05 g, 4.39 mmol) was dissolved in acetonitrile (20 mL), cesium carbonate (2.85 g, 8.78 mmol) was added, and the reaction was carried out at 70 ° C for 3 hours. The reaction was monitored by LC-MS for completion. After cooling to room temperature, the reaction solution was filtered through a pad of silica gel, the solid was washed with dichloromethane, and the filtrate was concentrated to give compound 57b (880 mg) as a brown oil. ESI-MS (m / z): 220.4 [M + H] + . The compound was used in the next reaction without further purification.
  • Step 3 Dissolve compound 57b (880mg, the product obtained from the second step reaction) in methanol (60mL), add ammonia (5mL), and dithionite (3.5g, 20.11mmol) in water (5mL). Slowly drip into the reaction system. After 30 minutes, the reaction was monitored by LC-MS. The reaction solution was poured into water (50mL). The aqueous phase was extracted with ethyl acetate (50mL * 3). The organic phases were combined, washed three times with saturated brine, and dried over anhydrous sodium sulfate. , Filtered, and concentrated to give compound 57c (455 mg) as a brown oil. ESI-MS (m / z): 190.6 [M + H] + . The compound was used in the next reaction without further purification.
  • Step 4 Dissolve Compound 57c (455mg, the product obtained from the third step reaction) in 1,4-dioxane (20mL), add 17e (1N 1,4-dioxane solution, 2.4 mL, 2.40 mmol), and stirred at room temperature for 0.5 hours. N, N'-Dicyclohexylcarbodiimide (920 mg, 4.81 mmol) was added, and the reaction mixture was stirred at 80 ° C overnight. After the reaction was monitored by LC-MS, the reaction solution was concentrated, and the residue was purified by silica gel column chromatography to obtain Compound 57d (280 mg), white solid, 20% yield in three steps. ESI-MS (m / z): 351.4 [M + H] + .
  • Step 5 Dissolve compound 57d (280 mg, 0.80 mmol) in dimethyl sulfoxide (3 mL), add NaOH (100 mg, 2.50 mmol), and slowly add 30% hydrogen peroxide (2.0 mL) dropwise at 60 ° C. After the reaction was completed for 30 minutes, the reaction was monitored by LC-MS. The reaction solution was directly purified by reverse preparative HPLC to obtain compound 57 (50 mg) as a white solid with a yield of 17%.
  • Step 1 Add compound 1f (1.00g, 5.00mmol) and compound 58a (1.36g, 7.50mmol) to acetonitrile (30mL), add potassium carbonate (1.4g, 10.00mmol), and react at 70 ° C under nitrogen protection 16 The reaction was monitored for completion by TLC. The reaction solution was cooled to room temperature, filtered through a pad of silica gel, and the solid was washed with dichloromethane (100 mL). The filtrate was concentrated and purified by silica gel column chromatography to obtain compound 58b (1.55 g), yellow oil, yield. 89%. ESI-MS (m / z): 346.7 [M + H] + .
  • Second step Compound 58b (1.55 g, 4.49 mmol) was dissolved in acetonitrile (30 mL), cesium carbonate (2.92 g, 8.98 mmol) was added, and the reaction was carried out at 70 ° C for 3 hours. The reaction was monitored by LC-MS for completion. After cooling to room temperature, the reaction solution was filtered through a pad of silica gel, the solid was washed with dichloromethane, and the filtrate was concentrated to give compound 58c (1.31 g) as a brown oil.
  • Step 3 Dissolve compound 58c (1.31g, product obtained from the second step) in methanol (80mL), add ammonia (5mL), and dithionite (3.5g, 20.11 mmol) in water (5mL). Slowly dripped into the reaction system. After 30 minutes, the reaction was monitored by LC-MS. The reaction solution was poured into water (50mL). The aqueous phase was extracted with ethyl acetate (50mL * 3). The organic phases were combined, washed three times with saturated brine, and dried over anhydrous sodium sulfate. , Filtered, and concentrated to give compound 58d (594 mg) as a yellow oil. ESI-MS (m / z): 296.6 [M + H] + . The compound was used in the next reaction without further purification.
  • Step 4 Dissolve compound 58d (590 mg, the product obtained from the reaction in the third step) in 1,4-dioxane (15 mL), and add 17e (1N 1,4-dioxane solution, 2.0 mL, 2.0 mmol), and stirred at room temperature for 0.5 hours. N, N'-Dicyclohexylcarbodiimide (765 mg, 4.0 mmol) was added, and the reaction mixture was stirred at 80 ° C overnight. After the reaction was monitored by LC-MS, the reaction solution was concentrated, and the residue was purified by silica gel column chromatography to obtain Compound 58e (605 mg), white solid, yield of 29% in three steps. ESI-MS (m / z): 457.3 [M + H] + .
  • Step 5 Dissolve compound 58e (605mg, 1.33mmol) in dimethyl sulfoxide (5mL), add NaOH (160mg, 4.0mmol), and slowly add 30% hydrogen peroxide (2.0mL) dropwise at 60 ° C. The reaction was completed for 30 minutes. The reaction was monitored by LC-MS. The reaction solution was cooled to room temperature and poured into water (50 mL). The aqueous phase was extracted with ethyl acetate (50 mL * 3). The organic phases were combined and washed with saturated brine.
  • Step 6 Dissolve compound 58f (510mg, 1.07mmol) in dichloromethane (15mL), add boron trichloride (1M dichloromethane solution, 11mL, 11mmol), stir at room temperature for 0.5 hours, and monitor by LC-MS The reaction was completed, quenched by slowly adding methanol, and the reaction solution was concentrated and purified by reverse preparative HPLC to obtain compound 58 (270 mg) as a white solid with a yield of 65%.
  • Step 1 Dissolve compound 1f (200 mg, 0.99 mmol) and 3-aminomethyl-3-hydroxymethyloxetane 59a (152 mg, 1.30 mmol) in acetonitrile (10 mL), and add potassium carbonate (275 mg) , 1.99 mmol), reacted at 70 ° C for 4 hours, TLC showed that the reaction of the starting materials was complete.
  • Second ⁇ Compound 59b (200 mg, 0.71 mmol) was dissolved in acetonitrile (10 mL), cesium carbonate (463 mg, 1.42 mmol) was added, and reacted at 70 ° C for 1 hour. TLC showed that the reaction of the raw materials was complete. The reaction solution was concentrated and the residue was purified by silica gel column chromatography to obtain compound 59c (50 mg) as a yellow solid with a yield of 26%.
  • Step 3 Dissolve compound 59c (50mg, 0.19mmol) in a mixed solution of ethanol (10mL) and water (2mL), add ammonium chloride (33mg, 0.63mmol), warm to 50 ° C, and add iron powder (35mg , 0.63 mmol), reacted at 70 ° C for 1 hour, LCMS showed that the raw material reaction was complete. The iron powder was removed by filtration, the filtrate was concentrated, and the residue was purified by silica gel column chromatography to obtain compound 59d (40 mg) as a yellow oil in a yield of 90%. ESI-MS (m / z): 232.0 [M + H] + .
  • Compound 60 is prepared by the following steps:
  • Step 1 Add compound 60a (1.00g, 3.25mmol) and compound 60b (1.10g, 4.90mmol) to acetonitrile (30mL), add potassium carbonate (900mg, 6.50mmol), and react at 70 ° C for 16 hours under nitrogen protection. The reaction was monitored for completeness by TLC. The reaction solution was cooled to room temperature, filtered through a pad of silica gel, and the solid was washed with dichloromethane (100 mL). The filtrate was concentrated and purified by silica gel column chromatography to obtain compound 60c (1.27 g) as a yellow solid. %. ESI-MS (m / z): 461.4 [M + H] + .
  • Step 2 Dissolve compound 60c (1.27g, 2.76mmol) in methanol (15mL), add hydrogen chloride-1,4 dioxane solution (4N, 3.5mL, 14mmol), and react at room temperature for 1 hour.
  • LC-MS Monitor the reaction to completion.
  • the reaction solution was concentrated and purified by silica gel column chromatography to obtain compound 60d (980 mg) as a yellow solid with a yield of 89%.
  • Step 4 Dissolve compound 60e (70mg, 0.30mmol) in methanol (5mL), add ammonia (0.2mL), and dithionite (260mg, 1.49mmol) in water (1mL) slowly drop into the reaction system. . After 30 minutes, the reaction was monitored by LC-MS. The reaction solution was poured into water (20 mL). The aqueous phase was extracted with ethyl acetate (30 mL * 3). The organic phases were combined, washed three times with saturated brine, and dried over anhydrous sodium sulfate. , Filtered, and concentrated to give compound 60f (45 mg) as a yellow oil. ESI-MS (m / z): 203.7 [M + H] + . The compound was used in the next reaction without further purification.
  • Step 5 Dissolve compound 60f (45 mg, the product obtained from the fourth step reaction) in 1,4-dioxane (5 mL), and add 17e (1N 1,4-dioxane solution, 0.2 mL, 0.20 mmol), and stirred at room temperature for 0.5 hours. N, N'-Dicyclohexylcarbodiimide (76 mg, 0.40 mmol) was added, and the reaction mixture was stirred at 80 ° C for 1 hour. After the reaction was monitored by LC-MS, the reaction solution was purified by silica gel column chromatography to obtain 60 g of compound ( 50 mg), white solid, 47% yield in two steps. ESI-MS (m / z): 364.2 [M + H] + .
  • Step 6 Dissolve 60 g (50 mg, 0.14 mmol) of the compound in dimethyl sulfoxide (1 mL), add NaOH (20 mg, 0.5 mmol), and slowly add 30% hydrogen peroxide (0.5 mL) dropwise at 60 ° C, then After the reaction was completed for 30 minutes, the reaction was monitored by LC-MS. The reaction solution was purified by reverse preparative HPLC to obtain compound 60 (33 mg) as a white solid with a yield of 63%.
  • Step 1 Add compound 60a (1.00g, 3.25mmol) and compound 61a (670mg, 4.90mmol) to acetonitrile (30mL), add potassium carbonate (900mg, 6.50mmol), and react at 70 ° C for 16 hours under nitrogen protection The reaction was monitored by TLC. The reaction solution was cooled to room temperature, filtered through a pad of silica gel, and the solid was washed with dichloromethane (100 mL). The filtrate was concentrated and purified by silica gel column chromatography to obtain compound 61b (1.07 g) as a yellow solid with a yield of 89%. . ESI-MS (m / z): 374.3 [M + H] + .
  • Step 2 Dissolve compound 61b (1.07g, 2.87mmol) in methanol (30mL), add ammonia (4mL), and dithionite (2.5g, 14.3mmol) in water (4mL) slowly drop into the reaction system in. After 30 minutes, the reaction was monitored by LC-MS. The reaction solution was poured into water (100 mL). The aqueous phase was extracted with ethyl acetate (100 mL * 3). The organic phases were combined, washed three times with saturated brine, and dried over anhydrous sodium sulfate. , Filtered, and concentrated to give compound 61c (690 mg) as a yellow oil. ESI-MS (m / z): 344.7 [M + H] + . The compound was used in the next reaction without further purification.
  • Step 4 Dissolve compound 61d (700mg, 1.38mmol) in dimethylsulfoxide (8mL), add NaOH (170mg, 4.25mmol), and slowly add 30% hydrogen peroxide (5mL) dropwise at 60 ° C. After 30 minutes of reaction, the reaction was monitored by LC-MS. The reaction solution was purified by reverse preparative HPLC to obtain compound 61e (510 mg) as a white solid with a yield of 70%. ESI-MS (m / z): 523.3.
  • Step 5 Compound 61e (50 mg, 0.09 mmol) was dissolved in N, N-dimethylformamide (2 mL), and cuprous iodide (13 mg, 0.07 mmol) and cesium carbonate (60 mg, 0.18 mmol) were added. The reaction was carried out at 130 ° C for 1 hour, and the reaction was monitored by TLC. The reaction solution was purified by reverse preparative HPLC to obtain compound 61 (15 mg) as a white solid with a yield of 41%.
  • Step 1 Add compound 1f (1.00g, 5.00mmol) and compound 62a (940mg, 7.50mmol) to acetonitrile (20mL), add potassium carbonate (1.38g, 10.05mmol), and react at 70 ° C for 16 hours under nitrogen protection. The reaction was monitored for completeness by TLC. The reaction solution was cooled to room temperature, filtered through a pad of silica gel, and the solid was washed with dichloromethane (100 mL). The filtrate was concentrated and purified by silica gel column chromatography to obtain compound 62b (1.05 g), yellow oil, yield 83. %. ESI-MS (m / z): 254.5 [M + H] + .
  • Second step Compound 62b (1.05 g, 4.15 mmol) was dissolved in acetonitrile (40 mL), cesium carbonate (2.70 g, 8.30 mmol) was added, and the reaction was performed at 70 ° C for 3 hours. The reaction was monitored by LC-MS for completion. After cooling to room temperature, the reaction solution was filtered through a pad of silica gel, the solid was washed with dichloromethane, and the filtrate was concentrated to give compound 62c (760 mg) as a brown oil.
  • Step 4 Dissolve compound 62d (390mg, the product obtained from the third step reaction) in 1,4-dioxane (30mL), and add 17e (1N 1,4-dioxane solution, 2.0 mL, 2.0 mmol), and stirred at room temperature for 0.5 hours. N, N'-dicyclohexylcarbodiimide (730 mg, 3.84 mmol) was added, and the reaction mixture was stirred at 80 ° C for 2 hours. After the reaction was monitored by LC-MS, the reaction solution was concentrated, and the residue was purified by silica gel column chromatography. Compound 62e (300 mg) was obtained as a white solid with a three-step reaction yield of 20%. ESI-MS (m / z): 365.3 [M + H] + .
  • Step 4 Dissolve compound 62e (300mg, 0.82mmol) in dimethyl sulfoxide (8mL), add NaOH (100mg, 2.50mmol), and slowly add 30% hydrogen peroxide (5mL) dropwise at 60 ° C. The addition is complete. After 30 minutes of reaction, the reaction was monitored by LC-MS. The reaction solution was purified by reverse preparative HPLC to obtain compound 62 (110 mg) as a white solid with a yield of 35%.
  • Step 1 Take compound 62d (300 mg, 1.48 mmol) and dissolve it in methanol (10 mL), add cyanogen bromide (780 mg, 7.43 mmol), and react at room temperature overnight.
  • LC-MS monitors the reaction to completion.
  • the reaction solution was concentrated to remove methanol, ethyl acetate (100 mL) and saturated sodium carbonate solution (60 mL) were added, and the layers were extracted.
  • the aqueous phase was extracted with ethyl acetate (100 mL * 2).
  • the organic phases were combined, washed with saturated brine, and anhydrous sulfuric acid. Sodium was dried, filtered, and concentrated.
  • the residue was purified by silica gel column chromatography to obtain compound 63a (255 mg) as a yellow solid with a yield of 75%.
  • ESI-MS (m / z): 229.3 [M + H] + .
  • Second step Compound 63a (250 mg, 1.09 mmol) was dissolved in tetrahydrofuran (10 mL), and 1-ethyl-4-fluoro-3-methylpyrazole-5-carboxylic acid (188 mg, 1.09 mmol) was sequentially added.
  • HOBt 74mg, 0.55mmol
  • HATU 416mg, 1.09mmol
  • triethylamine 0.42mL, 3.27mmol
  • the third step Compound 63b (379mg, 0.99mmol) was dissolved in dimethyl sulfoxide (4mL), NaOH (120mg, 3.00mmol) was added, and 30% hydrogen peroxide (3.0mL) was slowly added dropwise at 60 ° C. After the reaction was completed for 30 minutes, the reaction was monitored by LC-MS. The reaction solution was directly purified by reverse preparative HPLC to obtain compound 63 (160 mg) as a white solid with a yield of 40%.
  • Compound 64 is prepared by the following steps:
  • Step 1 Take compound 61c (50 mg, 0.14 mmol) in methanol (5 mL), add cyanogen bromide (75 mg, 0.71 mmol), and react at room temperature overnight.
  • LC-MS monitors the reaction to completion.
  • the reaction solution was concentrated to remove methanol, ethyl acetate (30 mL) and saturated sodium carbonate solution (20 mL) were added, and the layers were extracted.
  • the aqueous phase was extracted with ethyl acetate (30 mL * 2).
  • the organic phases were combined, washed with saturated brine, and anhydrous sulfuric acid. Sodium was dried, filtered, and concentrated.
  • the residue was purified by silica gel column chromatography to obtain compound 64a (42 mg) as a yellow solid with a yield of 80%.
  • Second step Compound 64a (42 mg, 0.11 mmol) was dissolved in tetrahydrofuran (5 mL), and 1-ethyl-4-fluoro-3-methylpyrazole-5-carboxylic acid (20 mg, 0.12 mmol) was sequentially added.
  • HOBt (8mg, 0.06mmol), HATU (43mg, 0.11mmol), triethylamine (35mg, 0.34mmol)
  • react at room temperature overnight after the addition and then add methanol (2.5mL), water (2.5mL) and sodium hydroxide (15 mg, 0.37 mmol), reacted at room temperature for 1 hour, and the reaction was monitored by LC-MS for completion.
  • Step 3 Dissolve compound 64b (32 mg, 0.06 mmol) in dimethyl sulfoxide (1 mL), add NaOH (10 mg, 0.25 mmol), and slowly add 30% hydrogen peroxide (0.3 mL) dropwise at 60 ° C. After the reaction was completed for 30 minutes, the reaction was monitored by LC-MS. The reaction solution was directly purified by reverse preparative HPLC to obtain compound 64c (15 mg) as a white solid with a yield of 45%. ESI-MS (m / z): 541.5 [M + H] + .
  • Compound 65 is prepared by the following steps:
  • Step 1 Add compound 60a (200mg, 0.65mmol) and compound 3-amino-1-propanol (110mg, 0.99mmol) to acetonitrile (30mL), add potassium carbonate (180mg, 1.30mmol), and protect it under nitrogen.
  • the reaction was conducted at 70 ° C for 16 hours. The reaction was monitored by TLC.
  • the reaction solution was cooled to room temperature, filtered through a pad of silica gel, and the solid was washed with dichloromethane (50 mL). The filtrate was concentrated and purified by silica gel column chromatography to obtain compound 65a (190 mg) as a yellow solid. The yield is 85%.
  • ESI-MS (m / z): 348.2 [M + H] + .
  • the third step Compound 65b (102 mg, product obtained from the second step reaction) was dissolved in methanol (5 mL), cyanogen bromide (170 mg, 1.62 mmol) was added, and the reaction was performed at room temperature overnight.
  • LC-MS monitored the reaction to completion.
  • the reaction solution was concentrated to remove methanol, ethyl acetate (40 mL) and saturated sodium carbonate solution (30 mL) were added, and the layers were extracted.
  • the aqueous phase was extracted with ethyl acetate (40 mL * 2).
  • the organic phases were combined, washed with saturated brine, and anhydrous sulfuric acid. Sodium was dried, filtered, and concentrated.
  • the residue was purified by silica gel column chromatography to obtain compound 65c (55 mg) as a yellow solid in 30% yield in two steps.
  • Step 4 Dissolve compound 65c (55mg, 0.16mmol) in tetrahydrofuran (5mL), and add 1-ethyl-4-fluoro-3-methylpyrazole-5-carboxylic acid (28mg, 0.16mmol) in sequence.
  • HOBt 11mg, 0.08mmol
  • HATU 62mg, 0.16mmol
  • triethylamine 50mg, 0.49mmol
  • react at room temperature overnight after the addition then add methanol (2.5mL), water (2.5mL) and sodium hydroxide (20 mg, 0.50 mmol), reacted at room temperature for 1 hour, and the reaction was monitored by LC-MS for completion.
  • Step 5 Compound 65d (33 mg, 0.07 mmol) was dissolved in N, N-dimethylformamide (1 mL), and cuprous iodide (9 mg, 0.05 mmol) and cesium carbonate (46 mg, 0.14 mmol) were added. A microwave reaction was performed at 130 ° C for 1 hour, and the reaction was monitored by TLC. The reaction solution was purified by reverse preparative HPLC to obtain compound 65e (18 mg) as a white solid with a yield of 78%. ESI-MS (m / z): 369.5 [M + H] + .
  • Step 6 Dissolve compound 65e (18 mg, 0.05 mmol) in dimethyl sulfoxide (1 mL), add NaOH (10 mg, 0.25 mmol), and slowly add 30% hydrogen peroxide (0.3 mL) dropwise at 60 ° C. After completion of the reaction for 30 minutes, the reaction was monitored by LC-MS. The reaction solution was directly purified by reverse preparative HPLC to obtain compound 65 (9.4 mg) as a white solid with a yield of 48%.
  • Step 1 Dissolve compound 60c (200mg, 0.43mmol) in methanol (20mL), add ammonia (2mL), and dithionite (380.0mg, 2.18mmol) in water (3mL) and slowly drop into the reaction system. . After 30 minutes, the reaction was monitored by LC-MS. The reaction solution was poured into water (70 mL). The aqueous phase was extracted with ethyl acetate (80 mL * 3). The organic phases were combined, washed three times with saturated brine, and dried over anhydrous sodium sulfate. , Filtered, and concentrated to give compound 66a (140 mg) as a yellow solid. ESI-MS (m / z): 431.6 [M + H] + . The compound was used in the next reaction without further purification.
  • Second step Compound 66a (140 mg, the product obtained from the first reaction) was dissolved in methanol (15 mL), cyanogen bromide (170 mg, 1.62 mmol) was added, and the reaction was performed overnight at room temperature. The reaction was monitored by LC-MS to completion. The reaction solution was concentrated to remove methanol, ethyl acetate (70 mL) and saturated sodium carbonate solution (50 mL) were added, and the layers were extracted. The aqueous phase was extracted with ethyl acetate (60 mL * 2). The organic phases were combined, washed with saturated brine, and anhydrous sulfuric acid. Sodium was dried, filtered, and concentrated. The residue was purified by silica gel column chromatography to obtain compound 66b (115 mg) as a yellow solid in 59% yield in two steps. ESI-MS (m / z): 456.1 [M + H] + .
  • Step 4 Dissolve Compound 66c (110mg, 0.18mmol) in methanol (15mL), add hydrogen chloride-1,4 dioxane solution (4N, 0.25mL, 1mmol), react at room temperature for 1 hour, and monitor by LC-MS The reaction was completed. The reaction solution was concentrated to obtain Compound 66d (90 mg) as a white solid.
  • Step 5 Dissolve Compound 66d (90.0mg, 0.16mmol) in dimethyl sulfoxide (3mL), add NaOH (20mg, 0.50mmol), and slowly add 30% hydrogen peroxide (2mL) dropwise at 60 ° C. The reaction was completed for 30 minutes. The reaction was monitored by LC-MS. The reaction solution was poured into water (20 mL) and extracted with ethyl acetate (30 mL * 3). The organic phases were combined, washed with saturated brine 3 times, and anhydrous sodium sulfate. It was dried, filtered, and concentrated. The residue was purified by silica gel column chromatography to obtain compound 66e (44 mg) as a white solid in a yield of 51%. ESI-MS (m / z): 528.1 [M + H] + .
  • Step 6 Dissolve Compound 66e (44mg, 0.08mmol) in N, N-dimethylformamide (2mL), add tris (dibenzylideneacetone) dipalladium (8mg, 0.01mmol), 2-bicyclo Hexylphospho-2 ', 6'-diisopropoxy-1,1'-biphenyl (8 mg, 0.02 mmol), cesium carbonate (55 mg, 0.17 mmol). The reaction was carried out at 90 ° C overnight, and the reaction was monitored by LC-MS. The reaction solution was directly purified by reverse preparative HPLC to obtain compound 66 (7.8 mg) as a white solid with a yield of 24%.
  • Step 1 Dissolve compound 60a (4.0g, 12.97mmol) and compound 67a (3.15g, 15.56mmol) in acetonitrile (50mL), add potassium carbonate (3.58g, 25.94mmol), and react at 70 ° C for 6 hours. TLC The reaction of the starting materials was shown to be complete. The potassium carbonate was removed by filtration, and the filtrate was concentrated. The residue was purified by silica gel column chromatography to obtain compound 67b (4.0 g) as a yellow oil with a yield of 65%. ESI-MS (m / z): 475.2 [M + H] + .
  • Step 3 Dissolve Compound 67c (1.8g, 4.05mmol) in 1,4-dioxane (20mL) and add 1-ethyl-3-methyl-1H-pyrazole-5-carbonyl isosulfide Cyanate 17e (1N dioxane solution, 4.25mL, 4.25mmol), reacted at room temperature for 10 minutes, LCMS monitored the reaction of the raw materials to be complete, and an intermediate state was formed. Add EDCI (931mg, 4.86mmol), and react at 80 ° C for 2 hours. LCMS monitored the disappearance of intermediate states and product formation.
  • Step 5 Dissolve compound 67e (350mg, obtained from the fourth step) in methanol (10mL), add dioxane hydrochloride solution (4N, 5mL, 20mmol), and react at room temperature for 5 hours. . The reaction solution was concentrated to obtain compound 67f (280 mg, crude product) as a yellow solid. The compound was directly used in the next reaction without further purification.
  • ESI-MS (m / z): 378.6 [M + H] + .
  • Second ⁇ Compound 68a (2.3g, 6.13mmol) was dissolved in DCM (30mL), Dess-Martin oxidant (3.90g, 9.2mmol) was added in batches at 0 ° C, and reacted at 0 ° C for 2 hours. TLC showed the reaction of raw materials complete. The reaction solution was washed with a saturated NaHCO 3 solution, the organic phase was dried over anhydrous sodium sulfate, filtered, and the residue was purified by silica gel column chromatography to obtain compound 68b (2 g) as a yellow solid with a yield of 87%.
  • Step 3 Dissolve compound 68b (550mg, 1.47mmol) in methanol (10mL), add methylamine hydrochloride (298mg, 4.42mmol), sodium acetate (423mg, 5.16mmol) and react at room temperature for 3 hours, then add cyanide Sodium borocyanide (277 mg, 4.42 mmol) was reacted at room temperature overnight, and LCMS was used to monitor the reaction of the starting materials to produce a complete product. The reaction solution was concentrated and the residue was purified by silica gel column chromatography to obtain compound 68c (370 mg) as a yellow oil in a yield of 64%.
  • Step 5 Dissolve compound 68d (450mg, obtained from the fourth step) in a mixture of methanol (5mL) and ammonia (1mL), and dropwise add an aqueous solution (3mL) of insurance powder (802mg, 4.61mmol). After the addition was completed, the reaction was carried out at room temperature for 5 minutes, and the raw material reaction was monitored by LCMS. The reaction solution was filtered to remove solids, the filtrate was concentrated, and the residue was purified by silica gel column chromatography to obtain compound 68e (240 mg) as a red oil with a yield of 55%. ESI-MS (m / z): 459.2 [M + H] + .
  • Step 1 Dissolve compound 68b (500mg, 1.34mmol) in methanol (10mL), add ethylamine hydrochloride (327mg, 4.02mmol), sodium acetate (384mg, 4.69mmol), and react at room temperature for 3 hours, then add Sodium cyanoborocyanide (252 mg, 4.02 mmol) was reacted at room temperature overnight.
  • LCMS was used to monitor the reaction of the starting materials to complete the formation of products. The reaction solution was concentrated and the residue was purified by silica gel column chromatography to obtain compound 69a (350 mg) as a yellow oil in a yield of 64%.
  • ESI-MS (m / z): 403.7 [M + H] + .
  • the third step Compound 69b (420 mg, obtained from the second step) was dissolved in a mixture of methanol (5 mL) and ammonia (1 mL), and an aqueous solution (3 mL) of insurance powder (727 mg, 4.18 mmol) was added dropwise. After the addition was completed, the reaction was carried out at room temperature for 5 minutes, and the raw material reaction was monitored by LCMS. The reaction solution was filtered to remove solids, the filtrate was concentrated, and the residue was purified by silica gel column chromatography to obtain compound 69c (300 mg) as a red oil in a yield of 73%. ESI-MS (m / z): 473.3 [M + H] + .
  • Step 5 Dissolve compound 69d (250 mg, 0.31 mmol) in methanol (10 mL), add dioxane hydrochloride solution (4N, 5 mL, 20 mmol), and react at room temperature for 3 hours.
  • LCMS monitors the reaction of the raw materials to complete.
  • the reaction solution was concentrated to give compound 69e (170 mg) as a pink solid, which was directly used in the next reaction.
  • Compound 70 is prepared by the following steps:
  • Step 1 Dissolve compound 60a (4.0 g, 12.97 mmol) and compound (R) -3-amino-2-methyl-1-propanol hydrochloride (3.0 g, 23.88 mmol) in acetonitrile (50 mL) Then, potassium carbonate (7.17 g, 51.87 mmol) was added, and the mixture was heated to 60 ° C for 16 hours. The reaction was monitored by LCMS to complete the reaction. The reaction solution was filtered, the filtrate was concentrated, and the residue was separated by silica gel column chromatography to obtain compound 70a (3.5 g) as a yellow oil with a yield of 74%.
  • Step 2 Dissolve compound 70a (2.0g, 5.54mmol) in a mixture of methanol (20mL) and ammonia (4mL), and dropwise add an aqueous solution (10mL) of insurance powder (5.79g, 33.23mmol) at room temperature. Reaction for 30 minutes. LCMS monitored the completion of the reaction. The reaction solution was suction filtered, and the filtrate was concentrated. The residue was separated by silica gel column chromatography to obtain compound 70b (0.8 g) as a yellow oil with a yield of 43%. ESI-MS (m / z): 332.3 [M + H] + .
  • Step 3 Dissolve compound 70b (350 mg, 1.06 mmol) in 1,4-dioxane (10 mL), and add 1-ethyl-3-methyl-1H-pyrazole-5-carbonyl isothiocyanate 17e (1N dioxane solution, 1.11 mL, 1.11 mmol), reacted at room temperature for 10 minutes, LCMS monitored the reaction of the raw materials to be complete, and an intermediate state was formed. Add EDCI (1.01 g, 5.28 mmol), and react at 80 ° C for 4 hours , LCMS monitored the formation of intermediate disappeared products.
  • Step 5 Dissolve compound 70d (65mg, 0.17mmol) in DMSO (2mL), add NaOH (35mg, 0.89mmol), warm to 60 °C, slowly add hydrogen peroxide (30% wt, 1mL), and react at 60 °C At 1 hour, LCMS monitored the completion of the reaction.
  • the reaction solution was directly purified by reverse preparative HPLC to obtain compound 70 (2 mg) as a white solid with a yield of 3%.
  • Step 1 Dissolve compound 60a (4.0 g, 12.97 mmol) and compound (S) -3-amino-2-methyl-1-propanol hydrochloride (3.0 g, 23.88 mmol) in acetonitrile (50 mL) Then, potassium carbonate (7.17 g, 51.87 mmol) was added, and the mixture was heated to 60 ° C for 16 hours. The solid was filtered off, the filtrate was concentrated, and the residue was separated by silica gel column chromatography to obtain compound 71a (4.0 g) as a yellow oil in a yield of 85%.
  • ESI-MS (m / z): 362.1 [M + H] + .
  • Step 2 Dissolve compound 71a (2.0 g, 5.54 mmol) in a mixture of methanol (20 mL) and ammonia (4 mL), and dropwise add an aqueous solution (10 mL) of insurance powder (5.79 g, 33.23 mmol) at room temperature. Reaction for 30 minutes. LCMS monitored the completion of the reaction. The reaction solution was filtered with suction, the filtrate was concentrated, and the residue was separated by silica gel column chromatography to obtain compound 71b (1.4 g) as a yellow oil with a yield of 76%. ESI-MS (m / z): 332.3 [M + H] + .
  • Step 3 Dissolve compound 71b (500 mg, 1.51 mmol) in 1,4-dioxane (2 mL), and add 1-ethyl-3-methyl-1H-pyrazole-5-carbonyl isothiocyanate Ester 17e (1N dioxane solution, 1.59 mL, 1.59 mmol), reacted at room temperature for 10 minutes, LCMS monitored the reaction of the raw materials to be complete, and an intermediate state was formed. Add EDCI (1.45 g, 7.55 mmol) and react at 80 ° C for 4 hours. LCMS monitored the disappearance of intermediate products.
  • Step 5 Dissolve compound 71d (300mg, 0.41mmol) in DMSO (4mL), add NaOH (82mg, 2.06mmol), warm to 60 ° C, slowly add hydrogen peroxide (30% wt, 2mL), and react at 60 ° C At 1 hour, LCMS monitored the completion of the reaction.
  • the reaction solution was directly purified by reverse preparative HPLC to obtain compound 71 (57 mg) as a white solid with a yield of 36%.
  • Compound 72 is prepared by the following steps:
  • Second step Compound 72a (30 mg, 0.11 mmol), 1-ethyl-4-fluoro-3-methyl-1H-pyrazole-5-carboxylic acid (22 mg, 0.12 mmol), HATU (53 mg, 0.14 mmol) ), HOAt (19 mg, 0.14 mmol) was dissolved in THF (10 mL), TEA (0.05 mL, 0.35 mmol) was added, and the mixture was stirred at room temperature overnight. LCMS monitored the reaction of the starting materials to complete. The reaction solution was concentrated to obtain crude compound 72b (40 mg), which was directly used in the next reaction. ESI-MS (m / z): 411.5 [M + H] + .
  • Step 3 Dissolve compound 72b (40mg, 0.097mmol) in DMSO (3mL), add NaOH (11mg, 0.29mmol), warm to 60 ° C, slowly add hydrogen peroxide (30% wt, 0.5mL), 60 ° C The reaction was performed for 5 minutes, and the reaction was monitored by LCMS. The reaction solution was directly purified by reverse preparative HPLC to obtain compound 72 (4 mg) as a white solid. The yield of the two-step reaction was 8%.
  • Step 1 Dissolve compound 68b (500mg, 1.34mmol) in a mixed solution of methanol (3mL) and DCE (15mL), add 2-methoxyethylamine (503mg, 6.70mmol), react overnight at room temperature, and add cyanide Sodium borocyanide (252 mg, 4.02 mmol) was reacted at room temperature for 2 days, and LCMS was used to monitor the reaction of the starting materials to produce a complete product. The reaction solution was concentrated and the residue was purified by silica gel column chromatography to obtain compound 73a (400 mg) as a yellow oil in a yield of 69%.
  • ESI-MS (m / z): 433.2 [M + H] + .
  • the third step Compound 73b (crude, 450 mg, obtained from the second step) was dissolved in a mixture of methanol (5 mL) and ammonia (1 mL), and an aqueous solution (3 mL) of insurance powder (727 mg, 4.18 mmol) was added dropwise at 0 ° C. ). After completion of the dropwise addition, react at room temperature for 5 minutes. LCMS monitored the reaction of the starting materials to complete. The solid was removed by filtration, the filtrate was concentrated, and the residue was subjected to silica gel column chromatography to obtain compound 73c (390 mg) as a red oil. The yield of the two-step reaction was 84%. ESI-MS (m / z): 503.4 [M + H] + .
  • Step 5 Dissolve compound 73d (300 mg, 0.45 mmol) in methanol (10 mL), add dioxane hydrochloride solution (4N, 5 mL), and react at room temperature for 3 hours.
  • LCMS monitors the reaction of the raw materials to complete.
  • the reaction solution was concentrated to obtain compound 73e (260 mg) as a pink solid, which was directly used in the next reaction.
  • ESI-MS (m / z): 564.6 [M + H] + .
  • Step 1 Dissolve Compound 68b (500mg, 1.34mmol) in a mixed solution of methanol (3mL) and DCE (15mL), add 3-methoxypropylamine (597mg, 6.70mmol), react overnight at room temperature, add cyano Sodium borocyanide (421 mg, 6.7 mmol) was reacted at room temperature for 2 days.
  • LCMS was used to monitor the completion of the reaction as a starting material. The reaction solution was concentrated, and the residue was purified by silica gel column chromatography to obtain compound 74a (280 mg) as a yellow oil in a yield of 46%.
  • ESI-MS (m / z): 447.3 [M + H] + .
  • Second ⁇ Compound 74a (280 mg, 0.62 mmol) was dissolved in THF (10 mL), BOC anhydride (178 mg, 0.81 mmol), triethylamine (0.13 mL, 0.94 mmol) were added, and the reaction was carried out at room temperature overnight. The raw material reaction was monitored by LCMS. complete. The reaction solution was concentrated to obtain crude compound 74b (330 mg) as a yellow oil, which was directly used in the next reaction. ESI-MS (m / z): 547.3 [M + H] + .
  • the third step Compound 74b (crude, 330 mg, obtained from the second step) was dissolved in a mixed solution of methanol (5 ml) and aqueous ammonia (1 mL), and an aqueous solution of insurance powder (525 mg, 3.02 mmol) was added dropwise at 0 ° C. (1 mL), the addition was complete, and the reaction was carried out at room temperature for 5 minutes. The solid was removed by filtration, and the filtrate was concentrated. The residue was purified by silica gel column chromatography to obtain compound 74c (290 mg) as a red oil. The yield in two steps was 89%. ESI-MS (m / z): 517.3 [M + H] + .
  • Step 5 Dissolve compound 74d (300 mg, 0.44 mmol) in methanol (10 mL), add dioxane hydrochloride solution (4N, 5 mL), and react at room temperature for 3 hours. LCMS monitors the reaction of the raw materials to complete. The reaction solution was concentrated to obtain compound 74e (250 mg) as a pink solid, which was directly used in the next reaction. ESI-MS (m / z): 578.4 [M + H] + .
  • Compound 75 is prepared by the following steps:

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Virology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Transplantation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

式(I)化合物及其药物组合物,以及使用式(I)化合物预防和/或治疗免疫相关病症的方法。 (I)

