WO2020034838A1 - 粉尘监测方法、系统及信号处理装置 - Google Patents

粉尘监测方法、系统及信号处理装置 Download PDF

Info

Publication number
WO2020034838A1
WO2020034838A1 PCT/CN2019/098506 CN2019098506W WO2020034838A1 WO 2020034838 A1 WO2020034838 A1 WO 2020034838A1 CN 2019098506 W CN2019098506 W CN 2019098506W WO 2020034838 A1 WO2020034838 A1 WO 2020034838A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
solid separation
dust
separation unit
net
Prior art date
Application number
PCT/CN2019/098506
Other languages
English (en)
French (fr)
Inventor
谭险峰
Original Assignee
成都瑞柯林工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都瑞柯林工程技术有限公司 filed Critical 成都瑞柯林工程技术有限公司
Priority to US17/267,629 priority Critical patent/US11953418B2/en
Publication of WO2020034838A1 publication Critical patent/WO2020034838A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0084Filters or filtering processes specially modified for separating dispersed particles from gases or vapours provided with safety means
    • B01D46/0086Filter condition indicators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/02Particle separators, e.g. dust precipitators, having hollow filters made of flexible material
    • B01D46/04Cleaning filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/44Auxiliary equipment or operation thereof controlling filtration
    • B01D46/442Auxiliary equipment or operation thereof controlling filtration by measuring the concentration of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/70Regeneration of the filtering material or filter elements inside the filter by acting counter-currently on the filtering surface, e.g. by flushing on the non-cake side of the filter
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/44Auxiliary equipment or operation thereof controlling filtration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N1/2205Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling with filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0046Investigating dispersion of solids in gas, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0096Investigating consistence of powders, dustability, dustiness

Definitions

  • the invention relates to the technical field of gas-solid separation, in particular to a dust monitoring method, a dust monitoring system, and a signal processing device of a dust monitoring system that can be matched with a gas-solid separation process.
  • the filtering component In order to achieve air-solid separation for the gas-solid separation equipment, especially through the filtering component to intercept the dust in the air flow (generally, the filtering component is also periodically blown back by the blowback control component to detach the dust from the filtering component and restore the filtering component.
  • the gas-solid separation efficiency of gas-solid separation equipment (such as filter bag filter) is monitored. Dust detection components can be installed on the net gas output side of the gas-solid separation equipment, so that the gas-solid separation equipment can be tested by the dust detection components.
  • the output net gas dust concentration is measured. When it is found that the net gas dust concentration output by the gas-solid separation equipment has risen to a certain degree, it can be considered that the gas-solid separation equipment is abnormal.
  • the filter components in the gas-solid separation equipment are often required to be measured. Inspect and find out if there is any abnormality in the filter element such as damage to the filter element that may cause dust leakage or poor sealing with the seal element.
  • a micro-charge principle detector was proposed in the Chinese patent application document with the publication number of CN107643149A and the name "a dust collector bag leakage positioning and fault diagnosis system" (see page 4, paragraph [0041] of the specification of the patent application document) , Line 4) as a dust detection component.
  • the patent application document also provides the use of backflushing control and dust detection components to realize not only whether the filter components in the gas-solid separation equipment are abnormal, but also the abnormal filtration from the many filter components in the gas-solid separation equipment.
  • the technology of component positioning within a certain range that is, the positioning technology of abnormal filtering components.
  • Industrial gas-solid separation systems often include multiple gas-solid separation devices, each serving as a gas-solid separation unit.
  • the net gas output side of each gas-solid separation unit of such a gas-solid separation system is connected to the same manifold channel respectively, so that the net gas output by these gas-solid separation units is collected and transported outwards through the manifold channel.
  • the current method is to separately use the net gas output of these gas-solid separation units or the net gas output of these gas-solid separation units
  • the dust detection component is installed on the gas conveying channel. In short, the dust detection component should be placed in front of the convergence channel, so as to ensure that there is a corresponding dust detection component on the clean air output side of each gas-solid separation unit.
  • the invention aims to provide a dust monitoring method, a dust monitoring system and a signal processing device of the dust monitoring system, so as to monitor the status of dust in the clean air output from different gas-solid separation units.
  • a dust monitoring method includes: the signal acquisition section acquires a target signal through dust detection components respectively located on the net gas output side of different gas-solid separation units; the signal transmission section transmits the target signal acquired by the signal acquisition section; the signal processing section receives the signal transmitted by the signal transmission section Target signals, signal processing, and output of monitoring results; the dust detection component of the signal acquisition unit is deployed on a busway that is simultaneously connected to the net gas output side of the different gas-solid separation units and is separately set on each of the busway Behind the connection point for connection to the net gas output side of the different gas-solid separation units.
