WO2024060966A1 - 一种pan-KRAS抑制剂化合物 - Google Patents

一种pan-KRAS抑制剂化合物 Download PDF

Info

Publication number
WO2024060966A1
WO2024060966A1 PCT/CN2023/116437 CN2023116437W WO2024060966A1 WO 2024060966 A1 WO2024060966 A1 WO 2024060966A1 CN 2023116437 W CN2023116437 W CN 2023116437W WO 2024060966 A1 WO2024060966 A1 WO 2024060966A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkylene
compound
int
reaction
atoms
Prior art date
Application number
PCT/CN2023/116437
Other languages
English (en)
French (fr)
Inventor
陈宇锋
吕萌
刘灿丰
程万里
李非凡
杨寒
陈凯旋
刘帅帅
何南海
Original Assignee
杭州阿诺生物医药科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州阿诺生物医药科技有限公司 filed Critical 杭州阿诺生物医药科技有限公司
Publication of WO2024060966A1 publication Critical patent/WO2024060966A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/429Thiazoles condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/50Pyridazines; Hydrogenated pyridazines
    • A61K31/5025Pyridazines; Hydrogenated pyridazines ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed systems contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/22Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00

Definitions

  • the present invention relates to a compound, in particular to a highly active pan-KRAS inhibitor and its use.
  • RAS is one of the most commonly mutated genes in human tumors, with mutations occurring in approximately 30% of tumor patients, of which KRAS accounts for approximately 85% of RAS mutations. KRAS mutations are present in 88% of pancreatic cancer, 50% of colorectal adenocarcinomas, and 32% of lung adenocarcinomas. The development of targeted KRAS inhibitors is of great clinical significance and value.
  • KRAS is a membrane-bound protein with GTPase activity that cycles between a GDP-bound inactive conformation and a GTP-bound active conformation through nucleotide exchange, performing the function of a "molecular switch”. KRAS in the GTP-bound state can activate multiple downstream signaling pathways including RAF-MEK-ERK and PI3K-AKT, and regulate life processes such as cell growth, proliferation, differentiation, and apoptosis.
  • KRAS mutations affect GTPase activating proteins (GAPs)-mediated GTP hydrolysis, increasing KRAS in the GTP-bound activated state, overactivating downstream signaling pathways, and ultimately leading to the occurrence and development of tumors.
  • GAPs GTPase activating proteins
  • the KRAS protein lacks a corresponding hydrophobic pocket suitable for drug binding, and its affinity for GTP and GDP is at the picomolar level ( ⁇ 20pM), the development of inhibitors that competitively bind to KRAS is very difficult. In the past few decades, KRAS has been considered an undruggable target.
  • AMG510 was approved by the FDA for the treatment of locally advanced or metastatic non-small cell lung cancer with KRAS G12C mutations, breaking the history of KRAS being "undruggable".
  • G12C mutations only account for a small part of KRAS mutations.
  • the present invention provides a pan-KRAS inhibitor.
  • This type of structure is different from existing KRAS G12C inhibitors that work through covalent binding, but work by mediating the formation of a ternary complex between ubiquitous intracellular chaperone proteins (such as Cyclophilin A) and KRAS proteins.
  • the formation energy of the ternary complex It can block the combination of KRAS and its downstream effector molecules (such as RAF) through steric hindrance, inhibit the activation of MAPK and PI3K-AKT signaling pathways, thereby inhibiting the occurrence and development of tumors, and playing a role in the treatment of tumors and other diseases.
  • the invention provides a compound having the structure of formula (I) or a pharmaceutically acceptable salt, isotope derivative, or stereoisomer thereof:
  • R 1 represents C 1 -C 6 alkyl, -(C 1 -C 6 alkylene)-(C 3 -C 8 cycloalkyl) or -(C 1 -C 6 alkylene) -(3-8 membered heterocycloalkyl);
  • R 2 represents halogen, cyano, C 1 -C 6 alkyl, -(C 0 -C 6 alkylene) -(C 3 -C 8 cycloalkyl), or -(C 0 -C 6 alkylene) )-(3-8 membered heterocycloalkyl), which may optionally be substituted by 0, 1 or 2 of the following substituents: -ORa, -SRa or -NRaRa';
  • R 3 represents hydrogen, -O(C 0 -C 6 alkylene)Ra, -S(C 0 -C 6 alkylene)Ra, -N(C 0 -C 6 alkylene)Ra(C 0 - C 6 alkylene) R a ', -O (C 2 -C 6 alkylene) R L , -S (C 2 -C 6 alkylene) R L , -N (C 2 -C 6 alkylene) Base) R L (C 2 -C 6 alkylene) R L ', wherein R L and R L ' each independently represent -ORa, -SRa, or NRaRa';
  • Cy 1 represents C 3 -C 12 cycloalkyl or 3-12 membered heterocycloalkyl
  • R 4 represents hydrogen, halogen, oxo, C 1 -C 6 alkyl, -(C 0 -C 6 alkylene) (C 3 -C 6 ) cycloalkyl, -(C 0 -C 6 alkylene) )(3-8 membered)heterocycloalkyl, -(C 0 -C 6 alkylene)ORa, -(C 0 -C 6 alkylene)SRa, -(C 0 -C 6 alkylene)NRaRa ', -CORa, -(C 0 -C 6 alkylene)COORa, -(C 0 -C 6 alkylene)CONRaRa', -(C 0 -C 6 alkylene)NRaCORa', -(C 0 -C 6 alkylene)OCONRaRa', -(C 0 -C 6 alkylene)NRaCONRaRa', -
  • R 8 represents -Cy 2 -(R 5 ) q or -NR 9 R 9 ', where,
  • Cy 2 represents C 3 -C 12 cycloalkyl, 3-12 membered heterocycloalkyl, C 6 -C 10 aryl or 5-12 membered heteroaryl;
  • R 5 represents hydrogen, halogen, oxo, C 1 -C 6 alkyl, -(C 0 -C 6 alkylene)ORa, -(C 0 -C 6 alkylene)SRa, -(C 0 -C 6 alkylene) NRaRa', or R 5 on the two C atoms of Cy 2 together with the C atoms connected to it and the atoms between the two C atoms can form a 3-8 membered ring, the 3-
  • the 8-membered ring optionally contains 0, 1, 2 or 3 heteroatoms selected from N, O or S; or Cy 2 two R 5 on the same C atom together with the C atom connected to it
  • a 3-8 membered ring may be formed, which may optionally contain 0, 1, 2 or 3 heteroatoms selected from N, O or S; or at least one of the Cy 2 rings
  • R 9 and R 9 ' each independently represent a C 1 -C 6 alkyl group, a C 3 -C 8 cycloalkyl group, a 3-8 membered heterocycloalkyl group, or a C 6 -C 10 group which may be optionally substituted by q R 5 Aryl or 5-12 membered heteroaryl;
  • R 6 and R 6 ' each independently represent hydrogen, halogen, C 1 -C 6 alkyl, C 3 -C 8 cycloalkyl or -(C 0 -C 6 alkylene) CN;
  • R 7 and R 7 ' each independently represent hydrogen, halogen, C 1 -C 6 alkyl, C 3 -C 8 cycloalkyl, 3-8 membered heterocycloalkyl; or R 7 and R 7 ' are combined with The connected C atoms form a 3-8 membered ring, which may optionally contain 0, 1, 2 or 3 heteroatoms selected from N, O, and S;
  • p and q each independently represent 0, 1, 2, 3 or 4;
  • n 0, 1, 2 or 3;
  • Ra and Ra' each independently represent hydrogen, C 1 -C 6 alkyl, C 3 -C 8 cycloalkyl; wherein, if Ra and Ra' are connected to the same N atom, Ra and Ra' may form a 4-8 membered ring with the common N atom, and the 4-8 membered ring may optionally contain 0, 1, 2 or 3 heteroatoms selected from N, O or S;
  • alkyl, cycloalkyl, heterocycloalkyl and alkylene groups may each independently be substituted by 0, 1, 2, 3, 4, 5 or 6 halogen atoms.
  • the present invention provides a compound having the structure of formula (I) as described above, or a pharmaceutically acceptable salt, isotope derivative, or stereoisomer thereof, wherein R 1 represents a C 1 -C 6 alkyl group. , preferably C 1 -C 3 alkyl.
  • the present invention provides a compound having the structure of formula (I) as described above, or a pharmaceutically acceptable salt, isotope derivative, or stereoisomer thereof, wherein R 2 represents a C 1 -C 6 alkyl group. , which may optionally be substituted by 0, 1 or 2 -ORa substituents. More preferably, R 2 represents Preferably Among them, * represents the position where R 2 is connected to the site connected to it in formula (I).
  • the present invention provides a compound having the structure of formula (I) as mentioned above, or a pharmaceutically acceptable salt, isotope derivative, or stereoisomer thereof, wherein R 3 represents -O(C 1 -C 6 ) Alkyl, -O(C 0 -C 6 alkylene) (C 3 -C 8 ) cycloalkyl, -O (C 0 -C 6 alkylene) (3-8 membered) heterocycloalkyl , -O(C 2 -C 6 alkylene) RL or hydrogen
  • the present invention provides a compound having the structure of formula (I) as mentioned above, or a pharmaceutically acceptable salt, isotope derivative, or stereoisomer thereof, wherein Cy 1 represents a C 3 -C 8 cycloalkane. group or 3-8 membered heterocycloalkyl group.
  • the present invention provides a compound having the structure of formula (I) as mentioned above, or a pharmaceutically acceptable salt, isotope derivative, or stereoisomer thereof, wherein R 4 represents hydrogen, halogen, C 1 -C 6alkyl , -(C 0 -C 6 alkylene)CONRaRa', -(C 0 -C 6 alkylene)NRaCORa', -(C 0 -C 6 alkylene)OCONRaRa', -(C 0 -C 6 alkylene)CN, -(C 0 -C 6 alkylene) (5-12 membered heteroaryl), or R 4 on the two C atoms of Cy 1 together with the C atoms connected to it and The atoms between the two C atoms can form a 3-8-membered ring, and the 3-8-membered ring optionally can contain 0, 1, 2 or 3 hetero groups selected from N, O or S.
  • the present invention provides a compound having the structure of formula (I) as mentioned above, or a pharmaceutically acceptable salt, isotope derivative, or stereoisomer thereof, wherein R 4 represents hydrogen, halogen, C 1 -C 6 alkyl, -(C 0 -C 6 alkylene)CONRaRa', -(C 0 -C 6 alkylene) (5-12 membered heteroaryl), or R on two C atoms of Cy 1 4, together with the C atoms connected thereto and the atoms between the two C atoms, can form a 3-8-membered ring, and the 3-8-membered ring optionally can contain 0, 1, 2 or 3 Choose from N, O or S heteroatoms; or two R 4 on the same C atom of Cy 1 together with the C atom connected to it can form a 3-8-membered ring, and the 3-8-membered ring optionally can contain 0, 1, 2 or 3 heteroatoms selected from N, O or S.
  • R 4 represents hydrogen
  • the present invention provides a compound having the structure of formula (I) as described above, or a pharmaceutically acceptable salt, isotope derivative, or stereoisomer thereof, wherein Cy 2 represents a 3-8 membered heterocycloalkane. base or 5-12 membered heteroaryl group.
  • the present invention provides a compound having the structure of formula (I) as described above, or a pharmaceutically acceptable salt, isotope derivative, or stereoisomer thereof, wherein R 5 represents hydrogen, halogen, C 1 - C 6 alkyl, -(C 0 -C 6 alkylene)ORa, -(C 0 -C 6 alkylene)NRaRa'; or R 5 on the two C atoms of Cy 2 together with the C connected to it
  • the atoms and the atoms between the two C atoms can form a 3-8 membered ring, and the 3-8 membered ring optionally can contain 0, 1, 2 or 3 selected from N, O or S heteroatoms; or two R 5 on the same C atom of Cy 2 together with the C atom connected to it can form a 3-8-membered ring, and the 3-8-membered ring optionally can contain 0, 1, 2 or 3 heteroatoms selected from N, O or S;
  • the present invention provides a compound having the structure of formula (I) as mentioned above, or a pharmaceutically acceptable salt, isotope derivative, or stereoisomer thereof, wherein at least one of R 9 and R 9 ' Represents a C 1 -C 6 alkyl group substituted by q R 5s .
  • the present invention provides a compound having the structure of formula (I) as mentioned above, or a pharmaceutically acceptable salt, isotope derivative, or stereoisomer thereof, wherein R 6 and R 6 ' each independently represent Hydrogen or C1-C6 alkyl; more preferably, R 6 and R 6 ' each independently represent hydrogen or methyl.
  • the present invention provides a compound having the structure of formula (I) as described above or a pharmaceutically acceptable salt, isotopic derivative, stereoisomer thereof, wherein R 7 and R 7 ' each independently represent hydrogen or C 1 -C 6 alkyl; or R 7 and R 7 ' and the C atom connected thereto form a 3-8 membered ring, and the ring may optionally contain 0, 1, 2 or 3 heteroatoms selected from N, O and S. More preferably, R 7 represents hydrogen.
  • the present invention provides a compound having the structure of formula (I) as described above, or a pharmaceutically acceptable salt, isotope derivative, or stereoisomer thereof, wherein m, p, and q are each independently preferably 0 , 1 or 2.
  • the present invention provides a compound having the structure of formula (I) as described above, or a pharmaceutically acceptable salt, isotope derivative, or stereoisomer thereof, wherein -Cy 1 -( in formula (I)
  • the structure of R 4 )p is selected from the following:
  • * represents the site where -Cy 1 -(R 4 )p is connected to the site connected to it in formula (I).
  • the present invention provides a compound having the structure of formula (I) as described above, or a pharmaceutically acceptable salt, isotope derivative, or stereoisomer thereof, wherein -Cy 2 -( in formula (I)
  • the structure of R 5 )q is selected from the following:
  • * represents the site where -Cy 2 -(R 5 )q is connected to the site connected to it in formula (I).
  • the present invention provides a compound having the structure of formula (I) as described above, or a pharmaceutically acceptable salt, isotope derivative, or stereoisomer thereof, wherein the compound of formula (I) is formula (II) structure:
  • the invention also provides compounds having the following structure:
  • the present invention also provides a pharmaceutical composition, which includes any one of the aforementioned compounds or a pharmaceutically acceptable salt, isotope derivative, or stereoisomer thereof.
  • the present invention also provides the use of the aforementioned compounds or their pharmaceutically acceptable salts, isotopic derivatives, stereoisomers and pharmaceutical compositions in the preparation of drugs for preventing and/or treating cancer, tumors, inflammatory diseases, autoimmune diseases or immune-mediated diseases.
  • reference herein to a compound generally includes its prodrugs, metabolites and nitrogen oxides.
  • Pharmaceutically acceptable salts of the present invention may be formed using, for example, the following inorganic or organic acids: "Pharmaceutically acceptable salts" refer to salts that, within the scope of reasonable medical judgment, are suitable for use in contact with humans and lower and other animal tissues without undue toxicity, irritation, allergic reactions, etc., which can be called a reasonable benefit/risk ratio.
  • the salts may be prepared in situ during the final isolation and purification of the compounds of the invention, or separately by reacting the free base or free acid with a suitable reagent, as summarized below. For example, the free base functionality can be reacted with a suitable acid.
  • inorganic acid addition salts are amino acids with inorganic acids (for example, hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid) or organic acids (for example, acetic acid, oxalic acid, maleic acid, tartaric acid, lemon acid). acid, succinic acid or malonic acid), or by using other methods in the art such as ion exchange.
  • inorganic acids for example, hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid
  • organic acids for example, acetic acid, oxalic acid, maleic acid, tartaric acid, lemon acid.
  • succinic acid or malonic acid or by using other methods in the art such as ion exchange.
  • salts include adipate, sodium alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, Camphor sulfonate, citrate, cyclopentane propionate, digluconate, lauryl sulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerin Phosphate, gluconate, hernisulfate, enanthate, hexanoate, hydroiodide, 2-hydroxyethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malic acid Salt, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamateate, pec
  • Representative alkali metal or alkaline earth metal salts include salts of sodium, lithium, potassium, calcium, magnesium, and the like.
  • Other pharmaceutically acceptable salts include, where appropriate, nontoxic ammonium salts, quaternary ammonium salts, and amine cations formed with counterions, e.g., halides, hydroxides, carboxylates, sulfates, phosphates, nitrates, lower Alkyl sulfonates and aryl sulfonates.
  • the pharmaceutically acceptable salts of the present invention can be prepared by conventional methods, for example, by dissolving the compounds of the present invention in water-miscible organic solvents (such as acetone, methanol, ethanol, and acetonitrile), and adding an excess of organic acid or inorganic acid thereto. aqueous acid to precipitate the salt from the resulting mixture, from which the solvent and remaining free The acid is removed and the precipitated salt is separated.
  • water-miscible organic solvents such as acetone, methanol, ethanol, and acetonitrile
  • the precursors or metabolites described in the present invention may be those known in the art, as long as the precursors or metabolites are converted into compounds through in vivo metabolism.
  • prodrugs refer to those prodrugs of the compounds of the present invention which, within the scope of reasonable medical judgment, are suitable for contact with tissues of humans and lower animals without undue toxicity, irritation, allergic reactions, etc., Demonstrates a reasonable benefit/risk ratio and is effective for its intended use.
  • prodrug refers to a compound that is rapidly converted in vivo to produce the parent compound of the formula above, for example by metabolism in the body, or N-demethylation of a compound of the invention.
  • Solvate as used herein means a physical association of a compound of the invention with one or more solvent molecules, whether organic or inorganic. This physical association includes hydrogen bonding. In certain circumstances, such as when one or more solvent molecules are incorporated into the crystal lattice of a crystalline solid, solvates will be able to be separated. The solvent molecules in a solvate may exist in regular and/or disordered arrangements. Solvates may contain stoichiometric or non-stoichiometric amounts of solvent molecules. "Solvate” encompasses both solution phase and isolable solvates. Exemplary solvates include, but are not limited to, hydrates, ethanolates, methoxides, and isopropoxides. Solvation methods are well known in the art.
  • the "stereoisomerism" mentioned in the present invention is divided into conformational isomerism and configurational isomerism.
  • Configurational isomerism can also be divided into cis-trans isomerism and optical isomerism (ie, optical isomerism).
  • Conformational isomerism refers to having A stereoisomerism phenomenon in which organic molecules of a certain configuration are arranged differently in space due to the rotation or distortion of carbon and carbon single bonds.
  • Common structures include alkanes and cycloalkanes. Such as the chair conformation and boat conformation that appear in the cyclohexane structure.
  • Stepoisomers means when a compound of the present invention contains one or more asymmetric centers and is thus available as racemates and racemic mixtures, single enantiomers, diastereomeric mixtures and single Diastereomers.
  • the compound of the present invention has an asymmetric center, and each asymmetric center will produce two optical isomers.
  • the scope of the present invention includes all possible optical isomers and diastereoisomer mixtures and pure or partially pure compounds. .
  • the compounds described in this invention may exist as tautomers having different points of attachment of hydrogens through the displacement of one or more double bonds. For example, a ketone and its enol form are keto-enol tautomers.
  • an “isotopic derivative” of the present invention refers to a molecule in which the compound is isotopically labeled.
  • the isotopes commonly used as isotope labels are: hydrogen isotopes, 2 H and 3 H; carbon isotopes: 11 C, 13 C and 14 C; chlorine isotopes: 35 Cl and 37 Cl; fluorine isotopes: 18 F; iodine isotopes: 123 I and 125 I; nitrogen isotopes: 13 N and 15 N; oxygen isotopes: 15 O, 17 O and 18 O and sulfur isotope 35 S.
  • These isotopically labeled compounds can be used to study the distribution of pharmaceutical molecules in tissues.
  • deuterium 3 H and carbon 13 C are more widely used because they are easy to label and detect.
  • substitution of certain heavy isotopes, such as deuterium ( 2H ) can enhance metabolic stability, extend half-life, thereby reducing dosage and providing therapeutic advantages.
  • Isotopically labeled compounds generally start from labeled starting materials and are synthesized using known synthetic techniques as for non-isotopically labeled compounds.
  • the present invention also provides the use of the compounds of the present invention in the preparation of medicaments for preventing and/or treating cancer, tumors, inflammatory diseases, autoimmune diseases or immune-mediated diseases.
  • the present invention provides pharmaceutical compositions for the prevention and/or treatment of cancer, tumors, inflammatory diseases, autoimmune diseases, neurodegenerative diseases, attention-related diseases or immune-mediated diseases, comprising the present invention compound as the active ingredient.
  • the pharmaceutical composition may optionally include a pharmaceutically acceptable carrier.
  • the present invention provides a method for preventing and/or treating cancer, tumors, inflammatory diseases, autoimmune diseases, neurodegenerative diseases, attention-related diseases, or immune-mediated diseases, comprising A compound of the invention is administered to a mammal.
  • inflammatory diseases may include, but are not limited to, arthritis, rheumatoid arthritis, spondyloarthritis, gouty arthritis, osteoarthritis, juvenile arthritis , other arthritic conditions, lupus, systemic lupus erythematosus (SLE), skin-related disorders, psoriasis, eczema, dermatitis, atopic dermatitis, pain, lung disease, lung inflammation, adult respiratory distress syndrome (ARDS) , pulmonary sarcoidosis, chronic pulmonary inflammatory disease, chronic obstructive pulmonary disease (COPD), cardiovascular disease, atherosclerosis, myocardial infarction, congestive heart failure, myocardial ischemia-reperfusion injury, inflammatory bowel disease, Crohn's disease, ulcerative colitis, irritable bowel syndrome, asthma, Sjogren's syndrome, autoimmune thyroid disease, urticaria (rubella), multiple s
  • cancers or tumors may include, but are not limited to, skin cancer, bladder cancer, ovarian cancer, breast cancer, stomach cancer, pancreatic cancer, prostate cancer, colon cancer, lung cancer, bone cancer, brain cancer, neuroblastoma, rectal cancer , colon cancer, familial adenomatous polyposis carcinoma, hereditary nonpolyposis colorectal cancer, esophageal cancer, lip cancer, laryngeal cancer, hypopharyngeal cancer, tongue cancer, salivary gland cancer, gastric cancer, adenocarcinoma, medullary thyroid cancer, Papillary thyroid cancer, renal cancer, renal parenchymal cancer, ovarian cancer, cervical cancer, uterine corpus cancer, endometrial cancer, choriocarcinoma, pancreatic cancer, prostate cancer, testicular cancer, urinary cancer, melanoma, brain tumors such as Glioblastoma, astrocytoma, meningioma, medulloblastoma and peripheral tumors
  • the compounds of the present invention may provide enhanced anticancer effects when administered in combination with additional anticancer agents or immune checkpoint inhibitors used to treat cancer or tumors. .
  • anti-cancer agents used to treat cancer or tumors may include, but are not limited to, cell signaling inhibitors, chlorambucil, melphalan, cyclophosphamide, ifosfamide, busulfan, carbo Mustine, lomustine, streptozotocin, cisplatin, carboplatin, oxaliplatin, dacarbazine, temozolomide, procarbazine, methotrexate, fluorouracil, cytarabine, gemcitabine, Mercaptopurine, fludarabine, vinblastine, vincristine, vinorelbine, paclitaxel, docetaxel, topotecan, irinotecan, etoposide, trabectedin, dactinomycin, doxorubicin , epirubicin, daunorubicin, mitoxantrone, bleomycin, mitomycin C, ixabepilone, tamoxif
  • the compounds of the present invention may provide enhanced therapeutic effect.
  • therapeutic agents for treating inflammatory diseases, autoimmune diseases, and immune-mediated diseases may include, but are not limited to, steroidal drugs (e.g., prednisone, prednisone, methylprednisone pine, cortisone, hydroxycortisone, betamethasone, dexamethasone, etc.), methotrexate, leflunomide, anti-TNF ⁇ agents (e.g., etanercept, infliximab, adalivir monoclonal antibodies, etc.), calcineurin inhibitors (e.g., tacrolimus, pimecrolimus, etc.) and antihistamines (e.g., diphenhydramine, hydroxyzine, loratadine, ebas cetirizine, ketotifen, cetirizine, levocetirizine, fexofenadine, etc.), and at least one or more therapeutic agents selected therefrom may be included in the pharmaceutical composition of the present invention.
  • the present invention also provides a method for preventing and/or treating tumors, cancers, viral infections, organ transplant rejection, neurodegenerative diseases, attention-related diseases or autoimmune diseases, which includes providing such A compound of the invention or a pharmaceutical composition of the invention is administered to a mammal in need thereof.
  • the pharmaceutical composition of the present invention can be formulated into a dosage form for oral administration or parenteral administration (including intramuscular, intravenous and subcutaneous routes, intratumoral injection) according to any of conventional methods, such as tablets, granules, powders , capsules, syrups, emulsions, microemulsions, solutions or suspensions.
  • compositions of the present invention for oral administration can be prepared by mixing the active ingredient with a carrier such as Preparation: cellulose, calcium silicate, corn starch, lactose, sucrose, dextrose, calcium phosphate, stearic acid, magnesium stearate, calcium stearate, gelatin, talc, surfactant, suspending agent , emulsifiers and diluents.
  • a carrier such as Preparation: cellulose, calcium silicate, corn starch, lactose, sucrose, dextrose, calcium phosphate, stearic acid, magnesium stearate, calcium stearate, gelatin, talc, surfactant, suspending agent , emulsifiers and diluents.
  • Examples of carriers used in the pharmaceutical composition for injection administration of the present invention may be water, saline solution, glucose solution, glucose-like solution, alcohol, glycol, ether (e.g., polyethylene glycol 400 ), oils, fatty acids, fatty acid esters, glycerides, surfactants, suspending agents and emulsifiers.
  • the compounds of the present invention can be prepared in a variety of ways known to those skilled in the art of organic synthesis.
  • the following methods can be used as well as synthetic methods known in the field of organic synthetic chemistry or through variations thereof known to those skilled in the art. Synthesize the compounds of the invention. Preferred methods include, but are not limited to, those described below.
  • the reaction is carried out in a solvent or solvent mixture suitable for the kit materials used and for the transformations achieved.
  • Those skilled in the art of organic synthesis will understand that the functionality present on the molecule is consistent with the proposed transformation. This sometimes requires judgment to alter the order of synthetic steps or starting materials to obtain the desired compound of the invention.
  • the compounds of the present invention can be isolated in optically active or racemic form. All methods for preparing the compounds of the invention and the intermediates prepared therein are considered to be part of the invention. When preparing enantiomeric or diastereomeric products, they can be separated by conventional methods, for example by chromatography or fractional crystallization. Depends on method conditions, to swim The final product of the invention is obtained in ionic (neutral) or salt form. Both free forms and salts of these end products are within the scope of this invention. If desired, one form of the compound can be converted into another form. The free base or acid can be converted into a salt; the salt can be converted into the free compound or another salt; and mixtures of isomeric compounds of the invention can be separated into individual isomers.
  • the compounds of the present invention may exist in a variety of tautomeric forms in which hydrogen atoms are transposed to other parts of the molecule and thereby the chemical bonds between the atoms of the molecule are rearranged. It is to be understood that all tautomeric forms which may exist are included in the present invention.
  • the definitions of the substituents of the present invention are independent and not related to each other.
  • R a (or R a ') in the substituent it The definitions of different substituents are independent of each other. Specifically, when one definition is chosen for R a (or R a ') in one substituent, it does not mean that R a (or R a ') has the same definition in other substituents.
  • NR a R a ' when the definition of R a (or R a ') is selected from hydrogen, it does not mean that in -C(O)-NR In a R a ', R a (or R a ') must be hydrogen.
  • R a when there is more than one Ra (or Ra ') in a certain substituent, these Ra (or Ra ') are also independent.
  • substituents such as alkyl, cycloalkyl, aryl, heterocyclyl, halogen, hydroxyl, Alkoxy, oxo, alkanoyl, aryloxy, alkanoyloxy, amino, alkylamino, arylamino, arylalkylamino, disubstituted amino (where 2 amino substituents are selected from alkyl group, aryl or arylalkyl), alkanoylamino, arolylamino, aralkanoylamino, substituted alkanoylamino, substituted arylamino, substituted aralkanoylamino, thio, alkylthio , arylthio, arylalkylthio, arylthiocarbonyl, arylalkylthiocarbonyl, alkylsulfony
  • carbamoyl such as -CONH 2
  • substituted carbamoyl such as -CONH alkyl, -CONH aryl, -CONH arylalkyl or on nitrogen
  • heterocyclyl such as indolyl, imidazolyl, furan base, thienyl, thiazolyl, pyrrolidinyl, pyridyl, pyrimidinyl, pyrrolidinyl, piperidinyl, morpholinyl, piperazinyl, homopiperazinyl, etc. and substituted heterocyclyl.
  • alkyl or "alkylene” as used herein is intended to include both branched and straight chain having the specified number of carbon atoms. Chain saturated aliphatic hydrocarbon group.
  • C 1 -C 6 alkyl means an alkyl group having 1 to 6 carbon atoms.
  • alkyl groups include, but are not limited to, methyl (Me), ethyl (Et), propyl (such as n-propyl and isopropyl), butyl (such as n-butyl, isobutyl, tert-butyl), and Pentyl (e.g. n-pentyl, isopentyl, neopentyl).
  • the alkyl group is preferably an alkyl group having 1 to 6, more preferably 1 to 4 carbon atoms.
  • alkenyl refers to a straight or branched hydrocarbon radical containing one or more double bonds and usually having a length of 2 to 20 carbon atoms.
  • C2-C6 alkenyl contains two to six carbon atoms.
  • Alkenyl groups include, but are not limited to, vinyl, propenyl, butenyl, 1-methyl-2-buten-1-yl, and the like. In this context, alkenyl is preferably C 2 -C 6 alkenyl.
  • alkynyl refers to a straight or branched hydrocarbon group containing one or more triple bonds and usually having a length of 2 to 20 carbon atoms.
  • C 2 -C 6 alkynyl contains two to six carbon atoms.
  • Representative alkynyl groups include, but are not limited to, for example, ethynyl, 1-propynyl, 1-butynyl, and the like. In this context, the alkynyl group is preferably a C 2 -C 6 alkynyl group.
  • alkoxy refers to -O-alkyl.
  • C 1 -C 6 alkoxy (or alkyloxy) is intended to include C 1 , C 2 , C 3 , C 4 , C 5 , C 6 alkoxy.
  • alkoxy include, but are not limited to, methoxy, ethoxy, propoxy (eg, n-propoxy and isopropoxy), and tert-butoxy.
  • the alkoxy group is preferably an alkoxy group having 1 to 6, more preferably 1 to 4 carbon atoms.
  • alkylthio or “thiothio” means a sulfur-bridged alkyl group as defined above having the specified number of carbon atoms; for example, methyl-S- and ethyl-S-.
  • aryl alone or as part of a larger moiety such as “aralkyl”, “arylalkoxy” or “aryloxyalkyl”, refers to a single ring member having a total of 5 to 12 ring members.
  • aryl refers to an aromatic ring system including, but not limited to, phenyl, biphenyl, indanyl, 1-naphthyl, 2-naphthyl, and tetralin base.
  • aralkyl or "arylalkyl” refers to an alkyl residue attached to an aryl ring, non-limiting examples of which include benzyl, phenethyl, and the like.
  • the fused aryl group can be attached to another group at a suitable position on the cycloalkyl ring or aromatic ring.
  • the dashed lines drawn from the ring system indicate that bonds can be attached to any suitable ring atom.
  • cycloalkyl refers to a monocyclic, bicyclic or branched cyclic alkyl group.
  • Monocyclic cyclic alkyl refers to C 3 -C 12 cyclic alkyl, including but not limited to cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and norbornyl.
  • Branched cycloalkyl groups such as 1-methylcyclopropyl and 2-methylcyclopropyl are included in the definition of "cycloalkyl”.
  • Bicyclic cyclic alkyl groups include bridged, spiro or fused cyclic cycloalkyl groups.
  • cycloalkyl is preferably C 3 -C 12 cycloalkyl group, more preferably C 3 -C 8 cycloalkyl group.
  • heterocycloalkyl refers to a 3-12 membered ring structure in which at least one carbon atom on the cycloalkyl group is replaced by a heteroatom selected from N, O, S and P, which may be a monocyclic ring. , bicyclic or branched cyclic structure.
  • the heterocycloalkyl group is preferably a 3-12-membered heterocycloalkyl group, and more preferably a 3-8-membered heterocycloalkyl group.
  • bridged cycloalkyl refers to polycyclic compounds sharing two or more carbon atoms. It can be divided into two-ring bridged cyclic hydrocarbons and polycyclic bridged cyclic hydrocarbons. The former is composed of two alicyclic rings sharing more than two carbon atoms; the latter is a bridged cyclic hydrocarbon composed of more than three rings.
  • spirocycloalkyl refers to polycyclic hydrocarbons that share one carbon atom (called a spiro atom) between single rings.
  • bridged cycloheteroyl refers to a polycyclic compound sharing two or more carbon atoms and containing at least one heteroatom selected from O, N and S atoms in the ring. It can be divided into two-ring bridged heterocycles and polycyclic bridged heterocycles.
  • heterospirocyclyl refers to polycyclic hydrocarbons sharing one carbon atom (called a spiro atom) between single rings, and the ring contains at least one heteroatom selected from O, N and S atoms.
  • substituted means that at least one hydrogen atom is replaced by a non-hydrogen group, provided that normal valency is maintained and that the substitution results in a stable compound.
  • cycloalkenyl refers to a monocyclic or bicyclic cyclic alkenyl group.
  • Monocyclic cyclic alkenyl refers to C 3 -C 8 cyclic alkenyl, including but not limited to cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl and norbornenyl.
  • Branched cycloalkenyl groups such as 1-methylcyclopropenyl and 2-methylcyclopropenyl are included in the definition of "cycloalkenyl”.
  • Bicyclic cyclic alkenyl groups include bridged, spiro or condensed ring cyclic alkenyl groups.
  • Halo or halogen includes fluorine, chlorine, bromine and iodine.
  • Haloalkyl or "haloalkylene” is intended to include branched and linear saturated alkyl/alkylene groups having the specified number of carbon atoms substituted with one or more halogens.
  • haloalkyl include, but are not limited to, fluoromethyl, difluoromethyl, trifluoromethyl, trichloromethyl, pentafluoroethyl, pentachloroethyl, 2,2,2-trifluoroethyl, heptafluoroethyl Propyl and heptachloropropyl.
  • haloalkyl groups also include "fluoroalkyl groups" which are intended to include branched and straight chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms substituted with one or more fluorine atoms.
  • fluoroalkyl groups which are intended to include branched and straight chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms substituted with one or more fluorine atoms.
  • Halocycloalkyl /"halogenated heterocycloalkyl” is intended to include cycloalkyl/heterocycloalkyl having the specified number of carbon atoms substituted with 1 or more halogens.
  • the halogen atom is preferably fluorine or chlorine, and more preferably fluorine.
  • Haloalkoxy or "haloalkyloxy” means a group having the specified number of carbon atoms linked via an oxygen bridge. Haloalkyl as defined above.
  • halo C 1 -C 6 alkoxy is intended to include C 1 , C 2 , C 3 , C 4 , C 5 , C 6 haloalkoxy.
  • haloalkoxy include, but are not limited to, trifluoromethoxy, 2,2,2-trifluoroethoxy, and pentafluoroethoxy.
  • haloalkylthio or “thiohaloalkoxy” means a sulfur-bridged haloalkyl group as defined above having the specified number of carbon atoms; for example, trifluoromethyl-S- and pentafluoroethyl -S-.
  • C x1 -C x2 is used when referring to some substituent groups, which means that the number of carbon atoms in the substituent group may be x1 to x2.
  • C 0 -C 8 means that the group contains 0, 1, 2, 3, 4, 5, 6, 7 or 8 carbon atoms
  • C 1 -C 8 means that the group contains 1, 2, 3 , 4, 5, 6, 7 or 8 carbon atoms
  • C 2 -C 8 means that the group contains 2, 3, 4, 5, 6, 7 or 8 carbon atoms
  • C 3 -C 8 means that the group The group contains 3, 4, 5, 6, 7 or 8 carbon atoms
  • C 4 -C 8 means that the group contains 4, 5, 6, 7 or 8 carbon atoms
  • C 0 -C 6 means that the group contains 4, 5, 6, 7 or 8 carbon atoms.
  • a group containing 0, 1, 2, 3, 4, 5 or 6 carbon atoms means that the group contains 1, 2, 3, 4, 5 or 6 carbon atoms
  • C 2 -C 6 means that the group contains 2, 3, 4, 5 or 6 carbon atoms
  • C 3 -C 6 means that the group contains 3, 4, 5 or 6 carbon atoms.
  • x1-x2 membered ring is used when referring to cyclic groups (such as aryl, heteroaryl, cycloalkyl, and heterocycloalkyl), which means that the ring atoms of the group The number can be x1 to x2.
  • the 3-12-membered cyclic group can be a 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12-membered ring, and the number of ring atoms can be 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12; 3-6 membered ring means that the cyclic group can be a 3, 4, 5 or 6 membered ring, and the number of ring atoms can be 3, 4, 5 or 6 ; 3-8 membered ring means that the cyclic group can be a 3, 4, 5, 6, 7 or 8-membered ring, and the number of ring atoms can be 3, 4, 5, 6, 7 or 8; 3-9
  • the membered ring means that the cyclic group can be a 3, 4, 5, 6, 7, 8 or 9-membered ring, and the number of ring atoms can be 3, 4, 5, 6, 7, 8 or 9; 4-7
  • the membered ring means that the cyclic group can be a 4, 5, 6 or 7-membered ring, and the number of ring atoms can be 4,
  • the ring atoms may be carbon atoms or heteroatoms, such as heteroatoms selected from N, O and S.
  • the heterocycle may contain 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more ring heteroatoms, for example selected from N, O and S of heteroatoms.
  • one or more halogens may each be independently selected from fluorine, chlorine, bromine and iodine.
  • heteroaryl means a stable 5-membered, 6-membered, or 7-membered aromatic monocyclic ring or aromatic bicyclic ring or a 7-membered, 8-membered, 9-membered, 10-membered, 11-membered, or 12-membered aromatic polycyclic heterocyclic ring, It is fully unsaturated or partially unsaturated, and it contains carbon atoms and 1, 2, 3 or 4 heteroatoms independently selected from N, O and S; it includes cycloalkanes or heterocycloalkanes and A structure in which an aromatic ring such as a benzene ring or a heteroaromatic ring such as a pyridine ring is condensed.
  • the site of this structure as a substituent can be located on a cycloalkane, a heterocycloalkane, an aromatic ring or a heteroaromatic ring.
  • Nitrogen and sulfur heteroatoms may optionally be oxidized.
  • Nitrogen atoms are substituted or unsubstituted (ie, N or NR, where R is H or another substituent, if defined).
  • Heterocycles can be attached to their pendant groups at any heteroatom or carbon atom that results in a stable structure. If the resulting compound is stable, the heterocyclyl groups described herein may be substituted on the carbon or nitrogen atom.
  • the nitrogen in the heterocycle may optionally be quaternized.
  • heterocycle when the total number of S and O atoms in the heterocycle exceeds 1, then these heteroatoms are not adjacent to each other.
  • the total number of S and O atoms in the heterocycle is not greater than 1.
  • heterocycle it is intended to include heteroaryl groups.
  • aryl hetero groups include, but are not limited to, acridinyl, azetidinyl, azecinyl, benzimidazolyl, benzofuryl, benzothiofuranyl, benzothienyl, benzox Azolyl, benzoxazolinyl, benzothiazolyl, benzotriazolyl, benzotetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolinyl, carbazolyl, 4H-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinolyl, 2H,6H-1,5,2-dithiazinyl, dihydrofura[2, 3-b] Tetrahydrofuryl, furanyl, furanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, imid
  • heteroaryl may also include a biaryl structure formed by the above-defined “aryl” and a monocyclic “heteroaryl”, such as but not limited to "-phenylbipyridyl-", “- "Phenylbipyrimidinyl”, “-pyridylbiphenyl”, “-pyridylbipyrimidinyl-", “-pyrimidinylbiphenyl-”; wherein the present invention also includes fused rings containing, for example, the above-mentioned heterocyclic rings and Spirocyclic compounds.
  • nitrogen atoms eg, amines
  • these nitrogen atoms can be converted into N-oxides by treatment with oxidizing agents (eg, mCPBA and/or hydrogen peroxide) to obtain other compounds of the invention.
  • oxidizing agents eg, mCPBA and/or hydrogen peroxide
  • any variable occurs more than once in any composition or formula of a compound, its definition on each occurrence is independent of its definition on every other occurrence.
  • the group may be optionally substituted with up to three R groups, with R on each occurrence being independently selected from the definition of R.
  • substituents and/or variables are permitted only if such combinations result in stable compounds.
  • patient refers to an organism to be treated by the methods of the present invention.
  • organisms preferably include, but are not limited to, mammals (eg, rodents, apes, monkeys, horses, cattle, pigs, dogs, cats, etc.) and most preferably refer to humans.
  • the term "effective amount” means an amount of a drug or agent (i.e., a compound of the invention) that will elicit the biological or medical response in a tissue, system, animal, or human, for example, that is sought by a researcher or clinician.
  • therapeutically effective amount means an amount that results in improved treatment, cure, prevention, or alleviation of a disease, disorder, or side effect, or a reduction in the risk of a disease, disorder, or side effect as compared to a corresponding subject that does not receive such amount. or the rate at which the condition progresses.
  • An effective amount may be administered in one or more administrations, administrations or doses and is not intended to be limited to a particular formulation or route of administration. The term also includes within its scope an amount effective to enhance normal physiological functions.
  • treatment includes any effect resulting in amelioration of a condition, disease, disorder, etc., such as alleviation, reduction, regulation, amelioration or elimination, or amelioration of symptoms thereof.
  • pharmaceutically acceptable refers to those compounds, substances, compositions and/or dosage forms that: Within the scope of physical and medical judgment, it is suitable for use in contact with human and animal tissues without excessive toxicity, irritation, allergic reactions and/or other problems or complications, and is commensurate with a reasonable benefit/risk ratio.
  • pharmaceutically acceptable carrier means a pharmaceutical substance, composition or vehicle such as a liquid or solid filler, diluent, excipient, manufacturing aid (e.g., lubricant, talc, stearin magnesium stearate, calcium stearate or zinc stearate or stearic acid) or solvent encapsulated substances which involve carrying or transporting the subject compound from one organ or part of the body to another.
  • manufacturing aid e.g., lubricant, talc, stearin magnesium stearate, calcium stearate or zinc stearate or stearic acid
  • solvent encapsulated substances which involve carrying or transporting the subject compound from one organ or part of the body to another.
  • Each carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not deleterious to the patient.
  • composition means a composition comprising a compound of the invention and at least one other pharmaceutically acceptable carrier.
  • “Pharmaceutically acceptable carrier” refers to a medium generally accepted in the art for delivering a biologically active agent to an animal, particularly a mammal, including (i.e.) an adjuvant, excipient or vehicle, such as a diluent , preservatives, fillers, flow regulators, disintegrants, wetting agents, emulsifiers, suspending agents, sweeteners, flavoring agents, aromatics, antibacterial agents, antifungal agents, lubricants and dispersants, This depends on the mode of administration and the nature of the dosage form.
  • acceptable means that a formulation component or active ingredient does not have undue deleterious effects on the health of the general target of treatment.
  • cancer refers to an abnormal growth of cells that cannot be controlled and can metastasize (spread) under certain conditions.
  • This type of cancer includes, but is not limited to, solid tumors (such as bladder, intestine, brain, chest, uterus, heart, kidney, lung, lymphoid tissue (lymphoma), ovary, pancreas or other endocrine organs (such as thyroid), prostate, skin (melanoma) or blood tumors (such as non-leukemic leukemia).
  • coadministration refers to the administration of several selected therapeutic agents to a patient, in the same or different modes of administration and at the same or different times.
  • enhancing refers to the ability of the drug to increase or prolong its potency or duration in the system.
  • enhancement value refers to the ability to maximize the enhancement of another therapeutic agent in an ideal system.
  • immune disease refers to a disease or condition resulting from an adverse or harmful response to endogenous or exogenous antigens. The result is usually dysfunction of cells, or damage to organs or tissues that may produce immune symptoms.
  • subject or “patient” includes mammals and non-mammals.
  • Mammals include, but are not limited to, mammals: humans, non-human primates such as orangutans, apes and monkeys; agricultural animals such as cattle, horses, goats, sheep, pigs; domestic animals such as rabbits and dogs; experimental animals including rodents, Such as rats, mice and guinea pigs.
  • Non-mammals include, but are not limited to, birds, fish, etc.
  • the selected mammal is a human.
  • treatment include alleviating, inhibiting, or ameliorating symptoms or conditions of a disease; inhibiting the development of complications; ameliorating or preventing underlying metabolic syndrome; inhibiting the development of a disease or symptoms, Such as controlling the development of a disease or condition; alleviating a disease or symptoms; making a disease or symptoms subside; alleviating complications caused by a disease or symptoms, or preventing and/or treating signs caused by a disease or symptoms.
  • a compound or pharmaceutical composition when administered, can ameliorate a disease, symptom or condition, especially its severity, delay its onset, slow down its progression, or reduce its duration. Circumstances that may be attributed to or related to the administration, whether fixed or temporary, continuous or intermittent.
  • Suitable routes of administration include, but are not limited to, oral, intravenous, rectal, aerosol, parenteral, ocular, pulmonary, transdermal, vaginal, and ear canal administration. , nasal administration and topical administration.
  • parenteral administration includes intramuscular injection, subcutaneous injection, intravenous injection, intramedullary injection, ventricular injection, intraperitoneal injection, intralymphatic injection, and intranasal injection.
  • the compounds described herein are administered locally rather than systemically.
  • long-acting formulations are administered by implantation (eg, subcutaneously or intramuscularly) or by intramuscular injection.
  • the drug is administered via a targeted drug delivery system.
  • liposomes coated with organ-specific antibodies In this specific embodiment, the liposomes are selectively targeted to specific organs and absorbed.
  • compositions and dosages are provided.
  • the invention also provides pharmaceutical compositions comprising a therapeutically effective amount of one or more compounds of the invention formulated with one or more pharmaceutical carriers (additives) and/or diluents, and optionally a one or more of the other therapeutic agents mentioned above.
  • the compounds of the invention for any of the above uses may be administered by any suitable means, for example orally, such as tablets, pills, powders, granules, elixirs, tinctures, suspensions (including nanosuspensions, microsuspensions, spray-dried dispersions), syrups and emulsions; sublingually; bucally; parenterally, such as by subcutaneous, intravenous, intramuscular or intrasternal injection or infusion techniques (e.g.
  • nasally including administration to the nasal membranes, such as by inhalation spray; topically, such as in the form of a cream or ointment; or rectally, such as in the form of a suppository; or intratumoral injection.
  • nasally including administration to the nasal membranes, such as by inhalation spray; topically, such as in the form of a cream or ointment; or rectally, such as in the form of a suppository; or intratumoral injection.
  • nasally including administration to the nasal membranes, such as by inhalation spray; topically, such as in the form of a cream or ointment; or rectally, such as in the form of a suppository; or intratumoral injection.
  • nasally including administration to the nasal membranes, such as by inhalation spray; topically, such as in the form of a cream or ointment; or rectally, such as in the form of a suppository; or intratumoral injection.
  • nasally
  • Pharmaceutical carriers include aqueous and non-aqueous liquid media and various solid and semi-solid pharmaceutical carriers.
  • the above-mentioned carriers may include many different ingredients and additives in addition to the active agent, and the above-mentioned other ingredients are included in the preparation for various reasons known to those skilled in the art, such as stabilizers, adhesives, etc. Descriptions of suitable pharmaceutical carriers and factors involved in carrier selection can be found in a number of readily available sources, such as Allen LVJ r.et al.Remington:The Science and Practice of PharmaCy 1 (2 Volumes), 22nd Edition (2012), Pharmaceutical Press.
  • Dosage regimens for the compounds of the invention will, of course, vary depending on known factors such as the pharmacodynamic properties of the particular agent and its mode and route of administration; the species, age, sex, health, medical condition and weight of the recipient ; Nature and extent of symptoms; type of concurrent treatment; frequency of treatment; route of administration, patient's renal and hepatic function, and expected effects.
  • the daily oral dosage of each active ingredient should be from about 0.001 mg/day to about 10-5000 mg/day, preferably from about 0.01 mg/day to about 1000 mg/day, and most preferably The range is about 0.1 mg/day to about 250 mg/day.
  • the most preferred intravenous dose should be from about 0.01 mg/kg/minute to about 10 mg/kg/minute.
  • the compounds of the present invention may be administered in a single daily dose, or the total daily dose may be administered in divided doses of two, three or four times daily.
  • the compounds are typically formulated with a suitable pharmaceutical diluent, excipient or carrier (herein (collectively referred to as pharmaceutical carriers) are administered in the form of a mixture.
  • a suitable pharmaceutical diluent, excipient or carrier herein (collectively referred to as pharmaceutical carriers) are administered in the form of a mixture.
  • Dosage forms suitable for administration may contain from about 1 mg to about 2000 mg of active ingredient per dosage unit.
  • the active ingredient will generally be present in an amount of about 0.1-95% by weight based on the total weight of the composition.
  • compositions comprising as active ingredient a therapeutically effective amount of at least one compound of the invention, alone or in combination with a pharmaceutical carrier.
  • the compounds of the invention may be used alone, in combination with other compounds of the invention, or in combination with one or more other therapeutic agents (eg, anticancer agents or other pharmaceutically active substances).
  • the compounds of the invention (which may be used in a suitably hydrated form) and/or the pharmaceutical compositions of the invention are formulated into pharmaceutical dosage forms by conventional methods known to those skilled in the art.
  • the actual dosage levels of the active ingredients in the pharmaceutical compositions of the present invention can be varied to obtain active ingredients that are effective in achieving the desired therapeutic response, composition, and mode of administration for a particular patient without being toxic to the patient. quantity.
  • the dosage level selected will depend on a variety of factors, including the activity of the particular compound of the invention employed, or its ester, salt or amide; the route of administration; the time of administration; the rate of excretion of the particular compound employed; the rate and extent of absorption. ;The duration of treatment; other drugs, compounds and/or substances used in combination with the specific compound used; factors well known in the medical field such as age, sex, weight, condition, general health and previous medical history of the patient being treated.
  • a suitable daily dose of a compound of the invention will be the lowest dose of compound effective to produce a therapeutic effect. Such effective doses will generally depend on the factors noted above.
  • oral, intravenous, intracerebroventricular, and subcutaneous dosages of a compound of the invention for use in a patient range from about 0.01 to about 50 mg/kg body weight/day.
  • an effective daily dose of active compound may be administered separately in two, three, four, five, six or more sub-doses at appropriate intervals throughout the day, optionally in unit dosage form. In certain aspects of the invention, administration is once daily.
  • compositions can be administered alone, it is preferred to administer the compounds in the form of pharmaceutical preparations (compositions).
  • kits can be composed of a conveyor, a drug pack or a container box, which can be divided into multiple compartments to accommodate one or more containers, such as vials, test tubes and the like, each container containing all a single ingredient in the method described.
  • Suitable containers include bottles, vials, syringes and test tubes.
  • Containers are made of acceptable materials such as glass or plastic.
  • the container may contain one or more compounds described herein, either as a pharmaceutical compound or in a mixture with other ingredients described herein.
  • the container may have a sterile outlet (for example, the container may be an IV bag or bottle, and the stopper may be pierced by a hypodermic needle).
  • kits may contain a compound and instructions for use, labeling, or operating instructions described herein.
  • a typical kit may include one or more containers, each containing one or more materials (such as reagents, concentrated stock solutions, and/or instruments) to suit the needs of commercial promotion and user use of the compound.
  • materials include but are not limited to buffers, diluents, filters, needles, syringes, delivery devices, bags, containers, bottles and/or test tubes, with a list of contents and/or instructions for use, and the inner packaging also comes with instructions. The entire set of instructions must be included.
  • the label may be displayed on the container or closely associated with the container.
  • the label may be on the container when the label letters, numbers or other features are affixed, molded, or engraved on the container; the label may also be present in a container box or shipping box containing multiple containers, such as in a product insert.
  • a label may be used to indicate a specific therapeutic use of the contents.
  • the label may also indicate instructions for use of the contents, such as described in the above method.
  • the unit of weight-volume percentage in the present invention is well known to those skilled in the art, for example, it refers to the weight (g) of the solute in 100 ml of solution.
  • all technical and scientific terms used herein have the same meaning as familiar to one of ordinary skill in the art.
  • any methods and materials similar or equivalent to those described can be used in the method of the present invention.