Description

高活性STING蛋白激动剂
交叉引用
本申请要求以下专利申请的优先权:(1)发明名称为“高活性STING蛋白激动剂”于2018年8月24日提交到中国专利局的中国专利申请201810973172.5的优先权,和(2)发明名称为“高活性STING蛋白激动剂”于2018年12月25日提交到中国专利局的中国专利申请201811592949.X的优先权,其内容均通过引用以整体并入本文。
技术领域
本发明涉及一种杂环化合物,具体地涉及一种高活性的STING蛋白激动剂及其用途。
背景技术
免疫治疗的阳性反应通常依赖于肿瘤细胞与肿瘤微环境(TME)内免疫调节的相互作用。在这些相互作用下,肿瘤微环境在抑制或增强免疫应答中发挥着重要的作用。认识免疫治疗与TME间的相互作用不仅是剖析作用机制的关键,也为改善目前免疫治疗的疗效提供了新的方法。细胞因子是可以调节免疫应答的一大类蛋白质,可以直接激活免疫效应细胞或刺激肿瘤基质细胞,以致为淋巴细胞的募集产生的趋化因子和粘附分子。这些功能表明根据不同的肿瘤微环境,针对细胞因子也可以是肿瘤免疫治疗的一种有效途径。
STING(干扰素基因刺激蛋白)是目前肿瘤免疫治疗领域药物研发中最新最热的免疫治疗靶点。干扰素基因刺激蛋白是一种跨膜蛋白,通常在152-173位区域交接形成二聚体并处于自我抑制状态。当受到部分配体的刺激后分子构型发生变化并被激活,招募细胞质中的 TANK结合激酶1,介导TBK1对IRF3的磷酸化,导致干扰素-β和其它多种细胞素的形成。IFNβ的产生是STING活化的标志。肿瘤微环境天然免疫的信号传导是肿瘤特异性T细胞的激活和肿瘤浸润性淋巴细胞浸润的关键步骤。其中I型IFN对肿瘤激活的T细胞活化起着关键作用。这样,STING不仅诱导I型干扰素基因的表达,在天然免疫信号通路中起着重要作用;STING激动剂能激活包括树突状细胞等免疫刺激细胞,改变肿瘤微环境并诱导了肿瘤特异性T细胞的产生。在鼠科动物实验中,一种黄酮类血管破坏剂DMXAA通过激活鼠源STING蛋白,诱导IFN-β和其它天然细胞素的产生,并有效地抑制多种实体肿瘤的生长。但是该药在一个人体非小细胞临床实验中和标准化疗联合使用未能观察到明显疗效。后来实验证实,尽管人源和鼠源STING蛋白的相似度高达81%,前者基因编码379个氨基酸,后者基因编码378个氨基酸,但DMXAA却无法激活人源STING蛋白。环二核苷酸是到目前为止发现的唯一一类既能直接激活鼠源又能激活人源STING蛋白的STING激动剂。直接把CDN注射到B16黑色素瘤、CT26直肠癌、和4T1乳腺癌肿块,不仅导致明显的抑制作用直至肿瘤消失,同时也诱导系统的持久性抗原特异性T细胞免疫,造成动物其它部位未注射药物的肿瘤生长也受到抑制。ML RR-S2 CDA引起多种实体肿瘤微环境的改变,激活有效的肿瘤引发的CD8+T细胞和持久的疗效。近年来大量的研究报道表明STING通路能有效地启动机体的天然免疫系统,是至今为数不多的、经多方验证能诱导产生细胞因子干扰素的信号传导通路,该通路在天然免疫中至 关重要。淋巴细胞充分浸润到肿瘤组织是免疫治疗成功的关键。该作用靶点通路的激活也促进肿瘤微环境中效应T细胞的浸染及应答,因此该靶点逐渐成为是抗肿瘤治疗尤其是免疫治疗研究的重要靶标。在多个小鼠接种模型中对多种难治症、转移性实体肿瘤有效,不仅直接注射的肿瘤消失,其它部位的肿瘤生长也受到明显抑制,甚至还可以预防肿瘤的发生。
发明内容
本发明提供了一种具有STING蛋白激动剂活性的化合物。
本发明的一个目的在于提供一种具有式(I)结构的化合物,
Figure PCTCN2019101707-appb-000001
其中,W表示(CR aR a’) m,其中任意一个CR aR a’任选地被0、1或2个O、S或NR b所替代;
R 1和R 2分别独立地选自氢、卤素、羟基、氨基、巯基、C 1-C 6烷基、C 1-C 6烷氧基、C 1-C 6烷基硫基、C 1-C 6烷基氨基、(二C 1-C 6烷基)氨基、C 2-C 6烯基、C 2-C 6炔基、-(C 0-C 6亚烷基)-(C 3-C 6环烷基)、-(C 0-C 6亚烷基)-(4-7元杂环烷基)、-(C 0-C 6亚烷基)-(6-12元芳基)、和-(C 0-C 6亚烷基)-(5-12元杂芳基),或者R 1与R 2以及与之相邻的原子 共同环合成为3-6元环,该环中还任选地含有0、1或2个选自O、N和S的杂原子;
R 3、R 4、R 5各自独立地选自氢、卤素、氰基、C 1-C 6烷基、C 2-C 6烯基、C 2-C 6炔基、-(C 0-C 6亚烷基)-(C 3-C 6环烷基)、-(C 0-C 6亚烷基)-(4-7元杂环烷基)、-OR c、-NR cR c’、-OC(O)R c’、-C(O)R c、-CO 2R c、-CON(R c)(R c’)、-C(=NR c)N(R c’)(R c”)、-NHC(O)R c、-NHS(O) 2R c-、-NHS(O)R c-、-SO 2R c、-SO 2NR cR c’、-(C 0-C 6亚烷基)-(4-6杂环烷基)、-(C 0-C 6亚烷基)-(6-12元芳基)、和-(C 0-C 6亚烷基)-(5-12元杂芳基);
或者R 3与R 4一起环合形成5-8元环,该环中任选地含有0、1、2、3或4个选自O、S和N的杂原子;
或者R 4与R 5一起环合形成5-8元环,该环中任意含有0、1、2、3或4个选自O、S和N的杂原子;
X表示-NR dC(O)-、-NR dSO 2-、或-NR dC(=NR d’)-;
Cy表示6-12元芳基或5-12元杂芳基;
m表示1、2或3的整数;
R a、R a’各自独立地表示氢、卤素、羟基、C 1-C 6烷基、C 1-C 6烷基硫基、-(C 0-C 6亚烷基)-(C 3-C 6环烷基)、-(C 0-C 6亚烷基)-(4-7元杂环烷基)、-(C 0-C 6亚烷基)-(6-12元芳基)、-(C 0-C 6亚烷基)-(5-12元杂芳基)、-NR eR e’、-NR eCOR e’、-NR eSO 2R e’、-OR e或-OCOR e,或者R a和R a’以及与之相邻的原子共同环合为3-6元环,该环中还任选地含有0、1或2个选自O、N和S的杂原子;或者任意一个CR aR a’共同形成-C=O;
R b各自独立地表示氢、C 1-C 6烷基、-(C 0-C 6亚烷基)-(C 3-C 6环烷基)、-(C 0-C 6亚烷基)-(4-7元杂环烷基)、-(C 0-C 6亚烷基)-(6-12元芳基)、-(C 0-C 6亚烷基)-(5-12元杂芳基)、-(C 0-C 6亚烷基)-(6-12元芳基)、-C(O)R f、-SO 2R f、-SOR f、-C(O)OR f、或-C(O)NR fR f’
R c、R c’、R c”、R d、R d’、R e、R e’、R f、R f’各自独立地表示氢、C 1-C 6烷基、-(C 0-C 6亚烷基)-(C 3-C 6环烷基)、-(C 0-C 6亚烷基)-(4-7元杂环烷基)、-(C 0-C 6亚烷基)-(6-12元芳基)、或-(C 0-C 6亚烷基)-(5-12元杂芳基),或者当上述取代基共同连接于一个N原子时,其任选地与相连接的N原子相互环合成3-8元环;
对于上述所述的烷基、亚烷基、芳基、杂芳基、环、环烷基、杂环烷基、烯基、炔基、烷氧基而言,其任选地各自独立地被0、1、2、3或4个选自以下基团的取代基所取代:卤素、羟基、氰基、羧基、C 1-C 6烷基、C 1-C 6卤代烷基、磺酸基、-OR g、-SR g、-NR gR g’、-NR gCOR g’、-NR gCOOR g’、-COR g、-CO 2R g、-SOR g、-SO 2R g、-OCONR gR g’-、-OCOR g、-CONR gR g’、-NR gSO 2R g’、-SO 2NR gR g’、和-OP(O)(OR gR g’) 2
或者,对于所述芳基、杂芳基而言,或者当取代基的个数为2时,相邻的2个取代基还任选地互相环合成为5-6元饱和或不饱和碳环或者杂环,所述的杂环为含有0、1、2、3或4个O、S和N的杂原子的环;
其中,R g、R g’各自独立地是氢,或者任选地被0、1、2、3或4个选自羟基、卤素、硝基、C 1-C 6烷基、卤代(C 1-C 6烷基)、氨基、磺酰基、氰基、C 1-C 6烷氧基、C 1-C 6烷基硫基、C 1-C 6氨基、和(二C 1-C 6 烷基)氨基的基团所取代的以下基团:C 1-C 6烷基、-(C 0-C 6亚烷基)-(C 3-C 6环烷基)、-(C 0-C 6亚烷基)-O-(C 1-C 6烷基)、-(C 0-C 6亚烷基)-O-CO(C 1-C 6烷基)、-(C 0-C 6亚烷基)-C(O)O(C 1-C 6烷基)、-(C 0-C 6亚烷基)-(6-12元芳基)、-(C 0-C 6亚烷基)-(5-12元杂芳基)、-(C 2-C 6亚烯基)-(6-12元芳基)、-(C 2-C 6亚烯基)-(5-12元杂芳基)、-O-(C 0-C 6亚烷基)-(6-12元芳基)、-O-(C 0-C 6亚烷基)-(5-12元杂芳基)、-O-(C 2-C 6亚烯基)-(6-12元芳基)、-O-(C 2-C 6亚烯基)-(5-12元杂芳基)、-(C 0-C 6亚烷基)-O-(6-12元芳基)、-(C 0-C 6亚烷基)-O-(5-12元杂芳基)、-(C 2-C 6亚烯基)-O-(6-12元芳基)、或-(C 2-C 6亚烯基)-O-(5-12元杂芳基);
其中所述的6-12元芳基优选为苯基;所述的5-12元杂芳基优选为吡啶基、咪唑基、吡唑基;或者对于上述的6-12元芳基或者5-12元杂芳基而言,当取代基的个数为2时,相邻的2个取代基还可以互相环合成为5-6元饱和或不饱和碳环或者杂环。
本发明的一个目的还在于提供一种具有式(II)结构的化合物,
Figure PCTCN2019101707-appb-000002
其中,A和B分别独立地表示CR aR a’、NR b、O或者S;R 1、R 2、R 3、R 4、R 5、X、Cy、R a、R a’、R b具有如式(I)所定义。
本发明的一个目的还在于提供一种具有式(III)结构的化合物,
Figure PCTCN2019101707-appb-000003
其中,R 1、R 3、R 4、R 5、W、X、Cy具有如式(I)所定义;R 2表示氢或者C 1-C 6烷基,并且R 1与R 2表示不同的取代基。
本发明的一个目的还在于提供一种具有式(IV)结构的化合物,
Figure PCTCN2019101707-appb-000004
其中R 1、R 3、R 4、R 5、X、Cy、A、B具有如式(II)所定义,R 2表示氢或者C 1-C 6烷基,并且R 1与R 2表示不同的取代基。
在一个实施方案中,在本发明式(II)或式(IV)的化合物中,其中A优选为O,B优选为CR aR a’
在一个实施方案中,在本发明式(I)至式(IV)的化合物中,其中R 4优选为-CONR cR c’,并且R c、R c’独立地优选为氢或C 1-C 6烷基。
在一个实施方案中,在本发明式(I)至式(IV)的化合物中,其中X优选为-NR dC(O)-,并且R d优选为氢或者C 1-C 6烷基。
在一个实施方案中,在本发明式(I)至式(IV)的化合物中,其中所述的Cy分别各自独立地选自苯基、吡啶基、吡唑基、嘧啶基、吡嗪基、呋喃基、噻唑基、噁唑基、咪唑基、噻吩基、三氮唑基、四氮唑基;优选为吡唑基、咪唑基、噁唑基、三氮唑基、和四氮唑基;优选为咪唑基;并且Cy可以分别独立地被0、1、2、3或4个选自以下基团的取代基所取代:卤素、羟基、氰基、羧基、C 1-C 6烷基、C 1-C 6卤代烷基、磺酸基、C 1-C 6烷氧基、-氨基、硝基、(C 1-C 6烷基)氨基、和(二C 1-C 6烷基)氨基。
在一个实施方案中,在本发明式(I)至式(IV)的化合物中,其中R 1优选为C 1-C 6烷基、C 2-C 6烯基、-(C 0-C 6亚烷基)-(C 3-C 6环烷基)、-(C 0-C 6亚烷基)-(4-7元杂环烷基)、或-(C 0-C 6亚烷基)-(6-12元芳基);更优选为:C 1-C 6烷基、C 2-C 6烯基、或-(C 0-C 6亚烷基)-(C 3-C 6环烷基);最优选为:C 1-C 6烷基、或C 2-C 6烯基;并且其任选地被选自以下的取代基所取代:-NR gCOR g’;并且R g优选为氢或C 1-C 6烷基;R g’优选为被0、1、2、3或4个选自羟基、卤素、硝基、C 1-C 6烷基、卤代(C 1-C 6烷基)、氨基、磺酰基、氰基、C 1-C 6烷氧基、C 1-C 6烷基硫基、C 1-C 6氨基、和(二C 1-C 6烷基)氨基的取代基所取代的以下基团:C 1-C 6烷基、-(C 0-C 6亚烷基)-(C 3-C 6环烷基)、-(C 0-C 6亚烷基)-O-(C 1-C 6烷基)、-(C 0-C 6亚烷基)-O-CO(C 1-C 6烷基)、-(C 0-C 6亚烷基)-C(O)O(C 1-C 6烷基)、-(C 0-C 6亚烷基)-(6-12元芳基)、-(C 0-C 6亚烷 基)-(5-12元杂芳基)、-(C 2-C 6亚烯基)-(6-12元芳基)、-(C 2-C 6亚烯基)-(5-12元杂芳基)、-O-(C 0-C 6亚烷基)-(6-12元芳基)、-O-(C 0-C 6亚烷基)-(5-12元杂芳基)、-O-(C 2-C 6亚烯基)-(6-12元芳基)、-O-(C 2-C 6亚烯基)-(5-12元杂芳基)、-(C 0-C 6亚烷基)-O-(6-12元芳基)、-(C 0-C 6亚烷基)-O-(5-12元杂芳基)、-(C 2-C 6亚烯基)-O-(6-12元芳基)、或-(C 2-C 6亚烯基)-O-(5-12元杂芳基);
其中所述的6-12元芳基优选为苯基;所述的5-12元杂芳基优选为吡啶基、咪唑基、或吡唑基;或者对于上述的6-12元芳基或者5-12元杂芳基而言,当取代基的个数为2时,相邻的2个取代基还可以互相环合成为5-6元饱和或不饱和碳环或者杂环。
在另一个实施方案中,在本发明的(I)至式(IV)化合物中,R 1具有如下结构:-(C 1-C 6亚烷基)-NR gCOR g’、-(C 2-C 6亚烯基)-NR gCOR g’,其中R g优选为氢或C 1-C 6烷基;R g’优选为被0、1、2、3或4个选自羟基、卤素、硝基、C 1-C 6烷基、卤代(C 1-C 6烷基)、氨基、磺酰基、氰基、C 1-C 6烷氧基、C 1-C 6烷基硫基、C 1-C 6氨基、和(二C 1-C 6烷基)氨基的取代基所取代的以下基团:-(C 0-C 6亚烷基)-(6-12元芳基)、-(C 0-C 6亚烷基)-(5-12元杂芳基)、-(C 2-C 6亚烯基)-(6-12元芳基)、-(C 2-C 6亚烯基)-(5-12元杂芳基)、-O-(C 0-C 6亚烷基)-(6-12元芳基)、-O-(C 0-C 6亚烷基)-(5-12元杂芳基)、-O-(C 2-C 6亚烯基)-(6-12元芳基)、-O-(C 2-C 6亚烯基)-(5-12元杂芳基)、-(C 0-C 6亚烷基)-O-(6-12元芳基)、-(C 0-C 6亚烷基)-O-(5-12元杂芳基)、-(C 2-C 6亚烯基)-O-(6-12元芳基)、或-(C 2-C 6亚烯基)-O-(5-12元杂芳基);其中所述的6-12元芳基优选为 苯基;所述的5-12元杂芳基优选为吡啶基;或者对于上述的6-12元芳基或者5-12元杂芳基而言,当取代基的个数为2时,相邻的2个取代基还可以互相环合成为5-6元饱和或不饱和碳环或者杂环;更优选为-O-(C 1-C 6亚烷基)-苯基、-O-(C 1-C 6亚烷基)-吡啶基、-(C 1-C 6亚烷基)-O-苯基、-(C 1-C 6亚烷基)-O-吡啶基、-(C 1-C 6亚烷基)-苯基、-(C 1-C 6亚烷基)-吡啶基、-(C 2-C 6亚烯基)-苯基、或-(C 2-C 6亚烯基)-吡啶基,所述的苯基、吡啶基可以被独立地选自0、1、2、3或4个选自羟基、卤素、氨基、磺酰基、氰基、硝基、C 1-C 6烷氧基、和C 1-C 6卤代烷基的取代基所取代。
在另一个实施方案中,在本发明的式(I)至式(IV)化合物中,其中R 2优选为氢或者C 1-C 6烷基。
在另一个实施方案中,在本发明的式(I)至式(IV)化合物中,其中R 3和R 5分别独立地优选为氢、卤素或者C 1-C 6烷基。
除此之外,本发明还提供了一种具有如式(V)所述的化合物,
Figure PCTCN2019101707-appb-000005
其中,W表示(CR aR a’) m,其中任意一个CR aR a’可以被0、1或2个O、S或NR b所替代;
R 2独立地表示氢、卤素、羟基、氨基、巯基、C 1-C 6烷基、C 1-C 6烷氧基、C 1-C 6烷基硫基、C 1-C 6烷基氨基、(二C 1-C 6烷基)氨基、C 2-C 6烯基、C 2-C 6炔基、-(C 0-C 6亚烷基)-(C 3-C 6环烷基)、-(C 0-C 6亚烷基)-(4-7元杂环烷基)、-(C 0-C 6亚烷基)-(6-12元芳基)、或-(C 0-C 6亚烷基)-(5-12元杂芳基);
R 3、R 5各自独立地选自氢、卤素、氰基、C 1-C 6烷基、C 2-C 6烯基、C 2-C 6炔基、-(C 0-C 6亚烷基)-(C 3-C 6环烷基)、-OR c、-NR cR c’、-OC(O)R c’、-C(O)R c、-CO 2R c、-CON(R c)(R c’)、-C(=NR c)N(R c’)(R c”)、-NHC(O)R c、-NHS(O) 2R c-、-NHS(O)R c-、-SO 2R c、-SO 2NR cR c’、-(C 0-C 6亚烷基)-(4-7杂环烷基)、-(C 0-C 6亚烷基)-(6-12元芳基)、和-(C 0-C 6亚烷基)-(5-12元杂芳基);
Cy表示6-12元芳基、5-12元杂芳基;
m表示1、2或3的整数;
R a、R a’各自独立地表示氢、卤素、羟基、C 1-C 6烷基、C 1-C 6烷基硫基、-(C 0-C 6亚烷基)-(C 3-C 6环烷基)、-(C 0-C 6亚烷基)-(4-7元杂环烷基)、-(C 0-C 6亚烷基)-(6-12元芳基)、-(C 0-C 6亚烷基)-(5-12元杂芳基)、-NR eR e’、-NR eCOR e’、-NR eSO 2R e’、-OR e、或-OCOR e,或者R a与R a’以及与之相邻的原子共同环合成为3-6元环,该环中还任选地含有0、1或2个选自O、N和S的杂原子;或者任意一个CR aR a’可以共同形成-C=O;
R b各自独立地表示氢、C 1-C 6烷基、-(C 0-C 6亚烷基)-(C 3-C 6环烷基)、-(C 0-C 6亚烷基)-(4-7元杂环烷基)、-(C 0-C 6亚烷基)-(6-12元芳基)、-(C 0-C 6亚烷基)-(5-12元杂芳基)、、-C(O)R f、-SO 2R f、-SOR f、-C(O)OR f、或-C(O)NR fR f’
G表示O或者NR c
R c、R c’、R c”、R d、R e、R e’、R f、R f’各自独立地表示氢、C 1-C 6烷基、-(C 0-C 6亚烷基)-(C 3-C 6环烷基)、-(C 0-C 6亚烷基)-(4-7元杂环烷基)、-(C 0-C 6亚烷基)-(6-12元芳基)、或-(C 0-C 6亚烷基)-(5-12元杂芳基),或者当上述取代基共同连接于一个N原子时,其能够与相连接的N原子相互环合成3-8元环;
对于上述所述的烷基、亚烷基、芳基、杂芳基、环、环烷基、杂环烷基、烯基、炔基、烷氧基而言,其任选地分别独立地被0、1、2、3或4个选自以下基团的取代基所取代:卤素、氧代、羟基、氰基、羧基、C 1-C 6烷基、C 1-C 6卤代烷基、磺酸基、C 1-C 6烷氧基、-OR g、-SR g、-N(R g)(R g’)、-NR gCOR g’、-NR gCOOR g’、-COR g、-CO 2R g、-SOR g、-SO 2R g、-OCONR gR g’-、-OCOR g、-CONR gR g’、-NR gSO 2R g’、-SO 2NR gR g’、和-OP(O)(OR gR g’) 2
或者对于所述芳基、杂芳基而言,或者当取代基的个数为2时,相邻的2个取代基还可以互相环合成为5-6元饱和或不饱和碳环或者杂环,所述的杂环为含有0、1、2、3或4个选自O、S和N的杂原子的环;
其中,R g、R g’各自独立地为氢或者任选地被0、1、2、3或4个选自羟基、卤素、硝基、C 1-C 6烷基、卤代(C 1-C 6烷基)、氨基、磺酰基、氰基、C 1-C 6烷氧基、C 1-C 6烷基硫基、C 1-C 6氨基、和(二C 1-C 6烷基)氨基的基团所取代的以下基团:C 1-C 6烷基、-(C 0-C 6亚烷基)-(C 3-C 6环烷基)、卤代(C 1-C 6烷基)、-(C 0-C 6烷基)-OH、-(C 0-C 6亚烷基)-O-(C 1-C 6烷基)、-(C 0-C 6亚烷基)-O-CO(C 1-C 6烷基)、-(C 0-C 6亚烷基)-C(O)O(C 1-C 6烷基)、-(C 0-C 6亚烷基)-(6-12元芳基)、-C 2-C 6亚烯基-(6-12元芳基)、-(C 0-C 6亚烷基)-O-(6-12元芳基)、-(C 0-C 6亚烷基)-O-C 1-C 6烷基、-O-(C 1-C 6亚烷基)-(6-12元芳基),-(C 0-C 6亚烷基)-(5-12元杂芳基)、-C 2-C 6亚烯基-(5-12元杂芳基)、-(C 0-C 6亚烷基)-O-(5-12元杂芳基)、或-O-(C 0-C 6亚烷基)-(5-12元杂芳基);或者对于上述的6-12元芳基或者5-12元杂芳基而言,当取代基的个数为2时,相邻的2个取代基还可以互相环合成为5-6元饱和或不饱和碳环或者杂环;
Y表示任选地被0、1、2、3或4个选自羟基、卤素、硝基、C 1-C 6烷基、卤代(C 1-C 6烷基)、氨基、磺酰基、氰基、C 1-C 6烷氧基、C 1-C 6烷基硫基、C 1-C 6氨基、和(二C 1-C 6烷基)氨基的基团所取代的以下基团:-C 1-C 6亚烷基-、-(C 0-C 6亚烷基)-(C 3-C 6环烷基)-(C 0-C 6亚烷基)、-(C 0-C 6亚烷基)-(4-7元杂环烷基)-(C 0-C 6亚烷基)、-(C 0-C 6亚烷基)-(6-12元芳基)-(C 0-C 6亚烷基)、-(C 0-C 6亚烷基)-(5-12元杂芳基)-(C 0-C 6亚烷基)、或-C 2-C 6亚烯基-;
Z表示任选地被0、1、2、3或4个选自羟基、卤素、硝基、C 1-C 6烷基、卤代(C 1-C 6烷基)、氨基、磺酰基、氰基、C 1-C 6烷氧基、C 1-C 6烷基硫基、C 1-C 6氨基、和(二C 1-C 6烷基)氨基的基团所取代的以下基团:C 1-C 6烷基、-(C 0-C 6亚烷基)-(C 3-C 6环烷基)、-(C 0-C 6亚烷基)-O-(C 1-C 6烷基)、-(C 0-C 6亚烷基)-O-CO(C 1-C 6烷基)、-(C 0-C 6亚烷基)-C(O)O(C 1-C 6烷基)、-(C 0-C 6亚烷基)-(6-12元芳基)、-(C 0-C 6亚烷基)-(5-12元杂芳基)、-(C 2-C 6亚烯基)-(6-12元芳基)、-(C 2-C 6亚烯基)-(5-12元杂芳基)、-O-(C 0-C 6亚烷基)-(6-12元芳基)、-O-(C 0-C 6亚烷基)-(5-12元杂芳基)、-O-(C 2-C 6亚烯基)-(6-12元芳基)、-O-(C 2-C 6亚烯基)-(5-12元杂芳基)、-(C 0-C 6亚烷基)-O-(6-12元芳基)、-(C 0-C 6亚烷基)-O-(5-12元杂芳基)、-(C 2-C 6亚烯基)-O-(6-12元芳基)、或-(C 2-C 6亚烯基)-O-(5-12元杂芳基);或者对于上述的6-12元芳基或者5-12元杂芳基而言,当取代基的个数为2时,相邻的2个取代基还可以互相环合成为5-6元饱和或不饱和碳环或者杂环;
其中所述的6-12元芳基优选为苯基;所述的5-12元杂芳基优选为吡啶基、咪唑基、吡唑基;或者对于上述的6-12元芳基或者5-12元杂芳基而言,当取代基的个数为2时,相邻的2个取代基还可以互相环合成为5-6元饱和或不饱和碳环或者杂环。
除此之外,本发明还提供了一种具有式(VI)结构的化合物,
Figure PCTCN2019101707-appb-000006
其中,R 2选自氢或C 1-C 6烷基、并且W、R 3、R 5、R c、R c’、R d、G、Z、Y、Cy均具有如式(V)所定义。
在本发明的式(V)或者式(VI)化合物中,其中G优选为O或者NH。
在本发明的式(V)或者式(VI)化合物中,其中Y优选为0、1、2、3或4个选自羟基、卤素和C 1-C 6烷基的取代基所取代的以下基团:-C 1-C 6亚烷基-、-C 2-C 6亚烯基-、或-C 3-C 6环烷基-。
在本发明的式(V)或者式(VI)化合物中,其中W优选为-CR aR a’-O、-O-CR aR a’-、-C(O)-NR b-或者-NR b-C(O)-,其中R a、R a’、R b各自独立地表示氢、C 1-C 6烷基、或C 3-C 6环烷基。
在本发明的式(V)或式(VI)的化合物中,Z优选为-O-(C 0-C 6亚烷基)-(6-12元芳基)、-(C 0-C 6亚烷基)-(6-12元芳基)、-(C 2-C 6亚烯基)-(6-12元芳基)、-(C 0-C 6亚烷基)-(5-12元杂芳基)、-(C 2-C 6亚烯基)-(5-12元杂芳基)、-O-(C 2-C 6亚烯基)-(6-12元芳基)、-(C 0-C 6亚烷基)-O-(6-12元芳基),-O-(C 0-C 6亚烷基)-(5-12元杂芳基)、-O-(C 2-C 6亚烯基)-(5-12元杂芳基)、或-(C 0-C 6亚烷基)-O-(5-12元杂芳基),并 且任选地所述6-12元芳基(优选为苯基)或者5-12元杂芳基(优选为吡啶基)各自独立地被0、1、2、3或4个选自以下基团的取代基所取代:卤素、羟基、硝基、C 1-C 6烷基、卤代(C 1-C 6烷基)、氨基、磺酰基、氰基、C 1-C 6烷氧基、C 1-C 6烷基硫基、C 1-C 6氨基、和(二C 1-C 6烷基)氨基。
在本发明的式(V)或者式(VI)化合物中,R 2优选为氢或者C 1-C 6烷基。
在本发明的式(V)或者式(VI)化合物中,R 3和R 5各自独立地优选为卤素、氢、或C 1-C 6烷基。
在本发明的式(V)或者式(VI)化合物中,其中R c、R c’优选为氢或者C 1-C 6烷基。
在本发明的式(V)或者式(VI)化合物中,R d优选为氢或C 1-C 6烷基。
在本发明的式(V)或者式(VI)化合物中,Cy优选为吡唑基,并且可以任选地被0、1、2或3个C 1-C 6烷基所取代。
更具体的,本发明还提供了具有如下结构的化合物:
Figure PCTCN2019101707-appb-000007
Figure PCTCN2019101707-appb-000008
Figure PCTCN2019101707-appb-000009
Figure PCTCN2019101707-appb-000010
Figure PCTCN2019101707-appb-000011
Figure PCTCN2019101707-appb-000012
Figure PCTCN2019101707-appb-000013
Figure PCTCN2019101707-appb-000014
Figure PCTCN2019101707-appb-000015
Figure PCTCN2019101707-appb-000016
Figure PCTCN2019101707-appb-000017
Figure PCTCN2019101707-appb-000018
Figure PCTCN2019101707-appb-000019
Figure PCTCN2019101707-appb-000020
Figure PCTCN2019101707-appb-000021
Figure PCTCN2019101707-appb-000022
Figure PCTCN2019101707-appb-000023
Figure PCTCN2019101707-appb-000024
Figure PCTCN2019101707-appb-000025
Figure PCTCN2019101707-appb-000026
特别注意的是,在本文中,当提及具有特定结构式的“化合物”时,一般地还涵盖其立体异构体、非对映异构体、对映异构体、外消旋混合物和同位素衍生物。
本领域技术人员公知,一种化合物的盐、溶剂合物、水合物是化合物的替代性存在形式,它们都可以在一定条件下转化为所述化合物,因此,特别注意的是在本文中当提到一种化合物时,一般地还包括它的可药用盐,进而还包括其溶剂合物和水合物。
相似地,在本文中当提到一种化合物时,一般地还包括其前药、代谢产物和氮氧化物。
本发明所述的可药用盐可使用例如以下的无机酸或有机酸而形成:“可药用盐”是指这样的盐,在合理的医学判断范围内,其适用于接触人和较低等动物的组织,而没有不适当的毒性、刺激性、过敏反应等,称得上合理的受益/风险比。可以在本发明化合物的最终分离和纯化期间原位制备所述盐,或单独通过将游离碱或游离酸与合适的试剂反应制备所述盐,如下概述。例如,游离碱功能可以与合适的酸反应。此外,当本发明的化合物带有酸性部分,其合适的可药用盐可包括金属盐,例如碱金属盐(如钠盐或钾盐);和碱土金属盐(如钙盐或镁盐)。可药用的无毒酸加成盐的示例是氨基与无机酸(例如,盐酸、氢溴酸、磷酸、硫酸和高氯酸)或有机酸(例如,醋酸、草酸、马来酸、酒石酸、柠檬酸、琥珀酸或丙二酸)形成的盐,或通过使用现有技术中的其他方法如离子交换形成的盐。其他可药用盐包括己二酸盐、海藻酸钠、抗坏血酸盐、天门冬氨酸盐、苯磺酸盐、苯甲酸盐、硫酸氢盐、硼酸盐、丁酸盐、樟脑酸盐、樟脑磺酸盐、柠檬酸盐、环戊烷丙酸盐、二葡糖酸盐、十二烷基硫酸盐、乙磺酸盐、甲酸盐、富马酸盐、葡庚糖酸盐、甘油磷酸盐、葡萄糖酸盐、hernisulfate、庚酸盐、己酸盐、氢碘酸盐、2-羟基-乙磺酸盐、乳糖酸盐、乳酸盐、月桂酸盐、月桂基硫酸盐、苹果酸盐、马来酸盐、丙二酸盐、甲磺酸盐、2-萘磺酸盐、烟酸盐、硝酸盐、油酸盐、草酸盐、棕榈酸盐、扑酸盐、果胶酸盐、过硫酸盐、3-苯丙酸盐、磷酸盐、苦味盐、新戊酸盐、丙 酸盐、硬脂酸盐、琥珀酸盐、硫酸盐、酒石酸盐、硫氰酸盐、对甲苯磺酸盐、十一酸盐、戊酸盐等。代表性碱金属或碱土金属盐包括钠、锂、钾、钙、镁等的盐。其他可药用盐包括(适当时)无毒铵盐、季铵盐和用反离子形成的胺阳离子,例如,卤化物、氢氧化物、羧酸盐、硫酸盐、磷酸盐、硝酸盐、低级烷基磺酸盐和芳基磺酸盐。
本发明的可药用盐可通过常规方法制备,例如通过将本发明的化合物溶解于与水可混溶的有机溶剂(例如丙酮、甲醇、乙醇和乙腈),向其中添加过量的有机酸或无机酸水溶液,以使得盐从所得混合物中沉淀,从中除去溶剂和剩余的游离酸,然后分离所沉淀的盐。
本发明所述的前体或代谢物可以本领域公知的前体或代谢物,只要所述的前体或代谢物通过体内代谢转化形成化合物即可。例如“前药”是指本发明化合物的那些前药,在合理的医学判断范围内,其适用于接触人和更低等动物的组织,而没有不适当的毒性、刺激性、过敏反应等,称得上合理的受益/风险比并且对其预期用途有效。术语“前药”是指在体内迅速经转化产生上述式的母体化合物的化合物,例如通过在体内代谢,或本发明化合物的N-去甲基化。
本发明所述的“溶剂合物”意指本发明化合物与一个或多个溶剂分子(无论有机的还是无机的)的物理缔合。该物理缔合包括氢键。在某些情形中,例如当一个或多个溶剂分子纳入结晶固体的晶格中时,溶剂化物将能够被分离。溶剂化物中的溶剂分子可按规则排列和/或无序排列存在。溶剂合物可包含化学计量或非化学计量的溶剂分子。 “溶剂合物”涵盖溶液相和可分离的溶剂合物。示例性溶剂合物包括但不限于水合物、乙醇合物、甲醇合物和异丙醇合物。溶剂化方法是本领域公知的。
本发明所述的“立体异构”分为构象异构和构型异构,构型异构还可分为顺反异构和旋光异构(即光学异构),构象异构是指具有一定构型的有机物分子由于碳、碳单键的旋转或扭曲而使得分子各原子或原子团在空间产生不同的排列方式的一种立体异构现象,常见的有烷烃和环烷烃类化合物的结构,如环己烷结构中出现的椅式构象和船式构象。“立体异构体”是指当本发明化合物含有一个或多个不对称中心,因而可作为外消旋体和外消旋混合物、单一对映异构体、非对映异构体混合物和单一非对映异构体。本发明化合物有不对称中心,每个不对称中心会产生两个光学异构体,本发明的范围包括所有可能的光学异构体和非对映异构体混合物和纯的或部分纯的化合物。本发明所述的化合物可以以互变异构体形式存在,其通过一个或多个双键位移而具有不同的氢的连接点。例如,酮和它的烯醇形式是酮-烯醇互变异构体。各互变异构体及其混合物都包括在本发明的化合物中。所有式(I)化合物的对映异构体、非对映异构体、外消旋体、内消旋体、顺反异构体、互变异构体、几何异构体、差向异构体及其混合物等,均包括在本发明范围中。
本发明的“同位素衍生物”是指在本专利中化合物被同位素标记的分子。通常用作同位素标记的同位素是:氢同位素, 2H和 3H;碳同位素: 11C, 13C和 14C;氯同位素: 35Cl和 37Cl;氟同位素: 18F;碘 同位素: 123I和 125I;氮同位素: 13N和 15N;氧同位素: 15O, 17O和 18O和硫同位素 35S。这些同位素标记化合物可以用来研究药用分子在组织中的分布情况。尤其是氘 3H和碳 13C,由于它们容易标记且方便检测,运用更为广泛。某些重同位素,比如重氢( 2H),的取代能增强代谢的稳定性,延长半衰期从而达到减少剂量的目而提供疗效优势的。同位素标记的化合物一般从已被标记的起始物开始,用已知的合成技术象合成非同位素标记的化合物一样来完成其合成。
本发明还提供了本发明化合物在制备用于预防和/或治疗癌症、肿瘤、炎症性疾病、自身免疫性疾病或免疫介导性疾病的药物中的用途。
此外,本发明提供了用于预防和/或治疗癌症、肿瘤、炎症性疾病、自身免疫性疾病、神经退行性疾病、注意力相关疾病或免疫介导性疾病的药物组合物,其包含本发明化合物作为活性成分。
本发明还提供一种激动STING蛋白的方法,其包括使本发明的化合物或者药物组合物或药物制剂暴露于所述STING蛋白。
本发明还提供一种预防和/或治疗可通过激动STING蛋白预防和/或治疗之疾病的方法,其包括向有此需要的对象施用本发明的化合物或者药物组合物。
此外,本发明提供了一种用于预防和/或治疗癌症、肿瘤、炎症性疾病、自身免疫性疾病、神经退行性疾病、注意力相关疾病或免疫介导性疾病的方法,其包括向有此需要的哺乳动物施用本发明化合物。
炎症性疾病、自身免疫性疾病和免疫介导性疾病的代表性实例可包括但不限于,关节炎、类风湿性关节炎、脊柱关节炎、痛风性关节炎、骨关节炎、幼年型关节炎、其他关节炎性病症、狼疮、系统性红斑狼疮(SLE)、皮肤相关疾病、银屑病、湿疹、皮炎、过敏性皮肤炎、疼痛、肺病、肺部炎症、成人呼吸窘迫综合征(ARDS)、肺结节病、慢性肺部炎症性疾病、慢性阻塞性肺病(COPD)、心血管疾病、动脉粥样硬化、心肌梗塞、充血性心力衰竭、心肌缺血再灌注损伤、炎性肠病、克罗恩病、溃疡性结肠炎、肠易激综合征、哮喘、干燥综合征、自身免疫甲状腺疾病、荨麻疹(风疹)、多发性硬化、硬皮症、器官移植排斥、异种移植、特发性血小板减少性紫癜(ITP)、帕金森病、阿尔兹海默病、糖尿病相关疾病、炎症、盆腔炎性疾病、过敏性鼻炎、过敏性支气管炎、过敏性鼻窦炎、白血病、淋巴瘤、B细胞淋巴瘤、T细胞淋巴瘤、骨髓瘤、急性淋巴性白血病(ALL)、慢性淋巴性白血病(CLL)、急性髓性白血病(AML)、慢性髓性白血病(CML)、毛细胞白血病、何杰金氏病、非何杰金淋巴瘤、多发性骨髓瘤、骨髓增生异常综合征(MDS)、骨髓增生性肿瘤(MPN)、弥漫性大B细胞淋巴瘤和滤泡性淋巴瘤。
癌症或肿瘤的代表性实例可包括但不限于,皮肤癌、膀胱癌、卵巢癌、乳腺癌、胃癌、胰腺癌、前列腺癌、结肠癌、肺癌、骨癌、脑癌、神经细胞瘤、直肠癌、结肠癌、家族性腺瘤性息肉性癌、遗传性非息肉性结直肠癌、食管癌、唇癌、喉癌、下咽癌、舌癌、唾液腺癌、胃癌、腺癌、甲状腺髓样癌、乳头状甲状腺癌、肾癌、肾实质癌、 卵巢癌、宫颈癌、子宫体癌、子宫内膜癌、绒毛膜癌、胰腺癌、前列腺癌、睾丸癌、泌尿癌、黑素瘤、脑肿瘤诸如成胶质细胞瘤、星形细胞瘤、脑膜瘤、成神经管细胞瘤和外周神经外胚层肿瘤、霍奇金淋巴瘤、非霍奇金淋巴瘤、伯基特淋巴瘤、急性淋巴性白血病(ALL)、慢性淋巴性白血病(CLL)、急性骨髓性白血病(AML)、慢性粒细胞白血病(CML)、成人T细胞白血病淋巴瘤、弥漫性大B细胞淋巴瘤(DLBCL)、肝细胞癌、胆囊癌、支气管癌、小细胞肺癌、非小细胞肺癌、多发性骨髓瘤、基底细胞瘤、畸胎瘤、成视网膜细胞瘤、脉络膜黑素瘤、精原细胞瘤、横纹肌肉瘤、颅咽管瘤、骨肉瘤、软骨肉瘤、肌肉瘤、脂肪肉瘤、纤维肉瘤、尤因肉瘤或浆细胞瘤。
当将本发明化合物或其可药用盐与另外的用于治疗癌症或肿瘤的抗癌剂或免疫检查点抑制剂组合施用时,本发明化合物或其可药用盐可提供增强的抗癌作用。
用于治疗癌症或肿瘤的抗癌剂的代表性实例可包括但不限于细胞信号转导抑制剂、苯丁酸氮芥、美法仑、环磷酰胺、异环磷酰胺、白消安、卡莫司汀、洛莫司汀、链脲佐菌素、顺铂、卡铂、奥沙利铂、达卡巴嗪、替莫唑胺、丙卡巴肼、甲氨蝶呤、氟尿嘧啶、阿糖胞苷、吉西他滨、巯基嘌呤、氟达拉滨、长春碱、长春新碱、长春瑞滨、紫杉醇、多西紫杉醇、拓扑替康、伊立替康、依托泊苷、曲贝替定、更生霉素、多柔比星、表柔比星、道诺霉素、米托蒽醌、博来霉素、丝裂霉素C、伊沙匹隆、他莫昔芬、氟他胺、戈那瑞林类似物、甲地孕酮、强的松、地塞米松、甲泼尼龙、沙利度胺、干扰素α、亚叶酸钙、 西罗莫司、西罗莫司脂化物、依维莫司、阿法替尼、alisertib、amuvatinib、阿帕替尼、阿西替尼、硼替佐米、波舒替尼、布立尼布、卡博替尼、西地尼布、crenolanib、克卓替尼、达拉菲尼、达可替尼、达努塞替、达沙替尼、多维替尼、厄洛替尼、foretinib、ganetespib、吉非替尼、依鲁替尼、埃克替尼、伊马替尼、iniparib、拉帕替尼、lenvatinib、linifanib、linsitinib、马赛替尼、momelotinib、莫替沙尼、来那替尼、尼罗替尼、niraparib、oprozomib、olaparib、帕唑帕尼、pictilisib、普纳替尼、quizartinib、瑞格菲尼、rigosertib、rucaparib、鲁索利替尼、塞卡替尼、saridegib、索拉非尼、舒尼替尼、替拉替尼、tivantinib、替沃扎尼、托法替尼、曲美替尼、凡德他尼、维利帕尼、威罗菲尼、维莫德吉、volasertib、阿仑单抗、贝伐单抗、贝伦妥单抗维多汀、卡妥索单抗、西妥昔单抗、地诺单抗、吉妥珠单抗、伊匹单抗、尼妥珠单抗、奥法木单抗、帕尼单抗、利妥昔单抗、托西莫单抗、曲妥珠单抗、PI3K抑制剂、CSF1R抑制剂、A2A和/或A2B受体拮抗剂、IDO抑制剂、抗PD-1抗体、抗PD-L1抗体、LAG3抗体、TIM-3抗体及抗CTLA-4抗体或其任意组合。
当将本发明化合物或其可药用盐与另外的用于治疗炎症性疾病、自身免疫性疾病和免疫介导性疾病的治疗剂组合施用时,本发明化合物或其可药用盐可提供增强的治疗作用。
用于治疗炎症性疾病、自身免疫性疾病和免疫介导性疾病的治疗剂的代表性实例可包括但不限于,甾体药物(例如,强的松、氢化波尼松、甲基氢化波尼松、可的松、羟基可的松、倍他米松、地塞米松 等)、甲氨蝶呤、来氟米特、抗TNFα剂(例如,依那西普、英夫利昔单抗、阿达利单抗等)、钙调神经磷酸酶抑制剂(例如,他克莫司、吡美莫司等)和抗组胺药(例如,苯海拉明、羟嗪、氯雷他定、依巴斯汀、酮替芬、西替利嗪、左西替利嗪、非索非那定等),并且选自其中的至少一种治疗剂可包含于本发明药物组合物中。
本发明的化合物或其可药用盐可作为活性成分通过口服或肠胃外施用,其有效量的范围为在哺乳动物包括人(体重约70kg)的情况下0.1至2,000mg/kg体重/天、优选1至1,000mg/kg体重/天,并且每天以单次或4次分次剂量,或者遵循/不遵循预定时间施用。活性成分的剂量可根据多个相关因素(例如待治疗对象的情况、疾病类型和严重性、施用速率和医生意见)进行调整。在某些情况下,小于以上剂量的量可能是合适的。如果不引起有害的副作用则可使用大于以上剂量的量并且该量可以每天以分次剂量施用。
除此之外,本发明还提供了一种预防和/或治疗肿瘤、癌症、病毒感染、器官移植排斥、神经退行性疾病、注意力相关疾病或自身免疫性疾病的方法,其包括向有此需要的哺乳动物施用本发明的化合物或本发明的药物组合物。
除此之外,本发明还提供了一种激动STING蛋白的方法,其包括使本发明的化合物或者药物组合物或药物制剂暴露于所述STING蛋白。
除此之外,本发明还提供了一种一种预防和/或治疗可通过激动STING蛋白预防和/或治疗之疾病的方法,其包括向有此需要的对象施用本发明的化合物或者本发明的药物组合物。
可根据常规方法中的任何一种将本发明药物组合物配制成用于口服施用或肠胃外施用(包括肌内、静脉内和皮下途径、瘤内注射)的剂型,例如片剂、颗粒、粉末、胶囊、糖浆、乳剂、微乳剂、溶液或混悬液。
用于口服施用的本发明药物组合物可通过将活性成分与例如以下的载体混合来制备:纤维素、硅酸钙、玉米淀粉、乳糖、蔗糖、右旋糖、磷酸钙、硬脂酸、硬脂酸镁、硬脂酸钙、明胶、滑石、表面活性剂、助悬剂、乳化剂和稀释剂。在本发明的注射组合物中采用的载体的实例是水、盐溶液、葡萄糖溶液、葡萄糖样溶液(glucose-like solution)、醇、二醇、醚(例如,聚乙二醇400)、油、脂肪酸、脂肪酸酯、甘油酯、表面活性剂、助悬剂和乳化剂。
本发明描述示例性实施方案的过程中,本发明的其它特征将变得显而易见,给出所述实施方案用于说明本发明而不意欲成为其限制,以下实施例使用本发明所公开的方法制备、分离和表征。
可以用有机合成领域的技术人员已知的多种方式来制备本发明的化合物,可使用下述方法以及有机合成化学领域中已知的合成方法或通过本领域技术人员所了解的其变化形式来合成本发明化合物。优选方法包括但不限于下文所述的这些。在适用于所使用试剂盒材料和适用于所实现转变的溶剂或溶剂混合物中实施反应。有机合成领域的 技术人员将理解,分子上存在的官能性与所提出的转变一致。这有时需要加以判断改变合成步骤的顺序或原料以获得期望的本发明化合物。
具体实施方式
术语
如果无另外说明,用于本发明申请,包括说明书和权利要求书中的术语,定义如下。必须注意,在说明书和所附的权利要求书中,如果文中无另外清楚指示,单数形式“一个”包括复数意义。如果无另外说明,使用质谱、核磁、HPLC、蛋白化学、生物化学、重组DNA技术和药理的常规方法。在本申请中,如果无另外说明,使用“或”或“和”指“和/或”。
在说明书和权利要求书中,给定化学式或名称应涵盖所有立体和光学异构体及其中存在上述异构体的外消旋物。除非另外指明,否则所有手性(对映异构体和非对映异构体)和外消旋形式均在本发明范围内。所述化合物中还可存在C=C双键、C=N双键、环系统等的许多几何异构体,且所有上述稳定异构体均涵盖于本发明内。本发明描述了本发明化合物的顺式-和反式-(或E-和Z-)几何异构体,且其可分离成异构体的混合物或分开的异构体形式。本发明化合物可以光学活性或外消旋形式加以分离。用于制备本发明化合物和其中制备的中间体的所有方法均视为本发明的部分。在制备对映异构体或非对映异构体产物时,其可通过常规方法(例如通过色谱或分段结晶)进行分离。取决于方法条件,以游离(中性)或盐形式获得本发明的终产物。这些 终产物的游离形式和盐均在本发明的范围内。如果需要的话,则可将化合物的一种形式转化成另一种形式。可将游离碱或酸转化成盐;可将盐转化成游离化合物或另一种盐;可将本发明异构体化合物的混合物分离成单独的异构体。本发明化合物、其游离形式和盐可以多种互变异构体形式存在,其中氢原子转置到分子的其它部分上且由此分子的原子之间的化学键发生重排。应当理解的是,可存在的所有互变异构体形式均包括在本发明内。
除非另有定义,本发明的取代基的定义是各自独立而非互相关联的,例如对于取代基中R a(或者R a’)而言,其在不同的取代基的定义中是各自独立的。具体而言,对于R a(或者R a’)在一种取代基中选择一种定义时,并不意味着该R a(或者R a’)在其他取代基中都具有该相同的定义。更具体而言,例如(仅列举非穷举)对于NR aR a’中,当R a(或者R a’)的定义选自氢时,其并不意味着在-C(O)-NR aR a’中,R a(或者R a’)必然为氢。
除非另有定义,否则当取代基被标注为“任选取代的”时,所述取代基选自例如以下取代基,诸如烷基、环烷基、芳基、杂环基、卤素、羟基、烷氧基、氧代、烷酰基、芳基氧基、烷酰基氧基、氨基、烷基氨基、芳基氨基、芳基烷基氨基、二取代的胺基团(其中2个氨基取代基选自烷基、芳基或芳基烷基)、烷酰基氨基、芳酰基氨基、芳烷酰基氨基、取代的烷酰基氨基、取代的芳基氨基、取代的芳烷酰基氨基、硫基、烷基硫基、芳基硫基、芳基烷基硫基、芳基硫羰基、芳基烷基硫羰基、烷基磺酰基、芳基磺酰基、芳基烷基磺酰基、磺酰氨基 例如-SO 2NH 2、取代的磺酰氨基、硝基、氰基、羧基、氨基甲酰基例如-CONH 2、取代的氨基甲酰基例如-CONH烷基、-CONH芳基、-CONH芳基烷基或在氮上具有两个选自烷基、芳基或芳基烷基的取代基的情况、烷氧基羰基、芳基、取代的芳基、胍基、杂环基,例如吲哚基、咪唑基、呋喃基、噻吩基、噻唑基、吡咯烷基、吡啶基、嘧啶基、吡咯烷基、哌啶基、吗啉基、哌嗪基、高哌嗪基等和取代的杂环基。
本文使用的术语“烷基”或“亚烷基”意欲包括具有指定碳原子数的支链和直链饱和脂族烃基团。例如,“C1-C6烷基”表示具有1个至6个碳原子的烷基。烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(例如正丙基和异丙基)、丁基(例如正丁基、异丁基、叔丁基)和戊基(例如正戊基、异戊基、新戊基)。
术语“烯基”表示含一个或多个双键且通常长度为2至20个碳原子的直链或支链的烃基。例如,“C2-C6烯基”含有两个至六个碳原子。烯基包括但不限于例如乙烯基、丙烯基、丁烯基、1-甲基-2-丁烯-1-基等。
术语“炔基”表示含一个或多个三键且通常长度为2至20个碳原子的直链或支链的烃基。例如,“C2-C6炔基”含有两个至六个碳原子。代表性炔基包括但不限于例如乙炔基、1-丙炔基、1-丁炔基等。
术语“烷氧基”或“烷基氧基”是指-O-烷基。“C1-C6烷氧基”(或烷基氧基)意欲包括C1、C2、C3、C4、C5、C6烷氧基。烷氧基的实例包括但不限于甲氧基、乙氧基、丙氧基(例如正丙氧基和异丙氧基)和 叔丁氧基。类似地,“烷基硫基”或“硫代烷氧基”表示具有指定数量碳原子的经硫桥连接的如上文所定义的烷基;例如甲基-S-和乙基-S-。
术语“羰基”是指由碳和氧两种原子通过双键连接而成的有机官能团(C=O)。
术语“芳基”,单独或作为较大部分诸如“芳烷基”、“芳烷氧基”或“芳基氧基烷基”的部分,是指具有总计5至12个环成员的单环、二环或三环的环系统,其中所述系统中的至少一个环为芳族的且其中所述系统中的每个环含有3至7个环成员。在本发明的某些实施方案中,“芳基”是指芳族环系统,其包括但不限于苯基、联苯基、茚满基、1-萘基、2-萘基和四氢萘基。术语“芳烷基”或“芳基烷基”是指连接至芳基环的烷基残基。非限制性实例包括苄基、苯乙基等。稠合的芳基可在环烷基环或芳族环的合适位置上连接至另一基团。例从环系统中画出的虚线表明键可连接至任意合适的环原子。
术语“环烷基”是指单环或二环的环状烷基。单环的环状烷基指C3-C8的环状烷基,包括但不限于环丙基、环丁基、环戊基、环己基和降莰烷基。支化环烷基诸如1-甲基环丙基和2-甲基环丙基包括在“环烷基”的定义中。二环的环状烷基包括桥环、螺环或融合环的环烷基。
术语“环烯基”是指单环或二环的环状烯基。单环的环状烯基指C3-C8的环状烯基,包括但不限于环丙烯基、环丁烯基、环戊烯基、环己烯基和降莰烯基。支化环烯基诸如1-甲基环丙烯基和2-甲基环 丙烯基包括在“环烯基”的定义中。二环的环状烯基包括桥环、螺环或融合环的环状烯基。
“卤代”或“卤素”包括氟、氯、溴和碘。“卤代烷基”意欲包括具有指定碳原子数且取代有1个或多个卤素的支链和直链饱和脂族烃基团。卤代烷基的实例包括但不限于氟甲基、二氟甲基、三氟甲基、三氯甲基、五氟乙基、五氯乙基、2,2,2-三氟乙基、七氟丙基和七氯丙基。卤代烷基的实例还包括意欲包括具有指定碳原子数且取代有1个或多个氟原子的支链和直链饱和脂族烃基团的“氟烷基”。
“卤代烷氧基”或“卤代烷基氧基”表示具有指定数量碳原子的经氧桥连接的如上文所定义的卤代烷基。例如,“C1-C6卤代烷氧基”意欲包括C1、C2、C3、C4、C5、C6卤代烷氧基。卤代烷氧基的实例包括但不限于三氟甲氧基、2,2,2-三氟乙氧基和五氟乙氧基。类似地,“卤代烷基硫基”或“硫代卤代烷氧基”表示具有指定数量碳原子的经硫桥连接的如上文所定义的卤代烷基;例如三氟甲基-S-和五氟乙基-S-。
本公开内容中,当提到一些取代基团时使用Cx1-Cx2的表述,这表示所述取代基团中的碳原子数可以是x1至x2个。例如,C0-C8表示所述基团含有0、1、2、3、4、5、6、7或8个碳原子,C1-C8表示所述基团含有1、2、3、4、5、6、7或8个碳原子,C2-C8表示所述基团含有2、3、4、5、6、7或8个碳原子,C3-C8表示所述基团含有3、4、5、6、7或8个碳原子,C4-C8表示所述基团含有4、5、6、7或8个碳原子,C0-C6表示所述基团含有0、1、2、3、4、5 或6个碳原子,C1-C6表示所述基团含有1、2、3、4、5或6个碳原子,C2-C6表示所述基团含有2、3、4、5或6个碳原子,C3-C6表示所述基团含有3、4、5或6个碳原子。
本公开内容中,当提到环状基团(例如芳基、杂芳基、环烷基和杂环烷基)时使用“x1-x2元环”的表述,这表示该基团的环原子数可以是x1至x2个。例如,所述3-12元环状基团可以是3、4、5、6、7、8、9、10、11或12元环,其环原子数可以是3、4、5、6、7、8、9、10、11或12个;3-6元环表示该环状基团可以是3、4、5或6元环,其环原子数可以是3、4、5或6个;3-8元环表示该环状基团可以是3、4、5、6、7或8元环,其环原子数可以是3、4、5、6、7或8个;3-9元环表示该环状基团可以是3、4、5、6、7、8或9元环,其环原子数可以是3、4、5、6、7、8或9个;4-7元环表示该环状基团可以是4、5、6或7元环,其环原子数可以是4、5、6或7个;5-8元环表示该环状基团可以是5、6、7或8元环,其环原子数可以是5、6、7或8个;5-12元环表示该环状基团可以是5、6、7、8、9、10、11或12元环,其环原子数可以是5、6、7、8、9、10、11或12个;6-12元环表示该环状基团可以是6、7、8、9、10、11或12元环,其环原子数可以是6、7、8、9、10、11或12个。所述环原子可以是碳原子或杂原子,例如选自N、O和S的杂原子。当所述环是杂环时,所述杂环可以含有1、2、3、4、5、6、7、8、9、10或更多个环杂原子,例如选自N、O和S的杂原子。
本公开内容中,一个或更多个卤素可以各自独立地选自氟、氯、溴和碘。
术语“杂芳基”意指稳定的3元、4元、5元、6元、或7元芳香单环或芳香二环或7元、8元、9元、10元、11元、12元芳香多环杂环,其为完全不饱和的、部分不饱和的,且其含有碳原子和1个、2个、3个或4个独立地选自N、O和S的杂原子;且包括任何以下多环基团,其中上文所定义的任意杂环与苯环稠合。氮和硫杂原子可任选地被氧化。氮原子为取代的或未取代的(即N或NR,其中R为H或如果被定义,则为另一取代基)。杂环可在得到稳定结构的任何杂原子或碳原子处连接至其侧基。如果所得化合物是稳定的,则本文所述的杂环基可在碳或氮原子上被取代。杂环中的氮可任选地被季铵化。优选地,当杂环中S和O原子的总数超过1时,则这些杂原子彼此不相邻。优选地,杂环中S和O原子的总数不大于1。当使用术语“杂环”时,其意欲包括杂芳基。芳杂基的实施例包括但不限于吖啶基、氮杂环丁基、吖辛因基、苯并咪唑基、苯并呋喃基、苯并硫代呋喃基、苯并噻吩基、苯并噁唑基、苯并噁唑啉基、苯并噻唑基、苯并三唑基、苯并四唑基、苯并异噁唑基、苯并异噻唑基、苯并咪唑啉基、咔唑基、4aH-咔唑基、咔啉基、色满基、色烯基、噌啉基、十氢喹啉基、2H,6H-1,5,2-二噻嗪基、二氢呋喃并[2,3-b]四氢呋喃基、呋喃基、呋咱基、咪唑烷基、咪唑啉基、咪唑基、1H-吲唑基、咪唑并吡啶基、假吲哚基(indolenyl)、二氢吲哚基、吲嗪基、吲哚基、3H-吲哚基、靛红酰基(isatinoyl)、异苯并呋喃基、异色满基、异吲唑基、异二氢吲哚基、 异吲哚基、异喹啉基、异噻唑基、异噻唑并吡啶基、异噁唑基、异噁唑并吡啶基、亚甲基二氧基苯基、吗啉基、二氮杂萘基、八氢异喹啉基、噁二唑基、1,2,3-噁二唑基、1,2,4-噁二唑基、1,2,5-噁二唑基、1,3,4-噁二唑基、噁唑烷基、噁唑基、噁唑并吡啶基、噁唑烷基、萘嵌间二氮杂苯基、羟吲哚基、嘧啶基、菲啶基、菲咯啉基、吩嗪基、吩噻嗪基、吩噁噻基、吩噁嗪基、酞嗪基、哌嗪基、哌啶基、哌啶酮基、4-哌啶酮基、胡椒基、喋啶基、嘌呤基、吡喃基、吡嗪基、吡唑烷基、吡唑啉基、吡唑并吡啶基、吡唑基、哒嗪基、吡啶并噁唑基、吡啶并咪唑基、吡啶并噻唑基、吡啶基、嘧啶基、吡咯烷基、吡咯啉基、2-吡咯烷酮基、2H-吡咯基、吡咯基、喹唑啉基、喹啉基、4H-喹嗪基、喹喔啉基、奎宁环基、四唑基、四氢呋喃基、四氢异喹啉基、四氢喹啉基、6H-1,2,5-噻二嗪基、1,2,3-噻二唑基、1,2,4-噻二唑基、1,2,5-噻二唑基、1,3,4-噻二唑基、噻蒽基、噻唑基、噻吩基、噻唑并吡啶基、噻吩并噻唑基、噻吩并噁唑基、噻吩并咪唑基、噻吩基、三嗪基、1,2,3-三唑基、1,2,4-三唑基、1,2,5-三唑基、1,3,4-三唑基和呫吨基、喹啉基、异喹啉基、酞嗪基、喹唑啉基、吲哚基、异吲哚基、二氢吲哚基、1H-吲唑基、苯并咪唑基、1,2,3,4-四氢喹啉基、1,2,3,4-四氢异喹啉基、5,6,7,8-四氢-喹啉基、2,3-二氢-苯并呋喃基、色满基、1,2,3,4-四氢-喹喔啉基和1,2,3,4-四氢-喹唑啉基。术语“杂芳基”还可以包括由上述所定义的“芳基”与单环“杂芳基”所形成的联芳基结构,例如但不限于“-苯基联吡啶基-”、“-苯基联嘧啶基”、“-吡啶基联苯基”、“-吡 啶基联嘧啶基-”、“-嘧啶基联苯基-”;其中本发明还包括含有例如上述杂环的稠环和螺环化合物。
本文使用的术语“杂环烷基”指的是一个单环杂环烷基体系,或为一个二环杂环烷基体系,同时还包括螺杂环或桥杂环烷基。单环的杂环烷基指的是3-8元、且至少含一个选自O、N、S、P的饱和或不饱和但不为芳香性的环状烷基体系。二环杂环烷基体系指的是一个杂环烷基融合到一个苯基、或一个环烷基、或一个环烯基、或一个杂环烷基、或一个杂芳基。
本文使用的术语“桥环烷基”指的是共用两个或两个以上碳原子的多环化合物。可分为二环桥环烃及多环桥环烃。前者由两个脂环共用两个以上碳原子所构成;后者是由三个以上的环组成的桥环烃。
本文使用的术语“螺环烷基”指的是单环之间共用一个碳原子(称螺原子)的多环烃。
本文使用的术语“桥环杂基”指的是共用两个或两个以上碳原子的多环化合物,该环中至少含一个选自O、N、S原子。可分为二环桥环杂环及多环桥杂环。
本文使用的术语“杂螺环基”指的是单环之间共用一个碳原子(称螺原子)的多环烃,该环中至少含一个选自O、N、S原子。
本文中所用的术语“取代”意指至少一个氢原子被非氢基团替代,条件是维持正常化合价且所述取代得到稳定的化合物。本文所用的环双键为在两个相邻环原子之间形成的双键(例如C=C、C=N或N=N)。
在本发明化合物上存在氮原子(例如胺)的情形下,可通过使用氧化剂(例如mCPBA和/或过氧化氢)进行处理来将这些氮原子转化成N-氧化物以获得本发明的其它化合物。因此,所显示和要求保护的氮原子视为均涵盖所显示氮及其N-氧化物以获得本发明衍生物。
当任何变量在化合物的任何组成或式中出现一次以上时,其每次出现时的定义均独立于其在其它每种情况下出现时的定义。因此,例如如果显示基团取代有0-3个R,则所述基团可任选地取代有至多三个R基团,且在每次出现时R独立地选自R的定义。此外,取代基和/或变量的组合仅在上述组合可产生稳定的化合物时才容许存在。
本文使用的术语“患者”是指通过本发明的方法进行治疗的有机体。这类有机体优选包括但不限于哺乳动物(例如鼠类、猿/猴、马、牛、猪、犬、猫等)且最优选是指人类。
本文使用的术语“有效量”意指将会引起例如研究人员或临床医师所寻求的组织、系统、动物或人的生物学或医学响应的药物或药剂(即本发明化合物)的量。此外,术语“治疗有效量”意指这样的量:与未接受上述量的相应受试者相比,所述量导致改善的治疗、治愈、预防或减轻疾病、病症或副作用,或降低在疾病或病症的进展速度。有效量可以一个或多个给药、施用或剂量给予且不意欲被特定的制剂或给药途径限制。该术语还包括在其范围内的增强正常生理机能的有效量。
本文使用的术语“治疗”包括导致改善病症、疾病、障碍等的任何效果,例如减轻、减少、调节、改善或消除,或改善其症状。
术语“药用”在本文中用于指如下那些化合物、物质、组合物和/或剂型:在合理医学判断的范围内,其适于与人类和动物的组织接触使用而无过高毒性、刺激性、过敏反应和/或其它问题或并发症,并与合理的益处/风险比相称。
本文使用的短语“药用载体”意指药用物质、组合物或媒介物,诸如液体或固体填充剂、稀释剂、赋形剂、制造助剂(例如润滑剂、滑石、硬脂酸镁、硬脂酸钙或硬脂酸锌或硬脂酸)或溶剂包囊物质,其涉及将主题化合物从一个器官或身体的部分携带或运送至另一个器官或身体的部分。每种载体在与制剂的其它成分相容和对患者无害的意义上必须是“可接受的”。
术语“药物组合物”意指包含本发明化合物与至少一种其它药用载体的组合物。“药用载体”是指本领域中通常接受用于将生物活性剂递送至动物(具体为哺乳动物)的介质,包括(即)佐剂、赋形剂或媒介物,诸如稀释剂、防腐剂、填充剂、流动调控剂、崩解剂、润湿剂、乳化剂、悬浮剂、增甜剂、矫味剂、芳香剂、抗细菌剂、抗真菌剂、润滑剂和分散剂,这取决于给药模式和剂型的性质。
特定药学及医学术语
术语“可接受的”,如本文所用,指一个处方组分或活性成分对一般治疗目标的健康没有过分的有害影响。
术语“癌症”,如本文所用,指一种不能控制的细胞的异常生长,并且在某种条件下能够转移(传播)。这种类型的癌症包括但不限于,实体肿瘤(如膀胱、肠、脑、胸、子宫、心脏、肾、肺、淋巴组织(淋 巴瘤)、卵巢、胰腺或其它内分泌器官(如甲状腺)、前列腺、皮肤(黑色素瘤)或血液瘤(如非白血性白血病)。
术语“联合给药”或其类似术语,如本文所用,指将几种所选的治疗药物给一个病人用药,以相同或不同的给药方式在相同或不同的时间给药。
术语“增强”或“能增强”,如本文所用,指预期的结果能够在效价或是持续时间方面都有增加或延长。因此,在增强药物的治疗效果方面,术语“能增强”指药物在系统中有提高或延长效价或持续时间的能力。本文所用的“增效值”,指在理想的系统中,能够最大限度地的增强另外一个治疗药物的能力。
术语“免疫性疾病”指对内源性或外源性抗原产生的不良或有害反应的疾病或症状。结果通常会造成细胞的功能障碍、或因此而破坏并造成机能障碍、或破坏可能产生免疫症状的器官或组织。
术语“试剂盒”与“产品包装”是同义词。
术语“受试者”或“病人”包括哺乳动物和非哺乳动物。哺乳动物包括但不限于,哺乳类:人、非人灵长类如猩猩、猿及猴类;农业动物如牛、马、山羊、绵羊、猪;家畜如兔、狗;实验动物包括啮齿类,如大鼠、小鼠及豚鼠等。非哺乳类动物包括但不限于,鸟、鱼等。在一优选例中,所选哺乳动物是人。
术语“治疗”、“治疗过程”或“疗法”如本文所用,包括缓和、抑制或改善疾病的症状或状况;抑制并发症的产生;改善或预防潜在代谢综合症;抑制疾病或症状的产生,如控制疾病或情况的发展;减轻疾 病或症状;使疾病或症状减退;减轻由疾病或症状引起的并发症,或预防和/或治疗由疾病或症状引起的征兆。
如本文所用,某一化合物或药物组合物,给药后,可以使某一疾病、症状或情况得到改善,尤指其严重度得到改善,延迟发病,减缓病情进展,或减少病情持续时间。无论固定给药或临时给药、持续给药或断续给药,可以归因于或与给药有关的情况。
给药途径
适合的给药途径包括但不限于,口服、静脉注射、直肠、气雾剂、非肠道给药、眼部给药、肺部给药、经皮给药、阴道给药、耳道给药、鼻腔给药及局部给药。此外,仅作举例说明,肠道外给药,包括肌肉注射、皮下注射、静脉注射、髓内注射、心室注射、腹膜内注射、淋巴管内注射、及鼻内注射。
在一方面,此处描述的化合物给药方式是局部的而不是全身性的给药方式。在特定的具体实施例中,长效制剂通过植入给药(例如皮下或肌肉)或通过肌肉注射。此外,在另一具体化实施例中,药物通过靶向药物给药系统来给药。例如,由器官特异性抗体包裹的脂质体。在这种具体实施例中,所述脂质体被选择性的导向特定器官并吸收。
