WO2020035265A1 - Zylinderkopf für einen kompressor - Google Patents

Zylinderkopf für einen kompressor Download PDF

Info

Publication number
WO2020035265A1
WO2020035265A1 PCT/EP2019/069726 EP2019069726W WO2020035265A1 WO 2020035265 A1 WO2020035265 A1 WO 2020035265A1 EP 2019069726 W EP2019069726 W EP 2019069726W WO 2020035265 A1 WO2020035265 A1 WO 2020035265A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder head
chambers
chamber
compressor
head according
Prior art date
Application number
PCT/EP2019/069726
Other languages
English (en)
French (fr)
Inventor
Marius BURKAUSKAS
Original Assignee
Voith Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voith Patent Gmbh filed Critical Voith Patent Gmbh
Priority to US17/269,031 priority Critical patent/US20210180582A1/en
Priority to CN201980052617.9A priority patent/CN112567134B/zh
Priority to EP19744669.3A priority patent/EP3837440B1/de
Publication of WO2020035265A1 publication Critical patent/WO2020035265A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/125Cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • F04B39/1066Valve plates

Definitions

  • the invention relates to a cylinder head for a compressor, in particular a reciprocating compressor for use in motor vehicles, which is suitable for compressing a compressible working medium, in particular air, for use in a compressed air supply device of a motor vehicle.
  • Reciprocating compressors or compressors or air compressors are used to compress gases, e.g. B. air, which is used as a working medium for operating various units in a motor vehicle.
  • the reciprocating compressor essentially consists of a main body, or crankshaft housing or cylinder housing, in which at least one reciprocating piston is arranged, and a cylinder head.
  • ambient air is sucked into the piston chamber via an inlet duct, compressed and then passed on via a duct.
  • the compressed air is passed on to a further or subsequent compressor stage, where it is compressed further.
  • the compressed air is then fed into the compressed air tank via an air treatment unit.
  • a cylinder head is known, for example, from DE 10 2015 225 069 A1 and is composed of several components which are arranged one above the other in layers. The components form different channels or chambers through which air or a cooling medium, in particular cooling water, flows.
  • the channel guide through the cylinder head or through the individual components of the cylinder head is selected such that the channel is as long as possible and passes as close as possible to the coolant channel. Due to the compact design of the cylinder head, however, it cannot be avoided that heat exchange takes place between the air flows that are led through the cylinder head and have different temperatures. The heat transfer between the air flows at different temperatures takes place via the partition walls of the ducts. Due to the metallic design of these partitions, the thermal conductivity is very good. The disadvantage is that this heat transfer negatively affects the efficiency of the reciprocating compressor.
  • the object of the invention is to improve the cylinder head structure in such a way that the efficiency of the reciprocating compressor is increased.
  • a cylinder head for a reciprocating piston compressor for compressing a compressible working medium comprising a cylinder cover and a valve carrier plate, is proposed, which is constructed as follows and has the following features.
  • An intermediate element is arranged between the cylinder cover and the valve support plate and a plurality of channel sections and / or chambers are arranged or formed by the valve support plate and the intermediate element and between the cylinder cover and the intermediate element, through which different media flows can be conducted.
  • one or more insulating chambers are provided in the cylinder head, which thermally isolate the duct sections and / or karmers from one another at least in regions.