  • the preferred implementation methods and materials described in this article are for demonstration purposes only.
  • the raw materials and reagents used in the present invention are all known products and can be synthesized according to methods known in the art, or can be obtained by purchasing commercially available products. None of the commercially available reagents were used without further purification.
  • Room temperature refers to 20-30°C.
  • Nitrogen atmosphere means that the reaction bottle is connected to a nitrogen balloon of about 1L.
  • the hydrogenation reaction is usually evacuated, filled with hydrogen, and repeated three times.
  • the hydrogen atmosphere refers to the reaction bottle connected to a A hydrogen balloon of approximately 1L.
  • NMR nuclear magnetic resonance
  • MS mass spectrometry
  • Reverse-phase preparative chromatography used Thermo (UltiMate 3000) reverse-phase preparative chromatography.
  • the flash column chromatography uses Aijer (FS-9200T) automatic column machine, and the silica gel prepacked column uses Santai Prepacked columns.
  • Thin layer chromatography silica gel plates use Yantai Huanghai HSGF254 or Qingdao GF254 silica gel plates.
  • the specifications used for thin layer chromatography separation and purification products are 0.4mm ⁇ 0.5mm.
  • the LC-MS analysis method is as follows:
  • Mass spectrometry method Thermo Fisher MSQ PLUS mass spectrometer, ESI source, positive ion mode. Ion source parameter settings: drying gas temperature is 350°C; drying gas flow rate is 10L/min; MS Range: 120-1000.
  • HPLC analysis method is as follows:
  • Chromatographic column Waters Speed: 1mL/min; column temperature: 30°C; UV detection wavelength: 214nm, 254nm, 280nm; injection volume: 2 ⁇ L.
  • Step 1 Dissolve 2.2-dimethyl-3-hydroxypropionic acid methyl ester INT-1a (100g, 757mmol) in 1L N,N-dimethylformamide, add imidazole (129g, 1.89mol), stir and dissolve , tert-butyldiphenylsilyl chloride (229g, 832mmol) was added dropwise at room temperature. After the dropwise addition was completed, stirring was continued for 4 hours. After the reaction is complete, pour the reaction solution into 3L ice water, extract the suspension with ethyl acetate (1L*2), wash the organic phase with water three times, and concentrate under reduced pressure to obtain colorless oily substance INT-1b. No purification is required and used directly in the next step. ESI-MS(m/z):371.2[M+H] + .
  • Step 2 Add the residual liquid INT-1b obtained in the previous step to 2L methanol, add 360g of the prepared 33% sodium hydroxide aqueous solution, and stir at room temperature for 17 hours. After the reaction is completed, add 1L of water, remove the methanol under reduced pressure, and extract the residual liquid with petroleum ether (1L*5). After extraction, adjust the pH value of the aqueous phase to 4-5 with hydrochloric acid, continue stirring for 30 minutes, filter with suction, and dry to obtain white color. Solid INT-1c (269g, yield 90%). ESI-MS(m/z):357.8[M+H] + .
  • Step 3 Dissolve INT-1c (130g, 365mmol) in 500mL dichloromethane, add thionyl chloride (130g, 1.09mol, 79.4mL) at room temperature, stir at 60°C for 3 hours, the reaction is completed, and the pressure is reduced Remove methylene chloride and remaining thionyl chloride to obtain light yellow oil INT-1d. Without purification, add 200 mL of methylene chloride and set aside.
  • Step 4 Dissolve INT-1e (64.8g, 331mmol) in 400mL methylene chloride, add 198mL diethyl aluminum chloride solution (2M in hexanes) dropwise at 0°C, and control the temperature during the dropwise addition not to exceed 5°C, stir for 30 minutes after the dropwise addition, and add the obtained dichloromethane solution of INT-1d dropwise into the reaction bottle. During the dripping process, the temperature should not exceed 10°C. After the dripping is completed, continue stirring for 2 hours. After the reaction is completed, pour the reaction solution into 1L ice water, stir for 30 minutes, and concentrate under reduced pressure to remove methylene chloride.
  • Step 5 Dissolve INT-1f (100g, 187mmol) in 500mL tetrahydrofuran, add lithium borohydride (12.2g, 561mmol), and stir at 60°C overnight. After the raw materials disappear, the reaction solution is added to 200mL ice water to quench. , extracted with ethyl acetate (500mL*3), washed the organic phase with water, dried, and concentrated under reduced pressure. The residual liquid was dissolved in 500mL dichloromethane, and 2,6-dimethyl-1,4-dihydro-3 was added.
  • Step 6 Dissolve INT-1g (50g, 96mmol) in 250mL tetrahydrofuran, add tetrabutylammonium fluoride (1M in THF, 197mL), and stir at 60°C overnight. When the reaction is completed, add the reaction solution to 300mL water. Extract with ethyl acetate (200mL*3), wash with water, and concentrate under reduced pressure to obtain brown oil.
  • Step 8 Dissolve compound INT-1i (40g, 123mmol) in dioxane (400mL), Add potassium acetate (30.3g, 308.4mmol), [1,1'-bis(diphenylphosphine)ferrocene]palladium dichloride (10g, 12.3mmol), and pinacol diborate (78.3g, 308mmol). ), reacted at 90°C for 3 hours under nitrogen protection.
  • LCMS monitored the complete reaction of the raw materials. The reaction solution was directly concentrated under reduced pressure. The residue was dissolved in ethyl acetate (300mL), washed with water and brine, and the organic phase was purified by silica gel column chromatography to obtain a white color. Solid compound INT-1j (35g, yield 76.4%). ESI-MS(m/z):372.5[M+H] + .
  • Step 9 Dissolve compound INT-1j (35g, 94.3mmol) and compound INT-1k (37.9g, 104mmol) in dioxane (300mL) and water (30mL), and add potassium phosphate (50g, 236mmol) and [1,1'-bis(diphenylphosphine)ferrocene]palladium dichloride (6.89g, 9.43mmol), react overnight at 90°C under nitrogen protection, LCMS monitors that the raw material reaction is complete, and the reaction solution is directly concentrated under reduced pressure.
  • Step 10 Dissolve compound INT-11 (28g, 52.9mmol) in N,N-dimethylformamide (280mL), add N-iodosuccinimide (11.9g, 52.9mmol), 50 React at °C for 2 hours.
  • LCMS monitors that the raw material reaction is complete.
  • the reaction solution is poured into water (800mL), extracted with ethyl acetate (200mL*2), the organic phase is washed with saturated brine, dried, filtered, and purified by silica gel column chromatography to obtain a yellow solid.
  • Compound INT-1m 22g, yield 63.5%).
  • Step 11 Combine compound INT-1m (5.0g, 7.63mmol), 2-dicyclohexylphosphine-2′,6′-dimethoxy-biphenyl (939mg, 2.29mmol), tris(dibenzylidene) Acetone) dipalladium (838 mg, 0.915 mmol), potassium acetate (2.6 g, 26.7 mmol) were dissolved in toluene (100 mL), and pinacolborane (4.9 g, 38.1 mmol) was added under nitrogen protection. The dropwise addition was completed. The reaction was carried out at 50°C for 5 hours under nitrogen protection. LCMS monitored the complete reaction of the raw materials. The reaction solution was filtered and purified by silica gel column chromatography to obtain a yellow oily compound INT-1 (4.5g, yield 90%). ESI-MS(m/z):656.5[M+H] + .
  • Step 1 Dissolve compound INT-1m (12g, 18.3mmol) in tetrahydrofuran (120mL) and water (20mL), add lithium hydroxide monohydrate (3.84g, 91.5mmol), react at room temperature overnight, and monitor the raw materials with LCMS The reaction is complete. The reaction solution is directly concentrated under reduced pressure. The residue is dissolved in water (100mL). Adjust the pH to 4 ⁇ 5 with 4M hydrochloric acid. Extract with dichloromethane (100mL*3). Wash the organic phase with water, brine and anhydrous sodium sulfate. Dry, filter and concentrate to obtain white solid compound INT-2a (10.6g, yield 96.6%). ESI-MS(m/z):600.7[M+H] + .
  • Step 2 Dissolve compound INT-2a (9.5g, 15.9mmol) and compound INT-2b (11.7g, 31.7mmol) in acetonitrile (190mL), add N,N,N',N'- at 0°C Tetramethylchloroformamidine hexafluorophosphate (6.67g, 23.8mmol), and 1-methylimidazole (6.51g, 79.2mmol) were reacted at 0°C for 1 hour.
  • Step 3 Dissolve compound INT-2c (9.6g, 13.2mmol) in tetrahydrofuran (100mL) and water (10mL), add lithium hydroxide monohydrate (1.39g, 33.1mmol), react at room temperature for 4 hours, LCMS Monitor the complete reaction of the raw materials. The reaction solution is directly concentrated under reduced pressure. The residue is dissolved in water (100 mL). Adjust the pH to 4 ⁇ 5 with 4M hydrochloric acid. A white solid will precipitate. Filter, wash the solid with water, and dry to obtain a white solid compound INT-2d (8.3 g, yield 88.2%). ESI-MS(m/z):712.6[M+H] + .
  • Step 4 Dissolve compound INT-2d (3.5g, 4.9mmol), 1-hydroxybenzotriazole (1.99g, 14.8mmol), 4-dimethylaminopyridine (1.8g, 14.mmol) in dichloro Methane (170mL), add N,N-diisopropylethylamine (6mL, 34.4mmol) at 0°C, and then add 1-(3-dimethylaminopropyl)-3-ethylcarbon Diimine hydrochloride (4.71g, 24.6mmol) was reacted at room temperature overnight. LCMS monitored the complete reaction of the raw materials.
  • reaction solution was washed with saturated ammonium chloride aqueous solution, dried over sodium sulfate, and purified by silica gel column chromatography to obtain the yellow solid compound INT- 2e (2g, yield 58.6%).
  • Step 5 Combine compound INT-2e (500mg, 0.721mmol), 2-dicyclohexylphosphine-2′,6′-dimethyl-biphenyl (88.8mg, 0.216mmol), tris(dibenzylideneacetone) ) Dipalladium (79mg, 0.086mmol), potassium acetate (247mg, 2.52mmol) were dissolved in tetrahydrofuran (20mL), and pinacolborane (461mg, 3.6mmol) was added under nitrogen protection. After the addition was completed, 50 The reaction was carried out at °C for 3 hours. LCMS monitored the complete reaction of the raw materials. The reaction solution was filtered and purified by silica gel column chromatography to obtain yellow solid compound INT-2 (400 mg, yield 80%). ESI-MS(m/z):694.6[M+H] + .
  • Step 1 Dissolve compound INT-2e (1.7g, 2.45mmol) in dichloromethane (20mL), add trifluoroacetic acid (5mL), and react at room temperature for 2 hours.
  • LCMS monitors that the reaction of the raw materials is complete and the reaction solution is straight. After concentration under reduced pressure, the residue was dissolved in DCM (50 mL), washed twice with saturated NaHCO 3 aqueous solution, and the organic phase was washed with water, dried over sodium sulfate, filtered, and concentrated to obtain yellow solid compound INT-3a (1.3 g, yield 89.4%).
  • Step 2 Dissolve compound INT-3a (1.3g, 2.19mmol) and compound INT-3b (0.24g, 2.41mmol) in acetonitrile (30mL), add N,N,N',N'- at 0°C Tetramethylchloroformamidine hexafluorophosphate (922 mg, 3.29 mmol), and 1-methylimidazole (414 mg, 5.04 mmol) were reacted at 0°C for 1 hour. LCMS monitored that the raw material reaction was complete, and the reaction solution was poured into water (50 mL).
  • Step 3 Combine compound INT-3c (1.1g, 1.63mmol), 2-dicyclohexylphosphine-2′,6′-dimethyl-biphenyl (200mg, 0.188mmol), tris(dibenzylideneacetone) ) Dipalladium (179mg, 0.195mmol), potassium acetate (559mg, 5.7mmol) were dissolved in toluene (30mL), and pinacolborane (1.04g, 8.14mmol) was added under nitrogen protection. After the addition was completed, under nitrogen protection The reaction was carried out at 50°C for 3 hours. LCMS monitored the complete reaction of the raw materials. The reaction solution was filtered and purified by silica gel column chromatography to obtain yellow solid compound INT-3 (990 mg, yield 90%). ESI-MS(m/z):676.9[M+H] + .
  • Step 1 Dissolve compound INT-3a (2.2g, 3.71mmol) and compound INT-4a (0.47g, 4.08mmol) in dichloromethane (50mL), add N, N, N', N at 0°C '-Tetramethylchloroformamidinehexafluorophosphorus Acid acid (1.56g, 5.56mmol), and 1-methylimidazole (0.70g, 8.53mmol) were reacted at 0°C for 1 hour. LCMS monitored that the raw material reaction was complete.
  • Step 2 Combine compound INT-4b (2.1g, 3.05mmol), 2-dicyclohexylphosphine-2′,6′-dimethyl-biphenyl (375mg, 0.91mmol), tris(dibenzylideneacetone) ) Dipalladium (335 mg, 0.365 mmol), potassium acetate (1.05 g, 10.7 mmol) were dissolved in toluene (30 mL), and pinacolborane (1.95 g, 15.2 mmol) was added under nitrogen protection. After the addition was completed, the nitrogen protection The reaction was carried out at 50°C for 3 hours. LCMS monitored the complete reaction of the raw materials. The reaction solution was filtered and purified by silica gel column chromatography to obtain yellow solid compound INT-4 (1.8g, yield 85.7%). ESI-MS(m/z):690.3[M+H] + .
  • Step 1 Dissolve (S)-3-bromo-5-iodo-2-(1-methoxyethyl)pyridine INT-5a (2.0g, 5.85mmol) in tetrahydrofuran (20mL), and add iodine in sequence Cuprous chloride (111 mg, 0.585 mmol), bistriphenylphosphine palladium dichloride (410 mg, 0.585 mmol), triethylamine (1.18 g, 11.7 mmol) and 4-propyne-1-morpholine INT-5b ( 878 mg, 7.02 mmol). The reaction mixture was stirred at room temperature under nitrogen protection for 3 hours.
  • Step 1 Dissolve compound INT-7a (1.0g, 4.46mmol) in acetonitrile (10mL), and add morpholine (1.16g, 13.3mmol) and potassium carbonate (1.23g, 8.92mmol) in sequence.
  • the reaction mixture was stirred and reacted at 90°C for 16 hours under nitrogen protection. After the reaction was complete, the reaction solution was filtered through diatomaceous earth, and the filtrate was washed twice with ammonium chloride aqueous solution and concentrated to obtain a yellow oily compound INT-7b (450 mg, yield 72.6%).
  • Step 2 Dissolve (S)-3-bromo-5-iodo-2-(1-methoxyethyl)pyridine INT-5a (920 mg, 2.69 mmol) in tetrahydrofuran (20 mL), and add iodide in sequence Cuprous (51 mg, 0.27 mmol), bistriphenylphosphine palladium dichloride (188 mg, 0.27 mmol), triethylamine (540 mg, 5.34 mmol) and INT-7b (450 mg, 3.24 mmol). The reaction mixture was stirred at room temperature under nitrogen protection for 3 hours.
  • Step 1 Add Desmartin's reagent (5.08g, 12.0mmol) to a solution of INT-8a (2.0g, 9.21mmol) in dichloromethane (40mL) at 0°C. After the reaction solution was warmed to room temperature, stirring was continued for 5 hours. After the reaction, saturated sodium bicarbonate and sodium thiosulfate aqueous solutions were added to quench the reaction, extracted with dichloromethane, the organic phases were combined and washed with saturated brine, dried over anhydrous sodium sulfate, and the organic phase was concentrated to obtain crude product INT-8b.
  • Step 3 Under nitrogen atmosphere, sequentially add (S)-3-bromo-5-iodo-2-(1-methoxyethyl)pyridine INT-5a (300 mg, 0.88 mmol), copper iodide ( 17mg, 0.088mmol), bistriphenylphosphine palladium dichloride (62mg, 0.088mmol), triethylamine (178mg, 1.75mmol), compound INT-8c (222mg, 1.05mmol) and tetrahydrofuran (10mL) were added to the reaction in a bottle. After the reaction solution was stirred at room temperature for 4 hours, LCMS monitored the completion of the reaction.
  • Step 4 Dissolve the above product INT-8d in dichloromethane (6mL), add trifluoroacetic acid (2 mL). After the reaction solution was stirred at room temperature for 30 minutes, LCMS monitored the end of the reaction. The reaction solution was concentrated under reduced pressure to obtain compound INT-8e. ESI-MS(m/z):325.5[M+H] + .
  • Step 5 Dissolve the above product INT-8e in 1,2-dichloroethane (10 mL), add formaldehyde aqueous solution (213 mg, 2.63 mmol, 37% w/w) dropwise to it, react for 30 minutes, add three Sodium acetoxyborohydride (1.11g, 5.26mmol). The reaction solution was continued to stir at room temperature for 30 minutes, and LCMS monitored the completion of the reaction.
  • Step 2 Combine INT-9b (296mg, 1.93mmol), INT-5a (600mg, 1.75mmol), copper iodide (33.4mg, 0.18mmol), triethylamine (355mg, 3.51mmol), and triphenyl Palladium dichloride (123.0 mg, 0.18 mmol) was dissolved in tetrahydrofuran (10 mL), and the reaction solution was stirred at room temperature overnight. After the reaction is completed, the reaction solution is filtered, and the filtrate is concentrated and spin-dried to obtain a crude product.
  • Step 1 Combine (R)-3-formylmorpholine-4-carboxylic acid tert-butyl ester INT-10a (4.06g, 18.9mmol) and (1-diazo-2-oxopropyl)phosphonic acid Dimethyl ester (5.44g, 28.3mmol) was dissolved in methanol (30mL), and potassium carbonate was added to the above reaction solution at room temperature. The reaction was stirred at room temperature overnight. After the reaction is completed, the reaction solution is extracted with ethyl acetate, and the organic phase is dried and concentrated to obtain a crude product.
  • Step 3 Dissolve INT-10c (1.20g, 2.82mmol) in dichloromethane (15mL). Hydrochloric acid-dioxane (7.05mL, 4M) was added to the reaction solution. The reaction solution was stirred at room temperature for 4 hours. After the reaction is completed, saturated sodium bicarbonate aqueous solution is added to the reaction solution. The organic phases were combined, dried and concentrated to obtain light yellow solid compound INT-10d (918 mg, yield 100%). ESI-MS(m/z):325.5[M+H] + .
  • Step 1 Add Desmartin's reagent (5.08g, 12.0mmol) to a solution of INT-11a (2.0g, 9.21mmol) in dichloromethane (40mL) at 0°C. After the reaction solution rose to room temperature, stirring was continued for 5 hours. After the reaction, saturated sodium bicarbonate and sodium thiosulfate aqueous solutions were added to quench the reaction, extracted with dichloromethane, the organic phases were combined and washed with saturated brine, dried over anhydrous sodium sulfate, and the organic phase was concentrated to obtain crude product INT-11b.
  • Step 3 Under nitrogen atmosphere, sequentially add (S)-3-bromo-5-iodo-2-(1-methoxyethyl)pyridine INT-5a (500 mg, 1.46 mmol), copper iodide ( 28mg, 0.146mmol), bistriphenylphosphine palladium dichloride (103mg, 0.146mmol), triethylamine (296mg, 2.92mmol), compound INT-11c (402mg, 1.90mmol) and tetrahydrofuran (10mL) were added to the reaction in a bottle. After the reaction solution was stirred at room temperature for 16 hours, LCMS monitored the completion of the reaction.
  • Step 4 Dissolve the above product INT-11d in dichloromethane (9mL), add trifluoroacetic acid (3 mL). After the reaction solution was stirred at room temperature for 30 minutes, LCMS monitored the end of the reaction. The reaction solution was concentrated under reduced pressure to obtain compound INT-11e. ESI-MS(m/z):325.3[M+H] + .
  • Step 5 Dissolve the above product INT-11e in 1,2-dichloroethane (10 mL), add formaldehyde aqueous solution (356 mg, 4.38 mmol, 37%) dropwise to it, react for 30 minutes, add triacetoxy Sodium borohydride (1.86g, 8.76mmol). The reaction solution was continued to stir at room temperature for 30 minutes, and LCMS monitored the completion of the reaction.
  • Step 1 Dissolve compound INT-15a (600mg, 3.0mmol) in methanol (5mL), add potassium carbonate (1.25g, 9.0mmol) and (1-diazo-2-oxopropyl) at room temperature ) Dimethylphosphonate (1.16 g, 6mmol). The reaction solution was stirred at room temperature for 12 h. TLC detects the end of the reaction. Saturated brine was added to the reaction system, and the mixture was extracted with dichloromethane. The organic phases were combined, washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated to obtain crude compound INT-15b (587 mg, yield 99%).
  • Step 2 Dissolve compound INT-15b (570mg, 2.92mmol) and compound INT-5a (1g, 2.92mmol) in tetrahydrofuran (8mL), add bistriphenylphosphine palladium dichloride (204mg, 0.29mmol) , copper iodide (56 mg, 0.29 mmol) and triethylamine (591 mg, 5.85 mmol). The reaction system was replaced with nitrogen and stirred at room temperature for 8 h. LCMS detects the end of the reaction.
  • Step 1 Dissolve compound INT-3 (300mg, 0.44mmol) in a mixed solution of 1,4-dioxane (5mL) and water (1mL), then add INT-18 (170mg, 0.48mmol), [1,1'-bis(diphenylphosphine)ferrocene]palladium dichloride (32 mg, 0.04 mmol) and potassium phosphate (188 mg, 0.88 mmol). The reaction mixture was stirred and reacted at 70°C for 16 hours under nitrogen protection.
  • Step 2 Dissolve compound INT-19a (260mg, 0.31mmol) in N,N-dimethylformamide (4 mL), cesium carbonate (205 mg, 0.63 mmol) and iodoethane (145 mg, 0.93 mmol) were added thereto.
  • the reaction mixture was stirred at room temperature for 16 hours.
  • Step 3 Dissolve compound INT-19b (110 mg, 0.13 mmol) in methanol (3 mL), and add p-toluenesulfonic acid monohydrate (123 mg, 0.65 mmol) thereto.
  • the reaction mixture was stirred at room temperature for 3 hours.
  • Step 4 Dissolve compound INT-19c (80 mg, 0.10 mmol) in dichloromethane (4 mL), and add methanesulfonic anhydride (54 mg, 0.31 mmol) and diisopropylethylamine (68 mg, 0.53 mmol). .
  • the reaction mixture was stirred at room temperature for 2 hours.
  • dichloromethane (30 mL) to the reaction system, wash with water (15 mL*2) and saturated brine, dry the organic phase with anhydrous sodium sulfate, filter and concentrate to obtain light yellow solid compound INT-19 (70 mg , yield 79.5%).
  • Step 1 At 0°C, add 2-(7-azobenzotriazole)-N,N,N',N'-tetramethylurea hexafluorophosphate (2.12g, 5.58mmol) Add to a solution of INT-23a (1.0 g, 4.65 mmol) and N,N-diisopropylethylamine (13.8 g, 13.9 mmol) in tetrahydrofuran (15 mL). After stirring at this temperature for 1.5 hours, methoxymethylamine hydrochloride (0.50 g, 5.11 mmol) was added to the reaction liquid.
  • Step 2 Under nitrogen atmosphere and 0°C, add lithium aluminum tetrahydrogen (0.18g, 4.85mmol) in batches to the tetrahydrofuran solution (10mL) of compound INT-23b (1.14g, 4.41mmol). at this temperature After stirring at room temperature for 1 hour, LCMS monitored the end of the reaction. Add water to quench the reaction, extract with ethyl acetate, combine the organic phases and wash with saturated brine, dry with anhydrous sodium sulfate, and concentrate the organic phase. The organic phase is concentrated to obtain a colorless oily liquid INT-23c, which is used directly in the next step without purification. reaction.
  • Step 4 Under nitrogen atmosphere, sequentially add (S)-3-bromo-5-iodo-2-(1-methoxyethyl)pyridine INT-5a (300 mg, 0.88 mmol), cuprous iodide ( 17mg, 0.088mmol), bistriphenylphosphine palladium dichloride (62mg, 0.088mmol), triethylamine (178mg, 1.75mmol), compound INT-23d (188mg, 0.96mmol) and tetrahydrofuran (2mL) were added to the reaction in a bottle. After the reaction solution was stirred at room temperature for 16 hours, LCMS monitored the completion of the reaction.
  • Compound INT-27 can be obtained by replacing INT-5b in intermediate INT-5 with 1-Boc-4-ethynylpiperidine and using similar methods and reaction steps.
  • Step 1 Combine INT-28a (250mg, 0.84mmol), trimethylsilyl acetylene (412mg, 4.19mmol), copper iodide (16mg, 0.084mmol), bistriphenylpalladium dichloride (59mg, 0.084 mmol) was dissolved in 1,4-dioxane (1.5 mL) and triethylamine (1.5 mL), and the reaction solution was stirred at 110°C overnight. After the reaction is completed, the reaction solution is filtered, and the filtrate is concentrated and spin-dried to obtain a crude product.
  • Step 3 Combine INT-28c (170mg, 0.7mmol), INT-5a (239mg, 0.7mmol), copper iodide (13mg, 0.07mmol), triethylamine (212mg, 2.1mmol), bistriphenyl Palladium dichloride (49 mg, 0.07 mmol) was dissolved in tetrahydrofuran (5 mL), and the reaction solution was stirred at room temperature overnight. After the reaction is completed, the reaction solution is filtered, and the filtrate is concentrated and spin-dried to obtain a crude product.
  • Compound INT-30 can be obtained by replacing INT-28a in intermediate INT-28 with (6-iodopyridazin-3-yl)carbamate tert-butyl ester and using similar methods and reaction steps.
  • Step 1 Dissolve compound INT-2 (300mg, 0.43mmol) in a mixed solution of 1,4-dioxane (5mL) and water (1mL), then add INT-18 (170mg, 0.48mmol), [1,1'-bis(diphenylphosphine)ferrocene]palladium dichloride (32 mg, 0.04 mmol) and potassium phosphate (188 mg, 0.88 mmol). The reaction mixture was stirred and reacted at 70°C for 16 hours under nitrogen protection.
  • Step 2 Dissolve compound INT-33a (200mg, 0.28mmol) in N,N-dimethylformamide (3mL), and add cesium carbonate (232mg, 0.71mmol) and ethyl iodide (185mg, 1.19 mmol). The reaction mixture was stirred at room temperature for 16 hours. After the reaction is complete, add water (20 mL) to the reaction system, extract with ethyl acetate (30 mL*2), combine the organic phases, wash with saturated brine, dry over anhydrous sodium sulfate, filter and concentrate to obtain a light yellow solid INT- 33b (200 mg, yield 95%).
  • Step 3 Dissolve compound INT-33b (200 mg, 0.23 mmol) in methanol (3 mL), and add p-toluenesulfonic acid monohydrate (175 mg, 0.92 mmol) thereto.
  • the reaction mixture was stirred at room temperature for 3 Hour.
  • Step 4 Dissolve compound INT-33c (140 mg, 0.18 mmol) in tetrahydrofuran (3 mL) and diethyl ether (3 mL), and add p-toluenesulfonyl chloride (68 mg, 0.36 mmol) and potassium hydroxide (20 mg, 0.36 mmol). ). The reaction mixture was stirred at 0°C for 2 hours.
  • Step 1 Dissolve compound INT-18 (500 mg, 1.41 mmol) in methanol (5 mL), and add p-toluenesulfonic acid monohydrate (537 mg, 2.82 mmol) thereto.
  • the reaction mixture was stirred at room temperature for 3 hours.
  • Step 2 Dissolve compound INT-34a (350 mg, 1.30 mmol) in dichloromethane (5 mL), add methanesulfonic anhydride (1.13 g, 6.48 mmol) and diisopropylethylamine (1.34 g, 10.37 mmol). Stir the reaction mixture at room temperature for 2 hours. After the reaction is complete, add water (30 mL) to the reaction system. The mixture was extracted with dichloromethane (30 mL*2), the organic phases were combined, dried over anhydrous sodium sulfate, filtered and concentrated to obtain a light yellow solid compound INT-34b (330 mg, yield 73%). ESI-MS (m/z): 348.2 [M+H] + .
  • Step 3 Dissolve compound INT-34b (200 mg, 0.58 mmol) and (S)-3-hydroxymethylmorpholine (87 mg, 0.75 mmol) in dichloromethane (5 mL), and add N, N- Diisopropylethylamine (148 mg, 1.15 mmol). The reaction mixture was stirred at room temperature for 4 hours.
  • Compound INT-36 can be obtained by replacing (S)-3-hydroxymethylmorpholine in intermediate INT-34 with 1-acetylpiperazine and using similar methods and reaction steps.
  • Compound INT-38 can be obtained by replacing INT-5b in intermediate INT-5 with 4-propargylthiomorpholine-1,1-dioxide and using similar methods and reaction steps.
  • Step 1 At 0°C, add 2-(7-azobenzotriazole)-N,N,N',N'-tetramethylurea hexafluorophosphate (1.48g, 3.88mmol) Add to a solution of INT-40a (800 mg, 3.23 mmol) and N,N-diisopropylethylamine (1.25 g, 9.70 mmol) in tetrahydrofuran (10 mL). After stirring at this temperature for 1.5 hours, methoxymethylamine hydrochloride (347 mg, 3.56 mmol) was added to the reaction liquid.
  • Step 2 Under nitrogen atmosphere and 0°C, add lithium aluminum tetrahydrogen (211 mg, 5.56 mmol) in batches to the tetrahydrofuran solution (15 mL) of compound INT-40b (1.47 g, 5.06 mmol). After stirring at this temperature for 3 hours, LCMS monitored the end of the reaction. Water was added to quench the reaction, extracted with ethyl acetate, the organic phases were combined and washed with saturated brine, dried over anhydrous sodium sulfate, and the organic phase was concentrated. The organic phase was concentrated to obtain the crude product of compound INT-40c, which was used directly in the next reaction without purification. .
  • Step 4 Add m-chloroperbenzoic acid (399 mg, 2.31 mmol) and potassium carbonate (319 mg, 2.31 mmol) in sequence to the solution of INT-40d (150 mg, 0.66 mmol) in ethanol (6 mL). The reaction solution was stirred at room temperature for 8 hours. TLC monitored the end of the reaction, added saturated sodium bicarbonate and sodium thiosulfate aqueous solutions to quench the reaction, extracted with ethyl acetate, combined the organic phases and washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated the organic phase to obtain compound INT-40e. The crude product was used directly in the next reaction without purification.
  • Step 5 Under nitrogen atmosphere, sequentially add (S)-3-bromo-5-iodo-2-(1-methoxyethyl)pyridine INT-5a (196 mg, 0.57 mmol), cuprous iodide ( 11 mg, 0.057 mmol), bistriphenylphosphine palladium dichloride (40 mg, 0.057 mmol), and triethylamine (116 mg, 1.15 mmol) were added to the solution of the above crude product INT-40e in tetrahydrofuran (5 mL). After the reaction solution was stirred at room temperature for 16 hours, LCMS monitored the completion of the reaction.
  • Compound INT-45 can be obtained by replacing (S)-3-hydroxymethylmorpholine in intermediate INT-34 with 1-tert-butoxycarbonylpiperazine and using similar methods and reaction steps.
  • Step 1 Dissolve compound INT-40d (485 mg, 2.31 mmol) in dichloromethane (5 mL), and add trifluoroacetic acid (1.5 mL) dropwise. The reaction solution was stirred at room temperature for 30 minutes. The reaction solution was concentrated under reduced pressure to obtain compound INT-46a. ESI-MS(m/z):128.3[M+H] + .
  • Step 2 Dissolve the above product INT-46a in 1,2-dichloroethane (7mL), add formaldehyde aqueous solution (519mg, 6.39mmol, 37% w/w) dropwise to it, react for 20 minutes, add three Sodium Acetoxyborohydride (1.81g, 8.52mmol). The reaction solution was continued to stir at room temperature for 30 minutes, and LCMS monitored the completion of the reaction.
  • Step 4 Combine tert-butyl carbamate (255mg, 2.18mmol), rhodium acetate (15mg, 0.054mmol), magnesium oxide (175mg, 4.35mmol), iodobenzene acetate (525mg, 1.63mmol), compound INT-46c ( 171 mg, 1.09 mmol) and 1,2-dichloroethane (5 mL) were added to the reaction flask. The reaction solution was stirred at 80°C for 48 hours. The reaction solution was filtered through diatomaceous earth, and the filtrate was extracted with a mixture of dichloromethane and methanol.
  • Step 5 Add (S)-3-bromo-5-iodo-2-(1-methoxyethyl)pyridine INT-5a (212mg, 0.62mmol) and copper iodide (12mg, 0.062mmol) in sequence , bistriphenylphosphine palladium dichloride (44mg, 0.062mmol), triethylamine (125mg, 1.24mmol), compound INT-46d (219mg, 0.80mmol) and tetrahydrofuran (5mL) were added to the reaction bottle. After the reaction liquid was replaced with nitrogen, it was stirred at room temperature for 16 hours, and LCMS monitored the completion of the reaction.
  • Step 2 Dissolve compound INT-48b (1.0g, 38.8mmol) in a mixed solution of methanol (10mL) and water (5mL), add sodium periodate (1.17g, 5.5mmol) under ice bath, and the reaction solution Stir at room temperature overnight. After the reaction was completed, the reaction solution was extracted with ethyl acetate, and the organic phase was dried and concentrated to obtain crude INT-48c (900 mg, yield 84.3%). The crude product was used directly in the next reaction without purification. ESI-MS(m/z):254.3[M+H] + .
  • Step 4 Dissolve compound INT-48d (850 mg, 2.31 mmol) in methanol (10 mL), and add palladium hydroxide/carbon (85 mg, 10% w/w). The reaction solution was stirred at room temperature overnight under hydrogen atmosphere. After the reaction was completed, filter through diatomaceous earth, and the filtrate was concentrated to obtain light yellow oily compound INT-48e (410 mg, yield 75.9%). ESI-MS(m/z):235.3[M+H] + .
  • Example 1 is prepared by the following steps:
  • Step 1 Dissolve compound INT-5 (600mg, 1.77mmol) in a mixed solution of 1,4-dioxane (10mL) and water (1mL), and add INT-1 (1.16g, 1.77mmol) in sequence. , [1,1'-bis(diphenylphosphine)ferrocene]palladium dichloride (129.3 mg, 0.177 mmol) and potassium carbonate (1.18 g, 4.42 mmol). The reaction mixture was stirred at 80°C for 16 hours under nitrogen protection. After the reaction was complete, the reaction solution was filtered through diatomaceous earth and concentrated to obtain a black crude compound 1a (1.39 g, yield 100%), which was directly used in the next reaction without purification. ESI-MS(m/z):788.1[M+H] + .
  • Step 2 Dissolve the crude compound 1a (1.39 g, 1.77 mmol) in a mixed solution of tetrahydrofuran (3 mL) and water (3 mL), and add lithium hydroxide (211 mg, 8.82 mmol). The mixture was stirred at room temperature for 3 hours.
  • Step 3 Dissolve compound 1b (1.0g, 1.37mmol) in dichloromethane (20mL), and add INT-2b (1.01g, 2.73mmol, TFA salt) and 1-(3-dimethylaminopropyl) to it hydroxy)-3-ethylcarbodiimide hydrochloride (524mg, 2.73mmol), 1-hydroxybenzotriazole (369mg, 2.73mmol) and N,N diisopropylethylamine (883mg, 6.83mmol) . The reaction mixture was stirred at room temperature for 16 hours.
  • Step 4 Dissolve compound 1c (700 mg, 0.815 mmol) in a mixed solution of tetrahydrofuran (3 mL) and water (3 mL), and add lithium hydroxide (195 mg, 8.16 mmol) thereto.
  • the reaction mixture was stirred at room temperature for 4 hours.
  • adjust the pH of the reaction solution to 6 with 6N hydrochloric acid solution, extract with ethyl acetate (40mL*2), combine the organic phases, wash with saturated brine, dry over anhydrous sodium sulfate, filter and concentrate to obtain a light yellow solid compound.
  • 1d (640mg, yield 93.0%).
  • Step 5 Dissolve compound 1d (370 mg, 0.44 mmol) in dichloromethane (8 mL), and add 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride ( 840 mg, 4.4 mmol), 1-hydroxybenzotriazole (296 mg, 2.2 mmol), 4-dimethylaminopyridine (268 mg, 2.2 mmol) and N,N diisopropylethylamine (850 mg, 6.6 mmol). The reaction mixture was stirred at room temperature for 16 hours.
  • Step 6 Dissolve compound 1e (150 mg, 0.18 mmol) in N,N-dimethylformamide (3 mL), add cesium carbonate (118 mg, 0.36 mmol) and iodoethane (42.5 mg, 0.27 mmol). Stir the reaction mixture at room temperature for 16 hours. After the reaction is complete, add water (30 mL) to the reaction system, extract with ethyl acetate (30 mL*2), combine the organic phases, wash with saturated brine, and add anhydrous sodium sulfate. The mixture was dried, filtered and concentrated to obtain a light yellow solid compound 1f (150 mg, yield 96.7%). ESI-MS (m/z): 854.2 [M+H] + .
  • Step 7 Dissolve compound 1f (120 mg, 0.14 mmol) in dichloromethane (2 mL), and add trifluoroacetic acid (0.5 mL) thereto. The reaction mixture was stirred at room temperature for 2 hours. After the reaction is complete, add saturated sodium bicarbonate solution (30mL) to the reaction system under ice bath, extract with dichloromethane (30mL*2), combine the organic phases, wash with saturated brine, dry over anhydrous sodium sulfate, and filter. Concentrate to obtain 1g of light yellow solid compound (100mg, yield 94.4%). ESI-MS(m/z):754.2[M+H] + .
  • Step 8 Dissolve 1g of compound (70mg, 0.093mmol) in N,N-dimethylformamide (3mL), and add (1S,2S)-2-methylcyclopropanecarboxylic acid INT-3b ( 18.6 mg, 0.186 mmol), diisopropylethylamine (36.0 mg, 0.278 mmol) and (2-oxime-ethyl cyanoacetate)-N,N-dimethyl-morpholinourea hexafluorophosphate (79.5 mg, 0.186 mmol). The reaction mixture was stirred in an ice bath for 1 hour.
  • Example 2 is prepared by the following steps:
  • Step 1 Dissolve 1g of compound (30mg, 0.04mmol) in N,N-dimethylformamide (3mL), and add (2R,3S)-2,3-dimethylcyclopropanecarboxylic acid 2a to it (9.1 mg, 0.08 mmol), N,N diisopropylethylamine (15.4 mg, 0.12 mmol) and (2-oxime-ethyl cyanoacetate)-N,N-dimethyl-morpholinourea Hexafluorophosphate (34.1 mg, 0.08 mmol). The reaction mixture was stirred in an ice bath for 1 hour.
  • Example 3 is prepared by the following steps:
  • Step 1 Dissolve 1g of compound (30mg, 0.036mmol) in N,N-dimethylformamide (2mL), add cesium carbonate (23.7mg, 0.072mmol) and 2,2,2-trifluoro Ethyl trifluoromethanesulfonate (12.6 mg, 0.054 mmol). The reaction mixture was stirred at room temperature for 16 hours.
  • Step 2 Compound 3a (10 mg, 0.011 mmol) was dissolved in dichloromethane (2 mL), and trifluoroacetic acid (0.5 mL) was added thereto. The reaction mixture was stirred at room temperature for 2 hours. After the reaction was complete, saturated sodium bicarbonate solution (30 mL) was added to the reaction system under ice bath, extracted with dichloromethane (30 mL*2), the organic phases were combined, washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated to obtain a light yellow solid compound 3b (7.0 mg, yield 78.7%).
  • ESI-MS (m/z): 808.2 [M+H] + .
  • Step 3 Dissolve compound 3b (7.0mg, 0.011mmol) in N,N-dimethylformamide (2mL), and add (1S,2S)-2-methylcyclopropanecarboxylic acid INT-3b thereto (2.2mg, 0.022mmol), N,N-diisopropylethylamine (4.2mg, 0.033mmol) and (2-oxime-ethyl cyanoacetate)-N,N-dimethyl-morpholinyl Urea hexafluorophosphate (9.4 mg, 0.022 mmol). The reaction mixture was stirred in an ice bath for 1 hour.
  • Example 4 is prepared by the following steps:
  • Step 1 Dissolve compound INT-2 (102mg, 0.15mmol) in 1,4-dioxane (3mL) To a mixed solution of water (0.3 mL), INT-6 (40 mg, 0.11 mmol) and [1,1'-bis(diphenylphosphine)ferrocene]palladium dichloride (8.3 mg, 0.011 mmol) were added in sequence. ) and potassium phosphate (72.1mg, 0.33mmol). The reaction mixture was stirred and reacted at 70°C for 16 hours under nitrogen protection.
  • Step 3 Dissolve compound 4b (50 mg, 0.058 mmol) in dichloromethane (2 mL), and add trifluoroacetic acid (0.5 mL) thereto. The reaction mixture was stirred at room temperature for 2 hours. After the reaction is complete, add saturated sodium bicarbonate solution (30mL) to the reaction system under ice bath, extract with dichloromethane (30mL*2), combine the organic phases, wash with saturated brine, dry over anhydrous sodium sulfate, and filter. Concentration gave compound 4c (40 mg, yield 90.4%) as a light yellow solid. ESI-MS(m/z):768.4[M+H] + .
  • Step 4 Dissolve compound 4c (40mg, 0.052mmol) in N,N-dimethylformamide (2mL), and add (1S,2S)-2-methylcyclopropanecarboxylic acid INT-3b ( 10.4 mg, 0.104 mmol), N,N-diisopropylethylamine (20.2 mg, 0.156 mmol) and (2-oxime-ethyl cyanoacetate)-N,N-dimethyl-morpholinourea Hexafluorophosphate (55.8 mg, 0.104 mmol). The reaction mixture was stirred in an ice bath for 1 hour.
  • Example 5 is prepared by the following steps:
  • Step 1 Dissolve compound INT-2 (100 mg, 0.14 mmol) in a mixed solution of 1,4-dioxane (5 mL) and water (1 mL), then add INT-7 (51 mg, 0.14 mmol), [1,1'-bis(diphenyl Phosphine) ferrocene] palladium dichloride (10 mg, 0.01 mmol) and potassium phosphate (60 mg, 0.28 mmol). The reaction mixture was stirred and reacted at 70°C for 16 hours under nitrogen protection.
  • Step 2 Dissolve compound 5a (60 mg, 0.07 mmol) in N,N-dimethylformamide (2 mL), add cesium carbonate (46 mg, 0.14 mmol) and iodoethane (22 mg, 0.14 mmol). The reaction mixture was stirred at room temperature for 16 hours. After the reaction was complete, water (15 mL) was added to the reaction system, extracted with ethyl acetate (20 mL*2), the organic phases were combined, washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated to obtain a light yellow solid compound 5b (25 mg, yield 40.3%).
  • ESI-MS m/z: 868.2 [M+H] + ;
  • Step 3 Dissolve compound 5b (25 mg, 0.03 mmol) in dichloromethane (2 mL), and add trifluoroacetic acid (0.5 mL) thereto. The reaction mixture was stirred at room temperature for 2 hours. After the reaction is complete, add saturated sodium bicarbonate solution (20mL) to the reaction system under ice bath, extract with dichloromethane (20mL*2), combine the organic phases, wash with saturated brine, dry over anhydrous sodium sulfate, and filter. Concentration gave light yellow solid compound 5c (20 mg, yield 90.9%). ESI-MS(m/z):768.2[M+H] + ;
  • Step 4 Dissolve compound 5c (20mg, 0.03mmol) in N,N-dimethylformamide (1mL), and add (1S,2S)-2-methylcyclopropanecarboxylic acid INT-3b ( 5.0 mg, 0.05 mmol), N,N-diisopropylethylamine (10 mg, 0.07 mmol) and (2-oxime-ethyl cyanoacetate)-N,N-dimethyl-morpholinourea Fluorophosphate (11 mg, 0.03 mmol). The reaction mixture was stirred in an ice bath for 1 hour.
  • Example 6 is prepared by the following steps:
  • Step 1 Dissolve compound INT-2 (120 mg, 0.172 mmol) in a mixed solution of 1,4-dioxane (3 mL) and water (0.3 mL), and add INT-8 (45 mg, 0.133 mmol), [1,1'-bis(diphenylphosphino)ferrocene] palladium dichloride (9.7 mg, 0.013 mmol) and potassium phosphate (84.5 mg, 0.399 mmol) in sequence. The reaction mixture was stirred at 70 ° C for 16 hours under nitrogen protection.
  • Step 2 Dissolve compound 6a (65mg, 0.079mmol) in N,N-dimethylformamide (2mL), and add cesium carbonate (51.3mg, 0.157mmol) and iodoethane (18.4mg, 0.118 mmol). The reaction mixture was stirred at room temperature for 16 hours. After the reaction is complete, add water (30mL) to the reaction system, extract with ethyl acetate (30mL*2), combine the organic phases, and wash with saturated brine.
  • Step 3 Dissolve compound 6b (50 mg, 0.059 mmol) in dichloromethane (2 mL), and add trifluoroacetic acid (0.5 mL) thereto. The reaction mixture was stirred at room temperature for 2 hours. After the reaction is complete, add saturated sodium bicarbonate solution (30mL) to the reaction system under ice bath, extract with dichloromethane (30mL*2), combine the organic phases, wash with saturated brine, dry over anhydrous sodium sulfate, and filter. Concentration gave compound 6c (40 mg, yield 90.6%) as a light yellow solid. ESI-MS(m/z):754.4[M+H] + .
  • Step 4 Dissolve compound 6c (40mg, 0.053mmol) in N,N-dimethylformamide (2mL), and add (1S,2S)-2-methylcyclopropanecarboxylic acid INT-3b ( 10.6 mg, 0.106 mmol), N,N-diisopropylethylamine (20.6 mg, 0.159 mmol) and (2-oxime-ethyl cyanoacetate)-N,N-dimethyl-morpholinourea Hexafluorophosphate (45.4 mg, 0.106 mmol). The reaction mixture was stirred in an ice bath for 1 hour.
  • Example 7 is prepared by the following steps:
  • Step 1 Dissolve intermediate INT-2 (98mg, 0.14mmol) and intermediate INT-10 (40mg, 0.12mmol) in a mixed solvent of 1,4-dioxane (2mL) and water (0.2mL) , add [1,1'-bis(diphenylphosphine)ferrocene]palladium dichloride and potassium phosphate (75 mg, 0.35 mmol).
  • Step 2 Dissolve compound 7a (92mg, 0.11mmol) in N,N-dimethylformamide (2mL), add cesium carbonate (73mg, 0.22mmol), and then add iodoethane (35mg, 0.22mmol) It was added dropwise to the reaction solution, and the reaction solution was stirred at 50°C for 6 hours. After the reaction solution was cooled to room temperature, saturated brine (20 mL) was added to the reaction system, extracted with ethyl acetate (30 mL*2), the organic phases were combined, washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated to obtain Crude product of compound 7b (80 mg, yield 84%). ESI-MS(m/z):854.5[M+H] + .
  • Step 3 Dissolve compound 7b (80 mg, 0.09 mmol) in dichloromethane (1 mL), cool the reaction solution to 0°C, and then add trifluoroacetic acid (53 mg, 0.47 mmol) dropwise to the reaction solution. The reaction was continued to stir at 0°C for 1 hour. The reaction solution was quenched with saturated sodium bicarbonate aqueous solution, extracted with dichloromethane, and the liquids were separated. The organic phase was dried over anhydrous sodium sulfate, filtered and concentrated to obtain crude compound 7c (70 mg, yield 99%). ESI-MS(m/z):754.4[M+H] + .
  • Step 4 Dissolve compound 7c (70mg, 0.09mmol) and intermediate INT-3b (18mg, 0.19mmol) in N,N-dimethylformamide (3mL), add N,N-diisopropyl Ethylamine (36mg, 0.28mmol) and (2-oxime-ethyl cyanoacetate)-N,N-dimethyl-morpholinourea hexafluorophosphate (36mg, 0.19mmol), the reaction solution was at 0°C Stir for 30 minutes.
  • Example 8 was prepared by the following steps:
  • Step 2 Dissolve compound 8a (37mg, 0.05mmol) in N,N-dimethylformamide (2mL), add cesium carbonate (29mg, 0.09mmol), and then add ethyl iodide (14mg, 0.09mmol) It was added dropwise to the reaction solution, and the reaction solution was stirred at 50°C for 6 hours. After the reaction solution was cooled to room temperature, saturated brine (20 mL) was added to the reaction system, extracted with ethyl acetate (30 mL*2), the organic phases were combined, washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated to obtain Crude product of compound 8b (30 mg, yield 78%). ESI-MS(m/z):854.3[M+H] + .
  • Step 3 Dissolve compound 8b (30 mg, 0.04 mmol) in dichloromethane (1 mL), cool the reaction solution to 0°C, and then add trifluoroacetic acid (20 mg, 0.18 mmol) dropwise to the reaction solution. The reaction was continued to stir at 0°C for 1 hour. The reaction solution was quenched with saturated sodium bicarbonate aqueous solution, extracted with dichloromethane, and the liquids were separated. The organic phase was dried over anhydrous sodium sulfate, filtered and concentrated to obtain crude compound 8c (26 mg, yield 99%). ESI-MS(m/z):754.5[M+H] + .
  • Step 4 Dissolve compound 8c (26mg, 0.04mmol) and intermediate INT-3 (7mg, 0.07mmol) in N,N-dimethylformamide (2mL), add N,N-diisopropyl Ethylamine (13 mg, 0.10 mmol) and (2-oxime-ethyl cyanoacetate)-N,N-dimethyl-morpholinourea hexafluorophosphate (14 mg, 0.07 mmol), the reaction solution was at 0°C Stir for 30 minutes.
  • Example 9 is prepared by the following steps:
  • Step 2 Dissolve compound 9a (60.0mg, 0.07mmol), cesium carbonate (45.8mg, 0.14mmol), iodoethane (21.9mg, 0.14mmol) in N,N-dimethylformamide (2mL) , the reaction solution was stirred at room temperature overnight. After the reaction was completed, the reaction liquid was extracted with ethyl acetate. The organic phases were then combined, dried and concentrated to obtain compound 9b (62.0 mg, yield 100%) as light yellow oil.
  • Step 3 Dissolve compound 9b (60 mg, 0.07 mmol) in dichloromethane (2 mL), add trifluoroacetic acid (78 mg, 0.68 mmol) to the above reaction solution, and stir the reaction solution at room temperature overnight. After the reaction is completed, saturated sodium bicarbonate aqueous solution is added to the reaction solution. The neutralized reaction solution was extracted with dichloromethane, and the combined organic phases were dried and concentrated to obtain compound 9c (53.2 mg, yield 100%). ESI-MS(m/z):782.5[M+H] + ;
  • Step 4 Dissolve compound 9c (60mg, 0.08mmol), INT-3b (15.4mg, 0.15mmol), N,N-diisopropylethylamine (49.6mg, 0.38mmol) in N,N-dimethyl In methyl formamide (2 mL), (2-oxime-ethyl cyanoacetate)-N,N-dimethyl-morpholinourea hexafluorophosphate (65.7 mg, 0.15 mmol), the reaction solution was reacted at 0°C for 2 hours.
  • Example 10 was prepared by the following steps:
  • Step 1 Combine intermediate INT-3 (55 mg, 0.08 mmol) and intermediate INT-15 (30 mg, 0.08 mmol) was dissolved in a mixed solvent of 1,4-dioxane (3mL) and water (0.2mL), and 1,1-bis(diphenylphosphine)diphenylphosphine palladium dichloride (6mg, 0.01mmol ) and potassium phosphate (47 mg, 0.02 mmol). The reaction system was replaced with nitrogen and then heated to 70°C and stirred for 12 hours. After the reaction solution was cooled to room temperature, the reaction solution was filtered through diatomaceous earth, and the filtrate was concentrated.
  • Step 2 Dissolve compound 10a (62 mg, 0.07 mmol) in DMF (2 mL), add cesium carbonate (47 mg, 0.14 mmol), and then add ethyl iodide (23 mg, 0.14 mmol) dropwise into the reaction solution, and react The solution was stirred at room temperature for 6 hours.
  • LCMS detects the end of the reaction. Saturated brine was added to the reaction system, and the mixture was extracted with ethyl acetate. The organic phases were combined, washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated to obtain crude compound 10b (64 mg, yield 99%).
  • Step 3 Dissolve compound 10b (64 mg, 0.07 mmol) in dichloromethane (1 mL), and add trifluoroacetic acid (41 mg, 0.36 mmol) dropwise to the reaction solution at 0°C. The reaction solution was stirred at 0°C for 1 hour. LCMS detects the end of the reaction. Add saturated sodium bicarbonate aqueous solution to the reaction system to quench the reaction, extract with dichloromethane, combine the organic phases, wash with saturated brine, dry over anhydrous sodium sulfate, filter and concentrate to obtain compound 10c (57 mg, yield 99%) Crude. ESI-MS(m/z):807.6[M+H] + .
  • Step 4 Dissolve the crude product of compound 10c (57 mg, 0.07 mmol) in methanol (2 mL), and add formaldehyde aqueous solution (0.05 mL, 37% w/w) dropwise to the reaction solution at room temperature. Stir for 10 minutes. Subsequently, sodium cyanoborohydride (14 mg, 0.21 mmol) was slowly added to the reaction solution, and the reaction solution continued to be stirred at room temperature for 3 hours. LCMS detection showed that the reaction was complete.
  • Example 11 was prepared by the following steps:
  • Step 2 Dissolve compound 11a (105 mg, 0.12 mmol) in DMF (2 mL), add cesium carbonate (115 mg, 0.35 mmol), and then add ethyl iodide (55 mg, 0.35 mmol) dropwise into the reaction solution, and react The solution was stirred at room temperature for 6 hours.
  • LCMS detects the end of the reaction. Saturated brine was added to the reaction system, and the mixture was extracted with ethyl acetate. The organic phases were combined, washed with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated to obtain crude compound 11b (108 mg, yield 99%).
  • Step 3 Dissolve compound 11b (108 mg, 0.12 mmol) in dichloromethane (1 mL). Trifluoroacetic acid (67 mg, 0.59 mmol) was added dropwise to the reaction solution at 0°C. The reaction solution was stirred at 0°C for 1 hour. LCMS detects the end of the reaction. Add saturated sodium bicarbonate aqueous solution to the reaction system to quench the reaction, extract with dichloromethane, combine the organic phases, wash with saturated brine, dry over anhydrous sodium sulfate, filter and concentrate to obtain compound 11c (96 mg, yield 99%) Crude. ESI-MS(m/z):820.4[M+H] + .
  • Step 4 Dissolve the crude product of compound 11c (96 mg, 0.12 mmol) in methanol (2 mL), add formaldehyde aqueous solution (0.05 mL) dropwise to the reaction solution at room temperature, and stir the reaction solution at room temperature for 10 min. Subsequently, sodium cyanoborohydride (22 mg, 0.35 mmol) was slowly added to the reaction solution, and the reaction solution continued to be stirred at room temperature for 3 hours. LCMS detection showed that the reaction was complete.
  • Example 12 was prepared by the following steps:
  • Example 13 was prepared by the following steps:
  • Example 14 was prepared by the following steps:
  • Example 15 was prepared by the following steps:
  • Step 1 Dissolve compound INT-19 (20 mg, 0.02 mmol) in dichloromethane (5 mL), and add (R)-3 methylmorpholine hydrochloride (10 mg, 0.07 mmol) and diisopropyl Ethylamine (18 mg, 0.14 mmol). The reaction mixture was stirred at 50°C for 16 hours. After the reaction was complete, the reaction solution was concentrated, and the residue was purified by preparative liquid chromatography to obtain white solid compound 15 (3.0 mg, yield 15.0%) and epimer 15' (5.0 mg, yield 25.0%). The absolute configurations drawn by the two compounds are based on empirical assumptions. In the existing analysis methods, 15 is a compound with relatively small polarity and relatively long LC-MS retention time and HPLC retention time. 15' is Compounds that are relatively polar and have relatively short LC-MS retention times and HPLC retention times.
  • Example 16 was prepared by the following steps:
  • Example 17 was prepared by the following steps:
  • Example 18 was prepared by the following steps:
  • compound 18 can be obtained.
  • 18 is relatively less polar and has relatively long LC-MS retention time and HPLC retention time. compound. According to experience, the in vitro cell activity of compound 18 is much better than that of its epimer 18', so the following examples no longer perform structural characterization of the epimer.
  • Compound 19 can be obtained by replacing INT-16 in the synthesis step of compound 11 with compound INT-23, and using similar methods and reaction steps.
  • Compound 22 can be obtained by replacing INT-15 in the synthesis step of compound 10 with compound INT-24, and using similar methods and reaction steps.
  • Example 28 was prepared by the following steps:
  • Compound 29 can be obtained by replacing INT-15 in the synthesis step of compound 10 with compound INT-27, and using similar methods and reaction steps.
  • Compound 30 can be obtained by replacing INT-15 in the synthesis step of compound 10 with compound INT-28, and using similar methods and reaction steps.
  • ESI-MS (m/z): 868.7[M+H] + ;LC-MS retention time RT 2.08min.
  • Example 33 was prepared by the following steps:
  • Step 1 Dissolve compound 28c (40 mg, 0.05 mmol) in N, N-dimethylformamide (1 mL), followed by potassium carbonate (21 mg, 0.15 mmol), potassium iodide (25 mg, 0.15 mmol) and ( 2-Bromoethoxy)-tert-butyldimethylsilane (24 mg, 0.10 mmol) was added to the reaction solution. The reaction solution was stirred and reacted at 50°C for 8 hours.
  • Example 36 was prepared by the following steps:
  • Step 1 Dissolve compound INT-33 (90 mg, 0.10 mmol) in dichloromethane (5 mL), add N-methyltetrahydro-2H-pyran-4-amine (55 mg, 0.48 mmol) and Diisopropylethylamine (62 mg, 0.48 mmol). The reaction mixture was stirred at room temperature for 16 hours. LCMS detection showed that the reaction was complete.
  • Step 2 Dissolve compound 36a (50 mg, 0.06 mmol) in dichloromethane (2 mL), and add trifluoroacetic acid (0.5 mL) thereto. The reaction mixture was stirred at 0°C for 1 hour. LCMS detects that the reaction is complete. Add saturated sodium bicarbonate solution (10mL) to the reaction system in an ice bath, extract with dichloromethane (20mL*2), combine the organic phases, wash with saturated brine, and dry over anhydrous sodium sulfate. After filtration and concentration, the crude product of compound 36b (37 mg, yield 83%) was obtained. ESI-MS(m/z):782.8[M+H] + ;
  • Step 3 Dissolve compound 36b (37 mg, 0.05 mmol) in acetonitrile (2 mL), and add INT-4a (5 mg, 0.05 mmol) and N, N-diisopropylethylamine (30 mg, 0.24 mmol). , N-methylimidazole (6 mg, 0.07 mmol) and (2-oxime-ethyl cyanoacetate)-N,N-dimethyl-morpholinourea hexafluorophosphate (19 mg, 0.07 mmol). The reaction mixture was stirred in an ice bath for 1 hour.
  • Example 37 was prepared by the following steps:
  • Step 1 Combine INT-2 (350mg, 0.51mmol), INT-34 (186mg, 0.51mmol), 1,1-bis(diphenylphosphine)diphenyliron palladium dichloride (37mg, 0.05mmol), Potassium phosphate (214 mg, 1.08 mmol) was dissolved in a mixed solution of 1,4-dioxane (5 mL) and water (1 mL). The reaction solution was stirred at 70°C overnight under a nitrogen atmosphere. LCMS detected that the reaction was complete. The reaction solution was filtered through diatomaceous earth.
  • Step 3 Dissolve compound 37b (280 mg, 0.31 mmol) in dichloromethane (10 mL), and add trifluoroacetic acid (5 mL) thereto. The reaction mixture was stirred at 0°C for 1 hour. LCMS detects that the reaction is complete. Add saturated sodium bicarbonate solution (30mL) to the reaction system in an ice bath, extract with dichloromethane (20mL*2), combine the organic phases, wash with saturated brine, and dry over anhydrous sodium sulfate. After filtration and concentration, the crude product of compound 37c (220 mg, yield 88%) was obtained. ESI-MS(m/z):813.0[M+H] + ;
  • Step 3 Dissolve compound 37c (40 mg, 0.05 mmol) in acetonitrile (2 mL), and add INT-4a (5 mg, 0.05 mmol) and N, N-diisopropylethylamine (30 mg, 0.24 mmol). , N-methylimidazole (6 mg, 0.07 mmol) and (2-oxime-ethyl cyanoacetate)-N,N-dimethyl-morpholinourea hexafluorophosphate (19 mg, 0.07 mmol). The reaction mixture was stirred in an ice bath for 1 hour.
  • Example 48 was prepared by the following steps:
  • Compound 48 can be obtained by replacing INT-15 in the synthesis step of compound 10 with compound INT-27, and using similar methods and reaction steps.
  • Compound 54 can be obtained by replacing INT-3b in the synthesis step of compound 1 with cyclopropylcarboxylic acid and using similar methods and reaction steps.
  • Example 55 was prepared by the following steps:
  • Step 1 Dissolve compound 48 (60 mg, 0.073 mmol) in acetonitrile (2 mL), followed by Potassium carbonate (20 mg, 0.146 mmol), potassium iodide (24 mg, 0.146 mmol) and 2-bromoethanol (9 mg, 0.073 mmol) were added.
  • the reaction solution was stirred at room temperature for 8 hours.
  • LCMS detects that the reaction is complete, add water (10 mL) to the reaction system, extract with dichloromethane (10 mL*2), combine the organic phases, wash with saturated brine, dry over anhydrous sodium sulfate, filter and concentrate, and the residue is prepared by Compound 55 (6 mg, yield 9.5%) was purified by liquid chromatography.
  • Compound 60 can be obtained by replacing INT-15 in the synthesis step of compound 10 with compound INT-45, and using similar methods and reaction steps.
  • ESI-MS (m/z): 849.9[M+H] + ;LC-MS retention time RT 1.70min.
  • Test Example 1 In vitro cell proliferation inhibition test
  • KRAS WT KRAS G12C
  • KRAS G12D KRAS G12V
  • BRAF mutated cell lines see table below
  • the 96-well plate was removed from the incubator and equilibrated at room temperature for 30 minutes, and then 25 ⁇ l of Reagent was thoroughly mixed and incubated at room temperature for 10 min, then 100 ⁇ l of sample was transferred to a white 96-well plate (OptiPlate TM -96, PerkinElmer) and analyzed using a multifunctional microplate reader ( i3x, Molecular devices) to read the fluorescence signal value. The signal value was then standardized, and the curve was fitted using a four-parameter fitting regression equation to calculate the half maximal inhibitory concentration (IC50) of the compound on the cell line.
  • IC50 half maximal inhibitory concentration