  • the different gas-solid separation units include at least three gas-solid separation units, and the different gas-solid separation units and connection points connected to the net gas output side of these gas-solid separation units are spaced in sequence along the airflow direction of the convergence channel. arrangement.
  • the dust detection component of the signal acquisition unit includes at least two dust detection components on the busway, located behind the connection point most downstream along the airflow direction of the busway, and spaced along the airflow direction.
  • cross-sectional shape of the busway includes, but is not limited to, a circle and the length of the channel extends along a straight line.
  • the confluence channel is located on one side of a gas-solid separation section composed of the different gas-solid separation units.
  • At least one gas-solid separation unit of the different gas-solid separation units includes at least two filters; and the connection points on the merge channel connected to the net gas output side of the at least one gas-solid separation unit are respectively It is connected to the net air output side of each of the at least two filters.
  • the at least one gas-solid separation unit includes filters disposed on the left and right sides of the busway; the connection points on the busway connected to the net gas output side of the at least one gas-solid separation unit include Sub-connection points corresponding to the respective clean air output sides of the filters disposed on the left and right sides of the busway, respectively.
  • the cross-sectional area of the busway gradually increases.
  • the merge channel is divided into different pipe sections; the pipes in the same pipe section have the same diameter, and the pipe diameters of different pipe sections gradually increase along the airflow direction of the merge channel.
  • a dust detection component near a joint between adjacent pipe sections is disposed on a pipe section with a smaller pipe diameter in the adjacent pipe sections.
  • each of the different gas-solid separation units is provided with a valve on each of the net gas transport channels that are connected to the manifold channel and are used to transport net gas to the manifold channel.
  • the dust detection component of the signal acquisition unit is a dust detection component that takes the electrical signal generated by the dust particles in the airflow obtained when passing through the induction probe of the dust detection component as the target signal.
  • the electric signal includes an impact current signal generated on the induction probe when the dust particles hit the induction probe and an induction current signal generated on the induction probe when the dust particles pass by the induction probe. At least one.
  • the signal acquisition unit uses a dust detection component with a trade name of TRIBO manufactured by Auburn Fairs Inc. (English name: Auburn FilterSense LLC).
  • the signal processing step of the signal processing unit includes determining whether the net gas and dust concentration output by each gas-solid separation unit in the different gas-solid separation units is based on at least a target signal provided by the signal transmission unit and a preset strategy. The first processing when an abnormal state occurs.
  • the monitoring result output by the signal processing unit is expressed as a directable Notification of abnormal gas-solid separation unit.
  • each of the gas-solid separation units in the different gas-solid separation units intercepts the dust in the airflow through a filtering component to achieve gas-solid separation, and periodically backflushes the filtering component through a backflush control component to make the dust from The gas-solid separation unit detached from the filtering component; then, the first process passes at least the information provided by the backflush control component for characterizing whether each gas-solid separation unit has backflush behavior and the target signal provided by the signal transmission unit, and passes A predetermined strategy is used to determine whether an abnormal state of the net gas dust concentration occurs in each of the gas-solid separation units in the different gas-solid separation units based on a backflush caused by the gas-solid separation unit.
  • the first process When at least one gas-solid separation unit among different gas-solid separation units is judged to have an abnormal state of the net gas dust concentration based on the backflush caused by the first process, the first process
  • the monitoring result output by the signal processing section is expressed as a notification that can be directed to the abnormality of the filtering component in the corresponding gas-solid separation unit.
  • At least one gas-solid separation unit in the different gas-solid separation units includes at least two gas-solid separation components that can be periodically blown back in sequence; if any one of the at least one gas-solid separation unit is A gas-solid separation module that is within a certain period of time after the start of backflushing and other gas-solid separation components have not yet started backflushing is called a target component.
  • the net output of the gas-solid separation unit to which the target component belongs through the first process is When the concentration of air dust is judged to be abnormal, the monitoring result output by the signal processing unit is expressed as a notification pointing to the abnormality of the filtering component in the target component.
  • the first process is based on at least information provided by a backflush control component for characterizing whether a gas-solid separation unit has a backflush behavior
  • the different gas-solid separation units are connected to the convergence channel and are used for the The opening and closing information of the valve on the net gas conveying channel that conveys the net gas and the target signal provided by the signal transmission unit, and the preset strategy is used to judge each gas-solid separation unit in the different gas-solid separation units based on their own backflush. Whether there is an abnormal state of net air dust concentration in the change of net air dust concentration.