  • an inlet space and an outlet space are provided, between which the insulating chamber is arranged.
  • further insulation chambers can also be arranged between different temperature ranges.
  • an exhaust port can be provided in the cylinder head, the insulating port thermally insulating the intake space and the exhaust space at least in regions from the exhaust port.
  • the insulating chambers can essentially be formed by depressions in the valve carrier plate and / or in the cylinder cover. The depressions are then closed by means of the intermediate element.
  • the isolation chambers preferably contain enclosed ambient air. No additional work step needs to be planned for assembly.
  • the insulation chambers can also be filled with an insulation material or contain a vacuum.
  • the intermediate element has connection openings which connect the channel sections and / or chambers in the valve carrier plate and in the cylinder cover to one another.
  • the air flow and / or the cooling medium flow can thus move from one level to another.
  • the intermediate element can also be a sealing element.
  • the cylinder head can be a cylinder head for a multi-stage reciprocating compressor, the inlet chambers of the compressor stages being arranged between the outlet chambers of the compressor stages.
  • an insulating chamber can be arranged between the outlet chamber and the inlet chamber of the second compressor stage and / or between the inlet chamber of the second compressor stage and the inlet chamber of the first compressor stage.
  • FIG. 2 top view of the cylinder head (section A-A)
  • FIG. 3 Alternative structure for a cylinder head
  • Figure 1 shows a two-stage reciprocating compressor 1 or compressor with Zylin derkopf 2 in section. The course of the cut can be seen in FIG. 2.
  • the cylinder head 2 is composed of the valve support plate 5, the cylinder head cover 7 and an intermediate element 6 arranged between them.
  • FIG. 2 shows a plan view of the cylinder head 2, the section A-A being shown in FIG.
  • the reciprocating compressor 1 has water cooling which runs through the cylinder housing 3 and through the cylinder head 2.
  • FIGS. 1 and 2 As can also be seen from FIGS. 1 and 2, several channel sections 8.1, 10 and several chambers 14.1, 14.2, 15.1 and 15.2 are present between valve carrier plate 5 and intermediate element 6 and between cylinder cover 7 and intermediate element 6. Furthermore, there are several insulating chambers in the cylinder head 2
  • the insulating chambers 9.1 and 9.2 are arranged such that, in particular, the duct section 10, through which the hot compressed air of the second compressor stage 18 is directed to the outlet opening 20, from the chambers
  • 14.1, 14.2, 15.1 and 15.2 is isolated. This prevents undesired heating of the intake air, in particular the cool ambient air, and the precompressed air which is conducted from the first compressor stage 17 to the second compressor stage 18.
  • the isolation chambers 9.1 and 9.2 are closed cavities which are essentially formed by depressions in the valve carrier plate 5 and in the cylinder cover 7 and are closed by the intermediate element 6.
  • the insulating chambers 9.1 and 9.2 are filled with ambient air that was enclosed during assembly
  • Connection channel 19 are once in contact with the cooling channel 8.2 and also have a large cooling surface with respect to the ambient air.
  • Figure 3 shows an alternative structure for a cylinder head 1. This differs essentially in the arrangement of the channels and chambers.
  • the insulating chambers 9.3 are arranged here between the connecting duct 19 and the compressed air duct 10.
  • the insulating chamber 9.3 is incorporated in the valve support plate 5 and is closed by the sealing element 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)