药物组合物和剂量
本发明还提供药用组合物,其包含治疗有效量的与一种或多种药用载体(添加剂)和/或稀释剂一起配制的一种或多种本发明的化合物,和任选的一种或多种上述其它治疗剂。可通过任意合适方式给予本发 明化合物以用于任意上述用途,例如口服,诸如片剂、丸剂、粉剂、颗粒剂、酏剂、酊剂、悬浮液(包括纳米悬浮液、微悬浮液、喷雾干燥的分散液)、糖浆和乳液;经舌下;含服;经肠胃外,诸如通过皮下、静脉内、肌内或胸骨内注射或输注技术(例如以无菌可注射水性或非水性溶液或悬浮液形式);经鼻,包括向鼻膜给药,诸如通过吸入喷雾;局部,诸如以乳膏剂或软膏剂形式;或经直肠,诸如以栓剂形式;或经瘤内注射。它们可单独给药,但通常使用基于所选给药途径和标准药学实践选择的药物载体给药。
根据本领域技术人员认识范围内的诸多因素来调配药用载体。这些因素包括,但不限于:所调配活性剂的类型和性质;含有活性剂的组合物所要给药的受试者;组合物的预期给药途径;及所靶向的治疗适应症。药用载体包括水性和非水性液体介质及各种固体和半固体剂型。
上述载体可包括除活性剂外的诸多不同成分和添加剂,上述其它成分出于本领域技术人员公知的各种原因包括于制剂中,例如稳定活性剂、粘合剂等。关于合适的药用载体和载体选择中所涉及的因素的描述可参见多个容易获得的来源,例如Allen L.V.Jr.et al.Remington:The Science and Practice of Pharmacy(2 Volumes),22nd Edition(2012),Pharmaceutical Press。
当然,本发明化合物的剂量方案取决于已知因素而有所变化,诸如具体药剂的药效学特性及其给药模式和途径;接受者的物种、年龄、性别、健康状况、医学病状和重量;症状的性质和程度;同时治疗的 种类;治疗频率;给药途径、患者的肾和肝功能及期望效应。根据一般指导,当用于指定效应时,各活性成分的日口服剂量应为约0.001mg/天至约10-5000mg/天,优选地为约0.01mg/天至约1000mg/天,且最优选地为约0.1mg/天至约250mg/天。在恒速输注期间,静脉内最优选剂量应为约0.01mg/kg/分钟至约10mg/kg/分钟。本发明化合物可以单一日剂量给药,或可以每日两次、三次或四次的分开剂量给药总日剂量。
所述化合物通常以与根据预期给药形式(例如口服片剂、胶囊剂、酏剂和糖浆剂)适当地选择且与常规药学实践相符合的合适药物稀释剂、赋形剂或载体(在本文中统称为药物载体)的混合物形式进行给药。
适于给药的剂型(药物组合物)可含有约1毫克至约2000毫克活性成分/剂量单位。在这些医药组合物中,以组合物的总重量计,活性成分通常将以约0.1-95重量%的量存在。
用于口服给药的典型胶囊剂含有至少一种本发明化合物(250mg)、乳糖(75mg)和硬脂酸镁(15mg)。使该混合物穿过60目网筛,并包装成1号明胶胶囊。
典型的可注射制剂可如下制备:以无菌方式将至少一种本发明化合物(250mg)置于瓶中、以无菌方式冻干并密封。为进行使用,将瓶内容物与2mL生理盐水混合,以产生可注射制剂。
本发明范围包括(单独或与药物载体组合)包含治疗有效量的至少一种本发明化合物作为活性成分的药物组合物。任选地,本发明化 合物可单独使用、与本发明其它化合物组合使用或与一种或多种其它治疗剂(例如抗癌剂或其它药学活性物质)组合使用。
不考虑所选择的给药路径,通过本领域技术人员已知的常规方法来将本发的化合物(其可以合适的水合形式使用)和/或本发明的药物组合物配制成药用剂量形式。
可改变活性成分在本发明的药物组合物中的实际剂量水平,从而获得对于实现特定患者的期望的治疗响应、组成和给药模式有效的而对患者无毒的活性成分量。
选定的剂量水平会取决于多种因素,包括所用的本发明的特定化合物或其酯、盐或酰胺的活性;给药路径;给药时间;所用的特定化合物的排泄速率;吸收速率和程度;治疗的持续时间;与所用的特定化合物组合使用的其它药物、化合物和/或物质;所治疗的患者的年龄、性别、重量、状况、一般健康和先前的医学史等医学领域公知的因素。
具有本领域普通技术的医生或兽医可容易地确定并开出有效量的所需药物组合物。例如,为了达到所期望的治疗效果,医师或兽医可在低于所需的水平开始药物组合物中所用的本发明化合物的较量,并逐步增加剂量直至实现所期望的效果。通常,合适日剂量的本发明化合物将是有效产生治疗效果的最低剂量的化合物的量。此种有效剂量通常取决于上述因素。通常,口服、静脉内、脑室内和皮下剂量的用于患者的本发明化合物的范围为约0.01至约50mg/kg体重/天。如果需要的话,有效日剂量的活性化合物可以两个、三个、四个、五个、 六个或更多个亚剂量在一天当中的适当的间隔分别给药,任选地呈单位剂型形式。在本发明的某些方面中,服药为每天一次给药。
虽然本发明化合物可单独给药,但优选以药物制剂(组合物)形式给予化合物。
试剂盒/产品包装
为了用于上述适应症的治疗,试剂盒/产品包装也在此进行描述。这些试剂盒可以由输送器、药包或容器盒组成,容器盒可被划分成多格,以容纳一种或多种容器,如管形瓶、试管及类似物等,每个容器中包含所述方法中的单独一种成分。合适的容器包括瓶子,管形瓶,注射器和试管等。容器由可接受的玻璃或塑料等材料制作而成。
举例来讲,容器可装有一种或多种在此所述的化合物,化合物可能以药物组分形式存在,也可能与在本文中所述的其它成分组成混合物体存在。容器可有一个无菌输出口(例如容器可为静脉输液包或瓶,瓶塞可被皮下注射器针头刺破)。这样的试剂盒可带有一种化合物,及本文中所述的使用方法的说明、标签或操作说明。
一个典型的试剂盒可包括一种或多种容器,为适应商业推广和使用者对化合物使用的需求,每个容器装有一种或多种材料(如试剂,也可以是浓缩的母液,和/或器械)。这些材料包括但不局限于缓冲液,稀释液,滤器,针头,注射器,输送器,包,容器,瓶和/或试管,附有内容清单和/或使用说明书,内置包装也附有说明书。整套的说明都要包括在内。
标签可显示在容器上或与容器紧密相关。标签出现在容器上即指 标签字母、数字或其它特征被粘贴、铸模、刻在容器上;标签也可出现在装有多种容器的容器盒或运输盒内,如在产品插页中。一个标签可用来提示内容物的某种特定治疗用途。标签也可标示内容物使用说明,诸如在上述方法中描述的。
在本说明书中被描述的所有特征(包括任何所述的权利要求、摘要和图),和/或任何方法或过程中涉及的所有步骤,均有可能以任意一种组合存在,除非某些特征或步骤在同一组合中是相互排斥的。
本发明提到的上述特征,或实施例提到的特征可以任意组合。本案说明书所揭示的所有特征可与任何组合物形式并用,说明书中所揭示的各个特征,可以任何可提供相同、均等或相似目的的替代性特征取代。因此除有特别说明,所揭示的特征仅为均等或相似特征的一般性例子。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。除非另外说明,否则所有的百分数、比率、比例、或份数按重量计。
本发明中的重量体积百分比中的单位是本领域技术人员所熟知的,例如是指在100毫升的溶液中溶质的重量。除非另行定义,文中所使用的所有专业与科学用语与本领域熟练人员所熟悉的意义相同。此外,任何与所记载内容相似或均等的方法及材料皆可应用于本发明方法中。文中所述的较佳实施方法与材料仅作示范之用。
在本发明的优选例中,提供但不局限于以下化合物:
Figure PCTCN2019101707-appb-000027
Figure PCTCN2019101707-appb-000028
Figure PCTCN2019101707-appb-000029
Figure PCTCN2019101707-appb-000030
Figure PCTCN2019101707-appb-000031
Figure PCTCN2019101707-appb-000032
Figure PCTCN2019101707-appb-000033
Figure PCTCN2019101707-appb-000034
Figure PCTCN2019101707-appb-000035
Figure PCTCN2019101707-appb-000036
Figure PCTCN2019101707-appb-000037
Figure PCTCN2019101707-appb-000038
Figure PCTCN2019101707-appb-000039
Figure PCTCN2019101707-appb-000040
Figure PCTCN2019101707-appb-000041
Figure PCTCN2019101707-appb-000042
Figure PCTCN2019101707-appb-000043
Figure PCTCN2019101707-appb-000044
Figure PCTCN2019101707-appb-000045
具体实施例
当未包括制备途径时,相关中间体是市售的(例如来自Sigma Aldrich,Alfa)。
通用过程
使用市售试剂而不需进一步纯化。室温是指20-27℃。1H-NMR谱在Bruker仪器上于500MHz记录。化学位移值以百万分率表示,即δ值。以下简写用于NMR信号的多重性:s=单峰,brs=宽峰,d=二重峰,t=三重峰,m=多重峰。耦合常数以J值列出,以Hz测量。NMR和质谱结果根据背景峰校正。色谱是指使用100筛目硅胶进行并在氮气压力(快速色谱)条件下完成的柱色谱。用于监测反应的TLC指使用特定流动相和来自Merck的硅胶F254作为固定相进行的TLC。
实施例1
Benzyl
(S)-(3-(7-carbamoyl-2-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylen-3-yl)propyl)carbamate
Figure PCTCN2019101707-appb-000046
化合物1由以下步骤制备:
Figure PCTCN2019101707-appb-000047
第一步:将N-叔丁氧羰基-N’-苄氧羰基-L-鸟氨酸1a(25g,68mmol),三乙胺(11.5mL,81.9mmol)溶于四氢呋喃(100mL)中,在冰浴条件下滴加氯甲酸异丁酯(10mL,79mmol),冰浴下搅拌半小时,依次加入硼氢化钠(7.8g,205mmol),水(3mL)缓慢滴加,继续在冰浴下搅拌2小时。LC-MS监测反应结束,加水(150mL)淬灭,用乙酸乙酯萃取水相(150mL*3),合并有机相,无水硫酸钠干燥,过滤,浓缩得到化合物1b(20g),无色油状液体,产率83%。ESI-MS(m/z):353.6[M+H] +1H NMR(500MHz,DMSO-d6)δppm 7.39-7.25(m,5H),7.19(t,J=5.2Hz,1H),6.43(d,J=8.3Hz,1H),4.98 (s,2H),4.53(t,J=5.4Hz,1H),3.30-3.07(m,2H),2.94(dd,J=12.4,6.4Hz,2H),1.57-1.39(m,2H),1.35(s,9H),1.23-1.12(m,2H)。
第二步:将化合物1b(20g,56mmol)溶于二氯甲烷(200mL)中,加入氯化氢-1,4二氧六环溶液(70mL,280mmol),室温搅拌过夜。LC-MS监测反应结束,旋干溶剂得到化合物1c(13g),无色油状液体,产率93%。ESI-MS(m/z):253.6[M+H] +
第三步:将3-氟-4-羟基苯甲腈1d(13.7g,100mmol)溶于浓硫酸(200mL)中,冰浴下滴加硝酸(50mL),反应混合物在冰浴下搅拌三小时,LC-MS监测反应结束,将反应混合物缓慢倒入冰水中,用乙酸乙酯萃取水相(300mL*3),合并有机相,无水硫酸钠干燥,过滤,浓缩得到化合物1e(15g),棕色固体,产率82%。 1H NMR(500MHz,DMSO-d6)δppm 8.29(s,1H),8.12(d,J=10.4Hz,1H)。
第四步:将化合物1e(15g,82mmol)溶于二氯甲烷(100mL)中,冰浴下滴加草酰氯(13.7mL,163mmol),反应混合物在冰浴下搅拌30分钟后升至80℃搅拌两小时。LC-MS监测反应结束,将反应混合物倒入冰水中,用乙酸乙酯萃取水相(250mL*3),合并有机相,无水硫酸钠干燥,过滤,浓缩得到化合物1f(11.3g),黄色固体,产率69%。 1H NMR(500MHz,DMSO-d6)δppm 8.62(s,1H),8.50(dd,J=8.8,1.6Hz,1H)。
第五步:取化合物1f(5g,25mmol)溶于N,N-二甲基甲酰胺(20mL)中,依次加入化合物1c(13g,51mmol),碳酸钾(6.9g,50mmol)。反应混合物在60℃下搅拌过夜。LC-MS监测反应结束,加水(100mL),用乙酸乙酯萃取水相(150mL*3),有机相合并后通过硅胶柱层析分离得到化合物1g(6.1g),黄色油状液体,产率57%。ESI-MS(m/z):417.6[M+H] +
第六步:将化合物1g(6g,14mmol)溶于N,N-二甲基甲酰胺(15mL)中,加入碳酸铯(9.2g,28mmol)。反应混合物在60℃下搅拌2小时,LC-MS监测反应结束,加水(100mL),用乙酸乙酯萃取水相(150mL*3),有机相合并后通过硅胶柱层析分离得到化合物1h(4.7g),黄色固体,产率82%。ESI-MS(m/z):397.7[M+H] +1H NMR(500MHz,DMSO-d6)δppm 8.88(s,1H),8.12(s,1H),7.38(s,1H),7.36–7.19(m,6H),4.97(s,2H),4.10(dd,J=23.9,10.9Hz,2H),3.72(s,1H),3.01(s,2H),1.67–1.52(m,4H)。
第七步:将化合物1h(4.7g,11.8mmol)溶于甲醇(100mL)中,加入氨水(20mL)。再取连二亚硫酸钠(10g,57mmol)溶于20mL水中,室温下缓慢加入反应液后,继续室温搅拌半小时。LC-MS监测反应结束,向反应混合物中加水(200mL),用乙酸乙酯萃取水相(200mL*3),有机相合并后,无水硫酸钠干燥,过滤,浓缩得到 化合物1i(3.8g),淡黄色固体,产率87%。ESI-MS(m/z):367.7[M+H] +1H NMR(500MHz,DMSO-d6)δppm 7.42-7.23(m,6H),6.45(dd,J=11.9,1.8Hz,2H),5.45(d,J=1.6Hz,1H),5.01(s,2H),4.99(s,2H),4.07(dd,J=10.5,2.5Hz,1H),3.71(dd,J=10.5,6.3Hz,1H),3.34(dd,J=5.9,2.8Hz,1H),3.01(dd,J=12.2,6.2Hz,2H),1.63-1.29(m,4H)。
第八步:将化合物1i(3.8g,10mmol)溶于甲醇(60mL)中,加入溴化氰(5.4g,51mmol),60℃下搅拌过夜。LC-MS监测反应结束后,浓缩反应液,加入乙酸乙酯(150mL)和饱和碳酸钠水溶液(150mL),分层萃取,水相继续用乙酸乙酯(100mL)萃取两次,合并有机相,无水硫酸钠干燥,过滤,浓缩得到化合物1j(3.5g),淡黄色固体,产率86%。ESI-MS(m/z):392.6[M+H] +
第九步:将化合物1j(3.5g,9mmol)溶于N,N-二甲基甲酰胺(20mL)中,加入氢氧化钠(1g,25mmol),冰浴下缓慢滴加30%双氧水(12mL),升至室温搅拌半小时,LC-MS监测反应结束,向反应混合物中加水(100mL),用乙酸乙酯萃取水相(150mL*3),有机相合并后,无水硫酸钠干燥,过滤,浓缩得到化合物1k(2.8g),黄色固体,产率76%。ESI-MS(m/z):410.5[M+H] +
第十步:将1-乙基-3-甲基吡唑-5-羧酸(1.6g,10.3mmol)溶于N,N-二甲基甲酰胺(8mL)中,依次加入HATU(3.9g,10.3mmol), HOBt(700mg,5.2mmol),三乙胺(2.8mL,20mmol),反应混合物在室温下搅拌半小时。再加入化合物1k(2.8g,6.8mmol),混合物升至60℃下搅拌5小时。LC-MS监测反应结束,向反应混合物中加水(40mL),用乙酸乙酯萃取水相(100mL*3),有机相合并浓缩,残余物硅胶柱层析纯化得到化合物1(2.6g),白色固体,产率70%。ESI-MS(m/z):546.4[M+H] +1H NMR(500MHz,DMSO-d6)δppm 12.71(s,1H),7.90(s,1H),7.57(s,1H),7.34-7.21(m,8H),6.62(s,1H),4.95(s,2H),4.66-4.53(m,4H),4.23(d,J=9.5Hz,1H),3.08-2.96(m,2H),2.15(s,3H),1.81-1.72(m,2H),1.62-1.52(m,2H),1.34(t,J=7.1Hz,3H)。
实施例2
Benzyl
(R)-(3-(7-carbamoyl-2-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylen-3-yl)propyl)carbamate
Figure PCTCN2019101707-appb-000048
化合物2由以下步骤制备:
Figure PCTCN2019101707-appb-000049
第一步:将N-叔丁氧羰基-N’-苄氧羰基-D-鸟氨酸2a(25g,68mmol),三乙胺(11.5mL,81.9mmol)溶于四氢呋喃(100mL)中,在冰浴条件下滴加氯甲酸异丁酯(10mL,79mmol),冰浴下搅拌半小时,依次加入硼氢化钠(7.8g,205mmol),水(3mL,缓慢滴加),继续在冰浴下搅拌2小时。LC-MS监测反应结束,加水(150mL)淬灭,用乙酸乙酯萃取水相(150mL*3),合并有机相,无水硫酸钠干燥,过滤,浓缩得到化合物2b(22g),无色油状液体,产率91%。ESI-MS(m/z):353.6[M+H] +
第二步:将化合物2b(22g,56mmol)溶于二氯甲烷(200mL)中,加入氯化氢-1,4二氧六环溶液(75mL,300mmol),室温搅拌过夜。LC-MS监测反应结束。反应液浓缩得到化合物2c(13.5g),无色油状液体,产率86%。ESI-MS(m/z):253.6[M+H] +
第三步:将化合物1f(5.3g,26.5mmol)溶于N,N-二甲基甲酰胺(20mL)中,依次加入化合物2c(13.4g,53mmol)),碳酸钾(7.4g,54mmol)。反应混合物在60℃下搅拌过夜。LC-MS监测反应结束,加水(150mL),用乙酸乙酯萃取水相(150mL*3),有机相合并,无水硫酸钠干燥,过滤浓缩。残余物硅胶柱层析纯化得到化合物2d(6.9g),黄色油状液体,产率63%。ESI-MS(m/z):417.6[M+H] +
第四步:将化合物2d(6.9g,16.5mmol)溶于N,N-二甲基甲酰胺(15mL)中,加入碳酸铯(10.8g,33mmol)。反应混合物在60℃下搅拌2小时,LC-MS监测反应结束,加水(150mL),用乙酸乙酯萃取水相(150mL*3),有机相合并,无水硫酸钠干燥,过滤浓缩。残余物通过硅胶柱层析纯化得到化合物2e(4.4g),黄色固体,产率67%。ESI-MS(m/z):397.7[M+H] +
第五步:将化合物2e(4.4g,11.1mmol)溶于甲醇(100mL)中,加入氨水(20mL)。再取连二亚硫酸钠(9.6g,55mmol)溶于20mL水中,室温下缓慢加入反应液后,继续室温搅拌半小时。LC-MS监测反应结束,向反应混合物中加水(200mL),用乙酸乙酯萃取水相(200mL*3),有机相合并后,无水硫酸钠干燥,过滤,浓缩得到化合物2f(3.5g),淡黄色固体,产率86%。ESI-MS(m/z):367.7[M+H] +
第六步:将化合物2f(3.5g,9.5mmol)溶于甲醇(60mL)中,加入溴化氰(5.05g,47.6mmol),60℃下搅拌过夜。LC-MS监测反应结束后,浓缩反应液,加入乙酸乙酯(150mL)和饱和碳酸钠水溶液(150mL),分层萃取,水相继续用乙酸乙酯(100mL)萃取两次,合并有机相,无水硫酸钠干燥,过滤,浓缩得到化合物2g(3.4g),淡黄色固体,产率91%。ESI-MS(m/z):392.6[M+H] +
第七步:将化合物2g(3.4g,8.7mmol)溶于N,N-二甲基甲酰胺(20mL)中,加入氢氧化钠(1g,25mmol),冰浴下缓慢滴加30%双氧水(12mL),升至室温搅拌半小时,LC-MS监测反应结束,向反应混合物中加水(100mL),用乙酸乙酯萃取水相(150mL*3),有机相合并后,无水硫酸钠干燥,过滤,浓缩得到化合物2h(2.7g),淡黄色固体,产率76%。ESI-MS(m/z):410.5[M+H] +
第八步:将1-乙基-3-甲基-吡唑-5-羧酸(1.5g,9.7mmol)溶于N,N-二甲基甲酰胺(8mL)中,依次加入HATU(3.8g,10mmol),HOBt(670mg,5mmol),三乙胺(2.8mL,20mmol),反应混合物在室温下搅拌半小时。再加入化合物2h(2.7g,6.6mmol),混合物升至60℃下搅拌5小时。LC-MS监测反应结束,向反应混合物中加水(35mL),用乙酸乙酯萃取水相(100mL*3),有机相合并,无水硫酸钠干燥,过滤浓缩。残余物通过硅胶柱层析纯化得到化合物2(2.8g),白色固体,产率77%。ESI-MS(m/z):546.4[M+H] +1H NMR (500MHz,DMSO-d6)δppm 12.66(s,1H),7.92(s,1H),7.60(s,1H),7.38-7.21(m,8H),6.63(s,1H),4.96(s,2H),4.62(dd,J=17.3,8.8Hz,4H),4.30-4.19(m,1H),3.11-2.96(m,2H),2.17(s,3H),1.83-1.74(m,2H),1.59-1.52(m,2H),1.35(t,J=7.0Hz,3H)。
实施例3
2-(1-Ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3-(hydroxymethyl)-3-methyl-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylene-7-carboxamide
Figure PCTCN2019101707-appb-000050
化合物3由以下步骤制备:
Figure PCTCN2019101707-appb-000051
第一步:将4-氯-3-氟-5-硝基苯腈1f(10.0g,49.86mmol)溶于乙腈(100mL)中,在室温下加入2-氨基-2-甲基-1,3-丙二醇3a(26.21g,249.31mmol)和碳酸铯(24.37g,74.79mmol)。反应混合物在70℃下搅拌7小时。加水(400mL)稀释,用乙酸乙酯(3×300mL)萃取水相,合并有机相,用饱和食盐水(3×100mL)洗涤,无水硫酸钠干燥,过滤浓缩。残留物用硅胶柱层析分离得到化合物3b(8g),黄色固体,收率64%。ESI-MS(m/z):499.3[2M+H] +1H NMR(500MHz,DMSO-d6)δppm 8.43(s,1H),8.13(s,1H),7.43(s,1H),5.27(s,1H),4.11(d,J=10.8Hz,1H),3.87(d,J=10.8Hz,1H),3.45(d,J=10.6Hz,1H),3.42-3.35(m,1H),1.25(s,3H)。
第二步:将化合物3b(8g,31.20mmol)溶于甲醇(80ml)中,加入氢氧化钠(3.85g,96.30mmol),在50℃下缓慢滴30%双氧水(5.46g,48.15mmol)。反应混合物在50℃下搅拌2小时后冷却到室温。加水(100mL)稀释,用乙酸乙酯(3×200mL)萃取水相,合并有机相,用饱和食盐水(100mL*3)洗涤,无水硫酸钠干燥,过滤浓缩。残留物用硅胶柱层析分离得到化合物3c(8g),黄色固体,收率89%。ESI-MS(m/z):268.5[M+H] +1H NMR(500MHz,CDCl 3)δ8.28(d,J=2.0Hz,1H),8.18(s,1H),7.95(s,1H),7.55(d,J=1.6Hz,1H),7.28(s,1H),5.23(t,J=5.5Hz,1H),4.10(d,J=10.8Hz,1H),3.85(d,J=10.8Hz,1H),3.45(dd,J=10.7,5.1Hz,1H),3.38(dd,J=10.7,5.4Hz,1H),1.25(s,3H)。
第三步:将化合物3c(8g,29.94mmol)溶于N,N-二甲基甲酰胺(80mL)中,依次加入咪唑(8.15g,119.74mmol),叔丁基二甲基氯硅烷(13.54g,89.81mmol)。反应混合物在0℃搅拌2小时。然后加水(300mL)稀释反应液,用乙酸乙酯(3×200mL)萃取,合并有机相,有机相用饱和食盐水(3×100mL)洗,无水硫酸钠干燥,过滤浓缩,残余物用硅胶柱层析分离得到化合物3d(5.6g),黄色固体,收率49%。ESI-MS(m/z):382.5[M+H] +1H NMR(500MHz,DMSO-d6)δ8.27(d,J=2.0Hz,1H),8.21(s,1H),7.95(s,1H),7.55(d,J=1.9Hz,1H),7.30(s,1H),4.09(d,J=10.8Hz,1H),3.85(d,J=10.8Hz,1H),3.60(d,J=9.8Hz,1H),3.54(d,J=9.8Hz,1H),0.84(s,9H),0.01(s,3H),0.00(s,3H)。
第四步:将化合物3d(2g,5.24mmol)溶于乙酸(20mL)中,分批加入锌粉(2.74g,14.94mmol)。反应混合物在50℃反应1小时。用硅藻土滤除过量的锌粉,乙酸乙酯(3×50mL)洗涤滤饼。减压浓缩除去大部分溶剂后,用碳酸氢钠水溶液调浓缩液pH至7,乙酸乙酯(3×100mL)萃取,合并有机相,有机相用饱和食盐水(3×50mL)洗,无水硫酸钠干燥,过滤浓缩得到粗品化合物3e(1.8g),黄色固体。ESI-MS(m/z):352.5[M+H] +
第五步:将化合物3e(1.8g)溶于甲醇(20mL)中,分批加入溴氰(2.78g,26.20mmol),反应混合物加热至50℃反应2小时。冷至室温后,反应液浓缩,加水(100mL)稀释,用饱和碳酸氢钠水溶液调节pH至7。乙酸乙酯(3×100mL)萃取水相,合并有机相,饱和食盐水(3×50mL)洗涤,无水硫酸钠干燥,过滤浓缩。残留物用硅胶柱层析纯化得到化合物3f(1.7g),棕色固体,两步收率86%。ESI-MS(m/z):377.5[M+H] +1H NMR(500MHz,DMSO-d6)δppm 7.70(s,1H),7.35(s,1H),6.99(d,J=12.1Hz,2H),6.37(s,2H),4.24(d,J=11.5Hz,1H),4.00(dd,J=14.3,7.1Hz,2H),3.92(d,J=11.5Hz,1H),3.75(s,2H),1.47(d,J=11.4Hz,4H),0.77(d,J=18.5Hz,10H),0.02--0.03(m,4H),-0.06(s,3H)。
第六步:将化合物3f(1.5g,4.02mmol)溶于N,N-二甲基甲酰胺(8ml)中,依次加入1-乙基3-甲基-1-氢吡唑-5-羧酸(990.53mg,6.43mmol),N,N-二异丙基乙胺(1.56g,12.05mmol)和2-(7-偶氮苯并三氮唑)-N,N,N,N-四甲基脲六氟磷酸酯(3.05g,8.03mmol)。在60℃反应2小时后停止反应,冷到室温。用水(20mL)稀释,水相用乙酸乙酯(3×50mL)萃取,合并有机相,用饱和食盐水(3×50mL)洗涤,无水硫酸钠干燥,过滤浓缩。残留物用硅胶柱层析纯化得到化合物3g(1.75g),白色固体,收率85%。ESI-MS(m/z):513.4[M+H] +
第七步:将3g(990mg,1.93mmol)溶于四氢呋喃(15mL),0℃下加入四丁基氟化铵(1.43g,6.36mmol)。在0℃反应3小时后,加水(20mL)稀释,水相用乙酸乙酯(3×50mL)萃取,合并有机相,饱和食盐水(3×50mL)洗涤,无水硫酸钠干燥,过滤浓缩。残留物用硅胶柱层析分离得到化合物3(693mg),白色固体,收率90%。ESI-MS(m/z):398.5[M+H] +1H NMR(500MHz,DMSO-d6)δppm 12.77(s,1H),7.89(s,1H),7.55(d,J=1.0Hz,1H),7.28(t,J=2.5Hz,2H),6.56(s,1H),5.60(t,J=6.0Hz,1H),4.56(q,J=7.1Hz,2H),4.37(d,J=11.6Hz,1H),4.17(d,J=11.6Hz,1H),3.90(dd,J=11.3,6.7Hz,1H),3.78(dd,J=11.3,5.4Hz,1H),2.16(s,3H),1.60(s,3H),1.32(t,J=7.1Hz,3H)。
实施例4
tert-Butyl
(S)-(3-(7-carbamoyl-2-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylen-3-yl)propyl)carbamate
Figure PCTCN2019101707-appb-000052
化合物4由以下步骤制备:
Figure PCTCN2019101707-appb-000053
第一步:将化合物1(2.5g,4.6mmol)加入氢溴酸-醋酸溶液(50mL)中,室温搅拌半小时,LC-MS监测反应结束,加入乙醚(50mL),过滤,再用乙醚(30mL*3)洗滤饼后,将滤饼干燥得到化合物4a(1.8g),白色固体,产率96%。白色固体,ESI-MS(m/z):412.6[M+H] +
第二步:取化合物4a(50mg,0.12mmol)溶于二氯甲烷(10mL)中,依次加入三乙胺(25mg,0.25mmol)和二碳酸二叔丁酯(53mg,0.24mmol),室温搅拌两小时,LC-MS监测反应结束。反应液浓缩,残余物通过反相制备色谱分离得到化合物4(40mg),白色固体,产率64%。ESI-MS(m/z):512.6[M+H] +1H NMR(500MHz,DMSO-d6)δppm 12.76(s,1H),7.93(s,1H),7.59(s,1H),7.34(s,1H),7.32(s,1H),6.80(s,1H),6.65(s,1H),4.68-4.54(m,4H),4.29-4.23(m,1H),3.01-2.84(m,2H),2.18(s,3H),1.83-1.71(m,2H),1.53(d,J=6.5Hz,2H),1.36(t,J=7.1Hz,3H),1.32(s,9H)。
实施例5
Ethyl
(E)-3-(7-carbamoyl-2-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3-methyl-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylen-3-yl)acrylate
Figure PCTCN2019101707-appb-000054
化合物5由以下步骤制备:
Figure PCTCN2019101707-appb-000055
第一步:将化合物3(100mg,0.25ummol)溶于四氢呋喃(5mL)中,在0℃下分批加入DMP(212mg,0.5mmol),在室温下反应2小时。加水(20mL)稀释,用乙酸乙酯(3×50mL)萃取水相,合并有机相,用无水硫酸钠干燥,过滤浓缩得粗品化合物5a,直接用于下一步。
第二步:将化合物5a(粗品)溶于二氯甲烷(5mL)中,在0℃下分批加入乙氧甲酰基亚甲基三苯基膦(131mg,0.37mmol),在室温下反应12小时。加水(10mL)稀释,用乙酸乙酯(3×50mL)萃取水相,合并有机相,用无水硫酸钠干燥,过滤浓缩。残余物用反向HPLC分离制备得到化合物5(13mg),白色固体,两步收率11%。ESI-MS(m/z):467.5[M+H] +1H NMR(500MHz,DMSO-d6)δppm 12.85(s,1H),7.94(s,1H),7.61(s,1H),7.34(s,2H),7.25(dd,J=15.9,3.0Hz,1H),6.52(s,1H),5.65(dd,J=15.9,3.0Hz,1H),4.67– 4.48(m,3H),4.27(d,J=11.5Hz,1H),4.11(dd,J=14.0,7.0Hz,2H),2.15(s,3H),1.89(s,3H),1.32(t,J=7.0Hz,3H),1.18(t,J=7.0Hz,3H)。
实施例6
tert-Butyl
(S)-(2-(7-carbamoyl-2-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylen-3-yl)ethyl)carbamate
Figure PCTCN2019101707-appb-000056
化合物6由以下步骤制备:
Figure PCTCN2019101707-appb-000057
Figure PCTCN2019101707-appb-000058
第一步:将4-氯-3-氟-5-硝基苯腈1f(4g,20mmol)和化合物6a(10g,37.21mmol)溶于乙腈(150mL)中,加入碳酸钾(8.3g,60mmol),氮气保护下70℃反应24小时,点板显示反应完全,冷却到室温,反应物用固体垫硅胶过滤,二氯甲烷(100mL)洗固体,滤液浓缩,残余物柱层析纯化得化合物6b(4.3g),黄色油,产率54.4%。ESI-LC-MS(m/z):397.5[M+H] +
第二步:将化合物6b(4.3g,10.85mmol)溶于无水四氢呋喃(40mL)中,冰浴下慢慢加入硼氢化锂(354mg,16.27mmol)后升至室温反应30分钟,TLC显示反应完全。0℃下缓慢滴加氯化铵水溶液(10mL)至反应体系没有气泡,倒入水(50mL)中,乙酸乙酯(50mL*3)萃取,有机相用饱和食盐水洗3次,无水硫酸钠干燥,过滤浓缩,残余物拌样过柱得化合物6c(2.3g),产率57.5%。ESI-LC-MS(m/z):369.5[M+H] +
第三步:将化合物6c(2.3g,6.24mmol)溶于乙腈(20mL)中,加入碳酸铯(4g,12.5mmol),升温至70℃反应过夜,LC-MS 监测反应完全,冷却到室温。反应体系经硅胶过滤,二氯甲烷淋洗,滤液浓缩得化合物6d(2g),棕色油,收率90%。ESI-LC-MS(m/z):349.4[M+H] +
第四步:将化合物6d(2g,5.75mmol)溶于甲醇(20mL)中,加入氨水(5mL),保险粉(5.7g,17.3mmol)溶于水(2mL)中缓慢滴入反应体系中,30分钟后LC-MS监测反应完全,倒入水中(50mL),乙酸乙酯(50mL*3)萃取,有机相用饱和食盐水洗3次,硫酸钠干燥,过滤浓缩得化合物6e(530mg),棕色油,收率30%,ESI-LC-MS(m/z):319.6[M+H] +
第五步:取化合物6e(530mg,1.67mmol)溶于甲醇(10mL)中,加入溴化氰(550mg,5mmol),室温反应过夜,LC-MS监测反应完全,反应液浓缩,残余物用硅胶柱层析纯化得化合物6f(550mg),棕色固体,收率96.2%。ESI-LC-MS(m/z):344.5[M+H] +1H NMR(500MHz,DMSO-d6)δ7.18(d,J=0.9Hz,1H),7.01(s,1H),6.87(t,J=7.1Hz,2H),4.58(d,J=12.1Hz,2H),4.14(d,J=10.3Hz,1H),3.05(s,2H),1.81-1.64(m,2H),1.37(s,9H)。
第六步:将化合物6f(550mg,1.6mmol)溶于四氢呋喃(10mL)中,依次加入1-乙基-3-甲基吡唑-5-羧酸(250mg,1.6mmol),HOBt(219mg,1.6mmol),HATU(617mg,1.6mmol)和TEA(0.67mL, 4.86mmol),加完后室温反应过夜,LC-MS监测反应完全。反应液用水(20mL)稀释,乙酸乙酯(15mL*3)萃取,有机相用饱和食盐水洗三次,硫酸钠干燥,过滤浓缩得化合物6g(700mg),棕色油,收率90%,ESI-LC-MS(m/z):480.6[M+H] +
第七步:将化合物6g(20mg,41.71umol)溶于DMSO(2mL),0℃下加入NaOH(5mg,125.12umol),后缓慢滴加H 2O 2(30%wt in water,0.2mL),滴加完毕,升至室温反应30分钟,LC-MS监测反应完全。反应液直接经反向制备色谱纯化获得化合物6(6.8mg),白色固体,收率32.8%。ESI-LC-MS(m/z):498.6[M+H] +1H NMR(500MHz,DMSO-d6)δppm 12.69(s,1H),7.92(s,1H),7.59(s,1H),7.34(s,1H),7.30(s,1H),6.94(s,1H),6.68(s,1H),4.63(dt,J=14.0,8.7Hz,4H),4.26(d,J=9.9Hz,1H),3.21-2.96(m,2H),2.18(s,3H),1.90(d,J=7.0Hz,2H),1.36(d,J=8.1Hz,9H),1.35(d,J=7.1Hz,3H)。
实施例7
(S)-2-(1-Ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3-(2-(2-phenoxyacetamido)ethyl)-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylene-7-carboxamide
Figure PCTCN2019101707-appb-000059
化合物7由以下步骤制备:
Figure PCTCN2019101707-appb-000060
第一步:将化合物6(530mg,1.07mmol)溶于四氢呋喃(10mL)中,滴加氯化氢二氧六环溶液(4N,10mL),室温反应过夜,LC-MS监测反应完全,反应液浓缩得化合物7a(430mg),淡黄色固体,收率93%,ESI-LC-MS(m/z):396.6[M+H] +
第二步:将化合物7a(50mg,115.24umol)溶于四氢呋喃(5mL)中,依次加入苯氧乙酸(17.5mg,115.24umol),HOBt(17.1mg,126.76umol),HATU(48.2mg,126.76umol)和TEA(35mg,345.71umol),加料完毕室温反应过夜,LC-MS监测反应完全。反应液直接通过反相制备色谱分离得到化合物7(13.8mg),白色固体,收率22.53%。ESI-LC-MS(m/z):532.5[M+H] +1HNMR(500MHz,DMSO-d6)δppm 12.69(s,1H),8.23(t,J=5.8Hz,1H),7.92(s,1H),7.34(s,1H),7.32-7.25(m,3H),6.95(t,J=7.8Hz,3H),6.68(s,1H), 4.70-4.56(m,4H),4.45(s,2H),4.26(d,J=9.7Hz,1H),3.38(d,J=7.2Hz,2H),2.09(s,3H),1.96(dt,J=14.4,7.2Hz,2H),1.34(t,J=7.1Hz,3H)。
实施例8
Pyridin-3-ylmethyl
(S)-(2-(7-carbamoyl-2-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylen-3-yl)ethyl)carbamate
Figure PCTCN2019101707-appb-000061
化合物8由以下步骤制备:
Figure PCTCN2019101707-appb-000062
第一步:将CDI(1.5g,9.25mmol)溶于无水四氢呋喃(15mL)中,滴加化合物8a(1g,9.17mmol)的四氢呋喃(2mL)溶液,滴加完毕,室温反应2小时,TLC显示反应完全。反应液加水(30mL)稀释,二氯甲烷(15mL*2)萃取,有机相用饱和食盐水洗三次,硫 酸钠干燥,过滤浓缩,残余物拌样过柱得化合物8b(1.2g),白色固体,收率64%。ESI-LC-MS(m/z):204.6[M+H] +
第二步:将化合物7a(30mg,69.14umol)加入到DMF(3mL)中,依次加入三乙胺(21mg,207.43umol),DBU(21mg,138.28umol)和8b(28.1mg,138.28umol)的DMF(0.5mL)溶液,50℃反应过夜,LC-MS监测反应完全。反应液通过反向制备色谱分离得到化合物8(12.6mg),白色固体,收率34.22%。ESI-LC-MS(m/z):533.5[M+H] +1H NMR(500MHz,DMSO-d6)δppm 12.73(s,1H),8.56(s,1H),8.52(d,J=3.6Hz,1H),7.92(s,1H),7.74(d,J=7.9Hz,1H),7.59(s,1H),7.39(dd,J=12.7,7.4Hz,2H),7.34(s,1H),7.31(s,1H),6.67(s,1H),5.06(q,J=12.8Hz,2H),4.73-4.64(m,2H),4.63-4.54(m,2H),4.27(d,J=10.9Hz,1H),3.27-3.20(m,1H),3.20-3.08(m,1H),2.09(s,3H),1.94(d,J=6.4Hz,2H),1.34(t,J=7.1Hz,3H)。
实施例9
Pyridin-2-ylmethyl
(S)-(2-(7-carbamoyl-2-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylen-3-yl)ethyl)carbamate
Figure PCTCN2019101707-appb-000063
化合物9由以下步骤制备:
Figure PCTCN2019101707-appb-000064
第一步:将CDI(750mg,4.63mmol)溶于无水四氢呋喃(10mL)中,滴加化合物9a(500mg,4.6mmol)的四氢呋喃(1mL)溶液,滴加完毕,室温反应2小时,TLC显示反应完全。反应液加水(20mL)稀释,二氯甲烷(10mL*2)萃取,有机相用饱和食盐水洗三次,硫酸钠干燥,过滤浓缩。残余物硅胶柱层析得化合物9b(560mg),淡黄色油,收率60%。ESI-LC-MS(m/z):204.6[M+H] +
第二步:将化合物7a(40mg,92.19umol)加入到DMF(3mL)中,依次加入三乙胺(28mg,276.57umol),DBU(28mg,184.38umol)和9b(37.5mg,184.38umol)的DMF(0.5mL)溶液,50℃反应过夜,LC-MS监测反应完全。反应液通过反向制备色谱分离得到化 合物9(7.5mg),白色固体,收率15.28%。ESI-LC-MS(m/z):533.3[M+H] +1H NMR(500MHz,DMSO-d6)δppm 12.75(s,1H),8.52(d,J=4.2Hz,1H),7.92(s,1H),7.78(t,J=7.6Hz,1H),7.60(s,1H),7.50(s,1H),7.33(dd,J=14.6,6.3Hz,4H),6.69(s,1H),5.08(q,J=13.6Hz,2H),4.74-4.64(m,2H),4.60(d,J=10.0Hz,2H),4.28(d,J=10.0Hz,1H),3.26(s,1H),3.20-3.11(m,1H),2.11(d,J=16.5Hz,3H),2.00-1.90(m,2H),1.34(t,J=7.1Hz,3H)。
实施例10
Pyridin-4-ylmethyl
(S)-(2-(7-carbamoyl-2-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylen-3-yl)ethyl)carbamate
Figure PCTCN2019101707-appb-000065
化合物10由以下步骤制备:
Figure PCTCN2019101707-appb-000066
第一步:将CDI(750mg,4.63mmol)溶于无水四氢呋喃(10mL)中,滴加10a(500mg,4.6mmol)的四氢呋喃(1mL)溶液,滴加完毕,室温反应2小时,点板显示反应完全。反应液加水(20mL)稀释,二氯甲烷(10mL*2)萃取,有机相用饱和食盐水洗三次,硫酸钠干燥,过滤浓缩。残余物硅胶柱层析纯化得化合物10b(510mg),淡黄色油,收率54.6%。ESI-LC-MS(m/z):204.6[M+H] +
第二步:将化合物7a(40mg,92.19umol)加入到DMF(3mL)中,依次加入三乙胺(28mg,276.57umol),DBU(28mg,184.38umol)和10b(37.5mg,184.38umol)的DMF(0.5mL)溶液,50℃反应过夜,LC-MS监测反应完全。反应液通过反向制备色谱分离得到化合物10(13mg),白色固体,收率26.5%。ESI-LC-MS(m/z):533.4[M+H] +1H NMR(500MHz,DMSO-d6)δ12.75(s,1H),8.50(dd,J=26.0,15.3Hz,2H),7.93(s,1H),7.60(s,1H),7.53(t,J=5.7Hz,1H),7.35(s,1H),7.26(dd,J=35.7,18.7Hz 3H),6.69(s,1H),5.07(q,J=14.4Hz,2H),4.69(dd,J=24.1,11.5Hz,2H),4.60(dd,J=14.0,7.0Hz,2H),4.28(d,J=9.8Hz,1H),3.25(s,1H),3.20-3.11(m,1H),2.09(s,3H),1.96(d,J=6.9Hz,2H),1.35(t,J=7.1Hz,3H)。
实施例11
2-(1-Ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylene-7-carboxamide
Figure PCTCN2019101707-appb-000067
化合物11由以下步骤制备:
Figure PCTCN2019101707-appb-000068
第一步:将化合物1f(500mg,2.49mmol)溶于乙腈(20mL)中,依次加入乙醇胺(304.6mg,4.99mmol)和碳酸钾(861.4mg,6.23mmol),加料完毕70℃反应2小时,TLC显示反应完全。冷却到室温,固体过滤除去,滤液浓缩硅胶柱层析纯化得化合物11a(520mg),黄色固体,收率92.8%。 1H NMR(500MHz,DMSO-d6)δppm 8.47(s,1H),8.40(d,J=1.3Hz,1H),7.95(dd,J=14.3,1.5Hz,1H),5.03(t,J=5.0Hz,1H),3.66(dd,J=9.7,4.8Hz,2H),3.64-3.56(m,2H)。
第二步:将化合物11a(520mg,2.31mmol)溶于乙腈(10mL)中,加入碳酸铯(1.5g,4.62mmol),70℃反应过夜,点板显示有部分原料剩余,冷却到室温,固体过滤除去,滤液浓缩后经硅胶柱层析纯化得化合物11b(170mg),黄色固体,收率36%,纯度100%。
第三步:将化合物11b(170mg,0.83mmol)溶于甲醇和二氯甲烷得混合溶剂(5/1,12mL)中,加入氨水(3mL),后滴加保险粉(433mg,2.49mmol)的水溶液(1mL),加完后室温搅拌30分钟,.点板显示反应完全。反应液倒入饱和食盐水(20mL)中,乙酸乙酯(10mL*5)萃取,有机相用无水硫酸钠干燥,过滤,浓缩得化合物11c(108mg),粉色固体,收率74.4%。ESI-LC-MS(m/z):176.4[M+H] +
第四步:将化合物11c(108mg,616.48umol)溶于1,4-二氧六环(5mL)中,加入1-乙基-3-甲基-1H-吡唑-5-羰基异硫氰酸酯(0.4M二氧六环溶液,1.7mL,678.13umol),室温反应1小时,LC-MS监测原料反应完全,DCC(140mg,678.12umol)加入到上述反应液中,80℃反应1小时,LC-MS监测中间态反应完全。反应液直接浓缩得化合物11d粗品(200mg),红色油,直接用于下一步。ESI-LC-MS(m/z):337.5[M+H] +
第五步:将化合物11d(200mg,粗品)溶于DMSO(10mL)中,加入氢氧化钠(71.4mg,1.78mmol),0℃下缓慢滴加30%双氧水(1mL),滴加完毕,60℃反应30分钟,LC-MS监测反应完全。反应液冷却到室温,缓慢滴加饱和亚硫酸钠溶液(3mL),然后倒入饱和食盐水(15mL)中,乙酸乙酯(10mL*5)萃取,有机相无水硫酸钠干燥,过滤,浓缩。残余物通过反向制备色谱分离得到化 合物11(50mg),粉色固体。ESI-LC-MS(m/z):355.4[M+H] +1H NMR(500MHz,DMSO-d6)δppm 12.63(s,1H),7.91(s,1H),7.58(s,1H),7.32(s,1H),7.29(s,1H),6.65(s,1H),4.61(dd,J=14.0,6.9Hz,2H),4.56–4.49(m,2H),4.22(d,J=4.4Hz,2H),2.17(s,3H),1.35(t,J=7.1Hz,3H)。
.
实施例12
(E)-2-(1-Ethyl-3-methyl-4-(3-phenylprop-1-en-1-yl)-1H-pyrazole-5-carboxamido)-7-methoxy-1-methyl-1H-benzo[d]imidazole-5-carboxamide
Figure PCTCN2019101707-appb-000069
化合物12由以下步骤制备:
Figure PCTCN2019101707-appb-000070
第一步:将1f(500mg,2.49mmol)溶于乙腈(20mL)中,依次加入L-氨基丙醇(374.5mg,4.99mmol)和碳酸钾(861.4mg,6.23mmol),加料完毕70℃反应过夜,点板显示反应完全。反应液冷却 到室温,固体过滤除去,滤液浓缩,残余物硅胶柱层析纯化得化合物12a(550mg),黄色固体,收率92%,纯度100%。
第二步:将化合物12a(550mg,2.3mmol)溶于乙腈(10mL)中,加入碳酸铯(1.5g,4.62mmol),70℃反应2小时,点板显示反应完全。反应液冷却到室温,固体过滤除去,滤液浓缩,残余物硅胶柱层析得化合物12b(390mg),黄色固体,收率77.38%,纯度100%。 1H NMR(500MHz,DMSO-d6)δppm 8.82(s,1H),8.13(s,1H),7.39(s,1H),4.30-4.09(m,1H),3.97(dd,J=10.6,4.3Hz,1H),3.85(s,1H),1.26(d,J=6.3Hz,3H)。
第三步:将化合物12b(390mg,1.78mmol)溶于甲醇和二氯甲烷得混合溶剂(5/1,24mL)中,加入氨水(8mL),后滴加保险粉(929mg,5.34mmol)的水溶液(2mL),加完室温搅拌30分钟,点板显示反应完全。反应液倒入饱和食盐水(30mL)中,乙酸乙酯(15mL*5)萃取,有机相无水硫酸钠干燥,过滤浓缩得化合物12c(200mg),粉色固体,收率59.4%。ESI-LC-MS(m/z):190.7[M+H] +
第四步:将化合物12c(200mg,1.06mmol)溶于1,4-二氧六环(10mL)中,加入1-乙基-3-甲基-1H-吡唑-5-羰基异硫氰酸酯(0.4N的二氧六环溶液,3mL,1.17mmol),室温反应1小时,LC-MS监测原料反应完全,DCC(240mg,1.17mmol)加入到上述反应液中, 80℃反应1小时,LC-MS监测中间态反应完全。反应液直接浓缩得化合物12d粗品(350mg),红色油,直接用于下一步。ESI-LC-MS(m/z):351.6[M+H] +
第五步:将化合物12d(350mg,粗品)溶于DMSO(10mL)中,加入氢氧化钠(102.7mg,2.57mmol),0℃下缓慢滴加30%双氧水(2mL),滴加完毕,升至60℃反应30分钟,LC-MS监测反应完全。反应液冷却到室温,缓慢滴加饱和亚硫酸钠溶液(5mL),然后倒入饱和食盐水(15mL)中,乙酸乙酯(10mL*5)萃取,有机相无水硫酸钠干燥,过滤浓缩,残余物通过反向制备色谱分离得到化合物12(130mg),粉色固体,收率41.21%。ESI-LC-MS(m/z):355.4[M+H] +1H NMR(500MHz,DMSO-d6)δppm 12.67(s,1H),7.92(s,1H),7.59(s,1H),7.34(d,J=0.9Hz,1H),7.30(s,1H),6.64(s,1H),4.73-4.66(m,1H),4.62(qd,J=13.1,7.0Hz,2H),4.46(dd,J=11.6,2.2Hz,1H),4.36(dd,J=11.5,2.4Hz,1H),2.18(s,3H),1.46(d,J=6.7Hz,3H),1.36(t,J=7.1Hz,3H)。
实施例13
Benzyl
(S)-(2-(7-cyano-2-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylen-3-yl)ethyl)carbamate
Figure PCTCN2019101707-appb-000071
化合物13由以下步骤制备:
Figure PCTCN2019101707-appb-000072
第一步:将化合物6g(700mg,1.46mmol)溶于四氢呋喃(10mL)中,滴加氯化氢二氧六环溶液(4M,10mL),室温反应过夜,LC-MS监测反应完全。反应液浓缩得化合物13a(610mg),土黄色固体,收率100%。ESI-LC-MS(m/z):380.6[M+H] +
第二步:取化合物13a(300mg,721.37umol)加入到四氢呋喃(10mL)中,依次加入苯甲氧羰酰琥珀酰亚胺(198mg,793.51umol)和三乙胺(219mg,2.16mmol),室温反应2小时,LC-MS监测反应完全。反应液直接浓缩,残余物硅胶柱层析纯化得化合物13(210mg),淡黄色固体,收率56.7%。ESI-LC-MS(m/z):514.4[M+H] +1HNMR(500MHz,DMSO-d6)δppm 12.85(s,1H),7.38(s,1H),7.33(t,J=7.0Hz,7H),6.70(s,1H),5.02(q,J=12.8Hz,2H),4.70(d,J=10.9 Hz,2H),4.59(d,J=7.0Hz,2H),4.31(d,J=11.0Hz,1H),3.25(dd,J=13.6,6.7Hz,1H),3.16(s,1H),2.12(d,J=28.6Hz,3H),1.94(d,J=7.7Hz,2H),1.34(t,J=7.0Hz,3H).
实施例14
Benzyl
(S)-(2-(7-carbamoyl-2-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylen-3-yl)ethyl)carbamate
Figure PCTCN2019101707-appb-000073
化合物14由以下步骤制备:
Figure PCTCN2019101707-appb-000074
第一步:将化合物13(40mg,77.89umol)溶于DMSO(2mL)中,加入氢氧化钠(9mg,233.67umol),0℃下缓慢滴加30%双氧水(0.6mL),滴加完毕,0℃反应1小时,LC-MS监测反应完全。反应液直接通过反向制备色谱分离得到化合物14(14mg),白色固 体,收率34%。ESI-LC-MS(m/z):532.4[M+H] +1H NMR(500MHz,DMSO-d6)δppm 12.74(s,1H),7.92(s,1H),7.60(s,1H),7.43-7.24(m,8H),6.69(s,1H),5.02(q,J=12.5Hz,2H),4.72-4.64(m,2H),4.60(dd,J=13.9,6.9Hz,2H),4.27(d,J=10.1Hz,1H),3.25(dd,J=14.0,7.0Hz,1H),3.14(d,J=6.6Hz,1H),2.13(d,J=32.1Hz,3H),1.94(s,2H),1.35(t,J=7.1Hz,3H)。
实施例15
(S)-3-(2-Cinnamamidoethyl)-2-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylene-7-carboxamide
Figure PCTCN2019101707-appb-000075
化合物15由以下步骤制备:
Figure PCTCN2019101707-appb-000076
第一步:将肉桂酸(18mg,125.8umol)溶于DMF(2mL),依次加入HOBt(17mg,125.8umol),HATU(47.8mg,125.8umol)和TEA(38.1mg,377umol)。体系室温反应1小时后加入化合物7a(50mg,125.8umol),室温反应过夜,LC-MS监测反应完全。反应液直接通过反向制备液相色谱纯化得到产物15(6.8mg),纯度99%,收率7%。ESI-LC-MS(m/z):528.4[M+H] +1HNMR(500MHz,DMSO-d6)δppm 12.71(s,1H),8.31(t,J=5.9Hz,1H),7.93(s,1H),7.63-7.52(m,3H),7.49-7.34(m,6H),6.66(s,1H),6.62(d,J=15.7Hz,1H),4.81-4.66(m,2H),4.58(m,2H),4.31(m,1H),3.49-3.44(m,2H),2.05(s,3H),1.97(m,2H),1.33(t,J=7.1Hz,3H)。
实施例16
(R)-2-(1-Ethyl-3-methyl-1H-pyrazole-5-carboxamido)-4-methyl-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylene-7-carboxamide
Figure PCTCN2019101707-appb-000077
化合物16由以下步骤制备:
Figure PCTCN2019101707-appb-000078
第一步:将化合物1f(500mg,2.5mmol)溶于乙腈(10mL)中,依次加入16a(374mg,5mmol),碳酸钾(1.03g,7.5mmol),在70℃下反应6小时。冷至室温后,将反应液用硅藻土过滤,用乙酸乙酯(3×10mL)洗涤滤饼,合并有机相,浓缩得粗品16b(520mg),纯度86%,直接用于下一步反应。ESI-LC-MS(m/z):240.1[M+H] +
第二步:将化合物16b(520mg)溶于乙腈(10mL)中,加入碳酸铯(2.12g,6.52mmol),在70℃下反应6小时。冷至室温后,将反应液用硅藻土过滤,用乙酸乙酯(3×10mL)洗涤滤饼,合并有机相,浓缩得粗品16c(440mg),纯度77%,直接用于下一步反应。ESI-LC-MS(m/z):220.4[M+H] +
第三步:将化合物16c(440mg,粗品)溶于乙酸(10mL)中,加入锌粉(652mg,10.04mmol),在室温下反应1小时。将反应液用硅藻土过滤,用乙酸乙酯(3×10mL)洗涤滤饼,合并有机相,浓 缩,残留物用硅胶柱层析分离得到化合物16d(200mg),纯度95%,三步收率42%。ESI-LC-MS(m/z):190.5[M+H] +
第四步:将化合物16d(200mg,1.06mmol)溶于1,4-二氧六环(10mL)中,加入1-乙基-3-甲基-1H-吡唑-5-羰基异硫氰酸酯(0.4M二氧六环溶液,3mL,1.17mmol),在室温下反应1小时。将反应液用硅藻土过滤,用乙酸乙酯(3×10mL)洗涤滤饼,合并有机相,浓缩得粗品16e(240mg),纯度82%,直接用于下一步。ESI-LC-MS(m/z):351.2[M+H] +