  • the preset strategy includes: judging whether there is an abnormal state of a net gas dust concentration output by at least one gas-solid separation unit in the different gas-solid separation units according to a target signal provided by the signal transmission unit; at least according to backflushing
  • the information provided by the control component and used to characterize whether there is backflushing behavior of the gas-solid separation unit determines whether the abnormal state of the net gas dust concentration output by the at least one gas-solid separation unit is caused by the backflush of the at least one gas-solid separation unit itself .
  • the preset strategy includes: judging whether there is an abnormal state of a net gas dust concentration output by at least one gas-solid separation unit in the different gas-solid separation units according to a target signal provided by the signal transmission unit; at least according to backflushing Information provided by the control component to characterize the presence of backflushing behavior in the gas-solid separation unit and the valve on the net gas delivery channel of the different gas-solid separation unit that is connected to the manifold channel and is used to deliver net gas to the manifold channel
  • the opening and closing information determines whether the abnormal state of the net gas dust concentration output by the at least one gas-solid separation unit is caused by the backflush of the at least one gas-solid separation unit itself.
  • a judgment as to whether an abnormal state occurs in a net gas dust concentration output by at least one gas-solid separation unit in the different gas-solid separation units is by corresponding to the at least one gas-solid separation unit.
  • the target signal obtained by the dust detection component and the target signal obtained by the at least one dust detection component upstream or / and downstream of the dust detection component corresponding to the at least one gas-solid separation unit on the merge channel are determined after being correlated and determined. of.
  • the association judgment includes: performing a first judgment on whether a target signal obtained by a dust detection component corresponding to the at least one gas-solid separation unit reaches a set condition; and performing a judgment on a location on the busway.
  • a second judgment is made as to whether a target signal acquired by at least one dust detection component downstream of a dust detection component corresponding to the at least one gas-solid separation unit reaches a set condition;
  • a third judgment as to whether there is an abnormal state of the net gas dust concentration output by one gas-solid separation unit; in the third judgment, the at least one gas-solid separation unit output is made when the judgment results of the first judgment and the second judgment are both yes
  • a judgment result that an abnormal state of the net gas dust concentration occurs, and when the judgment results of the first judgment and the second judgment are both negative, a judgment result that the net gas dust concentration output by the at least one gas-solid separation unit does not appear to be abnormal,
  • an analysis judgment result is made according to a preset analysis strategy .
  • the preset analysis strategy includes: when the second judgment only includes a judgment as to whether a target signal obtained by a dust detection component reaches a set condition, making a net gas output from the at least one gas-solid separation unit An analysis and judgment result of abnormal or non-existent dust concentration; when the second judgment includes a judgment as to whether the target signals obtained by the two or more dust detection components have reached a set condition, according to the first judgment and the second judgment The majority of the judgment result sums whether or not the majority appears to make an analysis judgment result of whether the net gas dust concentration output by the at least one gas-solid separation unit has an abnormal state.
  • the preset analysis strategy further includes a step of determining that the dust detection component whose contradiction between the obtained target signal and the analysis judgment result is a failure; and the signal processing unit outputs a notification pointing to the failure of the corresponding dust detection component.
  • a dust monitoring system includes: a signal acquisition section for acquiring a target signal through a dust detection component respectively located on a net gas output side of a different gas-solid separation unit; a signal transmission section for transmitting the target signal acquired by the signal acquisition section; a signal processing section, It is used to receive the target signal transmitted by the signal transmission unit, perform signal processing, and output the monitoring result; the dust detection component of the signal acquisition unit is used to be deployed on the bus that is connected to the net gas output side of the different gas-solid separation units simultaneously
  • the channels are respectively arranged behind the connection points on the bus channel for connecting to the net gas output side of the different gas-solid separation units.
  • the different gas-solid separation units include at least three gas-solid separation units, and the different gas-solid separation units and connection points connected to the net gas output side of these gas-solid separation units are spaced in sequence along the airflow direction of the convergence channel. arrangement.
  • the dust detection component of the signal acquisition unit includes at least two dust detection components on the busway, located behind the connection point most downstream along the airflow direction of the busway, and spaced along the airflow direction.
  • cross-sectional shape of the busway includes, but is not limited to, a circle and the length of the channel extends along a straight line.
  • the confluence channel is located on one side of a gas-solid separation section composed of the different gas-solid separation units.
  • At least one gas-solid separation unit of the different gas-solid separation units includes at least two filters; and the connection points on the merge channel connected to the net gas output side of the at least one gas-solid separation unit are respectively It is connected to the net air output side of each of the at least two filters.