Abstract

本发明涉及式(I)所示的pan-KRAS抑制剂化合物以及包含所述化合物的药物组合物,以及式(I)化合物用于预防和/或治疗癌症、肿瘤、炎症性疾病、自身免疫性疾病或免疫介导性疾病的用途。

Description

一种pan-KRAS抑制剂化合物 技术领域
本发明涉及一种化合物,具体地涉及一种高活性的pan-KRAS抑制剂及其用途。
背景技术
RAS是人类肿瘤中最常发生突变的基因之一,其突变发生在约30%的肿瘤患者中,其中KRAS约占RAS突变的85%。在88%的胰腺癌、50%的结直肠腺癌以及32%的肺腺癌中均存在KRAS的突变,靶向KRAS抑制剂的开发有重大的临床意义与价值。
KRAS是一种具有GTP酶活性的膜结合蛋白,其通过核苷酸交换,在GDP结合的非活性构象和GTP结合的活性构象之间循环,执行“分子开关”的功能。GTP结合状态下的KRAS能够激活下游包括RAF-MEK-ERK、PI3K-AKT在内的多条信号通路,调控细胞生长、增殖、分化和凋亡等生命过程。
KRAS突变(比如G12C、G12D、G12V、G13D等)会影响GTP酶激活蛋白(GTPase activating proteins,GAPs)介导的GTP水解,使处于GTP结合的激活状态的KRAS增加,过度激活下游信号通路,最终导致肿瘤的发生和发展。然而,由于KRAS蛋白缺乏相应的、适合药物结合的疏水口袋,同时其与GTP和GDP的亲和力在皮摩尔级别(~20pM),导致竞争性结合KRAS的抑制剂研发十分困难,在过去的几十年中,KRAS一直被认为是不可成药的靶点。
2021年5月,AMG510经FDA批准上市,用于治疗携带KRASG12C突变的局部晚期或转移性非小细胞肺癌,打破了KRAS“不可成药”的历史。但是,G12C突变仅占KRAS突变的一小部分,对于KRAS其它位点的突变,目前尚缺乏令人满意的有效的抑制剂化合物,有大量的临床需求尚未被满足,因此,研发有效的pan-KRAS抑制剂化合物,是现有技术中的需要。
发明内容
本发明提供一种pan-KRAS抑制剂。此类结构不同于现有的通过共价结合发挥作用的KRASG12C抑制剂,而是通过介导细胞内普遍存在的伴侣蛋白(如Cyclophilin A)与KRAS蛋白形成三元复合物来发挥作用。三元复合物的形成能 够通过空间位阻阻断KRAS与其下游效应分子(如,RAF)的结合,抑制MAPK、PI3K-AKT信号通路的激活,进而抑制肿瘤的发生与发展,发挥治疗肿瘤等疾病的作用。
在一个方面,本发明提供一种具有式(I)结构的化合物或其药学上可接受的盐、同位素衍生物、立体异构体:
其中:
R1表示C1-C6烷基、-(C1-C6亚烷基)-(C3-C8环烷基)或者-(C1-C6亚烷基)-(3-8元杂环烷基);
R2表示卤素、氰基、C1-C6烷基、-(C0-C6亚烷基)-(C3-C8环烷基)、或者-(C0-C6亚烷基)-(3-8元杂环烷基),其任选地可被0个、1个或者2个以下取代基取代:-ORa,-SRa或者-NRaRa’;
R3表示氢、-O(C0-C6亚烷基)Ra、-S(C0-C6亚烷基)Ra、-N(C0-C6亚烷基)Ra(C0-C6亚烷基)Ra’、-O(C2-C6亚烷基)RL、-S(C2-C6亚烷基)RL、-N(C2-C6亚烷基)RL(C2-C6亚烷基)RL’,其中,RL、RL’各自独立地表示-ORa、-SRa、或者NRaRa’;
Cy1表示C3-C12环烷基或者3-12元杂环烷基;
R4表示氢、卤素、氧代、C1-C6烷基、-(C0-C6亚烷基)(C3-C6)环烷基、-(C0-C6亚烷基)(3-8元)杂环烷基、-(C0-C6亚烷基)ORa、-(C0-C6亚烷基)SRa、-(C0-C6亚烷基)NRaRa’、-CORa、-(C0-C6亚烷基)COORa、-(C0-C6亚烷基)CONRaRa’、-(C0-C6亚烷基)NRaCORa’、-(C0-C6亚烷基)OCONRaRa’、-(C0-C6亚烷基)NRaCONRaRa’、-(C0-C6亚烷基)SORa、-(C0-C6亚烷基)S(O)2Ra、-(C0-C6亚烷基)NRaS(O)2Ra’、-(C0-C6亚烷基)CN、-(C0-C6亚烷基)(C6-C10芳香基)或者-(C0- C6亚烷基)(5-12元杂芳基);其中,Cy1的两个C原子上的R4连同与之相连的C原子以及所述两个C原子之间的原子可以形成3-8元环,所述3-8元环任选地可含有0个、1个、2个或者3个选自N、O或者S的杂原子;或者Cy1同一个C原子上的两个R4连同与之相连的C原子可以形成3-8元环,所述3-8元环任选地可含有0个、1个、2个或者3个选自N、O或者S的杂原子;
R8表示-Cy2-(R5)q或者-NR9R9’,其中,
Cy2表示C3-C12环烷基、3-12元杂环烷基、C6-C10芳香基或者5-12元杂芳基;
R5表示氢、卤素、氧代、C1-C6烷基、-(C0-C6亚烷基)ORa、-(C0-C6亚烷基)SRa、-(C0-C6亚烷基)NRaRa’,或者Cy2的两个C原子上的R5连同与之相连的C原子以及所述两个C原子之间的原子可以形成3-8元环,所述3-8元环任选地可含有0个、1个、2个或者3个选自N、O或者S的杂原子;或者Cy2同一个C原子上的两个R5连同与之相连的C原子可以形成3-8元环,所述3-8元环任选地可含有0个、1个、2个或者3个选自N、O或者S的杂原子;或者Cy2环上的至少一个原子被S(=O)(=NRa)或者S(=O)2取代;
R9、R9’各自独立地表示可被q个R5任意取代的C1-C6烷基、C3-C8环烷基、3-8元杂环烷基、C6-C10芳香基或者5-12元杂芳基;
R6、R6’各自独立地表示氢、卤素、C1-C6烷基、C3-C8环烷基或者-(C0-C6亚烷基)CN;
R7、R7’各自独立地表示氢、卤素、C1-C6烷基、C3-C8环烷基、3-8元杂环烷基;或者R7、R7’与与之相连的C原子形成3-8元环,所述环任选可含有0个、1个、2个或者3个选自N、O、S的杂原子;
其中,p、q各自独立地表示0、1、2、3或者4;
m表示0、1、2或者3;
Ra、Ra’各自独立地表示氢、C1-C6烷基、C3-C8环烷基;其中,如果Ra、Ra’连接于同一个N原子,所述Ra和Ra’可与共同相连的N原子可以形成4-8元环,所述4-8元环任选地可含有0个、1个、2个或者3个选自N、O或者S的杂原子;
所述烷基、环烷基、杂环烷基、亚烷基各自独立地可被0、1、2、3、4、5或者6个卤素原子取代。
进一步地,本发明提供一种如前所述具有式(I)结构的化合物或其药学上可接受的盐、同位素衍生物、立体异构体,其中,R1表示C1-C6烷基,优选C1-C3烷基。
进一步地,本发明提供一种如前所述具有式(I)结构的化合物或其药学上可接受的盐、同位素衍生物、立体异构体,其中,R2表示C1-C6烷基,其任选地可被0个、1个或者2个-ORa取代基取代。更优选的,R2表示优选为其中,*表示R2连接到式(I)中与之相连部位的位点。
进一步地,本发明提供一种如前所述具有式(I)结构的化合物或其药学上可接受的盐、同位素衍生物、立体异构体,其中,R3表示-O(C1-C6)烷基、-O(C0-C6亚烷基)(C3-C8)环烷基、-O(C0-C6亚烷基)(3-8元)杂环烷基、-O(C2-C6亚烷基)RL或者氢
进一步地,本发明提供一种如前所述具有式(I)结构的化合物或其药学上可接受的盐、同位素衍生物、立体异构体,其中,Cy1表示C3-C8环烷基或者3-8元杂环烷基。
进一步地,本发明提供一种如前所述具有式(I)结构的化合物或其药学上可接受的盐、同位素衍生物、立体异构体,其中R4表示氢、卤素、C1-C6烷基、-(C0-C6亚烷基)CONRaRa’、-(C0-C6亚烷基)NRaCORa’、-(C0-C6亚烷基)OCONRaRa’、-(C0-C6亚烷基)CN、-(C0-C6亚烷基)(5-12元杂芳基),或者Cy1的两个C原子上的R4连同与之相连的C原子以及所述两个C原子之间的原子可以形成3-8元环,所述3-8元环任选地可含有0个、1个、2个或者3个选自N、O或者S的杂原子;或者Cy1同一个C原子上的两个R4连同与之相连的C原子可以形成3-8元环,所述3-8元环任选地可含有0个、1个、2个或者3个选自N、O或者S的杂原子。
进一步地,本发明提供一种如前所述具有式(I)结构的化合物或其药学上可接受的盐、同位素衍生物、立体异构体,其中R4表示氢、卤素、C1-C6烷基、-(C0-C6亚烷基)CONRaRa’、-(C0-C6亚烷基)(5-12元杂芳基),或者Cy1的两个C原子上的R4连同与之相连的C原子以及所述两个C原子之间的原子可以形成3-8元环,所述3-8元环任选地可含有0个、1个、2个或者3个选自N、O或者S 的杂原子;或者Cy1同一个C原子上的两个R4连同与之相连的C原子可以形成3-8元环,所述3-8元环任选地可含有0个、1个、2个或者3个选自N、O或者S的杂原子。
进一步地,本发明提供一种如前所述具有式(I)结构的化合物或其药学上可接受的盐、同位素衍生物、立体异构体,其中,Cy2表示3-8元杂环烷基或者5-12元杂芳基。
进一步地,本发明提供一种如前所述具有式(I)结构的化合物或其药学上可接受的盐、同位素衍生物、立体异构体,其中,R5表示氢、卤素、C1-C6烷基、-(C0-C6亚烷基)ORa、-(C0-C6亚烷基)NRaRa’;或者Cy2的两个C原子上的R5连同与之相连的C原子以及所述两个C原子之间的原子可以形成3-8元环,所述3-8元环任选地可含有0个、1个、2个或者3个选自N、O或者S的杂原子;或者Cy2同一个C原子上的两个R5连同与之相连的C原子可以形成3-8元环,所述3-8元环任选地可含有0个、1个、2个或者3个选自N、O或者S的杂原子;
进一步地,本发明提供一种如前所述具有式(I)结构的化合物或其药学上可接受的盐、同位素衍生物、立体异构体,其中,R9、R9’中最少有一个表示被q个R5取代的C1-C6烷基。
进一步地,本发明提供一种如前所述具有式(I)结构的化合物或其药学上可接受的盐、同位素衍生物、立体异构体,其中,R6、R6’各自独立地表示氢或者C1-C6烷基;更优选地,R6、R6’各自独立地表示氢或者甲基。
进一步地,本发明提供一种如前所述具有式(I)结构的化合物或其药学上可接受的盐、同位素衍生物、立体异构体,其中,R7、R7’各自独立地表示氢、C1-C6烷基;或者R7、R7’与与之相连的C原子形成3-8元环,所述环任选可含有0个、1个、2个或者3个选自N、O、S的杂原子。更优选地,R7表示氢。
进一步地,本发明提供一种如前所述具有式(I)结构的化合物或其药学上可接受的盐、同位素衍生物、立体异构体,其中,m、p、q各自独立地优选0、1或者2。
进一步地,本发明提供一种如前所述具有式(I)结构的化合物或其药学上可接受的盐、同位素衍生物、立体异构体,其中,式(I)中-Cy1-(R4)p的结构选自以下:
其中,*表示-Cy1-(R4)p连接到式(I)中与之相连部位的位点。
进一步地,本发明提供一种如前所述具有式(I)结构的化合物或其药学上可接受的盐、同位素衍生物、立体异构体,其中,式(I)中-Cy2-(R5)q的结构选自以下:
其中,*表示-Cy2-(R5)q连接到式(I)中与之相连部位的位点。
进一步地,本发明提供一种如前所述具有式(I)结构的化合物或其药学上可接受的盐、同位素衍生物、立体异构体,其中,式(I)化合物为式(II)结构:
在另一个方面,本发明还提供了具有以下结构的化合物:





在又一个方面,本发明还提供了药物组合物,其包括前述任一所述的化合物或其药学上可接受的盐、同位素衍生物、立体异构体。
在一个方面,本发明还提供了前述化合物或其药学上可接受的盐、同位素衍生物、立体异构体以及药物组合物在制备用于预防和/或治疗癌症、肿瘤、炎症性疾病、自身免疫性疾病或免疫介导性疾病的药物中的用途。
特别注意的是,在本文中,当提及式(I)、式(II)结构的“化合物”时,一般地还涵盖其立体异构体、非对映异构体、对映异构体、外消旋混合物和同位素衍生物。
本领域技术人员公知,一种化合物的盐、溶剂合物、水合物是化合物的替代性存在形式,它们都可以在一定条件下转化为所述化合物,因此,特别注意的是在本文中当提到式(I)、式(II)结构的化合物时,一般地还包括它的可药用盐,进而还包括其溶剂合物和水合物。
相似地,在本文中当提到一种化合物时,一般地还包括其前药、代谢产物和氮氧化物。
本发明所述的可药用盐可使用例如以下的无机酸或有机酸而形成:“可药用盐”是指这样的盐,在合理的医学判断范围内,其适用于接触人和较低等动物的组织,而没有不适当的毒性、刺激性、过敏反应等,称得上合理的受益/风险比。可以在本发明化合物的最终分离和纯化期间原位制备所述盐,或单独通过将游离碱或游离酸与合适的试剂反应制备所述盐,如下概述。例如,游离碱功能可以与合适的酸反应。可药用的无机酸加成盐的示例是氨基与无机酸(例如,盐酸、氢溴酸、磷酸、硫酸和高氯酸)或有机酸(例如,醋酸、草酸、马来酸、酒石酸、柠檬酸、琥珀酸或丙二酸)形成的盐,或通过使用现有技术中的其他方法如离子交换形成的盐。其他可药用盐包括己二酸盐、海藻酸钠、抗坏血酸盐、天门冬氨酸盐、苯磺酸盐、苯甲酸盐、硫酸氢盐、硼酸盐、丁酸盐、樟脑酸盐、樟脑磺酸盐、柠檬酸盐、环戊烷丙酸盐、二葡糖酸盐、十二烷基硫酸盐、乙磺酸盐、甲酸盐、富马酸盐、葡庚糖酸盐、甘油磷酸盐、葡萄糖酸盐、hernisulfate、庚酸盐、己酸盐、氢碘酸盐、2-羟基-乙磺酸盐、乳糖酸盐、乳酸盐、月桂酸盐、月桂基硫酸盐、苹果酸盐、马来酸盐、丙二酸盐、甲磺酸盐、2-萘磺酸盐、烟酸盐、硝酸盐、油酸盐、草酸盐、棕榈酸盐、扑酸盐、果胶酸盐、过硫酸盐、3-苯丙酸盐、磷酸盐、苦味盐、新戊酸盐、丙酸盐、硬脂酸盐、琥珀酸盐、硫酸盐、酒石酸盐、硫氰酸盐、对甲苯磺酸盐、十一酸盐、戊酸盐等。代表性碱金属或碱土金属盐包括钠、锂、钾、钙、镁等的盐。其他可药用盐包括(适当时)无毒铵盐、季铵盐和用反离子形成的胺阳离子,例如,卤化物、氢氧化物、羧酸盐、硫酸盐、磷酸盐、硝酸盐、低级烷基磺酸盐和芳基磺酸盐。
本发明的可药用盐可通过常规方法制备,例如通过将本发明的化合物溶解于与水可混溶的有机溶剂(例如丙酮、甲醇、乙醇和乙腈),向其中添加过量的有机酸或无机酸水溶液,以使得盐从所得混合物中沉淀,从中除去溶剂和剩余的游 离酸,然后分离所沉淀的盐。
本发明所述的前体或代谢物可以本领域公知的前体或代谢物,只要所述的前体或代谢物通过体内代谢转化形成化合物即可。例如“前药”是指本发明化合物的那些前药,在合理的医学判断范围内,其适用于接触人和更低等动物的组织,而没有不适当的毒性、刺激性、过敏反应等,称得上合理的受益/风险比并且对其预期用途有效。术语“前药”是指在体内迅速经转化产生上述式的母体化合物的化合物,例如通过在体内代谢,或本发明化合物的N-去甲基化。
本发明所述的“溶剂合物”意指本发明化合物与一个或多个溶剂分子(无论有机的还是无机的)的物理缔合。该物理缔合包括氢键。在某些情形中,例如当一个或多个溶剂分子纳入结晶固体的晶格中时,溶剂化物将能够被分离。溶剂化物中的溶剂分子可按规则排列和/或无序排列存在。溶剂合物可包含化学计量或非化学计量的溶剂分子。“溶剂合物”涵盖溶液相和可分离的溶剂合物。示例性溶剂合物包括但不限于水合物、乙醇合物、甲醇合物和异丙醇合物。溶剂化方法是本领域公知的。
本发明所述的“立体异构”分为构象异构和构型异构,构型异构还可分为顺反异构和旋光异构(即光学异构),构象异构是指具有一定构型的有机物分子由于碳、碳单键的旋转或扭曲而使得分子各原子或原子团在空间产生不同的排列方式的一种立体异构现象,常见的有烷烃和环烷烃类化合物的结构,如环己烷结构中出现的椅式构象和船式构象。“立体异构体”是指当本发明化合物含有一个或多个不对称中心,因而可作为外消旋体和外消旋混合物、单一对映异构体、非对映异构体混合物和单一非对映异构体。本发明化合物有不对称中心,每个不对称中心会产生两个光学异构体,本发明的范围包括所有可能的光学异构体和非对映异构体混合物和纯的或部分纯的化合物。本发明所述的化合物可以以互变异构体形式存在,其通过一个或多个双键位移而具有不同的氢的连接点。例如,酮和它的烯醇形式是酮-烯醇互变异构体。各互变异构体及其混合物都包括在本发明的化合物中。所有式(I)至式(III)化合物的对映异构体、非对映异构体、外消旋体、内消旋体、顺反异构体、互变异构体、几何异构体、差向异构体及其混合物等,均包括在本发明范围中。
本发明的“同位素衍生物”是指在本文中化合物被同位素标记的分子。通常用作同位素标记的同位素是:氢同位素,2H和3H;碳同位素:11C,13C和14C;氯同位素:35Cl和37Cl;氟同位素:18F;碘同位素:123I和125I;氮同位素:13N和15N;氧同位素:15O,17O和18O和硫同位素35S。这些同位素标记化合物可以用来研究药用分子在组织中的分布情况。尤其是氘3H和碳13C,由于它们容易标记且方便检测,运用更为广泛。某些重同位素,比如重氢(2H),的取代能增强代谢的稳定性,延长半衰期从而达到减少剂量的目而提供疗效优势的。同位素标记的化合物一般从已被标记的起始物开始,用已知的合成技术象合成非同位素标记的化合物一样来完成其合成。
本发明还提供了本发明化合物在制备用于预防和/或治疗癌症、肿瘤、炎症性疾病、自身免疫性疾病或免疫介导性疾病的药物中的用途。
此外,本发明提供了用于预防和/或治疗癌症、肿瘤、炎症性疾病、自身免疫性疾病、神经退行性疾病、注意力相关疾病或免疫介导性疾病的药物组合物,其包含本发明化合物作为活性成分。所述药物组合物可任选地包含可药用的载体。
此外,本发明提供了一种预防和/或治疗癌症、肿瘤、炎症性疾病、自身免疫性疾病、神经退行性疾病、注意力相关疾病或免疫介导性疾病的方法,其包括向有此需要的哺乳动物施用本发明化合物。
炎症性疾病、自身免疫性疾病和免疫介导性疾病的代表性实例可包括但不限于,关节炎、类风湿性关节炎、脊柱关节炎、痛风性关节炎、骨关节炎、幼年型关节炎、其他关节炎性病症、狼疮、系统性红斑狼疮(SLE)、皮肤相关疾病、银屑病、湿疹、皮炎、过敏性皮肤炎、疼痛、肺病、肺部炎症、成人呼吸窘迫综合征(ARDS)、肺结节病、慢性肺部炎症性疾病、慢性阻塞性肺病(COPD)、心血管疾病、动脉粥样硬化、心肌梗塞、充血性心力衰竭、心肌缺血再灌注损伤、炎性肠病、克罗恩病、溃疡性结肠炎、肠易激综合征、哮喘、干燥综合征、自身免疫甲状腺疾病、荨麻疹(风疹)、多发性硬化、硬皮症、器官移植排斥、异种移植、特发性血小板减少性紫癜(ITP)、帕金森病、阿尔兹海默病、糖尿病相关疾病、炎症、盆腔炎性疾病、过敏性鼻炎、过敏性支气管炎、过敏性鼻窦炎、白血病、淋巴瘤、B细胞淋巴瘤、T细胞淋巴瘤、骨髓瘤、急性淋巴性白血病(ALL)、 慢性淋巴性白血病(CLL)、急性髓性白血病(AML)、慢性髓性白血病(CML)、毛细胞白血病、何杰金氏病、非何杰金淋巴瘤、多发性骨髓瘤、骨髓增生异常综合征(MDS)、骨髓增生性肿瘤(MPN)、弥漫性大B细胞淋巴瘤和滤泡性淋巴瘤。
癌症或肿瘤的代表性实例可包括但不限于,皮肤癌、膀胱癌、卵巢癌、乳腺癌、胃癌、胰腺癌、前列腺癌、结肠癌、肺癌、骨癌、脑癌、神经细胞瘤、直肠癌、结肠癌、家族性腺瘤性息肉性癌、遗传性非息肉性结直肠癌、食管癌、唇癌、喉癌、下咽癌、舌癌、唾液腺癌、胃癌、腺癌、甲状腺髓样癌、乳头状甲状腺癌、肾癌、肾实质癌、卵巢癌、宫颈癌、子宫体癌、子宫内膜癌、绒毛膜癌、胰腺癌、前列腺癌、睾丸癌、泌尿癌、黑素瘤、脑肿瘤诸如成胶质细胞瘤、星形细胞瘤、脑膜瘤、成神经管细胞瘤和外周神经外胚层肿瘤、霍奇金淋巴瘤、非霍奇金淋巴瘤、伯基特淋巴瘤、急性淋巴性白血病(ALL)、慢性淋巴性白血病(CLL)、急性骨髓性白血病(AML)、慢性粒细胞白血病(CML)、成人T细胞白血病淋巴瘤、弥漫性大B细胞淋巴瘤(DLBCL)、肝细胞癌、胆囊癌、支气管癌、小细胞肺癌、非小细胞肺癌、多发性骨髓瘤、基底细胞瘤、畸胎瘤、成视网膜细胞瘤、脉络膜黑素瘤、精原细胞瘤、横纹肌肉瘤、颅咽管瘤、骨肉瘤、软骨肉瘤、肌肉瘤、脂肪肉瘤、纤维肉瘤、尤因肉瘤或浆细胞瘤。
当将本发明化合物或其可药用盐与另外的用于治疗癌症或肿瘤的抗癌剂或免疫检查点抑制剂组合施用时,本发明化合物或其可药用盐可提供增强的抗癌作用。
用于治疗癌症或肿瘤的抗癌剂的代表性实例可包括但不限于细胞信号转导抑制剂、苯丁酸氮芥、美法仑、环磷酰胺、异环磷酰胺、白消安、卡莫司汀、洛莫司汀、链脲佐菌素、顺铂、卡铂、奥沙利铂、达卡巴嗪、替莫唑胺、丙卡巴肼、甲氨蝶呤、氟尿嘧啶、阿糖胞苷、吉西他滨、巯基嘌呤、氟达拉滨、长春碱、长春新碱、长春瑞滨、紫杉醇、多西紫杉醇、拓扑替康、伊立替康、依托泊苷、曲贝替定、更生霉素、多柔比星、表柔比星、道诺霉素、米托蒽醌、博来霉素、丝裂霉素C、伊沙匹隆、他莫昔芬、氟他胺、戈那瑞林类似物、甲地孕酮、强的松、地塞米松、甲泼尼龙、沙利度胺、干扰素α、亚叶酸钙、西罗莫司、西罗莫司脂化物、依维莫司、阿法替尼、alisertib、amuvatinib、阿帕替尼、阿西替尼、硼替 佐米、波舒替尼、布立尼布、卡博替尼、西地尼布、crenolanib、克卓替尼、达拉菲尼、达可替尼、达努塞替、达沙替尼、多维替尼、厄洛替尼、foretinib、ganetespib、吉非替尼、依鲁替尼、埃克替尼、伊马替尼、iniparib、拉帕替尼、lenvatinib、linifanib、linsitinib、马赛替尼、momelotinib、莫替沙尼、来那替尼、尼罗替尼、niraparib、oprozomib、olaparib、帕唑帕尼、pictilisib、普纳替尼、quizartinib、瑞格菲尼、rigosertib、rucaparib、鲁索利替尼、塞卡替尼、saridegib、索拉非尼、舒尼替尼、替拉替尼、tivantinib、替沃扎尼、托法替尼、曲美替尼、凡德他尼、维利帕尼、威罗菲尼、维莫德吉、volasertib、阿仑单抗、贝伐单抗、贝伦妥单抗维多汀、卡妥索单抗、西妥昔单抗、地诺单抗、吉妥珠单抗、伊匹单抗、尼妥珠单抗、奥法木单抗、帕尼单抗、利妥昔单抗、托西莫单抗、曲妥珠单抗、PI3K抑制剂、CSF1R抑制剂、A2A和/或A2B受体拮抗剂、IDO抑制剂、抗PD-1抗体、抗PD-L1抗体、LAG3抗体、TIM-3抗体及抗CTLA-4抗体,或其任意组合。
当将本发明化合物或其可药用盐与另外的用于治疗炎症性疾病、自身免疫性疾病和免疫介导性疾病的治疗剂组合施用时,本发明化合物或其可药用盐可提供增强的治疗作用。
用于治疗炎症性疾病、自身免疫性疾病和免疫介导性疾病的治疗剂的代表性实例可包括但不限于,甾体药物(例如,强的松、氢化波尼松、甲基氢化波尼松、可的松、羟基可的松、倍他米松、地塞米松等)、甲氨蝶呤、来氟米特、抗TNFα剂(例如,依那西普、英夫利昔单抗、阿达利单抗等)、钙调神经磷酸酶抑制剂(例如,他克莫司、吡美莫司等)和抗组胺药(例如,苯海拉明、羟嗪、氯雷他定、依巴斯汀、酮替芬、西替利嗪、左西替利嗪、非索非那定等),并且选自其中的至少一种或多种治疗剂可包含于本发明药物组合物中。
除此之外,本发明还提供了一种预防和/或治疗肿瘤、癌症、病毒感染、器官移植排斥、神经退行性疾病、注意力相关疾病或自身免疫性疾病的方法,其包括向有此需要的哺乳动物施用本发明的化合物或本发明的药物组合物。
可根据常规方法中的任何一种将本发明药物组合物配制成用于口服施用或肠胃外施用(包括肌内、静脉内和皮下途径、瘤内注射)的剂型,例如片剂、颗粒、粉末、胶囊、糖浆、乳剂、微乳剂、溶液或混悬液。
用于口服施用的本发明药物组合物可通过将活性成分与例如以下的载体混 合来制备:纤维素、硅酸钙、玉米淀粉、乳糖、蔗糖、右旋糖、磷酸钙、硬脂酸、硬脂酸镁、硬脂酸钙、明胶、滑石、表面活性剂、助悬剂、乳化剂和稀释剂。
在本发明的注射施用的药物组合物中采用的载体的实例可以是水、盐溶液、葡萄糖溶液、葡萄糖样溶液(glucose-like solution)、醇、二醇、醚(例如,聚乙二醇400)、油、脂肪酸、脂肪酸酯、甘油酯、表面活性剂、助悬剂和乳化剂。
本发明描述示例性实施方案的过程中,本发明的其它特征将变得显而易见,给出所述实施方案用于说明本发明而不意欲成为其限制,以下实施例使用本发明所公开的方法制备、分离和表征。
可以用有机合成领域的技术人员已知的多种方式来制备本发明的化合物,可使用下述方法以及有机合成化学领域中已知的合成方法或通过本领域技术人员所了解的其变化形式来合成本发明化合物。优选方法包括但不限于下文所述的这些。在适用于所使用试剂盒材料和适用于所实现转变的溶剂或溶剂混合物中实施反应。有机合成领域的技术人员将理解,分子上存在的官能性与所提出的转变一致。这有时需要加以判断改变合成步骤的顺序或原料以获得期望的本发明化合物。
具体实施方式
术语
如果无另外说明,用于本发明申请,包括说明书和权利要求书中的术语,定义如下。如果无另外说明,使用质谱、核磁、HPLC、蛋白化学、生物化学、重组DNA技术和药理的常规方法。在本申请中,如果无另外说明,使用“或”或“和”指“和/或”。
在说明书和权利要求书中,给定化学式或名称应涵盖其所有立体异构体和光学异构体及其中存在上述异构体的外消旋体。除非另外指明,否则所有手性(对映异构体和非对映异构体)和外消旋形式均在本发明范围内。所述化合物中还可存在C=C双键、C=N双键、环系统等的多种几何异构体,且所有上述稳定异构体均涵盖于本发明内。本发明描述了本发明化合物的顺式-和反式-(或E-和Z-)几何异构体,且其可分离成异构体的混合物或分开的异构体形式。本发明化合物可以光学活性或外消旋形式加以分离。用于制备本发明化合物和其中制备的中间体的所有方法均视为本发明的部分。在制备对映异构体或非对映异构体产物时,其可通过常规方法(例如通过色谱或分段结晶)进行分离。取决于方法条件,以游 离(中性)或盐形式获得本发明的终产物。这些终产物的游离形式和盐均在本发明的范围内。如果需要的话,则可将化合物的一种形式转化成另一种形式。可将游离碱或酸转化成盐;可将盐转化成游离化合物或另一种盐;可将本发明异构体化合物的混合物分离成单独的异构体。本发明化合物、其游离形式和盐可以多种互变异构体形式存在,其中氢原子转置到分子的其它部分上且由此分子的原子之间的化学键发生重排。应当理解的是,可存在的所有互变异构体形式均包括在本发明内。
除非另有定义,本发明的取代基的定义是各自独立而非互相关联的,例如(列举而非穷举),在一个方面,对于取代基中Ra(或者Ra’)而言,其在不同的取代基的定义中是各自独立的。具体而言,对于Ra(或者Ra’)在一种取代基中选择一种定义时,并不意味着该Ra(或者Ra’)在其他取代基中都具有该相同的定义。更具体而言,例如(仅列举非穷举)对于NRaRa’中,当Ra(或者Ra’)的定义选自氢时,其并不意味着在-C(O)-NRaRa’中,Ra(或者Ra’)必然为氢。在另一个方面,当某一个取代基中存在多于一个Ra(或者Ra’)时,这些Ra(或者Ra’)也是各自独立的。例如,在取代基-(CRaRa’)m-O-(CRaRa’)n-中,在m+n大于等于2的情况下,其中的m+n个Ra(或者Ra’)是各自独立的,它们可以具有相同或者不同的含义。
除非另有定义,否则当取代基被标注为“任选取代的”时,所述取代基选自例如以下取代基,诸如烷基、环烷基、芳基、杂环基、卤素、羟基、烷氧基、氧代、烷酰基、芳基氧基、烷酰基氧基、氨基、烷基氨基、芳基氨基、芳基烷基氨基、二取代的氨基(其中2个氨基取代基选自烷基、芳基或芳基烷基)、烷酰基氨基、芳酰基氨基、芳烷酰基氨基、取代的烷酰基氨基、取代的芳基氨基、取代的芳烷酰基氨基、硫基、烷基硫基、芳基硫基、芳基烷基硫基、芳基硫羰基、芳基烷基硫羰基、烷基磺酰基、芳基磺酰基、芳基烷基磺酰基、氨基磺酰基例如-SO2NH2、取代的磺酰氨基、硝基、氰基、羧基、氨基甲酰基例如-CONH2、取代的氨基甲酰基例如-CONH烷基、-CONH芳基、-CONH芳基烷基或在氮上具有两个选自烷基、芳基或芳基烷基的取代基的情况、烷氧基羰基、芳基、取代的芳基、胍基、杂环基,例如吲哚基、咪唑基、呋喃基、噻吩基、噻唑基、吡咯烷基、吡啶基、嘧啶基、吡咯烷基、哌啶基、吗啉基、哌嗪基、高哌嗪基等和取代的杂环基。
本文使用的术语“烷基”或“亚烷基”意欲包括具有指定碳原子数的支链和直 链饱和脂族烃基团。例如,“C1-C6烷基”表示具有1个至6个碳原子的烷基。烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(例如正丙基和异丙基)、丁基(例如正丁基、异丁基、叔丁基)和戊基(例如正戊基、异戊基、新戊基)。在本文中,烷基优选为具有1至6个、更优选具有1至4个碳原子的烷基。
术语“烯基”表示含一个或多个双键且通常长度为2至20个碳原子的直链或支链的烃基。例如,“C2-C6烯基”含有两个至六个碳原子。烯基包括但不限于例如乙烯基、丙烯基、丁烯基、1-甲基-2-丁烯-1-基等。在本文中,烯基优选C2-C6烯基。
术语“炔基”表示含一个或多个三键且通常长度为2至20个碳原子的直链或支链的烃基。例如,“C2-C6炔基”含有两个至六个碳原子。代表性炔基包括但不限于例如乙炔基、1-丙炔基、1-丁炔基等。在本文中,炔基优选C2-C6炔基。
术语“烷氧基”或“烷基氧基”是指-O-烷基。“C1-C6烷氧基”(或烷基氧基)意欲包括C1、C2、C3、C4、C5、C6烷氧基。烷氧基的实例包括但不限于甲氧基、乙氧基、丙氧基(例如正丙氧基和异丙氧基)和叔丁氧基。在本文中,烷氧基优选为具有1至6个、更优选具有1至4个碳原子的烷氧基。类似地,“烷基硫基”或“硫硫基”表示具有指定数量碳原子的经硫桥连接的如上文所定义的烷基;例如甲基-S-和乙基-S-。
术语“羰基”是指由碳和氧两种原子通过双键连接而成的有机官能团(C=O)。
术语“芳基”,单独或作为较大部分诸如“芳烷基”、“芳基烷氧基”或“芳基氧基烷基”的部分,是指具有总计5至12个环成员的单环、二环或三环的环系统,其中所述系统中的至少一个环为芳族的且其中所述系统中的每个环含有3至7个环成员。在本发明的某些实施方案中,“芳基”是指芳族环系统,其包括但不限于苯基、联苯基、茚满基、1-萘基、2-萘基和四氢萘基。术语“芳烷基”或“芳基烷基”是指连接至芳基环的烷基残基,其非限制性实例包括苄基、苯乙基等。稠合的芳基可在环烷基环或芳族环的合适位置上连接至另一基团。从环系统中画出的虚线表明键可连接至任意合适的环原子。
术语“环烷基”是指单环、二环或者支化的环状烷基。单环的环状烷基指C3-C12的环状烷基,包括但不限于环丙基、环丁基、环戊基、环己基和降莰烷基。支化环烷基诸如1-甲基环丙基和2-甲基环丙基包括在“环烷基”的定义中。二环的环状烷基包括桥环、螺环或稠环的环烷基。在本文中,环烷基优选C3-C12环烷 基,更优选C3-C8环烷基。
类似地,术语“杂环烷基”是指环烷基上的至少一个碳原子被一个选自N、O、S和P的杂原子所替代的3-12元环状结构,其可以是单环、二环或者支化的环状结构。在本文中,杂环烷基优选3-12元杂环烷基,更优选选3-8元杂环烷基。
本文使用的术语“桥环烷基”指的是共用两个或两个以上碳原子的多环化合物。可分为二环桥环烃及多环桥环烃。前者由两个脂环共用两个以上碳原子所构成;后者是由三个以上的环组成的桥环烃。
本文使用的术语“螺环烷基”指的是单环之间共用一个碳原子(称螺原子)的多环烃。
本文使用的术语“桥环杂基”指的是共用两个或两个以上碳原子的多环化合物,该环中至少含一个选自O、N和S原子的杂原子。可分为二环桥环杂环及多环桥杂环。
本文使用的术语“杂螺环基”指的是单环之间共用一个碳原子(称螺原子)的多环烃,该环中至少含一个选自O、N和S原子的杂原子。
本文中所用的术语“取代”意指至少一个氢原子被非氢基团替代,条件是维持正常化合价且所述取代得到稳定的化合物。本文所用的环双键为在两个相邻环原子之间形成的双键(例如C=C、C=N或N=N)。
术语“环烯基”是指单环或二环的环状烯基。单环的环状烯基指C3-C8的环状烯基,包括但不限于环丙烯基、环丁烯基、环戊烯基、环己烯基和降莰烯基。支化环烯基诸如1-甲基环丙烯基和2-甲基环丙烯基包括在“环烯基”的定义中。二环的环状烯基包括桥环、螺环或稠环的环状烯基。
“卤代”或“卤素”包括氟、氯、溴和碘。“卤代烷基”/“卤代亚烷基”意欲包括具有指定碳原子数且取代有1个或多个卤素的支链和直链饱和烷基/亚烷基。卤代烷基的实例包括但不限于氟甲基、二氟甲基、三氟甲基、三氯甲基、五氟乙基、五氯乙基、2,2,2-三氟乙基、七氟丙基和七氯丙基。卤代烷基的实例还包括意欲包括具有指定碳原子数且取代有1个或多个氟原子的支链和直链饱和脂族烃基团的“氟烷基”。“卤代环烷基”/“卤代杂环烷基”意欲包括具有指定碳原子数且取代有1个或多个卤素的环烷基/杂环烷基。本发明中,卤素原子优选为氟或者氯,更优选为氟。
“卤代烷氧基”或“卤代烷基氧基”表示具有指定数量碳原子的经氧桥连接的 如上文所定义的卤代烷基。例如,“卤代C1-C6烷氧基”意欲包括C1、C2、C3、C4、C5、C6卤代烷氧基。卤代烷氧基的实例包括但不限于三氟甲氧基、2,2,2-三氟乙氧基和五氟乙氧基。类似地,“卤代烷基硫基”或“硫代卤代烷氧基”表示具有指定数量碳原子的经硫桥连接的如上文所定义的卤代烷基;例如三氟甲基-S-和五氟乙基-S-。
本公开内容中,当提到一些取代基团时使用Cx1-Cx2的表述,这表示所述取代基团中的碳原子数可以是x1至x2个。例如,C0-C8表示所述基团含有0、1、2、3、4、5、6、7或8个碳原子,C1-C8表示所述基团含有1、2、3、4、5、6、7或8个碳原子,C2-C8表示所述基团含有2、3、4、5、6、7或8个碳原子,C3-C8表示所述基团含有3、4、5、6、7或8个碳原子,C4-C8表示所述基团含有4、5、6、7或8个碳原子,C0-C6表示所述基团含有0、1、2、3、4、5或6个碳原子,C1-C6表示所述基团含有1、2、3、4、5或6个碳原子,C2-C6表示所述基团含有2、3、4、5或6个碳原子,C3-C6表示所述基团含有3、4、5或6个碳原子。
本公开内容中,当提到环状基团(例如芳基、杂芳基、环烷基和杂环烷基)时使用“x1-x2元环”的表述,这表示该基团的环原子数可以是x1至x2个。例如,所述3-12元环状基团可以是3、4、5、6、7、8、9、10、11或12元环,其环原子数可以是3、4、5、6、7、8、9、10、11或12个;3-6元环表示该环状基团可以是3、4、5或6元环,其环原子数可以是3、4、5或6个;3-8元环表示该环状基团可以是3、4、5、6、7或8元环,其环原子数可以是3、4、5、6、7或8个;3-9元环表示该环状基团可以是3、4、5、6、7、8或9元环,其环原子数可以是3、4、5、6、7、8或9个;4-7元环表示该环状基团可以是4、5、6或7元环,其环原子数可以是4、5、6或7个;5-8元环表示该环状基团可以是5、6、7或8元环,其环原子数可以是5、6、7或8个;5-12元环表示该环状基团可以是5、6、7、8、9、10、11或12元环,其环原子数可以是5、6、7、8、9、10、11或12个;6-12元环表示该环状基团可以是6、7、8、9、10、11或12元环,其环原子数可以是6、7、8、9、10、11或12个。所述环原子可以是碳原子或杂原子,例如选自N、O和S的杂原子。当所述环是杂环时,所述杂环可以含有1、2、3、4、5、6、7、8、9、10或更多个环杂原子,例如选自N、O和S的杂原子。
本公开内容中,一个或更多个卤素可以各自独立地选自氟、氯、溴和碘。
术语“杂芳基”意指稳定的5元、6元、或7元芳香单环或芳香二环或7元、8元、9元、10元、11元、12元芳香多环杂环,其为完全不饱和的或部分不饱和,且其含有碳原子和1个、2个、3个或4个独立地选自N、O和S的杂原子;其包括环烷或者杂环烷与苯环等芳香环或者吡啶等杂芳环稠合的结构,该结构作为取代基的位点可以位于环烷、杂环烷、芳香环或者杂芳环上。氮和硫杂原子可任选地被氧化。氮原子为取代的或未取代的(即N或NR,其中R为H或如果被定义,则为另一取代基)。杂环可在得到稳定结构的任何杂原子或碳原子处连接至其侧基。如果所得化合物是稳定的,则本文所述的杂环基可在碳或氮原子上被取代。杂环中的氮可任选地被季铵化。优选地,当杂环中S和O原子的总数超过1时,则这些杂原子彼此不相邻。优选地,杂环中S和O原子的总数不大于1。当使用术语“杂环”时,其意欲包括杂芳基。芳杂基的实施例包括但不限于吖啶基、氮杂环丁基、吖辛因基、苯并咪唑基、苯并呋喃基、苯并硫代呋喃基、苯并噻吩基、苯并噁唑基、苯并噁唑啉基、苯并噻唑基、苯并三唑基、苯并四唑基、苯并异噁唑基、苯并异噻唑基、苯并咪唑啉基、咔唑基、4H-咔唑基、咔啉基、色满基、色烯基、噌啉基、十氢喹啉基、2H,6H-1,5,2-二噻嗪基、二氢呋喃并[2,3-b]四氢呋喃基、呋喃基、呋咱基、咪唑烷基、咪唑啉基、咪唑基、1H-吲唑基、咪唑并吡啶基、假吲哚基(indolenyl)、二氢吲哚基、吲嗪基、吲哚基、3H-吲哚基、靛红酰基(isatinoyl)、异苯并呋喃基、异色满基、异吲唑基、异二氢吲哚基、异吲哚基、异喹啉基、异噻唑基、异噻唑并吡啶基、异噁唑基、异噁唑并吡啶基、亚甲基二氧基苯基、吗啉基、二氮杂萘基、八氢异喹啉基、噁二唑基、1,2,3-噁二唑基、1,2,4-噁二唑基、1,2,5-噁二唑基、1,3,4-噁二唑基、噁唑烷基、噁唑基、噁唑并吡啶基、噁唑烷基、萘嵌间二氮杂苯基、羟吲哚基、嘧啶基、菲啶基、菲咯啉基、吩嗪基、吩噻嗪基、吩噁噻基、吩噁嗪基、酞嗪基、哌嗪基、哌啶基、哌啶酮基、4-哌啶酮基、胡椒基、喋啶基、嘌呤基、吡喃基、吡嗪基、吡唑烷基、吡唑啉基、吡唑并吡啶基、吡唑基、哒嗪基、吡啶并噁唑基、吡啶并咪唑基、吡啶并噻唑基、吡啶基、嘧啶基、吡咯烷基、吡咯啉基、2-吡咯烷酮基、2H-吡咯基、吡咯基、喹唑啉基、喹啉基、4H-喹嗪基、喹喔啉基、奎宁环基、四唑基、四氢呋喃基、四氢异喹啉基、四氢喹啉基、6H-1,2,5-噻二嗪基、1,2,3-噻二唑基、1,2,4-噻二唑基、1,2,5-噻二唑基、1,3,4-噻二唑基、噻蒽基、噻唑基、噻吩基、噻唑并 吡啶基、噻吩并噻唑基、噻吩并噁唑基、噻吩并咪唑基、噻吩基、三嗪基、1,2,3-三唑基、1,2,4-三唑基、1,2,5-三唑基、1,3,4-三唑基和呫吨基、喹啉基、异喹啉基、酞嗪基、喹唑啉基、吲哚基、异吲哚基、二氢吲哚基、1H-吲唑基、苯并咪唑基、1,2,3,4-四氢喹啉基、1,2,3,4-四氢异喹啉基、5,6,7,8-四氢-喹啉基、2,3-二氢-苯并呋喃基、色满基、1,2,3,4-四氢-喹喔啉基和1,2,3,4-四氢-喹唑啉基。术语“杂芳基”还可以包括由上述所定义的“芳基”与单环“杂芳基”所形成的联芳基结构,例如但不限于“-苯基联吡啶基-”、“-苯基联嘧啶基”、“-吡啶基联苯基”、“-吡啶基联嘧啶基-”、“-嘧啶基联苯基-”;其中本发明还包括含有例如上述杂环的稠环和螺环化合物。
在本发明化合物上存在氮原子(例如胺)的情形下,可通过使用氧化剂(例如mCPBA和/或过氧化氢)进行处理来将这些氮原子转化成N-氧化物以获得本发明的其它化合物。因此,所显示和要求保护的氮原子视为均涵盖所显示氮及其N-氧化物以获得本发明衍生物。
当任何变量在化合物的任何组成或式中出现一次以上时,其每次出现时的定义均独立于其在其它每种情况下出现时的定义。因此,例如如果显示基团取代有0-3个R,则所述基团可任选地取代有至多三个R基团,且在每次出现时R独立地选自R的定义。此外,取代基和/或变量的组合仅在上述组合可产生稳定的化合物时才容许存在。
本文使用的术语“患者”是指通过本发明的方法进行治疗的有机体。这类有机体优选包括但不限于哺乳动物(例如鼠类、猿、猴、马、牛、猪、犬、猫等)且最优选是指人类。
本文使用的术语“有效量”意指将会引起例如研究人员或临床医师所寻求的组织、系统、动物或人的生物学或医学响应的药物或药剂(即本发明化合物)的量。此外,术语“治疗有效量”意指这样的量:与未接受上述量的相应受试者相比,所述量导致改善的治疗、治愈、预防或减轻疾病、病症或副作用,或降低在疾病或病症的进展速度。有效量可以一个或多个给药、施用或剂量给予且不意欲被特定的制剂或给药途径限制。该术语还包括在其范围内的增强正常生理机能的有效量。
本文使用的术语“治疗”包括导致改善病症、疾病、障碍等的任何效果,例如减轻、减少、调节、改善或消除,或改善其症状。
术语“药用”在本文中用于指如下那些化合物、物质、组合物和/或剂型:在合 理医学判断的范围内,其适于与人类和动物的组织接触使用而无过高毒性、刺激性、过敏反应和/或其它问题或并发症,并与合理的益处/风险比相称。
本文使用的短语“药学上可接受的载体”意指药用物质、组合物或媒介物,诸如液体或固体填充剂、稀释剂、赋形剂、制造助剂(例如润滑剂、滑石、硬脂酸镁、硬脂酸钙或硬脂酸锌或硬脂酸)或溶剂包囊物质,其涉及将主题化合物从一个器官或身体的部分携带或运送至另一个器官或身体的部分。每种载体在与制剂的其它成分相容和对患者无害的意义上必须是“可接受的”。
术语“药物组合物”意指包含本发明化合物与至少一种其它药学上可接受的载体的组合物。“药学上可接受的载体”是指本领域中通常接受用于将生物活性剂递送至动物(具体为哺乳动物)的介质,包括(即)佐剂、赋形剂或媒介物,诸如稀释剂、防腐剂、填充剂、流动调控剂、崩解剂、润湿剂、乳化剂、悬浮剂、增甜剂、矫味剂、芳香剂、抗细菌剂、抗真菌剂、润滑剂和分散剂,这取决于给药模式和剂型的性质。
特定药学及医学术语
术语“可接受的”,如本文所用,指一个处方组分或活性成分对一般治疗目标的健康没有过分的有害影响。
术语“癌症”,如本文所用,指一种不能控制的细胞的异常生长,并且在某种条件下能够转移(传播)。这种类型的癌症包括但不限于,实体肿瘤(如膀胱、肠、脑、胸、子宫、心脏、肾、肺、淋巴组织(淋巴瘤)、卵巢、胰腺或其它内分泌器官(如甲状腺)、前列腺、皮肤(黑色素瘤)或血液瘤(如非白血性白血病)。
术语“联合给药”或其类似术语,如本文所用,指将几种所选的治疗药物给一个病人用药,以相同或不同的给药方式在相同或不同的时间给药。
术语“增强”或“能增强”,如本文所用,指预期的结果能够在效力或是持续时间方面都有增加或延长。因此,在增强药物的治疗效果方面,术语“能增强”指药物在系统中有提高或延长效力或持续时间的能力。本文所用的“增效值”,指在理想的系统中,能够最大限度地地增强另外一种治疗药物的能力。
术语“免疫性疾病”指对内源性或外源性抗原产生的不良或有害反应的疾病或症状。结果通常会造成细胞的功能障碍、或因此而破坏并造成机能障碍、或破坏可能产生免疫症状的器官或组织。
术语“试剂盒”与“产品包装”是同义词。
术语“受试者”或“病人”包括哺乳动物和非哺乳动物。哺乳动物包括但不限于,哺乳类:人、非人灵长类如猩猩、猿及猴类;农业动物如牛、马、山羊、绵羊、猪;家畜如兔、狗;实验动物包括啮齿类,如大鼠、小鼠及豚鼠等。非哺乳类动物包括但不限于,鸟、鱼等。在一优选的方面,所选哺乳动物是人。
术语“治疗”、“治疗过程”或“疗法”如本文所用,包括缓和、抑制或改善疾病的症状或状况;抑制并发症的产生;改善或预防潜在代谢综合征;抑制疾病或症状的产生,如控制疾病或情况的发展;减轻疾病或症状;使疾病或症状减退;减轻由疾病或症状引起的并发症,或预防和/或治疗由疾病或症状引起的征兆。
如本文所用,某一化合物或药物组合物,给药后,可以使某一疾病、症状或情况得到改善,尤指其严重度得到改善,延迟发病,减缓病情进展,或减少病情持续时间。无论固定给药或临时给药、持续给药或断续给药,可以归因于或与给药有关的情况。
适合的给药途径包括但不限于,口服、静脉注射、直肠、气雾剂、非肠道给药、眼部给药、肺部给药、经皮给药、阴道给药、耳道给药、鼻腔给药及局部给药。此外,仅作举例说明,肠道外给药,包括肌肉注射、皮下注射、静脉注射、髓内注射、心室注射、腹膜内注射、淋巴管内注射、及鼻内注射。
在一方面,此处描述的化合物给药方式是局部的而不是全身性的给药方式。在特定的具体实施方案中,长效制剂通过植入给药(例如皮下或肌肉)或通过肌肉注射。此外,在另一具体化实施方案中,药物通过靶向药物给药系统来给药。例如,由器官特异性抗体包裹的脂质体。在这种具体实施例中,所述脂质体被选择性地导向特定器官并被吸收。
药物组合物和剂量
本发明还提供药用组合物,其包含治疗有效量的与一种或多种药用载体(添加剂)和/或稀释剂一起配制的一种或多种本发明的化合物,和任选的一种或多种上述其它治疗剂。可通过任意合适方式给予本发明化合物以用于任意上述用途,例如口服,诸如片剂、丸剂、粉剂、颗粒剂、酏剂、酊剂、悬浮液(包括纳米悬浮液、微悬浮液、喷雾干燥的分散液)、糖浆和乳液;经舌下;含服;经肠胃外,诸如通过皮下、静脉内、肌内或胸骨内注射或输注技术(例如以无菌可注射水性或非水性溶液或悬浮液形式);经鼻,包括向鼻膜给药,诸如通过吸入喷雾;局部,诸如以乳膏剂或软膏剂形式;或经直肠,诸如以栓剂形式;或经瘤内注射。它们 可单独给药,但通常使用基于所选给药途径和标准药学实践选择的药物载体给药。
药用载体包括水性和非水性液体介质及各种固体和半固体的药用载体。上述载体可包括除活性剂外的诸多不同成分和添加剂,上述其它成分出于本领域技术人员公知的各种原因包括于制剂中,例如稳定剂、粘合剂等。关于合适的药用载体和载体选择中所涉及的因素的描述可参见多个容易获得的来源,例如Allen L.V.J r.et al.Remington:The Science and Practice of PharmaCy1(2 Volumes),22nd Edition(2012),Pharmaceutical Press。
当然,本发明化合物的剂量方案取决于已知因素而有所变化,诸如具体药剂的药效学特性及其给药模式和途径;接受者的物种、年龄、性别、健康状况、医学病状和重量;症状的性质和程度;同时治疗的种类;治疗频率;给药途径、患者的肾和肝功能及期望效应。根据一般指导,当用于指定效应时,各活性成分的日口服剂量应为约0.001mg/天至约10-5000mg/天,优选地为约0.01mg/天至约1000mg/天,且最优选地为约0.1mg/天至约250mg/天。在恒速输注期间,静脉内最优选剂量应为约0.01mg/kg/分钟至约10mg/kg/分钟。本发明化合物可以单一日剂量给药,或可以每日两次、三次或四次的分开剂量给药总日剂量。
所述化合物通常以与根据预期给药形式(例如口服片剂、胶囊剂、酏剂和糖浆剂)适当地选择且与常规药学实践相符合的合适药物稀释剂、赋形剂或载体(在本文中统称为药物载体)的混合物形式进行给药。
适于给药的剂型(药物组合物)可含有约1毫克至约2000毫克活性成分/剂量单位。在这些医药组合物中,以组合物的总重量计,活性成分通常将以约0.1-95重量%的量存在。
本发明范围包括(单独或与药物载体组合)包含治疗有效量的至少一种本发明化合物作为活性成分的药物组合物。任选地,本发明化合物可单独使用、与本发明其它化合物组合使用或与一种或多种其它治疗剂(例如抗癌剂或其它药学活性物质)组合使用。
不考虑所选择的给药路径,通过本领域技术人员已知的常规方法来将本发明的化合物(其可以合适的水合形式使用)和/或本发明的药物组合物配制成药用剂量形式。
可改变活性成分在本发明的药物组合物中的实际剂量水平,从而获得对于实现特定患者的期望的治疗响应、组成和给药模式有效的而对患者无毒的活性成分 量。
选定的剂量水平会取决于多种因素,包括所用的本发明的特定化合物或其酯、盐或酰胺的活性;给药路径;给药时间;所用的特定化合物的排泄速率;吸收速率和程度;治疗的持续时间;与所用的特定化合物组合使用的其它药物、化合物和/或物质;所治疗的患者的年龄、性别、重量、状况、一般健康和先前的医学史等医学领域公知的因素。
具有本领域普通技术的医生或兽医可确定并开出有效量的所需药物组合物。通常,合适日剂量的本发明化合物将是有效产生治疗效果的最低剂量的化合物的量。此种有效剂量通常取决于上述因素。通常,口服、静脉内、脑室内和皮下剂量的用于患者的本发明化合物的范围为约0.01至约50mg/kg体重/天。如果需要的话,有效日剂量的活性化合物可以两个、三个、四个、五个、六个或更多个亚剂量在一天当中的适当的间隔分别给药,任选地呈单位剂型形式。在本发明的某些方面中,服药为每天一次给药。
虽然本发明化合物可单独给药,但优选以药物制剂(组合物)形式给予化合物。
试剂盒/产品包装
为了用于上述适应症的治疗,试剂盒/产品包装也在此进行描述。这些试剂盒可以由输送器、药包或容器盒组成,容器盒可被划分成多格,以容纳一种或多种容器,如管形瓶、试管及类似物等,每个容器中包含所述方法中的单独一种成分。合适的容器包括瓶子,管形瓶,注射器和试管等。容器由可接受的玻璃或塑料等材料制作而成。
举例来讲,容器可容纳有一种或多种在此所述的化合物,所述化合物可能以药物化合物形式存在,也可能与在本文中所述的其它成分组成混合物的形式存在。容器可有一个无菌输出口(例如容器可为静脉输液包或瓶,瓶塞可被皮下注射器针头刺破)。这样的试剂盒可容纳有一种化合物,及本文中所述的使用方法的说明、标签或操作说明。
一个典型的试剂盒可包括一种或多种容器,为适应商业推广和使用者对化合物使用的需求,每个容器装有一种或多种材料(如试剂,也可以是浓缩的母液,和/或器械)。这些材料包括但不局限于缓冲液,稀释液,滤器,针头,注射器,输送器,包,容器,瓶和/或试管,附有内容清单和/或使用说明书,内置包装也附有说明书。整套的说明都要包括在内。
标签可显示在容器上或与容器紧密相关。标签出现在容器上即指标签字母、数字或其它特征被粘贴、铸模、刻在容器上;标签也可出现在装有多种容器的容器盒或运输盒内,如在产品插页中。一个标签可用来提示内容物的某种特定治疗用途。标签也可标示内容物使用说明,诸如在上述方法中描述的。
在本说明书中被描述的所有特征(包括任何所述的权利要求、摘要和附图),和/或任何方法或过程中涉及的所有步骤,均有可能以任意一种组合存在,除非某些特征或步骤在同一组合中是相互排斥的。
本发明提到的上述特征,或实施例提到的特征可以任意组合。本案说明书所揭示的所有特征可与任何组合物形式并用,说明书中所揭示的各个特征,可以任何可提供相同、等同或相似目的的替代性特征取代。因此除有特别说明,所揭示的特征仅为等同或相似特征的一般性例子。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。除非另外说明,否则所有的百分数、比率、比例、或份数按重量计。
本发明中的重量体积百分比中的单位是本领域技术人员所熟知的,例如是指在100毫升的溶液中溶质的重量(g)。除非另行定义,文中所使用的所有专业与科学用语与本领域技术人员所熟悉的意义相同。此外,任何与所记载内容相似或等同的方法及材料皆可应用于本发明方法中。文中所述的较佳实施方法与材料仅作示范之用。
实施例
通用过程
未包括制备途径时,本发明所用原料与试剂均为已知产品,可以按照本领域已知的方法合成,或者可通过购买市售产品获得。使用的市售试剂均不需进一步纯化。
室温是指20-30℃。
反应实施例中无特殊说明,反应均在氮气氛下进行。氮气氛是指反应瓶连接一个约1L的氮气气球。
氢化反应通常抽真空,充入氢气,反复操作3次。氢气氛是指反应瓶连接一 个约1L的氢气气球。
微波反应使用Initiator+微波反应器。
本发明化合物的结构是通过核磁共振(NMR)和质谱(MS)来确定的。NMR位移(δ)以10-6(ppm)的单位给出。NMR的测定是用(Bruker AscendTM 500型)核磁仪,测定溶剂为氘代二甲基亚砜(DMSO-d6),氘代氯仿(CDCl3),氘代甲醇(CD3OD),内标为四甲基硅烷(TMS)。以下简写用于NMR信号的多重性:s=单峰,brs=宽峰,d=二重峰,t=三重峰,m=多重峰。耦合常数以J值列出,以Hz测量。
反相制备色谱使用Thermo(UltiMate 3000)反相制备色谱仪。快速柱层析使用艾杰尔(FS-9200T)自动过柱机,硅胶预装柱使用三泰预装柱。薄层层析硅胶板用烟台黄海HSGF254或青岛GF254硅胶板,薄层层析分离纯化产品采用的规格是0.4mm~0.5mm。
LC-MS分析方法如下:
1)质谱方法:Thermo Fisher MSQ PLUS质谱仪,ESI源,正离子模式。离子源参数设置:干燥气温度为350℃;干燥气流速为10L/min;MS Range:120-1000。
2)液相条件:色谱柱:Waters XBridge(3.5μm,50mm×4.6mm);流动相A为含0.1%碳酸氢铵水溶液,流动相B为乙腈溶液,按下表1进行线性梯度洗脱;流速:2mL/min;柱温:30℃;紫外检测波长:214nm,254nm,280nm;进样体积2μL。
表1.梯度洗脱条件
HPLC分析方法如下:
色谱柱:Waters XBridge phenyl(3.5μm,150mm×4.6mm);流动相A为含0.1%碳酸氢铵水溶液,流动相B为乙腈溶液,按下表2进行线性梯度洗脱;流 速:1mL/min;柱温:30℃;紫外检测波长:214nm,254nm,280nm;进样体积2μL。
表2.梯度洗脱条件
发明中一些中间体的合成方法如下:
中间体1
中间体1由以下步骤制备:
第一步:将2.2-二甲基-3羟基丙酸甲酯INT-1a(100g,757mmol)溶于1L N,N-二甲基甲酰胺中,加入咪唑(129g,1.89mol),搅拌溶解,在室温下滴加叔丁基二苯基氯硅烷(229g,832mmol),滴加完毕,继续搅拌4小时。待反应完全后,将反应液倒入3L冰水中,混悬液经乙酸乙酯(1L*2)萃取,有机相经水洗涤3次后,减压浓缩,得到无色油状物INT-1b,不需纯化,直接用于下一步。ESI-MS(m/z):371.2[M+H]+
第二步:将上步得到的残液INT-1b加入2L甲醇中,加入配制好的360g的33%的氢氧化钠水溶液,室温搅拌17小时。待反应结束,加入1L水,减压除去甲醇,残液经石油醚(1L*5)萃取,萃取后水相经盐酸调节pH值至4~5,继续搅拌30分钟,抽滤,干燥得到白色固体INT-1c(269g,收率90%)。ESI-MS(m/z):357.8[M+H]+
第三步:将INT-1c(130g,365mmol)溶于500mL二氯甲烷中,室温下加入二氯亚砜(130g,1.09mol,79.4mL),60℃下搅拌3小时,反应结束,减压 除去二氯甲烷和剩余的二氯亚砜,得到淡黄色油状物INT-1d,不经纯化,加入200mL二氯甲烷待用。
第四步:将INT-1e(64.8g,331mmol)溶于400mL二氯甲烷中,在0℃条件下滴加198mL二乙基氯化铝溶液(2M in hexanes),滴加过程控制温度不超过5℃,滴加完毕搅拌30分钟,将得到的INT-1d的二氯甲烷溶液滴加到反应瓶中。滴加过程控制温度不超过10℃,滴加完毕,继续搅拌2小时。待反应结束后,将反应液倒入1L冰水中,搅拌30分钟后,减压浓缩,除去二氯甲烷,残液经乙酸乙酯(1L*2)萃取,水洗,有机相旋蒸得到褐色油状物,将油状物加入到2L的石油醚/乙酸乙酯=10/1的混合溶液中,搅拌析出固体,抽滤,得到黄色固体INT-1f(139g,收率78%)。ESI-MS(m/z):534.8[M+H]+
第五步:将INT-1f(100g,187mmol)溶于500mL四氢呋喃中,加入硼氢化锂(12.2g,561mmol),60℃下搅拌过夜,待原料消失后,反应液加入到200mL冰水中淬灭,乙酸乙酯(500mL*3)萃取,有机相经水洗,干燥后,减压浓缩,残液溶于500mL二氯甲烷中,加入2,6-二甲基-1,4-二氢-3,5-吡啶二羧酸二乙酯(28.4g,112mmol)和对甲苯磺酸(21.4g,112mmol),室温搅拌3小时,待反应结束,减压浓缩,除去二氯甲烷,残液溶于500mL甲醇中,加入预先配制好的14%的氢氧化锂水溶液(100mL),室温搅拌3小时,抽滤得到黄色固体INT-1g(84g,收率86.3%)。ESI-MS(m/z):520.2[M+H]+
第六步:将INT-1g(50g,96mmol)溶于250mL四氢呋喃中,加入四丁基氟化铵(1M in THF,197mL),60℃下搅拌过夜,待反应结束,反应液加入300mL水中,经乙酸乙酯(200mL*3)萃取,水洗,减压浓缩,得到褐色油状物。将得到残液溶于40mL甲醇中,加入20mL水,混合溶液经石油醚(40mL*5)洗涤后,减压浓缩,除去甲醇,残液经乙酸乙酯(50mL*2)萃取,有机相水洗,干燥,得到淡黄色油状物INT-1h(25g,收率90.4%)。ESI-MS(m/z):282.8[M+H]+
第七步:将化合物INT-1h(22g,77mmol)溶于100mL二氯甲烷中。加入4-二甲氨基吡啶(467mg,3.82mmol),三乙胺(23.2g,230mmol),0℃下滴加乙酸酐(7.9g,77mmol),滴加完毕后,自然升温,搅拌过夜,待反应结束,反应液经水洗,干燥,浓缩得到褐色油状物,经硅胶柱层析(石油醚/乙酸乙酯=4/1)纯化得到淡黄色油状物INT-1i(22.5g,收率90.7%)。ESI-MS(m/z):324.2[M+H]+
第八步:将化合物INT-1i(40g,123mmol)溶于二氧六环(400mL)中, 加入乙酸钾(30.3g,308.4mmol),[1,1’-双(二苯基膦)二茂铁]二氯化钯(10g,12.3mmol),联硼酸频哪醇酯(78.3g,308mmol),氮气保护下90℃反应3小时,LCMS监测原料反应完全,反应液直接减压浓缩,残留物溶于乙酸乙酯(300mL),水洗,食盐水洗,有机相经硅胶柱层析纯化得白色固体化合物INT-1j(35g,收率76.4%)。ESI-MS(m/z):372.5[M+H]+
第九步:将化合物INT-1j(35g,94.3mmol)和化合物INT-1k(37.9g,104mmol)溶于二氧六环(300mL)和水(30mL)中,加入磷酸钾(50g,236mmol)和[1,1’-双(二苯基膦)二茂铁]二氯化钯(6.89g,9.43mmol),氮气保护下90℃反应过夜,LCMS监测原料反应完全,反应液直接减压浓缩,残留物溶于乙酸乙酯(300mL),水洗,食盐水洗,有机相经硅胶柱层析纯化得黄色油状化合物INT-1l(28g,收率56.1%)。ESI-MS(m/z):530.7[M+H]+
第十步:将化合物INT-1l(28g,52.9mmol)溶于N,N-二甲基甲酰胺(280mL)中,加入N-碘代丁二酰亚胺(11.9g,52.9mmol),50℃反应2小时,LCMS监测原料反应完全,反应液倒入水(800mL)中,乙酸乙酯(200mL*2)萃取,有机相饱和食盐水洗,干燥,过滤,经硅胶柱层析纯化得黄色固体化合物INT-1m(22g,收率63.5%)。ESI-MS(m/z):656.6[M+H]+
第十一步:将化合物INT-1m(5.0g,7.63mmol),2-二环己基膦-2′,6′-二甲氧基-联苯(939mg,2.29mmol),三(二亚苄基丙酮)二钯(838mg,0.915mmol),乙酸钾(2.6g,26.7mmol)溶于甲苯(100mL)中,氮气保护下加入频那醇硼烷(4.9g,38.1mmol),滴加完毕,氮气保护下50℃反应5小时,LCMS监测原料反应完全,反应液过滤,经硅胶柱层析纯化得到黄色油状化合物INT-1(4.5g,收率90%)。ESI-MS(m/z):656.5[M+H]+
中间体2
中间体2由以下步骤制备:
第一步:将化合物INT-1m(12g,18.3mmol)溶于四氢呋喃(120mL)和水(20mL)中,加入氢氧化锂一水合物(3.84g,91.5mmol),室温反应过夜,LCMS监测原料反应完全,反应液直接减压浓缩,残留物溶于水(100mL),用4M盐酸调pH至4~5,二氯甲烷(100mL*3)萃取,有机相水洗,食盐水洗,无水硫酸钠干燥,过滤,浓缩得白色固体化合物INT-2a(10.6g,收率96.6%)。ESI-MS(m/z):600.7[M+H]+
第二步:将化合物INT-2a(9.5g,15.9mmol)和化合物INT-2b(11.7g,31.7mmol)溶于乙腈(190mL)中,0℃下加入N,N,N',N'-四甲基氯甲脒六氟磷酸盐(6.67g,23.8mmol),和1-甲基咪唑(6.51g,79.2mmol),0℃反应1小时,LCMS监测原料反应完全,反应液倒入水(200mL)中,二氯甲烷(100mL*3)萃取,有机相水洗,经硅胶柱层析纯化得黄色固体化合物INT-2c(9.6g,收率83.5%)。ESI-MS(m/z):726.3[M+H]+
第三步:将化合物INT-2c(9.6g,13.2mmol)溶于四氢呋喃(100mL)和水(10mL)中,加入氢氧化锂一水合物(1.39g,33.1mmol),室温反应4小时,LCMS监测原料反应完全,反应液直接减压浓缩,残留物溶于水(100mL),4M盐酸调pH至4~5,有白色固体析出,过滤,水洗固体,干燥得白色固体化合物INT-2d(8.3g,收率88.2%)。ESI-MS(m/z):712.6[M+H]+
第四步:将化合物INT-2d(3.5g,4.9mmol),1-羟基苯并三唑(1.99g,14.8mmol),4-二甲氨基吡啶(1.8g,14.mmol)溶于二氯甲烷(170mL),0℃下加入N,N-二异丙基乙胺(6mL,34.4mmol),后加入1-(3-二甲氨基丙基)-3-乙基碳 二亚胺盐酸盐(4.71g,24.6mmol),室温下反应过夜,LCMS监测原料反应完全,反应液饱和氯化铵水溶液洗,硫酸钠干燥,经硅胶柱层析纯化得黄色固体化合物INT-2e(2g,收率58.6%)。ESI-MS(m/z):694.6[M+H]+
第五步:将化合物INT-2e(500mg,0.721mmol),2-二环己基膦-2′,6′-二甲基-联苯(88.8mg,0.216mmol),三(二亚苄基丙酮)二钯(79mg,0.086mmol),乙酸钾(247mg,2.52mmol)溶于四氢呋喃(20mL)中,氮气保护下加入频那醇硼烷(461mg,3.6mmol),滴加完毕,氮气保护下50℃反应3小时,LCMS监测原料反应完全,反应液过滤,经硅胶柱层析纯化得黄色固体化合物INT-2(400mg,收率80%)。ESI-MS(m/z):694.6[M+H]+
中间体3
中间体3由以下步骤制备:
第一步:将化合物INT-2e(1.7g,2.45mmol)溶于二氯甲烷(20mL)中,加入三氟乙酸(5mL),室温反应2小时,LCMS监测原料反应完全,反应液直 接减压浓缩,残留物溶于DCM(50mL),饱和NaHCO3水溶液洗两次,有机相水洗,硫酸钠干燥,过滤,浓缩得黄色固体化合物INT-3a(1.3g,收率89.4%)。ESI-MS(m/z):594.7[M+H]+
第二步:将化合物INT-3a(1.3g,2.19mmol)和化合物INT-3b(0.24g,2.41mmol)溶于乙腈(30mL)中,0℃下加入N,N,N',N'-四甲基氯甲脒六氟磷酸盐(922mg,3.29mmol),和1-甲基咪唑(414mg,5.04mmol),0℃反应1小时,LCMS监测原料反应完全,反应液倒入水(50mL)中,二氯甲烷(50mL*3)萃取,有机相水洗,拌样过柱纯化得白色固体化合物INT-3c(1.3g,收率87.9%)。ESI-MS(m/z):675.7[M+H]+
第三步:将化合物INT-3c(1.1g,1.63mmol),2-二环己基膦-2′,6′-二甲基-联苯(200mg,0.188mmol),三(二亚苄基丙酮)二钯(179mg,0.195mmol),乙酸钾(559mg,5.7mmol)溶于甲苯(30mL)中,氮气保护下加入频那醇硼烷(1.04g,8.14mmol),滴加完毕,氮气保护下50℃反应3小时,LCMS监测原料反应完全,反应液过滤,经硅胶柱层析纯化得黄色固体化合物INT-3(990mg,收率90%)。ESI-MS(m/z):676.9[M+H]+
中间体4
中间体4由以下步骤制备:
第一步:将化合物INT-3a(2.2g,3.71mmol)和化合物INT-4a(0.47g,4.08mmol)溶于二氯甲烷(50mL)中,0℃下加入N,N,N',N'-四甲基氯甲脒六氟磷 酸盐(1.56g,5.56mmol),和1-甲基咪唑(0.70g,8.53mmol),0℃反应1小时,LCMS监测原料反应完全,反应液倒入水(50mL)中,二氯甲烷(50mL*3)萃取,有机相水洗,拌样过柱纯化得白色固体化合物INT-4b(2.3g,收率90.0%)。ESI-MS(m/z):690.2[M+H]+
第二步:将化合物INT-4b(2.1g,3.05mmol),2-二环己基膦-2′,6′-二甲基-联苯(375mg,0.91mmol),三(二亚苄基丙酮)二钯(335mg,0.365mmol),乙酸钾(1.05g,10.7mmol)溶于甲苯(30mL)中,氮气保护下加入频那醇硼烷(1.95g,15.2mmol),滴加完毕,氮气保护下50℃反应3小时,LCMS监测原料反应完全,反应液过滤,经硅胶柱层析纯化得黄色固体化合物INT-4(1.8g,收率85.7%)。ESI-MS(m/z):690.3[M+H]+
中间体5
中间体5由以下步骤制备:
第一步:将(S)-3-溴-5-碘-2-(1-甲氧基乙基)吡啶INT-5a(2.0g,5.85mmol)溶于四氢呋喃(20mL)中,依次加入碘化亚铜(111mg,0.585mmol)、双三苯基膦二氯化钯(410mg,0.585mmol)、三乙胺(1.18g,11.7mmol)和4-丙炔-1-吗啉INT-5b(878mg,7.02mmol)。反应混合物在氮气保护下室温搅拌3小时。待反应完全后,减压浓缩反应液,残余物用硅胶柱层析纯化(二氯甲烷/乙酸乙酯=1/1)得到淡黄色油状化合物INT-5(1.8g,收率90.7%)。ESI-MS(m/z):339.4[M+H]+
中间体6
中间体6由以下步骤制备:
第一步:将(S)-2-甲基吗啉盐酸盐INT-6a(1.00g,9.27mmol),3-溴丙炔(1.04g,8.72mmol),碳酸钾(3.01g,21.8mmol)溶于N,N-二甲基甲酰胺(15mL)中,反应液在室温下搅拌过夜。待反应结束后,将反应液用乙酸乙酯萃取,有机相干燥浓缩后得到粗品。粗品经过硅胶柱层析(石油醚/乙酸乙酯=1/1)纯化得到淡黄色油状化合物INT-6b(450mg,收率44.5%)。ESI-MS(m/z):140.3[M+H]+
第二步:将INT-6b(269mg,1.93mmol),INT-5a(600mg,1.75mmol),碘化亚铜(33.4mg,0.18mmol),三乙胺(355mg,3.51mmol),双三苯基二氯化钯(123mg,0.18mmol)溶于四氢呋喃(10mL)中,反应液在室温下搅拌过夜。反应结束后,将反应液过滤,滤液浓缩后得到粗品。粗品经过柱层析(石油醚/乙酸乙酯=1/1)纯化得到淡黄色油状化合物INT-6(360mg,收率58.1%)。ESI-MS(m/z):353.5[M+H]+
中间体7
中间体7由以下步骤制备:
第一步:将化合物INT-7a(1.0g,4.46mmol)溶于乙腈(10mL)中,依次加入吗啉(1.16g,13.3mmol)、碳酸钾(1.23g,8.92mmol)。反应混合物在氮气保护下于90℃搅拌反应16小时。待反应完全后,反应液用硅藻土过滤,滤液用氯化铵水溶液洗涤两次后浓缩得到黄色油状化合物INT-7b(450mg,收率72.6%)。ESI-MS(m/z):140.1[M+H]+
第二步:将(S)-3-溴-5-碘-2-(1-甲氧基乙基)吡啶INT-5a(920mg,2.69mmol)溶于四氢呋喃(20mL)中,依次加入碘化亚铜(51mg,0.27mmol)、双三苯基膦二氯化钯(188mg,0.27mmol)、三乙胺(540mg,5.34mmol)和INT-7b(450mg,3.24mmol)。反应混合物在氮气保护下室温搅拌3小时。待反应完全后,减压浓缩反应液,残余物用硅胶柱层析纯化(二氯甲烷/乙酸乙酯=1/1)得到淡黄色油状化合物INT-7(850mg,收率89.2%)。ESI-MS(m/z):353.6[M+H]+
中间体8
中间体8由以下步骤制备:
第一步:在0℃条件下,将戴斯马丁试剂(5.08g,12.0mmol)加入到INT-8a(2.0g,9.21mmol)的二氯甲烷(40mL)的溶液中。反应液升温至室温后继续搅拌5小时。反应结束后,加入饱和碳酸氢钠和硫代硫酸钠水溶液淬灭反应,二氯甲烷萃取,合并有机相并用饱和食盐水洗涤,无水硫酸钠干燥,有机相浓缩后得到粗产品INT-8b。
第二步:将上述粗产品INT-8b和碳酸钾(3.81g,27.60mmol)加入到甲醇(40mL)中,在0℃条件下,向其滴加(1-重氮基-2-氧代丙基)膦酸二甲酯(3.53g,18.4mmol)。反应液在室温条件下搅拌4小时后,TLC监测反应结束。加入水淬灭反应,乙酸乙酯萃取,合并有机相并用饱和食盐水洗涤,无水硫酸钠干燥,有机相浓缩后通过硅胶柱层析(石油醚:乙酸乙酯=6:1)纯化得到无色透明固体INT-8c(1.20g,两步收率62.0%)。ESI-MS(m/z):212.3[M+H]+
第三步:在氮气氛围下,依次将(S)-3-溴-5-碘-2-(1-甲氧基乙基)吡啶INT-5a(300mg,0.88mmol)、碘化亚铜(17mg,0.088mmol)、双三苯基膦二氯化钯(62mg,0.088mmol)、三乙胺(178mg,1.75mmol)、化合物INT-8c(222mg,1.05mmol)和四氢呋喃(10mL)加入到反应瓶中。反应液在室温条件下搅拌4小时后,LCMS监测反应结束。减压浓缩反应液并通过硅胶柱层析(石油醚/乙酸乙酯=3/1)纯化得到淡黄色油状化液体INT-8d。ESI-MS(m/z):425.7[M+H]+
第四步:将上述产物INT-8d溶于二氯甲烷(6mL),向其滴加三氟乙酸(2 mL)。反应液在室温条件下搅拌30分钟后,LCMS监测反应结束。减压浓缩反应液得到化合物INT-8e。ESI-MS(m/z):325.5[M+H]+
第五步:将上述产物INT-8e溶于1,2-二氯乙烷(10mL),向其滴加甲醛水溶液(213mg,2.63mmol,37%w/w),反应30分钟后,加入三乙酰氧基硼氢化钠(1.11g,5.26mmol)。反应液在室温条件下继续搅拌30分钟,LCMS监测反应结束。加入饱和碳酸氢钠水溶液淬灭反应,二氯甲烷和甲醇萃取,合并有机相并用饱和食盐水洗涤,无水硫酸钠干燥,有机相浓缩后通过硅胶柱层析(二氯甲烷:甲醇=10:1)纯化得到淡黄色油状化液体INT-8(269mg,三步收率90.5%)。ESI-MS(m/z):339.6[M+H]+
中间体9
中间体9由以下步骤制备:
第一步:将顺式-2,6-二甲基吗啉INT-9a(1.06g,9.20mmol),3-溴丙炔(1.09g,9.20mmol),碳酸铯(3.82g,27.6mmol)溶于N,N-二甲基甲酰胺(10mL)中,反应液在室温下搅拌过夜。反应结束后,将反应液用乙酸乙酯萃取,有机相干燥浓缩后得到粗品。粗品经过柱层析(石油醚/乙酸乙酯=1/1)纯化得到淡黄色油状化合物INT-9b(600mg,收率42.6%)。ESI-MS(m/z):154.2[M+H]+
第二步:将INT-9b(296mg,1.93mmol),INT-5a(600mg,1.75mmol),碘化亚铜(33.4mg,0.18mmol),三乙胺(355mg,3.51mmol),双三苯基二氯化钯(123.0mg,0.18mmol)溶于四氢呋喃(10mL)中,反应液在室温下搅拌过夜。反应结束后,将反应液过滤,滤液浓缩旋干后得到粗品。粗品经过柱层析(石油醚/乙酸乙酯=1/1)纯化得到淡黄色油状化合物INT-9(600mg,收率93.1%)。 ESI-MS(m/z):367.3[M+H]+
中间体10
中间体10由以下步骤制备:
第一步:将(R)-3-甲酰基吗啉-4-羧酸叔丁酯INT-10a(4.06g,18.9mmol)和(1-重氮基-2-氧代丙基)膦酸二甲酯(5.44g,28.3mmol)溶于甲醇(30mL)中,室温下向上述反应液中加入碳酸钾。反应液在室温下搅拌过夜。反应结束后,反应液用乙酸乙酯萃取,有机相干燥浓缩后得到粗品。粗品经过柱层析(石油醚/乙酸乙酯=3/1)纯化得到淡黄色油状化合物INT-10b(3.2g,收率80.3%)。ESI-MS(m/z):212.4[M+H]+
第二步:将INT-10b(710mg,3.36mmol),INT-5a(1.00g,2.92mmol),三乙胺(592mg,5.58mmol),碘化亚铜(55.7mg,0.29mmol),双三苯基二氯化钯(205mg,0.29mmol)溶于四氢呋喃(10mL)中,反应液在室温下搅拌过夜。反应结束后,将反应液过滤,滤液浓缩后得到粗品。粗品经过柱层析(二氯甲烷/甲醇=10/1)纯化得到淡黄色固体化合物INT-10c(1.05g,收率84.4%)。ESI-MS(m/z):425.5[M+H]+
第三步:将INT-10c(1.20g,2.82mmol)溶于二氯甲烷(15mL)中,向上 述反应液之中加入盐酸-二氧六环(7.05mL,4M)。反应液在室温下搅拌4个小时。反应结束后,向反应液之中加入饱和碳酸氢钠水溶液。将有机相合并干燥浓缩后得到淡黄色固体化合物INT-10d(918mg,收率100%)。ESI-MS(m/z):325.5[M+H]+
第四步:将INT-10d(917mg,2.82mmol),甲醛水溶液(288mg,8.46mmol),氰基硼氢化钠(532mg,8.46mmol)溶于甲醇(10mL)中,反应液在室温下搅拌过夜。反应结束后,向反应液之中加入饱和碳酸氢钠水溶液后用二氯甲烷进行萃取。将合并的有机相干燥浓缩后得到粗品,粗品经过柱层析(二氯甲烷/甲醇=10/1)纯化得到淡黄色油状化合物INT-10(650mg,收率68.0%)。ESI-MS(m/z):339.2[M+H]+
中间体11
中间体11由以下步骤制备:
第一步:在0℃条件下,将戴斯马丁试剂(5.08g,12.0mmol)加入到INT-11a(2.0g,9.21mmol)的二氯甲烷(40mL)的溶液中。反应液升至室温后继续搅拌5小时。反应结束后,加入饱和碳酸氢钠和硫代硫酸钠水溶液淬灭反应,二氯甲烷萃取,合并有机相并用饱和食盐水洗涤,无水硫酸钠干燥,有机相浓缩后得到粗产品INT-11b。
第二步:将上述粗产品INT-11b和碳酸钾(3.81g,27.60mmol)加入到甲醇(40mL)中,在0℃条件下,向其滴加(1-重氮基-2-氧代丙基)膦酸二甲酯(3.53g,18.4mmol)。反应液在室温条件下搅拌16小时后,TLC监测反应结束。加入水淬灭反应,乙酸乙酯萃取,合并有机相并用饱和食盐水洗涤,无水硫酸钠干燥,有机相浓缩后通过硅胶柱层析(石油醚:乙酸乙酯=6/1)纯化得到无色透明固体INT-11c(1.38g,两步收率70.8%)。ESI-MS(m/z):212.2[M+H]+