Abstract

Es wird ein Zylinderkopf (2) für einen Hubkolbenverdichter zum Verdichten eines kompressiblen Arbeitsmediums, umfassend einen Zylinderdeckel (7) und eine Ventilträgerplatte (5), vorgeschlagen, der wie folgt Aufgebaut ist und folgende Merkmale aufweist. Zwischen Zylinderdeckel (7) und Ventilträgerplatte (5) ist ein Zwischenelement (6) angeordnet und zwischen Ventilträgerplatte (5) und Zwischenelement (6) sowie zwischen Zylinderdeckel (7) und Zwischenelement (7) sind mehrere Kanalabschnitte (8.1,10) und/oder Kammern (14.1,14.2,15.1,15.2) angeordnet bzw. werden durch diese gebildet, durch die unterschiedliche Medienströme leitbar sind. Zur Verbesserung der Effizienz des Hubkolbenverdichters sind im Zylinderkopf (2) Isolierkammern (9.1... 9.3) vorgesehen, die die Kanalabschnitte (8.1,10) und/oder Kammern (14.,14.2, 15.1,15.2) zumindest bereichsweise thermisch voneinander isolieren.

Description

Zylinderkopf für einen Kompressor
Die Erfindung betrifft einen Zylinderkopf für einen Kompressor, insbesondere einen Hubkolbenkompressor für den Einsatz in Kraftfahrzeugen, der zum Verdichten eines kompressiblen Arbeitsmediums, insbesondere Luft, für den Einsatz in einer Druckluft- versorgungsvorrichtung eines Kraftfahrzeugs, geeignet ist.
Hubkolbenverdichter bzw. Verdichter oder Luftpresser dienen der Kompression von Gasen, z. B. Luft, die als Arbeitsmedium zum Betrieb verschiedener Aggregate in einem Kraftfahrzeug genutzt wird.
Der Hubkolbenverdichter besteht im Wesentlichen aus einem Grundkörper, bzw. Kur- belwellengehäuse oder Zylindergehäuse, in dem mindestens ein Hubkolben ange- ordnet ist, und einem Zylinderkopf. Im Betrieb wird Umgebungsluft über einen Ein- lasskanal in den Hubkolbenraum eingesaugt, verdichtet und anschließend über einen Kanal weitergeleitet. Bei einem mehrstufigen Hubkolbenverdichter erfolgt die Weiter- leitung der verdichteten Luft in eine weitere bzw. nachfolgende Verdichterstufe und wird dort weiter verdichtet. Die komprimierte Luft wird anschließend über eine Luft- aufbereitungseinheit in den Druckluftbehälter geleitet. Ein derartiger Zylinderkopf ist beispielsweise aus der DE 10 2015 225 069 A1 be- kannt und setzt sich aus mehreren Bauteilen zusammen, die schichtweise übereinan- der angeordnet sind. Die Bauteile bilden unterschiedliche Kanäle oder Kammern, durch die Luft oder ein Kühlmedium, insbesondere Kühlwasser strömt. Zur Kühlung der komprimierten Luft wird die Kanalführung durch den Zylinderkopf bzw. durch die einzelnen Bauteile des Zylinderkopfs derart gewählt, dass der Kanal möglichst lang ist und möglichst nah an dem Kühlmittelkanal vorbeiführt. Durch die kompakte Bau- weise des Zylinderkopfes lässt es sich allerdings nicht vermeiden, dass ein Wär- meaustausch zwischen den Luftströmen, die durch den Zylinderkopf geführt werden und unterschiedliche Temperaturen aufweisen, stattfindet. Die Wärmeübertragung zwischen den Luftströmen mit unterschiedlichen Temperatu- ren erfolgt dabei über die Trennwände der Kanäle. Durch die metallische Ausführung dieser Trennwände ist die Wärmeleitfähigkeit sehr gut. Nachteilig ist, dass diese Wärmeübertragung den Wirkungsgrad des Hubkolbenverdichters negativ beeinflusst. Die Aufgabe der Erfindung ist es, den Zylinderkopfaufbau derart zu verbessern, dass die Effizienz des Hubkolbenverdichters vergrößert wird.