  • the at least one gas-solid separation unit includes filters disposed on the left and right sides of the busway; the connection points on the busway connected to the net gas output side of the at least one gas-solid separation unit include Sub-connection points corresponding to the respective clean air output sides of the filters disposed on the left and right sides of the busway, respectively.
  • the cross-sectional area of the busway gradually increases.
  • the merge channel is divided into different pipe sections; the pipes in the same pipe section have the same diameter, and the pipe diameters of different pipe sections gradually increase along the airflow direction of the merge channel.
  • a dust detection component near a joint between adjacent pipe sections is disposed on a pipe section with a smaller pipe diameter in the adjacent pipe sections.
  • each of the different gas-solid separation units is provided with a valve on each of the net gas transport channels that are connected to the manifold channel and are used to transport net gas to the manifold channel.
  • the dust detection component of the signal acquisition unit is a dust detection component that takes the electrical signal generated by the dust particles in the airflow obtained when passing through the induction probe of the dust detection component as the target signal.
  • the electric signal includes an impact current signal generated on the induction probe when the dust particles hit the induction probe and an induction current signal generated on the induction probe when the dust particles pass by the induction probe. At least one.
  • the signal acquisition unit uses a dust detection component with a trade name of TRIBO manufactured by Auburn Fairs Inc. (English name: Auburn FilterSense LLC).
  • the signal processing step of the signal processing unit includes determining whether the net gas and dust concentration output by each gas-solid separation unit in the different gas-solid separation units is based on at least a target signal provided by the signal transmission unit and a preset strategy. The first processing when an abnormal state occurs.
  • the monitoring result output by the signal processing unit is expressed as a directable Notification of abnormal gas-solid separation unit.
  • each of the gas-solid separation units in the different gas-solid separation units intercepts the dust in the airflow through a filtering component to achieve gas-solid separation, and periodically backflushes the filtering component through a backflush control component to make the dust from The gas-solid separation unit detached from the filtering component; then, the first process passes at least the information provided by the backflush control component for characterizing whether each gas-solid separation unit has backflush behavior and the target signal provided by the signal transmission unit, and passes A predetermined strategy is used to determine whether an abnormal state of the net gas dust concentration occurs in each of the gas-solid separation units in the different gas-solid separation units based on a backflush caused by the gas-solid separation unit.
  • the first process When at least one gas-solid separation unit among different gas-solid separation units is judged to have an abnormal state of the net gas dust concentration based on the backflush caused by the first process, the first process
  • the monitoring result output by the signal processing section is expressed as a notification that can be directed to the abnormality of the filtering component in the corresponding gas-solid separation unit.
  • At least one gas-solid separation unit in the different gas-solid separation units includes at least two gas-solid separation components that can be periodically blown back in sequence; if any one of the at least one gas-solid separation unit is A gas-solid separation module that is within a certain period of time after the start of backflushing and other gas-solid separation components have not yet started backflushing is called a target component.
  • the net output of the gas-solid separation unit to which the target component belongs through the first process is When the concentration of air dust is judged to be abnormal, the monitoring result output by the signal processing unit is expressed as a notification pointing to the abnormality of the filtering component in the target component.
  • the first process is based on at least information provided by a backflush control component for characterizing whether a gas-solid separation unit has a backflush behavior
  • the different gas-solid separation units are connected to the convergence channel and are used for the The opening and closing information of the valve on the net gas conveying channel that conveys the net gas and the target signal provided by the signal transmission unit, and the preset strategy is used to judge each gas-solid separation unit in the different gas-solid separation units based on their own backflush. Whether there is an abnormal state of net air dust concentration in the change of net air dust concentration.
  • the preset strategy includes: judging whether there is an abnormal state of a net gas dust concentration output by at least one gas-solid separation unit in the different gas-solid separation units according to a target signal provided by the signal transmission unit; at least according to backflushing
  • the information provided by the control component and used to characterize whether there is backflushing behavior of the gas-solid separation unit determines whether the abnormal state of the net gas dust concentration output by the at least one gas-solid separation unit is caused by the backflush of the at least one gas-solid separation unit itself .
  • the preset strategy includes: judging whether there is an abnormal state of a net gas dust concentration output by at least one gas-solid separation unit in the different gas-solid separation units according to a target signal provided by the signal transmission unit; at least according to backflushing Information provided by the control component to characterize the presence of backflushing behavior in the gas-solid separation unit and the valve on the net gas delivery channel of the different gas-solid separation unit that is connected to the manifold channel and is used to deliver net gas to the manifold channel
  • the opening and closing information determines whether the abnormal state of the net gas dust concentration output by the at least one gas-solid separation unit is caused by the backflush of the at least one gas-solid separation unit itself.