第三步:在氮气氛围下,依次将(S)-3-溴-5-碘-2-(1-甲氧基乙基)吡啶INT-5a(500mg,1.46mmol)、碘化亚铜(28mg,0.146mmol)、双三苯基膦二氯化钯(103mg,0.146mmol)、三乙胺(296mg,2.92mmol)、化合物INT-11c(402mg,1.90mmol)和四氢呋喃(10mL)加入到反应瓶中。反应液在室温条件下搅拌16小时后,LCMS监测反应结束。减压浓缩反应液并通过硅胶柱层析(石油醚/乙酸乙酯=3/1)纯化得到淡黄色油状化液体INT-11d。ESI-MS(m/z):425.6[M+H]+
第四步:将上述产物INT-11d溶于二氯甲烷(9mL),向其滴加三氟乙酸(3 mL)。反应液在室温条件下搅拌30分钟后,LCMS监测反应结束。减压浓缩反应液得到化合物INT-11e。ESI-MS(m/z):325.3[M+H]+
第五步:将上述产物INT-11e溶于1,2-二氯乙烷(10mL),向其滴加甲醛水溶液(356mg,4.38mmol,37%),反应30分钟后,加入三乙酰氧基硼氢化钠(1.86g,8.76mmol)。反应液在室温条件下继续搅拌30分钟,LCMS监测反应结束。加入饱和碳酸氢钠水溶液淬灭反应,二氯甲烷和甲醇萃取,合并有机相并用饱和食盐水洗涤,无水硫酸钠干燥,有机相浓缩后通过硅胶柱层析(二氯甲烷/甲醇=10/1)纯化得到淡黄色油状化液体INT-11(481mg,三步收率97.1%)。ESI-MS(m/z):339.4[M+H]+
中间体12
中间体12由以下步骤制备:
用INT-12a替换中间体5中的INT-5b,用类似的方法和反应步骤,可以得到化合物INT-12。ESI-MS(m/z):395.5[M+H]+
中间体13
中间体13由以下步骤制备:
用INT-13a替换中间体INT-8中的INT-8a,用类似的方法和反应步骤,可以得到化合物INT-13。ESI-MS(m/z):395.5[M+H]+
中间体14
中间体14由以下步骤制备:
用INT-14a替换中间体8中的INT-8a,用类似的方法和反应步骤,可以得到化合物INT-14。ESI-MS(m/z):395.5[M+H]+
中间体15
中间体15由以下步骤制备:
第一步:将化合物INT-15a(600mg,3.0mmol)溶于甲醇(5mL)中,在室温下加入碳酸钾(1.25g,9.0mmol)和(1-重氮基-2-氧代丙基)膦酸二甲酯(1.16 g,6mmol)。反应液在室温下搅拌12h。TLC检测反应结束。向反应体系中加入饱和食盐水,二氯甲烷萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩,得到化合物INT-15b(587mg,收率99%)的粗品。
第二步:将化合物INT-15b(570mg,2.92mmol)和化合物INT-5a(1g,2.92mmol)溶于四氢呋喃(8mL)中,加入双三苯基膦二氯化钯(204mg,0.29mmol)、碘化亚铜(56mg,0.29mmol)和三乙胺(591mg,5.85mmol)。反应体系置换氮气后在室温下搅拌8h。LCMS检测反应结束。向反应体系中加入饱和食盐水,乙酸乙酯萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩,残余物通过硅胶柱层析(石油醚/乙酸乙酯=5/1)纯化得到黄色油状液体INT-15(1.08g,收率90%)。ESI-MS(m/z):409.6[M+H]+
中间体16
中间体16由以下步骤制备:
用INT-16a替换中间体INT-15中的INT-15a,用类似的方法和反应步骤,可以得到化合物INT-16。ESI-MS(m/z):409.5[M+H]+
中间体17
中间体17由以下步骤制备:
用INT-17a替换中间体INT-15中的INT-15a,用类似的方法和反应步骤,可以得到化合物INT-17。ESI-MS(m/z):409.3[M+H]+
中间体18
中间体18由以下步骤制备:
用INT-18a替换中间体INT-5中的INT-5b,用类似的方法和反应步骤,可以得到化合物INT-18。ESI-MS(m/z):354.3[M+H]+
中间体19
中间体19由以下步骤制备
第一步:将化合物INT-3(300mg,0.44mmol)溶于1,4-二氧六环(5mL)和水(1mL)的混合溶液中,依次加入INT-18(170mg,0.48mmol)、[1,1'-双(二苯基膦)二茂铁]二氯化钯(32mg,0.04mmol)和磷酸钾(188mg,0.88mmol)。反应混合物在氮气保护下于70℃搅拌反应16小时。待反应完全后,反应液用硅藻土过滤,浓缩残余物用硅胶柱层析纯化(二氯甲烷/甲醇=20/1)得到淡黄色油状化合物INT-19a(260mg,收率71.2%)。ESI-MS(m/z):823.1[M+H]+
第二步:将化合物INT-19a(260mg,0.31mmol)溶于N,N-二甲基甲酰胺(4 mL)中,向其中加入碳酸铯(205mg,0.63mmol)和碘乙烷(145mg,0.93mmol)。反应混合物于室温搅拌16小时。待反应完全后,向反应体系中加入水(20mL),用乙酸乙酯(30mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩得到淡黄色固体化合物INT-19b(110mg,收率41.0%)。ESI-MS(m/z):851.2[M+H]+
第三步:将化合物INT-19b(110mg,0.13mmol)溶于甲醇(3mL)中,向其中加入对甲苯磺酸一水合物(123mg,0.65mmol)。反应混合物于室温搅拌3小时。待反应完全后,向反应体系中加入水(30mL),用乙酸乙酯(30mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩得到淡黄色固体化合物INT-19c(80mg,收率80.8%)。ESI-MS(m/z):767.5[M+H]+
第四步:将化合物INT-19c(80mg,0.10mmol)溶于二氯甲烷(4mL)中,向其中加入甲磺酸酐(54mg,0.31mmol)和二异丙基乙胺(68mg,0.53mmol)。反应混合物于室温搅拌2小时。待反应完全后,向反应体系中加入二氯甲烷(30mL),用水(15mL*2)和饱和食盐水洗涤,有机相用无水硫酸钠干燥,过滤浓缩得到淡黄色固体化合物INT-19(70mg,收率79.5%)。ESI-MS(m/z):845.5[M+H]+
中间体20
中间体20由以下步骤制备:
用INT-20a替换中间体INT-5中的INT-5b,用类似的方法和反应步骤,可以得到化合物INT-20。ESI-MS(m/z):317.3[M+H]+
中间体21
中间体21由以下步骤制备:
用INT-21a替换中间体INT-5中的INT-5b,用类似的方法和反应步骤,可以得到化合物INT-21。ESI-MS(m/z):317.3[M+H]+
中间体22
用(S)-3-甲酰基吡咯烷-1-羧酸叔丁酯替换中间体INT-15中的INT-15a,用类似的方法和反应步骤,可以得到化合物INT-22。ESI-MS(m/z):409.5[M+H]+
中间体23
中间体23由以下步骤制备:
第一步:在0℃条件下,将2-(7-偶氮苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(2.12g,5.58mmol)加入到INT-23a(1.0g,4.65mmol)和N,N-二异丙基乙胺(13.8g,13.9mmol)的四氢呋喃(15mL)溶液中。在该温度下搅拌1.5小时后,向反应液中加入甲氧基甲基胺盐酸盐(0.50g,5.11mmol)。升至室温继续搅拌16小时后,加入饱和氯化铵水溶液淬灭反应,乙酸乙酯萃取,合并有机相并用饱和食盐水洗涤,无水硫酸钠干燥,有机相浓缩后通过硅胶柱层析(石油醚:乙酸乙酯=3/1)纯化得到无色油状液体INT-23b(1.14g,收率95.0%)。ESI-MS(m/z):259.5[M+H]+
第二步:在氮气氛围、0℃条件下,将四氢铝锂(0.18g,4.85mmol)分批加入到化合物INT-23b(1.14g,4.41mmol)的四氢呋喃溶液(10mL)中。在该温 度下搅拌1小时后,LCMS监测反应结束。加入水淬灭反应,乙酸乙酯萃取,合并有机相并用饱和食盐水洗涤,无水硫酸钠干燥,有机相浓缩有机相浓缩后得无色油状液体INT-23c,不经纯化直接用于下一步反应。
第三步:将上述粗产品INT-23c和碳酸钾(1.22g,8.82mmol)加入到甲醇(10mL)中,在0℃条件下,向其滴加(1-重氮基-2-氧代丙基)膦酸二甲酯(1.70g,8.82mmol)。反应液在室温条件下搅拌16小时后,TLC监测反应结束。加入水淬灭反应,乙酸乙酯萃取,合并有机相并用饱和食盐水洗涤,无水硫酸钠干燥,有机相浓缩后通过硅胶柱层析(石油醚:乙酸乙酯=6/1)纯化得到无色油状液体INT-23d(368mg,收率42.7%)。ESI-MS(m/z):196.4[M+H]+
第四步:在氮气氛围下,依次将(S)-3-溴-5-碘-2-(1-甲氧基乙基)吡啶INT-5a(300mg,0.88mmol)、碘化亚铜(17mg,0.088mmol)、双三苯基膦二氯化钯(62mg,0.088mmol)、三乙胺(178mg,1.75mmol)、化合物INT-23d(188mg,0.96mmol)和四氢呋喃(2mL)加入到反应瓶中。反应液在室温条件下搅拌16小时后,LCMS监测反应结束。减压浓缩反应液并通过硅胶柱层析(石油醚/乙酸乙酯=3/1)纯化得到淡黄色油状化液体INT-23(278mg,两步收率77.4%)。ESI-MS(m/z):409.5[M+H]+
中间体24
用5-乙炔基嘧啶替换中间体5中的INT-5b,用类似的方法和反应步骤,可以得到化合物INT-24。ESI-MS(m/z):318.4[M+H]+
中间体25
用INT-4替换中间体INT-19合成步骤中的INT-3,用类似的方法和反应步骤,可以得到化合物INT-25。ESI-MS(m/z):859.7[M+H]+
中间体26
用2-乙炔基吡嗪替换中间体5中的INT-5b,用类似的方法和反应步骤,可以得到化合物INT-26。ESI-MS(m/z):318.4[M+H]+
中间体27
用1-Boc-4-乙炔基哌啶替换中间体INT-5中的INT-5b,用类似的方法和反应步骤,可以得到化合物INT-27。ESI-MS(m/z):423.1[M+H]+
中间体28
中间体28由以下步骤制备:
第一步:将INT-28a(250mg,0.84mmol),三甲基硅基乙炔(412mg,4.19mmol),碘化亚铜(16mg,0.084mmol),双三苯基二氯化钯(59mg,0.084mmol)溶于1,4-二氧六环(1.5mL)和三乙胺(1.5mL)中,反应液在110℃下搅拌过夜。反应结束后,将反应液过滤,滤液浓缩旋干后得到粗品。粗品经过柱层析(石油醚/乙酸乙酯=20/1)纯化得到淡黄色固体化合物INT-28b(240mg,收率90.7%)。ESI-MS(m/z):316.3[M+H]+
第二步:将INT-28b(240mg,0.76mmol),溶于甲醇(5mL)中,室温下加入碳酸钾(526mg,3.8mmol),反应液在室温下搅拌4h。反应结束后,加入水(30mL),用乙酸乙酯(30mL*2)萃取,合并有机相,用无水硫酸钠干燥,过滤,滤液浓缩旋干后得到粗品。粗品经过柱层析(石油醚/乙酸乙酯=20/1)纯化得到淡黄色固体化合物INT-28c(170mg,收率91.9%)。ESI-MS(m/z):244.3[M+H]+
第三步:将INT-28c(170mg,0.7mmol),INT-5a(239mg,0.7mmol),碘化亚铜(13mg,0.07mmol),三乙胺(212mg,2.1mmol),双三苯基二氯化钯(49mg,0.07mmol)溶于四氢呋喃(5mL)中,反应液在室温下搅拌过夜。反应结束后,将反应液过滤,滤液浓缩旋干后得到粗品。粗品经过柱层析(石油醚/乙酸乙 酯=3/1)纯化得到淡黄色油状化合物INT-28(220mg,收率68.8%)。ESI-MS(m/z):457.3[M+H]+
中间体29
用6-溴-2-叔丁氧羰基氨基吡啶替换中间体INT-28中的INT-28a,用类似的方法和反应步骤,可以得到化合物INT-29。ESI-MS(m/z):432.3[M+H]+
中间体30
用(6-碘哒嗪-3-基)氨基甲酸叔丁酯替换中间体INT-28中的INT-28a,用类似的方法和反应步骤,可以得到化合物INT-30。ESI-MS(m/z):433.3[M+H]+
中间体31
用4-氨基-5-溴嘧啶替换中间体28中的INT-28a,用类似的方法和反应步骤,可以得到化合物INT-31。ESI-MS(m/z):333.3[M+H]+
中间体32
用2-氨基-5-溴吡嗪替换中间体28中的INT-28a,用类似的方法和反应步骤,可以得到化合物INT-32。ESI-MS(m/z):333.3[M+H]+
中间体33
中间体33由以下步骤制备:
第一步:将化合物INT-2(300mg,0.43mmol)溶于1,4-二氧六环(5mL)和水(1mL)的混合溶液中,依次加入INT-18(170mg,0.48mmol)、[1,1'-双(二苯基膦)二茂铁]二氯化钯(32mg,0.04mmol)和磷酸钾(188mg,0.88mmol)。反应混合物在氮气保护下于70℃搅拌反应16小时。待反应完全后,反应液用硅藻土过滤,浓缩残余物用硅胶柱层析纯化(二氯甲烷/甲醇=20/1)得到淡黄色油固体INT-33a(210mg,收率57%)。ESI-MS(m/z):841.6[M+H]+
第二步:将化合物INT-33a(200mg,0.28mmol)溶于N,N-二甲基甲酰胺(3mL)中,向其中加入碳酸铯(232mg,0.71mmol)和碘乙烷(185mg,1.19mmol)。反应混合物于室温搅拌16小时。待反应完全后,向反应体系中加入水(20mL),用乙酸乙酯(30mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩得到淡黄色固体INT-33b(200mg,收率95%)。ESI-MS(m/z):869.8[M+H]+
第三步:将化合物INT-33b(200mg,0.23mmol)溶于甲醇(3mL)中,向其中加入对甲苯磺酸一水合物(175mg,0.92mmol)。反应混合物于室温搅拌3 小时。待反应完全后,向反应体系中加入水(30mL),用乙酸乙酯(30mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩得到黄色油状化合物INT-33c(160mg,收率89%)。ESI-MS(m/z):785.6[M+H]+
第四步:将化合物INT-33c(140mg,0.18mmol)溶于四氢呋喃(3mL)和乙醚(3mL)中,向其中加入对甲苯磺酰氯(68mg,0.36mmol)和氢氧化钾(20mg,0.36mmol)。反应混合物于0℃下搅拌2小时。待反应完全后,向反应体系中加入二氯甲烷(30mL),用水(15mL*2)和饱和食盐水洗涤,有机相用无水硫酸钠干燥,过滤浓缩,残余物通过制备薄层色谱(二氯甲烷/甲醇=20/1)纯化得到INT-33(110mg,收率66%)。ESI-MS(m/z):939.9[M+H]+
中间体34
中间体34由以下步骤制备:
第一步:将化合物INT-18(500mg,1.41mmol)溶于甲醇(5mL)中,向其中加入对甲苯磺酸一水合物(537mg,2.82mmol)。反应混合物于室温搅拌3小时。待反应完全后,向反应体系中加入水(30mL),用乙酸乙酯(30mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩得到淡黄色固体化合物INT-34a(210mg,收率55%)。ESI-MS(m/z):270.3[M+H]+
第二步:将化合物INT-34a(350mg,1.30mmol)溶于二氯甲烷(5mL)中,向其中加入甲磺酸酐(1.13g,6.48mmol)和二异丙基乙胺(1.34g,10.37mmol)。反应混合物于室温下搅拌2小时。待反应完全后,向反应体系中加入水(30mL), 用二氯甲烷(30mL*2)萃取,合并有机相,有机相用无水硫酸钠干燥,过滤浓缩得到淡黄色固体化合物INT-34b(330mg,收率73%)。ESI-MS(m/z):348.2[M+H]+
第三步:将化合物INT-34b(200mg,0.58mmol)和(S)-3-羟甲基吗啉(87mg,0.75mmol)溶于二氯甲烷(5mL)中,向其中加入N,N-二异丙基乙胺(148mg,1.15mmol)。反应混合物在室温下搅拌反应4小时。待反应完全后,向反应体系中加入水(30mL),用二氯甲烷(30mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩,残余物通过硅胶柱层析(二氯甲烷/甲醇=10/1)纯化得到无色油状液体INT-34(180mg,收率85%)。ESI-MS(m/z):369.3[M+H]+
中间体35
用(S)-八氢吡嗪[2,1-c][1,4]噁嗪二盐酸盐替换中间体INT-34中的(S)-3-羟甲基吗啉,用类似的方法和反应步骤,可以得到化合物INT-35。ESI-MS(m/z):394.5[M+H]+
中间体36
用1-乙酰基哌嗪替换中间体INT-34中的(S)-3-羟甲基吗啉,用类似的方法和反应步骤,可以得到化合物INT-36。ESI-MS(m/z):380.4[M+H]+
中间体37
用N-Boc-2-氨基-5-溴嘧啶替换中间体INT-28中的INT-28a,用类似的方法和反应步骤,可以得到化合物INT-37。ESI-MS(m/z):433.4[M+H]+
中间体38
用4-炔丙基硫代吗啉-1,1-二氧化物替换中间体INT-5中的INT-5b,用类似的方法和反应步骤,可以得到化合物INT-38。ESI-MS(m/z):387.5[M+H]+
中间体39
用2-氯-7,8-二氢吡啶并[4,3-d]嘧啶-6(5H)-甲酸叔丁酯替换中间体INT-28中的INT-28a,用类似的方法和反应步骤,可以得到化合物INT-39。ESI-MS(m/z):473.3[M+H]+
中间体40
中间体40由以下步骤制备:
第一步:在0℃条件下,将2-(7-偶氮苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(1.48g,3.88mmol)加入到INT-40a(800mg,3.23mmol)和N,N-二异丙基乙胺(1.25g,9.70mmol)的四氢呋喃(10mL)溶液中。在该温度下搅拌1.5小时后,向反应液中加入甲氧基甲基胺盐酸盐(347mg,3.56mmol)。升至室温继续搅拌16小时后,加入饱和氯化铵水溶液淬灭反应,乙酸乙酯萃取,合并有机相并用饱和食盐水洗涤,无水硫酸钠干燥,有机相浓缩后通过硅胶柱层析(石油醚:乙酸乙酯=3/1)纯化得到无色油状液体INT-40b(696mg,收率74.1%)。ESI-MS(m/z):291.5[M+H]+
第二步:在氮气氛围、0℃条件下,将四氢铝锂(211mg,5.56mmol)分批加入到化合物INT-40b(1.47g,5.06mmol)的四氢呋喃溶液(15mL)中。在该温度下搅拌3小时后,LCMS监测反应结束。加入水淬灭反应,乙酸乙酯萃取,合并有机相并用饱和食盐水洗涤,无水硫酸钠干燥,有机相浓缩有机相浓缩后得化合物INT-40c的粗品,不经纯化直接用于下一步反应。
第三步:将上述粗产品INT-40c和碳酸钾(1.40g,10.1mmol)加入到甲醇(15mL)中,在0℃条件下,向其滴加(1-重氮基-2-氧代丙基)膦酸二甲酯(1.94g,10.1mmol)。反应液在室温条件下搅拌16小时后,TLC监测反应结束。加入水淬灭反应,乙酸乙酯萃取,合并有机相并用饱和食盐水洗涤,无水硫酸钠干燥,有机相浓缩后通过硅胶柱层析(石油醚:乙酸乙酯=6:1)纯化得到无色透明油状化合物INT-40d(767mg,两步收率66.7%)。
第四步:将间氯过氧苯甲酸(399mg,2.31mmol)和碳酸钾(319mg,2.31mmol)依次加入到INT-40d(150mg,0.66mmol)的乙醇(6mL)的溶液中。反应液在室温条件搅拌8小时。TLC监测反应结束,加入饱和碳酸氢钠和硫代硫酸钠水溶液淬灭反应,乙酸乙酯萃取,合并有机相并用饱和食盐水洗涤,无水硫酸钠干燥,有机相浓缩后得到化合物INT-40e的粗品,不经纯化直接用于下一步反应。
第五步:在氮气氛围下,依次将(S)-3-溴-5-碘-2-(1-甲氧基乙基)吡啶INT-5a(196mg,0.57mmol)、碘化亚铜(11mg,0.057mmol)、双三苯基膦二氯化钯(40mg,0.057mmol)、三乙胺(116mg,1.15mmol)加入到上述粗产品INT-40e的四氢呋喃(5mL)溶液中。反应液在室温条件下搅拌16小时后,LCMS监测反应结束。减压浓缩反应液并通过硅胶柱层析(石油醚/乙酸乙酯=2/1)纯化得到黄色固体INT-40(227mg,收率83.7%)。ESI-MS(m/z):473.3[M+H]+
中间体41
用叔丁基-3-溴-5H,6H,7H-吡咯并[3,4-b]吡啶-6-甲酸基酯替换中间体INT-28中的INT-28a,用类似的方法和反应步骤,可以得到化合物INT-41。ESI-MS(m/z):458.4[M+H]+
中间体42
用1-BOC-7-溴吲哚替换中间体INT-28中的INT-28a,用类似的方法和反应步骤,可以得到化合物INT-42。ESI-MS(m/z):455.3[M+H]+
中间体43
中间体43由以下步骤制备:
用4-甲基-1,4-氮杂膦烷4-氧化物替换中间体INT-34中的(S)-3-羟甲基吗啉,用类似的方法和反应步骤,可以得到化合物INT-43。ESI-MS(m/z):386.2[M+H]+
中间体44
用2-叔丁氧羰基-2,7-二氮杂螺[3.5]壬烷盐酸盐替换中间体INT-34中的(S)-3-羟甲基吗啉,用类似的方法和反应步骤,可以得到化合物INT-44。ESI-MS(m/z):478.4[M+H]+
中间体45
用1-叔丁氧羰基哌嗪替换中间体INT-34中的(S)-3-羟甲基吗啉,用类似的方法和反应步骤,可以得到化合物INT-45。ESI-MS(m/z):437.4[M+H]+
中间体46
中间体46由以下步骤制备:
第一步:将化合物INT-40d(485mg,2.31mmol)溶于二氯甲烷(5mL),向其滴加三氟乙酸(1.5mL)。反应液在室温条件下搅拌30分钟。减压浓缩反应液得到化合物INT-46a。ESI-MS(m/z):128.3[M+H]+
第二步:将上述产物INT-46a溶于1,2-二氯乙烷(7mL),向其滴加甲醛水溶液(519mg,6.39mmol,37%w/w),反应20分钟后,加入三乙酰氧基硼氢化钠 (1.81g,8.52mmol)。反应液在室温条件下继续搅拌30分钟,LCMS监测反应结束。加入饱和碳酸氢钠水溶液淬灭反应,乙酸乙酯萃取,合并有机相并用饱和食盐水洗涤,无水硫酸钠干燥,有机相浓缩后通过硅胶柱层析(二氯甲烷/甲醇=20/1)纯化得到无色油状化液体INT-46b(211mg,两步收率70.1%)。ESI-MS(m/z):142.1[M+H]+
第三步:将高碘酸钠(479mg,2.24mmol)加入到INT-46b(211mg,1.49mmol)的甲醇(6mL)和水(2mL)的混合溶液中。反应液在室温条件搅拌6小时。TLC监测反应结束,加入硫代硫酸钠水溶液淬灭反应,乙酸乙酯萃取,合并有机相并用饱和食盐水洗涤,无水硫酸钠干燥,有机相浓缩后通过硅胶柱层析(二氯甲烷/甲醇=15/1)纯化得到无色油状化液体INT-46c(171mg,收率72.8%)。ESI-MS(m/z):158.3[M+H]+
第四步:将氨基甲酸叔丁酯(255mg,2.18mmol)、醋酸铑(15mg,0.054mmol)、氧化镁(175mg,4.35mmol)、醋酸碘苯(525mg,1.63mmol)、化合物INT-46c(171mg,1.09mmol)和1,2-二氯乙烷(5mL)加入到反应瓶中。反应液在80℃条件下搅拌48小时。硅藻土过滤反应液,滤液通过二氯甲烷和甲醇的混合液萃取,合并有机相并用饱和食盐水洗涤,无水硫酸钠干燥,有机相浓缩后通过硅胶柱层析(二氯甲烷/甲醇=15/1)纯化得到化合物INT-46d(219mg,收率73.9%)。ESI-MS(m/z):273.4[M+H]+
第五步:依次将(S)-3-溴-5-碘-2-(1-甲氧基乙基)吡啶INT-5a(212mg,0.62mmol)、碘化亚铜(12mg,0.062mmol)、双三苯基膦二氯化钯(44mg,0.062mmol)、三乙胺(125mg,1.24mmol)、化合物INT-46d(219mg,0.80mmol)和四氢呋喃(5mL)加入到反应瓶中。反应液置换氮气后,在室温条件下搅拌16小时,LCMS监测反应结束。减压浓缩反应液并通过硅胶柱层析(二氯甲烷/甲醇=20/1)纯化得到黄色固体INT-46(179mg,收率59.5%)。ESI-MS(m/z):486.3[M+H]+
中间体47
用1-BOC-4-溴吲哚替换中间体INT-28中的INT-28a,用类似的方法和反应步骤,可以得到化合物INT-47。ESI-MS(m/z):455.3[M+H]+
中间体48
中间体48由以下步骤制备:
第一步:将硫代吗啉INT-48a(4.0g,38.8mmol),氯甲酸苄酯(7.94g,46.5mmol),N,N-二异丙基乙胺(15.0g,116mmol)溶于二氯甲烷(40mL)中,反应液在室温下搅拌过夜。待反应结束后,将反应液用二氯甲烷萃取,有机相干燥浓缩后得到粗品。粗品经过柱层析(石油醚/乙酸乙酯=1/1)纯化得到淡黄色油状化合物INT-48b(9.0g,收率97.8%)。ESI-MS(m/z):238.3[M+H]+
第二步:将化合物INT-48b(1.0g,38.8mmol)溶于甲醇(10mL)和水(5mL)的混合溶液中,冰浴下加入高碘酸钠(1.17g,5.5mmol),反应液在室温下搅拌过夜。待反应结束后,将反应液用乙酸乙酯萃取,有机相干燥浓缩后得到粗品INT-48c(900mg,收率84.3%)。粗品不经纯化直接用于下一步反应。ESI-MS(m/z):254.3[M+H]+
第三步:将化合物INT-48c(850mg,3.36mmol)溶于1,2-二氯乙烷(15mL)中,室温下加入氨基甲酸叔丁酯(1.97g,16.8mmol)、醋酸铑(94mg,0.34mmol)、氧化镁(541mg,13.4mmol)和碘苯二乙酸(3.24g,10.1mmol),反应液在80℃下搅拌过夜。待反应结束后,浓缩反应液。粗品经过柱层析(二氯甲烷/甲醇=10/1)纯化得到淡黄色固体化合物INT-48d(1.0g,收率80.9%)。ESI-MS(m/z):369.3[M+H]+
第四步:将化合物INT-48d(850mg,2.31mmol)溶于甲醇(10mL)中,加入氢氧化钯/碳(85mg,10%w/w)。反应液在氢气氛围下室温搅拌过夜。待反应结束后,硅藻土过滤,滤液浓缩后得到淡黄色油状化合物INT-48e(410mg,收率75.9%)。ESI-MS(m/z):235.3[M+H]+
第五步:将化合物INT-48e(150mg,0.64mmol)溶于N,N-二甲基甲酰胺(3mL)中,室温下加入碳酸铯(626mg,1.92mmol)和3-溴丙炔(114mg,0.96mmol),反应液在室温下搅拌过夜。待反应结束后,将反应液用乙酸乙酯萃取,有机相干燥浓缩后得到粗品。粗品经过柱层析(石油醚/乙酸乙酯=1/1)纯化得到淡黄色固体化合物INT-48f(135mg,收率77.4%)。ESI-MS(m/z):273.3[M+H]+
第六步:将化合物INT-48f(140mg,0.51mmol)溶于四氢呋喃(5mL)中,室温下加入INT-5a(176mg,0.51mmol)、碘化亚铜(10mg,0.051mmol)、双三苯基磷二氯化钯(36mg,0.051mmol)和三乙胺(104mg,1.03mmol),反应液在室温下搅拌过夜。待反应结束后,浓缩反应液。粗品经过柱层析(二氯甲烷/甲醇=10/1)纯化得到淡黄色固体化合物INT-48(60mg,收率24.0%)。ESI-MS(m/z):486.5[M+H]+
中间体49
用哌啶替换中间体INT-6中的INT-6a,用类似的方法和反应步骤,可以得到化合物INT-49。ESI-MS(m/z):337.4[M+H]+
本发明中实施例化合物的合成方法如下:
实施例1
(1S,2S)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(3-morpholinoprop-1-yn-1-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
实施例1由以下步骤制备:
第一步:将化合物INT-5(600mg,1.77mmol)溶于1,4-二氧六环(10mL)和水(1mL)的混合溶液中,依次加入INT-1(1.16g,1.77mmol)、[1,1'-双(二苯基膦)二茂铁]二氯化钯(129.3mg,0.177mmol)和碳酸钾(1.18g,4.42mmol)。反应混合物在氮气保护下于80℃搅拌反应16小时。待反应完全后,反应液用硅藻土过滤,浓缩得到黑色粗品化合物1a(1.39g,收率100%),不经纯化直接用于下一步反应。ESI-MS(m/z):788.1[M+H]+
第二步:将粗品化合物1a(1.39g,1.77mmol)溶于四氢呋喃(3mL)和水(3mL)的混合溶液中,向其中加入氢氧化锂(211mg,8.82mmol)。反应混合 物于室温搅拌3小时。待反应完全后,用6N盐酸溶液调节反应液PH~6,用乙酸乙酯(40mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩,残余物用硅胶柱层析纯化(二氯甲烷/甲醇=30/1)得到淡黄色固体化合物1b(1.0g,收率77.3%)。ESI-MS(m/z):732.1[M+H]+
第三步:将化合物1b(1.0g,1.37mmol)溶于二氯甲烷(20mL)中,向其中加入INT-2b(1.01g,2.73mmol,TFA盐)、1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(524mg,2.73mmol)、1-羟基苯并三唑(369mg,2.73mmol)和N,N二异丙基乙胺(883mg,6.83mmol)。反应混合物于室温搅拌16小时。待反应完全后,向反应体系中加入水(50mL),用二氯甲烷(50mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩,残余物用硅胶柱层析纯化(二氯甲烷/甲醇=30/1)得到淡黄色固体化合物1c(700mg,收率59.7%)。ESI-MS(m/z):858.2[M+H]+
第四步:将化合物1c(700mg,0.815mmol)溶于四氢呋喃(3mL)和水(3mL)的混合溶液中,向其中加入氢氧化锂(195mg,8.16mmol)。反应混合物于室温搅拌4小时。待反应完全后,用6N盐酸溶液调节反应液pH=6,用乙酸乙酯(40mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩得到淡黄色固体化合物1d(640mg,收率93.0%)。ESI-MS(m/z):844.2[M+H]+
第五步:将化合物1d(370mg,0.44mmol)溶于二氯甲烷(8mL)中,向其中加入1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(840mg,4.4mmol)、1-羟基苯并三唑(296mg,2.2mmol)、4-二甲氨基吡啶(268mg,2.2mmol)和N,N二异丙基乙胺(850mg,6.6mmol)。反应混合物于室温搅拌16小时。待反应完全后,向反应体系中加入水(30mL),用二氯甲烷(30mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩,残余物用硅胶柱层析纯化(二氯甲烷/甲醇=30/1)得到淡黄色固体化合物1e(120mg,收率33.1%)。ESI-MS(m/z):826.2[M+H]+
第六步:将化合物1e(150mg,0.18mmol)溶于N,N-二甲基甲酰胺(3mL)中,向其中加入碳酸铯(118mg,0.36mmol)和碘乙烷(42.5mg,0.27mmol)。反应混合物于室温搅拌16小时。待反应完全后,向反应体系中加入水(30mL),用乙酸乙酯(30mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠 干燥,过滤浓缩得到淡黄色固体化合物1f(150mg,收率96.7%)。ESI-MS(m/z):854.2[M+H]+
第七步:将化合物1f(120mg,0.14mmol)溶于二氯甲烷(2mL)中,向其中加入三氟乙酸(0.5mL)。反应混合物于室温搅拌2小时。待反应完全后,冰浴下向反应体系中加入饱和碳酸氢钠溶液(30mL),用二氯甲烷(30mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩得到淡黄色固体化合物1g(100mg,收率94.4%)。ESI-MS(m/z):754.2[M+H]+
第八步:将化合物1g(70mg,0.093mmol)溶于N,N-二甲基甲酰胺(3mL)中,向其中加入(1S,2S)-2-甲基环丙烷羧酸INT-3b(18.6mg,0.186mmol)、二异丙基乙胺(36.0mg,0.278mmol)和(2-肟基-氰基乙酸乙酯)-N,N-二甲基-吗啉基脲六氟磷酸酯(79.5mg,0.186mmol)。反应混合物于冰浴下搅拌1小时。待反应完全后,向反应体系中加入水(20mL),用乙酸乙酯(30mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩,残留物用制备液相色谱纯化得到白色固体化合物1(15mg,收率19.3%)和差向异构体1’(20mg,收率25.8%)。两个化合物所画的绝对构型是根据经验进行的假定,在现有的分析方法中,1是极性相对较小、LC-MS保留时间和HPLC保留时间相对较长的化合物,1’是极性相对较大、LC-MS保留时间和HPLC保留时间相对较短的化合物。
化合物1:
ESI-MS(m/z):836.5[M+H]+;LC-MS保留时间RT=1.80min。HPLC保留时间RT=11.63min。
1H NMR(500MHz,DMSO-d6)δ8.81(d,J=2.0Hz,1H),8.54–8.48(m,2H),7.86(d,J=2.0Hz,1H),7.81(s,1H),7.77–7.73(m,1H),7.58(m,1H),5.56(t,J=9.0Hz,1H),5.10–5.04(m,1H),4.36–4.15(m,4H),4.14–4.01(m,1H),3.61(t,J=5.0Hz,4H),3.59–3.53(m,4H),3.32–3.29(m,1H),3.25(s,3H),3.18–3.11(m,1H),3.00–2.94(m,1H),2.79–2.73(m,1H),2.56–2.52(m,4H),2.40–2.35(m,1H),2.11–2.06(m,1H),1.85–1.73(m,2H),1.57–1.47(m,2H),1.35(d,J=6.0Hz,3H),1.11–1.03(m,4H),0.91(s,3H),0.90–0.85(m,4H),0.59–0.53(m,1H),0.34(s,3H).
化合物1’:
ESI-MS(m/z):836.5[M+H]+;LC-MS保留时间RT=1.77min。HPLC保留时间RT=11.27min。
1H NMR(500MHz,DMSO-d6)δ8.83(d,J=2.0Hz,1H),8.56–8.51(m,2H),8.00(d,J=2.0Hz,1H),7.81(s,1H),7.77–7.71(m,1H),7.57–7.52(m,1H),5.55(t,J=9.0Hz,1H),5.10–5.04(m,1H),4.28–4.17(m,2H),4.00–3.91(m,2H),3.88–3.79(m,1H),3.69–3.53(m,9H),3.18–3.13(m,1H),3.10(s,3H),3.07–3.02(m,1H),2.81–2.74(m,1H),2.57–2.52(m,4H),2.35–2.29(m,1H),2.16–2.07(m,1H),1.84–1.76(m,2H),1.56–1.48(m,2H),1.22(d,J=6.0Hz,3H),1.11(t,J=7.0Hz,3H),1.08–1.05(m,4H),0.98–0.92(m,3H),0.90–0.85(m,1H),0.58–0.54(m,1H),0.50(s,3H).
实施例2
(1r,2R,3S)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(3-morpholinoprop-1-yn-1-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2,3-dimethylcyclopropane-1-carboxamide
实施例2由以下步骤制备:
第一步:将化合物1g(30mg,0.04mmol)溶于N,N-二甲基甲酰胺(3mL)中,向其中加入(2R,3S)-2,3-二甲基环丙烷羧酸2a(9.1mg,0.08mmol)、N,N二异丙基乙胺(15.4mg,0.12mmol)和(2-肟基-氰基乙酸乙酯)-N,N-二甲基-吗啉基脲六氟磷酸酯(34.1mg,0.08mmol)。反应混合物于冰浴下搅拌1小时。待反应完全后,向反应体系中加入水(20mL),用乙酸乙酯(30mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩,残留物用制备液相色谱纯化得到白色固体化合物2(10mg,收率29.6%)和差向异构体2’(15mg,收率44.4%)。两个化合物所画的绝对构型是根据经验进行的假定,在现有的分析方法中,2是极性相对较小、LC-MS保留时间和HPLC保留时间相对较长的化合物,2’是极性相对较大、LC-MS保留时间和HPLC保留时间相对较短的化合物。
化合物2:
ESI-MS(m/z):850.6[M+H]+;LC-MS保留时间RT=1.86min。HPLC保留时间RT=12.10min。
1H NMR(500MHz,DMSO-d6)δ8.81(d,J=2.0Hz,1H),8.51–8.49(m,1H),8.39(d,J=9.0Hz,1H),7.86(d,J=2.0Hz,1H),7.82(s,1H),7.77–7.73(m,1H),7.58(d,J=9.0Hz,1H),5.56(t,J=9.0Hz,1H),5.10–5.04(m,1H),4.36–4.04(m,5H),3.63–3.59(m,4H),3.59–3.55(m,4H),3.31–3.29(m,1H),3.25(s,3H),3.18–3.12(m,1H),2.99–2.92(m,1H),2.79–2.72(m,1H),2.56–2.52(m,4H),2.42–2.36(m,1H),2.11–2.05(m,1H),1.83–1.70(m,2H),1.56–1.47(m,1H),1.35(d,J=6.0Hz,3H),1.26–1.13(m,4H),1.10–1.04(m,5H),0.91(s,3H),0.88(t,J=7.0 Hz,3H),0.34(s,3H).
化合物2’:
ESI-MS(m/z):850.6[M+H]+;LC-MS保留时间RT=1.83min。HPLC保留时间RT=11.76min。
1H NMR(500MHz,DMSO-d6)δ8.82(d,J=2.0Hz,1H),8.54–8.51(m,1H),8.41(d,J=9.0Hz,1H),8.00(d,J=2.0Hz,1H),7.82(s,1H),7.76–7.71(m,1H),7.54(d,J=9.0Hz,1H),5.53(t,J=9.0Hz,1H),5.07–5.02(m,1H),4.26–4.18(m,2H),4.00–3.91(m,2H),3.87–3.79(m,1H),3.69–3.65(m,1H),3.61(t,J=5.0Hz,4H),3.59–3.52(m,3H),3.31–3.29(m,1H),3.19–3.12(m,1H),3.09(s,3H),3.06–3.02(m,1H),2.81–2.73(m,1H),2.56–2.52(m,4H),2.34–2.30(m,1H),2.15–2.06(m,1H),1.84–1.75(m,2H),1.57–1.47(m,1H),1.25–1.20(m,4H),1.20–1.15(m,2H),1.13–1.08(m,6H),1.08–1.05(m,3H),0.93(s,3H),0.49(s,3H).
实施例3
(1S,2S)-N-((63S,4S,Z)-12-(2-((S)-1-methoxyethyl)-5-(3-morpholinoprop-1-yn-1-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
实施例3由以下步骤制备:
第一步:将化合物1g(30mg,0.036mmol)溶于N,N-二甲基甲酰胺(2mL)中,向其中加入碳酸铯(23.7mg,0.072mmol)和2,2,2-三氟乙基三氟甲烷磺酸酯(12.6mg,0.054mmol)。反应混合物于室温搅拌16小时。待反应完全后,向反应体系中加入水(30mL),用乙酸乙酯(30mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩,残留物用制备薄层色谱(DCM:MeOH=30/1)纯化得到淡黄色固体化合物3a(10mg,收率30.2%)。ESI-MS(m/z):908.2[M+H]+
第二步:将化合物3a(10mg,0.011mmol)溶于二氯甲烷(2mL)中,向其中加入三氟乙酸(0.5mL)。反应混合物于室温搅拌2小时。待反应完全后,冰浴下向反应体系中加入饱和碳酸氢钠溶液(30mL),用二氯甲烷(30mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩得到淡黄色固体化合物3b(7.0mg,收率78.7%)。ESI-MS(m/z):808.2[M+H]+
第三步:将化合物3b(7.0mg,0.011mmol)溶于N,N-二甲基甲酰胺(2mL)中,向其中加入(1S,2S)-2-甲基环丙烷羧酸INT-3b(2.2mg,0.022mmol)、N,N-二异丙基乙胺(4.2mg,0.033mmol)和(2-肟基-氰基乙酸乙酯)-N,N-二甲基-吗啉基脲六氟磷酸酯(9.4mg,0.022mmol)。反应混合物于冰浴下搅拌1小时。待反应 完全后,向反应体系中加入水(20mL),用乙酸乙酯(30mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩,残留物用制备液相色谱纯化得到白色固体化合物3(0.25mg,收率4.5%)和差向异构体3’(0.25mg,收率4.5%)。两个化合物所画的绝对构型是根据经验进行的假定,在现有的分析方法中,3是极性相对较小、LC-MS保留时间和HPLC保留时间相对较长的化合物,3’是极性相对较大、LC-MS保留时间和HPLC保留时间相对较短的化合物。
化合物3:
ESI-MS(m/z):890.2[M+H]+;LC-MS保留时间RT=1.84min。HPLC保留时间RT=13.37min。
1H NMR(500MHz,DMSO-d6)δ8.85–8.82(m,1H),8.55–8.50(m,2H),7.87(s,1H),7.86–7.81(m,2H),7.79–7.75(m,1H),5.63–5.51(m,2H),5.09–5.04(m,1H),4.89–4.81(m,1H),4.27–4.20(m,3H),3.63–3.56(m,8H),3.30–3.27(m,1H),3.19–3.11(m,2H),3.06–3.00(m,1H),2.79–2.72(m,1H),2.55–2.52(m,2H),2.40–2.36(m,1H),2.12–2.08(m,1H),2.03–1.97(m,1H),1.82–1.78(m,2H),1.54–1.49(m,2H),1.36(d,J=6.0Hz,3H),1.27–1.19(m,2H),1.10–1.05(m,4H),0.94(s,3H),0.89–0.84(m,2H),0.58–0.53(m,1H),0.29(s,3H).
化合物3’:
ESI-MS(m/z):890.2[M+H]+;LC-MS保留时间RT=1.80min。HPLC保留时间RT=12.95min。
1H NMR(500MHz,DMSO-d6)δ8.82(d,J=2.0Hz,1H),8.55–8.51(m,2H),7.95(d,J=2.0Hz,1H),7.87(s,1H),7.84–7.80(m,1H),7.71–7.67(m,1H),5.54(t,J=9.0Hz,1H),5.07–5.02(m,1H),4.98–4.79(m,2H),4.27–4.19(m,2H),3.93–3.88(m,1H),3.68–3.65(m,1H),3.64–3.59(m,4H),3.58(s,2H),3.53–3.47(m,1H),3.19–3.12(m,1H),3.09(s,3H),3.07–2.98(m,1H),2.80–2.73(m,1H),2.56–2.52(m,4H),2.47–2.42(m,1H),2.16–2.09(m,1H),1.84–1.77(m,2H),1.54–1.49(m,2H),1.24(d,J=6.0Hz,3H),1.09–1.06(m,4H),0.93(s,3H),0.90–0.83(m,2H),0.58–0.54(m,1H),0.46(s,3H).
实施例4
(1S,2S)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(3-((S)-2-methylmorpholino)prop-1-yn-1-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo- 61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
实施例4由以下步骤制备:
第一步:将化合物INT-2(102mg,0.15mmol)溶于1,4-二氧六环(3mL) 和水(0.3mL)的混合溶液中,依次加入INT-6(40mg,0.11mmol)、[1,1'-双(二苯基膦)二茂铁]二氯化钯(8.3mg,0.011mmol)和磷酸钾(72.1mg,0.33mmol)。反应混合物在氮气保护下于70℃搅拌反应16小时。待反应完全后,向反应体系中加入水(20mL),用乙酸乙酯(30mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩,残留物用制备薄层色谱(二氯甲烷/甲醇=20:1)纯化得到淡黄色固体化合物4a(60mg,收率63.1%)。ESI-MS(m/z):840.2[M+H]+
第二步:将化合物4a(60mg,0.071mmol)溶于N,N-二甲基甲酰胺(2mL)中,向其中加入碳酸铯(46.3mg,0.142mmol)和碘乙烷(16.6mg,0.106mmol)。反应混合物于室温搅拌16小时。待反应完全后,向反应体系中加入水(30mL),用乙酸乙酯(30mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩,残留物用制备薄层色谱(二氯甲烷/甲醇=30/1)纯化得到淡黄色固体化合物4b(50mg,收率81.2%)。ESI-MS(m/z):868.6[M+H]+
第三步:将化合物4b(50mg,0.058mmol)溶于二氯甲烷(2mL)中,向其中加入三氟乙酸(0.5mL)。反应混合物于室温搅拌2小时。待反应完全后,冰浴下向反应体系中加入饱和碳酸氢钠溶液(30mL),用二氯甲烷(30mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩得到淡黄色固体化合物4c(40mg,收率90.4%)。ESI-MS(m/z):768.4[M+H]+
第四步:将化合物4c(40mg,0.052mmol)溶于N,N-二甲基甲酰胺(2mL)中,向其中加入(1S,2S)-2-甲基环丙烷羧酸INT-3b(10.4mg,0.104mmol)、N,N-二异丙基乙胺(20.2mg,0.156mmol)和(2-肟基-氰基乙酸乙酯)-N,N-二甲基-吗啉基脲六氟磷酸酯(55.8mg,0.104mmol)。反应混合物于冰浴下搅拌1小时。待反应完全后,向反应体系中加入水(20mL),用乙酸乙酯(30mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩,残留物用制备液相色谱纯化得到白色固体化合物4(6mg,收率13.6%)和差向异构体4’(9mg,收率20.3%)。两个化合物所画的绝对构型是根据经验进行的假定,在现有的分析方法中,4是极性相对较小、LC-MS保留时间和HPLC保留时间相对较长的化合物,4’是极性相对较大、LC-MS保留时间和HPLC保留时间相对较短的化合物。
化合物4:
ESI-MS(m/z):850.4[M+H]+;LC-MS保留时间RT=1.88min。HPLC保留时 间RT=13.62min。
1H NMR(500MHz,DMSO-d6)δ8.81(d,J=2.0Hz,1H),8.53–8.48(m,2H),7.86(d,J=2.0Hz,1H),7.81(s,1H),7.77–7.73(m,1H),7.58(d,J=8.5Hz,1H),5.56(t,J=9.0Hz,1H),5.10–5.06(m,1H),4.36–4.13(m,4H),4.12–4.02(m,1H),3.80–3.75(m,1H),3.61–3.48(m,6H),3.25(s,3H),3.18–3.11(m,1H),2.99–2.94(m,1H),2.81–2.70(m,3H),2.40–2.36(m,1H),2.30–2.24(m,1H),2.11–2.05(m,1H),2.00–1.94(m,2H),1.83–1.75(m,2H),1.53–1.47(m,2H),1.35(d,J=6.0Hz,3H),1.08–1.04(m,7H),0.92–0.85(m,8H),0.57–0.53(m,1H),0.34(s,3H).
化合物4’:
ESI-MS(m/z):850.4[M+H]+;LC-MS保留时间RT=1.85min。HPLC保留时间RT=13.25min。
1H NMR(500MHz,DMSO-d6)δ8.82(d,J=2.0Hz,1H),8.56–8.49(m,2H),7.99(d,J=2.0Hz,1H),7.81(s,1H),7.76–7.72(m,1H),7.54(d,J=8.5Hz,1H),5.55(t,J=9.0Hz,1H),5.07–5.02(m,1H),4.28–4.17(m,2H),4.00–3.91(m,2H),3.87–3.75(m,2H),3.70–3.64(m,1H),3.60–3.48(m,4H),3.20–3.02(m,5H),2.81–2.68(m,3H),2.35–2.24(m,2H),2.15–2.09(m,1H),2.03–1.93(m,2H),1.84–1.75(m,2H),1.56–1.47(m,2H),1.42–1.38(m,1H),1.27–1.19(m,7H),1.14–1.05(m,6H),0.93(s,3H),0.89–0.82(m,2H),0.59–0.53(m,1H),0.50(s,2H).
实施例5
(1S,2S)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(4-morpholinobut-1-yn-1-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
实施例5由以下步骤制备:
第一步:将化合物INT-2(100mg,0.14mmol)溶于1,4-二氧六环(5mL)和水(1mL)的混合溶液中,依次加入INT-7(51mg,0.14mmol)、[1,1'-双(二苯 基膦)二茂铁]二氯化钯(10mg,0.01mmol)和磷酸钾(60mg,0.28mmol)。反应混合物在氮气保护下于70℃搅拌反应16小时。待反应完全后,反应液用硅藻土过滤,浓缩残余物用硅胶柱层析纯化(二氯甲烷/甲醇=20/1)得到淡黄色油状化合物5a(65mg,收率53.7%)。ESI-MS(m/z):840.1[M+H]+
第二步:将化合物5a(60mg,0.07mmol)溶于N,N-二甲基甲酰胺(2mL)中,向其中加入碳酸铯(46mg,0.14mmol)和碘乙烷(22mg,0.14mmol)。反应混合物于室温搅拌16小时。待反应完全后,向反应体系中加入水(15mL),用乙酸乙酯(20mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩得到淡黄色固体化合物5b(25mg,收率40.3%)。ESI-MS(m/z):868.2[M+H]+
第三步:将化合物5b(25mg,0.03mmol)溶于二氯甲烷(2mL)中,向其中加入三氟乙酸(0.5mL)。反应混合物于室温搅拌2小时。待反应完全后,冰浴下向反应体系中加入饱和碳酸氢钠溶液(20mL),用二氯甲烷(20mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩得到淡黄色固体化合物5c(20mg,收率90.9%)。ESI-MS(m/z):768.2[M+H]+
第四步:将化合物5c(20mg,0.03mmol)溶于N,N-二甲基甲酰胺(1mL)中,向其中加入(1S,2S)-2-甲基环丙烷羧酸INT-3b(5.0mg,0.05mmol)、N,N-二异丙基乙胺(10mg,0.07mmol)和(2-肟基-氰基乙酸乙酯)-N,N-二甲基-吗啉基脲六氟磷酸酯(11mg,0.03mmol)。反应混合物于冰浴下搅拌1小时。待反应完全后,向反应体系中加入水(20mL),用乙酸乙酯(20mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩,残留物用制备液相色谱纯化得到白色固体化合物5(5mg,收率22.7%)和差向异构体5’(7mg,收率31.8%)。两个化合物所画的绝对构型是根据经验进行的假定,在现有的分析方法中,5是极性相对较小、LC-MS保留时间和HPLC保留时间相对较长的化合物,5’是极性相对较大、LC-MS保留时间和HPLC保留时间相对较短的化合物。
化合物5:
ESI-MS(m/z):850.6[M+H]+;LC-MS保留时间RT=1.89min。HPLC保留时间RT=13.37min。
1H NMR(500MHz,DMSO-d6)δ8.75(d,J=2.0Hz,1H),8.55–8.48(m,2H),7.81(s,1H),7.78–7.73(m,2H),7.58(d,J=8.5Hz,1H),5.56(t,J=9.0Hz,1H), 5.10–5.06(m,1H),4.37–4.04(m,5H),3.60–3.54(m,6H),3.25(s,3H),3.18–3.11(m,1H),2.98–2.94(m,1H),2.80–2.72(m,1H),2.69–2.57(m,4H),2.47–2.42(m,4H),2.39–2.35(m,1H),2.11–2.07(m,1H),1.83–1.76(m,2H),1.53–1.46(m,2H),1.34(d,J=6.0Hz,3H),1.07(s,3H),0.91(s,3H),0.87(t,J=7.0Hz,3H),0.57–0.53(m,1H),0.33(s,3H).
化合物5’:
ESI-MS(m/z):850.6[M+H]+;LC-MS保留时间RT=1.83min。HPLC保留时间RT=13.01min。
1H NMR(500MHz,DMSO-d6)δ8.76(d,J=2.0Hz,1H),8.56–8.50(m,2H),7.91(d,J=2.0Hz,1H),7.81(s,1H),7.74(dd,J=8.5,1.5Hz,1H),7.54(d,J=8.5Hz,1H),5.54(t,J=9.0Hz,1H),5.10–5.06(m,1H),4.27–4.15(m,2H),3.97–3.88(m,2H),3.84–3.77(m,1H),3.70–3.66(m,1H),3.59–3.55(m,5H),3.18–3.14(m,1H),3.08(s,3H),3.07–3.02(m,1H),2.80–2.73(m,1H),2.68–2.57(m,5H),2.47–2.42(m,4H),2.34–2.28(m,1H),2.15–2.10(m,1H),1.84–1.77(m,2H),1.56–1.47(m,2H),1.21(d,J=6.0Hz,3H),1.10(t,J=7.0Hz,3H),1.07(s,3H),0.93(s,3H),0.90–0.84(m,2H),0.55(d,J=6.0Hz,1H),0.49(s,3H).
实施例6
(1S,2S)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(((S)-4-methylmorpholin-2-yl)ethynyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
实施例6由以下步骤制备:
第一步:将化合物INT-2(120mg,0.172mmol)溶于1,4-二氧六环(3mL)和水(0.3mL)的混合溶液中,依次加入INT-8(45mg,0.133mmol)、[1,1'-双(二苯基膦)二茂铁]二氯化钯(9.7mg,0.013mmol)和磷酸钾(84.5mg,0.399mmol)。反应混合物在氮气保护下于70℃搅拌反应16小时。待反应完全后,向反应体系中加入水(20mL),用乙酸乙酯(30mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩,残留物用制备薄层色谱纯化得到淡黄色固体化合物6a(65mg,收率59.3%)。ESI-MS(m/z):826.2[M+H]+
第二步:将化合物6a(65mg,0.079mmol)溶于N,N-二甲基甲酰胺(2mL)中,向其中加入碳酸铯(51.3mg,0.157mmol)和碘乙烷(18.4mg,0.118mmol)。反应混合物于室温搅拌16小时。待反应完全后,向反应体系中加入水(30mL),用乙酸乙酯(30mL*2)萃取,合并有机相,并用饱和食盐水洗 涤,无水硫酸钠干燥,过滤浓缩,残留物用制备薄层色谱(二氯甲烷/甲醇=30/1)纯化得到淡黄色固体化合物6b(50mg,收率74.4%)。ESI-MS(m/z):854.4[M+H]+
第三步:将化合物6b(50mg,0.059mmol)溶于二氯甲烷(2mL)中,向其中加入三氟乙酸(0.5mL)。反应混合物于室温搅拌2小时。待反应完全后,冰浴下向反应体系中加入饱和碳酸氢钠溶液(30mL),用二氯甲烷(30mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩得到淡黄色固体化合物6c(40mg,收率90.6%)。ESI-MS(m/z):754.4[M+H]+
第四步:将化合物6c(40mg,0.053mmol)溶于N,N-二甲基甲酰胺(2mL)中,向其中加入(1S,2S)-2-甲基环丙烷羧酸INT-3b(10.6mg,0.106mmol)、N,N-二异丙基乙胺(20.6mg,0.159mmol)和(2-肟基-氰基乙酸乙酯)-N,N-二甲基-吗啉基脲六氟磷酸酯(45.4mg,0.106mmol)。反应混合物于冰浴下搅拌1小时。待反应完全后,向反应体系中加入水(20mL),用乙酸乙酯(30mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩,残留物用制备液相色谱纯化得到白色固体化合物6(8mg,收率18.0%)和差向异构体6’(10mg,收率22.5%)。两个化合物所画的绝对构型是根据经验进行的假定,在现有的分析方法中,6是极性相对较小、LC-MS保留时间和HPLC保留时间相对较长的化合物,6’是极性相对较大、LC-MS保留时间和HPLC保留时间相对较短的化合物。
化合物6:
ESI-MS(m/z):836.4[M+H]+;LC-MS保留时间RT=1.80min。HPLC保留时间RT=13.34min。
1H NMR(500MHz,DMSO-d6)δ8.81(d,J=2.0Hz,1H),8.54–8.48(m,2H),7.86(d,J=2.0Hz,1H),7.81(s,1H),7.77–7.74(m,1H),7.58(d,J=8.5Hz,1H),5.56(t,J=9.0Hz,1H),5.10–5.05(m,1H),4.63–4.57(m,1H),4.37–4.16(m,4H),4.11–4.04(m,1H),3.90–3.83(m,1H),3.61–3.54(m,3H),3.25(s,3H),3.18–3.11(m,1H),3.00–2.93(m,1H),2.80–2.72(m,2H),2.48–2.44(m,1H),2.40–2.36(m,1H),2.34–2.28(m,1H),2.22–2.17(m,4H),2.11–2.04(m,1H),1.83–1.75(m,2H),1.53–1.47(m,2H),1.35(d,J=6.0Hz,3H),1.10–1.04(m,5H),0.92(s,3H),0.90–0.85(m,4H),0.57–0.52(m,1H),0.33(s,3H).
化合物6’:
ESI-MS(m/z):836.4[M+H]+;LC-MS保留时间RT=1.76min。HPLC保留时间RT=12.94min。