Die Aufgabe wird erfindungsgemäß durch eine Zylinderkopfausführung gelöst, die derart aufgebaut ist, dass eine unerwünschte Wärmeübertragung zwischen zwei Flu- idströmungen minimiert wird. Weitere vorteilhafte Merkmale der erfindungsgemäßen Ausführung finden sich in den Unteransprüchen.
Es wird ein Zylinderkopf für einen Hubkolbenverdichter zum Verdichten eines korm- pressiblen Arbeitsmediums, umfassend ein Zylinderdeckel und eine Ventilträgerplatte, vorgeschlagen, der wie folgt Aufgebaut ist und folgende Merkmale aufweist.
Zwischen Zylinderdeckel und Ventilträgerplatte ist ein Zwischenelement angeordnet und zwischen Ventilträgerplatte und Zwischenelement sowie zwischen Zylinderdeckel und Zwischenelement sind mehrere Kanalabschnitte und/oder Kammern angeordnet bzw. werden durch diese gebildet, durch die unterschiedliche Medienströme leitbar sind. Zur Verbesserung der Effizienz des Hubkolbenverdichters sind im Zylinderkopf eine oder mehr Isolierkammer vorgesehen, die die Kanalabschnitte und/oder Karm- mern zumindest bereichsweise thermisch voneinander isolieren. In einer bevorzugten Ausführung, zum Beispiel bei einem einstufigen Hubkolbenver- dichter, sind ein Einlassraum und ein Auslassraum vorgesehen, zwischen denen die Isolierkammer angeordnet ist. Bei Mehrkolbenverdichtern oder auch mehrstufigen Verdichtern, können auch weitere Isolierkammern zwischen unterschiedlichen Term- peraturbereichen angeordnet sein. Weiterhin kann im Zylinderkopf ein Auslasskanal vorgesehen sein, wobei der Isolier kanal den Einlassraum und den Auslassraum zumindest bereichsweise gegenüber dem Auslasskanal thermisch isoliert. Die Isolierkammern können im Wesentlichen durch Vertiefungen in der Ventilträger- platte und/oder im Zylinderdeckel gebildet werden. Dabei werden die Vertiefungen dann mittels des Zwischenelements verschlossen.
Vorzugweise enthalten die Isolierkammern eingeschlossene Umgebungsluft. Bei der Montage braucht somit kein zusätzlicher Arbeitsschritt eingeplant werden. Alternativ können die Isolierkammern aber auch mit einem Isoliermaterial gefüllt sein oder Va- kuum enthalten.
Weiterhin kann vorgesehen sein, dass das Zwischenelement Verbindungsöffnungen aufweist, die Kanalabschnitte und/oder Kammern in der Ventilträgerplatte und im Zy - linderdeckel miteinander verbinden. So können der Luftstrom und/oder der Kühlmedi- umstrom von einer Ebene in eine andere gelangen. Das Zwischenelement kann auch ein Dichtelement sein. In einer Ausführung kann der Zylinderkopf ein Zylinderkopf für einen mehrstufigen Hubkolbenverdichter sein, wobei zwischen den Auslasskammern der Verdichterstufen die Einlasskammern der Verdichterstufen angeordnet sind.
Weiterhin kann zwischen der Auslasskammer und der Einlasskammer der zweiten Verdichterstufe und/oder zwischen der Einlasskammer der zweiten Verdichterstufe und der Einlasskammer der ersten Verdichterstufe eine Isolierkammer angeordnet sein.
Anhand von Ausführungsbeispielen werden weitere vorteilhafte Ausprägungen der Erfindung erläutert unter Bezugnahme auf die Zeichnungen. Die genannten Merkmale können nicht nur in der dargestellten Kombination vorteilhaft umgesetzt werden, son- dern auch einzeln untereinander kombiniert werden. Die Figuren zeigen im Einzelnen: Fig.1 Hubkolbenverdichter mit Zylinderkopf (Schnitt B-B)
Fig.2 Draufsicht auf den Zylinderkopf (Schnitt A-A)
Fig. 3 Alternativer Aufbau für einen Zylinderkopf Figur 1 zeigt einen zweistufigen Hubkolbenverdichter 1 bzw. Kompressor mit Zylin derkopf 2 im Schnitt. Der Schnittverlauf ist aus Figur 2 zu entnehmen. Der Zylinder- kopf 2 setzt sich zusammen aus der Ventilträgerplatte 5, dem Zylinderkopfdeckel 7 und einem dazwischen angeordneten Zwischenelement 6. Figur 2 zeigt eine Draufsicht auf den Zylinderkopf 2, wobei der Schnittverlauf A-A aus Figur 1 zu entnehmen ist.