第五步:将化合物16e(120mg,粗品)溶于DMSO(3mL)中,加入氢氧化钠(40mg,1mmol),缓慢滴加30%双氧水(0.5mL)。室温反应30分钟后LC-MS显示反应已完全。反应液直接通过反向制备色谱分离得到化合物16(48mg),纯度99%,两步反应收率24%。ESI-LC-MS(m/z):369.5[M+H] +1HNMR(500MHz,DMSO-d6)δppm 12.64(s,1H),7.89(s,1H),7.57(s,1H),7.30(m,2H),6.67(s,1H),4.60(q,J=7.1Hz,2H),4.51(m,1H),4.41(m,1H),3.77(m,1H),2.17(s,3H),1.51(d,J=6.3Hz,3H),1.35(t,J=7.1Hz,3H)。
实施例17
Benzyl
(S)-(4-(7-carbamoyl-2-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylen-3-yl)butyl)carbamate
Figure PCTCN2019101707-appb-000079
化合物17由以下步骤制备:
Figure PCTCN2019101707-appb-000080
第一步:将化合物1f(6.0g,30mmol)和17a(16.0g,60mmol)溶于乙腈(150mL)中,加入碳酸钾(12.4g,90mmol),氮气保护 下70℃反应24小时,TLC监测反应完全,冷却到室温,反应液通过硅胶垫过滤,用二氯甲烷(100mL)洗固体,滤液浓缩后通过硅胶柱层析分离纯化得化合物17b(8.2g),黄色油,产率63%。ESI-MS(m/z):431.2[M+H] +
第二步:将化合物17b(4.0g,9.29mmol)溶于乙腈(150mL)中,加入碳酸铯(9.08g,27.88mmol)。氮气保护下70℃反应6小时,TLC监测反应完全,体系通过硅藻土过滤,浓缩得粗品17c(3.9g),纯度68%,直接用于下一步。ESI-MS(m/z):411.6[M+H] +
第三步:将化合物17c(3.9g,由第二步反应得到)溶于甲醇(30mL)中,加入氨水(5mL),连二亚硫酸钠(5.5g,31.67mmol)溶于水(2mL)中缓慢滴入反应体系中。30分钟后LC-MS监测反应完全,倒入水(50mL)中,乙酸乙酯(50mL*3)萃取水相,合并有机相,用饱和食盐水洗1次,无水硫酸钠干燥,过滤,浓缩后通过硅胶柱层析分离纯化得化合物17d(1.2g),淡黄色固体,两步产率34%。ESI-MS(m/z):381.6[M+H] +
第四步:将化合物17d(700mg,1.84mmol)溶于1,4-二氧六环(10mL)中,加入17e(333mg,1.84mmol),在室温下反应1小时,然后加入DCC(379mg,1.84mmol),6小时后LC-MS监测反应结束。将反应液通过硅藻土过滤,用乙酸乙酯(10mL*3)洗涤滤饼,滤液 浓缩得粗品17f(970mg),纯度61%,未作进一步纯化,直接用于下一步。
第五步:将粗品17f(700mg,由第四步反应得到)溶解在二甲基亚砜(5mL)中,加入氢氧化钠(200mg,5mmol),在0℃缓慢滴加30%双氧水(0.5mL),30分钟后反应结束。将反应液通过液相制备HPLC纯化得到17(400mg)。ESI-MS(m/z):560.4[M+H] +1H NMR(500MHz,DMSO-d 6)δ12.72(s,1H),7.92(s,1H),7.58(s,1H),7.38-7.27(m,7H),7.21(s,1H),6.63(s,1H),4.96(s,2H),4.68-4.55(m,4H),4.30-4.21(m,1H),3.04-2.93(m,2H),2.17(s,3H),1.86-1.73(m,2H),1.52-1.40(m,4H),1.35(t,J=7.0Hz,3H)。
实施例18
Pyridin-3-ylmethyl
(S)-(4-(7-carbamoyl-2-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylen-3-yl)butyl)carbamate
Figure PCTCN2019101707-appb-000081
化合物18由以下步骤制备:
Figure PCTCN2019101707-appb-000082
第一步:向化合物17(400mg,0.73mmol)溶于乙酸(5mL)中,加入氢溴酸-乙酸溶液(30wt.%,1mL)。30分钟后反应完全,向体系加入乙醚,有白色固体析出,抽滤,滤饼干燥得到18a(320mg),白色固体。ESI-MS(m/z):526.3[M+H] +
第二步:将化合物18a(80mg)溶于N,N-二甲基甲酰胺(2mL)中,依次加入8b(76mg,0.38mmol),1,8-二氮杂双环[5.4.0]十一碳-7-烯(57mg,0.38mmol),三乙胺(57mg,0.56mmol),反应体系在50℃搅拌过夜。LC-MS监测反应完全,反应液直接通过制备液相HPLC纯化得到产物18(29mg),白色固体。ESI-MS(m/z):561.5[M+H] +1H NMR(500MHz,DMSO-d 6)δ12.60(br s,1H),8.55(d,J=2.0Hz,1H),8.52(dd,J=4.5and 1.5Hz,1H),7.92(s,1H),7.73(d,J=7.5Hz,1H),7.59(s,1H),7.41-7.38(m,1H),7.33(s,2H),7.30(s,1H),7.28-7.25(m,1H),6.64(s,1H),5.00(s,2H),4.67-4.52(m,4H),4.31-4.23(m,1H),3.10-2.95(m,2H),2.16(s,3H),1.86-1.75(m,2H),1.52-1.41(m,4H),1.35(t,J=6.9Hz,3H)。
实施例19
Pyridin-2-ylmethyl
(S)-(4-(7-carbamoyl-2-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylen-3-yl)butyl)carbamate
Figure PCTCN2019101707-appb-000083
化合19由以下步骤制备:
Figure PCTCN2019101707-appb-000084
第一步:将化合物18a(80mg)溶于N,N-二甲基甲酰胺(2mL)中,依次加入9b(76mg,0.37mmol),1,8-二氮杂双环[5.4.0]十一碳-7-烯(57mg,0.38mmol),三乙胺(57mg,0.56mmol),反应体系在50℃搅拌过夜。LC-MS监测反应完全,反应液通过制备液相HPLC纯化得到产物19(26mg),白色固体。ESI-MS(m/z):561.4[M+H] +1H NMR(500MHz,DMSO-d 6)δ12.69(br s,1H),8.51(d,J=5.0Hz,1H),7.93(s,1H),7.79(t,J=7.5Hz,1H),7.60(s,1H),7.44-7.22(m,5H),6.64(s,1H),5.03(s,2H),4.71-4.53(m,4H),4.33-4.18(m,1H),3.06-2.93(m,2H),2.17(s,3H),1.88-1.70(m,2H),1.54-1.40(m,4H),1.35(t,J=7.1Hz,3H).
实施例20
Pyridin-4-ylmethyl
(S)-(4-(7-carbamoyl-2-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylen-3-yl)butyl)carbamate
Figure PCTCN2019101707-appb-000085
化合物20由以下步骤制备:
Figure PCTCN2019101707-appb-000086
第一步:将化合物18a(80mg)溶于N,N-二甲基甲酰胺(2mL)中,依次加入10b(76mg,0.38mmol),1,8-二氮杂双环[5.4.0]十一碳-7-烯(57mg,0.38mmol),三乙胺(57mg,0.56mmol),反应体系在50℃搅拌过夜。LC-MS监测反应完全,反应液通过制备液相HPLC纯化得到产物20(38mg),白色固体。ESI-MS(m/z):561.4[M+H] +1H NMR(500MHz,DMSO-d 6)δ12.70(br s,1H),8.53(d,J=6.0Hz,1H),7.93(s,1H),7.60(s,1H),7.42-7.23(m,5H),6.64(s,1H),5.02(s,2H),4.69-4.56(m,4H),4.31-4.22(m,1H),3.06-2.95(m,2H),2.16(s,3H),1.87-1.74(m,2H),1.53-1.42(m,4H),1.35(t,J=7.1Hz,3H).
实施例21
2-(1-Ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3,3-dimethyl-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylene-7-carboxamide
Figure PCTCN2019101707-appb-000087
化合物21由以下步骤制备:
Figure PCTCN2019101707-appb-000088
第一步:将化合物1f(1g,4.99mmol)溶于乙腈(20mL)中,依次加入2-氨基-2甲基-1-丙醇(889mg,9.97mmol),碳酸钾(2.07g,14.96mmol),加料完毕70℃反应过夜。TLC监测反应完全,冷却到室温,固体过滤除去,滤液浓缩通过硅胶柱层析分离纯化得化合物21a(1.2g),产率95%。
第二步:将化合物21a(1.2g,4.74mmol)溶于乙腈(20mL)中,加入碳酸铯(4.63g,14.22mmol),70℃反应2小时。TLC监测反应完全,冷却到室温,固体过滤除去,滤液浓缩通过硅胶柱层析分离纯化得化合物21b(1.0g),收率90%。ESI-MS(m/z):234.2[M+H] +
第三步:将化合物21b(1.0g,4.29mmol)溶于甲醇和二氯甲烷的混合溶剂(5:1,24mL)中,加入氨水(5mL),后滴加保险粉(4.1g,23.5mmol)的水溶液(10mL),加完室温搅拌30分钟。TLC监 测反应完全,倒入饱和食盐水(30mL)中,用乙酸乙酯(15mL*5)萃取,合并有机相,用无水硫酸钠干燥,过滤,滤液浓缩,通过硅胶柱层析分离纯化得化合物21c(360mg),白色固体,产率37%,ESI-MS(m/z):204.2[M+H] +
第四步:将化合物21c(360mg,1.77mmol)溶于1,4-二氧六环(10mL)中,加入17e(0.4N的二氧六环溶液,4.42mL,1.77mmol),室温反应1小时。LC-MS监测原料反应完全,将DCC(365mg,1.77mmol)加入到上述反应液中,80℃反应1小时,LC-MS监测中间态反应完全。反应液浓缩通过硅胶柱层析分离纯化得化合物21d(360mg),产率55%。ESI-MS(m/z):365.4[M+H] +
第五步:将化合物21d(360mg,0.98mmol)溶于二甲基亚砜(10mL)中,加入氢氧化钠(102mg,2.57mmol),0℃下缓慢滴加30%双氧水(2mL),滴加完毕,60℃反应30分钟。LC-MS监测反应完全,冷却到室温,缓慢滴加饱和亚硫酸钠溶液(5mL),然后倒入饱和食盐水(15mL)中,用乙酸乙酯(10mL*5)萃取,合并有机相,用无水硫酸钠干燥,过滤,浓缩,残留物通过反向制备HPLC纯化得到化合物21(72mg),白色固体,产率19%。ESI-MS(m/z):383.6[M+H] +1H NMR(500MHz,DMSO-d 6)δ12.74(s,1H),8.15(s,1H),7.92(s,1H),7.59(d,J=3.2Hz,1H),7.38-7.21(m,2H),6.62(s,1H), 4.60(q,J=7.1Hz,2H),4.25(s,2H),2.19(s,3H),1.68(s,6H),1.35(t,J=7.1Hz,3H)。
实施例22
(S)-1-(1-Ethyl-3-methyl-1H-pyrazole-5-carboxamido)-9-methyl-8,9-dihydro-7H-6-oxa-2,9a-diazabenzo[cd]azulene-4-carboxamide
Figure PCTCN2019101707-appb-000089
化合物22由以下步骤制备:
Figure PCTCN2019101707-appb-000090
第一步:将化合物1f(1g,4.99mmol)溶于乙腈(20mL)中,依次加入(S)-3-氨基-1-丁醇(889mg,9.97mmol),碳酸钾(2.07g,14.96mmol),加料完毕70℃反应过夜。TLC监测反应完全,冷却 到室温,固体过滤除去,滤液浓缩通过硅胶柱层析分离纯化得化合物22a(1.2g),产率95%。
第二步:将化合物22a(1.2g,4.74mmol)溶于乙腈(20mL)中,加入碳酸铯(4.63g,14.22mmol),70℃反应2小时。TLC监测反应完全,冷却到室温,固体过滤除去,滤液浓缩通过硅胶柱层析分离纯化得化合物22b(1.1g),产率99%。ESI-MS(m/z):234.2[M+H] +
第三步:将化合物22b(1.1g,4.72mmol)溶于甲醇(5mL)中,加入氨水(5mL),然后滴加保险粉(4.1g,23.5mmol)的水溶液(10mL),加完室温搅拌30分钟。TLC监测反应完全,倒入饱和食盐水(30mL)中,用乙酸乙酯(15mL*5)萃取,合并有机相,用无水硫酸钠干燥,过滤,浓缩后残留物通过硅胶柱层析分离纯化得化合物22c(200mg),白色固体,产率21%。ESI-MS(m/z):204.2[M+H] +
第四步:将化合物22c(200mg,0.98mmol)溶于1,4-二氧六环(10mL)中,加入17e(0.4N的二氧六环溶液,2.45mL,0.98mmol),室温反应1小时,LC-MS监测原料反应完全,将DCC(203mg,0.98mmol)加入到上述反应液中,80℃反应1小时。LC-MS监测中间态反应完全。反应液浓缩,残留物通过硅胶柱层析分离纯化得化合物22d(200mg),产率56%。ESI-MS(m/z):365.4[M+H] +
第五步:将化合物22d(200mg,0.55mmol)溶于二甲基亚砜(10mL)中,加入氢氧化钠(105mg,2.75mmol),0℃下缓慢滴加30%双氧水(2mL),滴加完毕,60℃应30分钟。LC-MS监测反应完全,冷却到室温,缓慢滴加饱和亚硫酸钠溶液(5mL),然后倒入饱和食盐水(15mL)中,乙酸乙酯(10mL*5)萃取,合并有机相,无水硫酸钠干燥,过滤,浓缩,残余物通过反向制备HPLC分离纯化得到化合物22(64mg),白色固体,产率30%。ESI-MS(m/z):383.5[M+H] +1H NMR(500MHz,DMSO-d 6)δ12.85(s,1H),7.90(s,1H),7.65(s,1H),7.30(s,1H),6.66(s,1H),5.03-4.92(m,1H),4.70-4.52(m,3H),4.48-4.39(m,1H),2.60-2.56(m,1H),2.36-2.27(m,1H),2.18(s,3H),1.46(d,J=6.6Hz,3H),1.36(t,J=7.1Hz,4H)。
实施例23
(S)-2-(1-Ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3-propyl-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylene-7-carboxamide
Figure PCTCN2019101707-appb-000091
化合物23由以下步骤制备:
Figure PCTCN2019101707-appb-000092
第一步:将化合物1f(500mg,2.49mmol)和化合物23a(514mg,4.99mmol)溶于乙腈(10mL)中,加入碳酸钾(1.03g,7.48mmol),70℃反应直至TLC显示原料反应完全,加入碳酸铯(2.43g,7.48mmol),70℃继续搅拌(约2小时),TLC显示中间体反应完全,冷却到室温,过滤除去固体,乙酸乙酯淋洗滤饼,滤液浓缩,残留物通过硅胶柱层析分离纯化得化合物23b(517mg),红色固体,产率84%。
第二步:将化合物23b(517mg,2.09mmol)溶于甲醇(30mL)和氨水(3mL)的混合溶剂中,滴加保险粉(1.82g,10.46mmol)的水溶液(3mL),滴加完毕,室温反应30分钟。TLC显示原料反应完全,浓缩除去甲醇,然后加入水(20mL),用乙酸乙酯(15mL*3)萃取,合并有机相,用饱和食盐水洗涤1次,无水硫酸钠干燥,过滤, 浓缩旋干得化合物23c(414mg),淡黄色固体,产率91%。ESI-MS(m/z):296.7[M+H] +
第三步:将化合物23c(414mg,1.91mmol)溶于1,4-二氧六环(5ml)中,加入17e(0.4N的二氧六环溶液,4.8mL,1.91mmol),室温反应1小时,LC-MS监测原料反应完全有中间态形成。加入DCC(394mg,1.91mmol),80℃反应2小时。LC-MS监测中间态消失产物生成,反应液浓缩得粗品化合物23d(990mg),棕色油状液体,ESI-MS(m/z):492.6[M+MeOH] +
第四步:将化合物23d(155mg,由第三步反应得到)溶于二甲基亚砜(3mL),加入氢氧化钠(60mg,1.51mmol),缓慢滴加30%双氧水(0.6mL),滴加完毕,50℃反应30分钟。LC-MS监测反应完全,反应液直接过滤,滤液通过反向制备HPLC纯化得化合物23(38mg),白色粉末。ESI-MS(m/z):397.5[M+H] +1H NMR(500MHz,DMSO-d 6)δ12.70(br s,1H),7.93(s,1H),7.60(s,1H),7.34(s,1H),7.31(s,1H),6.64(s,1H),4.74-4.54(m,4H),4.32-4.25(m,1H),2.19(s,3H),1.86-1.69(m,2H),1.55-1.41(m,2H),1.36(t,J=7.1Hz,3H),0.93(t,J=7.3Hz,3H)。
实施例24
(S)-3-Benzyl-2-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylene-7-carboxamide
Figure PCTCN2019101707-appb-000093
化合物24由以下步骤制备:
Figure PCTCN2019101707-appb-000094
第一步:将化合物1f(500mg,2.49mmol)和化合物24a(754mg,4.99mmol)溶于乙腈(10mL)中,加入碳酸钾(1.03g,7.48mmol),70℃反应。TLC显示原料反应完全,加入碳酸铯(2.43g,7.48mmol),70℃继续搅拌(约2小时),TLC显示中间体反应完全,冷却到室温,过滤除去固体,二氯甲烷淋洗,滤液缩干,残留物通过硅胶柱层析分离纯化得化合物24b(570mg),红色固体,产率73%。
第二步:将化合物24b(570mg,1.93mmol)溶于甲醇(30mL)和氨水(3mL)的混合溶剂中,滴加保险粉(1.68g,9.65mmol)的 水溶液(3mL),滴加完毕,室温反应30分钟。TLC显示原料反应完全,浓缩除去甲醇,然后加入水(20mL),乙酸乙酯(15mL*3)萃取,有机相饱和食盐水洗,硫酸钠干燥,过滤浓缩,残留物通过硅胶柱层析分离纯化得化合物24c(431mg),淡黄色固体,产率85%。
第三步:将化合物24c(431mg,1.62mmol)溶于1,4-二氧六环(5ml)中,加入17e(0.4N二氧六环溶液,4.0mL,1.62mmol),室温反应1小时。LC-MS监测原料反应完全有中间态形成,加入DCC(335mg,1.62mmol),80℃反应2小时。LC-MS监测中间态消失产物生成,反应液旋干得粗品化合物24d(820mg),棕色油状液体,ESI-MS(m/z):427.4[M+H] +。未进一步处理,直接用于下一步反应。
第四步:将化合物24d(118mg,由第三步反应得到)溶于二甲基亚砜(3mL),加入氢氧化钠(55mg,1.38mmol),升温至50℃,缓慢滴加30%双氧水(0.6mL),滴加完毕,50℃反应30分钟。LC-MS监测反应完全,反应液直接过滤,滤液通过酸法反向制备HPLC纯化得化合物24(22mg),白色粉末,两步反应收率21%。ESI-MS(m/z):445.5[M+H] +1H NMR(500MHz,DMSO-d 6)δ12.66(br s,1H),8.39(s,1H),7.93(s,1H),7.60(s,1H),7.42-7.28(m,4H),7.27-7.19(m,3H),6.63(s,1H),4.86(br s,1H),4.73-4.54(m,2H),4.44(d,J=11.9Hz,1H),4.25(d,J=11.8Hz,1H),3.24-3.19(m,1H),3.05-2.96(m,1H),2.20(s,3H),1.37(t,J=7.1Hz,3H)。
实施例25
(S)-2-(1-Ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3-isopropyl-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylene-7-carboxamide
Figure PCTCN2019101707-appb-000095
化合物25由以下步骤制备:
Figure PCTCN2019101707-appb-000096
第一步:将化合物25a(4g,19.68mmol)溶于四氢呋喃(20mL)中,加入4N的盐酸二氧六环溶液(10mL),室温搅拌2小时。反应体系浓缩除去溶剂,残余物加入石油醚(20mL),搅拌产生白色固体,过滤,滤饼干燥得化合物25b(1.8g),白色固体,产率65%。
第二步:将化合物1f(1.3g,6.48mmol)和化合物25b(1.8g,12.96mmol)溶于乙腈(15mL)中,加入碳酸钾(2.69g,19.45mmol), 70℃反应过夜。TLC显示原料反应完全,冷却到室温,过滤除去固体,二氯甲烷淋洗,滤液旋干得化合物25c(1.6g),黄色固体,产率92%。
第三步:将化合物25c(1.6g,5.99mmol)溶于乙腈(20mL)中,加入碳酸铯(3.9g,11.97mmol),70℃反应3小时。TLC显示原料反应完全,冷却到室温,过滤除去碳酸铯,滤液浓缩,残留物通过硅胶柱层析分离纯化得化合物25d(1.3g),黄色固体,产率88%。
第四步:将化合物25d(700mg,2.83mmol)溶于甲醇(20mL)和氨水(5mL)的混合溶剂中,滴加保险粉(1.48g,8.49mmol)的水溶液(2mL),滴加完毕,室温反应30分钟,反应液由黄色变为粉色。TLC显示原料反应完全,将水(20mL)加入到反应液中,用乙酸乙酯(15mL*3)萃取,合并有机相,饱和食盐水洗,无水硫酸钠干燥,过滤,滤液旋干得化合物25e(510mg),红色固体,产率83%。ESI-MS(m/z):218.6[M+H] +
第五步:将化合物25e(200mg,0.92mmol)溶于1,4-二氧六环(5mL)中,加入17e(0.4N二氧六环溶液,2.5mL,1.01mmol),室温搅拌10分钟,LC-MS显示原料反应完全,中间态生成。加入DCC(209mg,1.01mmol),80℃反应2小时,LC-MS监测中间态消失,有产物生成。反应液直接浓缩得化合物25f(300mg)粗品,红色油。ESI-MS(m/z):379.5[M+H] +。未作进一步纯化,直接用于下一步反应。
第六步:将25f(300mg,由第五步反应得到)溶于二甲基亚砜(4mL),加入氢氧化钠(87mg,2.19mmol),室温搅拌5分钟,缓慢滴加30%双氧水(1.5mL),滴加完毕,室温反应30分钟。LC-MS监测反应完全,反应液直接过滤,滤液通过反向制备HPLC纯化得化合物25(117mg),白色粉末,两步反应产率32%。ESI-MS(m/z):397.5[M+H] +1H NMR(500MHz,DMSO-d6)δ12.75(s,1H),8.15(s,1H),7.91(s,1H),7.60(s,1H),7.32(s,1H),7.30(s,1H),6.63(s,1H),4.80(d,J=12.0Hz,1H),4.68-4.54(m,2H),4.47-4.40(m,1H),4.18(dd,J=12.5and 3.5Hz,1H),2.35-2.24(m,1H),2.18(s,3H),1.35(t,J=7.1Hz,3H),1.01(d,J=6.9Hz,3H),0.94(d,J=6.9Hz,3H)。
实施例26
(S)-3-Ethyl-2-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylene-7-carboxamide
Figure PCTCN2019101707-appb-000097
化合物26由以下步骤制备:
Figure PCTCN2019101707-appb-000098
第一步:将化合物26a(444mg,4.99mmol)和化合物1f(500mg,2.49mmol)溶于乙腈(10mL)中,加入碳酸钾(861mg,6.23mmol),70℃反应2小时,TLC显示原料反应完全。加入碳酸铯(1.62g,4.99mmol),70℃继续搅拌2小时。TLC显示中间态反应完全。冷却到室温,过滤除去固体,二氯甲烷淋洗,滤液浓缩得化合物26b(500mg),黄色固体。未作进一步纯化,直接用于下一步反应。
第二步:将化合物26b(500mg,由第一步反应得到)溶于甲醇(20mL)和氨水(5mL)的混合溶剂中,滴加保险粉(1.49g,8.58mmol)的水溶液(3mL),滴加完毕,室温反应30分钟。TLC显示原料反应完全,加水(20mL)到反应液中,乙酸乙酯(15mL*3)萃取,合并有机相,饱和食盐水洗,无水硫酸钠干燥,过滤,浓缩除去溶剂得化合物26c(250mg),红色固体。ESI-MS(m/z):204.6[M+H] +。未作进一步纯化,直接用于下一步反应。
第三步:将化合物26c(250mg,由第二步反应得到)溶于1,4-二氧六环(10ml)中,加入17e(0.4N二氧六环溶液,3.4mL,1.35mmol),室温反应20分钟。LC-MS监测原料反应完全有中间态形成,加入DCC(279mg,1.35mmol),80℃反应2小时。LC-MS监测中间态消失产物生成,浓缩除去溶剂得粗品化合物26d(400mg),棕色油。ESI-MS(m/z):365.5[M+H] +。未作进一步纯化,直接用于下一步反应。
第四步:将化合物26d(400mg,1.10mmol)溶于二甲基亚砜(10mL),加入氢氧化钠(131mg,3.29mmol),室温搅拌5分钟,缓慢滴加30%双氧水(2mL),滴加完毕,室温反应30分钟。LC-MS监测反应完全,反应液直接过滤,滤液通过酸法反向制备HPLC纯化得化合物26(145mg),白色粉末,四步反应收率15%。ESI-MS(m/z):383.5[M+H] +1H NMR(500MHz,DMSO-d 6)δ12.73(s,1H),7.93(s,1H),7.60(s,1H),7.34(s,1H),7.31(s,1H),6.64(s,1H),4.74-4.50(m,4H),4.32-4.25(m,1H),2.19(s,3H),1.93-1.75(m,2H),1.37(t,J=7.1Hz,3H),1.00(t,J=7.5Hz,3H)。
实施例27
1-(1-Ethyl-3-methyl-1H-pyrazole-5-carboxamido)-8,8-dimethyl-8,9-dihydro-7H-6-oxa-2,9a-diazabenzo[cd]azulene-4-carboxamide
Figure PCTCN2019101707-appb-000099
化合物27由以下步骤制备:
Figure PCTCN2019101707-appb-000100
第一步:将化合物27a(500mg,2.49mmol)和1f(514mg,4.99mmol)溶于乙腈(20mL)中,加入碳酸钾(861mg,6.23mmol),70℃反应2小时,TLC显示原料反应完全。加入碳酸铯(1.62g,4.99mmol),70℃继续搅拌2小时,TLC显示中间态反应完全。冷却到室温,过滤除去固体,二氯甲烷淋洗,滤液浓缩,残留物通过硅胶柱层析分离纯化得化合物27b(550mg),黄色固体,产率89%。
第二步:将化合物27b(550mg,2.22mmol)溶于甲醇(10mL)和氨水(3mL)的混合溶剂中,滴加保险粉(1.55g,8.9mmol)的水溶液(2mL),滴加完毕,室温反应30分钟,TLC显示原料反应完全。20mL水加入到反应液中,乙酸乙酯(15mL*3)萃取,合并有 机相,饱和食盐水洗,无水硫酸钠干燥,过滤,浓缩除去溶剂得化合物27c(250mg),红色固体。ESI-MS(m/z):218.7[M+H] +。未作进一步纯化,直接用于下一步反应。
第三步:将化合物27c(250mg,由第二步反应得到)溶于1,4-二氧六环(10mL)中,加入17e(0.4N二氧六环溶液,3.2mL,1.28mmol),室温反应20分钟。LC-MS监测原料反应完全有中间态形成,加入DCC(261mg,1.26mmol),80℃反应2小时。LC-MS监测中间态消失产物生成,旋干溶剂得化合物27d(390mg),粗品,红色油。ESI-MS(m/z):379.5[M+H] +。未作进一步纯化,直接用于下一步反应。
第四步:将化合物27d(390mg,由第三步反应得到)溶于二甲基亚砜(5mL),加入氢氧化钠(123mg,3.09mmol),室温搅拌5分钟,缓慢滴加30%双氧水(2mL),滴加完毕,室温反应30分钟。LC-MS监测反应完全,反应液过滤,滤液通过反向制备HPLC纯化得化合物27(100mg),白色粉末,三步反应产率12%。ESI-MS(m/z):397.5[M+H] +1H NMR(500MHz,DMSO-d 6)δ12.87(br s,1H),7.92(s,1H),7.67(s,1H),7.40-7.27(m,2H),6.71(s,1H),4.61(q,J=7.0Hz,2H),4.15(s,2H),3.97(s,2H),2.19(s,3H),1.36(t,J=7.1Hz,3H),1.10(s,6H)。
实施例28
2-(1-Ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3H-5-oxa-1,2a-diazaspiro[acenaphthylene-4,1'-cyclopropan]-1,2a 1(5a),6,8-tetraene-7-carboxamide
Figure PCTCN2019101707-appb-000101
化合物28由以下步骤制备:
Figure PCTCN2019101707-appb-000102
第一步:将化合物28a(500mg,2.49mmol)和1f(434mg,4.99mmol)溶于乙腈(20mL)中,加入碳酸钾(861mg,6.23mmol),70℃反应2小时,TLC显示原料反应完全。加入碳酸铯(1.62g,4.99mmol),70℃继续搅拌24小时。TLC显示中间态反应完全。冷却到室温,过滤除去固体,二氯甲烷淋洗,滤液浓缩,残留物通过硅胶柱层析分离纯化得化合物28b(180mg),黄色固体,收率31%。
第二步:将化合物28b(180mg,2.14mmol)溶于甲醇(10mL)和氨水(3mL)的混合溶剂中,滴加保险粉(407mg,2.34mmol)的水溶液(2mL),滴加完毕,室温反应30分钟。TLC显示原料反应完全,20mL水加入到反应液中,乙酸乙酯(15mL*3)萃取,合并有机相,饱和食盐水洗,无水硫酸钠干燥,过滤,滤液浓缩得化合物得化合物28c(120mg),红色固体,ESI-MS(m/z):202.5[M+H] +。未作进一步纯化,直接用于下一步反应。
第三步:将化合物28c(120mg,由第二步反应得到)溶于1,4-二氧六环(10mL)中,加入17e(0.4N二氧六环溶液,1.6mL,0.65mmol),室温反应20分钟,LC-MS监测原料反应完全有中间态形成。加入DCC(135mg,0.66mmol),80℃反应2小时,LC-MS监测中间态消失产物生成,浓缩除去溶剂得化合物28d(200mg)粗品,棕色油。ESI-MS(m/z):363.4[M+H] +。未作进一步纯化,直接用于下一步反应。
第四步:将化合物28d(200mg,由第三步反应得到)溶于二甲基亚砜(4mL),加入氢氧化钠(66mg,1.66mmol),室温搅拌5分钟,缓慢滴加30%双氧水(1mL),滴加完毕,室温反应30分钟。LC-MS监测反应完全,反应液直接过滤,滤液通过反向制备HPLC纯化得化合物28(52mg),白色粉末,三步反应收率6%。ESI-MS(m/z): 381.5[M+H] +1H NMR(500MHz,DMSO-d 6)δ12.65(br s,1H),7.91(s,1H),7.63(s,1H),7.31(s,1H),7.28(s,1H),6.66(s,1H),4.60(q,J=7.1Hz,2H),4.25(s,2H),2.17(s,3H),1.35(t,J=7.1Hz,3H),1.15-1.09(m,2H),1.06-0.99(m,2H)。
实施例29
2-(1-Ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3-methyl-3-((methyl(phenethyl)amino)methyl)-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylene-7-carboxamide
Figure PCTCN2019101707-appb-000103
化合物29由以下步骤制备:
Figure PCTCN2019101707-appb-000104
第一步:将化合物3(50mg,0.13mmol)溶于二氯甲烷(3mL),加入三乙胺(73mg,0.72mmol)和甲磺酸酐(67mg,0.38mmol)。室温反应0.5小时,LC-MS监测反应结束。加水(10mL)稀释,用 乙酸乙酯(20mL*3)萃取水相,合并有机相,用饱和食盐水(20mL*3)洗涤,无水硫酸钠干燥,过滤,浓缩得到化合物29a(30mg),黄色固体。ESI-MS(m/z):477[M+H] +。未作进一步纯化,直接用于下一步反应。
第二步:将化合物29a(30mg,由第一步反应得到)溶于乙腈(3mL),然后加入碳酸钾(17mg,0.13mmol)和29b(43mg,0.31mmol)。40℃反应5小时后,LC-MS监测反应结束。加水(10mL)稀释,用乙酸乙酯(20mL*3)萃取水相,合并有机相,用饱和食盐水(20mL*3)洗涤,无水硫酸钠干燥,过滤,浓缩,残留物通过液相制备HPLC纯化得到化合物29(5mg),两步反应产率7%。ESI-MS(m/z):516.5[M+H] +1H NMR(500MHz,DMSO-d 6)δ8.45(t,J=6.5Hz,1H),7.84(s,1H),7.69(s,1H),7.31-7.24(m,2H),7.23-7.15(m,5H),6.45(s,1H),4.41(d,J=11.7Hz,1H),4.35-4.22(m,2H),3.98(d,J=11.6Hz,1H),3.84-3.74(m,1H),3.50-3.40(m,4H),2.93(s,3H),2.86(t,J=7.9Hz,2H),2.12(s,3H),1.56(s,3H),1.21(t,J=7.2Hz,3H)。
实施例30
(S)-3-((Benzyloxy)methyl)-2-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylene-7-carboxamide
Figure PCTCN2019101707-appb-000105
化合物30由以下步骤制备:
Figure PCTCN2019101707-appb-000106
第一步:将化合物1f(500mg,2.49mmol)和化合物30a(903mg,4.99mmol)溶于乙腈(10mL)中,加入碳酸钾(1.03g,7.48mmol),70℃反应直至TLC显示原料反应完全,加入碳酸铯(2.43g,7.48mmol),70℃继续搅拌约2小时,TLC显示中间体反应完全。冷却到室温,过滤除去固体,乙酸乙酯淋洗滤饼,滤液浓缩,残留物通过硅胶柱层析分离纯化得化合物30b(670mg),黄色固体,产率83%。
第二步:将化合物30b(670mg,1.94mmol)溶于甲醇(30mL)和氨水(3mL)的混合溶剂中,滴加保险粉(1.69g,9.70mmol)的水溶液(3mL),滴加完毕,室温反应30分钟。TLC显示原料反应完全,浓缩除去甲醇,然后加入水(20mL),用乙酸乙酯(15mL*3)萃取,合并有机相,饱和食盐水洗,无水硫酸钠干燥,过滤,滤液浓缩得化合物30c(540mg),红色固体。ESI-MS(m/z):296.7[M+H] +。未作进一步纯化,直接用于下一步反应。
第三步:将化合物30c(100mg,由第二步反应得到)溶于1,4-二氧六环(5mL)中,加入17e(0.4N二氧六环溶液,0.85mL,0.338mmol),室温反应1小时,LC-MS监测原料反应完全(有中间态形成)。加入DCC(70mg,0.34mmol),80℃反应2小时,LC-MS监测中间态消失,产物生成,浓缩除去溶剂得粗品化合物30d(220mg),棕色油状液体,ESI-MS(m/z):457.6[M+H] +。未作进一步纯化,直接用于下一步反应。
第四步:将化合物30d(220mg,由第三步反应得到)溶于二甲基亚砜(3mL),加入氢氧化钠(60mg,1.49mmol),升温至50℃,缓慢滴加30%双氧水(0.6mL),滴加完毕,50℃反应30分钟,LC-MS监测反应完全。冷却至室温,反应液过滤,滤液通过反向制备HPLC纯化得化合物30(30mg),白色粉末,三步反应收率16%。ESI-MS(m/z):475.5[M+H] +1H NMR(500MHz,DMSO-d6)δ12.58(s,1H), 7.94(s,1H),7.60(s,1H),7.44-7.18(m,7H),6.58(s,1H),4.80(br s,1H),4.75(d,J=12.0Hz,1H),4.66-4.45(m,4H),4.37(d,J=11.5Hz,1H),3.88-3.71(m,2H),2.18(s,3H),1.33(t,J=6.8Hz,3H)。
实施例31
(S)-3-(3-Cinnamamidopropyl)-2-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylene-7-carboxamide
Figure PCTCN2019101707-appb-000107
化合物31由以下步骤制备:
Figure PCTCN2019101707-appb-000108
第一步:将肉桂酸31a(45mg,0.30mmol)溶于N,N-二甲基甲酰胺(3mL)中,室温加入HATU(154mg,0.41mmol),HOBt(28mg,0.20mmol),氮气保护下搅拌30分钟,然后加入三乙胺(123mg,1.22mmol),室温搅拌10分钟后加入化合物4a(100mg,0.20mmol)。反应液在室温下搅拌过夜,LC-MS检测反应结束。反应液直接用反向制备HPLC纯化得到化合物31(22mg),白色固体,收率13%。ESI-MS(m/z):542.5[M+H] +1H NMR(500MHz,DMSO-d6)δ12.71(br s,1H),8.12(s,1H),7.93(s,1H),7.60(s,1H),7.52(d,J=7.0Hz,2H),7.45-7.33(m,5H),7.31(s,1H),6.64(s,1H),6.55(d,J=16.0Hz,1H),4.73-4.52(m,4H),4.28(d,J=11.0Hz,1H),3.26-3.15(m,2H),2.14(s,3H),1.90-1.79(m,2H),1.68-1.57(m,2H),1.35(t,J=7.1Hz,3H)。
实施例32
Pyridin-3-ylmethyl
(S)-(3-(7-carbamoyl-2-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylen-3-yl)propyl)carbamate
Figure PCTCN2019101707-appb-000109
化合物32由以下步骤制备:
Figure PCTCN2019101707-appb-000110
第一步:将化合物4a(100mg)和化合物8b(103mg,0.51mmol)溶于N,N-二甲基甲酰胺(3mL),加入三乙胺(77mg,0.76mmol)和1,8-二氮杂双环[5.4.0]十一碳-7-烯(77mg,0.51mmol),50℃搅拌过夜,LC-MS显示原料反应完全。向反应液加入水(15mL),然后用乙酸乙酯(15mL*3)萃取分液,合并有机相,用无水硫酸钠干燥,过滤浓缩,残余物经反相制备HPLC纯化得化合物32(18mg),白色固体。ESI-MS(m/z):547.5[M+H] +1H NMR(500MHz,DMSO)δ12.61(br s,1H),8.53(s,1H),8.51(s,1H),8.34(s,1H),7.93(s,1H),7.70(d,J=7.2Hz,1H),7.60(s,1H),7.39-7.26(m,4H),6.65(s,1H), 5.10-4.95(m,2H),4.71-4.50(m,4H),4.26(d,J=11.5Hz,1H),3.13-2.97(m,2H),2.17(s,3H),1.84-1.77(m,2H),1.62-1.53(m,2H),1.35(t,J=6.2Hz,3H)。
实施例33
(S)-2-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3-(3-(2-phenoxyacetamido)propyl)-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylene-7-carboxamide
Figure PCTCN2019101707-appb-000111
化合物33由以下步骤制备:
Figure PCTCN2019101707-appb-000112
第一步:将化合物33a(58mg,0.38mmol),HATU(144mg,0.38mmol)和HOBt(26mg,0.19mmol)溶于N,N-二甲基甲酰胺(3mL)中,室温搅拌30分钟后,加入三乙胺(57mg,0.57mmol),搅拌10分钟后,加入化合物4a(100mg),室温搅拌过夜。LC-MS监测原料反应完毕,反应液直接用反向制备HPLC纯化得到化合物33(15mg),白色固体。ESI-MS(m/z):546.5[M+H] +1H NMR(500MHz,DMSO)δ12.71(s,1H),8.11-8.04(m,1H),7.93(s,1H),7.61(s,1H),7.35(s,1H),7.30(s,1H),7.27-7.20(m,2H),6.97-6.85(m,3H),6.66(s,1H),4.72-4.55(m,4H),4.45-4.35(m,2H),4.26(d,J=11.5Hz,1H),3.26-3.19(m,1H),3.18-3.11(m,1H),2.17(s,3H),1.84-1.70(m,2H),1.68-1.54(m,2H),1.36(t,J=7.0Hz,3H)。
实施例34
2-(1-Ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3-(((4-methoxybenzyl)(methyl)amino)methyl)-3-methyl-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylene-7-carboxamide
Figure PCTCN2019101707-appb-000113
化合物34由以下步骤制备:
Figure PCTCN2019101707-appb-000114
第一步:将化合物29a(50mg,0.11mmol)溶于乙腈(3mL),加入碳酸钾(29mg,0.21mmol)和34a(397mg,2.62mmol)。40℃反应3小时,LC-MS监测反应结束。加水(10mL)稀释,用乙酸乙酯(20mL*3)萃取水相,合并有机相,饱和食盐水洗涤,无水硫酸钠干燥,过滤,浓缩,残余物通过制备HPLC纯化得到化合物34(14mg),产率26%。ESI-MS(m/z):532.5[M+H] +1H NMR(500MHz,DMSO-d 6)δ8.52(t,J=6.5Hz,1H),7.84(s,1H),7.70(s,1H),7.31(d,J=8.5Hz,2H),7.22(s,1H),7.18(s,1H),6.88(d,J=8.6Hz,2H),6.46(s,1H),4.46(d,J=11.6Hz,1H),4.36-4.19(m,4H),4.03(d,J=11.7Hz,1H),3.92-3.81(m,1H),3.74(s,3H),3.58-3.48(m,1H),2.71(s,3H),2.11(s,3H),1.68(s,3H),1.21(t,J=7.1Hz,3H)。
实施例35
(S,E)-2-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3-(4-(3-(pyridin-3-yl)acrylamido)butyl)-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylene-7-carboxamide
Figure PCTCN2019101707-appb-000115
化合物35由以下步骤制备:
Figure PCTCN2019101707-appb-000116
第一步:将化合物18a(30mg)溶于N,N-二甲基甲酰胺(2mL)中,依次加入35a(11mg,0.07mmol),HATU(27mg,0.07mmol),HOBt(9mg,0.07mmol)和三乙胺(21mg,0.21mmol),室温搅拌过夜,TLC监测反应完全。反应液直接通过制备HPLC纯化得到化合物35(8mg)。ESI-MS(m/z):557.4[M+H] +1H NMR(500MHz,DMSO-d 6)δ12.72(s,1H),8.74(s,1H),8.55(d,J=4.7Hz,1H),8.16(t,J=5.6Hz,1H),8.03-7.91(m,2H),7.60(s,1H),7.49-7.40(m,2H),7.36-7.30(m,2H),6.69(d,J=16.0Hz,1H),6.63(s,1H),4.70-4.56(m,4H),4.28(d,J=11.3Hz,1H),3.23-3.14(m,2H),2.16(s,3H),1.88-1.78(m,2H),1.59-1.46(m,4H),1.35(t,J=7.1Hz,3H)。
实施例36(S,E)-2-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3-(4-(3-(pyridin-4-yl)acrylamido)butyl)-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylene-7-carboxamide
Figure PCTCN2019101707-appb-000117
化合物36由以下步骤制备:
Figure PCTCN2019101707-appb-000118
第一步:将化合物18a(30mg)溶于N,N-二甲基甲酰胺(2mL)中,依次加入36a(11mg,0.07mmol),HATU(27mg,0.07mmol),HOBt(9mg,0.07mmol)和三乙胺(21mg,0.21mmol),室温搅拌过夜,TLC监测反应完全。反应液直接通过反向制备HPLC纯化得到化合物36(8mg)。ESI-MS(m/z):557.4[M+H] +1H NMR(500MHz, DMSO-d 6)δ12.74(s,1H),8.67(s,2H),8.28(s,1H),7.94(s,1H),7.65-7.57(m,3H),7.38(d,J=15.5Hz,1H),7.35-7.30(m,2H),6.85(d,J=16.2Hz,1H),6.64(s,1H),4.70-4.57(m,4H),4.28(d,J=11.6Hz,1H),3.25-3.15(m,2H),2.16(s,3H),1.86-1.80(m,2H),1.60-1.45(m,4H),1.35(t,J=7.1Hz,3H)。
实施例37
(S,E)-3-(2-(3-(4-cyanophenyl)acrylamido)ethyl)-2-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylene-7-carboxamide
Figure PCTCN2019101707-appb-000119
化合物37由以下步骤制备:
Figure PCTCN2019101707-appb-000120
第一步:将化合物7a(75mg)和37a(30mg,0.17mmol)溶于N,N-二甲基甲酰胺(3mL)中,加入HATU(72mg,0.19mmol),HOBt(26mg,0.19mmol)和三乙胺(53mg,0.52mmol),室温反应过夜,LC-MS监测原料反应完全。反应液直接通过制备HPLC纯化得化合物37(25mg),白色粉末。ESI-MS(m/z):553.4[M+H] +1H NMR(500MHz,DMSO-d 6)δ12.65(br s,1H),8.42(t,J=5.9Hz,1H),7.94(s,1H),7.89(d,J=7.9Hz,2H),7.77(d,J=8.0Hz,2H),7.60(s,1H),7.50(d,J=15.8Hz,1H),7.36(s,1H),7.33(s,1H),6.77(d,J=15.8Hz,1H),6.65(s,1H),4.80-4.69(m,2H),4.59(q,J=7.5Hz,2H),4.32(d,J=11.5Hz,1H),3.53-3.47(m,1H),2.05(s,3H),2.03-1.91(m,2H),1.33(t,J=7.1Hz,3H)。
实施例38
(S,E)-2-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3-(2-(3-(3-fluorophenyl)acrylamido)ethyl)-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylene-7-carboxamide
Figure PCTCN2019101707-appb-000121
化合物38由以下步骤制备:
Figure PCTCN2019101707-appb-000122
第一步:将化合物7a(78mg)和38a(30mg,0.18mmol)溶于N,N-二甲基甲酰胺(3mL)中,加入HATU(75mg,0.20mmol),HOBt(27mg,0.20mmol)和三乙胺(55mg,0.54mmol),室温反应过夜,LC-MS监测原料反应完全。反应液直接通过制备HPLC纯化得化合物38(20mg),白色粉末。ESI-MS(m/z):546.4[M+H] +1H NMR(500MHz,DMSO-d 6)δ12.74(br s,1H),8.34(t,J=5.7Hz,1H),7.95(s,1H),7.60(s,1H),7.50-7.40(m,4H),7.37(s,1H),7.33(s,1H),7.23(t,J=8.8Hz,1H),6.73-6.62(m,2H),4.76(d,J=11.5Hz,1H),4.71(br s,1H),4.58(q,J=7.5Hz,2H),4.32(d,J=11.0Hz,1H),3.52-3.43(m,1H),2.06(s,3H),2.03-1.93(m,2H),1.33(t,J=7.1Hz,3H)。
实施例39
(S,E)-2-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3-(2-(3-(2-methoxyphenyl)acrylamido)ethyl)-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylene-7-carboxamide
Figure PCTCN2019101707-appb-000123
化合物39由以下步骤制备:
Figure PCTCN2019101707-appb-000124
第一步:将化合物7a(73mg)和39a(30mg,0.17mmol)溶于N,N-二甲基甲酰胺(3mL)中,加入HATU(70mg,0.18mmol),HOBt(25mg,0.18mmol)和三乙胺(51mg,0.51mmol),室温反应过夜,LC-MS监测原料反应完全。反应液直接通过制备HPLC纯化得化合物39(21mg),白色粉末。ESI-MS(m/z):558.4[M+H] +1H NMR(500MHz,DMSO-d 6)δ12.74(br s,1H),8.30(t,J=5.8Hz,1H),7.95(s,1H),7.69(d,J=15.9Hz,1H),7.60(s,1H),7.53(d,J=7.6Hz,1H),7.42-7.31(m,3H),7.08(d,J=8.3Hz,1H),6.99(t,J=7.5Hz,1H),6.70-6.62(m,2H),4.79-4.67(m,2H),4.64-4.55(m,2H),4.36-4.29(m,1H),3.86(s,3H),3.51-3.42(m,1H),3.32(s,1H),2.06(s,3H),2.04-1.98(m,1H),1.97-1.90(m,1H),1.33(t,J=7.1Hz,3H)。
实施例40
(S,E)-2-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3-(2-(3-(pyridin-3-yl)acrylamido)ethyl)-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylene-7-carboxamide
Figure PCTCN2019101707-appb-000125
化合物40由以下步骤制备:
Figure PCTCN2019101707-appb-000126
第一步:将化合物7a(133mg)和40a(50mg,0.33mmol)溶于N,N-二甲基甲酰胺(3mL)中,加入HATU(127mg,0.33mmol),HOBt(45mg,0.33mmol)和三乙胺(102mg,1mmol),室温反应过夜,LC-MS监测原料反应完全。反应液直接通过制备HPLC纯化得化合物40(17mg),白色粉末。ESI-MS(m/z):529.4[M+H] +1H NMR(500MHz,DMSO-d 6)δ12.73(br s,1H),8.77(s,1H),8.56(d,J=4.7Hz,1H),8.38(t,J=5.8Hz,1H),8.00(d,J=8.0Hz,1H),7.95(s, 1H),7.61(s,1H),7.52-7.44(m,2H),7.37(s,1H),7.33(s,1H),6.74(d,J=16.0Hz,1H),6.66(s,1H),4.76(d,J=11.5Hz,1H),4.71(br s,1H),4.58(q,J=7.5Hz,2H),4.32(d,J=10.5Hz,1H),3.53-3.43(m,1H),2.05(s,3H),2.03-1.92(m,2H),1.33(t,J=7.1Hz,3H)。
实施例41
Pyridin-2-ylmethyl(S)-(3-(7-carbamoyl-2-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylen-3-yl)propyl)carbamate
Figure PCTCN2019101707-appb-000127
化合物41由以下步骤制备:
Figure PCTCN2019101707-appb-000128
第一步:将化合物4a(100mg)和化合物9b(103mg,0.51mmol)溶于N,N-二甲基甲酰胺(3mL),加入三乙胺(64mg,0.64mmol)和1,8-二氮杂双环[5.4.0]十一碳-7-烯(77mg,0.51mmol),50℃搅拌过夜。LC-MS显示原料反应完全。向反应液中加入水(15mL),然后用乙酸乙酯(15mL*3)萃取分液,合并有机相,用无水硫酸钠干燥,过滤浓缩,残留物通过硅胶柱层析分离纯化得化合物41(15mg),白色固体。ESI-MS(m/z):547.3[M+H] +1H NMR(500MHz,DMSO)δ8.49(d,J=3.9Hz,1H),7.92(s,1H),7.73(t,J=7.0Hz,1H),7.59(s,1H),7.40-7.22(m,5H),6.64(s,1H),5.11-4.95(m,2H),4.69-4.54(m,4H),4.26(d,J=12.0Hz,1H),3.12-3.01(mbr,2H),2.16(s,3H),1.86-1.78(m,2H),1.67-1.56(m,2H),1.35(t,J=7.5Hz,3H)。
实施例42
Phenethyl
(S)-(2-(7-carbamoyl-2-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylen-3-yl)ethyl)carbamate
Figure PCTCN2019101707-appb-000129
化合物42由以下步骤制备:
Figure PCTCN2019101707-appb-000130
第一步:将CDI(38mg,0.24mmol)溶于四氢呋喃(5mL)中,加入苯乙醇42a(28mg,0.23mmol),室温搅拌1小时。TLC显示原料反应完全。将化合物7a(50mg)溶于N,N-二甲基甲酰胺(3mL)加入到上述反应体系中,然后加入1,8-二氮杂双环[5.4.0]十一碳-7-烯(35mg,0.23mmol),三乙胺(29mg,0.29mmol),50℃反应过夜,LC-MS监测原料反应完全。反应液直接通过制备HPLC纯化得化合物42(18mg),白色粉末。ESI-MS(m/z):546.4[M+H] +1H NMR(500MHz,DMSO-d 6)δ12.72(br s,1H),7.92(s,1H),7.60(s,1H),7.34(s,1H),7.32-7.15(m,6H),6.68(s,1H),4.71-4.55(m,4H),4.26(d,J=11.5Hz,1H),4.20-4.08(m,2H),3.23-3.16(m,1H),3.15-3.07(m,1H),2.85(t,J=7.0Hz,2H),2.16(s,3H),1.98-1.82(m,2H),1.35(t,J=7.1Hz,3H)。
实施例43
Benzyl
(S)-(3-(8-carbamoyl-2-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido )-6-methyl-5,6-dihydro-4H-imidazo[1,5,4-de]quinoxalin-4-yl)propyl)carbamate
Figure PCTCN2019101707-appb-000131
化合物43由以下步骤制备:
Figure PCTCN2019101707-appb-000132
Figure PCTCN2019101707-appb-000133
第一步:将化合物43a(10.0g,40.6mmol)溶于甲醇(200mL),加入浓硫酸(2mL),反应液回流搅拌16小时,TLC监测反应完全。反应体系浓缩,残留物加水(20mL)中,用乙酸乙酯(15mL*3)萃取,合并有机相,分别用饱和碳酸氢钠(10mL)和食盐水(10mL)洗涤,无水硫酸钠干燥,过滤浓缩,残留物通过硅胶柱层析(石油醚/乙酸乙酯=5/1)纯化得化合物43b(8.2g),黄色固体,产率78%。