  • a judgment as to whether an abnormal state occurs in a net gas dust concentration output by at least one gas-solid separation unit in the different gas-solid separation units is by corresponding to the at least one gas-solid separation unit.
  • the target signal obtained by the dust detection component and the target signal obtained by the at least one dust detection component upstream or / and downstream of the dust detection component corresponding to the at least one gas-solid separation unit on the merge channel are determined after being correlated and determined. of.
  • the association judgment includes: performing a first judgment on whether a target signal obtained by a dust detection component corresponding to the at least one gas-solid separation unit reaches a set condition; and performing a judgment on a location on the busway.
  • a second judgment is made as to whether a target signal acquired by at least one dust detection component downstream of a dust detection component corresponding to the at least one gas-solid separation unit reaches a set condition;
  • a third judgment as to whether there is an abnormal state of the net gas dust concentration output by one gas-solid separation unit; in the third judgment, the at least one gas-solid separation unit output is made when the judgment results of the first judgment and the second judgment are both yes
  • a judgment result that an abnormal state of the net gas dust concentration occurs, and when the judgment results of the first judgment and the second judgment are both negative, a judgment result that the net gas dust concentration output by the at least one gas-solid separation unit does not appear to be abnormal,
  • an analysis judgment result is made according to a preset analysis strategy fruit.
  • the preset analysis strategy includes: when the second judgment only includes a judgment as to whether a target signal obtained by a dust detection component reaches a set condition, making a net gas output from the at least one gas-solid separation unit An analysis and judgment result of abnormal or non-existent dust concentration; when the second judgment includes a judgment as to whether the target signals obtained by the two or more dust detection components have reached a set condition, according to the first judgment and the second judgment The majority of the judgment result sums whether or not the majority appears to make an analysis judgment result of whether the net gas dust concentration output by the at least one gas-solid separation unit has an abnormal state.
  • the preset analysis strategy further includes a step of determining that the dust detection component whose contradiction between the obtained target signal and the analysis judgment result is a failure; and the signal processing unit outputs a notification pointing to the failure of the corresponding dust detection component.
  • the above-mentioned dust monitoring system of the present invention has necessary settings for implementing any one of the above-mentioned dust monitoring methods of the present invention.
  • a signal processing device of a dust monitoring system includes at least one processor, at least one memory, and computer program instructions stored in the memory.
  • the computer program instructions are executed by the processor, signal processing in any one of the foregoing dust monitoring methods of the present invention is implemented. Department of processing.
  • the above-mentioned dust monitoring method, dust monitoring system, and signal processing device of the dust monitoring system of the present invention are based on the creative deployment of the dust detection component of the signal acquisition section on the same time as the clean gas output side of the different gas-solid separation units.
  • the connection channels are respectively set on the connection channels, the connection points for connecting with the net gas output side of the different gas-solid separation units not only can still make each gas-solid separation unit in the different gas-solid separation units
  • the dust condition (such as the change in dust concentration) in the output clean air is obtained by the corresponding dust detection component to monitor the dust condition. More importantly, the airflow movement in the convergence channel is more regular, and the dust uniformity in the convergence channel is more High, at this time, the dust detection component can easily obtain a more realistic target signal, thereby improving the accuracy of the dust detection.
  • FIG. 1 is a schematic diagram of a connection between a signal acquisition unit and a signal processing unit in an embodiment of a dust monitoring system of the present invention.
  • FIG. 2 is a schematic diagram of deployment of a dust detection component in an embodiment of a dust monitoring system of the present invention.
  • FIG. 3 is a schematic diagram of deployment of a dust detection component in an embodiment of a dust monitoring system of the present invention.
  • FIG. 4 is a schematic structural diagram of a dust detection component in an embodiment of the dust monitoring system of the present invention.
  • FIG. 5 is a schematic flowchart of an embodiment of a dust monitoring method according to the present invention.
  • FIG. 6 is a schematic flowchart of an embodiment of a dust monitoring method according to the present invention.
  • FIG. 7 is a schematic diagram of an association judgment process according to an embodiment of the dust monitoring method of the present invention.
  • FIG. 8 is a schematic diagram of an association judgment principle according to an embodiment of the dust monitoring method of the present invention.
  • gas-solid separation refers to the separation of a gas from solid particles in a gas.
  • other related terms and units in the present invention can be reasonably interpreted based on the related content of the present invention.
  • FIG. 1 is a schematic diagram of a connection between a signal acquisition unit and a signal processing unit in an embodiment of a dust monitoring system of the present invention.
  • the dust monitoring system of the present invention includes a signal acquisition section 110, a signal transmission section 120, and a signal processing section 130.