Der Hubkolbenverdichter 1 weist eine Wasserkühlung auf, die durch das Zylinderge- häuse 3 und durch den Zylinderkopf 2 verläuft. Nicht zu erkennen ist der genaue Ver- lauf der Kühlmittelkanäle 8.1 und 8.2, die miteinander verbunden sind, so dass ein Kühlmittelstrom durch beide Bereiche strömen kann.
Wie aus den Figuren 1 und 2 weiterhin zu entnehmen ist, verlaufen zwischen Ventil- trägerplatte 5 und Zwischenelement 6 sowie zwischen Zylinderdeckel 7 und Zwi- schenelement 6 mehrere Kanalabschnitte 8.1 , 10 und mehrere Kammern 14.1 , 14.2, 15.1 und 15.2 vorhanden. Weiterhin sind im Zylinderkopf 2 mehrere Isolierkammern
9.1 , 9.2 angeordnet.
Die Isolierkammern 9.1 und 9.2 sind in diesem Ausführungsbeispiel derart angeord- net, dass insbesondere der Kanalabschnitt 10, durch den die heiße Druckluft der zweiten Verdichterstufe 18 zur Auslassöffnung 20 geleitet wird, von den Kammern
14.1 , 14.2, 15.1 und 15.2 isoliert wird. Auf diese Weise wird verhindert, dass es zu einer unerwünschten Erwärmung der Ansaugluft, insbesondere der kühlen Urmge- bungsluft, und der vorkomprimierten Luft, die von der ersten Verdichterstufe 17 zur zweiten Verdichterstufe 18 geleitet wird, kommt.
Der Verlauf der Isolierkammern ist aus Figur 2 zu entnehmen, wobei zu erkennen ist, dass mittels der Isolierkammern nicht unbedingt eine vollständige Abschottung zwi- schen heißen und kalten Luftströmen erreicht wird. Durch die teilweise Isolierung wird die direkte Wärmeübertragung durch die metallischen Zwischenwände aber zurmin- dest stark reduziert. Wie zu erkennen, sind die Isolierkammern 9.1 und 9.2 abgeschlossene Hohlräume, die im Wesentlichen durch Vertiefungen in der Ventilträgerplatte 5 und im Zylinderde- ckel 7 gebildet werden und durch das Zwischenelement 6 verschlossen sind. Die Iso- lierkammern 9.1 und 9.2 sind mit Umgebungsluft gefüllt, die bei der Montage einge- schlossen wurde
Bei zweistufigen Hubkolbenverdichtern 1 ist es wesentlich, dass die vorkomprimierte Luft aus der ersten Verdichterstufe 17 möglichst weit abgekühlt wird, bevor sie in die zweite Verdichterstufe 18 über den Einlassraum 14.2 eingesaugt wird. Um dies zu erreichen, wird der Luftstrom von dem Auslassraum 15.1 der ersten Verdichterstufe 17 durch einen Verbindungskanal 19 im Zylindergehäuse 3 geleitet. Die Wände des
Verbindungskanals 19 stehen einmal mit dem Kühlkanal 8.2 in Kontakt und weisen zudem eine große Kühlfläche gegenüber der Umgebungsluft auf.
Figur 3 zeigt einen alternativen Aufbau für einen Zylinderkopf 1. Dieser unterscheidet sich im Wesentlichen durch die Anordnung der Kanäle und Kammern. So sind die Isolierkammern 9.3 hier zwischen dem Verbindungskanal 19 und dem Druckluftkanal 10 angeordnet. Die Isolierkammer 9.3 ist in die Ventilträgerplatte 5 eingearbeitet und wird durch das Dichtelement 4 verschlossen.
Bezugszeichenliste
1 Kompressor
2 Zylinderkopf
3 Zylindergehäuse
4 Dichtungselement
5 Ventilträgerplatte
6 Zwischenelement
7 Zylinderdeckel
8 Kühlmittelkanal
9.1 ... 9.3 Isolierkammer
10 Druckluftkanal
1 1 Ansaugluftkanal zweite Stufe 12 Auslassventil
13 Einlassventil
14.1 , 14.2 Einlassraum
15.1 , 15.2 Auslassraum
16 Hubkolbenraum
17 erste Verdichterstufe
18 zweite Verdichterstufe
19 Verbindungskanal
20 Auslassöffnung