1H NMR(500MHz,DMSO-d6)δ8.82(d,J=2.0Hz,1H),8.56–8.50(m,2H),8.00(d,J=2.0Hz,1H),7.81(s,1H),7.76–7.71(m,1H),7.54(d,J=8.5Hz,1H),5.54(t,J=9.0Hz,1H),5.07–5.02(m,1H),4.64–4.58(m,1H),4.28–4.18(m,2H),3.98–3.91(m,2H),3.88–3.79(m,2H),3.71–3.64(m,1H),3.62–3.50(m,2H),3.31–3.27(m,1H),3.18–3.12(m,1H),3.09(s,3H),3.07–3.02(m,1H),2.80–2.74(m,2H),2.48–2.43(m,1H),2.34–2.26(m,2H),2.21(s,3H),2.19–2.09(m,2H),1.85–1.75(m,2H),1.54–1.48(m,2H),1.21(d,J=6.0Hz,3H),1.13–1.06(m,7H),0.93(s,3H),0.90–0.86(m,1H),0.58–0.54(m,1H),0.49(s,3H).
实施例7
(1S,2S)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(((R)-4-methylmorpholin-3-yl)ethynyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
实施例7由以下步骤制备:
第一步:将中间体INT-2(98mg,0.14mmol)和中间体INT-10(40mg,0.12mmol)溶于1,4-二氧六环(2mL)和水(0.2mL)的混合溶剂中,加入[1,1'-双(二苯基膦)二茂铁]二氯化钯和磷酸钾(75mg,0.35mmol)。反应体系置换氮气后加热至70℃搅拌12小时。待反应液冷却至室温,反应液用硅藻土过滤,滤液浓缩。残余物用制备薄层色谱(二氯甲烷/甲醇=30/1)纯化得到化合物7a(92mg,收率94%)。ESI-MS(m/z):826.5[M+H]+
第二步:将化合物7a(92mg,0.11mmol)溶于N,N-二甲基甲酰胺(2mL)中,加入碳酸铯(73mg,0.22mmol),随后将碘乙烷(35mg,0.22mmol)滴加至反应液中,反应液在50℃下搅拌6小时。待反应液冷却至室温,向反应体系中加入饱和食盐水(20mL),用乙酸乙酯(30mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩,得到化合物7b(80mg,收率84%)的粗品。ESI-MS(m/z):854.5[M+H]+
第三步:将化合物7b(80mg,0.09mmol)溶于二氯甲烷(1mL)中,将反应液冷却至0℃,随后将三氟乙酸(53mg,0.47mmol)滴加至反应液。反应继续在0℃下搅拌1小时。反应液用饱和碳酸氢钠水溶液淬灭,用二氯甲烷萃取,分液,有机相用无水硫酸钠干燥,过滤浓缩,得到化合物7c(70mg,收率99%)的粗品。ESI-MS(m/z):754.4[M+H]+
第四步:将化合物7c(70mg,0.09mmol)和中间体INT-3b(18mg,0.19mmol)溶于N,N-二甲基甲酰胺(3mL)中,加入N,N-二异丙基乙胺(36mg,0.28mmol)和(2-肟基-氰基乙酸乙酯)-N,N-二甲基-吗啉基脲六氟磷酸酯(36mg,0.19mmol),反应液在0℃下搅拌30分钟。向反应体系中加入饱和食盐水(20mL),用乙酸乙酯(30mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩,残留物用制备液相色谱纯化得到白色固体化合物7(7mg,收率9%)和差向异构体7’(10mg,收率12.9%)。两个化合物所画的绝对构型是根据经验进行的假定,在现有的分析方法中,7是极性相对较小、LC-MS保留时间和HPLC保留时间相对较长的化合物,7’是极性相对较大、LC-MS保留时间和HPLC保留时间相对较短的化合物。
化合物7:
ESI-MS(m/z):836.6[M+H]+。LC-MS保留时间RT=2.09min。HPLC保留时间RT=13.10min。
1H NMR(500MHz,DMSO)δ8.81(d,J=2.0Hz,1H),8.53–8.48(m,2H),7.85(d,J=2.0Hz,1H),7.81(s,1H),7.75(dd,J=8.5,2.0Hz,1H),7.58(d,J=8.5Hz,1H),5.56(t,J=9.0Hz,1H),5.09–5.05(m,1H),4.35–4.16(m,4H),4.10–4.05(m,1H),3.79–3.75(m,1H),3.72–3.56(m,5H),3.53–3.48(m,1H),3.32–3.28(m,2H),3.25(s,3H),3.17–3.08(m,2H),3.00–2.95(m,1H),2.79–2.72(m,1H),2.68–2.62(m,1H),2.40–2.33(m,4H),2.32–2.27(m,1H),2.11–2.07(m,1H),1.83–1.74(m,2H),1.54–1.46(m,2H),1.35(d,J=6.0Hz,3H),1.10–1.02(m,4H),0.92(s,3H),0.87(t,J=7.0Hz,3H),0.58–0.52(m,1H),0.34(s,3H).
化合物7’:
ESI-MS(m/z):836.6[M+H]+。LC-MS保留时间RT=2.06min。HPLC保留时间RT=12.76min。
1H NMR(500MHz,DMSO)δ8.84–8.80(m,1H),8.53(d,J=9.0Hz,2H),7.99 (d,J=1.5Hz,1H),7.81(s,1H),7.74(dd,J=9.0,1.5Hz,1H),7.54(d,J=9.0Hz,1H),5.54(t,J=9.0Hz,1H),5.07–5.02(m,1H),4.25–4.20(m,1H),3.98–3.92(m,1H),3.86–3.82(m,1H),3.78–3.72(m,1H),3.70–3.65(m,3H),3.63–3.59(m,1H),3.57–3.49(m,2H),3.33–3.28(m,2H),3.18–3.12(m,1H),3.09(s,3H),3.07–3.02(m,1H),2.79–5.75(m,1H),2.68–2.61(m,1H),2.36–2.31(m,3H),2.32–2.25(m,2H),2.14–2.09(m,1H),1.85–1.75(m,2H),1.54–1.48(m,2H),1.21(d,J=6.0Hz,3H),1.11(t,J=7.0Hz,3H),1.10–1.05(m,4H),0.93(s,3H),0.90–0.85(m,1H),0.60–0.52(m,1H),0.50(s,3H).
实施例8
(1S,2S)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(((R)-4-methylmorpholin-2-yl)ethynyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
实施例8由以下步骤制备:
第一步:将中间体INT-2(98mg,0.14mmol)和中间体INT-11(40mg,0.12mmol)溶于1,4-二氧六环(2mL)和水(0.2mL)的混合溶剂中,加入[1,1'-双(二苯基膦)二茂铁]二氯化钯(9mg,0.01mmol)和磷酸钾(75mg,0.35mmol)。反应体系置换氮气后加热至70℃搅拌12小时。待反应液冷却至室温,反应液用硅藻土过滤,滤液浓缩。残余物用制备薄层色谱(二氯甲烷/甲醇=30/1)纯化得到化合物8a(37mg,收率38%)。ESI-MS(m/z):826.5[M+H]+
第二步:将化合物8a(37mg,0.05mmol)溶于N,N-二甲基甲酰胺(2mL)中,加入碳酸铯(29mg,0.09mmol),随后将碘乙烷(14mg,0.09mmol)滴加至反应液中,反应液在50℃下搅拌6小时。待反应液冷却至室温,向反应体系中加入饱和食盐水(20mL),用乙酸乙酯(30mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩,得到化合物8b(30mg,收率78%)的粗品。ESI-MS(m/z):854.3[M+H]+
第三步:将化合物8b(30mg,0.04mmol)溶于二氯甲烷(1mL)中,将反应液冷却至0℃,随后将三氟乙酸(20mg,0.18mmol)滴加至反应液。反应继续在0℃下搅拌1小时。反应液用饱和碳酸氢钠水溶液淬灭,用二氯甲烷萃取,分液,有机相用无水硫酸钠干燥,过滤浓缩,得到化合物8c(26mg,收率99%)的粗品。ESI-MS(m/z):754.5[M+H]+
第四步:将化合物8c(26mg,0.04mmol)和中间体INT-3(7mg,0.07mmol)溶于N,N-二甲基甲酰胺(2mL)中,加入N,N-二异丙基乙胺(13mg,0.10mmol)和(2-肟基-氰基乙酸乙酯)-N,N-二甲基-吗啉基脲六氟磷酸酯(14mg,0.07mmol),反应液在0℃下搅拌30分钟。向反应体系中加入饱和食盐水(20mL),用乙酸乙酯(30mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩,残留物用制备液相色谱纯化得到白色固体化合物8(3mg,收率10%)和差向异构体8’(5mg,收率17.8%)。两个化合物所画的绝对构型是根据经验进行的假定,在现有的分析方法中,8是极性相对较小、LC-MS保留时间和HPLC保留时间相对较长的化合物,8’是极性相对较大、LC-MS保留时间和HPLC保留时间相对较短的化合物。
化合物8:
ESI-MS(m/z):836.2[M+H]+。LC-MS保留时间RT=1.81min。HPLC保留时间RT=13.43min。
1H NMR(500MHz,DMSO)δ8.81(d,J=2.0Hz,1H),8.55–8.50(m,2H),7.85(d,J=2.0Hz,1H),7.81(s,1H),7.75(d,J=8.5Hz,1H),7.58(d,J=8.5Hz,1H),5.56(t,J=9.0Hz,1H),5.09–5.05(m,1H),4.64–4.58(m,1H),4.38–4.15(m,5H),4.10–4.04(m,1H),3.88–3.83(m,1H),3.61–3.54(m,3H),3.32–3.31(m,2H),3.25(s,3H),3.17–3.08(m,2H),2.99–2.95(m,1H),2.80–2.72(m,2H),2.40–2.35(m,1H),2.32–2.28(m,1H),2.20(s,3H),2.11–2.05(m,1H),1.81–1.76(m,2H),1.53–1.46(m,2H),1.35(d,J=6.0Hz,3H),1.10–1.05(m,4H),0.91(s,3H),0.87(t,J=7.0Hz,3H),0.58–0.52(m,1H),0.33(s,3H).
化合物8’:
ESI-MS(m/z):836.2[M+H]+。LC-MS保留时间RT=1.78min。HPLC保留时间RT=13.01min。
1H NMR(500MHz,DMSO)δ8.82(d,J=2.0Hz,1H),8.53(d,J=9.0Hz,2H), 8.00(d,J=2.0Hz,1H),7.81(s,1H),7.74(dd,J=9.0,2.0Hz,1H),7.54(d,J=9.0Hz,1H),5.54(t,J=9.0Hz,1H),5.07–5.02(m,1H),4.64–4.58(m,1H),4.25–4.20(m,2H),4.00–3.90(m,2H),3.88–3.79(m,2H),3.68–3.62(m,1H),3.60–3.57(m,1H),3.58–3.50(m,1H),3.34–3.28(m,2H),3.18–3.14(m,1H),3.09(s,3H),3.08–3.02(m,1H),2.78–2.73(m,2H),2.50–3.45(m,1H),2.32–2.25(m,2H),2.24–2.18(m,3H),2.19–2.06(m,2H),1.83–1.77(m,2H),1.56–1.47(m,2H),1.21(d,J=6.0Hz,3H),1.12–1.17(m,6H),0.93(s,3H),0.89–0.85(m,1H),0.58–0.52(m,1H),0.49(s,3H).
实施例9
(1S,2S)-N-((63S,4S,Z)-12-(5-(3-((2S,6R)-2,6-dimethylmorpholino)prop-1-yn-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-11-ethyl-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
实施例9由以下步骤制备:
第一步:将INT-3(85.0mg,0.12mmol),INT-9(30mg,0.08mmol),1,1-双(二苯基膦)二荗铁二氯化钯(6.0mg,0.008mmol),磷酸钾(52.0mg,0.25mmol)溶于1,4-二氧六环(5mL)与水(1mL)的混合溶液中,反应液在氮气氛围下70℃搅拌过夜。反应结束后,将反应液过滤,滤液浓缩后得到粗品。粗品经柱层析(二氯甲烷/甲醇=10/1)纯化得到棕色油状化合物9a(69.8mg,收率100%)。ESI-MS(m/z):854.3[M+H]+
第二步:将化合物9a(60.0mg,0.07mmol),碳酸铯(45.8mg,0.14mmol),碘乙烷(21.9mg,0.14mmol)溶于N,N-二甲基甲酰胺(2mL)中,反应液在室温下搅拌过夜。反应结束后,将反应液用乙酸乙酯萃取。然后将有机相合并干燥浓缩后得到淡黄色油状化合物9b(62.0mg,收率100%)。ESI-MS(m/z):882.5[M+H]+
第三步:将化合物9b(60mg,0.07mmol)溶于二氯甲烷(2mL)中,向上述反应液中加入三氟乙酸(78mg,0.68mmol),反应液在室温下搅拌过夜。反应结束后,向反应液中加入饱和碳酸氢钠水溶液。将中和后的反应液用二氯甲烷进行萃取,合并有机相干燥浓缩后得到化合物9c(53.2mg,收率100%)。ESI-MS(m/z):782.5[M+H]+
第四步:将化合物9c(60mg,0.08mmol),INT-3b(15.4mg,0.15mmol),N,N-二异丙基乙胺(49.6mg,0.38mmol)溶于N,N-二甲基甲酰胺(2mL)中,在0℃下向上述反应液之中加入(2-肟基-氰基乙酸乙酯)-N,N-二甲基-吗啉基脲六氟磷酸酯(65.7mg,0.15mmol),反应液在0℃下反应2小时。反应结束后,将反应液用乙酸乙酯进行萃取,合并有机相干燥浓缩后得到粗品,粗品经制备液相色谱纯化得到化合物9(4mg,收率6.0%)和差向异构体9’(6mg,收率9.0%)。两个化合物所画的绝对构型是根据经验进行的假定,在现有的分析方法中,9是极性相对较小、LC-MS保留时间和HPLC保留时间相对较长的化合物,9’是极性相对较大、LC-MS保留时间和HPLC保留时间相对较短的化合物。
化合物9:
ESI-MS(m/z):864.6[M+H]+;LC-MS保留时间RT=1.95min。HPLC保留时间RT=14.28min。
1H NMR(500MHz,DMSO-d6)δ8.81(d,J=2.0Hz,1H),8.53–8.49(m,2H),7.85(d,J=2.5Hz,1H),7.81(s,1H),7.76–7.74(m,1H),7.59–7.57(m,1H),5.56(t,J=9.0Hz,1H),5.10–5.05(m,1H),4.40–4.15(m,5H),4.12–4.05(m,1H),3.62–3.55(m,7H),3.25(s,3H),3.17–3.12(m,1H),2.98–2.95(m,1H),2.78–2.75(m,3H),2.40–2.35(m,1H),2.09–2.07(m,1H),1.93–1.88(m,2H),1.79–1.76(m,2H),1.60–1.45(m,3H),1.35(d,J=6.0Hz,3H),1.27–1.22(m,1H),1.10–1.02(m,6H),0.91(s,3H),0.90–0.85(m,5H),0.56–0.52(m,1H),0.34(s,3H).
化合物9’:
ESI-MS(m/z):864.6[M+H]+;LC-MS保留时间RT=1.87min。HPLC保留时间RT=13.84min。
实施例10
(1S,2S)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(((R)-1- methylpyrrolidin-2-yl)ethynyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
实施例10由以下步骤制备:
第一步:将中间体INT-3(55mg,0.08mmol)和中间体INT-15(30mg,0.08 mmol)溶于1,4-二氧六环(3mL)和水(0.2mL)的混合溶剂中,加入1,1-双(二苯基膦)二荗铁二氯化钯(6mg,0.01mmol)和磷酸钾(47mg,0.02mmol)。反应体系置换氮气后加热至70℃搅拌12小时。待反应液冷却至室温,反应液用硅藻土过滤,滤液浓缩。残余物用制备薄层色谱(二氯甲烷/甲醇=30/1)纯化得到化合物10a(62mg,收率96%)。ESI-MS(m/z):879.2[M+H]+
第二步:将化合物10a(62mg,0.07mmol)溶于DMF(2mL)中,加入碳酸铯(47mg,0.14mmol),随后将碘乙烷(23mg,0.14mmol)滴加至反应液中,反应液在室温下搅拌6小时。LCMS检测反应结束。向反应体系中加入饱和食盐水,乙酸乙酯萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩,得到化合物10b(64mg,收率99%)的粗品。ESI-MS(m/z):908.3[M+H]+
第三步:将化合物10b(64mg,0.07mmol)溶于二氯甲烷(1mL)中,在0℃下将三氟乙酸(41mg,0.36mmol)滴加至反应液中。反应液在0℃下搅拌1小时。LCMS检测反应结束。向反应体系中加入饱和碳酸氢钠水溶液淬灭反应,二氯甲烷萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩,得到化合物10c(57mg,收率99%)的粗品。ESI-MS(m/z):807.6[M+H]+
第四步:将化合物10c(57mg,0.07mmol)的粗品溶于甲醇(2mL),在室温下将甲醛水溶液(0.05mL,37%w/w)滴加至反应液中,反应液在室温下搅拌10min。随后将氰基硼氢化钠(14mg,0.21mmol)缓慢加入至反应液,反应液继续在室温下搅拌3小时。LCMS检测反应完全。向反应体系中加入饱和氯化铵水溶液淬灭反应,二氯甲烷萃取,合并并浓缩有机相,残余物用制备液相色谱纯化得到白色固体化合物10(3.0mg,收率5.2%)和差向异构体10’(4.0mg,收率6.9%)。两个化合物所画的绝对构型是根据经验进行的假定,在现有的分析方法中,10是极性相对较小、LC-MS保留时间和HPLC保留时间相对较长的化合物,10’是极性相对较大、LC-MS保留时间和HPLC保留时间相对较短的化合物。
化合物10:
ESI-MS(m/z):820.0[M+H]+。LC-MS保留时间RT=1.97min。HPLC保留时间RT=14.55min。
1H NMR(500MHz,DMSO)δ8.79(d,J=2.0Hz,1H),8.55–8.47(m,2H),7.82(d,J=2.0Hz,1H),7.81(s,1H),7.75(dd,J=8.5,2.0Hz,1H),7.58(d,J=8.5Hz,1H),5.56(t,J=9.0Hz,1H),5.10–5.05(m,1H),4.36–4.15(m,4H),4.12–4.03(m, 1H),3.57(s,2H),3.41–3.35(m,1H),3.25(s,3H),3.17–3.11(m,1H),3.00–2.94(m,1H),2.83–2.72(m,2H),2.41–2.31(m,5H),2.19–2.11(m,1H),2.13–2.05(m,1H),1.94–1.68(m,6H),1.56–1.46(m,2H),1.35(d,J=6.0Hz,3H),1.26–1.20(m,1H),1.06(s,3H),0.91(s,3H),0.93–0.88(m,4H),0.57–0.52(m,1H),0.34(s,3H).
化合物10’:
ESI-MS(m/z):820.0[M+H]+。LC-MS保留时间RT=1.90min。HPLC保留时间RT=13.87min。
1H NMR(500MHz,DMSO)δ8.80(d,J=2.0Hz,1H),8.53(dd,J=9.0,2.0Hz,2H),7.96(d,J=2.0Hz,1H),7.81(s,1H),7.74(dd,J=8.5,1.5Hz,1H),7.54(d,J=8.5Hz,1H),5.54(t,J=9.0Hz,1H),5.07–5.02(m,1H),4.27–4.18(m,2H),3.99–3.90(m,2H),3.85–3.80(m,1H),3.70–3.66(m,1H),3.57–3.52(m,1H),3.42–3.37(m,1H),3.31(s,2H),3.19–3.01(m,5H),2.80–2.75(m,2H),2.40–2.28(m,5H),2.18–2.12(m,2H),1.92–1.69(m,5H),1.57–1.47(m,2H),1.21(d,J=6.0Hz,3H),1.10(t,J=7.0Hz,3H),1.07(s,3H),0.93(s,3H),0.90–0.85(m,1H),0.59–1.47(m,2H),,0.50(s,3H).
实施例11
(1r,2R,3S)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(((S)-1-methylpyrrolidin-2-yl)ethynyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2,3-dimethylcyclopropane-1-carboxamide
实施例11由以下步骤制备:
第一步:将中间体INT-4(93mg,0.14mmol)和中间体INT-16(50mg,0.12mmol)溶于1,4-二氧六环(3mL)和水(0.2mL)的混合溶剂中,加入1,1-双(二苯基膦)二荗铁二氯化钯(9mg,0.01mmol)和磷酸钾(78mg,0.37mmol)。应体系置换氮气后加热至70℃搅拌12小时。待反应液冷却至室温,反应液用硅藻土过滤,滤液浓缩。残余物用制备薄层色谱(二氯甲烷/甲醇=30/1)纯化得到化合物11a(105mg,收率96%)。ESI-MS(m/z):892.4[M+H]+
第二步:将化合物11a(105mg,0.12mmol)溶于DMF(2mL)中,加入碳酸铯(115mg,0.35mmol),随后将碘乙烷(55mg,0.35mmol)滴加至反应液中,反应液在室温下搅拌6小时。LCMS检测反应结束。向反应体系中加入饱和食盐水,乙酸乙酯萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩,得到化合物11b(108mg,收率99%)的粗品。ESI-MS(m/z):920.5[M+H]+
第三步:将化合物11b(108mg,0.12mmol)溶于二氯甲烷(1mL)中,在 0℃下将三氟乙酸(67mg,0.59mmol)滴加至反应液中。反应液在0℃下搅拌1小时。LCMS检测反应结束。向反应体系中加入饱和碳酸氢钠水溶液淬灭反应,二氯甲烷萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩,得到化合物11c(96mg,收率99%)的粗品。ESI-MS(m/z):820.4[M+H]+
第四步:将化合物11c(96mg,0.12mmol)的粗品溶于甲醇(2mL),在室温下将甲醛水溶液(0.05mL)滴加至反应液中,反应液在室温下搅拌10min。随后将氰基硼氢化钠(22mg,0.35mmol)缓慢加入至反应液,反应液继续在室温下搅拌3小时。LCMS检测反应完全。向反应体系中加入饱和氯化铵水溶液淬灭反应,二氯甲烷萃取,合并并浓缩有机相,残余物用制备液相色谱纯化得到白色固体化合物11(3.0mg,收率3%)和差向异构体11’(5.0mg,收率5%)。两个化合物所画的绝对构型是根据经验进行的假定,在现有的分析方法中,11是极性相对较小、LC-MS保留时间和HPLC保留时间相对较长的化合物,11’是极性相对较大、LC-MS保留时间和HPLC保留时间相对较短的化合物。
化合物11:
ESI-MS(m/z):834.5[M+H]+。LC-MS保留时间RT=2.07min。HPLC保留时间RT=15.25min。
1H NMR(500MHz,DMSO)δ8.79(d,J=2.0Hz,1H),8.50(s,1H),8.39(d,J=8.5Hz,1H),7.82(d,J=2.0Hz,1H),7.81(s,1H),7.75(dd,J=8.5Hz,2.0Hz,1H),7.58(d,J=8.5Hz,1H),5.55(t,J=9.0Hz,1H),5.09–5.02(m,1H),4.37-4.13(m,5H),4.12-4.02(m,1H),3.57(s,2H),3.24(s,3H),3.18-3.10(m,1H),2.99–2.92(m,1H),2.82–2.77(m,1H),2.76-2.71(m,1H),2.36(s,3H),2.35–2.31(m,1H),2.19–2.12(m,1H),2.10-2.05(m,1H),1.94–1.72(m,6H),1.55-1.46(m,1H),1.35(d,J=6.0Hz,3H),1.26–1.20(m,1H),1.19–1.16(m,2H),1.11–1.04(m,6H),0.91(s,3H),0.88(t,J=7.0Hz,3H),0.35(s,3H).
化合物11’:
ESI-MS(m/z):834.5[M+H]+。LC-MS保留时间RT=2.01min。HPLC保留时间RT=14.61min。
实施例12
(1S,2S)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((1- methylazetidin-3-yl)ethynyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
实施例12由以下步骤制备:
用INT-12替换实施例10中INT-15,用类似的方法和反应步骤,可以得到化合物12和差向异构体12’。两个化合物所画的绝对构型是根据经验进行的假定,在现有的分析方法中,12是极性相对较小、LC-MS保留时间和HPLC保留时间相对较长的化合物,12’是极性相对较大、LC-MS保留时间和HPLC保留时间相对较短的化合物。
化合物12:
ESI-MS(m/z):806.5[M+H]+;LC-MS保留时间RT=1.88min。HPLC保留时间RT=13.59min。
1H NMR(500MHz,DMSO-d6)δ8.77(d,J=2.0Hz,1H),8.55–8.46(m,2H),7.83–7.77(m,2H),7.75(dd,J=8.5,2.0Hz,1H),7.58(d,J=8.5Hz,1H),5.56(t,J=9.0Hz,1H),5.10–5.05(m,1H),4.36–4.16(m,4H),4.10–4.05(m,1H),3.61–3.52(m,4H),3.48–3.40(m,1H),3.25(s,3H),3.18–3.06(m,3H),2.99–2.94(m,1H),2.79–2.72(m,1H),2.40–2.35(m,1H),2.22(s,3H),2.12–2.05(m,1H),1.84–1.75(m,2H),1.54–1.46(m,2H),1.35(d,J=6.0Hz,3H),1.09–1.05(m,4H),0.93–0.85(m,7H),0.58–0.52(m,1H),0.33(s,3H).
化合物12’:
ESI-MS(m/z):806.5[M+H]+;LC-MS保留时间RT=1.83min。HPLC保留时间RT=12.92min。
1H NMR(500MHz,DMSO-d6)δ8.77(d,J=2.0Hz,1H),8.55–8.46(m,2H),7.83–7.77(m,2H),7.75(dd,J=8.5,2.0Hz,1H),7.58(d,J=8.5Hz,1H),5.56(t,J=9.1Hz,1H),5.10–5.05(m,1H),4.36–4.16(m,4H),4.12–4.05(m,1H),3.61–3.52(m,4H),3.48–3.42(m,1H),3.25(s,3H),3.18–3.06(m,3H),2.99–2.94(m,1H),2.79–2.72(m,1H),2.40–2.35(m,1H),2.22(s,3H),2.12–2.05(m,1H),1.84–1.75(m,2H),1.54–1.46(m,2H),1.35(d,J=6.0Hz,3H),1.09–1.05(m,4H),0.93–0.85(m,7H),0.58–0.52(m,1H),0.33(s,3H).
实施例13
(1S,2S)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(((S)-1-methylazetidin-2-yl)ethynyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)- pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
实施例13由以下步骤制备:
用INT-13替换实施例10中INT-15,用类似的方法和反应步骤,可以得到化合物13和差向异构体13’。两个化合物所画的绝对构型是根据经验进行的假定,在现有的分析方法中,13是极性相对较小、LC-MS保留时间和HPLC保留 时间相对较长的化合物,13’是极性相对较大、LC-MS保留时间和HPLC保留时间相对较短的化合物。
化合物13:
ESI-MS(m/z):806.5[M+H]+;LC-MS保留时间RT=1.88min。HPLC保留时间RT=13.92min。
化合物13’:
ESI-MS(m/z):806.5[M+H]+;LC-MS保留时间RT=1.82min。HPLC保留时间RT=13.32min。
实施例14
(1r,2R,3S)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(((S)-1-methylpyrrolidin-3-yl)ethynyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2,3-dimethylcyclopropane-1-carboxamide
实施例14由以下步骤制备:
用INT-17替换实施例10中INT-15,用类似的方法和反应步骤,可以得到化合物14和差向异构体14’。两个化合物所画的绝对构型是根据经验进行的假定,在现有的分析方法中,14是极性相对较小、LC-MS保留时间和HPLC保留时间相对较长的化合物,14’是极性相对较大、LC-MS保留时间和HPLC保留时间相对较短的化合物。
化合物14:
ESI-MS(m/z):834.5[M+H]+;LC-MS保留时间RT=2.02min。HPLC保留时间RT=14.80min。
1H NMR(500MHz,DMSO)δ8.74(d,J=2.0Hz,1H),8.49(d,J=1.5Hz,1H),8.39(d,J=9.0Hz,1H),7.81(s,1H),7.76(d,J=2.0Hz,1H),7.75(dd,J=9.0,1.5Hz,1H),7.57(d,J=9.0Hz,1H),5.55(t,J=9.0Hz,1H),5.10–5.05(m,1H),4.35-4.29(m,1H),4.27–4.20(m,1H),4.24–4.20(m,1H),4.20–4.15(m,1H),4.09-4.03 (m,1H),3.57(s,2H),3.24(s,3H),3.17–3.11(m,2H),2.98–2.92(m,1H),2.85–2.80(m,1H),2.76–2.72(m,1H),2.48–2.45(m,1H),2.40–2.35(m,1H),2.26(s,3H),2.24–2.20(m,1H),2.10–2.05(m,1H),2.03–1.99(m,1H),1.91-1.83(m,2H),1.80–1.78(m,1H),1.34(d,J=6.0Hz,3H),1.23(s,3H),1.19–1.06(m,6H),1.05–1.00(m,3H),0.91(s,3H),0.88(d,J=7.0Hz,3H),0.34(s,3H).
化合物14’:
ESI-MS(m/z):834.5[M+H]+;LC-MS保留时间RT=1.95min。HPLC保留时间RT=14.11min。
1H NMR(500MHz,DMSO)δ8.76(d,J=2.0Hz,1H),8.52(s,1H),8.40(d,J=9.0Hz,1H),7.90(d,J=2.0Hz,1H),7.82(s,1H),7.73(dd,J=8.5,2.0Hz,1H),7.54(d,J=8.5Hz,1H),5.53(t,J=9.0Hz,1H),5.10–5.05(m,1H),4.27–4.20(m,2H),3.97–3.89(m,2H),3.85–3.77(m,1H),3.70–3.65(m,1H),3.56–3.51(m,1H),3.26–3.21(m,2H),3.19-3.12(m,2H),3.08(s,3H),3.07–3.02(m,1H),2.86–2.82(m,1H),2.81–2.71(m,2H),2.56–2.53(m,1H),2.48–2.42(m,1H),2.34–2.29(m,1H),2.26(s,3H),2.25–2.19(m,1H),2.14–2.10(m,1H),2.03–1.96(m,1H),1.88–1.84(m,1H),1.81–1.79(m,1H),1.56–1.43(m,3H),1.23(s,3H),1.20(d,J=6.0Hz,3H),1.21–1.16(m,1H),1.13–1.10(m,1H),1.09–1.05(m,6H),0.93(s,3H),0.85(t,J=6.0Hz,1H).
实施例15
(1S,2S)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(3-((R)-3-methylmorpholino)prop-1-yn-1-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
实施例15由以下步骤制备:
第一步:将化合物INT-19(20mg,0.02mmol)溶于二氯甲烷(5mL)中,向其中加入(R)-3甲基吗啉盐酸盐(10mg,0.07mmol)和二异丙基乙胺(18mg,0.14mmol)。反应混合物于50℃搅拌16小时。待反应完全后,浓缩反应液,残留物用制备液相色谱纯化得到白色固体化合物15(3.0mg,收率15.0%)和差向异构体15’(5.0mg,收率25.0%)。两个化合物所画的绝对构型是根据经验进行的假定,在现有的分析方法中,15是极性相对较小、LC-MS保留时间和HPLC保留时间相对较长的化合物,15’是极性相对较大、LC-MS保留时间和HPLC保留时间相对较短的化合物。
化合物15:
ESI-MS(m/z):850.6[M+H]+;LC-MS保留时间RT=1.90min。HPLC保留时间RT=13.50min。
1H NMR(500MHz,DMSO-d6)δ8.80(d,J=2.0Hz,1H),8.54–8.48(m,2H), 7.85(d,J=2.0Hz,1H),7.81(s,1H),7.75(dd,J=8.5,2.0Hz,1H),7.58(d,J=8.5Hz,1H),5.56(t,J=9.0Hz,1H),5.10–5.05(m,1H),4.38–4.15(m,4H),4.12–4.04(m,1H),3.78–3.61(m,4H),3.58(s,2H),3.52–3.47(m,1H),3.25(s,3H),3.19–3.02(m,3H),3.00–2.95(m,1H),2.80–2.69(m,2H),2.41–2.36(m,1H),2.11–2.05(m,1H),1.84–1.74(m,2H),1.57–1.46(m,2H),1.35(d,J=6.0Hz,3H),1.07(s,3H),0.94–0.91(m,6H),0.88(t,J=7.0Hz,3H),0.58–0.52(m,1H),0.34(s,3H).
化合物15’:
ESI-MS(m/z):850.6[M+H]+;LC-MS保留时间RT=1.86min。HPLC保留时间RT=13.14min。
1H NMR(500MHz,DMSO-d6)δ8.82(d,J=2.0Hz,1H),8.58–8.48(m,2H),7.99(d,J=2.0Hz,1H),7.81(s,1H),7.74(dd,J=8.5,2.0Hz,1H),7.54(d,J=8.5Hz,1H),5.55(t,J=9.0Hz,1H),5.10–5.05(m,1H),4.28–4.16(m,2H),4.01–3.89(m,2H),3.87–3.73(m,3H),3.71–3.60(m,3H),3.57–3.45(m,2H),3.18–3.12(m,1H),3.09(s,3H),3.07–3.02(m,2H),2.83–2.67(m,2H),2.63–2.53(m,2H),2.35–2.30(m,1H),2.15–2.0(m,1H),1.85–1.74(m,2H),1.58–1.45(m,2H),1.22(d,J=6.0Hz,3H),1.11(t,J=7.0Hz,3H),1.07(s,3H),0.95–0.91(m,6H),0.90–0.84(m,1H),0.58–0.53(m,1H),0.50(s,3H).
实施例16
(1S,2S)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(pyridin-2-ylethynyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
实施例16由以下步骤制备:
用INT-20替换实施例10中INT-15,用类似的方法和反应步骤,可以得到化合物16和差向异构体16’。两个化合物所画的绝对构型是根据经验进行的假定,在现有的分析方法中,16是极性相对较小、LC-MS保留时间和HPLC保留时间相对较长的化合物,16’是极性相对较大、LC-MS保留时间和HPLC保留时间相对较短的化合物。
化合物16:
ESI-MS(m/z):814.5[M+H]+;LC-MS保留时间RT=1.89min。HPLC保留时间RT=14.05min。
1H NMR(500MHz,DMSO-d6)δ8.92(dd,J=7.5,2.0Hz,1H),8.63–8.54(m,1H),8.50–8.39(m,2H),7.99(d,J=2.0Hz,1H),7.86–7.81(m,1H),7.74(s,1H),7.71–7.65(m,2H),7.53(d,J=8.5Hz,1H),7.42–7.37(m,1H),5.49(t,J=9.0Hz,1H),5.10–5.05(m,1H),4.33–4.21(m,2H),4.20–4.09(m,2H),4.07–4.02(m,1H),3.52(s,2H),3.26–3.23(m,2H),3.21(s,3H),3.10–3.05(m,1H),2.95–2.88(m,1H),2.73–2.65(m,1H),2.40–2.35(m,1H),2.05–2.00(m,1H),1.72(s,3H), 1.51–1.40(m,2H),1.32(t,J=6.0Hz,3H),1.17(s,2H),1.02–0.99(m,3H),0.89–0.80(m,6H),0.52–0.45(m,1H),0.29(s,3H).
化合物16’:
ESI-MS(m/z):814.5[M+H]+;LC-MS保留时间RT=1.86min。HPLC保留时间RT=13.61min。
1H NMR(500MHz,DMSO-d6)δ9.00(d,J=2.0Hz,1H),8.67–8.60(m,1H),8.57–8.48(m,2H),8.20(d,J=2.0Hz,1H),7.93–7.88(m,1H),7.82(s,1H),7.77–7.70(m,2H),7.56(d,J=8.5Hz,1H),7.50–7.45(m,1H),5.55(t,J=9.0Hz,1H),5.10–5.05(m,1H),4.25–4.20(m,2H),4.03–3.93(m,2H),3.89–3.84(m,1H),3.70–3.65(m,1H),3.60–3.55(m,1H),3.36–3.30(m,1H),3.19–3.14(m,1H),3.12(s,3H),3.08–3.03(m,1H),2.80–2.75(m,1H),2.38–2.32(m,1H),2.15–2.10(m,1H),1.85–1.77(m,1H),1.57–1.45(m,2H),1.24(d,J=6.0Hz,3H),1.14(t,J=7.0Hz,3H),1.09–1.06(m,4H),0.94(s,3H),0.88(d,J=6.0Hz,1H),0.60–0.56(m,1H),0.53(s,3H).
实施例17
(1S,2S)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(pyridin-3-ylethynyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
实施例17由以下步骤制备:
用INT-21替换实施例10中INT-15,用类似的方法和反应步骤,可以得到化合物17和差向异构体17’。两个化合物所画的绝对构型是根据经验进行的假定,在现有的分析方法中,17是极性相对较小、LC-MS保留时间和HPLC保留时间相对较长的化合物,17’是极性相对较大、LC-MS保留时间和HPLC保留时间相对较短的化合物。
化合物17:
ESI-MS(m/z):814.5[M+H]+;LC-MS保留时间RT=1.91min。HPLC保留时间RT=14.20min。
1H NMR(500MHz,DMSO-d6)δ8.97(d,J=2.0Hz,1H),8.86–8.81(m,1H),8.66–8.60(m,1H),8.56–8.48(m,2H),8.10–8.02(m,1H),7.82(s,1H),7.77(dd,J=8.5,2.0Hz,1H),7.60(d,J=8.5Hz,1H),7.53–7.48(m,1H),5.56(t,J=9.0Hz,1H),5.10–5.05(m,1H),4.40–4.29(m,2H),4.28–4.14(m,2H),4.12–4.07(m,1H),3.59(s,2H),3.36–3.31(m,1H),3.28(s,3H),3.18–3.13(m,1H),3.00–2.95(m,1H),2.80–2.74(m,1H),2.45–2.40(m,1H),2.12–2.07(m,1H),1.79(s,2H), 1.56–1.47(m,2H),1.38(d,J=6.0Hz,3H),1.11–1.05(m,4H),0.93(s,3H),0.93–0.88(m,5H),0.57–0.51(m,1H),0.36(s,3H).
化合物17’:
ESI-MS(m/z):814.5[M+H]+;LC-MS保留时间RT=1.86min。HPLC保留时间RT=13.67min。
1H NMR(500MHz,DMSO-d6)δ8.98(d,J=2.0Hz,1H),8.86–8.81(m,1H),8.66–8.60(m,1H),8.58–8.50(m,2H),8.18(d,J=2.0Hz,1H),8.08–8.04(m,1H),7.82(s,1H),7.75(dd,J=8.5,2.0Hz,1H),7.56(d,J=8.5Hz,1H),7.53–7.47(m,1H),5.55(t,J=9.0Hz,1H),5.10–5.05(m,1H),4.29–4.13(m,2H),4.00–3.95(m,2H),3.90–3.85(m,1H),3.70–3.65(m,1H),3.58–3.53(m,1H),3.36–3.31(m,1H),3.19–3.14(m,1H),3.12(s,3H),3.10–3.05(m,1H),2.81–2.74(m,1H),2.40–2.35(m,1H),2.16–2.11(m,1H),1.84–1.79(m,2H),1.58–1.42(m,2H),1.24(d,J=6.0Hz,3H),1.13(t,J=7.0Hz,3H),1.09–1.05(m,4H),0.94(s,3H),0.90–0.85(m,1H),0.60–0.55(m,1H),0.52(s,3H).
实施例18
(1r,2R,3S)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(((R)-1-methylpyrrolidin-3-yl)ethynyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2,3-dimethylcyclopropane-1-carboxamide
实施例18由以下步骤制备:
用化合物INT-22替换化合物11合成步骤中的INT-16,用类似的方法和反应步骤,可以得到化合物18。18是极性相对较小、LC-MS保留时间和HPLC保留时间相对较长的化合物。根据经验,化合物18的体外细胞活性远优于其差向异构体18’,故以下实施例不再对差向异构体进行结构表征。
化合物18:
ESI-MS(m/z):834.7[M+H]+;LC-MS保留时间RT=1.95min。HPLC保留时间RT=14.85min。
1H NMR(500MHz,DMSO)δ8.74(d,J=2.0Hz,1H),8.49(d,J=1.0Hz,1H),8.39(d,J=9.0Hz,1H),7.81(s,1H),7.77-7.73(m,2H),7.57(d,J=9.0Hz,1H),5.55(t,J=9.5Hz,1H),5.08–5.04(m,1H),4.35-4.15(m,5H),4.11-4.02(m,1H),3.57(s,2H),3.24(s,3H),3.17–3.11(m,2H),2.98-2.92(m,1H),2.83(t,J=8.0Hz,1H),2.79-2.70(m,1H),2.40-2.35(m,1H),2.25(s,3H),2.24–2.19(m,1H),2.10–2.05(m,1H),1.91–1.83(m,2H),1.82–1.76(m,2H),1.56-1.47(m,2H),1.34(d,J=6.0Hz,3H),1.25-1.22(m,2H),1.18-1.15(m,2H),1.09-1.05(m,6H),0.91(s,3H),0.87(t,J=7.0Hz,3H),0.33(s,3H).
实施例19
(1r,2R,3S)-N-((63S,4S,Z)-12-(5-((1,3-dimethylazetidin-3-yl)ethynyl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-11-ethyl-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2,3-dimethylcyclopropane-1-carboxamide
用化合物INT-23替换化合物11合成步骤中的INT-16,用类似的方法和反应步骤,可以得到化合物19。ESI-MS(m/z):834.6[M+H]+;LC-MS保留时间RT=1.95min。HPLC保留时间RT=14.62min。
1H NMR(500MHz,DMSO-d6)δ8.76(d,J=2.0Hz,1H),8.50(d,J=1.5Hz,1H),8.39(d,J=9.0Hz,1H),7.82(s,1H),7.78(d,J=2.0Hz,1H),7.75(dd,J=8.5,1.5Hz,1H),7.58(d,J=9.0Hz,1H),5.55(t,J=9.0Hz,1H),5.10–5.01(m,1H),4.35–4.16(m,4H),4.11–4.02(m,1H),3.57(s,2H),3.30–3.28(m,2H),3.25(s,3H),3.22–3.19(m,2H),3.18–3.11(m,1H),3.00–2.93(m,1H),2.79–2.72(m,1H),2.41–2.35(m,1H),2.24(s,3H),2.11–2.05(m,1H),2.03–1.95(m,1H),1.83–1.74(m,2H),1.56(s,3H),1.54–1.43(m,2H),1.35(d,J=6.0Hz,3H),1.18–1.15(m,2H),1.10–1.05(m,6H),0.92(s,3H),0.89–0.85(m,3H),0.34(s,3H).
实施例20
(1S,2S)-N-((63S,4S,Z)-11-ethyl-12-(5-(3-((R)-2-(hydroxymethyl)morpholino)prop-1-yn-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
用化合物(R)-吗啉-2-甲醇盐酸盐替换化合物15合成步骤中的(R)-3甲基吗啉盐酸盐,用类似的方法和反应步骤,可以得到化合物20。ESI-MS(m/z):866.6[M+H]+;LC-MS保留时间RT=1.63min。
实施例21
(1r,2R,3S)-N-((63S,4S,Z)-11-ethyl-12-(5-(3-((R)-3-fluoropyrrolidin-1-yl)prop-1-yn-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2,3-dimethylcyclopropane-1-carboxamide
分别用化合物3-(R)-氟吡咯烷替换化合物15合成步骤中的(R)-3甲基吗啉盐酸盐,INT-25替换INT-19,用类似的方法和反应步骤,可以得到化合物21。ESI-MS(m/z):852.6[M+H]+;LC-MS保留时间RT=1.91min。
1H NMR(500MHz,DMSO-d6)δ8.82(d,J=2.0Hz,1H),8.51–8.49(m,1H),8.39(d,J=9.0Hz,1H),7.89–7.84(m,1H),7.82(s,1H),7.77–7.74(m,1H),7.58(d,J=9.0Hz,1H),5.56(t,J=9.1Hz,1H),5.09–5.03(m,1H),4.36–4.04(m,5H), 3.95–3.74(m,2H),3.57(s,2H),3.25(s,3H),3.18–3.12(m,2H),2.95–2.92(m,1H),2.79–2.72(m,1H),2.41–2.35(m,1H),2.22–1.16(m,1H),2.11–2.04(m,1H),1.86–1.70(m,3H),1.55–1.48(m,1H),1.35(d,J=6.0Hz,3H),1.26–1.22(m,2H),1.17–1.15(m,2H),1.10–1.05(m,6H),1.04–0.97(m,2H),0.92–0.86(m,6H),0.72–0.63(m,2H),0.34(s,3H).
实施例22
(1S,2S)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(pyrimidin-5-ylethynyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
用化合物INT-24替换化合物10合成步骤中的INT-15,用类似的方法和反应步骤,可以得到化合物22。ESI-MS(m/z):815.8[M+H]+;LC-MS保留时间RT=1.84min。HPLC保留时间RT=13.73min。
1H NMR(500MHz,DMSO-d6)δ9.23–9.22(m,1H),9.09–9.07(m,2H),8.99–8.98(m,1H),8.53–8.50(m,2H),8.08–8.06(m,1H),7.81(s,1H),7.76(d,J=8.6Hz,1H),7.60(d,J=8.6Hz,1H),5.56(t,J=9.1Hz,1H),5.09–5.05(m,1H),4.39–4.31(m,2H),4.25–4.17(m,2H),4.13–4.07(m,1H),3.58(s,2H),3.31–3.30(m,1H),3.27(s,3H),3.17–3.12(m,1H),3.01–2.97(m,1H),2.78–2.74(m,1H),2.44–2.40(m,1H),2.10–2.06(m,1H),1.82–1.76(m,2H),1.53–1.48(m,2H),1.38(d,J=6.0Hz,3H),1.08–1.05(m,4H),0.93(s,3H),0.91–0.86(m,4H),0.56–0.53(m,1H),0.35(s,3H).
实施例23
(1S,2S)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(3-morpholinoprop-1-yn-1-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-phenylcyclopropane-1-carboxamide
用化合物(1S,2S)-2-苯基环丙基甲酸替换化合物1合成步骤中的INT-3b,用类似的方法和反应步骤,可以得到化合物23。ESI-MS(m/z):898.7[M+H]+;LC-MS保留时间RT=1.92min。HPLC保留时间RT=14.35min。
1H NMR(500MHz,DMSO-d6)δ8.81(d,J=2.0Hz,1H),8.70(d,J=9.0Hz,1H),8.53–8.49(m,1H),7.86(d,J=2.0Hz,1H),7.83(s,1H),7.78–7.75(m,1H),7.61–7.57(m,1H),7.33–7.28(m,2H),7.22–7.17(m,1H),7.16–7.12(m,2H),5.61(t,J=9.0Hz,1H),5.15–5.09(m,1H),4.37–4.17(m,4H),4.12–4.05(m,1H),3.63–3.57(m,8H),3.37–3.34(m,1H),3.26(s,3H),3.13–3.08(m,1H),3.00–2.95(m,1H),2.80–2.73(m,1H),2.56–2.52(m,4H),2.41–2.36(m,1H),2.22–2.16(m,1H),2.12–2.06(m,2H),1.82–1.76(m,2H),1.56–1.50(m,1H),1.39–1.34(m,3H),1.29–1.23(m,2H),0.92(s,3H),0.88(t,J=7.0Hz,3H),0.34(s,3H).
实施例24
(1S,2S)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(3-morpholinoprop-1-yn-1-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-fluorocyclopropane-1-carboxamide
用化合物(1S,2S)-2-氟环丙甲酸替换化合物1合成步骤中的INT-3b,用类似的方法和反应步骤,可以得到化合物24。ESI-MS(m/z):840.7[M+H]+;LC-MS保留时间RT=1.69min。HPLC保留时间RT=12.20min。
1H NMR(500MHz,DMSO-d6)δ8.83–8.80(m,1H),8.67–8.62(m,1H),8.52–8.47(m,1H),7.88–7.85(m,1H),7.83(s,1H),7.78–7.74(m,1H),7.61–7.55(m,1H),5.57(t,J=9.0Hz,1H),5.14–5.07(m,1H),4.96–4.76(m,1H),4.36–4.18(m,4H),4.12–4.04(m,1H),3.64–3.55(m,8H),3.26(s,3H),3.20–3.13(m,1H),3.02–2.93(m,1H),2.81–2.73(m,1H),2.57–2.53(m,4H),2.40–2.35(m,1H),2.12–2.06(m,1H),1.96–1.89(m,1H),1.84–1.75(m,2H),1.55–1.44(m,3H),1.35(d,J=6.0Hz,3H),1.07–1.02(m,1H),0.92(s,3H),0.87(t,J=7.0Hz,3H),0.34(s,3H).
实施例25
(1r,2R,3S)-N-((63S,4S,Z)-11-ethyl-12-(5-(3-((S)-3-(hydroxymethyl)morpholino)prop-1-yn-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2,3-dimethylcyclopropane-1-carboxamide
分别用化合物(S)-3-羟甲基吗啉替换化合物15合成步骤中的(R)-3甲基吗啉盐酸盐,INT-25替换INT-19,用类似的方法和反应步骤,可以得到化合物25。ESI-MS(m/z):880.6[M+H]+;LC-MS保留时间RT=1.68min。
1H NMR(500MHz,DMSO-d6)δ8.81(d,J=2.0Hz,1H),8.51–8.48(m,1H),8.39(d,J=8.5Hz,1H),7.85(d,J=2.0Hz,1H),7.81(s,1H),7.77–7.73(m,1H),7.58(d,J=8.5Hz,1H),5.55(t,J=9.0Hz,1H),5.10–5.02(m,1H),4.60(t,J=5.5Hz,1H),4.38–4.04(m,5H),3.83–3.78(m,2H),3.76–3.71(m,2H),3.62–3.56(m,3H),3.25(s,3H),3.17–3.11(m,2H),2.99–2.93(m,1H),2.79–2.68(m,2H),2.64–2.59(m,2H),2.42–2.35(m,1H),2.11–2.04(m,1H),1.83–1.75(m,2H),1.58–1.44(m,2H),1.36(d,J=6.0Hz,3H),1.25–1.15(m,5H),1.11–1.04(m,6H),0.94–0.87(m,6H),0.39–0.31(s,3H).
实施例26
N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(3-morpholinoprop-1-yn-1-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-1-(trifluoromethyl)cyclopropane-1-carboxamide
用化合物1-三氟甲基环丙烷-1-甲酸替换化合物1合成步骤中的INT-3b,用类似的方法和反应步骤,可以得到化合物26。ESI-MS(m/z):890.6[M+H]+;LC-MS保留时间RT=1.71min。HPLC保留时间RT=14.19min。
1H NMR(500MHz,DMSO-d6)δ8.81(d,J=2.0Hz,1H),8.50(d,J=1.5Hz,1H),8.11(d,J=8.5Hz,1H),7.86(d,J=2.0Hz,1H),7.83(s,1H),7.76(dd,J=8.5,1.5Hz,1H),7.58(d,J=8.5Hz,1H),5.58–5.48(m,1H),5.15–5.09(m,1H),4.39–4.26(m,2H),4.25–4.16(m,2H),4.15–4.04(m,1H),3.64–3.59(m,4H),3.59–3.54(m,4H),3.45–3.39(m,1H),3.30–3.28(m,1H),3.26(s,3H),3.01–2.91(m,1H),2.80–2.73(m,1H),2.57–2.52(m,4H),2.41–2.34(m,1H),2.14–2.05(m,1H),1.86–1.73(m,2H),1.57–1.43(m,2H),1.39–1.30(m,6H),0.93(s,3H),0.87(t,J=7.0Hz,3H),0.34(s,3H).
实施例27
(1S,2S)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(pyrazin-2-ylethynyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
用化合物INT-26替换化合物10合成步骤中的INT-15,用类似的方法和反应步骤,可以得到化合物27。ESI-MS(m/z):815.7[M+H]+;LC-MS保留时间RT=1.86min。HPLC保留时间RT=13.80min。
1H NMR(500MHz,DMSO-d6)δ9.03(d,J=2.0Hz,1H),8.96(d,J=1.5Hz,1H),8.74–8.73(m,1H),8.69(d,J=2.0Hz,1H),8.53–8.50(m,2H),8.12(d,J=2.0Hz,1H),7.82(s,1H),7.77(dd,J=8.5,1.5Hz,1H),7.60(d,J=8.5Hz,1H),5.56(t,J=9.0Hz,1H),5.09–5.05(m,1H),4.39–4.30(m,2H),4.26–4.13(m,2H),4.13–4.06(m,1H),3.59(s,2H),3.32–3.29(m,1H),3.28(s,3H),3.17–3.12(m,1H),3.00–2.98(m,1H),2.79–2.73(m,1H),2.46–2.43(m,1H),2.10–2.07(m,1H),1.82–1.75(m,2H),1.54–1.48(m,2H),1.39(d,J=6.0Hz,3H),1.28–1.24(m,1H),1.07–1.06(m,4H),0.93(s,3H),0.90(t,J=7.0Hz,3H),0.57–0.54(m,1H),0.36(s,3H).
实施例28
(1S,2S)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(((R)-4-methylmorpholin-3-yl)ethynyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