第二步:将化合物43b(4.0g,15.4mmol),化合物N’-Cbz-L-鸟氨酸43c(4.9g,18.5mmol)和三乙胺(3.1g,30.8mmol)溶解于甲醇(100mL)中,80℃下搅拌3小时,TLC监测反应完全。反应体系浓缩得化合物43d(4.3g),红色油。未作进一步纯化,直接用于下一步反应。ESI-MS(m/z):490.9[M+H] +
第三步:将化合物43d(4.3g,由第二步反应得到)和铁粉(0.94g,16.7mmol)加到乙酸(30mL)中,在80℃下反应3小时,LC-MS监测反应完全。反应液倒入水(20mL)中,用乙酸乙酯(15mL*3) 萃取,合并有机相,分别用饱和碳酸氢钠(10mL)和食盐水(10mL)洗涤,无水硫酸钠干燥,过滤浓缩,残留物通过硅胶柱层析(石油醚/乙酸乙酯=8/1)纯化得化合物43e(3.9g),红色油状液体,两步产率57%。ESI-MS(m/z):443.0[M+H] +
第四步:将化合物43e(3.9g,8.85mmol)溶于四氢呋喃(50mL)中,室温下滴加硼烷二甲基硫醚络合物(2N四氢呋喃溶液,8.8mL,17.6mmol),然后升至70℃下反应2小时,LC-MS监测反应完全。反应液浓缩,残留物通过硅胶柱层析(石油醚/乙酸乙酯=1/1)纯化得化合物43f(1.3g),红色油状,产率34%。ESI-MS(m/z):429.0[M+H] +
第五步:将化合物43f(1.6g,3.73mmol)溶于N,N-二甲基甲酰胺(30mL)中,加入碳酸铯(2.4g,7.48mmol)和碘甲烷(0.8g,5.6mmol),然后升至90℃下反应8小时,LC-MS监测反应完全。反应液冷却到室温,倒入水(15mL)中,用乙酸乙酯(15mL*4)萃取。合并有机相,用饱和食盐水(10mL)洗涤,无水硫酸钠干燥,过滤浓缩,残留物通过硅胶柱层析(石油醚/乙酸乙酯=1/1)纯化得化合物43g(1.3g),红色油,产率76%。ESI-MS(m/z):443.0[M+H] +
第六步:将化合物43g(2.6g,5.88mmol)溶于甲醇(50mL)和氨水(18mL)的混合溶剂中,滴加保险粉(10.2g,58.8mmol)的水溶液(20mL),然后室温条件下反应1小时,LC-MS监测反应完全。 反应液倒入水(200mL)中,乙酸乙酯(80mL*4)萃取,合并有机相,用饱和食盐水(40mL)洗涤,无水硫酸钠干燥,过滤浓缩,残留物通过硅胶柱层析(二氯甲烷/甲醇=20/1)纯化得化合物43h(1.7g),红色油,产率70%。ESI-MS(m/z):413.0[M+H] +
第七步:将化合物43h(250mg,0.61mmol)溶于1,4-二氧六环溶溶液(10mL)中,加入17e(0.4N二氧六环溶液,1.7mL,0.67mmol),室温反应1小时,LC-MS监测原料反应完全有中间态形成。加入EDCI(140mg,0.15mmol),80℃反应4小时,LC-MS监测中间态消失,产物生成。反应液冷却至室温,倒入水(50mL)中,用乙酸乙酯(30mL*4)萃取,合并有机相,用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩,残留物通过硅胶柱层析(乙酸乙酯)纯化得化合物43i(190mg),棕色固体,产率55%。ESI-MS(m/z):574.0[M+H] +
第八步:将化合物43i(260mg,0.45mmol)溶于甲醇(10mL)和四氢呋喃(10mL)的混合溶液中,滴加1N的氢氧化钠的水溶液(1.82mL,1.82mmol),室温下反应48小时,TLC监测反应完全。反应液浓缩,残留物溶解水中,用2N的盐酸水溶液调节pH至3~4,有固体产生,过滤,滤饼干燥得化合物43j(165mg),白色固体,产率65%。
第九步:将化合物43j(150mg,0.27mmol)溶于N,N-二甲基甲酰胺(10mL)中,加入氯化铵(143mg,2.68mmol),EDCI(77mg,0.40mmol),HOBt(54mg,0.40mmol),DIPEA(104mg,0.81mmol),反应体系室温搅拌过夜,LC-MS监测反应完全。将反应液倒入水(30mL)中,用乙酸乙酯(20mL*3)萃取,合并有机相,饱和食盐水洗涤1次,无水硫酸钠干燥,过滤浓缩,残留物通过制备薄层层析纯化得化合物43(22mg),白色固体,产物15%。ESI-MS(m/z):559.4[M+H] +1H NMR(400MHz,DMSO-d 6)δ12.61(s,1H),7.87(s,1H),7.38(s,1H),7.33-7.21(m,6H),7.07(s,1H),6.61(s,1H),5.04-4.92(m,2H),4.69-4.54(m,3H),3.43(d,J=12.0Hz,1H),3.25(d,J=11.6Hz,1H),3.10-3.00(m,2H),2.98(s,3H),2.16(s,3H),1.84-1.69(m,2H),1.66-1.50(m,2H),1.35(t,J=7.0Hz,3H)。
实施例44
1-(1-Ethyl-4-fluoro-3-methyl-1H-pyrazole-5-carboxamido)-8,8-dimethyl-8,9-dihydro-7H-6-oxa-2,9a-diazabenzo[cd]azulene-4-carboxamide
Figure PCTCN2019101707-appb-000134
化合物44由以下步骤制备:
Figure PCTCN2019101707-appb-000135
第一步:将化合物27c(600mg,2.76mmol)溶于甲醇(10mL)中,加入溴氰(1.46g,13.81mmol),室温搅拌过夜,LCMS显示原料反应完全。反应液直接浓缩,粗品硅胶柱层析纯化得化合物44a(500mg),白色固体,收率74%。ESI-MS(m/z):243.2[M+H] +
第二步:将化合物44a(50mg,0.21mmol),1-乙基-4-氟-3-甲基-1H-吡唑-5-羧酸(39mg,0.22mmol),HATU(94mg,0.24mmol),HOAt(33mg,0.24umol)溶于THF(10mL)中,加入TEA(0.09mL,0.62mmol),室温搅拌过夜,LCMS监测原料反应完全。反应液浓缩,得粗品80mg,直接用于下一步反应。ESI-MS(m/z):397.2[M+H] +
第三步:将上一步反应粗品(80mg)溶于DMSO(3mL)中,加入NaOH(24mg,0.60mmol),升温至60℃,缓慢滴加双氧水(30%wt,1mL),60℃反应5分钟,LCMS监测原料反应完全。反应液直接通 过反向HPLC纯化得化合物44(17mg),白色固体,两步反应收率20%。ESI-MS(m/z):415.4[M+H] +1H NMR(500MHz,DMSO-d6)δ12.96(br s,1H),7.94(s,1H),7.66(d,J=1.5Hz,1H),7.34(d,J=1.5Hz,1H),4.55(q,J=7.0Hz,2H),4.15(s,2H),3.96(s,2H),2.16(s,3H),1.34(t,J=7.0Hz,3H),1.08(s,6H)。
实施例45
1-(4-Chloro-1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-8,8-dimethyl-8,9-dihydro-7H-6-oxa-2,9a-diazabenzo[cd]azulene-4-carboxamide
Figure PCTCN2019101707-appb-000136
化合物45由以下步骤制备:
Figure PCTCN2019101707-appb-000137
第一步:将化合物44a(50mg,0.20mmol),4-氯-1-乙基-3-甲基-1H-吡唑-5-羧酸(42mg,0.22mmol),HATU(94mg,0.24mmol),HOAt(33mg,0.24mmol)溶于THF(10mL)中,加入TEA(0.09 mL,0.62mmol),室温搅拌过夜,LCMS监测原料反应完全。反应液浓缩,得粗品80mg,直接用于下一步反应。ESI-MS(m/z):413.3[M+H] +
第二步:将上一步反应粗品(80mg)溶于DMSO(3mL)中,加入NaOH(23mg,0.58mmol),升温至60℃,缓慢滴加双氧水(30%wt,1mL),60℃反应5分钟,LCMS监测原料反应完全。反应液直接通过反向制备HPLC纯化得化合物45(13mg),白色固体,两步反应收率15%。ESI-MS(m/z):431.3[M+H] +1H NMR(500MHz,DMSO-d6)δ13.02(s,1H),7.95(s,1H),7.67(d,J=1.5Hz,1H),7.40-7.30(m,2H),4.59(q,J=7.0Hz,2H),4.15(s,2H),4.01(s,2H),2.17(s,3H),1.36(t,J=7.0Hz,3H),1.08(s,6H)。
实施例46
1-(4-Bromo-1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-8,8-dimethyl-8,9-dihydro-7H-6-oxa-2,9a-diazabenzo[cd]azulene-4-carboxamide
Figure PCTCN2019101707-appb-000138
化合物46由以下步骤制备:
Figure PCTCN2019101707-appb-000139
第一步:将化合物44a(50mg,0.20mmol),4-溴-1-乙基-3-甲基-1H-吡唑-5-羧酸(52mg,0.22mmol),HATU(94mg,0.24mmol),HOAt(33mg,0.24mmol)溶于THF(10mL)中,加入TEA(0.09mL,0.62mmol),室温搅拌过夜,LCMS监测原料反应完全。反应液浓缩,得46a(粗品,90mg),直接用于下一步反应。ESI-MS(m/z):457.4[M+H] +
第二步:将46a(粗品,80mg,从第一步得到)溶于DMSO(3mL)中,加入NaOH(23mg,0.59mmol),升温至60℃,缓慢滴加双氧水(30%wt,1mL),60℃反应5分钟,LCMS监测原料反应完全。反应液直接通过反向制备HPLC纯化得化合物46(7mg),白色固体,两步反应收率7%。ESI-MS(m/z):475.3[M+H] +1H NMR(500MHz,DMSO-d6)δ12.96(br s,1H),7.94(s,1H),7.68(s,1H),7.40-7.30(m,2H),4.59(q,J=7.0Hz,2H),4.15(s,2H),4.04(s,2H),2.17(s,3H),1.36(t,J=7.0Hz,3H),1.08(s,6H)。
实施例47
(S)-3-Ethyl-2-(1-ethyl-4-fluoro-3-methyl-1H-pyrazole-5-carboxamido)-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylene-7-carboxamide
Figure PCTCN2019101707-appb-000140
化合物47由以下步骤制备:
Figure PCTCN2019101707-appb-000141
第一步:将化合物26c(1.0g,4.92mmol)溶于甲醇(20mL)中,加入溴氰(2.61g,24.6mmol),室温反应过夜,LCMS监测原料反应完全。反应液浓缩,粗品硅胶柱层析纯化得化合物47a(1.0g),类白色固体,收率89%。ESI-MS(m/z):229.2[M+H] +
第二步:将化合物47a(50mg,0.21mmol),1-乙基-4-氟-3-甲基-1H-吡唑-5-羧酸(41mg,0.24mmol),HATU(99mg,0.26mmol),HOAt(35mg,0.26mmol)溶于THF(10mL)中,加入TEA(0.09 mL,0.65mmol),室温搅拌过夜,LCMS监测原料反应完全。反应液浓缩,得47b(粗品,80mg),直接用于下一步反应。ESI-MS(m/z):383.3[M+H] +
第三步:将47b(粗品,80mg,从第二步得到)溶于DMSO(3mL)中,加入NaOH(25mg,0.62mmol),升温至60℃,缓慢滴加双氧水(30%wt,1mL),60℃反应5分钟,LCMS监测原料反应完全。反应液直接通过反向制备HPLC纯化得化合物47(18mg),白色固体,两步反应收率20%。ESI-MS(m/z):401.1[M+H] +1H NMR(500MHz,DMSO-d 6)δ12.60(br s,1H),7.94(s,1H),7.59(s,1H),7.38-7.30(m,2H),4.66(dd,J=12.0,1.5Hz,1H),4.63-4.56(m,1H),4.56-4.47(m,2H),4.27(dd,J=12.0,3.0Hz,1H),2.16(s,3H),1.92-1.79(m,2H),1.34(t,J=7.0Hz,3H),0.98(t,J=7.5Hz,3H)。
实施例48
(S)-2-(4-Chloro-1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3-ethyl-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylene-7-carboxamide
Figure PCTCN2019101707-appb-000142
化合物48由以下步骤制备:
Figure PCTCN2019101707-appb-000143
第一步:将化合物47a(50mg,0.22mmol),4-氯-1-乙基-3-甲基-1H-吡唑-5-羧酸(45mg,0.24mmol),HATU(99mg,0.26mmol),HOAt(35mg,0.26mmol)溶于THF(10mL)中,加入TEA(0.09mL,0.65mmol),室温搅拌过夜,LCMS监测原料反应完全。反应液浓缩,得48a(粗品,80mg),直接用于下一步反应。MS(ESI):m/z399.3[M+H] +
第二步:将48a(粗品,80mg,从第一步得到)溶于DMSO(3mL)中,加入NaOH(24mg,0.60mmol),升温至60℃,缓慢滴加双氧水(30%wt,1mL),60℃反应5分钟,LCMS监测原料反应完全。反应液直接通过反向制备HPLC纯化得化合物48(24mg),白色固体,两步收率29%。ESI-MS(m/z):417.4[M+H] +1H-NMR(500MHz,DMSO-d 6)δ12.85(br s,1H),7.95(s,1H),7.60(s,1H),7.40-7.31(m,2H),4.72-4.67(m,1H),4.67-4.59(m,1H),4.59-4.51(m,2H),4.27(dd,J=12.0,3.0Hz,1H),2.16(s,3H),1.94-1.86(m,1H),1.85-1.75(m,1H),1.37(t,J=7.0Hz,3H),0.98(t,J=7.5Hz,3H)。
实施例49
(S)-2-(4-Bromo-1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3-ethyl-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylene-7-carboxamide
Figure PCTCN2019101707-appb-000144
化合物49由以下步骤制备:
Figure PCTCN2019101707-appb-000145
第一步:将化合物47a(50mg,0.22mmol),4-溴-1-乙基-3-甲基-1H-吡唑-5-羧酸(56mg,0.24mmol),HATU(99mg,0.26mmol),HOAt(35mg,0.26mmol)溶于THF(10mL)中,加入TEA(0.09mL,0.65mmol),室温搅拌过夜,LCMS监测原料反应完全。反应液浓缩,得49a(粗品,90mg),直接用于下一步反应。ESI-MS(m/z):443.2[M+H] +
第二步:将49a(粗品,90mg,从第一步得到)溶于DMSO(3mL)中,加入NaOH(24mg,0.61mmol),升温至60℃,缓慢滴加双氧水(30%wt,1mL),60℃反应5分钟,LCMS监测原料反应完全。反应液直接通过反向制备HPLC纯化得化合物49(46mg), 白色固体,两步反应收率49%,ESI-MS(m/z):463.4[M+H] +1H-NMR(500MHz,DMSO-d 6)δ12.87(s,1H),7.94(s,1H),7.61(s,1H),7.40-7.30(m,2H),4.75-4.51(m,4H),4.27(dd,J=12.0,3.0Hz,1H),2.17(s,3H),1.94-1.87(m,1H),1.84-1.75(m,1H),1.37(t,J=7.0Hz,3H),0.99(t,J=7.5Hz,3H)。
实施例50
(S)-3-(3-Aminopropyl)-2-(3-methyl-1-(pent-4-en-1-yl)-1H-pyrazole-5-carboxamido)-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylene-7-carboxamide
Figure PCTCN2019101707-appb-000146
化合物50由以下步骤制备:
Figure PCTCN2019101707-appb-000147
第一步:将化合物1j(3.0g,7.66mmol),化合物50a(1.56g,8.05mmol)溶于THF(30mL)中,加入HATU(3.21g,8.43mmol),HOAt(1.15g,8.43mmol),TEA(2.12mL,15.33mmol),室温搅拌过夜,LCMS监测原料反应完全。反应液浓缩,残余物用乙酸乙酯(100mL)分散,有机相用饱和氯化铵溶液,饱和氯化钠溶液洗涤,无水硫酸钠干燥。过滤浓缩得干得化合物50b(4.0g),粗品,直接用于下一步反应。ESI-MS(m/z):568.5[M+H] +
第二步:将化合物50b(4.0g,从第一步得到)溶于DMSO(40mL)中,加入NaOH(845mg,21mmol),升温至60℃,缓慢滴加双氧水(30%wt,10mL),60℃搅拌10分钟,LCMS监测原料反应完全。反应液冷却至室温,加入BOC酸酐(2.31g,10.57mmol),室温搅拌30分钟,LCMS监测转化完全。反应液倒入水(150mL)中, 乙酸乙酯萃取,有机相用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩。残余物硅胶柱层析纯化得化合物50c(1.8g),白色固体,两步反应收率40%。ESI-MS(m/z):552.4[M+H] +
第三步:将化合物50c(1.8g,3.26mmol)溶于甲醇(20mL)中,加入盐酸二氧六环溶液(4N,5mL),室温搅拌4小时,LCMS监测原料反应完全。反应液直接减压浓缩得化合物50(1.5g),白色固体,收率94%。ESI-MS(m/z):452.4[M+H] +1H-NMR(500MHz,DMSO-d 6)δ8.44(s,1H),7.92(s,1H),7.60(s,1H),7.40-7.20(m,2H),6.67(s,1H),5.90-5.75(m,1H),5.07-5.00(m,1H),4.97(d,J=10.5Hz,1H),4.70-4.55(m,4H),4.37-4.20(m,1H),2.80-2.70(m,2H),2.19(s,3H),2.04(q,J=7.0Hz,2H),1.95-1.80(m,4H),1.70-1.60(m,2H)。
实施例51
(S)-3-(3-Aminopropyl)-2-(1-ethyl-3-methyl-4-vinyl-1H-pyrazole-5-carboxamido)-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylene-7-carboxamide
Figure PCTCN2019101707-appb-000148
化合物51由以下步骤制备:
Figure PCTCN2019101707-appb-000149
第一步:将化合物1j(3.0g,7.66mmol),化合物51a(1.45g,8.05mmol)溶于THF(30mL)中,加入HATU(3.21g,8.43mmol),HOAt(1.15g,8.43mmol),TEA(2.12mL,15.33mmol),室温搅拌过夜,LCMS监测原料反应完全。反应液浓缩,残余物用乙酸乙酯(100mL)分散,有机相用饱和氯化铵溶液,饱和氯化钠溶液洗涤,无水硫酸钠干燥。过滤浓缩得干得化合物51b(4.0g),粗品,直接用于下一步反应。ESI-MS(m/z):554.8[M+H] +
第二步:将化合物51b(4.0g,从第一步得到)溶于DMSO(40mL)中,加入NaOH(845mg,21.14mmol),升温至60℃,缓慢滴加双氧水(30%wt,10mL),60℃搅拌10分钟,LCMS监测原料反应完全。反应液冷却至室温,加入BOC酸酐(2.37g,10.84mmol),室温搅拌30分钟,LCMS监测转化完全。反应液倒入150mL水中,乙酸乙酯萃取,有机相饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩。 残余物硅胶柱层析纯化得化合物51c(1.4g),白色固体,两步反应收率32%。ESI-MS(m/z):538.5[M+H] +
第三步:将化合物51c(1.4g,2.60mmol)溶于甲醇(20mL)中,加入盐酸二氧六环溶液(4N,7mL),室温搅拌6小时,LCMS监测原料反应完全。反应液直接减压浓缩得化合物51(1.1g),白色固体,收率89%。ESI-MS(m/z):438.4[M+H] +1H NMR(500MHz,DMSO-d 6)δ8.39(s,1H),7.93(s,1H),7.61(s,1H),7.55-7.45(m,1H),7.40-7.30(m,2H),5.36(dd,J=18.5,2.0Hz,1H),5.23(dd,J=11.5,2.0Hz,1H),4.70-4.61(m,2H),4.59-4.52(m,2H),4.37-4.22(m,1H),2.75-2.58(m,2H),2.28(s,3H),1.85(q,J=8.0Hz,2H),1.75-1.55(m,2H),1.36(t,J=7.0Hz,3H)。
实施例52
(S)-2-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-4-(hydroxymethyl)-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylene-7-carboxamide
Figure PCTCN2019101707-appb-000150
化合物52由以下步骤制备:
Figure PCTCN2019101707-appb-000151
第一步:将化合物1f(2.0g,9.97mmol)和52a(1.36g,14.96mmol)溶于乙腈(50mL)中,加入碳酸钾(3.45g,24.93mmol),80℃反应4小时,TLC显示原料反应完全。加入碳酸铯(1.62g,4.99mmol),80℃继续搅拌过夜。反应液冷却到室温,过滤除去固体,二氯甲烷淋洗,滤液浓缩,残余物硅胶柱层析纯化得化合物52b(800mg),黄色固体,收率34%。
第二歩:将化合物52b(800mg,3.40mmol)溶于甲醇(20mL)和氨水(4mL)的混合溶剂中,滴加保险粉(1.78g,10.2mmol)的水溶液(2mL),滴加完毕,室温反应30分钟,LCMS显示原料反应完全。反应液加水(20mL)稀释,减压浓缩除去甲醇,残余水相用乙酸乙酯(15mL*3)萃取。有机相用饱和食盐水洗,硫酸钠干燥,过滤浓缩得化合物52c(500mg),红色固体,收率71%。ESI-MS(m/z):206.2[M+H] +
第三歩:将化合物52c(500mg,2.44mmol)溶于1,4-二氧六环(10mL)中,加入1-乙基-3-甲基-1H-吡唑-5-羰基异硫氰酸酯17e(1N的二氧六环溶液,2.68mL,2.68mmol),室温反应10分钟,LCMS监测原料反应完全有中间态形成,加入EDCI(513mg,2.68mmol),80℃反应2小时,LCMS监测中间态消失产物生成。反应液浓缩,残余物硅胶柱层析得化合物52d(600mg),红色固体,收率67%。ESI-MS(m/z):367.4[M+H] +
第四歩:将化合物52d(50mg,0.13mmol)溶于DMSO(3mL),加入NaOH(16mg,0.40mmol),室温搅拌5分钟,缓慢滴加双氧水(30%wt,1mL),滴加完毕,室温反应30分钟,LCMS监测反应完全。反应液直接用反向制备HPLC纯化得化合物52(6mg),白色固体,收率11%。ESI-MS(m/z):385.5[M+H] +1H NMR(500MHz,DMSO-d6)δ12.64(br s,1H),8.43(s,1H),7.92(s,1H),7.58(s,1H),7.31(s,2H),6.66(s,1H),5.28(br s,1H),4.61(q,J=7.0Hz,2H),4.45-4.38(m,2H),3.95-3.88(m,1H),3.82-3.75(m,2H),2.17(s,3H),1.35(t,J=7.0Hz,3H)。
实施例53
1-(1-Ethyl-3-methyl-1H-pyrazole-5-carboxamido)-8,8-difluoro-8,9-dihydro-7H-6-oxa-2,9a-diazabenzo[cd]azulene-4-carboxamide
Figure PCTCN2019101707-appb-000152
化合物53由以下步骤制备:
Figure PCTCN2019101707-appb-000153
第一步:将化合物1f(800mg,3.99mmol)和3-氨基-2,2-二氟-丙-1-醇53a(509mg,4.59mmol)溶于乙腈(10mL)中,加入碳酸钾(1.10g,7.98mmol),70℃反应4小时,TLC显示原料反应完全。反应液冷却至室温,过滤浓缩,残余物硅胶柱层析纯化得化合物53b(350mg),黄色油,收率31%。
第二歩:将化合物53b(350mg,1.27mmol)溶于乙腈(10mL)中,加入碳酸铯(621mg,1.91mmol),70℃反应2小时,TLC显示原料反应完全。反应液冷却至室温,过滤浓缩,残余物硅胶柱层析纯化得化合物化合物53c(200mg),黄色油,收率61%。
第三步:将化合物53c(200mg,0.78mmol)溶于甲醇(10mL)和氨水(2mL)的混合溶液中,滴加保险粉(409mg,2.35mmol)的水溶液(2mL),滴加完毕,室温反应10分钟,LCMS显示原料反应完全。反应液浓缩,残余物硅胶柱层析纯化得化合物53d(60mg),白色固体,收率34%。ESI-MS(m/z):226.1[M+H] +
第四歩:将化合物53d(20mg,0.08mmol)溶于1,4-二氧六环(5mL)中,加入1-乙基-3-甲基-1H-吡唑-5-羰基异硫氰酸酯17e(1N的二氧六环溶液,0.1mL,0.1mmol),室温反应10分钟,LCMS监测原料反应完全有中间态形成,加入EDCI(20mg,0.10mmol),80℃反应2小时,LCMS监测中间态消失产物生成。反应液浓缩得53e(粗品,30mg),直接用于下一步反应。ESI-MS(m/z):387.3[M+H] +
第五歩:将53e(粗品,30mg,从第四步得到)溶于DMSO(3mL),加入NaOH(9mg,0.23mmol),室温搅拌5分钟,缓慢滴加双氧水(30%wt,0.5mL),滴加完毕,室温反应30分钟,LCMS监测反应完全。反应液直接通过反向制备HPLC纯化得化合物53(18mg),白色固体,两步反应收率51%。ESI-MS(m/z):405.1[M+H] +1H NMR(500MHz,DMSO-d6)δ12.97(br s,1H),7.98(s,1H),7.74(s,1H),7.50-7.35(m,2H),6.80(s,1H),4.80-4.68(m,4H),4.60(q,J=7.0Hz,2H),2.18(s,3H),1.35(t,J=7.0Hz,3H)。
.
实施例54
(S)-2-(1-Ethyl-4-fluoro-3-methyl-1H-pyrazole-5-carboxamido)-3-isopropyl-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylene-7-carboxamide
Figure PCTCN2019101707-appb-000154
化合物54由以下步骤制备:
Figure PCTCN2019101707-appb-000155
第一步:取化合物25e(1.94g,8.94mmol)溶于甲醇(30mL)中,加入溴化氰(2.84g,26.79mmol),室温反应过夜,LC-MS监测反应完全。反应液浓缩除去甲醇,加入乙酸乙酯(80mL)和饱和碳酸钠溶液(40mL),萃取分层,水相用乙酸乙酯萃取(50mL*2),合并有机相,饱和食盐水洗,无水硫酸钠干燥,过滤,浓缩,残余物 通过硅胶柱层析纯化得化合物54a(1.68g),黄色固体,反应收率77%。ESI-MS(m/z):243.6[M+H] +
第二步:将化合物54a(300mg,1.24mmol)溶于四氢呋喃(8mL)中,依次加入1-乙基-4-氟-3-甲基吡唑-5-羧酸(214mg,1.24mmol),HOBt(84mg,0.62mmol),HATU(471mg,1.24mmol),三乙胺(0.52mL,3.72mmol),加完后室温反应过夜,LC-MS监测反应完全,反应液倒入水(20mL)中,用乙酸乙酯(25mL*3)萃取,合并有机相,用饱和食盐水洗涤3次,无水硫酸钠干燥,过滤,滤液浓缩后通过硅胶柱层析纯化得化合物54b(295mg),白色固体,产率60%。ESI-MS(m/z):397.6[M+H] +
第三步:将化合物54b(150mg,0.37mmol)溶于二甲基亚砜(3mL)中,加入NaOH(50mg,1.25mmol),60℃下缓慢滴加30%双氧水(1.5mL),滴加完毕,反应30分钟,LC-MS监测反应完全,反应液直接通过反向制备HPLC纯化得化合物54(40mg),白色固体,收率26%。ESI-MS(m/z):415.4[M+H] +1H NMR(500MHz,DMSO-d 6)δ12.81(br s,1H),7.91(s,1H),7.58(s,1H),7.42-7.19(m,2H),4.82-4.72(m,1H),4.62-4.45(m,2H),4.40-4.32(m,1H),4.24-4.14(m,1H),2.38-2.28(m,1H),2.13(s,3H),1.32(t,J=7.1Hz,3H),0.99(d,J=6.9Hz,3H),0.89(d,J=6.9Hz,3H)。
实施例55
(S)-2-(4-chloro-1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3-isopropyl-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylene-7-carboxamide
Figure PCTCN2019101707-appb-000156
化合物55由以下步骤制备:
Figure PCTCN2019101707-appb-000157
第一步:将化合物54a(200mg,0.83mmol)溶于四氢呋喃(8mL)中,依次加入1-乙基-4-氯-3-甲基吡唑-5-羧酸(155mg,0.83mmol),HOBt(55mg,0.42mmol),HATU(315mg,0.83mmol),三乙胺(0.33mL,2.55mmol),加完后室温反应过夜,LC-MS监测反应完全,反应液倒入水(20mL)中,用乙酸乙酯(25mL*3)萃取,合并有机相,用饱和食盐水洗涤3次,无水硫酸钠干燥,过滤,滤液浓缩后通过硅胶柱层析纯化得化合物55a(224mg),白色固体,产率66%。ESI-MS(m/z):413.6[M+H] +
第六步:将化合物55a(224mg,0.54mmol)溶于二甲基亚砜(4mL)中,加入NaOH(65mg,1.62mmol),60℃下缓慢滴加30%双氧水(2mL),滴加完毕,反应30分钟,LC-MS监测反应完全,反应液直接通过反向制备HPLC纯化得化合物55(45mg),白色固体,收率20%。ESI-MS(m/z):431.5[M+H] +1H NMR(500MHz,DMSO-d 6)δ12.87(br s,1H),7.91(s,1H),7.59(s,1H),7.39-7.20(m,2H),4.82-4.77(m,1H),4.66-4.49(m,2H),4.45-4.37(m,1H),4.27-4.15(m,1H),2.45-2.34(m,1H),2.14(s,3H),1.34(t,J=7.1Hz,3H),1.01(d,J=7.0Hz,3H),0.85(d,J=6.8Hz,3H)。
实施例56
(S)-2-(4-Bromo-1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3-isopropyl-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylene-7-carboxamide
Figure PCTCN2019101707-appb-000158
化合物56由以下步骤制备:
Figure PCTCN2019101707-appb-000159
第一步:将化合物54a(200mg,0.83mmol)溶于四氢呋喃(8mL)中,依次加入1-乙基-4-溴-3-甲基吡唑-5-羧酸(191mg,0.83mmol),HOBt(55mg,0.42mmol),HATU(315mg,0.83mmol),三乙胺(0.33mL,2.55mmol),加完后室温反应过夜,LC-MS监测反应完全,反应液倒入水(30mL)中,用乙酸乙酯(40mL*3)萃取,合并有机相,用饱和食盐水洗涤3次,无水硫酸钠干燥,过滤,滤液浓缩后通过硅胶柱层析纯化得化合物56a(185mg),白色固体,产率49%。ESI-MS(m/z):457.1[M+H] +
第二步:将化合物56a(180mg,0.39mmol)溶于二甲基亚砜(3mL)中,加入NaOH(50mg,1.25mmol),60℃下缓慢滴加30%双氧水(1.5mL),滴加完毕,反应30分钟,LC-MS监测反应完全,反应液直接通过反向制备HPLC纯化得化合物56(53mg),白色固体,收率29%。ESI-MS(m/z):475.3[M+H] +1H NMR(500MHz,DMSO-d 6)δ12.87(br s,1H),7.91(s,1H),7.59(s,1H),7.46-7.19(m,2H),4.84-4.74(m,1H),4.68-4.50(m,2H),4.48-4.41(m,1H),4.24-4.14(m,1H),2.44-2.37(m,1H),2.15(s,3H),1.34(t,J=7.1Hz,3H),1.02(d,J=6.9Hz,3H),0.84(d,J=6.9Hz,3H)。
实施例57
1-(1-Ethyl-3-methyl-1H-pyrazole-5-carboxamido)-8,9-dihydro-7H-6-oxa-2,9a-diazabenzo[cd]azulene-4-carboxamide
Figure PCTCN2019101707-appb-000160
化合物57由以下步骤制备:
Figure PCTCN2019101707-appb-000161
第一步:将化合物1f(1.00g,5.00mmol)和化合物3-氨基-1-丙醇(562mg,7.50mmol)加入到乙腈(15mL)中,加入碳酸钾(1.4g,10.00mmol),氮气保护下70℃反应16小时,TLC监测反应完全,反应液冷却到室温,通过硅胶垫过滤,用二氯甲烷(100mL)洗涤固体,滤液浓缩后通过硅胶柱层析纯化得化合物57a(1.05g),黄色油,产率87%。ESI-MS(m/z):240.5[M+H] +
第二步:将化合物57a(1.05g,4.39mmol)溶于乙腈(20mL)中,加入碳酸铯(2.85g,8.78mmol),70℃反应3小时,LC-MS监测反应完全。冷却到室温,反应液通过硅胶垫过滤,用二氯甲烷洗涤 固体,滤液浓缩得化合物57b(880mg),棕色油。ESI-MS(m/z):220.4[M+H] +。化合物未进行进一步纯化,直接用于下一步反应。
第三步:将化合物57b(880mg,从第二步反应得到的产物)溶于甲醇(60mL)中,加入氨水(5mL),连二亚硫酸钠(3.5g,20.11mmol)溶于水(5mL)中缓慢滴入反应体系中。30分钟后LC-MS监测反应完全,反应液倒入水(50mL)中,水相用乙酸乙酯(50mL*3)萃取,合并有机相,用饱和食盐水洗涤3次,无水硫酸钠干燥,过滤,浓缩得化合物57c(455mg),棕色油。ESI-MS(m/z):190.6[M+H] +。化合物未进行进一步纯化,直接用于下一步反应。
第四步:将化合物57c(455mg,从第三步反应得到的产物)溶于1,4-二氧六环(20mL)中,加入17e(1N的1,4-二氧六环溶液,2.4mL,2.40mmol),室温搅拌0.5小时。加入N,N'-二环己基碳二亚胺(920mg,4.81mmol),反应混合物在80℃下搅拌过夜,LC-MS监测反应结束后,反应液浓缩,残余物通过硅胶柱层析纯化得化合物57d(280mg),白色固体,三步反应的收率20%。ESI-MS(m/z):351.4[M+H] +
第五步:将化合物57d(280mg,0.80mmol)溶于二甲基亚砜(3mL)中,加入NaOH(100mg,2.50mmol),60℃下缓慢滴加30%双氧水(2.0mL),滴加完毕,反应30分钟,LC-MS监测反应完全, 反应液直接通过反向制备HPLC纯化得化合物57(50mg),白色固体,收率17%。ESI-MS(m/z):369.5[M+H] +1H NMR(500MHz,DMSO-d 6)δ12.79(br s,1H),7.89(s,1H),7.64(d,J=1.6Hz,1H),7.31(d,J=1.7Hz,1H),7.28(s,1H),6.66(s,1H),4.60(q,J=7.1Hz,2H),4.41-4.35(m,2H),4.15(t,J=5.7Hz,2H),2.37-2.29(m,2H),2.16(s,3H),1.33(t,J=7.1Hz,3H)。
实施例58
(S)-2-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-3-(hydroxymethyl)-3,4-dihydro-5-oxa-1,2a-diazaacenaphthylene-7-carboxamide
Figure PCTCN2019101707-appb-000162
化合物58由以下步骤制备:
Figure PCTCN2019101707-appb-000163
Figure PCTCN2019101707-appb-000164
第一步:将化合物1f(1.00g,5.00mmol)和化合物58a(1.36g,7.50mmol)加入到乙腈(30mL)中,加入碳酸钾(1.4g,10.00mmol),氮气保护下70℃反应16小时,TLC监测反应完全,反应液冷却到室温,通过硅胶垫过滤,用二氯甲烷(100mL)洗涤固体,滤液浓缩后通过硅胶柱层析纯化得化合物58b(1.55g),黄色油,产率89%。ESI-MS(m/z):346.7[M+H] +
第二步:将化合物58b(1.55g,4.49mmol)溶于乙腈(30mL)中,加入碳酸铯(2.92g,8.98mmol),70℃反应3小时,LC-MS监测反应完全。冷却到室温,反应液通过硅胶垫过滤,用二氯甲烷洗涤固体,滤液浓缩得化合物58c(1.31g),棕色油。ESI-MS(m/z):326.5[M+H] +。化合物未进行进一步纯化,直接用于下一步反应。
第三步:将化合物58c(1.31g,从第二步反应得到的产物)溶于甲醇(80mL)中,加入氨水(5mL),连二亚硫酸钠(3.5g,20.11 mmol)溶于水(5mL)中缓慢滴入反应体系中。30分钟后LC-MS监测反应完全,反应液倒入水(50mL)中,水相用乙酸乙酯(50mL*3)萃取,合并有机相,用饱和食盐水洗涤3次,无水硫酸钠干燥,过滤,浓缩得化合物58d(594mg),黄色油。ESI-MS(m/z):296.6[M+H] +。化合物未进行进一步纯化,直接用于下一步反应。
第四步:将化合物58d(590mg,从第三步反应得到的产物)溶于1,4-二氧六环(15mL)中,加入17e(1N的1,4-二氧六环溶液,2.0mL,2.0mmol),室温搅拌0.5小时。加入N,N'-二环己基碳二亚胺(765mg,4.0mmol),反应混合物在80℃下搅拌过夜,LC-MS监测反应结束后,反应液浓缩,残余物通过硅胶柱层析纯化得化合物58e(605mg),白色固体,三步反应的收率29%。ESI-MS(m/z):457.3[M+H] +
第五步:将化合物58e(605mg,1.33mmol)溶于二甲基亚砜(5mL)中,加入NaOH(160mg,4.0mmol),60℃下缓慢滴加30%双氧水(2.0mL),滴加完毕,反应30分钟,LC-MS监测反应完全,反应液冷却到室温,倒入水(50mL)中,水相用乙酸乙酯(50mL*3)萃取,合并有机相,用饱和食盐水洗涤3次,无水硫酸钠干燥,过滤,有机相通过硅胶柱层析纯化得化合物58f(510mg),白色固体,收率81%。ESI-MS(m/z):475.7[M+H] +
第六步:将化合物58f(510mg,1.07mmol)溶于二氯甲烷(15mL)中,加入三氯化硼(1M的二氯甲烷溶液,11mL,11mmol),室温搅拌0.5小时,LC-MS监测反应完全,缓慢加甲醇淬灭,反应液浓缩后通过反向制备HPLC纯化得化合物58(270mg),白色固体,收率65%。ESI-MS(m/z):385.2[M+H] +1H NMR(500MHz,DMSO-d 6)δ12.70(br s,1H),7.90(s,1H),7.58(s,1H),7.32(s,1H),7.28(s,1H),6.64(s,1H),5.45(br s,1H),4.71(dd,J=11.8,2.1Hz,1H),4.66-4.56(m,2H),4.53(s,1H),4.32(dd,J=11.9and 3.0Hz,1H),3.84-3.76(m,1H),3.69-3.61(m,1H),2.18(s,3H),1.36(t,J=7.1Hz,3H)。
实施例59
1-(1-Ethyl-3-methyl-1H-pyrazole-5-carboxamido)-7H,9H-6-oxa-2,9a-diazaspiro[benzo[cd]azulene-8,3'-oxetan]-1,2a,2a 1(5a),4-tetraene-4-carboxamide
Figure PCTCN2019101707-appb-000165
化合物59由以下步骤制备:
Figure PCTCN2019101707-appb-000166
第一步:将化合物1f(200mg,0.99mmol)和3-氨甲基-3-羟甲基氧杂环丁烷59a(152mg,1.30mmol)溶于乙腈(10mL)中,加入碳酸钾(275mg,1.99mmol),70℃反应4小时,TLC显示原料反应完全。反应液浓缩,残余物硅胶柱层析纯化得化合物59b(200mg),黄色固体,收率71%, 1H NMR(500MHz,DMSO-d 6)δ8.59(q,J=5.0Hz,1H),8.41(t,J=1.5Hz,1H),7.99(dd,J=14.5,2.0Hz,1H),5.28(t,J=5.0Hz,1H),4.39-4.33(m,4H),3.92(dd,J=5.5,4.0Hz,2H),3.74(d,J=5.0Hz,2H)。
第二歩:将化合物59b(200mg,0.71mmol)溶于乙腈(10mL)中,加入碳酸铯(463mg,1.42mmol),70℃反应1小时,TLC显示原料反应完全。反应液浓缩,残余物硅胶柱层析纯化得化合物59c(50mg),黄色固体,收率26%。
第三步:将化合物59c(50mg,0.19mmol)溶于乙醇(10mL)和水(2mL)的混合溶液中,加入氯化铵(33mg,0.63mmol),升温至50℃,加入铁粉(35mg,0.63mmol),70℃反应1小时,LCMS显示原料反应完全。过滤除去铁粉,滤液浓缩,残余物硅胶柱层析纯化得化合物59d(40mg),黄色油,收率90%。ESI-MS(m/z):232.0[M+H] +
第四歩:将化合物59d(40mg,0.17mmol)溶于1,4-二氧六环(5ml)中,加入1-乙基-3-甲基-1H-吡唑-5-羰基异硫氰酸酯17e(1N二氧六环溶液,0.19mL,0.19mmol),室温反应10分钟,LCMS监测原料反应完全有中间态形成。加入EDCI(43mg,0.22mmol),80℃反应2小时,LCMS监测中间态消失产物生成。反应液浓缩,得化合物59e(粗品,60mg),直接用于下一步反应。ESI-MS(m/z):393.4[M+H] +
第四歩:将化合物59e(60mg,粗品,从第四步得到)溶于DMSO(3mL),加入NaOH(18mg,0.45mmol),升温至60℃,缓慢滴加双氧水(30%wt,0.5mL),滴加完毕,60℃反应5分钟,LCMS监测反应完全。反应液直接通过制备HPLC纯化得化合物59(17mg),白色固体,两步反应收率24%。ESI-MS(m/z):411.4[M+H] +1H NMR(500MHz,DMSO-d 6)δ12.74(br s,1H),7.90(s,1H),7.66(d,J=1.5Hz,1H),7.34(d,J=1.5Hz,1H),7.24(s,1H),6.79(s,1H),4.70-4.54(m, 6H),4.50(s,2H),4.42(d,J=6.5Hz,2H),2.20(s,3H),1.37(t,J=7.0Hz,3H)。
实施例60
1-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-6-methyl-6,7,8,9-tetrahydro-2,6,9a-triazabenzo[cd]azulene-4-carboxamide
Figure PCTCN2019101707-appb-000167
化合物60由以下步骤制备:
Figure PCTCN2019101707-appb-000168
第一步:将化合物60a(1.00g,3.25mmol)和化合物60b(1.10g,4.90mmol)加入到乙腈(30mL)中,加入碳酸钾(900mg,6.50mmol),氮气保护下70℃反应16小时,TLC监测反应完全,反应液冷却到室温,通过硅胶垫过滤,用二氯甲烷(100mL)洗涤固体, 滤液浓缩后通过硅胶柱层析纯化得化合物60c(1.27g),黄色固体,产率85%。ESI-MS(m/z):461.4[M+H] +
第二步:将化合物60c(1.27g,2.76mmol)溶于甲醇(15mL)中,加入氯化氢-1,4二氧六环溶液(4N,3.5mL,14mmol),室温反应1小时,LC-MS监测反应完全。反应液浓缩后通过硅胶柱层析纯化得化合物60d(980mg),黄色固体,产率89%。ESI-MS(m/z):361.7[M+H] +
第三步:将化合物60d(200mg,0.50mmol)溶于N,N-二甲基甲酰胺(4mL)中,加入碘化亚铜(57mg,0.3mmol),碳酸铯(325mg,1.0mmol)。130℃微波反应1小时,TLC监测反应完全,反应液倒入水(30mL)中,水相用乙酸乙酯(50mL*3)萃取,合并有机相,用饱和食盐水洗涤3次,无水硫酸钠干燥,过滤,浓缩后缩后通过硅胶柱层析纯化得化合物60e(70mg),黄色固体,产率60%。ESI-MS(m/z):233.6[M+H] +
第四步:将化合物60e(70mg,0.30mmol)溶于甲醇(5mL)中,加入氨水(0.2mL),连二亚硫酸钠(260mg,1.49mmol)溶于水(1mL)中缓慢滴入反应体系中。30分钟后LC-MS监测反应完全,反应液倒入水(20mL)中,水相用乙酸乙酯(30mL*3)萃取,合并有机相,用饱和食盐水洗涤3次,无水硫酸钠干燥,过滤,浓缩得 化合物60f(45mg),黄色油。ESI-MS(m/z):203.7[M+H] +。化合物未进行进一步纯化,直接用于下一步反应。
第五步:将化合物60f(45mg,从第四步反应得到的产物)溶于1,4-二氧六环(5mL)中,加入17e(1N的1,4-二氧六环溶液,0.2mL,0.20mmol),室温搅拌0.5小时。加入N,N'-二环己基碳二亚胺(76mg,0.40mmol),反应混合物在80℃下搅拌1小时,LC-MS监测反应结束后,反应液通过硅胶柱层析纯化得化合物60g(50mg),白色固体,两步收率47%。ESI-MS(m/z):364.2[M+H] +
第六步:将化合物60g(50mg,0.14mmol)溶于二甲基亚砜(1mL)中,加入NaOH(20mg,0.5mmol),60℃下缓慢滴加30%双氧水(0.5mL),滴加完毕,反应30分钟,LC-MS监测反应完全,反应液通过反向制备HPLC纯化得化合物60(33mg),白色固体,收率63%。ESI-MS(m/z):382.4; 1H NMR(500MHz,DMSO-d 6)δ7.88(s,1H),7.44(s,1H),7.20(s,1H),6.96(s,1H),6.63(s,1H),4.59(q,J=7.1Hz,2H),4.17-4.05(m,2H),3.47-3.41(m,2H),3.05(s,3H),2.20-2.15(m,5H),1.33(t,J=7.1Hz,3H)。
实施例61
1-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-7H,9H-6-oxa-2,9a-diazaspiro[benzo[cd]azulene-8,1'-cyclopropan]-1,2a,3,5-tetraene-4-carboxamide
Figure PCTCN2019101707-appb-000169
化合物61由以下步骤制备:
Figure PCTCN2019101707-appb-000170
第一步:将化合物60a(1.00g,3.25mmol)和化合物61a(670mg,4.90mmol)加入到乙腈(30mL)中,加入碳酸钾(900mg,6.50mmol),氮气保护下70℃反应16小时,TLC监测反应完全,反应液冷却到室温,通过硅胶垫过滤,用二氯甲烷(100mL)洗涤固体,滤液浓缩后通过硅胶柱层析纯化得化合物61b(1.07g),黄色固体,产率89%。ESI-MS(m/z):374.3[M+H] +
第二步:将化合物61b(1.07g,2.87mmol)溶于甲醇(30mL)中,加入氨水(4mL),连二亚硫酸钠(2.5g,14.3mmol)溶于水(4mL)中缓慢滴入反应体系中。30分钟后LC-MS监测反应完全,反应液倒入水(100mL)中,水相用乙酸乙酯(100mL*3)萃取,合并有机相,用饱和食盐水洗涤3次,无水硫酸钠干燥,过滤,浓缩得化合物61c(690mg),黄色油。ESI-MS(m/z):344.7[M+H] +。化合物未进行进一步纯化,直接用于下一步反应。
第三步:将化合物61c(690mg,从第二步反应得到的产物)溶于1,4-二氧六环(30mL)中,加入17e(1N的1,4-二氧六环溶液,2.1mL,2.1mmol),室温搅拌0.5小时。加入N,N'-二环己基碳二亚胺(765mg,4.02mmol),反应混合物在80℃下搅拌2小时,LC-MS监测反应结束后,反应液通过硅胶柱层析纯化得化合物61d(700mg),白色固体,两步反应收率48%。ESI-MS(m/z):505.2[M+H] +
第四步:将化合物61d(700mg,1.38mmol)溶于二甲基亚砜(8mL)中,加入NaOH(170mg,4.25mmol),60℃下缓慢滴加30%双氧水(5mL),滴加完毕,反应30分钟,LC-MS监测反应完全,反应液通过反向制备HPLC纯化得化合物61e(510mg),白色固体,收率70%。ESI-MS(m/z):523.3。
第五步:将化合物61e(50mg,0.09mmol)溶于N,N-二甲基甲酰胺(2mL)中,加入碘化亚铜(13mg,0.07mmol),碳酸铯(60mg, 0.18mmol)。130度微波反应1小时,TLC监测反应完全,反应液通过反向制备HPLC纯化得化合物61(15mg),白色固体,收率41%。ESI-MS(m/z):395.4; 1H NMR(500MHz,DMSO-d 6)δ7.89(s,1H),7.64(s,1H),7.34-7.22(m,2H),6.65(s,1H),4.57(q,J=7.1Hz,2H),4.27(s,2H),4.01(s,2H),2.15(s,3H),1.31(t,J=7.0Hz,3H),0.91-0.76(m,4H)。
实施例62
(S)-1-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-9-methyl-8,9-dihydro-7H-6-oxa-2,9a-diazabenzo[cd]azulene-4-carboxamide
Figure PCTCN2019101707-appb-000171
化合物62由以下步骤制备:
Figure PCTCN2019101707-appb-000172
第一步:将化合物1f(1.00g,5.00mmol)和化合物62a(940mg,7.50mmol)加入到乙腈(20mL)中,加入碳酸钾(1.38g,10.05mmol),氮气保护下70℃反应16小时,TLC监测反应完全,反应液冷却到室温,通过硅胶垫过滤,用二氯甲烷(100mL)洗涤固体,滤液浓缩后通过硅胶柱层析纯化得化合物62b(1.05g),黄色油,产率83%。ESI-MS(m/z):254.5[M+H] +
第二步:将化合物62b(1.05g,4.15mmol)溶于乙腈(40mL)中,加入碳酸铯(2.70g,8.30mmol),70℃反应3小时,LC-MS监测反应完全。冷却到室温,反应液通过硅胶垫过滤,用二氯甲烷洗涤固体,滤液浓缩得化合物62c(760mg),棕色油。ESI-MS(m/z):234.4[M+H] +。化合物未进行进一步纯化,直接用于下一步反应。
第三步:将化合物62c(760mg,从第二步反应得到的产物)溶于甲醇(50mL)中,加入氨水(5mL),连二亚硫酸钠(2.8g,16.10mmol)溶于水(5mL)中缓慢滴入反应体系中。30分钟后LC-MS监测反应完全,反应液倒入水(100mL)中,水相用乙酸乙酯(100mL*3)萃取,合并有机相,用饱和食盐水洗涤3次,无水硫酸钠干燥,过滤,浓缩得化合物62d(390mg),棕色油。ESI-MS(m/z):204.6[M+H] +。化合物未进行进一步纯化,直接用于下一步反应。
第四步:将化合物62d(390mg,从第三步反应得到的产物)溶于1,4-二氧六环(30mL)中,加入17e(1N的1,4-二氧六环溶液,2.0mL,2.0mmol),室温搅拌0.5小时。加入N,N'-二环己基碳二亚胺(730mg,3.84mmol),反应混合物在80℃下搅拌2小时,LC-MS监测反应结束后,反应液浓缩,残余物通过硅胶柱层析纯化得化合物62e(300mg),白色固体,三步反应收率20%。ESI-MS(m/z):365.3[M+H] +
第四步:将化合物62e(300mg,0.82mmol)溶于二甲基亚砜(8mL)中,加入NaOH(100mg,2.50mmol),60℃下缓慢滴加30%双氧水(5mL),滴加完毕,反应30分钟,LC-MS监测反应完全,反应液通过反向制备HPLC纯化得化合物62(110mg),白色固体,收率35%。ESI-MS(m/z):383.3; 1H NMR(500MHz,DMSO-d 6)δ12.86(s,1H),7.88(s,1H),7.67-7.57(m,1H),7.34-7.21(m,2H),6.64(s,1H),5.01-4.91(m,1H),4.68-4.51(m,3H),4.47-4.38(m,1H),2.58-2.50(m,1H),2.37-2.25(m,1H),2.16(s,3H),1.44(d,J=6.6Hz,3H),1.34(t,J=7.1Hz,3H)。
实施例63
(S)-1-(1-ethyl-4-fluoro-3-methyl-1H-pyrazole-5-carboxamido)-9-methyl-8,9-dihydro-7H-6-oxa-2,9a-diazabenzo[cd]azulene-4-carboxamide
Figure PCTCN2019101707-appb-000173
化合物63由以下步骤制备:
Figure PCTCN2019101707-appb-000174
第一步:取化合物62d(300mg,1.48mmol)溶于甲醇(10mL)中,加入溴化氰(780mg,7.43mmol),室温反应过夜,LC-MS监测反应完全。反应液浓缩除去甲醇,加入乙酸乙酯(100mL)和饱和碳酸钠溶液(60mL),萃取分层,水相用乙酸乙酯萃取(100mL*2),合并有机相,饱和食盐水洗,无水硫酸钠干燥,过滤,浓缩,残余物通过硅胶柱层析纯化得化合物63a(255mg),黄色固体,产率75%。ESI-MS(m/z):229.3[M+H] +
第二步:将化合物63a(250mg,1.09mmol)溶于四氢呋喃(10mL)中,依次加入1-乙基-4-氟-3-甲基吡唑-5-羧酸(188mg,1.09mmol),HOBt(74mg,0.55mmol),HATU(416mg,1.09mmol),三乙胺 (0.42mL,3.27mmol),加完后室温反应过夜,LC-MS监测反应完全,反应液倒入水(60mL)中,用乙酸乙酯(80mL*3)萃取,合并有机相,用饱和食盐水洗涤3次,无水硫酸钠干燥,过滤,滤液浓缩后通过硅胶柱层析纯化得化合物63b(379mg),白色固体,产率90%。ESI-MS(m/z):383.5[M+H] +
第三步:将化合物63b(379mg,0.99mmol)溶于二甲基亚砜(4mL)中,加入NaOH(120mg,3.00mmol),60℃下缓慢滴加30%双氧水(3.0mL),滴加完毕,反应30分钟,LC-MS监测反应完全,反应液直接通过反向制备HPLC纯化得化合物63(160mg),白色固体,收率40%。ESI-MS(m/z):401.0[M+H] +1H NMR(500MHz,DMSO-d 6)δ12.92(br s,1H),7.89(s,1H),7.63(d,J=1.6Hz,1H),7.34-7.23(m,2H),5.00-4.89(m,1H),4.66-4.36(m,4H),2.59-2.50(m,1H),2.38-2.28(m,1H),2.14(s,3H),1.45(d,J=6.7Hz,3H),1.32(t,J=7.1Hz,3H)。
实施例64
1-(1-ethyl-4-fluoro-3-methyl-1H-pyrazole-5-carboxamido)-7,9-dihydrospiro[6-oxa-2,9a-diazabenzo[cd]azulene-8,1'-cyclopropane]-4-carboxamide
Figure PCTCN2019101707-appb-000175
化合物64由以下步骤制备:
Figure PCTCN2019101707-appb-000176
第一步:取化合物61c(50mg,0.14mmol)溶于甲醇(5mL)中,加入溴化氰(75mg,0.71mmol),室温反应过夜,LC-MS监测反应完全。反应液浓缩除去甲醇,加入乙酸乙酯(30mL)和饱和碳酸钠溶液(20mL),萃取分层,水相用乙酸乙酯萃取(30mL*2),合并有机相,饱和食盐水洗,无水硫酸钠干燥,过滤,浓缩,残余物通过硅胶柱层析纯化得化合物64a(42mg),黄色固体,产率80%。ESI-MS(m/z):369.1[M+H] +