Claims

Patentansprüche
1. Zylinderkopf (2) für einen Hubkolbenverdichter zum Verdichten eines kompressiblen Arbeitsmediums, umfassend einen Zylinderdeckel (7) und eine Ventilträgerplatte (5), wobei
- zwischen Zylinderdeckel (7) und Ventilträgerplatte (5) ein Zwischen- element (6) angeordnet ist;
- zwischen Ventilträgerplatte (5) und Zwischenelement (6) sowie zwi- schen Zylinderdeckel (7) und Zwischenelement (6) mehrere Kanalab- schnitte (8.1 ,10) und/oder Kammern (14.1 , 14.2, 15.1 , 15.2) gebildet werden, durch die unterschiedliche Medienströme leitbar sind,
dadurch gekennzeichnet,
dass im Zylinderkopf (2) eine Isolierkammer (9.1 ... 9.3) vorgesehen ist, die die Kanalabschnitte (8.1 , 10) und/oder Kammern (14.1 , 14.2, 15.1 , 15.2) zumindest bereichsweise thermisch voneinander isolieren.
2. Zylinderkopf nach Anspruch 1 ,
dadurch gekennzeichnet,
dass ein Einlassraum (14.1 , 14.2) und ein Auslassraum (15.1 , 15.2) vorgesehen sind, zwischen denen die Isolierkammer (9.1 ) angeordnet ist.
3. Zylinderkopf nach Anspruch 1 ,
dadurch gekennzeichnet,
dass ein Auslasskanal 10 vorgesehen ist, wobei die Isolierkammer (9.1 ) den Einlassraum (14.1 , 14.2) und den Auslassraum (15.1 , 15.2) zumindest bereichsweise gegenüber dem Auslasskanal (10) thermisch isoliert.
4. Zylinderkopf nach Anspruch 1 ,
dadurch gekennzeichnet,
dass die Isolierkammern (9.1 ... 9.3) im Wesentlichen durch Vertiefun- gen in der Ventilträgerplatte (5) und/oder im Zylinderdeckel (7) gebildet werden.
5. Zylinderkopf nach Anspruch 1 ,
dadurch gekennzeichnet,
dass die Isolierkammer (8.1 , 8.2, 8.3) eingeschlossene Umgebungsluft enthält.
6. Zylinderkopf nach Anspruch 1 ,
dadurch gekennzeichnet,
dass die Isolierkammer (8.1 , 8.2, 8.3) mit einem Isoliermaterial gefüllt ist oder Vakuum enthält.
7. Zylinderkopf nach Anspruch 1 ,
dadurch gekennzeichnet,
dass das Zwischenelement (6) Verbindungsöffnungen aufweist, die Kanalabschnitte (8.1 , 10) und/oder Kammern (14.1 , 14.2, 15.1 , 15.2) in der Ventilträgerplatte (5) und im Zylinderdeckel (7) miteinander verbin- den.
8. Zylinderkopf nach Anspruch 1 ,
dadurch gekennzeichnet,
dass das Zwischenelement (6) ein Dichtelement ist.
9. Zylinderkopf nach einem der Ansprüche 1 bis 8,
dadurch gekennzeichnet,
dass der Zylinderkopf (2) ein Zylinderkopf (1 ) für einen mehrstufigen Hubkolbenverdichter ist, wobei zwischen den Auslasskammern (15.1 , 15.2) der Verdichterstufen (17, 18) die Einlasskammern (14.1 , 14.2) der Verdichterstufen (17, 18) angeordnet sind.
10. Zylinderkopf nach einem der Ansprüche I bis 8,
dadurch gekennzeichnet,
dass zwischen der Auslasskammer (15.2) und der Einlasskammer (14.2) der zweiten Verdichterstufe (18) und/oder zwischen der Ein- lasskammer (14.2) der zweiten Verdichterstufe (18) und der Einlass- kammer (14.1 ) der ersten Verdichterstufe (17) eine Isolierkammer (9.1 ) angeordnet ist.
PCT/EP2019/069726 2018-08-17 2019-07-23 Zylinderkopf für einen kompressor WO2020035265A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/269,031 US20210180582A1 (en) 2018-08-17 2019-07-23 Cylinder head for a compressor
CN201980052617.9A CN112567134B (zh) 2018-08-17 2019-07-23 用于压缩机的气缸盖
EP19744669.3A EP3837440B1 (de) 2018-08-17 2019-07-23 Zylinderkopf für einen kompressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018120027.7A DE102018120027A1 (de) 2018-08-17 2018-08-17 Zylinderkopf für einen Kompressor
DE102018120027.7 2018-08-17

Publications (1)

Publication Number Publication Date
WO2020035265A1 true WO2020035265A1 (de) 2020-02-20

Family

ID=67439208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/069726 WO2020035265A1 (de) 2018-08-17 2019-07-23 Zylinderkopf für einen kompressor

Country Status (5)

Country Link
US (1) US20210180582A1 (de)
EP (1) EP3837440B1 (de)
CN (1) CN112567134B (de)
DE (1) DE102018120027A1 (de)
WO (1) WO2020035265A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110043450A (zh) * 2019-05-20 2019-07-23 浙江万安其弗汽车零部件有限公司 空气压缩装置及空气压缩机
CN115263723B (zh) * 2022-08-25 2024-01-30 瑞立集团瑞安汽车零部件有限公司 缸体、空气压缩机和商用车

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11218079A (ja) * 1998-01-30 1999-08-10 Sanwa Seiki Co Ltd エアコンプレッサ
US20160177936A1 (en) * 2014-12-22 2016-06-23 Bendix Commercial Vehicle Systems Llc System and Method for Reducing at Least One of Airflow Turbulence and Pressure Fluctuation Proximate a Valve
DE102015225069A1 (de) 2015-12-14 2017-06-14 Voith Patent Gmbh Zylinderkopf für mehrstufigen Kolbenverdichter
US20170321693A1 (en) * 2016-05-06 2017-11-09 Bendix Commercial Vehicle Systems Llc Compressor head assembly with discharge valve