  • the signal acquisition section 110 is configured to pass dust that is located on the net gas output side of different gas-solid separation units.
  • the detection unit 111 acquires a target signal
  • the signal transmission unit 120 is configured to transmit the target signal acquired by the signal acquisition unit 110
  • the signal processing unit 130 is configured to receive the target signal transmitted by the signal transmission unit 120, perform signal processing, and output a monitoring result.
  • FIG. 2 is a schematic diagram of deployment of a dust detection component in an embodiment of a dust monitoring system of the present invention.
  • the dust detection component 111 of the signal acquisition unit 110 in the dust monitoring system of the present invention is specifically deployed on the busway 220 connected to the net gas output side of the different gas-solid separation unit 210 at the same time.
  • the connection points 220 are respectively arranged behind the connection points for connecting to the net gas output side of the different gas-solid separation unit 210.
  • the different gas-solid separation units 210 include at least two, generally three or more gas-solid separation units 210.
  • These gas-solid separation units 210 may be gas-solid separation units that use any kind of gas-solid separation means to achieve gas-solid separation.
  • There are many known methods for gas-solid separation common ones include gravity dust removal, cyclone dust removal, electric dust removal, filter bag dust removal, ceramic filter dust removal, metal filter dust removal, and the like.
  • the conventional structure of the collecting channel 220 is a clean air main pipe with a circular or rectangular cross section.
  • the manifold 220 may also be designed as an unconventional structure.
  • each filter bag dust collector acts as a gas-solid separation unit.
  • One side of these filter bag dust collectors is provided with a rectangular cross section and faces The front extended channel, these filter bag dust collectors are arranged at the outer side of the channel at intervals along the length of the channel.
  • the raw gas input side of the bag filter is communicated ("raw gas” refers to the gas to be separated from the gas and solid), and the upper space is used as the convergence channel 220 to communicate with the clean gas output side of each filter bag filter.
  • the partition also has a certain inclination angle with respect to the horizontal plane, so that the cross-sectional area of the raw gas input channel changes from large to small along the raw gas input direction, and the cross-sectional area of the merge channel 220 changes from small to large along the net gas output direction.
  • the above-mentioned busway 220 belongs to a busway with an unconventional structure.
  • the dust detection component 111 of the above-mentioned signal acquisition unit 110 is specifically deployed on a bus channel 220 that is simultaneously connected to the net gas output side of the different gas-solid separation unit 210 and is separately provided on each of the bus channels 220.
  • a dust detection component 111 is deployed between any adjacent connection points on the busway 220 (specifically, the connection points connected to the gas-solid separation unit 210); however, the busway 220 is It is not necessary to arrange only one dust detection component 111 between any adjacent connection points.
  • both of the dust detection components correspond to a gas-solid separation unit 210.
  • the dust detection component 111 preferably adopts a dust detection component that takes the electrical signals generated by the dust particles in the airflow obtained when passing the induction probe of the dust detection component as the target signal. From the currently known dust detection technology in the field of gas-solid separation, the above-mentioned dust detection components have higher detection accuracy, and are more suitable for application in the dust monitoring system of the present invention.
  • a microcharge principle detector used in the prior art cited in the "Background Technology" section of this specification also belongs to this type of dust detection component.
  • dust detection components can be mainly divided into several specific types: one is a dust detection component that acquires an impact current signal generated on the induction probe when the dust particles in the airflow hit the induction probe as a target signal; Another type is a dust detection component that acquires the induction current signal generated on the induction probe as the target signal when the dust particles in the air stream pass by the induction probe; and another acquires the impact current signal and the induction current signal at the same time. Dust detection component for the target signal.
  • the dust detection component 111 is not limited to a dust detection component that takes the electrical signals generated by the dust particles in the airflow obtained by passing through the induction probe of the dust detection component as the target signal.
  • the principles of different dust detection components are different, in order to improve the accuracy of dust detection, it is always advantageous to improve the flow uniformity of the gas-solid two-phase flow to be detected and the uniformity of the dust distribution.
  • the signal transmission unit 120 may use all applicable data transmission methods. However, in order to avoid interference as much as possible, it is recommended that the signal output port of the signal acquisition unit 110 be connected to the signal input port of the signal processing unit 130 through an anti-interference signal line.
  • the signal processing unit 130 may be composed of a signal processing unit that is independent and connected to each of the dust detection components 111, or a signal processing device that is simultaneously connected to each of the dust detection components 111.
  • the signal processing device is generally configured as a user terminal having necessary hardware and software.