第二步:将化合物64a(42mg,0.11mmol)溶于四氢呋喃(5mL)中,依次加入1-乙基-4-氟-3-甲基吡唑-5-羧酸(20mg,0.12mmol),HOBt(8mg,0.06mmol),HATU(43mg,0.11mmol),三乙胺(35mg,0.34mmol),加完后室温反应过夜,再加入甲醇(2.5mL),水(2.5mL)和氢氧化钠(15mg,0.37mmol),室温反应1小时,LC-MS监测反应完全。反应液倒入水(40mL)中,用乙酸乙酯(30mL*3)萃取,合并有机相,用饱和食盐水洗涤3次,无水硫酸钠干燥,过滤,滤液浓缩后通过硅胶柱层析纯化得化合物64b(32mg),白色固体,产率56%。ESI-MS(m/z):509.5[M+H] +
第三步:将化合物64b(32mg,0.06mmol)溶于二甲基亚砜(1mL)中,加入NaOH(10mg,0.25mmol),60℃下缓慢滴加30%双氧水(0.3mL),滴加完毕,反应30分钟,LC-MS监测反应完全,反应液直接通过反向制备HPLC纯化得化合物64c(15mg),白色固体,收率45%。ESI-MS(m/z):541.5[M+H] +
第四步:将化合物64c(15mg,0.03mmol)溶于N,N-二甲基甲酰胺(1mL)中,加入碘化亚铜(4mg,0.02mmol),碳酸铯(20mg,0.06mmol)。130℃微波反应1小时,TLC监测反应完全,反应液通过反向制备HPLC纯化得化合物64(4.3mg),白色固体,收率37%。ESI-MS(m/z):413.4; 1H NMR(500MHz,DMSO-d 6)δ8.39(br s,1H),7.90(s,1H),7.64(s,1H),7.30(s,1H),4.56-4.47(m,2H),4.27(s,2H),4.00(s,2H),2.12(s,3H),1.30(t,J=7.0Hz,3H),0.93-0.70(m,4H)。
实施例65
1-(1-ethyl-4-fluoro-3-methyl-1H-pyrazole-5-carboxamido)-8,9-dihydro-7H-6-oxa-2,9a-diazabenzo[cd]azulene-4-carboxamide
Figure PCTCN2019101707-appb-000177
化合物65由以下步骤制备:
Figure PCTCN2019101707-appb-000178
第一步:将化合物60a(200mg,0.65mmol)和化合物3-氨基-1-丙醇(110mg,0.99mmol)加入到乙腈(30mL)中,加入碳酸钾(180mg,1.30mmol),氮气保护下70℃反应16小时,TLC监测反应完全,反应液冷却到室温,通过硅胶垫过滤,用二氯甲烷(50mL)洗涤固体,滤液浓缩后通过硅胶柱层析纯化得化合物65a(190mg),黄色固体,产率85%。ESI-MS(m/z):348.2[M+H] +
第二步:将化合物65a(190mg,0.54mmol)溶于甲醇(20mL)中,加入氨水(2mL),连二亚硫酸钠(475mg,2.73mmol)溶于水(4mL)中缓慢滴入反应体系中。30分钟后LC-MS监测反应完全,反应液倒入水(40mL)中,水相用乙酸乙酯(50mL*3)萃取,合并有机相,用饱和食盐水洗涤3次,无水硫酸钠干燥,过滤,浓缩得化合物65b(102mg),黄色油。ESI-MS(m/z):318.4[M+H] +。化合物未进行进一步纯化,直接用于下一步反应。
第三步:将化合物65b(102mg,从第二步反应得到的产物)溶于甲醇(5mL)中,加入溴化氰(170mg,1.62mmol),室温反应过夜,LC-MS监测反应完全。反应液浓缩除去甲醇,加入乙酸乙酯(40mL)和饱和碳酸钠溶液(30mL),萃取分层,水相用乙酸乙酯萃取(40mL*2),合并有机相,饱和食盐水洗,无水硫酸钠干燥,过滤,浓缩,残余物通过硅胶柱层析纯化得化合物65c(55mg),黄色固体,两步产率30%。ESI-MS(m/z):343.1[M+H] +
第四步:将化合物65c(55mg,0.16mmol)溶于四氢呋喃(5mL)中,依次加入1-乙基-4-氟-3-甲基吡唑-5-羧酸(28mg,0.16mmol),HOBt(11mg,0.08mmol),HATU(62mg,0.16mmol),三乙胺(50mg,0.49mmol),加完后室温反应过夜,再加入甲醇(2.5mL),水(2.5mL)和氢氧化钠(20mg,0.50mmol),室温反应1小时,LC-MS 监测反应完全。反应液倒入水(40mL)中,用乙酸乙酯(40mL*3)萃取,合并有机相,用饱和食盐水洗涤3次,无水硫酸钠干燥,过滤浓缩,残余物通过硅胶柱层析纯化得化合物65d(33mg),白色固体,产率42%。ESI-MS(m/z):497.3[M+H] +
第五步:将化合物65d(33mg,0.07mmol)溶于N,N-二甲基甲酰胺(1mL)中,加入碘化亚铜(9mg,0.05mmol),碳酸铯(46mg,0.14mmol)。130℃微波反应1小时,TLC监测反应完全,反应液通过反向制备HPLC纯化得化合物65e(18mg),白色固体,收率78%。ESI-MS(m/z):369.5[M+H] +
第六步:将化合物65e(18mg,0.05mmol)溶于二甲基亚砜(1mL)中,加入NaOH(10mg,0.25mmol),60℃下缓慢滴加30%双氧水(0.3mL),滴加完毕,反应30分钟,LC-MS监测反应完全,反应液直接通过反向制备HPLC纯化得化合物65(9.4mg),白色固体,收率48%。ESI-MS(m/z):387.4[M+H] +1H NMR(500MHz,DMSO-d 6)δ7.90(s,1H),7.64(s,1H),7.31(s,1H),7.28(s,1H),4.63-4.49(m,2H),4.42-4.33(m,2H),4.23-4.10(m,2H),2.40-2.25(m,2H),2.13(s,3H),1.32(t,J=7.1Hz,3H)。
实施例66
1-(1-Ethyl-4-fluoro-3-methyl-1H-pyrazole-5-carboxamido)-6-methyl-6,7,8,9-tetrahydro-2,6,9a-triazabenzo[cd]azulene-4-carboxamide
Figure PCTCN2019101707-appb-000179
化合物66由以下步骤制备:
Figure PCTCN2019101707-appb-000180
第一步:将化合物60c(200mg,0.43mmol)溶于甲醇(20mL)中,加入氨水(2mL),连二亚硫酸钠(380.0mg,2.18mmol)溶于水(3mL)中缓慢滴入反应体系中。30分钟后LC-MS监测反应完全, 反应液倒入水(70mL)中,水相用乙酸乙酯(80mL*3)萃取,合并有机相,用饱和食盐水洗涤3次,无水硫酸钠干燥,过滤,浓缩得化合物66a(140mg),黄色固体。ESI-MS(m/z):431.6[M+H] +。化合物未进行进一步纯化,直接用于下一步反应。
第二步:将化合物66a(140mg,从第一步反应得到的产物)溶于甲醇(15mL)中,加入溴化氰(170mg,1.62mmol),室温反应过夜,LC-MS监测反应完全。反应液浓缩除去甲醇,加入乙酸乙酯(70mL)和饱和碳酸钠溶液(50mL),萃取分层,水相用乙酸乙酯萃取(60mL*2),合并有机相,饱和食盐水洗,无水硫酸钠干燥,过滤,浓缩,残余物通过硅胶柱层析纯化得化合物66b(115mg),黄色固体,两步产率59%。ESI-MS(m/z):456.1[M+H] +
第三步:将化合物66b(115mg,0.25mmol)溶于四氢呋喃(12mL)中,依次加入1-乙基-4-氟-3-甲基吡唑-5-羧酸(45mg,0.26mmol),HOBt(18mg,0.13mmol),HATU(95mg,0.25mmol),三乙胺(75mg,0.75mmol),加完后室温反应过夜,LC-MS监测反应完全,反应液倒入水(50mL)中,用乙酸乙酯(50mL*3)萃取,合并有机相,用饱和食盐水洗涤3次,无水硫酸钠干燥,过滤,浓缩,残余物通过硅胶柱层析纯化得化合物66c(110mg),白色固体,产率71%。ESI-MS(m/z):610.5[M+H] +
第四步:将化合物66c(110mg,0.18mmol)溶于甲醇(15mL)中,加入氯化氢-1,4二氧六环溶液(4N,0.25mL,1mmol),室温反应1小时,LC-MS监测反应完全,反应液浓缩后得到化合物66d(90mg),白色固体。ESI-MS(m/z):510.6[M+H] +。化合物未进行进一步纯化,直接用于下一步反应。
第五步:将化合物66d(90.0mg,0.16mmol)溶于二甲基亚砜(3mL)中,加入NaOH(20mg,0.50mmol),60℃下缓慢滴加30%双氧水(2mL),滴加完毕,反应30分钟,LC-MS监测反应完全,反应液倒入水(20mL)中,用乙酸乙酯(30mL*3)萃取,合并有机相,用饱和食盐水洗涤3次,无水硫酸钠干燥,过滤,浓缩,残余物通过硅胶柱层析纯化得化合物66e(44mg),白色固体,产率51%。ESI-MS(m/z):528.1[M+H] +
第六步:将化合物66e(44mg,0.08mmol)溶于N,N-二甲基甲酰胺(2mL)中,加入三(二亚苄基丙酮)二钯(8mg,0.01mmol),2-双环己基磷-2',6'-二异丙氧基-1,1'-联苯(8mg,0.02mmol),碳酸铯(55mg,0.17mmol)。90℃反应过夜,LC-MS监测反应完全,反应液直接通过反向制备HPLC纯化得化合物66(7.8mg),白色固体,收率24%。ESI-MS(m/z):400.3[M+H] +1H NMR(500MHz,DMSO-d 6)δ12.78(br s,1H),7.90(s,1H),7.44(d,J=1.5Hz,1H),7.22(s,1H),6.96(d,J=1.5Hz,1H),4.54(q,J=7.1Hz,2H),4.17-4.02(m,2H), 3.48-3.40(m,2H),3.05(s,3H),2.21-2.15(m,2H),2.13(s,3H),1.31(t,J=7.1Hz,3H)。
实施例67
1-(1-Ethyl-3-methyl-1H-pyrazole-5-carboxamido)-8,8-dimethyl-6,7,8,9-tetrahydro-2,6,9a-triazabenzo[cd]azulene-4-carboxamide
Figure PCTCN2019101707-appb-000181
化合物67由以下步骤制备:
Figure PCTCN2019101707-appb-000182
第一步:将化合物60a(4.0g,12.97mmol)和化合物67a(3.15g,15.56mmol)溶于乙腈(50mL)中,加入碳酸钾(3.58g,25.94mmol),70℃反应6小时,TLC显示原料反应完全,过滤除去碳酸钾,滤液浓 缩,残余物硅胶柱层析纯化得化合物67b(4.0g),黄色油,收率65%。ESI-MS(m/z):475.2[M+H] +
第二歩:将化合物67b(4.0g,8.43mmol)溶于甲醇(40mL)和氨水(8mL)的混合液中,滴加保险粉(7.34g,42.17mmol)的水溶液(8mL),滴加完毕,室温反应5分钟,LCMS监测原料反应完全,过滤除去固体,滤液浓缩,残余物硅胶柱层析纯化得化合物67c(3.4g),粉色固体,收率90%。ESI-MS(m/z):445.3[M+H] +
第三步:将化合物67c(1.8g,4.05mmol)溶于1,4-二氧六环(20mL)中,加入1-乙基-3-甲基-1H-吡唑-5-羰基异硫氰酸酯17e(1N二氧六环溶液,4.25mL,4.25mmol),室温反应10分钟,LCMS监测原料反应完全,有中间态形成,加入EDCI(931mg,4.86mmol),80℃反应2小时,LCMS监测中间态消失,产物生成。反应液浓缩,残余物硅胶柱层析纯化得化合物67d(1.5g),粉色固体,收率61%。ESI-MS(m/z):606.5[M+H] +
第四歩:将化合物67d(500mg,0.82mmol)溶于干燥DMF(10mL)中,加入Pd 2dba 3(75mg,0.08mmol),Ruphos(77mg,0.16mmol),叔丁醇钠(237mg,2.47mmol),反应液氮气置换,微波110℃反应2.5小时,LCMS监测原料反应完全。反应液倒入水(30mL)中,乙酸乙酯(15mL*3)萃取,合并有机相,饱和食盐水洗,硫酸 钠干燥,过滤浓缩,得化合物67e(350mg,粗品),棕色油,化合物未进一步纯化,直接用于下一步反应。ESI-MS(m/z):478.6[M+H] +
第五步:将化合物67e(350mg,从第四步反应得到)溶于甲醇(10mL)中,加入盐酸二氧六环溶液(4N,5mL,20mmol),室温反应5小时,LCMS监测原料反应完全。反应液浓缩得化合物67f(280mg,粗品),黄色固体,化合物未进一步纯化,直接用于下一步反应。ESI-MS(m/z):378.6[M+H] +
第六歩:将化合物67f(280mg,从第四步反应得到)溶于DMSO(4mL)中,加入NaOH(81mg,2.02mmol),升温至60℃,缓慢滴加双氧水(30%wt,1mL),60℃反应5分钟,LCMS监测原料反应完全。反应液直接通过反向制备HPLC纯化得化合物67(51mg),白色固体,三步反应收率15%。ESI-MS(m/z):396.6[M+H] +1H NMR(500MHz,DMSO-d6)δ12.61(br s,1H),7.71(s,1H),7.21(d,J=1.5Hz,1H),7.13(s,1H),6.98(d,J=1.5Hz,1H),6.65(s,1H),6.42(t,J=3.0Hz,1H),4.61(q,J=7.0Hz,2H),3.89(s,2H),3.09(d,J=3.0Hz,2H),2.17(s,3H),1.35(t,J=7.0Hz,3H),1.03(s,6H).
实施例68
1-(1-Ethyl-3-methyl-1H-pyrazole-5-carboxamido)-6,8,8-trimethyl-6,7,8,9-tetrahydro-2,6,9a-triazabenzo[cd]azulene-4-carboxamide
Figure PCTCN2019101707-appb-000183
化合物68由以下步骤制备:
Figure PCTCN2019101707-appb-000184
第一步:将化合物60a(2.0g,6.48mmol)和3-氨基-2,2-二甲基-1-丙醇(1.0g,9.69mmol)溶于乙腈(30mL)中,加入碳酸钾(1.79g,12.97mmol),70℃反应4小时,TLC显示原料反应完全。过滤除去碳酸钾,滤液浓缩,残余物硅胶柱层析纯化得化合68a(2.3g),黄色固体,收率94%。ESI-MS(m/z):376.3[M+H] +1H NMR(500MHz, DMSO-d6)δ8.37(s,1H),8.30(s,1H),7.03(t,J=4.5Hz,1H),5.40(s,1H),3.35(s,2H),2.76(d,J=4.0Hz,2H),0.87(s,6H)。
第二歩:将化合物68a(2.3g,6.13mmol)溶于DCM(30mL)中,0℃下分批加入Dess-Martin氧化剂(3.90g,9.2mmol),0℃反应2小时,TLC显示原料反应完全。反应液用饱和NaHCO 3溶液洗,有机相无水硫酸钠干燥,过滤浓缩,残余物硅胶柱层析纯化得化合物68b(2g),黄色固体,收率87%。 1H NMR(500MHz,DMSO-d6)δ9.49(s,1H),8.44(d,J=2.0Hz,1H),8.37(d,J=2.0Hz,1H),5.98(t,J=5.5Hz,1H),3.11(d,J=5.5Hz,2H),1.08(s,6H)。
第三步:将化合物68b(550mg,1.47mmol)溶于甲醇(10mL)中,加入甲胺盐酸盐(298mg,4.42mmol),乙酸钠(423mg,5.16mmol)室温反应3小时后,加入氰基硼氰化钠(277mg,4.42mmol),室温反应过夜,LCMS监测原料反应完全产物生成。反应液浓缩,残余物硅胶柱层析纯化得化合物68c(370mg),黄色油,收率64%。 1H NMR(500MHz,DMSO-d6)δ8.32(d,J=2.0Hz,1H),8.26(d,J=2.0Hz,1H),2.71(s,2H),2.55(s,2H),2.35(s,3H),0.87(s,6H)。
第四歩:将化合物68c(370mg,0.95mmol)溶于THF(10mL)中,加入BOC酸酐(228mg,1.05mmol),三乙胺(0.29mL,2.1mmol),室温反应过夜,LCMS监测原料反应完全。反应液浓缩得化合物68d (450mg,粗品),黄色油,化合物未进一步纯化,直接用于下一步反应。ESI-MS(m/z):489.2[M+H] +
第五步:将化合物68d(450mg,从第四步反应得到)溶于甲醇(5mL)和氨水(1mL)的混合液中,滴加保险粉(802mg,4.61mmol)的水溶液(3mL),滴加完毕,室温反应5分钟,LCMS监测原料反应完全。反应液过滤除去固体,滤液浓缩,残余物硅胶柱层析纯化得化合物68e(240mg),红色油,收率55%。ESI-MS(m/z):459.2[M+H] +
第六歩:将化合物68e(240mg,0.52mmol)溶于1,4-二氧六环(10mL)中,加入1-乙基-3-甲基-1H-吡唑-5-羰基异硫氰酸酯17e(1N二氧六环溶液,0.57mL,0.57mmol),室温反应10分钟,LCMS监测原料反应完全有中间态形成,加入EDCI(130mg,0.68mmol),80℃反应2小时,LCMS监测中间态消失产物生成。反应液浓缩,残余物硅胶柱层析纯化得化合物68f(160mg),红色油,收率49%。ESI-MS(m/z):620.1[M+H] +
第七步:将化合物68f(160mg,0.25mmol)溶于甲醇(5mL)中,加入盐酸二氧六环溶液(4N,3mL,12mmol),室温反应3小时,LCMS监测原料反应完全。反应液浓缩得化合物68g(140mg),粉色固体,直接用于下一步反应。ESI-MS(m/z):520.3[M+H] +
第八歩:将化合物68g(140mg,从第七步得到)溶于干燥DMF(5mL)中,加入Pd 2dba 3(23mg,0.025mmol),Ruphos(23mg,0.050mmol),叔丁醇钠(72mg,0.75mmol),反应液氮气置换,微波110℃反应2.5小时,LCMS监测原料反应完全。反应液倒入水(20mL)中,乙酸乙酯(10mL*3)萃取,有机相合并,饱和食盐水洗,硫酸钠干燥,过滤浓缩得化合物68h(60mg,粗品),棕色油,化合物未进一步纯化,直接用于下一步反应。ESI-MS(m/z):392.6[M+H] +
第九歩:将化合物68h(60mg,从第八步得到)溶于DMSO(3mL)中,加入NaOH(18mg,0.45mmol),升温至60℃,缓慢滴加双氧水(30%wt,1mL),60℃反应5分钟,LCMS监测原料反应完全。反应液直接通过反向制备HPLC纯化得化合物68(6.5mg),白色固体,三步反应收率6%,ESI-MS(m/z):410.4[M+H] +1H NMR(500MHz,DMSO-d6)δ12.73(s,1H),7.90(s,1H),7.45(s,1H),7.24(s,1H),6.96(s,1H),6.65(s,1H),4.67-4.55(m,2H),3.94(s,2H),3.19(s,2H),3.05(s,3H),2.17(s,3H),1.35(t,J=7.0Hz,3H),1.07(s,6H)。
实施例69
6-Ethyl-1-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-8,8-dimethyl-6,7,8,9-tetrahydro-2,6,9a-triazabenzo[cd]azulene-4-carboxamide
Figure PCTCN2019101707-appb-000185
化合物69由以下步骤制备:
Figure PCTCN2019101707-appb-000186
第一步:将化合物68b(500mg,1.34mmol)溶于甲醇(10mL)中,加入乙胺盐酸盐(327mg,4.02mmol),乙酸钠(384mg,4.69mmol),室温反应3小时后,加入氰基硼氰化钠(252mg,4.02mmol),室温反应过夜,LCMS监测原料反应完全产物生成。反应液浓缩,残 余物硅胶柱层析纯化得化合物69a(350mg),黄色油,收率64%。ESI-MS(m/z):403.7[M+H] +
第二歩:将化合物69a(350mg,0.87mmol)溶于THF(10mL)中,加入BOC酸酐(208mg,0.95mmol),三乙胺(0.27mL,1.91mmol),室温反应过夜,LCMS监测原料反应完全。反应液浓缩得化合物69b(420mg,粗品),黄色油,直接用于下一步反应。ESI-MS(m/z):503.2[M+H] +
第三步:将化合物69b(420mg,从第二步反应得到)溶于甲醇(5mL)和氨水(1mL)的混合液中,滴加保险粉(727mg,4.18mmol)的水溶液(3mL),滴加完毕,室温反应5分钟,LCMS监测原料反应完全。反应液过滤除去固体,滤液浓缩,残余物硅胶柱层析纯化得化合物69c(300mg),红色油,收率73%。ESI-MS(m/z):473.3[M+H] +
第四歩:将化合物69c(300mg,0.63mmol)溶于1,4-二氧六环(10mL)中,加入1-乙基-3-甲基-1H-吡唑-5-羰基异硫氰酸酯17e(1N的二氧六环溶液,0.7mL,0.7mmol),室温反应10分钟,LCMS监测原料反应完全,有中间态形成,加入EDCI(158mg,0.82mmol),80℃反应2小时,LCMS监测中间态消失产物生成。反应液浓缩,残余物硅胶柱层析纯化得化合物69d(250mg),红色油,收率62%。ESI-MS(m/z):634.5[M+H] +
第五步:将化合物69d(250mg,0.31mmol)溶于甲醇(10mL)中,加入盐酸二氧六环溶液(4N,5mL,20mmol),室温反应3小时,LCMS监测原料反应完全。反应液浓缩得化合物69e(170mg),粉色固体,直接用于下一步反应。ESI-MS(m/z):534.5[M+H] +
第六歩:将化合物69e(170mg,从第五步得到)溶于干燥DMF(5mL)中,加入Pd 2dba 3(27mg,0.029mmol),Ruphos(27mg,0.059mmol),叔丁醇钠(86mg,0.89mmol),反应液氮气置换,微波110℃反应2.5小时,LCMS监测原料反应完全。反应液倒入水(20mL)中,乙酸乙酯(10mL*3)萃取,有机相合并,饱和食盐水洗,硫酸钠干燥,过滤浓缩得化合物69f(70mg,粗品),棕色油,直接用于下一步反应。ESI-MS(m/z):406.4[M+H] +
第七歩:将化合物69f(70mg,从第六步得到)溶于DMSO(3mL)中,加入NaOH(20mg,0.51mmol),升温至60℃,缓慢滴加双氧水(30%wt,1mL),60℃反应5分钟,LCMS监测原料反应完全。反应液直接通过反向制备HPLC纯化得化合物69(33mg),白色固体,收率19%。ESI-MS(m/z):424.5[M+H] +1H NMR(500MHz,DMSO-d6)δ12.67(br s,1H),7.90(s,1H),7.40(s,1H),7.22(d,J=1.5Hz,1H),7.00(d,J=1.5Hz,1H),6.64(s,1H),4.61(q,J=7.0Hz,2H), 3.93(s,2H),3.48(q,J=7.0Hz,2H),3.19(s,2H),2.17(s,3H),1.35(t,J=7.0Hz,3H),1.19(t,J=7.0Hz,3H),1.06(s,6H)。
实施例70
(R)-1-(1-Ethyl-3-methyl-1H-pyrazole-5-carboxamido)-8-methyl-8,9-dihydro-7H-6-oxa-2,9a-diazabenzo[cd]azulene-4-carboxamide
Figure PCTCN2019101707-appb-000187
化合物70由以下步骤制备:
Figure PCTCN2019101707-appb-000188
第一步:将化合物60a(4.0g,12.97mmol)和化合物(R)-3-氨基-2-甲基-1-丙醇盐酸盐(3.0g,23.88mmol)溶于乙腈(50mL)中,再加入碳酸钾(7.17g,51.87mmol),加热至60℃反应16小时, LCMS监测原料反应完全。反应液过滤,滤液浓缩,残余物通过硅胶柱层析分离得到化合物70a(3.5g),黄色油状物,收率74%。ESI-MS(m/z):362.1[M+H] +
第二步:将化合物70a(2.0g,5.54mmol)溶于甲醇(20mL)和氨水(4mL)的混合液中,在室温下滴加保险粉(5.79g,33.23mmol)的水溶液(10mL),反应30分钟。LCMS监测原料反应完全。反应液抽滤,滤液浓缩,残余物通过硅胶柱层析分离得到化合物70b(0.8g),黄色油状物,收率43%。ESI-MS(m/z):332.3[M+H] +
第三步:将化合物70b(350mg,1.06mmol)溶于1,4-二氧六环(10mL)中,加入1-乙基-3-甲基-1H-吡唑-5-羰基异硫氰酸酯17e(1N的二氧六环溶液,1.11mL,1.11mmol),室温反应10分钟,LCMS监测原料反应完全,有中间态形成,加入EDCI(1.01g,5.28mmol),80℃反应4小时,LCMS监测中间态消失产物生成。反应液浓缩,残余物硅胶柱层析纯化得化合物70c(450mg),黄色固体,收率88%。ESI-MS(m/z):493.4[M+H] +
第四步:将化合物70c(250mg,0.51mmol)溶于N,N-二甲基甲酰胺(4mL)中,加入碘化亚铜(96mg,0.51mmol),碳酸铯(496mg,1.52mmol)。130℃微波反应3小时,TLC监测反应完全。反应液通过硅胶柱层析分离得化合物70d(65mg),黄色固体,收率35%。ESI-MS(m/z):365.1[M+H] +
第五步:将化合物70d(65mg,0.17mmol)溶于DMSO(2mL)中,加入NaOH(35mg,0.89mmol),升温至60℃,缓慢滴加双氧水(30%wt,1mL),60℃反应1小时,LCMS监测原料反应完全。反应液直接通过反向制备HPLC纯化得化合物70(2mg),白色固体,收率3%。ESI-MS(m/z):383.5[M+H] +1H NMR(500MHz,DMSO-d6)δ8.29(s,1H),7.90(s,1H),7.65(d,J=1.5Hz,1H),7.32(d,J=1.5Hz,1H),7.28(s,1H),6.69(s,1H),4.61(q,J=7.0Hz,2H),4.35-4.29(m,1H),4.28-4.22(m,2H),3.93-3.86(m,1H),2.56-2.50(m,1H),2.18(s,3H),1.35(t,J=7.1Hz,3H),1.09(d,J=7.1Hz,3H)。
实施例71
(S)-1-(1-Ethyl-3-methyl-1H-pyrazole-5-carboxamido)-8-methyl-8,9-dihydro-7H-6-oxa-2,9a-diazabenzo[cd]azulene-4-carboxamide
Figure PCTCN2019101707-appb-000189
化合物71由以下步骤制备:
Figure PCTCN2019101707-appb-000190
第一步:将化合物60a(4.0g,12.97mmol)和化合物(S)-3-氨基-2-甲基-1-丙醇盐酸盐(3.0g,23.88mmol)溶于乙腈(50mL)中,再加入碳酸钾(7.17g,51.87mmol)加热至60℃反应16小时。过滤出去固体,滤液浓缩,残余物通过硅胶柱层析分离得到化合物71a(4.0g),黄色油状物,收率85%。ESI-MS(m/z):362.1[M+H] +
第二步:将化合物71a(2.0g,5.54mmol)溶于甲醇(20mL)和氨水(4mL)的混合液中,在室温下滴加保险粉(5.79g,33.23mmol)的水溶液(10mL),反应30分钟。LCMS监测原料反应完全。反应液抽滤,滤液浓缩,残余物通过硅胶柱层析分离得到化合物71b(1.4g),黄色油状物,收率76%。ESI-MS(m/z):332.3[M+H] +
第三步:将化合物71b(500mg,1.51mmol)溶于1,4-二氧六环(2mL)中,加入1-乙基-3-甲基-1H-吡唑-5-羰基异硫氰酸酯17e(1N 二氧六环溶液,1.59mL,1.59mmol),室温反应10分钟,LCMS监测原料反应完全,有中间态形成,加入EDCI(1.45g,7.55mmol),80℃反应4小时,LCMS监测中间态消失产物生成。反应液浓缩,残余物硅胶柱层析纯化得化合物71c(460mg),白色固体,收率61%。ESI-MS(m/z):493.4[M+H] +
第四步:将化合物71c(500mg,1.02mmol)溶于N,N-二甲基甲酰胺(4mL)中,加入碘化亚铜(290mg,1.52mmol),碳酸铯(661mg,2.03mmol)。130℃微波反应2小时,TLC监测反应完全。反应液通过硅胶柱层析分离得化合物71d(300mg),黄色固体,收率81%。ESI-MS(m/z):365.1[M+H] +
第五步:将化合物71d(300mg,0.41mmol)溶于DMSO(4mL)中,加入NaOH(82mg,2.06mmol),升温至60℃,缓慢滴加双氧水(30%wt,2mL),60℃反应1小时,LCMS监测原料反应完全。反应液直接通过反向制备HPLC纯化得化合物71(57mg),白色固体,收率36%。ESI-MS(m/z):383.4[M+H] +1H NMR(500MHz,DMSO-d 6)δ12.74(br s,1H),8.32(s,1H),7.91(s,1H),7.66(s,1H),7.33(s,1H),7.29(s,1H),6.69(s,1H),4.61(q,J=7.1Hz,2H),4.35-4.20(m,3H),3.94-3.85(m,1H),2.62-2.52(m,1H),2.18(s,3H),1.35(t,J=7.1Hz,3H),1.09(d,J=7.1Hz,3H)。
实施例72
1-(1-Ethyl-4-fluoro-3-methyl-1H-pyrazole-5-carboxamido)-7H,9H-6-oxa-2,9a-diazaspiro[benzo[cd]azulene-8,3'-oxetan]-1,2a,2a 1(5a),4-tetraene-4-carboxamide
Figure PCTCN2019101707-appb-000191
化合物72由以下步骤制备:
Figure PCTCN2019101707-appb-000192
第一步:将化合物59d(180mg,0.77mmol)溶于甲醇(10mL)中,加入溴氰(256mg,2.34mmol),室温搅拌过夜,LCMS显示原料反应完全。反应液浓缩,残余物通过硅胶柱层析纯化得化合物72a(60mg),粉色固体,收率30%。ESI-MS(m/z):257.2[M+H] +
第二步:将化合物72a(30mg,0.11mmol),1-乙基-4-氟-3-甲基-1H-吡唑-5-羧酸(22mg,0.12mmol),HATU(53mg,0.14mmol),HOAt(19mg,0.14mmol)溶于THF(10mL)中,加入TEA(0.05mL,0.35mmol),室温搅拌过夜,LCMS监测原料反应完全。反应液浓缩得化合物72b粗品(40mg),直接用于下一步反应。ESI-MS(m/z):411.5[M+H] +
第三步:将化合物72b(40mg,0.097mmol)溶于DMSO(3mL)中,加入NaOH(11mg,0.29mmol),升温至60℃,缓慢滴加双氧水(30%wt,0.5mL),60℃反应5分钟,LCMS监测原料反应完全。反应液直接通过反向制备HPLC纯化得化合物72(4mg),白色固体,两步反应收率8%。ESI-MS(m/z):429.4[M+H] +1H NMR(500MHz,DMSO-d6)δ12.95(br s,1H),7.92(s,1H),7.66(s,1H),7.40-7.25(m,2H),4.70-4.52(m,6H),4.50(s,2H),4.40-4.30(m,2H),2.17(s,3H),1.37(t,J=7.0Hz,3H)。
实施例73
1-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-6-(2-methoxyethyl)-8,8-dimethyl-6,7,8,9-tetrahydro-2,6,9a-triazabenzo[cd]azulene-4-carboxamide
Figure PCTCN2019101707-appb-000193
化合物73由以下步骤制备:
Figure PCTCN2019101707-appb-000194
第一步:将化合物68b(500mg,1.34mmol)溶于甲醇(3mL)和DCE(15mL)的混合溶液中,加入2-甲氧基乙胺(503mg,6.70 mmol),室温反应过夜,加入氰基硼氰化钠(252mg,4.02mmol),室温反应2天,LCMS监测原料反应完全产物生成。反应液浓缩,残余物硅胶柱层析纯化得化合物73a(400mg),黄色油,收率69%。ESI-MS(m/z):433.2[M+H] +
第二歩:将化合物73a(400mg,0.92mmol)溶于THF(10mL)中,加入BOC酸酐(262mg,1.20mmol),三乙胺(0.2mL,1.39mmol),室温反应过夜,LCMS监测原料反应完全。反应液浓缩得化合物73b粗品(450mg),黄色油,直接用于下一步反应。ESI-MS(m/z):533.3[M+H] +
第三步:将化合物73b(粗品,450mg,从第二步得到)溶于甲醇(5mL)和氨水(1mL)的混合液中,0℃滴加保险粉(727mg,4.18mmol)的水溶液(3mL),滴加完毕,室温反应5分钟,LCMS监测原料反应完全。过滤除去固体,滤液浓缩,残余物硅胶柱层析得化合物73c(390mg),红色油,两步反应收率84%。ESI-MS(m/z):503.4[M+H] +
第四歩:将化合物73c(390mg,0.77mmol)溶于1,4-二氧六环(10mL)中,加入1-乙基-3-甲基-1H-吡唑-5-羰基异硫氰酸酯17e(1N的二氧六环溶液,0.85mL,0.85mmol),室温反应10分钟,LCMS监测原料反应完全有中间态形成,加入EDCI(193mg,1.01mmol), 80℃反应2小时,LCMS监测中间态消失产物生成。反应液浓缩,残余物硅胶柱层析纯化得化合物73d(300mg),红色油,收率58%。ESI-MS(m/z):664.6[M+H] +
第五步:将化合物73d(300mg,0.45mmol)溶于甲醇(10mL)中,加入盐酸二氧六环溶液(4N,5mL),室温反应3小时,LCMS监测原料反应完全。反应液浓缩得化合物73e(260mg),粉色固体,直接用于下一步反应。ESI-MS(m/z):564.6[M+H] +
第六歩:将化合物73e(260mg,从第五步反应得到)溶于干燥DMF(10mL)中,加入Pd 2dba 3(42mg,0.046mmol),Ruphos(43mg,0,092mmol),叔丁醇钠(177mg,1.85mmol),反应液氮气置换,微波110℃反应2.5小时,LCMS监测原料反应完全。反应液倒入水(40mL)中,乙酸乙酯(15mL*3)萃取,合并有机相,饱和食盐水洗,硫酸钠干燥,过滤浓缩得化合物73f(粗品,160mg),棕色油,直接用于下一步反应。ESI-MS(m/z):435.7[M+H] +
第七歩:将化合物73f(粗品,160mg,从第六步反应得到)溶于DMSO(5mL)中,加入NaOH(44mg,1.10mmol),升温至60℃,缓慢滴加双氧水(30%wt,1.0mL),60℃反应5分钟,LCMS监测原料反应完全。反应液直接通过反向制备HPLC纯化得化合物73(32mg),白色固体,收率15%。ESI-MS(m/z):454.6[M+H] +1H NMR(500MHz,DMSO-d 6)δ12.66(br s,1H),8.36(s,1H),7.90(s,1H),7.41(s,1H),7.23(s,1H),7.01(s,1H),6.64(s,1H),4.61(q,J=7.0Hz,2H),3.92(s,2H),3.66-3.60(m,4H),3.30-3.25(m,2H),2.17(s,3H),1.35(t,J=7.0Hz,,3H),1.05(s,6H)。
实施例74
1-(1-Ethyl-3-methyl-1H-pyrazole-5-carboxamido)-6-(3-methoxypropyl)-8,8-dimethyl-6,7,8,9-tetrahydro-2,6,9a-triazabenzo[cd]azulene-4-carboxamide
Figure PCTCN2019101707-appb-000195
化合物74由以下步骤制备:
Figure PCTCN2019101707-appb-000196
Figure PCTCN2019101707-appb-000197
第一步:将化合物68b(500mg,1.34mmol)溶于甲醇(3mL)和DCE(15mL)的混合溶液中,加入3-甲氧基丙胺(597mg,6.70mmol),室温反应过夜,加入氰基硼氰化钠(421mg,6.7mmol),室温反应2天,LCMS监测原料反应完全产物生成。反应液浓缩,残余物硅胶柱层析纯化得化合物74a(280mg),黄色油,收率46%。ESI-MS(m/z):447.3[M+H] +
第二歩:将化合物74a(280mg,0.62mmol)溶于THF(10mL)中,加入BOC酸酐(178mg,0.81mmol),三乙胺(0.13mL,0.94mmol),室温反应过夜,LCMS监测原料反应完全。反应液浓缩得化合物74b粗品(330mg),黄色油,直接用于下一步反应。ESI-MS(m/z):547.3[M+H] +
第三步:将化合物74b(粗品,330mg,从第二步反应得到)溶于甲醇(5m L)和氨水(1mL)的混合液中,0℃滴加保险粉(525mg,3.02mmol)的水溶液(1mL),滴加完毕,室温反应5分钟,LCMS监测原料反应完全。过滤除去固体,滤液浓缩,残余物硅胶柱层析纯化得化合物74c(290mg),红色油,两步反应收率89%,ESI-MS(m/z):517.3[M+H] +
第四歩:将化合物74c(290mg,0.53mmol)溶于1,4-二氧六环(10mL)中,加入1-乙基-3-甲基-1H-吡唑-5-羰基异硫氰酸酯17e(1N的二氧六环溶液,0.58mL,0.58mmol),室温反应10分钟,LCMS监测原料反应完全有中间态形成,加入EDCI(132mg,0.68mmol),80℃反应2小时,LCMS监测中间态消失产物生成。反应液浓缩,残余物硅胶柱层析纯化得化合物74d(300mg),红色固体,收率83%,ESI-MS(m/z):678.3[M+H] +
第五步:将化合物74d(300mg,0.44mmol)溶于甲醇(10mL)中,加入盐酸二氧六环溶液(4N,5mL),室温反应3小时,LCMS监测原料反应完全。反应液浓缩得化合物74e(250mg),粉色固体,直接用于下一步反应。ESI-MS(m/z):578.4[M+H] +
第六歩:将化合物74e(250mg,从第五步反应得到)溶于干燥DMF(8mL)中,加入Pd 2dba 3(39mg,0.043mmol),Ruphos(40 mg,0.086mmol),叔丁醇钠(166mg,1.73mmol),反应液氮气置换,微波110℃反应2.5小时,LCMS监测原料反应完全。反应液倒入水(30mL)中,乙酸乙酯(15mL*3)萃取,合并有机相,饱和食盐水洗,硫酸钠干燥,过滤浓缩得化合物74f(粗品,130mg),棕色油,直接用于下一步反应。ESI-MS(m/z):449.4[M+H] +
第七歩:将化合物74f(粗品,130mg,从第六步反应得到)溶于DMSO(5mL)中,加入NaOH(34mg,0.86mmol),升温至60℃,缓慢滴加双氧水(30%wt,1mL),60℃反应5分钟,LCMS监测原料反应完全。反应液直接通过反向制备HPLC纯化得化合物74(4.9mg),白色固体,三步反应收率2.3%。ESI-MS(m/z):468.2[M+H] +1H NMR(500MHz,DMSO-d 6)δ12.68(s,1H),8.36(s,1H),7.85(s,1H),7.39(s,1H),7.23(s,1H),7.00(s,1H),6.64(s,1H),4.61(q,J=7.0Hz,2H),3.94(s,2H),3.50-3.45(m,4H),3.27(s,3H),3.21(s,2H),2.17(s,3H),1.90-1.82(m,2H),1.35(t,J=7.0Hz,3H),1.06(s,6H)。
实施例75
6-(2-(benzyloxy)ethyl)-1-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-8,8-dimethyl-6,7,8,9-tetrahydro-2,6,9a-triazabenzo[cd]azulene-4-carboxamide
Figure PCTCN2019101707-appb-000198
化合物75由以下步骤制备:
Figure PCTCN2019101707-appb-000199
第一步:将化合物68b(500mg,1.34mmol)溶于甲醇(3mL)和DCE(15mL)的混合溶液中,加入2-苄氧基乙胺盐酸盐(754mg, 4.02mmol),室温反应过夜,加入氰基硼氰化钠(294mg,4.69mmol),室温反应过夜,LCMS监测原料反应完全产物生成。反应液浓缩,残余物硅胶柱层析纯化得化合物75a(340mg),黄色油,收率49%。ESI-MS(m/z):509.4[M+H] +
第二歩:将化合物75a(340mg,0.66mmol)溶于THF(10mL)中,加入BOC酸酐(175mg,0.80mmol),三乙胺(0.13mL,1.0mmol),室温反应过夜,LCMS监测原料反应完全。反应液浓缩得化合物75b(粗品,400mg),黄色油,直接用于下一步反应。ESI-MS(m/z):609.3[M+H] +
第三步:将化合物75b(粗品,400mg,从第二步反应得到),溶于乙醇(10mL)和水(2mL)的混合液中,加入氯化铵(116mg,2.17mmol),升温至50℃,加入铁粉(121mg,2.17mmol),70℃反应2小时,LCMS监测原料反应完全。过滤除去固体,滤液浓缩得化合物75c(粗品,300mg),红色油,直接用于下一步反应。ESI-MS(m/z):579.5[M+H] +
第四歩:将化合物75c(粗品,300mg,从第三步反应得到)溶于1,4-二氧六环(10mL)中,加入1-乙基-3-甲基-1H-吡唑-5-羰基异硫氰酸酯17e(1N的二氧六环溶液,0.57mL,0.57mmol),室温反应10分钟,LCMS监测原料反应完全有中间态形成,加入EDCI(129 mg,0.67mmol),80℃反应2小时,LCMS监测中间态消失产物生成。反应液浓缩,残余物硅胶柱层析纯化得化合物75d(250mg),粉色固体,三步反应收率50%。ESI-MS(m/z):740.2[M+H] +
第五步:将化合物75d(250mg,0.33mmol)溶于甲醇(10mL)中,加入盐酸二氧六环溶液(4N,5mL),室温反应3小时,LCMS监测原料反应完全。反应液浓缩得化合物75e(220mg),粉色固体,直接用于下一步反应。ESI-MS(m/z):640.3[M+H] +
第六歩:将化合物75e(200mg,0.29mmol)溶于干燥DMF(5mL)中,加入Pd 2dba 3(27mg,0.029mmol),Ruphos(27mg,0.059mmol),叔丁醇钠(85mg,0.88mmol),反应液氮气置换,微波110℃反应2.5小时,LCMS监测原料反应完全。反应液倒入水(30mL)中,乙酸乙酯(15mL*3)萃取,有机相合并,饱和食盐水洗,硫酸钠干燥,过滤浓缩得化合物75f(粗品,100mg),棕色油,直接用于下一步反应。ESI-MS(m/z):512.6[M+H] +
第七歩:将化合物75f(粗品,100mg,从第六步反应得到)溶于DMSO(5mL)中,加入NaOH(23mg,0.58mmol),升温至60℃,缓慢滴加双氧水(30%wt,1mL),60℃反应5分钟,LCMS监测原料反应完全。反应液直接通过反向制备HPLC纯化得化合物75(18mg),白色固体,三步反应收率11%。ESI-MS(m/z):529.9[M+H] +1H NMR(500MHz,DMSO-d 6)δ12.68(br s,1H),7.89(s,1H),7.40(d,J=1.5Hz,1H),7.36-7.31(m,4H),7.29-7.22(m,2H),7.05(s,1H),6.64(s,1H),4.60(q,J=7.0Hz,2H),4.54(s,2H),3.92(s,2H),3.79-3.64(m,4H),2.17(s,3H),1.35(t,J=7.0Hz,3H),1.04(s,6H)。
实施例76
1-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-6-(2-hydroxyethyl)-8,8-dimethyl-6,7,8,9-tetrahydro-2,6,9a-triazabenzo[cd]azulene-4-carboxamide
Figure PCTCN2019101707-appb-000200
化合物76由以下步骤制备:
Figure PCTCN2019101707-appb-000201
第一步:将化合物75f(200mg,0.39mmol)溶于THF(10mL)中,0℃滴加三氯化硼二氯甲烷溶液(1M,3.9mL,3.9mmol),滴加完毕室温反应2小时,LCMS监测原料反应完全产物生成。反应液加入甲醇淬灭,浓缩,残余物硅胶柱层析纯化得化合物76a(150mg),黄色固体,收率91%。ESI-MS(m/z):422.4[M+H] +
第二歩:将化合物76a(150mg,0.35mmol)溶于DMSO(5mL)中,加入NaOH(42mg,1.06mmol),升温至60℃,缓慢滴加双氧水(30%wt,1mL),60℃反应5分钟,LCMS监测原料反应完全。反应液直接通过反向制备HPLC纯化得化合物76(67mg),白色固体,收率43%。ESI-MS(m/z):440.4[M+H] +1H NMR(500MHz,DMSO-d 6)δ12.67(br s,1H),7.84(s,1H),7.37(d,J=1.5Hz,1H),7.23(s,1H),7.00(d,J=1.5Hz,1H),6.64(s,1H),4.72(br s,1H),4.61(q,J=7.0Hz,2H),3.94(s,2H),3.67(t,J=6.5Hz,2H),3.50(t,J=6.5Hz,2H),3.30(s,2H),2.17(s,3H),1.35(t,J=7.0Hz,,3H),1.06(s,6H)。
实施例77
1-(1-ethyl-3-methyl-1H-pyrazole-5-carboxamido)-7H,9H-6-oxa-2,9a-diazaspiro[benzo[cd]azulene-8,1'-cyclobutan]-1,2a,2a1(5a),4-tetraene-4-carboxamide
Figure PCTCN2019101707-appb-000202
化合物77由以下步骤制备:
Figure PCTCN2019101707-appb-000203
第一步:将化合物60a(1.3g,4.21mmol)和1-羟甲基-1-氨甲基环丁烷77a(582mg,5.06mmol)溶于乙腈(20mL)中,加入碳酸钾(1.16g,8.43mmol),70℃反应4小时,TLC显示原料反应完全。过滤除去碳酸钾,滤液浓缩,残余物硅胶柱层析纯化得化合物77b(1.3g),黄色固体,收率79%。ESI-MS(m/z):388.2[M+H] +1H NMR(500MHz,DMSO-d 6)δ8.37(d,J=2.0Hz,1H),8.32(d,J=2.0Hz,1H),6.73(t,J=4.5Hz,1H),5.40-5.23(m,1H),3.56(s,2H),2.99(d,J=4.5Hz,2H),1.90-1.72(m,4H),1.68-1.55(m,2H)。
第二歩:将化合物77b(700mg,1.8mmol)溶于乙醇(20mL)和水(4mL)的混合液中,加入氯化铵(483mg,9.04mmol),升温至50℃,加入铁粉(504mg,9.04mmol),70℃反应2小时,LCMS监测原料反应完全。过滤除去固体,滤液浓缩,残余物硅胶柱层析纯化得化合物77c(480mg),粉色固体,收率74%。ESI-MS(m/z):358.3[M+H] +
第三步:将化合物77c(350mg,0.97mmol)溶于1,4-二氧六环(15mL)中,加入1-乙基-3-甲基-1H-吡唑-5-羰基异硫氰酸酯17e(1N的二氧六环溶液,1.1mL,1.1mmol),室温反应10分钟,LCMS监测原料反应完全有中间态形成,加入EDCI(244mg,1.27mmol),80℃反应2小时,LCMS监测中间态消失产物生成。反应液浓缩,残余物硅胶柱层析纯化得化合物77d(250mg),粉色固体,收率49%。ESI-MS(m/z):519.3[M+H] +
第四歩:将化合物77d(200mg,0.38mmol)溶于干燥DMF(4mL)中,加入CuI(44mg,0.23mmol),碳酸铯(251mg,0.77mmol),反应液氮气置换,微波130℃反应1.5小时,LCMS监测原料反应完全。反应液倒入水(20mL)中,加入硫化钠(60mg,0.77mmol),室温搅拌30分钟,乙酸乙酯(15mL*3)萃取,有机相合并,饱和食盐水洗,硫酸钠干燥,过滤浓缩得化合物77e(粗品,100mg),棕色油,直接用于下一步反应。ESI-MS(m/z):391.3[M+H] +
第五歩:将化合物77e(粗品,100mg,从第四步反应得到)溶于DMSO(3mL)中,加入NaOH(30mg,0.76mmol),升温至60℃,缓慢滴加双氧水(30%wt,1mL),60℃反应5分钟,LCMS监测原料反应完全。反应液直接通过反向制备HPLC纯化得化合物77(15mg),白色固体,两步反应收率9%。ESI-MS(m/z):409.4[M+H] +1H NMR(500MHz,DMSO-d 6)δ12.78(br s,1H),7.89(s,1H),7.63(d,J=1.5Hz,1H),7.31(d,J=1.5Hz,1H),7.27(s,1H),6.73(s,1H),4.63(q,J=7.0Hz,2H),4.38(s,2H),4.19(s,2H),2.19(s,3H),2.11-1.98(m,4H),1.88-1.80(m,2H),1.37(t,J=7.0Hz,,3H)。
实施例78
1-(1-Ethyl-4-fluoro-3-methyl-1H-pyrazole-5-carboxamido)-7H,9H-6-oxa-2,9a-diazaspiro[benzo[cd]azulene-8,1'-cyclobutan]-1,2a,2a1(5a),4-tetraene-4-carboxamide
Figure PCTCN2019101707-appb-000204
化合物78由以下步骤制备:
Figure PCTCN2019101707-appb-000205
第一步:将化合物77c(130mg,0.36mmol)溶于1,4-二氧六环(10mL)中,加入1-乙基-4-氟-3-甲基-1H-吡唑-5-羰基异硫氰酸酯78a(1N的二氧六环溶液,0.4mL,0.4mmol),室温反应10分钟,LCMS监测原料反应完全有中间态形成,加入EDCI(90mg,0.47mmol),80℃反应2小时,LCMS监测中间态消失产物生成。反应液浓缩,残余物硅胶柱层析纯化得化合物78b(150mg),粉色固体,收率76%。ESI-MS(m/z):537.3[M+H] +
第二歩:将化合物78b(150mg,0.28mmol)溶于干燥DMF(4mL)中,加入CuI(31mg,0.16mmol),碳酸铯(182mg,0.55mmol),反应液氮气置换,微波130℃反应1.5小时,LCMS监测原料反应完全。反应液倒入水(20mL)中,加入硫化钠(43mg,0.56mmol),室温搅拌30分钟,乙酸乙酯(15mL*3)萃取,有机相合并,饱和食 盐水洗,硫酸钠干燥,过滤浓缩得化合物78c(粗品,82mg),棕色油,直接用于下一步反应。ESI-MS(m/z):409.4[M+H] +
第三歩:将化合物78c(粗品,82mg,从第二步反应得到)溶于DMSO(3mL)中,加入NaOH(24mg,0.60mmol),升温至60℃,缓慢滴加双氧水(30%wt,0.5mL),60℃反应5分钟,LCMS监测原料反应完全。反应液直接通过反向制备HPLC纯化得化合物78(16mg),白色固体,两步反应收率13%。ESI-MS(m/z):427.4[M+H] +1H NMR(500MHz,DMSO-d 6)δ12.90(br s,1H),7.90(s,1H),7.63(d,J=1.5Hz,1H),7.32(d,J=1.5Hz,1H),7.29(s,1H),4.58(q,J=7.0Hz,2H),4.39(s,2H),4.20(s,2H),2.17(s,3H),2.08-1.96(m,4H),1.84-1.75(m,2H),1.36(t,J=7.0Hz,3H)。
STING激动剂生物学筛选和结果
试验例1:化合物对STING野生型(WT)和HAQ亚型激动能力的检测(方法1)
STING-232H质粒购买自Origene(RC208418),并在此质粒的基础上构建STING野生型以及HAQ型(HAQ型氨基酸突变为R71H,G230A,R293Q)表达质粒。使用表达STING变体(野生型和HAQ型)的质粒转染HEK-Blue TM ISG-KO-STING(Invivogen,cat#hkb-kostg)细胞来检测化合物对STING的激活作用(参见WO2017/175147A1)。GFP(VT2069)质粒购买自优宝生物。具体操作如下:第一天以每孔1ng的质粒(WT,HAQ,GFP),分别在96孔板中转染HEK-Blue TM  ISG-KO-STING细胞,每孔细胞数量为0.8×10 5细胞,并控制每孔lipofectamine 2000(Invitrogen,Cat#11668-027)量为0.1μl。转染24h后更换培养基并加入合适浓度的测试化合物,控制DMSO浓度为0.5%。孵育24h后取上清,采用Great EscAPe SEAP chemiluminescence KIT(Clontech,cat#631738)进行SEAP检测,细胞采用CellTiter-Glo Luminescent Cell Viability Assay(Promega,cat#G7573)检测细胞活性。SEAP检测和CellTiter-Glo Luminescent Cell Viability Assay检测都依据试剂盒操作说明进行。数据采用化合物的刺激信号与0.5%DMSO的信号的比值描述。
Figure PCTCN2019101707-appb-000206
Figure PCTCN2019101707-appb-000207
Figure PCTCN2019101707-appb-000208
-表示未检测
试验例2:化合物对STING野生型(WT)和HAQ亚型激动能力的检测(方法2)
STING-232H质粒购买自Origene(RC208418),并在此质粒基础上构建STING野生型质粒以及STING HAQ型(HAQ型氨基酸突变为R71H、G230A、和R293Q)表达质粒。使用表达STING变体(野生型和HAQ型)的质粒转染HEK-Blue TM ISG-KO-STING(Invivogen,cat#hkb-kostg)细胞来检测化合物对STING的激活作用(参见WO2017/175147A1)。GFP质粒(VT2069)购买自优宝生物。具体操作如下:第一天以每孔WT(0.0625ng),HAQ(1ng),GFP(0.0625ng和1ng)的质粒分别在96孔板中转染HEK-Blue TM ISG-KO-STING细胞,每孔细胞数量为0.8×10 5细胞,并控制每孔lipofectamine 2000(Invitrogen,cat#11668-027)量为0.1μl。转染24h后更换培养基并加入合适浓度的测试化合物,控制DMSO浓度为0.5%。孵育24h后取上 清,采用Great EscAPe SEAP chemiluminescence KIT(Clontech,cat#631738)进行SEAP检测。剩余细胞采用CellTiter-Glo Luminescent Cell Viability Assay(Promega,cat#G7573)检测细胞活性。SEAP检测和CellTiter-Glo Luminescent Cell Viability Assay检测都依据试剂盒操作说明进行。数据采用化合物的刺激信号与0.5%DMSO的信号的比值描述。
Figure PCTCN2019101707-appb-000209
Figure PCTCN2019101707-appb-000210
Figure PCTCN2019101707-appb-000211
Figure PCTCN2019101707-appb-000212
-表示未检测
试验例3:化合物刺激THP1细胞释放IFNβ。
本实验通过检测化合物刺激THP1细胞产生IFNβ的能力来评估其激活STING的能力。THP1细胞购买自中科院细胞所(Cat#TCHu 57)。根据化合物的溶解度设置起始浓度点,并以3倍稀释设置8个浓度点,用培养基稀释成2×工作液,DMSO浓度0.2%。取对数生长期的THP1细胞用培养基稀释成2×10 6cells/ml,每孔加入50ul细胞悬液后再加50ul稀释好的化合物,使得DMSO浓度为0.1%。充分混匀后放入37℃,5%CO 2的细胞培养箱中孵育24h收集上清。用human IFNβELISA KIT(R&D,DY814-05)检测上清中的IFNβ。最终的数据用GraphPad Prism或者XLfit进行曲线拟合并计算EC50。
化合物 hIFNβELISA(EC50,μM)
1 inactive
2 inactive
3 NT
5 NT
6 NT
7 inactive
8 inactive
9 inactive
11 inactive
12 >8.9
15 inactive
16 inactive
14 NT
17 NT
18 inactive
19 inactive
20 inactive
21 NT
22 inactive
23 inactive
24 inactive
25 >16.7
26 11.4
27 22.1
28 inactive
29 NT
30 NT
31 inactive
32 inactive
33 inactive
37 NT
38 NT
39 NT
42 NT
43 inactive
44 19.8
45 inactive
46 >5.6
47 >5.2
48 inactive
49 >2.5
50 inactive
51 inactive
52 inactive
53 >22.7
54 >16.7
55 inactive
56 inactive
57 inactive
58 >50
59 >21.6
60 15.8
61 >16.7
62 >27.2
63 >16.7
64 >12.8
65 >11.6
66 2.8
67 14.9
68 4.7
69 7.6
70 >50
71 >17.6
72 >38.5
73 6.8
74 11.8
75 7.7
76 9.9
77 20.8
78 19.0
inactive:表示化合物在最大浓度时仍未检测到IFNβ的释放;NT:未检测。