实施例28由以下步骤制备:
用化合物INT-8d替换化合物10合成步骤中的INT-15,用类似的方法和反应步骤,可以得到化合物28。ESI-MS(m/z):836.7[M+H]+;LC-MS保留时间RT=1.81min。HPLC保留时间RT=13.37min。
1H NMR(500MHz,DMSO)δ8.81(d,J=2.0Hz,1H),8.54–8.49(m,2H),7.86–7.83(m,1H),7.81(s,1H),7.77–7.74(m,1H),7.58(d,J=8.5Hz,1H),5.56(t,J=9.5Hz,1H),5.09–5.05(m,1H),4.36–4.27(m,2H),4.26–4.22(m,1H),4.22–4.16(m,1H),4.11–4.03(m,1H),3.79–3.74(m,1H),3.72–3.63(m,2H),3.62–3.59(m,1H),3.58(s,2H),3.53–3.49(m,1H),3.25(s,3H),3.20–3.11(m,2H),3.00–2.94(m,1H),2.79–2.73(m,1H),2.68–2.63(m,1H),2.41–2.36(m,1H),2.34(s,3H),2.33–2.27(m,1H),2.11-2.05(m,1H),1.83–1.75(m,2H),1.53 –1.47(m,2H),1.36(d,J=6.0Hz,3H),1.10–1.05(m,4H),0.92(s,3H),0.90–0.83(m,4H),0.57–0.52(m,1H),0.35(s,3H).
实施例29
(1S,2S)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((1-methylpiperidin-4-yl)ethynyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
用化合物INT-27替换化合物10合成步骤中的INT-15,用类似的方法和反应步骤,可以得到化合物29。ESI-MS(m/z):834.8[M+H]+;LC-MS保留时间RT=1.90min。HPLC保留时间RT=14.59min。
1H NMR(500MHz,DMSO)δ8.75(d,J=2.0Hz,1H),8.53–8.48(m,2H),7.80(s,1H),7.76–7.73(m,2H),7.57(d,J=8.5Hz,1H),5.56(t,J=9.0Hz,1H),5.09–5.05(m,1H),4.36–4.29(m,1H),4.27–4.16(m,4H),4.11–4.02(m,1H),3.57(s,2H),3.24(s,3H),3.17–3.11(m,2H),2.99–2.93(m,1H),2.79–2.74(m,1H),2.64–2.61(m,2H),2.39–2.35(m,1H),2.15(s,3H),2.10–2.03(m,2H),1.90–1.85(m,3H),1.82–1.78(m,2H),1.67–1.62(m,2H),1.51–1.47(m,2H),1.34(d,J=6.0Hz,3H),1.24–1.22(m,1H),1.09–1.04(m,4H),0.91(s,3H),0.87(t,J=7.0Hz,3H),0.56–0.53(m,1H),0.33(s,3H).
实施例30
(1S,2S)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((2- methylisoindolin-4-yl)ethynyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
用化合物INT-28替换化合物10合成步骤中的INT-15,用类似的方法和反应步骤,可以得到化合物30。ESI-MS(m/z):868.7[M+H]+;LC-MS保留时间RT=2.08min。
1H NMR(500MHz,DMSO-d6)δ8.98–8.91(m,1H),8.55–8.48(m,2H),8.00(d,J=2.0Hz,1H),7.85–7.80(m,1H),7.79–7.74(m,1H),7.64–7.57(m,1H),7.44–7.38(m,1H),7.34–7.24(m,2H),5.56(t,J=9.0Hz,1H),5.12–5.03(m,1H),4.40–4.08(m,5H),4.06–3.99(m,2H),3.92–3.83(m,1H),3.59(s,2H),3.29–3.27(m,4H),3.17–3.12(m,2H),3.01–2.97(m,1H),2.80–2.74(m,1H),2.45–2.41(m,1H),2.12–2.05(m,1H),1.83–1.74(m,2H),1.55–1.46(m,2H),1.40–1.36(m,3H),1.25–1.22(m,1H),1.20–1.15(m,2H),1.10–1.03(m,4H),0.95–0.85(m,7H),0.58–0.52(m,1H),0.36(s,3H).
实施例31
(1S,2S)-N-((63S,4S,Z)-11-ethyl-12-(5-((6-(ethylamino)pyridin-2-yl)ethynyl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
用INT-29替换实施例10中合成步骤中的INT-15,用类似的方法和反应步骤,可以得到化合物31。ESI-MS(m/z):857.7[M+H]+;LC-MS保留时间RT=1.98min。HPLC保留时间RT=15.11min。
1H NMR(500MHz,DMSO)δ8.93(d,J=2.0Hz,1H),8.53-8.50(m,2H),7.99(d,J=2.0Hz,1H),7.81(s,1H),7.78-7.74(m,1H),7.59(d,J=8.5Hz,1H),7.43-7.38(m,1H),6.82(d,J=6.5Hz,1H),6.74-6.69(m,1H),6.52-6.49(m,1H),5.56(t,J=9.5Hz,1H),5.09–5.05(m,1H),4.38-4.32(m,1H),4.31-4.27(m,1H),4.27–4.21(m,2H),4.20-4.16(m,1H),4.14-4.07(m,1H),3.58(s,2H),3.27(s,3H),3.25–3.22(m,2H),3.18–3.14(m,1H),3.01-2.95(m,1H),2.80-2.73(m,1H),2.46-2.41(m,1H),2.12–2.05(m,1H),1.82–1.77(m,2H),1.55-1.47(m,2H),1.38(d,J=6.0Hz,3H),1.25-1.22(m,1H),1.13(t,J=7.0Hz,3H),1.08-1.05(m,4H),0.93(s,3H),0.90(t,J=7.0Hz,3H),0.57-0.52(m,1H),0.36(s,3H).
实施例32
(1r,2R,3S)-N-((63S,4S,Z)-11-ethyl-12-(5-((6-(ethylamino)pyridazin-3-yl)ethynyl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2,3-dimethylcyclopropane-1-carboxamide
用化合物INT-30替换化合物11合成步骤中的INT-16,用类似的方法和反应步骤,可以得到化合物32+32’。薄层色谱及现有的制备液相色谱均无法分离化合物32及其差向异构体32’,故该化合物为细胞活性为外消旋体化合物活性。ESI-MS(m/z):872.6[M+H]+;LC-MS保留时间RT=1.81min。HPLC保留时间RT=11.92min。
实施例33
(1S,2S)-N-((63S,4S,Z)-11-ethyl-12-(5-(((R)-4-(2-hydroxyethyl)morpholin-3-yl)ethynyl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
实施例33由以下步骤制备:
第一步:将化合物28c(40mg,0.05mmol)溶于N,N-二甲基甲酰胺(1mL)中,随后依次将碳酸钾(21mg,0.15mmol)、碘化钾(25mg,0.15mmol)和(2-溴乙氧基)-叔丁基二甲基硅烷(24mg,0.10mmol)加入到反应液中。反应液在50℃下搅拌反应8小时。LCMS检测反应完全后,向反应体系中加入水(10mL),用二氯甲烷(10mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩,残余物通过硅胶柱层析(二氯甲烷/甲醇=20/1)纯化得到化合物33a(22mg,收率43%)。ESI-MS(m/z):980.7[M+H]+
第二步:将化合物33a(22mg,0.02mmol)溶于四氢呋喃(1mL)中,随后加入四丁基氟化铵(0.1mL,1M in THF)。反应液在室温下搅拌2小时。LCMS检测反应完全后,向反应体系中加入饱和氯化铵水溶液(10mL),用二氯甲烷(10mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩,残余物用制备液相色谱纯化得到白色固体化合物33(1.0mg,收率7%)。ESI-MS(m/z):866.8[M+H]+;LC-MS保留时间RT=1.64min。HPLC保留时间RT=11.64min。
1H NMR(500MHz,DMSO)δ8.82(d,J=2.0Hz,1H),8.55–8.51(m,2H),7.97(s,1H),7.81(s,1H),7.76–7.72(m,1H),7.54(d,J=8.5Hz,1H),5.57–5.52(m,1H),5.07–5.03(m,1H),4.49–4.43(m,1H),4.26–4.19m,2H),3.98–3.92(m,2H),3.86–3.82(m,1H),3.79–3.75(m,2H),3.73–3.69(m,1H),3.68–3.64(m,1H),3.56–3.52(m,2H),3.18–3.14(m,3H),3.09(s,2H),3.06–3.01(m,1H),2.65–2.63(m,1H),2.59–2.55(m,1H),2.38–2.36(m,1H),2.34–2.29(m,1H),2.14–2.09(m,1H),1.82–1.78(m,2H),1.58–1.54(m,3H),1.34–1.28(m,4H),1.22(d,J=6.0Hz,2H),1.11(t,J=7.0Hz,3H),1.07(s,3H),0.96–0.91(m,5H),0.88–0.86(m,1H),0.57–0.54(m,1H),0.50(s,3H).
实施例34
(1r,2R,3S)-N-((63S,4S,Z)-12-(5-((4-aminopyrimidin-5-yl)ethynyl)-2-((S)-1- methoxyethyl)pyridin-3-yl)-11-ethyl-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2,3-dimethylcyclopropane-1-carboxamide
用化合物INT-31替换化合物11合成步骤中的INT-16,用类似的方法和反应步骤,可以得到化合物34。ESI-MS(m/z):844.7[M+H]+;LC-MS保留时间RT=1.70min。
1H NMR(500MHz,DMSO-d6)δ8.97–8.94(m,1H),8.53–8.47(m,1H),8.42–8.39(m,2H),8.39–8.37(m,1H),8.20–8.18(m,1H),7.83(s,1H),7.78–7.75(m,1H),7.62–7.58(m,1H),7.23–7.19(m,2H),5.55(t,J=9.0Hz,1H),5.10–5.00(m,1H),4.39–4.07(m,5H),3.58(s,2H),3.3–3.30(m,1H),3.27(s,3H),3.18–3.11(m,1H),3.04–2.96(m,1H),2.80–2.71(m,1H),2.47–2.41(m,1H),2.12–2.04(m,1H),1.83–1.73(m,2H),1.55–1.48(m,1H),1.38(d,J=6.0Hz,3H),1.21–1.14(m,3H),1.11–1.05(m,6H),0.96–0.86(m,6H),0.36(s,3H).
实施例35
(1S,2S)-N-((63S,4S,Z)-12-(5-((5-aminopyrazin-2-yl)ethynyl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-11-ethyl-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
用化合物INT-32替换化合物10合成步骤中的INT-15,用类似的方法和反应步骤,可以得到化合物35。ESI-MS(m/z):830.7[M+H]+;LC-MS保留时间RT=1.70min。
实施例36
(1r,2R,3S)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(3-(methyl(tetrahydro-2H-pyran-4-yl)amino)prop-1-yn-1-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2,3-dimethylcyclopropane-1-carboxamide
实施例36由以下步骤制备:
第一步:将化合物INT-33(90mg,0.10mmol)溶于二氯甲烷(5mL)中,向其中加入N-甲基四氢-2H-吡喃-4-胺(55mg,0.48mmol)和二异丙基乙胺(62mg,0.48mmol)。反应混合物于室温下搅拌16小时。LCMS检测反应完全。向反应体系中加入水(20mL),用二氯甲烷(20mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩,残余物通过制备薄层色谱(二氯甲烷/甲醇=20/1)纯化得到化合物36a(60mg,收率71%)。ESI-MS(m/z):882.7[M+H]+
第二步:将化合物36a(50mg,0.06mmol)溶于二氯甲烷(2mL)中,向其中加入三氟乙酸(0.5mL)。反应混合物于0℃下搅拌1小时。LCMS检测反应完全,在冰浴下向反应体系中加入饱和碳酸氢钠溶液(10mL),用二氯甲烷(20mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩得到化合物36b(37mg,收率83%)的粗品。ESI-MS(m/z):782.8[M+H]+
第三步:将化合物36b(37mg,0.05mmol)溶于乙腈(2mL)中,向其中加入INT-4a(5mg,0.05mmol)、N,N-二异丙基乙胺(30mg,0.24mmol)、N-甲基咪唑(6mg,0.07mmol)和(2-肟基-氰基乙酸乙酯)-N,N-二甲基-吗啉基脲六氟磷酸酯(19mg,0.07mmol)。反应混合物于冰浴下搅拌1小时。待反应完全后,向 反应体系中加入水(20mL),用二氯甲烷(20mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩,残留物用制备液相色谱纯化得到白色固体化合物36(3.0mg,收率7%)。ESI-MS(m/z):878.6[M+H]+;LC-MS保留时间RT=1.85min。HPLC保留时间RT=13.67min。
1H NMR(500MHz,DMSO-d6)δ8.80(d,J=2.0Hz,1H),8.52–8.48(m,1H),8.39(d,J=9.0Hz,1H),7.85–7.80(m,2H),7.77–7.73(m,1H),7.58(d,J=8.5Hz,1H),5.56(t,J=9.0Hz,1H),5.10–5.04(m,1H),4.39–4.02(m,5H),3.91–3.84(m,2H),3.70–3.65(m,2H),3.58(s,2H),3.30–3.29(m,2H),3.25(s,3H),3.18–3.11(m,2H),2.98–2.91(m,1H),2.79–2.71(m,1H),2.42–2.35(m,2H),2.32(s,3H),2.14–2.02(m,2H),1.82–1.74(m,4H),1.55–1.46(m,1H),1.43–1.32(m,5H),1.18–1.14(m,2H),1.10–1.04(m,6H),0.93–0.84(m,6H),0.35(s,3H).
实施例37
(1r,2R,3S)-N-((63S,4S,Z)-12-(5-(3-((S)-3-(ethoxymethyl)morpholino)prop-1-yn-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-11-ethyl-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2,3-dimethylcyclopropane-1-carboxamide
实施例37由以下步骤制备:
第一步:将INT-2(350mg,0.51mmol),INT-34(186mg,0.51mmol),1,1-双(二苯基膦)二荗铁二氯化钯(37mg,0.05mmol),磷酸钾(214mg,1.08mmol)溶于1,4-二氧六环(5mL)与水(1mL)的混合溶液之中,反应液在氮气氛围下70℃搅拌过夜。LCMS检测反应完全,反应液通过硅藻土过滤,滤液浓缩残余物通过制备薄层色谱(二氯甲烷/甲醇=20/1)纯化得到棕色固体37a(400mg,收率93%)。ESI-MS(m/z):856.7[M+H]+
第二步:将化合物37a(300mg,0.35mmol),碳酸铯(228mg,0.70mmol),碘乙烷(109mg,0.70mmol)溶于N,N-二甲基甲酰胺(10mL)中,反应液在室温下搅拌过夜。LCMS检测反应完全。向反应体系中加入水(20mL),用二氯甲烷(20mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩,残余物通过制备薄层色谱(二氯甲烷/甲醇=30/1)纯化得到37b(280mg,收率88%)。ESI-MS(m/z):913.0[M+H]+
第三步:将化合物37b(280mg,0.31mmol)溶于二氯甲烷(10mL)中,向其中加入三氟乙酸(5mL)。反应混合物于0℃下搅拌1小时。LCMS检测反应完全,在冰浴下向反应体系中加入饱和碳酸氢钠溶液(30mL),用二氯甲烷(20mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩得到化合物37c(220mg,收率88%)的粗品。ESI-MS(m/z):813.0[M+H]+
第三步:将化合物37c(40mg,0.05mmol)溶于乙腈(2mL)中,向其中加入INT-4a(5mg,0.05mmol)、N,N-二异丙基乙胺(30mg,0.24mmol)、N-甲基咪唑(6mg,0.07mmol)和(2-肟基-氰基乙酸乙酯)-N,N-二甲基-吗啉基脲六氟磷酸酯(19mg,0.07mmol)。反应混合物于冰浴下搅拌1小时。待反应完全后,向 反应体系中加入水(20mL),用二氯甲烷(20mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩,残留物用制备液相色谱纯化得到白色固体化合物37(7.0mg,收率15%)。ESI-MS(m/z):909.1[M+H]+;LC-MS保留时间RT=1.94min。HPLC保留时间RT=14.41min。
1H NMR(500MHz,DMSO-d6)δ8.80(d,J=2.0Hz,1H),8.51–8.48(m,1H),8.39(d,J=9.0Hz,1H),7.87–7.80(m,2H),7.77–7.73(m,1H),7.58(d,J=8.5Hz,1H),5.56(t,J=9.0Hz,1H),5.10–5.03(m,1H),4.40–4.02(m,5H),3.85–3.78(m,1H),3.77–3.67(m,3H),3.59–3.51(m,3H),3.23–3.19(m,3H),3.18–3.11(m,2H),2.98–2.92(m,1H),2.79–2.56(m,5H),2.41–2.35(m,1H),2.11–1.97(m,2H),1.82–1.74(m,2H),1.57–1.42(m,1H),1.36(d,J=6.0Hz,3H),1.26–1.22(m,3H),1.18–1.15(m,2H),1.10–1.05(m,9H),0.93–0.83(m,6H),0.35(s,3H).
实施例38
(1r,2R,3S)-N-((63S,4S,Z)-11-ethyl-12-(5-(3-((R)-3-(hydroxymethyl)morpholino)prop-1-yn-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2,3-dimethylcyclopropane-1-carboxamide
用(R)-3-羟甲基吗啉替换实施例36中的N-甲基四氢-2H-吡喃-4-胺,用类似的方法和反应步骤,可以得到化合物38。ESI-MS(m/z):881.1[M+H]+;LC-MS保留时间RT=1.67min。
1H NMR(500MHz,DMSO-d6)δ8.81(d,J=2.0Hz,1H),8.51–8.49(m,1H),8.39(d,J=9.0Hz,1H),7.85(d,J=2.0Hz,1H),7.82(s,1H),7.77–7.73(m,1H), 7.58(d,J=8.5Hz,1H),5.56(t,J=9.0Hz,1H),5.09–5.03(m,1H),4.59(t,J=5.5Hz,1H),4.38–4.03(m,5H),3.87–3.66(m,4H),3.63–3.55(m,3H),3.51–3.43(m,1H),3.31–3.28(m,2H),3.25(s,3H),3.22–3.07(m,2H),2.99–2.93(m,1H),2.78–2.68(m,2H),2.64–2.57(m,1H),2.56–2.52(m,1H),2.42–2.35(m,1H),2.11-2.04(m,1H),1.83–1.74(m,2H),1.57–1.46(m,1H),1.36(d,J=6.0Hz,3H),1.24–1.15(m,4H),1.10–1.04(m,6H),0.95–0.85(m,6H),0.35(s,3H).
实施例40
(1r,2R,3S)-N-((63S,4S,Z)-11-ethyl-12-(5-(3-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)prop-1-yn-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2,3-dimethylcyclopropane-1-carboxamide
用INT-35替换实施例11中INT-16,用类似的方法和反应步骤,可以得到化合物40。ESI-MS(m/z):906.3[M+H]+;LC-MS保留时间RT=1.74min。HPLC保留时间RT=12.56min。
1H NMR(500MHz,DMSO-d6)δ8.81(d,J=2.0Hz,1H),8.51–8.48(m,1H),8.41(d,J=9.0Hz,1H),7.85(d,J=2.0Hz,1H),7.83(s,1H),7.77–7.73(m,1H),7.59(d,J=8.5Hz,1H),5.55(t,J=9.0Hz,1H),5.11–5.04(m,1H),4.39–3.97(m,5H),3.75–3.68(m,1H),3.75–3.68(m,1H),3.58–3.54(m,4H),3.50–3.43(m,1H),3.31–3.29(m,1H),3.25(s,3H),3.22–3.04(m,2H),2.99–2.93(m,1H),2.83–2.56(m,6H),2.43–2.33(m,2H),2.23–2.04(m,4H),1.96–1.90(m,1H),1.84–1.74(m,2H),1.53–1.47(m,1H),1.35(d,J=6.0Hz,3H),1.19–1.12(m,2H),1.11 –1.05(m,6H),0.91(s,3H),0.88(t,J=7.0Hz,3H),0.34(s,3H).
实施例41
(1r,2R,3S)-N-((63S,4S,Z)-12-(5-(3-(4-acetylpiperazin-1-yl)prop-1-yn-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-11-ethyl-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2,3-dimethylcyclopropane-1-carboxamide
用化合物INT-36替换化合物11合成步骤中的INT-16,用类似的方法和反应步骤,可以得到化合物41。ESI-MS(m/z):891.3[M+H]+;LC-MS保留时间RT=1.68min。HPLC保留时间RT=12.18min。
1H NMR(500MHz,DMSO-d6)δ8.81(d,J=2.0Hz,1H),8.50(d,J=1.5Hz,1H),8.41(d,J=9.0Hz,1H),7.86(d,J=2.0Hz,1H),7.82(s,1H),7.75(dd,J=8.5,1.5Hz,1H),7.58(d,J=8.5Hz,1H),5.55(t,J=9.0Hz,1H),5.12–5.03(m,1H),4.38–4.03(m,5H),3.65–3.55(m,4H),3.51–3.42(m,4H),3.33–3.29(m,2H),3.25(s,3H),3.18–3.11(m,1H),2.99–2.91(m,1H),2.80–2.70(m,1H),2.58–2.53(m,2H),2.49–2.46(m,2H),2.42–2.34(m,1H),2.11–2.04(m,1H),1.99(s,3H),1.84–1.71(m,2H),1.56–1.46(m,1H),1.35(d,J=6.0Hz,3H),1.19–1.14(m,2H),1.10–1.04(m,6H),0.93–0.83(m,6H),0.34(s,3H).
实施例42
(1S,2S)-N-((63S,4S,Z)-11-ethyl-12-(5-((2-(ethylamino)pyrimidin-5-yl)ethynyl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
用INT-37替换实施例10中INT-15,用类似的方法和反应步骤,可以得到化合物42。ESI-MS(m/z):859.5[M+H]+;LC-MS保留时间RT=1.93min。HPLC保留时间RT=14.59min。
1H NMR(500MHz,DMSO)δ8.87(d,J=2.0Hz,1H),8.56–8.46(m,4H),7.91(d,J=2.0Hz,1H),7.81(s,1H),7.79–7.74(m,2H),7.59(d,J=8.5Hz,1H),5.56(t,J=9.5Hz,1H),5.10-5.05(m,1H),4.38–4.05(m,6H),3.58(s,2H),3.26(s,3H),3.17–3.10(m,2H),3.00–2.95(m,1H),2.80–2.71(m,1H),2.44–2.38(m,1H),2.11–2.06(m,1H),1.84–1.73(m,2H),1.54–1.47(m,2H),1.37(d,J=6.0Hz,3H),1.25–1.22(m,1H),1.12(t,J=7.0Hz,3H),1.09–1.03(m,4H),0.93(s,3H),0.88(t,J=7.0Hz,3H),0.86–0.84(m,1H),0.57–0.52(m,1H),0.35(s,3H).
实施例43
(1S,2S)-N-((63S,4S,Z)-12-(5-(3-(1,1-dioxidothiomorpholino)prop-1-yn-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-11-ethyl-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
用INT-38替换实施例10中INT-15,用类似的方法和反应步骤,可以得到化合物43。ESI-MS(m/z):884.8[M+H]+;LC-MS保留时间RT=1.70min。HPLC保留时间RT=12.44min。
1H NMR(500MHz,DMSO-d6)δ8.81(d,J=2.0Hz,1H),8.53–8.48(m,2H),7.86(d,J=2.0Hz,1H),7.80(s,1H),7.75(d,J=8.5Hz,1H),7.58(d,J=8.5Hz,1H),5.56(t,J=9.0Hz,1H),5.09–5.05(m,1H),4.34–4.32(m,1H),4.29–4.25(m,2H),4.21–4.15(m,2H),4.09–4.06(m,1H),3.77–3.75(m,2H),3.58–3.57(m,2H),3.31–3.30(m,2H),3.25(s,3H),3.18–3.14(m,5H),3.06–3.03(m,3H),2.98–2.94(m,1H),2.79–2.74(m,1H),2.41–2.36(m,1H),2.10–2.06(m,1H),1.82–1.77(m,2H),1.52–1.47(m,2H),1.35(d,J=6.0Hz,3H),1.08–1.05(m,4H),0.91(s,3H),0.90–0.86(m,4H),0.57–0.53(m,1H),0.34(s,3H).
实施例44
(1S,2S)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((6-methyl-5,6,7,8-tetrahydropyrido[4,3-d]pyrimidin-2-yl)ethynyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
用INT-39替换实施例10中INT-15,用类似的方法和反应步骤,可以得到化合物44。ESI-MS(m/z):883.7[M+H]+;LC-MS保留时间RT=1.75min。HPLC保留时间RT=12.64min。
1H NMR(500MHz,DMSO-d6)δ9.02(d,J=2.0Hz,1H),8.58(s,1H),8.56–8.51(m,2H),8.09(d,J=2.0Hz,1H),7.82(s,1H),7.79–7.75(m,1H),7.60(d,J=8.5Hz,1H),5.56(t,J=9.0Hz,1H),5.12–5.06(m,1H),4.39–4.29(m,2H),4.27–4.17(m,2H),4.14–4.07(m,1H),3.60–3.54(m,4H),3.28(s,3H),3.17–3.11(m,1H),3.01–2.96(m,1H),2.93–2.89(m,2H),2.78–2.71(m,3H),2.46–2.42(m,1H),2.38(s,3H),2.12–2.05(m,1H),1.83–1.76(m,2H),1.54–1.47(m,2H),1.38(d,J=6.0Hz,3H),1.09–1.05(m,4H),0.93(s,3H),0.92–0.84(m,5H),0.58–0.52(m,1H),0.35(s,3H).
实施例45
(1S,2S)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(((S)-4-methyl-1,1-dioxidothiomorpholin-2-yl)ethynyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
用INT-40替换实施例10中的INT-15,用类似的方法和反应步骤,可以得到化合物45。ESI-MS(m/z):883.7[M+H]+;LC-MS保留时间RT=1.75min。HPLC保留时间RT=12.64min。
1H NMR(500MHz,DMSO-d6)δ8.87–8.80(m,1H),8.54(d,J=9.0Hz,1H),8.51–8.49(m,1H),7.88–7.85(m,1H),7.82(s,1H),7.76(dd,J=8.5,1.5Hz,1H),7.59(d,J=8.5Hz,1H),5.56(t,J=9.0Hz,1H),5.12–5.07(m,1H),4.35–4.18(m,5H),4.11–4.04(m,1H),3.59–3.55(m,2H),3.48–3.41(m,2H),3.26(s,3H),3.20–3.12(m,4H),3.01–2.95(m,1H),2.89–2.83(m,1H),2.79–2.73(m,1H),2.47–2.46(m,2H),2.40–2.35(m,1H),2.11–2.06(m,1H),2.03–1.96(m,1H),1.82–1.75(m,2H),1.55–1.46(m,3H),1.36(d,J=6.0Hz,3H),1.08–1.05(m,4H),0.92(s,3H),0.89–0.85(m,4H),0.57–0.53(m,1H),0.34(s,3H).
实施例46
(1S,2S)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((6-methyl-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-3-yl)ethynyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
用INT-41替换实施例10中的INT-15,用类似的方法和反应步骤,可以得到化合物46。ESI-MS(m/z):869.3[M+H]+;LC-MS保留时间RT=1.86min。HPLC保留时间RT=13.81min。
1H NMR(500MHz,DMSO-d6)δ8.94(s,1H),8.59(s,1H),8.53–8.49(m,2H),8.01(s,1H),7.89(s,1H),7.81(s,1H),7.76(d,J=8.5Hz,1H),7.59(d,J=8.5Hz,1H),5.57(t,J=9.0Hz,1H),5.09–5.05(m,1H),4.37–4.30(m,2H),4.26–4.19(m,2H),4.12–4.08(m,1H),3.89–3.85(m,4H),3.58(s,2H),3.27(s,3H),3.18–3.12(m,2H),3.01–2.97(m,1H),2.79–2.74(m,1H),2.44–2.41(m,1H),2.10–2.07(m,1H),1.82–1.77(m,2H),1.53–1.48(m,2H),1.40–1.36(m,3H),1.25–1.23(m,2H),1.08–1.05(m,4H),0.93(s,3H),0.91–0.86(m,5H),0.56–0.53(m,1H),0.36(s,3H).
实施例47
(1S,2S)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((1-methyl-1H-indol-7-yl)ethynyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
用INT-42替换实施例10中INT-15,用类似的方法和反应步骤,可以得到化合物47。ESI-MS(m/z):867.0[M+H]+;LC-MS保留时间RT=2.28min。HPLC保留时间RT=17.46min。
1H NMR(500MHz,DMSO-d6)δ8.98(d,J=2.0Hz,1H),8.53–8.50(m,2H),8.03(d,J=2.0Hz,1H),7.82(s,1H),7.78–7.75(m,1H),7.65(d,J=8.0Hz,1H),7.60(d,J=8.5Hz,1H),7.41–7.37(m,2H),7.08–7.05(m,1H),6.51(d,J=3.0Hz,1H),5.57(t,J=9.0Hz,1H),5.11–5.06(m,1H),4.39–4.30(m,2H),4.25–4.20(m,4H),4.16–4.11(m,1H),3.59(s,2H),3.36–3.34(m,1H),3.31–3.30(m,1H),3.28(s,3H),3.18–3.13(m,1H),3.01–2.96(m,1H),2.79–2.74(m,1H),2.48–2.44(m,1H),2.11–2.06(m,1H),1.82–1.76(m,2H),1.54–1.48(m,2H),1.39(d,J=6.0Hz,3H),1.07(s,4H),0.94–0.89(m,6H),0.88–0.85(m,1H),0.57–0.53(m,1H),0.38(s,3H).
实施例48
(1S,2S)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(piperidin-4-ylethynyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
实施例48由以下步骤制备:
用化合物INT-27替换化合物10合成步骤中的INT-15,用类似的方法和反应步骤,可以得到化合物48。ESI-MS(m/z):820.5[M+H]+;LC-MS保留时间RT=1.68min。HPLC保留时间RT=12.19min。
1H NMR(500MHz,DMSO)δ8.75(d,J=2.0Hz,1H),8.53–8.48(m,2H),7.81(s,1H),7.78–7.73(m,2H),7.57(d,J=8.5Hz,1H),5.58–5.53(m,1H),5.10–5.05(m,1H),4.36–4.28(m,2H),4.26(d,J=6.0Hz,1H),4.27–4.15(m,3H),4.09–4.04(m,1H),3.57(s,2H),3.25(s,3H),3.19–3.14(m,2H),2.98–2.94(m, 2H),2.78–2.74(m,1H),2.65–2.59(m,2H),2.39–2.34(m,2H),2.12–2.06(m,1H),2.01–1.97(m,1H),1.86–1.82(m,2H),1.82–1.77(m,2H),1.58–1.54(m,1H),1.51–1.48(m,1H),1.34(d,J=6.0Hz,3H),1.27–1.20(m,4H),1.06(s,3H),0.91(s,3H),0.89–0.85(m,3H),0.56–0.53(m,1H),0.33(s,3H).
实施例49
(1S,2S)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(3-(4-methyl-4-oxido-1,4-azaphosphinan-1-yl)prop-1-yn-1-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
用INT-43替换实施例10中INT-15,用类似的方法和反应步骤,可以得到化合物49。ESI-MS(m/z):882.5[M+H]+;LC-MS保留时间RT=1.51min。HPLC保留时间RT=10.62min。
1H NMR(500MHz,DMSO)δ8.81(d,J=2.0Hz,1H),8.53(d,J=9.0Hz,1H),8.49(d,J=1.5Hz,1H),7.86(d,J=2.0Hz,1H),7.81(s,1H),7.77–7.73(m,1H),7.58(d,J=9.0Hz,1H),5.56(t,J=9.0Hz,1H),5.11–5.06(m,1H),4.37–4.30(m,1H),4.29–4.22(m,2H),4.12–4.03(m,1H),4.12–4.03(m,1H),3.66(s,2H),3.57(s,2H),3.32–3.29(m,1H),3.25(s,3H),3.17–3.13(m,1H),3.00–2.90(m,3H),2.78–2.70(m,3H),2.40–2.35(m,1H),2.12–2.04(m,1H),1.93–1.83(m,3H),1.83–1.76(m,3H),1.54–1.47(m,2H),1.44–1.40(m,3H),1.35(d,J=6.0Hz,3H),1.09–1.02(m,4H),0.91(s,3H),0.89–0.83(m,4H),0.57–0.52(m,1H),0.33(s,3H).
实施例50
(1S,2S)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(3-(2-methyl-2,7-diazaspiro[3.5]nonan-7-yl)prop-1-yn-1-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
用INT-44替换实施例10中的INT-15,用类似的方法和反应步骤,可以得到化合物50。ESI-MS(m/z):889.6[M+H]+;LC-MS保留时间RT=1.65min。HPLC保留时间RT=12.62min。
1H NMR(500MHz,DMSO)δ8.78(d,J=2.0Hz,1H),8.52(d,J=9.0Hz,1H),8.49(d,J=1.5Hz,1H),7.83(d,J=2.0Hz,1H),7.81(s,1H),7.77–7.73(m,1H),7.58(d,J=9.0Hz,1H),5.56(t,J=9.0Hz,1H),5.11–5.06(m,1H),4.37–4.30(m,1H),4.28–4.22(m,2H),4.21–4.13(m,2H),4.11–4.03(m,1H),3.60–3.54(m,2H),3.50(s,2H),3.25(s,3H),3.17–3.11(m,2H),2.98-2.93(m,4H),2.78–2.72(m,1H),2.65–2.61(m,1H),2.44–2.40(m,3H),2.37–2.35(m,1H),2.24(s,3H),2.09-2.04(m,1H),1.82–1.76(m,2H),1.70–1.64(m,4H),1.56–1.47(m,3H),1.35(d,J=6.0Hz,3H),1.26–1.21(m,2H),1.09–1.03(m,4H),0.91(s,3H),0.89–0.84(m,4H),0.57–0.52(m,1H),0.33(s,3H).
实施例51
(1S,2S)-N-((63S,4S,Z)-11-ethyl-12-(5-(((2S)-1-imino-4-methyl-1-oxido-1λ6-thiomorpholin-2-yl)ethynyl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
用INT-46替换实施例10中的INT-15,用类似的方法和反应步骤,可以得到化合物51。ESI-MS(m/z):883.5[M+H]+;LC-MS保留时间RT=1.56min。HPLC保留时间RT=11.07min。
1H NMR(500MHz,DMSO-d6)δ8.87–8.79(m,1H),8.57–8.48(m,2H),7.93–7.88(m,1H),7.81(s,1H),7.76(d,J=8.5Hz,1H),7.59(d,J=9.0Hz,1H),5.56(t,J=9.0Hz,1H),5.13–5.06(m,1H),4.36–4.17(m,4H),4.10–4.02(m,2H),4.00(s,1H),3.57(s,2H),3.32–3.30(m,2H),3.29–3.24(m,4H),3.17–2.94(m,6H),2.81–2.73(m,2H),2.45(s,3H),2.41–2.36(m,1H),2.11–2.05(m,1H),1.83–1.76(m,2H),1.54–1.47(m,2H),1.36(d,J=6.0Hz,3H),1.09–1.03(m,4H),0.92(s,3H),0.90–0.84(m,4H),0.57–0.52(m,1H),0.34(s,3H).
实施例52
(1r,2R,3S)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(3-(4-methylpiperazin-1-yl)prop-1-yn-1-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2,3-dimethylcyclopropane-1-carboxamide
用化合物INT-45替换化合物11合成步骤中的INT-16,用类似的方法和反应步骤,可以得到化合物52。ESI-MS(m/z):863.6[M+H]+;LC-MS保留时间RT=1.78min。HPLC保留时间RT=12.82min。
1H NMR(500MHz,DMSO-d6)δ8.80(d,J=2.0Hz,1H),8.55–8.47(m,1H),8.39(d,J=9.0Hz,1H),7.87–7.78(m,2H),7.75(dd,J=8.5,1.5Hz,1H),7.58(d,J=8.5Hz,1H),5.55(t,J=9.0Hz,1H),5.12–5.00(m,1H),4.35–4.17(m,4H),4.12–4.04(m,1H),3.59–3.55(m,4H),3.25(s,3H),3.17–3.13(m,1H),2.99–2.93(m,1H),2.79–2.71(m,2H),2.59–2.54(m,4H),2.40–2.36(m,2H),2.16(s,3H),2.09–2.06(m,1H),1.82–1.75(m,2H),1.55–1.45(m,2H),1.35(d,J=6.0Hz,3H),1.26–1.22(m,2H),1.18–1.15(m,2H),1.09–1.04(m,6H),0.92–0.86(m,6H),0.34(s,3H).
实施例53
用化合物INT-47替换化合物10合成步骤中的INT-15,用类似的方法和反 应步骤,可以得到化合物53。ESI-MS(m/z):852.7[M+H]+;LC-MS保留时间RT=2.15min。HPLC保留时间RT=16.48min。
1H NMR(500MHz,DMSO-d6)δ11.42(s,1H),9.03(d,J=2.0Hz,1H),8.60–8.47(m,2H),8.18(d,J=2.0Hz,1H),7.82(s,1H),7.78(dd,J=8.5,1.5Hz,1H),7.67(d,J=8.5Hz,1H),7.61(d,J=8.5Hz,1H),7.45(t,J=3.0Hz,1H),7.36(d,J=7.0Hz,1H),7.07(t,J=8.0Hz,1H),6.57–6.54(m,1H),5.56(t,J=9.0Hz,1H),5.12–5.05(m,1H),4.42–4.32(m,2H),4.27–4.13(m,3H),3.60(s,2H),3.36–3.34(m,1H),3.29(s,3H),3.17–3.12(m,1H),3.05–3.00(m,1H),2.80–2.74(m,1H),2.47–2.43(m,1H),2.12–2.05(m,1H),1.82–1.75(m,2H),1.54–1.47(m,2H),1.40(d,J=6.0Hz,3H),1.110–1.04(m,4H),0.96–0.91(m,6H),0.88–0.84(m,1H),0.58–0.54(m,1H),0.38(s,3H).
实施例54
N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(3-morpholinoprop-1-yn-1-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)cyclopropanecarboxamide
用环丙基甲酸替换化合物1合成步骤中的INT-3b,用类似的方法和反应步骤,可以得到化合物54。ESI-MS(m/z):822.8[M+H]+;LC-MS保留时间RT=1.73min。HPLC保留时间RT=12.40min。
1H NMR(500MHz,DMSO-d6)δ8.84–8.79(m,1H),8.58(d,J=9.0Hz,1H),8.52–8.47(m,1H),7.88–7.85(m,1H),7.82(s,1H),7.76(d,J=8.5Hz,1H),7.58(d,J=8.5Hz,1H),5.57(t,J=9.0Hz,1H),5.11–5.05(m,1H),4.38–4.15(m,4H), 4.12–4.06(m,1H),3.64–3.59(m,4H),3.59–3.56(m,4H),3.29–3.26(m,1H),3.26–3.23(m,3H),3.19–3.12(m,1H),3.00–2.95(m,1H),2.79–2.73(m,1H),2.55–2.52(m,4H),2.41–2.35(m,2H),2.12–2.06(m,1H),1.81–1.72(m,3H),1.55–1.47(m,1H),1.35(d,J=6.0Hz,3H),0.92(s,3H),0.88(t,J=7.0Hz,3H),0.73–0.67(m,3H),0.64–0.60(m,1H),0.34(s,3H).
实施例55
(1S,2S)-N-((63S,4S,Z)-11-ethyl-12-(5-((1-(2-hydroxyethyl)piperidin-4-yl)ethynyl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
实施例55由以下步骤制备:
第一步:将化合物48(60mg,0.073mmol)溶于乙腈(2mL)中,随后依次 加入碳酸钾(20mg,0.146mmol)、碘化钾(24mg,0.146mmol)和2-溴乙醇(9mg,0.073mmol)。反应液在室温下搅拌反应8小时。LCMS检测反应完全后,向反应体系中加入水(10mL),用二氯甲烷(10mL*2)萃取,合并有机相,并用饱和食盐水洗涤,无水硫酸钠干燥,过滤浓缩,残余物通过制备液相色谱纯化得到化合物55(6mg,收率9.5%)。ESI-MS(m/z):864.7[M+H]+;LC-MS保留时间RT=1.73min。
1H NMR(500MHz,DMSO)δ8.78–8.73(m,1H),8.52–8.48(m,2H),7.80(s,1H),7.78–7.73(m,2H),7.57(d,J=8.5Hz,1H),5.56(t,J=9.0Hz,1H),5.10–5.05(m,1H),4.36–4.15(m,5H),4.11-4.02(m,1H),3.57(s,2H),3.50-3.45(m,2H),3.24(s,3H),3.19-3.11(m,1H),3.00–2.94(m,1H),2.80-2.72(m,3H),2.71–2.63(m,2H),2.42–2.34(m,3H),2.23–2.14(m,2H),2.10–2.05(m,1H),1.89–1.85(m,2H),1.82–1.75(m,2H),1.67-1.59(m,2H),1.56–1.47(m,2H),1.35(d,J=6.0Hz,3H),1.11-1.02(m,4H),0.91(s,3H),0.90–0.85(m,4H),0.57–0.52(m,1H),0.34(s,3H).
实施例56
(1S,2S)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((1-methyl-1H-indol-4-yl)ethynyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
用化合物INT-48替换化合物10合成步骤中的INT-15,用类似的方法和反 应步骤,可以得到化合物56。ESI-MS(m/z):865.7[M+H]+;LC-MS保留时间RT=2.15min。HPLC保留时间RT=16.44min。
1H NMR(500MHz,DMSO-d6)δ8.99(d,J=2.5Hz,1H),8.56–8.49(m,2H),8.07(d,J=2.0Hz,1H),7.82(s,1H),7.77(dd,J=8.5,2.0Hz,1H),7.61-7.56(m,2H),7.48(d,J=2.5Hz,1H),7.33(d,J=7.0Hz,1H),7.21(t,J=7.0Hz,1H),6.73(d,J=2.0Hz,1H),5.56(t,J=9.0Hz,1H),5.10–5.05(m,1H),4.38-4.29(m,2H),4.26–4.10(m,3H),3.84(s,3H),3.59(s,2H),3.37–3.33(m,1H),3.28(s,3H),3.17-3.12(m,1H),3.03–2.97(m,1H),2.79-2.73(m,1H),2.49–2.35(m,1H),2.10-2.07(m,1H),1.85-1.76(m,2H),1.57–1.46(m,2H),1.39(d,J=6.0Hz,3H),1.10–1.04(m,4H),0.97–0.90(m,6H),0.89–0.84(m,1H),0.58–0.52(m,1H),0.38(s,3H).
实施例57
(1S,2S)-N-((63S,4S,Z)-11-ethyl-12-(5-(3-(1-imino-1-oxido-1l6-thiomorpholino)prop-1-yn-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
用化合物INT-48替换化合物10合成步骤中的INT-15,用类似的方法和反应步骤,可以得到化合物57。ESI-MS(m/z):883.7[M+H]+;LC-MS保留时间RT=1.56min。HPLC保留时间RT=10.93min。
1H NMR(500MHz,DMSO-d6)δ8.81(d,J=2.0Hz,1H),8.53–8.49(m,2H),7.85(d,J=2.0Hz,1H),7.81(s,1H),7.76-7.74(m,1H),7.59-7.57(m,1H),5.56(t,J =9.0Hz,1H),5.12–5.07(m,1H),4.39–4.16(m,4H),4.12–4.03(m,1H),3.72(s,2H),3.65(s,1H),3.57(s,2H),3.31–3.28(m,1H),3.25(s,3H),3.18–3.07(m,2H),3.06–3.02(m,3H),3.02–2.94(m,5H),2.79–2.73(m,1H),2.42–2.35(m,1H),2.09–2.07(m,1H),1.82–1.76(m,2H),1.55–1.47(m,2H),1.35(d,J=6.0Hz,3H),1.07–1.06(m,4H),0.91(s,3H),0.89–0.86(m,4H),0.56–0.54(m,1H),0.34(s,3H).
实施例58
(1r,2R,3S)-N-((63S,4S,Z)-12-(5-(3-(dimethylamino)prop-1-yn-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-11-ethyl-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2,3-dimethylcyclopropane-1-carboxamide
用二甲胺替换化合物36合成步骤中的N-甲基四氢-2H-吡喃-4-胺,用类似的方法和反应步骤,可以得到化合物58。ESI-MS(m/z):808.6[M+H]+;LC-MS保留时间RT=1.96min。HPLC保留时间RT=14.23min。
1H NMR(500MHz,DMSO-d6)δ8.81(d,J=2.0Hz,1H),8.53–8.47(m,1H),8.41(d,J=9.0Hz,1H),7.88–7.81(m,2H),7.76(dd,J=8.5,1.5Hz,1H),7.59(d,J=8.5Hz,1H),5.55(t,J=9.0Hz,1H),5.13–5.04(m,1H),4.36–4.07(m,5H),3.57(s,2H),3.51(s,2H),3.32–3.29(m,1H),3.25(s,3H),3.17–3.11(m,1H),2.99–2.93(m,1H),2.80–2.72(m,1H),2.41–2.33(m,2H),2.26(s,6H),2.11–2.03(m,1H),1.82–1.74(m,2H),1.56–1.46(m,1H),1.35(d,J=6.0Hz,3H),1.17–1.14(m,2H),1.09–1.05(m,6H),0.91–0.83(m,6H),0.34(s,3H).
实施例59
(1S,2S)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(3-(piperidin-1- yl)prop-1-yn-1-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
用INT-49替换实施例10中INT-15,用类似的方法和反应步骤,可以得到化合物59。ESI-MS(m/z):835.1[M+H]+;LC-MS保留时间RT=2.06min。
1H NMR(500MHz,DMSO)δ8.80(d,J=2.0Hz,1H),8.52(d,J=9.0Hz,1H),8.50(d,J=1.0Hz,1H),7.84(d,J=2.0Hz,1H),7.81(s,1H),7.77-7.73(m,1H),7.58(d,J=8.5Hz,1H),5.56(t,J=9.5Hz,1H),5.11-5.06(m,1H),4.36–4.16(m,5H),4.12-4.03(m,1H),3.57(s,2H),3.51(s,2H),3.25(s,3H),3.17–3.08(m,2H),2.99-2.93(m,1H),2.78–2.72(m,1H),2.40-2.34(m,2H),2.10-2.05(m,1H),1.82-1.73(m,2H),1.56–1.47(m,7H),1.40-1.36(m,2H),1.35(d,J=6.0Hz,3H),1.10-1.02(m,5H),0.91(s,3H),0.89-0.85(m,4H),0.58-0.52(m,1H),0.33(s,3H).
实施例60
(1S,2S)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(3-(4-methylpiperazin-1-yl)prop-1-yn-1-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
用化合物INT-45替换化合物10合成步骤中的INT-15,用类似的方法和反应步骤,可以得到化合物60。ESI-MS(m/z):849.9[M+H]+;LC-MS保留时间RT=1.70min。
1H NMR(500MHz,DMSO-d6)δ8.81(d,J=2.0Hz,1H),8.57–8.48(m,2H),7.85(d,J=2.0Hz,1H),7.82(s,1H),7.76(dd,J=8.5,1.5Hz,1H),7.59(d,J=8.5Hz,1H),5.56(t,J=9.0Hz,1H),5.15–5.01(m,1H),4.38–4.16(m,4H),4.12–4.04(m,1H),3.67–3.53(m,4H),3.33–3.29(m,4H),3.26(s,3H),3.17–3.11(m,1H),3.00–2.93(m,1H),2.80–2.72(m,1H),2.66–2.55(m,4H),2.40–2.35(m,2H),2.34–2.24(m,3H),2.11–2.03(m,1H),1.83–1.72(m,2H),1.55–1.45(m,2H),1.35(d,J=6.0Hz,3H),1.09–1.02(m,4H),0.92(s,3H),0.89–0.85(m,3H),0.58–0.52(m,1H),0.33(s,3H).
实施例61
(1S,2S)-N-((63S,4S,Z)-12-(5-(3-(dimethylamino)prop-1-yn-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-11-ethyl-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide
用二甲胺替换化合物15合成步骤中的(R)-3甲基吗啉盐酸盐,用类似的方法和反应步骤,可以得到化合物61。ESI-MS(m/z):794.8[M+H]+;LC-MS保留时间RT=1.83min。HPLC保留时间RT=13.71min。
1H NMR(500MHz,DMSO-d6)δ8.81(d,J=2.0Hz,1H),8.55–8.49(m,2H),7.84(d,J=2.0Hz,1H),7.81(s,1H),7.78–7.74(m,1H),7.58(d,J=8.5Hz,1H),5.56(t,J=9.0Hz,1H),5.12–5.06(m,1H),4.35–4.06(m,5H),3.57(s,2H),3.50(s,2H),3.33–3.30(m,1H),3.25(s,3H),3.18–3.11(m,1H),2.99–2.93(m,1H),2.80–2.73(m,1H),2.42–2.35(m,1H),2.25(s,6H),2.11–2.05(m,1H),1.83–1.74(m,2H),1.55–1.47(m,2H),1.35(d,J=6.0Hz,3H),1.09–1.04(m,4H),0.93–0.84(m,7H),0.57–0.52(m,1H),0.34(s,3H).
RAS抑制剂生物学筛选及结果
试验例1:体外细胞增殖抑制试验
由于RAS突变的多样性,同时为了评估化合物在不同RAS突变细胞系中的活性,我们选择了KRASWT、KRASG12C、KRASG12D、KRASG12V以及BRAF突变的细胞系(见下表)进行化合物的体外活性评估和筛选。