  • the signal acquisition unit 110, the signal transmission unit 120, and the signal processing unit 130 of the dust monitoring system of the present invention may also be integrated into one, or partly integrated into one.
  • the dust monitoring system of the present invention is used to execute such a dust monitoring method.
  • the method includes: the signal acquisition unit 110 acquires a target signal through the dust detection components 111 respectively located on the net gas output side of different gas-solid separation units 210; and the signal transmission unit 120 delivers The target signal acquired by the signal acquisition unit 110; the signal processing unit 130 receives the target signal transmitted by the signal transmission unit 120, performs signal processing, and outputs a monitoring result.
  • the signal processing process of the signal processing unit 130 in the dust monitoring method of the present invention includes determining at least one gas in the different gas-solid separation unit 210 based on at least a target signal provided by the signal transmission unit 120 and using a preset strategy.
  • the first process is to determine whether there is an abnormal state in the net gas dust concentration output by the solid separation unit 210.
  • the monitoring result output by the signal processing unit 130 may be expressed as pointing to the corresponding gas. Notification of abnormality in the solid separation unit 210.
  • the notification may be an alarm or a reminder pointing to the abnormality of the corresponding gas-solid separation unit 210.
  • each of the different gas-solid separation units 210 in the different gas-solid separation unit 210 intercepts the dust in the airflow through a filtering component to achieve gas-solid separation, and periodically blows back the filtering component through a backflush control component to make the dust from the filtering
  • the gas-solid separation unit (such as filter bag dust removal unit, ceramic filter dust removal unit, etc.) detached from the component, in view of the fact that when the filter component in the gas-solid separation unit 210 is abnormal, backflushing will cause a significant increase in the net gas dust concentration. This phenomenon has been mentioned in CN107643149A cited in the background art of this specification.
  • the first process may be based at least on the characteristics provided by the backflush control component for characterizing whether each gas-solid separation unit has backflush behavior.
  • the target signal provided by the information and signal transmission unit determines whether an abnormal state of the net gas dust concentration occurs in the net gas dust concentration change caused by each gas-solid separation unit in the different gas-solid separation units based on their own backflushing through a preset strategy.
  • the signal processing unit When the at least one gas-solid separation unit of different gas-solid separation units is judged to have an abnormal state of the net gas dust concentration based on the backflush caused by the first process, the signal processing unit outputs
  • the monitoring results can also be expressed as notifications that can point to abnormalities in the filtering components in the corresponding gas-solid separation unit.
  • the dust detection component 111 of the signal acquisition unit 110 is deployed on the busway 220 that is simultaneously connected to the net gas output side of the different gas-solid separation unit 210 and is separately installed on After each of the connection points on the merge channel 220 for connecting with the net gas output side of the different gas-solid separation unit 210, a dust detection component 111 is disposed between any adjacent connection points on the merge channel 220 and Any dust detection component 111 corresponds to the gas-solid separation unit 210 connected to the upstream connection point of the adjacent connection point to which the dust detection component 111 belongs, so that each gas-solid separation unit in the different gas-solid separation unit 210 can be made.
  • the dust condition (such as a change in dust concentration) in the clean air output from 210 is obtained by the corresponding dust detection component 111, and finally the dust condition is monitored.
  • a dust detection component is provided in front of the collecting channel.
  • the inventors of the present invention have found that the length of the net gas transmission channel between the gas-solid separation unit and the confluence channel is generally short and there is a change of direction, which causes the airflow to run irregularly.
  • the unseparated dust in the net gas is in the gas.
  • the clean air delivery channel between the solid separation unit and the confluence channel cannot be sufficiently diffused, resulting in uneven dust distribution in the clean air delivery channel between the solid-separation unit and the confluence channel. Therefore, if the dust detection component is deployed in the air
  • the solid air separation channel from the solid separation unit to the confluence channel may result in lower detection accuracy.
  • the gas-solid separation system 200 includes a plurality of gas-solid separation units 210 arranged in a row, wherein each gas-solid separation unit 210 is a filter bag dust collector (with a backflush function).
  • each gas-solid separation unit 210 (according to the convergence channel) In the direction of the air flow of 220, each gas-solid separation unit 210 is a gas-solid separation unit 210A, a gas-solid separation unit 210B, a gas-solid separation unit 210C, etc.), which are connected to the merge channel 220 through their respective clean gas delivery channels 230.
  • each clean gas delivery channel 230 is connected to the clean gas output end of the corresponding gas-solid separation unit 210, and the other end is connected to the manifold channel 220 (the connection point is each of the manifold channel 220 is used to connect with these gas-solid separation units 210 respectively Connection point of the clean air output side).