Claims (31)

  1. 一种具有式(I)结构的化合物,
    Figure PCTCN2019101707-appb-100001
    其中,W表示(CR aR a’) m,其中任意一个CR aR a’任选地被0、1或2个O、S或NR b所替代;
    R 1和R 2分别独立地选自氢、卤素、羟基、氨基、巯基、C 1-C 6烷基、C 1-C 6烷氧基、C 1-C 6烷基硫基、C 1-C 6烷基氨基、(二C 1-C 6烷基)氨基、C 2-C 6烯基、C 2-C 6炔基、-(C 0-C 6亚烷基)-(C 3-C 6环烷基)、-(C 0-C 6亚烷基)-(4-7元杂环烷基)、-(C 0-C 6亚烷基)-(6-12元芳基)和-(C 0-C 6亚烷基)-(5-12元杂芳基),或者R 1与R 2以及与之相邻的原子共同环合成为3-6元环,该环中还任选地含有0、1或2个选自O、N和S的杂原子;
    R 3、R 4、R 5各自独立地选自氢、卤素、氰基、C 1-C 6烷基、C 2-C 6烯基、C 2-C 6炔基、-(C 0-C 6亚烷基)-(C 3-C 6环烷基)、-(C 0-C 6亚烷基)-(4-7元杂环烷基)、-OR c、-NR cR c’、-OC(O)R c’、-C(O)R c、-CO 2R c、-CON(R c)(R c’)、-C(=NR c)N(R c’)(R c”)、-NHC(O)R c、-NHS(O) 2R c-、-NHS(O)R c-、-SO 2R c、-SO 2NR cR c’、-(C 0-C 6亚烷基)-(6-12元芳基)、和-(C 0-C 6亚烷基)-(5-12元杂芳基);
    或者R 3与R 4一起环合形成5-8元环,该环中任选地含有0、1、2、3或4个选自O、S和N的杂原子;
    或者R 4与R 5一起环合形成5-8元环,该环中任选地含有0、1、2、3或4个选自O、S和N的杂原子;
    X表示-NR dC(O)-、-NR dSO 2-或-NR dC(=NR d’)-;
    Cy表示6-12元芳基或5-12元杂芳基;
    m表示1、2或3的整数;
    R a、R a’各自独立地表示氢、卤素、羟基、C 1-C 6烷基、C 1-C 6烷基硫基、-(C 0-C 6亚烷基)-(C 3-C 6环烷基)、-(C 0-C 6亚烷基)-(4-7元杂环烷基)、-(C 0-C 6亚烷基)-(6-12元芳基)、-(C 0-C 6亚烷基)-(5-12元杂芳基)、-NR eR e’、-NR eCOR e’、-NR eSO 2R e’、-OR e或-OCOR e,或者R a和R a’以及与之相邻的原子共同环合为3-6元环,该环中还任选地含有0、1或2个选自O、N和S的杂原子;或者任意一个CR aR a’共同形成-C=O;
    R b各自独立地表示氢、C 1-C 6烷基、-(C 0-C 6亚烷基)-(C 3-C 6环烷基)、-(C 0-C 6亚烷基)-(4-7元杂环烷基)、-(C 0-C 6亚烷基)-(6-12元芳基)、-(C 0-C 6亚烷基)-(5-12元杂芳基)、-C(O)R f、-SO 2R f、-SOR f、-C(O)OR f或-C(O)NR fR f’
    R c、R c’、R c”、R d、R d’、R e、R e’、R f、R f’各自独立地表示氢、C 1-C 6烷基、-(C 0-C 6亚烷基)-(C 3-C 6环烷基)、-(C 0-C 6亚烷基)-(4-7元杂环烷基)、-(C 0-C 6亚烷基)-(6-12元芳基)或-(C 0-C 6亚烷基)-(5-12元杂芳基),或者当上述取代基共同连接于一个N原子时,其任选地与相连接的N原子相互环合成3-8元环;
    对于上述的烷基、亚烷基、芳基、杂芳基、环、环烷基、杂环烷基、烯基、炔基、烷氧基而言,其任选地各自独立地被0、1、2、3或4个选自以下基团的取代基所取代:卤素、羟基、氰基、羧基、C 1-C 6烷基、C 1-C 6卤代烷基、磺酸基、-OR g、-SR g、-NR gR g’、-NR gCOR g’、-NR gCOOR g’、-COR g、-CO 2R g、-SOR g、-SO 2R g、-OCONR gR g’-、-OCOR g、-CONR gR g’、-NR gSO 2R g’、-SO 2NR gR g’、和-OP(O)(OR gR g’) 2
    或者,对于所述芳基、杂芳基而言,或者当取代基的个数为2时,相邻的2个取代基还任选地互相环合成为5-6元饱和或不饱和碳环或者杂环,所述的杂环为含有0、1、2、3或4个选自O、S和N的杂原子的环;
    其中,R g、R g’各自独立地是氢,或者任选地被0、1、2、3或4个选自羟基、卤素、硝基、C 1-C 6烷基、卤代(C 1-C 6烷基)、氨基、磺酰基、氰基、C 1-C 6烷氧基、C 1-C 6烷基硫基、C 1-C 6氨基和(二C 1-C 6 烷基)氨基的基团所取代的以下基团:C 1-C 6烷基、-(C 0-C 6亚烷基)-(C 3-C 6环烷基)、-(C 0-C 6亚烷基)-O-(C 1-C 6烷基)、-(C 0-C 6亚烷基)-O-CO(C 1-C 6烷基)、-(C 0-C 6亚烷基)-C(O)O(C 1-C 6烷基)、-(C 0-C 6亚烷基)-(6-12元芳基)、-(C 0-C 6亚烷基)-(5-12元杂芳基)、-(C 2-C 6亚烯基)-(6-12元芳基)、-(C 2-C 6亚烯基)-(5-12元杂芳基)、-O-(C 0-C 6亚烷基)-(6-12元芳基)、-O-(C 0-C 6亚烷基)-(5-12元杂芳基)、-O-(C 2-C 6亚烯基)-(6-12元芳基)、-O-(C 2-C 6亚烯基)-(5-12元杂芳基)、-(C 0-C 6亚烷基)-O-(6-12元芳基)、-(C 0-C 6亚烷基)-O-(5-12元杂芳基)、-(C 2-C 6亚烯基)-O-(6-12元芳基)、或-(C 2-C 6亚烯基)-O-(5-12元杂芳基);
    其中所述的6-12元芳基优选为苯基;所述的5-12元杂芳基优选为吡啶基、咪唑基、吡唑基;或者对于上述的6-12元芳基或者5-12元杂芳基而言,当取代基的个数为2时,相邻的2个取代基还可以互相环合成为5-6元饱和或不饱和碳环或者杂环。
  2. 如权利要求1所述的化合物,其具有式(II)结构,
    Figure PCTCN2019101707-appb-100002
    其中,A和B分别独立地表示CR aR a’、NR b、O或者S;R 1、R 2、R 3、R 4、R 5、X、Cy、R a、R a’、R b具有如权利要求1所定义。
  3. 如权利要求1所述的化合物,其具有式(III)结构,
    Figure PCTCN2019101707-appb-100003
    其中,R 1、R 3、R 4、R 5、W、X、Cy具有如权利要求1所定义;R 2表示氢或者C 1-C 6烷基,并且R 1与R 2表示不同的取代基。
  4. 如权利要求2所述的化合物,其具有式(IV)结构,
    Figure PCTCN2019101707-appb-100004
    其中R 1、R 3、R 4、R 5、X、Cy、A、B具有如权利要求2所定义,R 2表示氢或者C 1-C 6烷基,并且R 1与R 2表示不同的取代基。
  5. 如权利要求2或4所述的化合物,其中A为O,并且B为CR aR a’
  6. 如权利要求1-5任一项所述的化合物,其中R 4为-CONR cR c’,并且R c、R c’独立地为氢或C 1-C 6烷基。
  7. 如权利要求1-6任一项所述的化合物,其中X为-NR dC(O)-,并且R d为氢或者C 1-C 6烷基。
  8. 如权利要求1-7任一项所述的化合物,其中所述Cy各自独立地选自苯基、吡啶基、吡唑基、嘧啶基、吡嗪基、呋喃基、噻唑基、噁唑基、咪唑基、噻吩基、三氮唑基、四氮唑基;优选为吡唑基、咪唑基、噁唑基、三氮唑基和四氮唑基;优选为咪唑基;并且任选地Cy分别独立地被0、1、2、3或4个选自以下基团的取代基所取代:卤素、羟基、氰基、羧基、C 1-C 6烷基、C 1-C 6卤代烷基、磺酸基、C 1-C 6烷氧基、-氨基、硝基、(C 1-C 6烷基)氨基和(二C 1-C 6烷基)氨基。
  9. 如权利要求1-8任一项所述的化合物,其中R 1为C 1-C 6烷基、C 2-C 6烯基、-(C 0-C 6亚烷基)-(C 3-C 6环烷基)、-(C 0-C 6亚烷基)-(4-7元杂环烷基)、或-(C 0-C 6亚烷基)-(6-12元芳基);优选为:C 1-C 6烷基、C 2-C 6烯基、-(C 0-C 6亚烷基)-(C 3-C 6环烷基);更优选为:C 1-C 6烷基、C 2-C 6烯 基;并且其任选地被选自以下的取代基所取代:-NR gCOR g’;并且R g为氢或C 1-C 6烷基;R g’为被0、1、2、3或4个选自羟基、卤素、硝基、C 1-C 6烷基、卤代(C 1-C 6烷基)、氨基、磺酰基、氰基、C 1-C 6烷氧基、C 1-C 6烷基硫基、C 1-C 6氨基和(二C 1-C 6烷基)氨基的取代基所取代的以下基团:C 1-C 6烷基、-(C 0-C 6亚烷基)-(C 3-C 6环烷基)、-(C 0-C 6亚烷基)-O-(C 1-C 6烷基)、-(C 0-C 6亚烷基)-O-CO(C 1-C 6烷基)、-(C 0-C 6亚烷基)-C(O)O(C 1-C 6烷基)、-(C 0-C 6亚烷基)-(6-12元芳基)、-(C 0-C 6亚烷基)-(5-12元杂芳基)、-(C 2-C 6亚烯基)-(6-12元芳基)、-(C 2-C 6亚烯基)-(5-12元杂芳基)、-O-(C 0-C 6亚烷基)-(6-12元芳基)、-O-(C 0-C 6亚烷基)-(5-12元杂芳基)、-O-(C 2-C 6亚烯基)-(6-12元芳基)、-O-(C 2-C 6亚烯基)-(5-12元杂芳基)、-(C 0-C 6亚烷基)-O-(6-12元芳基)、-(C 0-C 6亚烷基)-O-(5-12元杂芳基)、-(C 2-C 6亚烯基)-O-(6-12元芳基)、或-(C 2-C 6亚烯基)-O-(5-12元杂芳基);
    其中所述6-12元芳基优选为苯基;所述5-12元杂芳基优选为吡啶基、咪唑基、或吡唑基;或者对于上述6-12元芳基或者5-12元杂芳基而言,当取代基的个数为2时,相邻的2个取代基还任选地互相环合成为5-6元饱和或不饱和碳环或者杂环。
  10. 如权利要求1-9任一项所述的化合物,其中R 1为:-(C 1-C 6亚烷基)-NR gCOR g’、-(C 2-C 6亚烯基)-NR gCOR g’,其中R g为氢或C 1-C 6烷基;R g’为被0、1、2、3或4个选自羟基、卤素、硝基、C 1-C 6烷基、卤代(C 1-C 6烷基)、氨基、磺酰基、氰基、C 1-C 6烷氧基、C 1-C 6烷基硫基、C 1-C 6氨基和(二C 1-C 6烷基)氨基的取代基所取代的以下基团:-(C 0-C 6亚烷基)-(6-12元芳基)、-(C 0-C 6亚烷基)-(5-12元杂芳基)、-(C 2-C 6亚烯基)-(6-12元芳基)、-(C 2-C 6亚烯基)-(5-12元杂芳基)、-O-(C 0-C 6亚烷基)-(6-12元芳基)、-O-(C 0-C 6亚烷基)-(5-12元杂芳基)、-O-(C 2-C 6亚烯基)-(6-12元芳基)、-O-(C 2-C 6亚烯基)-(5-12元杂芳基)、-(C 0-C 6亚烷基)-O-(6-12元芳基)、-(C 0-C 6亚烷基)-O-(5-12元杂芳基)、-(C 2-C 6亚烯基)-O-(6-12元芳基)、或-(C 2-C 6亚烯基)-O-(5-12元杂芳基);
    其中所述的6-12元芳基优选为苯基;所述的5-12元杂芳基优选为吡啶基;或者对于上述的6-12元芳基或者5-12元杂芳基而言,当取代基的个数为2时,相邻的2个取代基还任选地互相环合成为5-6元饱和或不饱和碳环或者杂环;更优选为-O-(C 1-C 6亚烷基)-苯基、-O-(C 1-C 6亚烷基)-吡啶基、-(C 1-C 6亚烷基)-O-苯基、-(C 1-C 6亚烷基)-O- 吡啶基、-(C 1-C 6亚烷基)-苯基、-(C 1-C 6亚烷基)-吡啶基、-(C 2-C 6亚烯基)-苯基或-(C 2-C 6亚烯基)-吡啶基,所述的苯基、吡啶基任选地被独立地选自0、1、2、3或4个选自羟基、卤素、氨基、磺酰基、氰基、硝基、C 1-C 6烷氧基和C 1-C 6卤代烷基的取代基所取代。
  11. 如权利要求1-10任一项所述的化合物,其中R 2为氢或者C 1-C 6烷基。
  12. 如权利要求1-11任一项所述的化合物,其中R 3和R 5分别独立地为氢、卤素或者C 1-C 6烷基。
  13. 如权利要求1所述的化合物,其具有式(V)结构,
    Figure PCTCN2019101707-appb-100005
    其中,W表示(CR aR a’) m,其中任意一个CR aR a’任选地被0、1或2个O、S或NR b所替代;
    R 2独立地表示氢、卤素、羟基、氨基、巯基、C 1-C 6烷基、C 1-C 6烷氧基、C 1-C 6烷基硫基、C 1-C 6烷基氨基、(二C 1-C 6烷基)氨基、C 2-C 6烯基、C 2-C 6炔基、-(C 0-C 6亚烷基)-(C 3-C 6环烷基)、-(C 0-C 6亚烷基)-(4-7元杂环烷基)、-(C 0-C 6亚烷基)-(6-12元芳基)、或-(C 0-C 6亚烷基)-(5-12元杂芳基);
    R 3、R 5各自独立地选自氢、卤素、氰基、C 1-C 6烷基、C 2-C 6烯基、C 2-C 6炔基、-(C 0-C 6亚烷基)-(C 3-C 6环烷基)、-OR c、-NR cR c’、-OC(O)R c’、-C(O)R c、-CO 2R c、-CON(R c)(R c’)、-C(=NR c)N(R c’)(R c”)、-NHC(O)R c、-NHS(O) 2R c-、-NHS(O)R c-、-SO 2R c、-SO 2NR cR c’、-(C 0-C 6亚烷基)-(4-7 杂环烷基)、-(C 0-C 6亚烷基)-(6-12元芳基)、和-(C 0-C 6亚烷基)-(5-12元杂芳基);
    Cy表示6-12元芳基、或5-12元杂芳基;
    m表示1、2、或3的整数;
    R a、R a’各自独立地表示氢、卤素、羟基、C 1-C 6烷基、C 1-C 6烷基硫基、-(C 0-C 6亚烷基)-(C 3-C 6环烷基)、-(C 0-C 6亚烷基)-(4-7元杂环烷基)、-(C 0-C 6亚烷基)-(6-12元芳基)、-(C 0-C 6亚烷基)-(5-12元杂芳基)、-NR eR e’、-NR eCOR e’、-NR eSO 2R e’、-OR e、-OCOR e,或者R a与R a’以及与之相邻的原子共同环合成为3-6元环,该环中还任选地含有0、1或2个选自O、N和S的杂原子;或者任意一个CR aR a’共同形成-C=O;
    R b各自独立地表示氢、C 1-C 6烷基、-(C 0-C 6亚烷基)-(C 3-C 6环烷基)、-(C 0-C 6亚烷基)-(4-7元杂环烷基)、-(C 0-C 6亚烷基)-(6-12元芳基)、-(C 0-C 6亚烷基)-(5-12元杂芳基)、-C(O)R f、-SO 2R f、-SOR f-C(O)OR f、或-C(O)NR fR f’
    G表示O或者NR c
    R c、R c’、R c”、R d、R e、R e’、R f、R f’各自独立地表示氢、C 1-C 6烷基、-(C 0-C 6亚烷基)-(C 3-C 6环烷基)、-(C 0-C 6亚烷基)-(4-7元杂环烷基)、-(C 0-C 6亚烷基)-(6-12元芳基)、或-(C 0-C 6亚烷基)-(5-12元杂芳基),或者当上述取代基共同连接于一个N原子时,其任选地与相连接的N原子相互环合成3-8元环;
    对于上述的烷基、亚烷基、芳基、杂芳基、环、环烷基、杂环烷基、烯基、炔基、烷氧基而言,其任选地各自独立地被0、1、2、3或4个选自以下基团的取代基所取代:卤素、氧代、羟基、氰基、羧基、C 1-C 6烷基、C 1-C 6卤代烷基、磺酸基、C 1-C 6烷氧基、-OR g、-SR g、-N(R g)(R g’)、-NR gCOR g’、-NR gCOOR g’、-COR g、-CO 2R g、-SOR g、-SO 2R g、-OCONR gR g’-、-OCOR g、-CONR gR g’、-NR gSO 2R g’、-SO 2NR gR g’、和-OP(O)(OR gR g’) 2
    或者对于所述芳基、杂芳基而言,或者当取代基的个数为2时,相邻的2个取代基还任选地互相环合成为5-6元饱和或不饱和碳环或者杂环,所述的杂环为含有0、1、2、3或4个选自O、S和N的杂原子的环;
    其中,R g、R g’各自独立地为氢,或者任选地被0、1、2、3或4个选自羟基、卤素、硝基、C 1-C 6烷基、卤代(C 1-C 6烷基)、氨基、磺酰基、氰基、C 1-C 6烷氧基、C 1-C 6烷基硫基、C 1-C 6氨基、和(二C 1-C 6烷基)氨基的基团所取代的以下基团:C 1-C 6烷基、-(C 0-C 6亚烷基)-(C 3-C 6环烷基)、卤代(C 1-C 6烷基)、-(C 0-C 6烷基)-OH、-(C 0-C 6亚烷基)-O-(C 1-C 6烷基)、-(C 0-C 6亚烷基)-O-CO(C 1-C 6烷基)、-(C 0-C 6亚烷基)-C(O)O(C 1-C 6烷基)、-(C 0-C 6亚烷基)-(6-12元芳基)、-C 2-C 6亚烯基-(6-12元芳基)、-(C 0-C 6亚烷基)-O-(6-12元芳基)、-(C 0-C 6亚烷基)-O-C 1-C 6烷基、-O-(C 1-C 6亚烷基)-(6-12元芳基),-(C 0-C 6亚烷基)-(5-12元杂芳基)、-C 2-C 6亚烯基-(5-12元杂芳基)、-(C 0-C 6亚烷基)-O-(5-12元杂芳基)、或-O-(C 0-C 6亚烷基)-(5-12元杂芳基);或者对于上述的6-12元芳基或者5-12元杂芳基而言,当取代基的个数为2时,相邻的2个取代基还任选地互相环合成为5-6元饱和或不饱和碳环或者杂环;
    Y表示任选地被0、1、2、3或4个选自羟基、卤素、硝基、C 1-C 6烷基、卤代(C 1-C 6烷基)、氨基、磺酰基、氰基、C 1-C 6烷氧基、C 1-C 6烷基硫基、C 1-C 6氨基、和(二C 1-C 6烷基)氨基的基团所取代的以下基团:-C 1-C 6亚烷基-、-(C 0-C 6亚烷基)-(C 3-C 6环烷基)-(C 0-C 6亚烷基)、-(C 0-C 6亚烷基)-(4-7元杂环烷基)-(C 0-C 6亚烷基)、-(C 0-C 6亚烷基)-(6-12元芳基)-(C 0-C 6亚烷基)、-(C 0-C 6亚烷基)-(5-12元杂芳基)-(C 0-C 6亚烷基)、或-C 2-C 6亚烯基-;
    Z表示任选地被0、1、2、3或4个选自羟基、卤素、硝基、C 1-C 6烷基、卤代(C 1-C 6烷基)、氨基、磺酰基、氰基、C 1-C 6烷氧基、C 1-C 6烷基硫基、C 1-C 6氨基、和(二C 1-C 6烷基)氨基的基团所取代的以下基团:C 1-C 6烷基、-(C 0-C 6亚烷基)-(C 3-C 6环烷基)、-(C 0-C 6亚烷基)-O-(C 1-C 6烷基)、-(C 0-C 6亚烷基)-O-CO(C 1-C 6烷基)、-(C 0-C 6亚烷基)-C(O)O(C 1-C 6烷基)、-(C 0-C 6亚烷基)-(6-12元芳基)、-(C 0-C 6亚烷基)-(5-12元杂芳基)、-(C 2-C 6亚烯基)-(6-12元芳基)、-(C 2-C 6亚烯基)-(5-12元杂芳基)、-O-(C 0-C 6亚烷基)-(6-12元芳基)、-O-(C 0-C 6亚烷基)-(5-12元杂芳基)、-O-(C 2-C 6亚烯基)-(6-12元芳基)、-O-(C 2-C 6亚烯基)-(5-12元杂芳基)、-(C 0-C 6亚烷基)-O-(6-12元芳基)、-(C 0-C 6亚烷基)-O-(5-12元杂芳基)、-(C 2-C 6亚烯基)-O-(6-12元芳基)、或-(C 2-C 6亚烯基)-O-(5-12元杂芳基);或者对于上述的6-12元芳基或者 5-12元杂芳基而言,当取代基的个数为2时,相邻的2个取代基还任选地互相环合成为5-6元饱和或不饱和碳环或者杂环;
    其中所述的6-12元芳基优选为苯基;所述的5-12元杂芳基优选为吡啶基、咪唑基、吡唑基;或者对于上述的6-12元芳基或者5-12元杂芳基而言,当取代基的个数为2时,相邻的2个取代基还任选地互相环合成为5-6元饱和或不饱和碳环或者杂环。
  14. 如权利要求13所述的化合物,其具有式(VI)结构,
    Figure PCTCN2019101707-appb-100006
    其中,R 2选自氢或C 1-C 6烷基,并且W、R 3、R 5、R c、R c’、R d、G、Z、Y、Cy均具有如权利要求13所定义。
  15. 如权利要求13-14任一项所述的化合物,其中G为O或者NH。
  16. 如权利要求13-15任一项所述的化合物,其中Y为0、1、2、3或4个选自羟基、卤素和C 1-C 6烷基的取代基所取代的以下基团:-C 1-C 6亚烷基-、-C 2-C 6亚烯基-、或-C 3-C 6环烷基-。
  17. 如权利要求13-16任一项所述的化合物,其中W为-CR aR a’-O、-O-CR aR a’-、-C(O)-NR b-或者-NR b-C(O)-,其中R a、R a’、R b各自独立地表示氢、C 1-C 6烷基、或C 3-C 6环烷基。
  18. 如权利要求13-17任一项所述的化合物,Z为-O-(C 0-C 6亚烷基)-(6-12元芳基)、-(C 0-C 6亚烷基)-(6-12元芳基)、-(C 2-C 6亚烯基)-(6-12元芳基)、-(C 0-C 6亚烷基)-(5-12元杂芳基)、-(C 2-C 6亚烯基)-(5-12元杂芳基)、-O-(C 2-C 6亚烯基)-(6-12元芳基)、-(C 0-C 6亚烷基)-O-(6-12元芳基)、-O-(C 0-C 6亚烷基)-(5-12元杂芳基)、-O-(C 2-C 6亚烯基)-(5-12元杂芳基)、或-(C 0-C 6亚烷基)-O-(5-12元杂芳基),并 且任选地所述6-12元芳基(优选为苯基)或者5-12元杂芳基(优选为吡啶基)各自独立地被0、1、2、3或4个选自以下基团的取代基所取代:卤素、羟基、硝基、C 1-C 6烷基、卤代(C 1-C 6烷基)、氨基、磺酰基、氰基、C 1-C 6烷氧基、C 1-C 6烷基硫基、C 1-C 6氨基和(二C 1-C 6烷基)氨基。
  19. 如权利要求13-18任一项所述的化合物,其中R 2为氢或者C 1-C 6烷基。
  20. 如权利要求13-19任一项所述的化合物,其中R 3和R 5各自独立地为卤素、氢、或C 1-C 6烷基。
  21. 如权利要求13-20任一项所述的化合物,其中R c、R c’为氢或者C 1-C 6烷基。
  22. 如权利要求13-21任一项所述的化合物,其中R d为氢或C 1-C 6烷基。
  23. 如权利要求1-22任一项所述的化合物,其中Cy为吡唑基,并且任选地被0、1、2或3个C 1-C 6烷基所取代。
  24. 如权利要求1所述的化合物,其具有选自以下的结构,
    Figure PCTCN2019101707-appb-100007
    Figure PCTCN2019101707-appb-100008
    Figure PCTCN2019101707-appb-100009
    Figure PCTCN2019101707-appb-100010
    Figure PCTCN2019101707-appb-100011
    Figure PCTCN2019101707-appb-100012
    Figure PCTCN2019101707-appb-100013
    Figure PCTCN2019101707-appb-100014
    Figure PCTCN2019101707-appb-100015
    Figure PCTCN2019101707-appb-100016
    Figure PCTCN2019101707-appb-100017
    Figure PCTCN2019101707-appb-100018
    Figure PCTCN2019101707-appb-100019
    Figure PCTCN2019101707-appb-100020
    Figure PCTCN2019101707-appb-100021
    Figure PCTCN2019101707-appb-100022
    Figure PCTCN2019101707-appb-100023
    Figure PCTCN2019101707-appb-100024
    Figure PCTCN2019101707-appb-100025
    Figure PCTCN2019101707-appb-100026
  25. 药物组合物,其包含权利要求1-24任一项所述的化合物以及药学上可接受的载体。
  26. 如权利要求25所述的药物组合物,其进一步包含另外的治疗剂和/或免疫检查点抑制剂,所述另外的治疗剂优选地选自苯丁酸氮芥、美法仑、环磷酰胺、异环磷酰胺、白消安、卡莫司汀、洛莫司汀、链脲佐菌素、顺铂、卡铂、奥沙利铂、达卡巴嗪、替莫唑胺、丙卡巴肼、甲氨蝶呤、氟尿嘧啶、阿糖胞苷、吉西他滨、巯基嘌呤、氟达拉滨、长春碱、长春新碱、长春瑞滨、紫杉醇、多西紫杉醇、拓扑替康、伊立替康、依托泊苷、曲贝替定、更生霉素、多柔比星、表柔比星、道诺霉素、米托蒽醌、博来霉素、丝裂霉素C、伊沙匹隆、他莫昔芬、氟他胺、戈那瑞林类似物、甲地孕酮、强的松、地塞米松、甲泼尼龙、 沙利度胺、干扰素α、亚叶酸钙、西罗莫司、西罗莫司脂化物、依维莫司、阿法替尼、alisertib、amuvatinib、阿帕替尼、阿西替尼、硼替佐米、波舒替尼、布立尼布、卡博替尼、西地尼布、crenolanib、克卓替尼、达拉菲尼、达可替尼、达努塞替、达沙替尼、多维替尼、厄洛替尼、foretinib、ganetespib、吉非替尼、依鲁替尼、埃克替尼、伊马替尼、iniparib、拉帕替尼、lenvatinib、linifanib、linsitinib、马赛替尼、momelotinib、莫替沙尼、来那替尼、尼罗替尼、niraparib、oprozomib、olaparib、帕唑帕尼、pictilisib、普纳替尼、quizartinib、瑞格菲尼、rigosertib、rucaparib、鲁索利替尼、塞卡替尼、saridegib、索拉非尼、舒尼替尼、替拉替尼、tivantinib、替沃扎尼、托法替尼、曲美替尼、凡德他尼、维利帕尼、威罗菲尼、维莫德吉、volasertib、阿仑单抗、贝伐单抗、贝伦妥单抗维多汀、卡妥索单抗、西妥昔单抗、地诺单抗、吉妥珠单抗、伊匹单抗、尼妥珠单抗、奥法木单抗、帕尼单抗、利妥昔单抗、托西莫单抗、曲妥珠单抗、PI3K抑制剂、CSF1R抑制剂、A2A和/或A2B受体拮抗剂、IDO抑制剂、抗PD-1抗体、抗PD-L1抗体、LAG3抗体、TIM-3抗体及抗CTLA-4抗体或其任意组合。
  27. 如权利要求1-24任一项所述的化合物或者如权利要求25或26所述的药物组合物在制备预防和/或治疗肿瘤、癌症、病毒感染、器官移植排斥、神经退行性疾病、注意力相关疾病或自身免疫性疾病的药物中的应用。
  28. 如权利要求27所述的用途,其中所述肿瘤或癌症选自皮肤癌、膀胱癌、卵巢癌、乳腺癌、胃癌、胰腺癌、前列腺癌、结肠癌、肺癌、骨癌、脑癌、神经细胞瘤、直肠癌、结肠癌、家族性腺瘤性息肉性癌、遗传性非息肉性结直肠癌、食管癌、唇癌、喉癌、下咽癌、舌癌、唾液腺癌、胃癌、腺癌、甲状腺髓样癌、乳头状甲状腺癌、肾癌、肾实质癌、卵巢癌、宫颈癌、子宫体癌、子宫内膜癌、绒毛膜癌、胰腺癌、前列腺癌、睾丸癌、泌尿癌、黑素瘤、脑肿瘤诸如成胶质细胞瘤、星形细胞瘤、脑膜瘤、成神经管细胞瘤和外周神经外胚层肿瘤、霍奇金淋巴瘤、非霍奇金淋巴瘤、伯基特淋巴瘤、急性淋巴性白血病(ALL)、慢性淋巴性白血病(CLL)、急性骨髓性白血病(AML)、慢性粒细胞白血病(CML)、成人T细胞白血病淋巴瘤、弥漫性大B细胞淋巴瘤(DLBCL)、肝细胞癌、胆囊癌、支气管癌、小细胞肺癌、非小细胞肺癌、多发性骨髓瘤、基底细胞瘤、畸胎瘤、成视网膜细胞瘤、脉络膜黑素瘤、精原细胞瘤、横纹肌肉瘤、颅咽管瘤、骨肉瘤、软骨肉瘤、 肌肉瘤、脂肪肉瘤、纤维肉瘤、尤因肉瘤或浆细胞瘤。
  29. 一种预防和/或治疗肿瘤、癌症、病毒感染、器官移植排斥、神经退行性疾病、注意力相关疾病或自身免疫性疾病的方法,其包括向有此需要的对象施用权利要求1-26所述的化合物或者权利要求25或26所述的药物组合物。
  30. 一种激动STING蛋白的方法,其包括使权利要求1-24任一项的化合物或者权利要求25或26所述的药物组合物或药物制剂暴露于所述STING蛋白。
  31. 一种预防和/或治疗可通过激动STING蛋白来预防和/或治疗之疾病的方法,其包括向有此需要的对象施用权利要求1-24任一项的化合物或者权利要求25或26所述的药物组合物。
PCT/CN2019/101707 2018-08-24 2019-08-21 高活性sting蛋白激动剂 WO2020038387A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201980005215.3A CN111386275B (zh) 2018-08-24 2019-08-21 高活性sting蛋白激动剂
CN202011579538.4A CN112679520B (zh) 2018-08-24 2019-08-21 Sting激动剂及其制备方法
AU2019326633A AU2019326633B2 (en) 2018-08-24 2019-08-21 High activity sting protein agonist
CA3110436A CA3110436C (en) 2018-08-24 2019-08-21 High activity sting protein agonist
JP2021532508A JP2021534250A (ja) 2018-08-24 2019-08-21 高活性stingタンパク質アゴニスト
EP19851013.3A EP3842437B1 (en) 2018-08-24 2019-08-21 High activity sting protein agonist
CN202011579526.1A CN112661772B (zh) 2018-08-24 2019-08-21 干扰素基因刺激蛋白化合物及其制备方法
KR1020217008506A KR102583738B1 (ko) 2018-08-24 2019-08-21 고 활성 sting 단백질 작용제