实验方案:Cell Luminescent Viability Assay(Promega)
依据不同细胞系的倍增时间,将不同数量的细胞(1000-5000个/孔)接种于含有180μl对应培养基的96孔板中,在含5%CO2的37℃细胞培养箱中培养过夜。第二天,用培养基将待测化合物预先进行3倍梯度稀释,最高浓度为100μM,共10个浓度梯度;之后将20μl含有不同浓度化合物的培养基加入96孔板的细胞中,保证化合物的终浓度为最高10μM,3倍稀释的10个浓度梯度。细胞和化合物共孵育培养72h后,将96孔板从培养箱中取出,置于室温下平衡30min,之后每孔加入25μlReagent充分混匀,室温孵育10min,之后将100μl样品转移至白色96孔板中(OptiPlateTM-96,PerkinElmer),使用多功能酶标仪(i3x,Molecular devices)读取荧光信号值。后续将信号值进行标准化处理,利用四参数拟合回归方程进行曲线拟合,计算化合物对细胞系的半抑制浓度(half maximal inhibitory concentration,IC50)。
表3:本发明化合物对KRAS细胞突变株的抗增殖活性


*NT表示未检测

Claims (22)

  1. 一种具有式(I)结构的化合物或其药学上可接受的盐、同位素衍生物、立体异构体:
    其中:
    R1表示C1-C6烷基、-(C1-C6亚烷基)-(C3-C8环烷基)或者-(C1-C6亚烷基)-(3-8元杂环烷基);
    R2表示卤素、氰基、C1-C6烷基、-(C0-C6亚烷基)-(C3-C8环烷基)、或者-(C0-C6亚烷基)-(3-8元杂环烷基),其任选地可被0个、1个或者2个以下取代基取代:-ORa,-SRa或者-NRaRa’;
    R3表示氢、-O(C0-C6亚烷基)Ra、-S(C0-C6亚烷基)Ra、-N(C0-C6亚烷基)Ra(C0-C6亚烷基)Ra’、-O(C2-C6亚烷基)RL、-S(C2-C6亚烷基)RL、-N(C2-C6亚烷基)RL(C2-C6亚烷基)RL’、或者-N(C2-C6亚烷基)Ra(C2-C6亚烷基)RL,其中,RL、RL’各自独立地表示-ORa、-SRa、或者NRaRa’;
    Cy1表示C3-C12环烷基或者3-12元杂环烷基;
    R4表示氢、卤素、氧代、C1-C6烷基、-(C0-C6亚烷基)(C3-C6)环烷基、-(C0-C6亚烷基)(3-8元)杂环烷基、-(C0-C6亚烷基)ORa、-(C0-C6亚烷基)SRa、-(C0-C6亚烷基)NRaRa’、-(C0-C6亚烷基)CORa、-(C0-C6亚烷基)COORa、-(C0-C6亚烷基)CONRaRa’、-(C0-C6亚烷基)NRaCORa’、-(C0-C6亚烷基)OCONRaRa’、-(C0-C6亚烷基)NRaCONRaRa’、-(C0-C6亚烷基)SORa、-(C0-C6亚烷基)S(O)2Ra、-(C0-C6亚烷基)NRaS(O)2Ra’、-(C0-C6亚烷基)CN、-(C0-C6亚烷基)(C6-C10芳香基)或 者-(C0-C6亚烷基)(5-12元杂芳基);其中,Cy1的两个C原子上的R4连同与之相连的C原子以及所述两个C原子之间的原子可以形成3-8元环,所述3-8元环任选地可含有0个、1个、2个或者3个选自N、O或者S的杂原子;或者Cy1同一个C原子上的两个R4连同与之相连的C原子可以形成3-8元环,所述3-8元环任选地可含有0个、1个、2个或者3个选自N、O或者S的杂原子;
    R8表示-Cy2-(R5)q或者-NR9R9’,其中,
    Cy2表示C3-C12环烷基、3-12元杂环烷基、C6-C10芳香基或者5-12元杂芳基;
    R5表示氢、卤素、氧代、C1-C6烷基、-(C0-C6亚烷基)ORa、-(C0-C6亚烷基)SRa、-(C0-C6亚烷基)NRaRa’、-(C0-C6亚烷基)CORa、-(C0-C6亚烷基)COORa、-(C0-C6亚烷基)CONRaRa’、-(C0-C6亚烷基)NRaCORa’、-(C0-C6亚烷基)OCONRaRa’、-(C0-C6亚烷基)NRaCONRaRa’、-(C0-C6亚烷基)SORa、-(C0-C6亚烷基)S(O)2Ra或者-(C0-C6亚烷基)NRaS(O)2Ra’,或者Cy2的两个C原子上的R5连同与之相连的C原子以及所述两个C原子之间的原子可以形成3-8元环,所述3-8元环任选地可含有0个、1个、2个或者3个选自N、O或者S的杂原子;或者Cy2同一个C原子上的两个R5连同与之相连的C原子可以形成3-8元环,所述3-8元环任选地可含有0个、1个、2个或者3个选自N、O或者S的杂原子;或者Cy2环上的至少一个原子被S(=O)(=NRa)或者S(=O)2取代;
    R9、R9’各自独立地表示可被q个R5任意取代的C1-C6烷基、C3-C8环烷基、3-8元杂环烷基、C6-C10芳香基或者5-12元杂芳基;
    R6、R6’各自独立地表示氢、卤素、C1-C6烷基、C3-C8环烷基或者-(C0-C6亚烷基)CN;
    R7、R7’各自独立地表示氢、卤素、C1-C6烷基、C3-C8环烷基、3-8元杂环烷基;或者R7、R7’与与之相连的C原子形成3-8元环,所述环任选可含有0个、1个、2个或者3个选自N、O、S的杂原子;
    其中,p、q各自独立地表示0、1、2、3或者4;
    m表示0、1、2或者3;
    Ra、Ra’各自独立地表示氢、C1-C6烷基、C3-C8环烷基;其中,如果Ra、Ra’连接于同一个N原子,所述Ra和Ra’可与共同相连的N原子可以形成4-8元环,所述4-8元环任选地可含有0个、1个、2个或者3个选自N、O或者S的杂原 子;
    所述烷基、环烷基、杂环烷基、亚烷基各自独立地可被0、1、2、3、4、5或者6个卤素原子取代。
  2. 如权利要求1所述的具有式(I)结构的化合物或其药学上可接受的盐、同位素衍生物、立体异构体,其中,R1表示C1-C6烷基,优选C1-C3烷基。
  3. 如前述任一权利要求所述的具有式(I)结构的化合物或其药学上可接受的盐、同位素衍生物、立体异构体,其中,R2表示C1-C6烷基,其任选地可被0个、1个或者2个-ORa取代基取代;更优选的,R2表示优选为其中,*表示R2连接到式(I)中与之相连部位的位点。
  4. 如前述任一权利要求所述的具有式(I)结构的化合物或其药学上可接受的盐、同位素衍生物、立体异构体,其中,R3表示-O(C1-C6)烷基、-O(C0-C6亚烷基)(C3-C8)环烷基、-O(C0-C6亚烷基)(3-8元)杂环烷基、-O(C2-C6亚烷基)RL或者氢。
  5. 如前述任一权利要求所述的具有式(I)结构的化合物或其药学上可接受的盐、同位素衍生物、立体异构体,其中,Cy1表示C3-C8环烷基或者3-8元杂环烷基。
  6. 如前述任一权利要求所述的具有式(I)结构的化合物或其药学上可接受的盐、同位素衍生物、立体异构体,其中R4表示氢、卤素、C1-C6烷基、-(C0-C6亚烷基)CONRaRa’、-(C0-C6亚烷基)NRaCORa’、-(C0-C6亚烷基)OCONRaRa’、-(C0-C6亚烷基)CN、-(C0-C6亚烷基)(5-12元杂芳基),或者Cy1的两个C原子上的R4连同与之相连的C原子以及所述两个C原子之间的原子可以形成3-8元环,所述3-8元环任选地可含有0个、1个、2个或者3个选自N、O或者S的杂原子;或者Cy1同一个C原子上的两个R4连同与之相连的C原子可以形成3-8元环,所述3-8元环任选地可含有0个、1个、2个或者3个选自N、O或者S 的杂原子。
  7. 如前述任一权利要求所述的具有式(I)结构的化合物或其药学上可接受的盐、同位素衍生物、立体异构体,其中R4表示氢、卤素、C1-C6烷基、-(C0-C6亚烷基)CONRaRa’、-(C0-C6亚烷基)(5-12元杂芳基),或者Cy1的两个C原子上的R4连同与之相连的C原子以及所述两个C原子之间的原子可以形成3-8元环,所述3-8元环任选地可含有0个、1个、2个或者3个选自N、O或者S的杂原子;或者Cy1同一个C原子上的两个R4连同与之相连的C原子可以形成3-8元环,所述3-8元环任选地可含有0个、1个、2个或者3个选自N、O或者S的杂原子。
  8. 如前述任一权利要求所述的具有式(I)结构的化合物或其药学上可接受的盐、同位素衍生物、立体异构体,其中,Cy2表示3-8元杂环烷基或者5-12元杂芳基。
  9. 如前述任一权利要求所述的具有式(I)结构的化合物或其药学上可接受的盐、同位素衍生物、立体异构体,其中,R5表示氢、卤素、C1-C6烷基、-(C0-C6亚烷基)ORa、-(C0-C6亚烷基)NRaRa’、-(C0-C6亚烷基)CORa、-(C0-C6亚烷基)COORa、-(C0-C6亚烷基)CONRaRa’、-(C0-C6亚烷基)NRaCORa’;或者Cy2的两个C原子上的R5连同与之相连的C原子以及所述两个C原子之间的原子可以形成3-8元环,所述3-8元环任选地可含有0个、1个、2个或者3个选自N、O或者S的杂原子;或者Cy2同一个C原子上的两个R5连同与之相连的C原子可以形成3-8元环,所述3-8元环任选地可含有0个、1个、2个或者3个选自N、O或者S的杂原子;或者Cy2环上的至少一个原子被S(=O)(=NRa)或者S(=O)2取代。
  10. 如前述任一权利要求所述的具有式(I)结构的化合物或其药学上可接受的盐、同位素衍生物、立体异构体,其中,R5表示氢、卤素、C1-C6烷基、-(C0-C6亚烷基)ORa、-(C0-C6亚烷基)NRaRa’;或者Cy2的两个C原子上的R5连同与之相连的C原子以及所述两个C原子之间的原子可以形成3-8元环,所述3-8元 环任选地可含有0个、1个、2个或者3个选自N、O或者S的杂原子;或者Cy2同一个C原子上的两个R5连同与之相连的C原子可以形成3-8元环,所述3-8元环任选地可含有0个、1个、2个或者3个选自N、O或者S的杂原子。
  11. 如前述任一权利要求所述的具有式(I)结构的化合物或其药学上可接受的盐、同位素衍生物、立体异构体,其中,R9、R9’中最少有一个表示被q个R5取代的C1-C6烷基。
  12. 如前述任一权利要求所述的具有式(I)结构的化合物或其药学上可接受的盐、同位素衍生物、立体异构体,其中,R6、R6’各自独立地表示氢或者C1-C6烷基;更优选地,R6、R6’各自独立地表示氢或者甲基。
  13. 如前述任一权利要求所述的具有式(I)结构的化合物或其药学上可接受的盐、同位素衍生物、立体异构体,其中,R7、R7’各自独立地表示氢、C1-C6烷基;或者R7、R7’与与之相连的C原子形成3-8元环,所述环任选可含有0个、1个、2个或者3个选自N、O、S的杂原子,更优选地,R7表示氢。
  14. 如前述任一权利要求所述的具有式(I)结构的化合物或其药学上可接受的盐、同位素衍生物、立体异构体,其中,m、p、q各自独立地优选0、1或者2。
  15. 如前述任一权利要求所述的具有式(I)结构的化合物或其药学上可接受的盐、同位素衍生物、立体异构体,其中,式(I)中-Cy1-(R4)p的结构选自以下:
    其中,*表示-Cy1-(R4)p连接到式(I)中与之相连部位的位点。
  16. 如权利要求1-14任一权利要求所述的具有式(I)结构的化合物或其药学上可接受的盐、同位素衍生物、立体异构体,其中,式(I)中-Cy1-(R4)p的结构选自以下:
    其中,*表示-Cy1-(R4)p连接到式(I)中与之相连部位的位点。
  17. 如前述任一权利要求所述的具有式(I)结构的化合物或其药学上可接受的盐、同位素衍生物、立体异构体,其中,式(I)中-Cy2-(R5)q的结构选自以下:
    其中,*表示-Cy2-(R5)q连接到式(I)中与之相连部位的位点。
  18. 如权利要求1-16任一权利要求所述的具有式(I)结构的化合物或其药学上可接受的盐、同位素衍生物、立体异构体,其中,式(I)中-Cy2-(R5)q的结构选自以下:
    其中,*表示-Cy2-(R5)q连接到式(I)中与之相连部位的位点。
  19. 如前述任一权利要求所述的具有式(I)结构的化合物或其药学上可接受的盐、同位素衍生物、立体异构体,其中,式(I)化合物为式(II)结构:
  20. 化合物,其具有以下结构:





  21. 药物组合物,包括前述任一项权利要求所述的化合物或其药学上可接受的盐、同位素衍生物、立体异构体。
  22. 权利要求1-20任一项所述的化合物或其药学上可接受的盐、同位素衍生物、立体异构体以及权利要求21所述的药物组合物在制备用于预防和/或治疗癌症、肿瘤、炎症性疾病、自身免疫性疾病或免疫介导性疾病的药物中的用途。
PCT/CN2023/116437 2022-09-19 2023-09-01 一种pan-KRAS抑制剂化合物 WO2024060966A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211154665.9 2022-09-19
CN202211154665 2022-09-19

Publications (1)

Publication Number Publication Date
WO2024060966A1 true WO2024060966A1 (zh) 2024-03-28

Family

ID=90453827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/116437 WO2024060966A1 (zh) 2022-09-19 2023-09-01 一种pan-KRAS抑制剂化合物

Country Status (2)

Country Link
CN (1) CN117903169A (zh)
WO (1) WO2024060966A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021091956A1 (en) * 2019-11-04 2021-05-14 Revolution Medicines, Inc. Ras inhibitors
WO2021091967A1 (en) * 2019-11-04 2021-05-14 Revolution Medicines, Inc. Ras inhibitors
WO2021091982A1 (en) * 2019-11-04 2021-05-14 Revolution Medicines, Inc. Ras inhibitors
CN113498342A (zh) * 2018-12-21 2021-10-12 锐新医药公司 参与协同结合的化合物和其用途
WO2022060836A1 (en) * 2020-09-15 2022-03-24 Revolution Medicines, Inc. Indole derivatives as ras inhibitors in the treatment of cancer
WO2022060583A1 (en) * 2020-09-03 2022-03-24 Revolution Medicines, Inc. Use of sos1 inhibitors to treat malignancies with shp2 mutations
WO2022212894A1 (en) * 2021-04-02 2022-10-06 The General Hospital Corporation Methods for inhibiting ras
WO2023015559A1 (en) * 2021-08-13 2023-02-16 Nutshell Biotech (Shanghai) Co., Ltd. Macrocycle compounds as inhibitors of ras

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113498342A (zh) * 2018-12-21 2021-10-12 锐新医药公司 参与协同结合的化合物和其用途
WO2021091956A1 (en) * 2019-11-04 2021-05-14 Revolution Medicines, Inc. Ras inhibitors
WO2021091967A1 (en) * 2019-11-04 2021-05-14 Revolution Medicines, Inc. Ras inhibitors
WO2021091982A1 (en) * 2019-11-04 2021-05-14 Revolution Medicines, Inc. Ras inhibitors
WO2022060583A1 (en) * 2020-09-03 2022-03-24 Revolution Medicines, Inc. Use of sos1 inhibitors to treat malignancies with shp2 mutations
WO2022060836A1 (en) * 2020-09-15 2022-03-24 Revolution Medicines, Inc. Indole derivatives as ras inhibitors in the treatment of cancer
WO2022212894A1 (en) * 2021-04-02 2022-10-06 The General Hospital Corporation Methods for inhibiting ras
WO2023015559A1 (en) * 2021-08-13 2023-02-16 Nutshell Biotech (Shanghai) Co., Ltd. Macrocycle compounds as inhibitors of ras

Also Published As

Publication number Publication date
CN117903169A (zh) 2024-04-19

Similar Documents

Publication Publication Date Title
CN109219604B (zh) 四氢异喹啉雌激素受体调节剂及其用途
JP2022548822A (ja) がんの治療における使用のためのヘテロ環式化合物
TWI723511B (zh) 一種高活性sting蛋白激動劑化合物
TWI716976B (zh) 高活性sting蛋白激動劑
TW201722914A (zh) 醫藥化合物
WO2022089454A1 (zh) 一种高活性Wnt通路抑制剂化合物
TW201609692A (zh) 取代吡唑及其用途
TW201726647A (zh) 醫藥化合物
CN114901277A (zh) 用于egfr降解的异吲哚啉酮和吲唑化合物
WO2019158070A1 (zh) A2a和/或a2b受体拮抗剂
WO2019141153A1 (zh) 吲哚胺2,3-双加氧酶抑制剂及其用途
WO2022089398A1 (zh) 一种高活性的hpk1激酶抑制剂
WO2023143501A1 (zh) 一种Wnt通路抑制剂化合物
JP7281834B2 (ja) Pd-l1拮抗薬化合物
WO2021129584A1 (zh) Pd-l1拮抗剂化合物
WO2024060966A1 (zh) 一种pan-KRAS抑制剂化合物
WO2024022365A1 (zh) 一种Wnt通路抑制剂化合物
WO2020216378A1 (zh) 一种含杂环的化合物、其应用及含其的组合物
LU505117B1 (en) A pan-KRAS inhibitor compound
WO2023005894A1 (zh) 一种Wnt通路抑制剂化合物
WO2022199561A1 (zh) Hpk1激酶抑制剂化合物
TW202304906A (zh) 高活性hpk1激酶抑制劑
TW202333697A (zh) Wnt通路抑制劑化合物
TW202239755A (zh) Pd-l1拮抗劑化合物
TW202039458A (zh) Glp-1r促效劑及其用途