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2315011A (en) * 1940-11-12 1943-03-30 Quiroz Francisco Angel Internal combustion engine
US2443502A (en) * 1941-02-08 1948-06-15 Constantine N Guerasimoff Engine construction
JP4049344B2 (ja) * 1998-12-17 2008-02-20 ヤマハマリン株式会社 筒内燃料噴射式エンジン
CN102536746A (zh) * 2010-12-22 2012-07-04 苏州鸿本机械制造有限公司 风冷式往复活塞空气压缩机用气缸盖
DE102013019812A1 (de) * 2013-11-26 2015-05-28 Wabco Gmbh Zylinderkopf für einen Luftverdichter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11218079A (ja) * 1998-01-30 1999-08-10 Sanwa Seiki Co Ltd エアコンプレッサ
US20160177936A1 (en) * 2014-12-22 2016-06-23 Bendix Commercial Vehicle Systems Llc System and Method for Reducing at Least One of Airflow Turbulence and Pressure Fluctuation Proximate a Valve
DE102015225069A1 (de) 2015-12-14 2017-06-14 Voith Patent Gmbh Zylinderkopf für mehrstufigen Kolbenverdichter
US20170321693A1 (en) * 2016-05-06 2017-11-09 Bendix Commercial Vehicle Systems Llc Compressor head assembly with discharge valve

Also Published As

Publication number Publication date
CN112567134A (zh) 2021-03-26
EP3837440B1 (de) 2023-09-06
CN112567134B (zh) 2023-03-03
EP3837440A1 (de) 2021-06-23
US20210180582A1 (en) 2021-06-17
DE102018120027A1 (de) 2020-02-20

Similar Documents

Publication Publication Date Title
EP1789681B1 (de) Kolbenkompressor mit einem internen kühlluftstrom im kurbelgehäuse
DE102008018467B4 (de) Ventilplatte für einen Kompressor und Verfahren zur Kühlung komprimierter Luft in einer Ventilplatte eines Kompressors
EP1963674B1 (de) Wassergekühlter kolbenverdichter
EP3837440B1 (de) Zylinderkopf für einen kompressor
DE68919845T2 (de) Hermetischer Verdichter.
DE102015225069B4 (de) Zylinderkopf für mehrstufigen Kolbenverdichter
DE102013021090A1 (de) Kühlwassersteuerung
DE3713223C2 (de)
WO2014023376A1 (de) Verdichterzylinderkopf für einen verdichter, fahrzeug damit und verfahren zum kühlen sowie herstellen eines derartigen verdichterzylinderkopfes
DE10160380A1 (de) Vorrichtung zur Wärmeübertragung
DE10101975C2 (de) Motorgetriebener Kompressor, der durch Kühlgas gekühlt ist
EP3655652B1 (de) Hubkolbenmaschine mit kühleinrichtung
DE102006000038A1 (de) Wärmeisolationsstruktur in einem Kompressor
DE69201580T2 (de) Integriertes Ansaugsystem.
DE102021127114A1 (de) Kompressor und Fahrzeugdruckluftsystem mit einem solchen Kompressor
DE112020000203T5 (de) Hitzeschildsystem und -verfahren
DE102019220442A1 (de) Pumpeneinheit
DE102017106147B4 (de) Hubkolbenmaschine mit Kühleinrichtung
DE10318391A1 (de) Kompressor für einen geschlossenen Kältemittelkrreislauf
DE102021102648B4 (de) Kolbenkompressor, insbesondere für eine Wärmepumpe
DE582215C (de) Gaszylinder fuer Grosskompressoren
DE2642454A1 (de) Verdichter
DE2062102A1 (de) Geschlossener Kolbenkompressor
DE102012100603A1 (de) Hubkolbenverdichter
DE102011014861A1 (de) Rotationskolbenmotor und Kühlverfahren für einen Rotationskolbenmotor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19744669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019744669

Country of ref document: EP

Effective date: 20210317