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810973172.5 2018-08-24
CN201810973172 2018-08-24
CN201811592949.X 2018-12-25
CN201811592949 2018-12-25

Publications (1)

Publication Number Publication Date
WO2020038387A1 true WO2020038387A1 (zh) 2020-02-27

Family

ID=69593093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101707 WO2020038387A1 (zh) 2018-08-24 2019-08-21 高活性sting蛋白激动剂

Country Status (8)

Country Link
EP (1) EP3842437B1 (zh)
JP (1) JP2021534250A (zh)
KR (1) KR102583738B1 (zh)
CN (4) CN112552314B (zh)
AU (1) AU2019326633B2 (zh)
CA (1) CA3110436C (zh)
TW (1) TWI716976B (zh)
WO (1) WO2020038387A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021000770A1 (zh) * 2019-07-02 2021-01-07 凯复制药有限公司 可增强免疫活性的杂环化合物、其制备方法及其在医药上的应用
WO2021193756A1 (ja) * 2020-03-25 2021-09-30 カルナバイオサイエンス株式会社 新規ベンズイミダゾール誘導体
WO2021206158A1 (ja) 2020-04-10 2021-10-14 小野薬品工業株式会社 がん治療方法
US11155567B2 (en) 2019-08-02 2021-10-26 Mersana Therapeutics, Inc. Sting agonist compounds and methods of use

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240189320A1 (en) * 2018-08-29 2024-06-13 Adlai Nortye Biopharma Co., Ltd. Highly active sting protein agonist compound

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1384835A (zh) * 1999-08-31 2002-12-11 阿古龙制药有限公司 聚(adp-核糖)聚合酶的三环抑制剂
CN102802731A (zh) * 2009-06-10 2012-11-28 詹森药业有限公司 可用作trpm8通道调节剂的苯并咪唑衍生物
CN104903321A (zh) * 2012-11-08 2015-09-09 赛尔维他股份公司 作为激酶抑制剂的经取代三环苯并咪唑
CN105164131A (zh) * 2013-03-15 2015-12-16 因赛特公司 作为bet蛋白抑制剂的三环杂环
WO2017175156A1 (en) * 2016-04-07 2017-10-12 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides useful as protein modulators
WO2017175147A1 (en) 2016-04-07 2017-10-12 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides useful as protein modulators

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201105681A (en) * 2009-06-10 2011-02-16 Janssen Pharmaceutica Nv Benzimidazole derivatives useful as TRPM8 channel modulators
US8501796B2 (en) * 2010-09-16 2013-08-06 Allergan, Inc. Ester pro-drugs of [3-(1-(1H-imidazol-4-yl)ethyl)-2-methylphenyl] methanol for lowering intraocular pressure
MX2013008822A (es) * 2011-02-09 2013-10-07 Hoffmann La Roche Compuestos heterociclicos como inhibidores de cinasa fosfatidilinositol-3 (pi3).
US9527864B2 (en) * 2014-09-15 2016-12-27 Incyte Corporation Tricyclic heterocycles as BET protein inhibitors
JP6873977B2 (ja) * 2015-09-08 2021-05-19 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト 三環式pi3k阻害化合物及び使用方法
WO2019134707A1 (zh) * 2018-01-08 2019-07-11 成都先导药物开发股份有限公司 一种免疫调节剂
JP2021530442A (ja) * 2018-06-28 2021-11-11 ジエンス ヘンルイ メデイシンカンパニー リミテッドJiangsu Hengrui Medicine Co., Ltd. 縮合三環系複素環化合物およびその治療上の使用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1384835A (zh) * 1999-08-31 2002-12-11 阿古龙制药有限公司 聚(adp-核糖)聚合酶的三环抑制剂
CN102802731A (zh) * 2009-06-10 2012-11-28 詹森药业有限公司 可用作trpm8通道调节剂的苯并咪唑衍生物
CN104903321A (zh) * 2012-11-08 2015-09-09 赛尔维他股份公司 作为激酶抑制剂的经取代三环苯并咪唑
CN105164131A (zh) * 2013-03-15 2015-12-16 因赛特公司 作为bet蛋白抑制剂的三环杂环
WO2017175156A1 (en) * 2016-04-07 2017-10-12 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides useful as protein modulators
WO2017175147A1 (en) 2016-04-07 2017-10-12 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides useful as protein modulators

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALLEN L.V.JR. ET AL.: "Remington: The Science and Practice of Pharmacy", vol. 2, 2012, PHARMACEUTICAL PRESS
HAAG, S.M. ET AL.: "Targeting STING with Covalent Small-Molecule Inhibitors", NATURE, vol. 559, 12 July 2018 (2018-07-12), XP036553086, DOI: 20191108142218A *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021000770A1 (zh) * 2019-07-02 2021-01-07 凯复制药有限公司 可增强免疫活性的杂环化合物、其制备方法及其在医药上的应用
US11155567B2 (en) 2019-08-02 2021-10-26 Mersana Therapeutics, Inc. Sting agonist compounds and methods of use
US11939343B2 (en) 2019-08-02 2024-03-26 Mersana Therapeutics, Inc. Sting agonist compounds and methods of use
WO2021193756A1 (ja) * 2020-03-25 2021-09-30 カルナバイオサイエンス株式会社 新規ベンズイミダゾール誘導体
CN115768761A (zh) * 2020-03-25 2023-03-07 卡尔那生物科学株式会社 新颖苯并咪唑衍生物
WO2021206158A1 (ja) 2020-04-10 2021-10-14 小野薬品工業株式会社 がん治療方法

Also Published As

Publication number Publication date
EP3842437B1 (en) 2024-04-10
CN111386275B (zh) 2023-03-10
AU2019326633B2 (en) 2022-09-08
TW202024096A (zh) 2020-07-01
CN112679520A (zh) 2021-04-20
AU2019326633A1 (en) 2021-03-25
KR20210046739A (ko) 2021-04-28
CA3110436C (en) 2023-09-26
TWI716976B (zh) 2021-01-21
EP3842437A4 (en) 2022-06-01
JP2021534250A (ja) 2021-12-09
CN112552314A (zh) 2021-03-26
CN112661772B (zh) 2022-06-10
CN112552314B (zh) 2022-03-04
CN112679520B (zh) 2022-03-11
EP3842437A1 (en) 2021-06-30
KR102583738B1 (ko) 2023-09-26
CN111386275A (zh) 2020-07-07
CN112661772A (zh) 2021-04-16
CA3110436A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
US10544122B2 (en) TLR7/8 antagonists and uses thereof
ES2944573T3 (es) Antagonistas de TLR7/8 y usos de los mismos
US10836750B1 (en) TLR7/8 antagonists and uses thereof
TWI716976B (zh) 高活性sting蛋白激動劑
WO2020042995A1 (zh) 一种高活性sting蛋白激动剂化合物
WO2022089454A1 (zh) 一种高活性Wnt通路抑制剂化合物
WO2019158070A1 (zh) A2a和/或a2b受体拮抗剂
WO2021129584A1 (zh) Pd-l1拮抗剂化合物
WO2023143501A1 (zh) 一种Wnt通路抑制剂化合物
WO2020169058A1 (zh) Pd-l1拮抗剂化合物
WO2021018172A1 (zh) 腺苷受体拮抗剂
TWI810547B (zh) Pd-l1拮抗劑化合物
WO2024022365A1 (zh) 一种Wnt通路抑制剂化合物
LU505117B1 (en) A pan-KRAS inhibitor compound
WO2023005894A1 (zh) 一种Wnt通路抑制剂化合物
WO2022199561A1 (zh) Hpk1激酶抑制剂化合物
WO2024060966A1 (zh) 一种pan-KRAS抑制剂化合物
WO2023143546A1 (zh) Wnt通路抑制剂化合物
WO2024104364A1 (zh) 一种pan-KRAS抑制剂化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851013

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021532508

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3110436

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217008506

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019326633

Country of ref document: AU

Date of ref document: 20190821

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019851013

Country of ref document: EP

Effective date: 20210324