  • a valve 240 is provided on each of the clean air delivery channels 230.
  • the above-mentioned gas-solid separation units 210 and the connection points connected to the net gas output side of the gas-solid separation units are arranged at intervals along the airflow direction of the merge channel 220.
  • the basic working process of the above-mentioned gas-solid separation system 200 is:
  • the raw gas (“raw gas” refers to the gas to be processed for gas-solid separation) enters each gas-solid separation unit 210 and is filtered through a filter bag, and the filtered net gas passes through each net gas transfer channel 230 (at this time each The valves 240 on the clean air delivery channel 230 are all opened), and then enter the confluence channel 220, and then output through the confluence channel 220.
  • each of the gas-solid separation units 210 is sequentially cleaned off-line.
  • the offline ash cleaning of a gas-solid separation unit 210 includes:
  • the backflush control unit instructs the backflushing device to pass backblown airflow into the gas-solid separation unit 210A, so as to backflush the filter bag through the backblown airflow so as to detach the dust from the filter bag;
  • the backflush control unit instructs the backflushing device to stop the backflush gas flow into the gas-solid separation unit 210A;
  • the backflush control component then instructs the valve 240 on the clean gas delivery channel 230 of the gas-solid separation unit 210A to open;
  • a dust monitoring system is installed on the gas-solid separation system 200.
  • the dust monitoring system includes a signal acquisition unit 110, a signal transmission unit 120, and a signal processing unit 130.
  • Each dust detection component 111 is disposed on the bus channel 220 in FIG. 2 and is disposed behind each of the connection points on the bus channel 220 for connection with the net air output side of each filter bag dust collector.
  • each dust detection component 111 is a dust detection component 111A, a dust detection component 111B, a dust detection component 111C, etc., among which the dust detection component 111A corresponds to the gas-solid separation unit 210A, and the dust detection component 111B Corresponds to the gas-solid separation unit 210B, the dust detection component 111C corresponds to the gas-solid separation unit 210C, and so on.
  • FIG. 4 is a schematic structural diagram of a dust detection component in an embodiment of the dust monitoring system of the present invention. All of the above-mentioned dust detection members 111 use a dust detection member shown in FIG. 4.
  • the dust detection component 111 is a dust detection component that obtains an impact current signal generated on the induction probe when the dust particles in the airflow hit the induction probe as a target signal.
  • the dust detection component with the trade name of TRIBO manufactured by Auburn Fairs Ltd. (English name: Auburn FilterSense LLC) is selected.
  • the sensing probe of the dust detection component 111 is inserted into the busway 220.
  • FIG. 5 is a schematic flowchart of an embodiment of a dust monitoring method according to the present invention. As shown in FIG. 5, based on the above dust monitoring system, the following dust monitoring method is implemented, which includes:
  • Step S101 The signal acquisition unit 110 acquires a target signal through the dust detection components 111 respectively located on the net gas output side of each gas-solid separation unit 210.
  • Step S102 The signal transmission unit 120 transmits the target signal acquired by the signal acquisition unit 110.
  • Step S103 The signal processing unit 130 receives the target signal transmitted by the signal transmission unit 120, performs signal processing, and outputs a monitoring result.
  • step S103 includes:
  • Step S103A It is determined whether an abnormal state of the net air dust concentration occurs in the gas-solid separation unit 210 according to the target signal transmitted by the signal transmission unit 120.
  • the dust detection unit 111A corresponds to the gas-solid separation unit 210A
  • the dust detection unit 111B corresponds to the gas-solid separation unit 210B
  • the dust detection unit 111C corresponds to the gas-solid separation unit 210C
  • the change in the net gas dust concentration output by each gas-solid separation unit 210 can be obtained by the corresponding dust detection component 111, so as to monitor the abnormal state of the net gas dust concentration.
  • the target signal obtained by the dust detection unit 111A can determine whether the gas-solid separation unit 210A has an abnormal state of the net gas dust concentration.
  • the target signal obtained by the dust detection component 111B can determine whether the abnormal state of the net gas dust concentration occurs in the gas-solid separation unit 210B.
  • the abnormal state of the net gas and dust concentration in the gas-solid separation unit 210A will have a certain effect on the target signal obtained by the dust detection component 111B, due to the pipeline in the merge channel 220 located before the dust detection component 111B
  • the net gas output from the internal gas-solid separation unit 210A merges with the net gas output from the gas-solid separation unit 210B, so that the dust in the net gas output from the gas-solid separation unit 210A is diluted, resulting in a reduction in the above-mentioned effects. This makes it possible to determine whether an abnormal state of the net gas dust concentration occurs in the gas-solid separation unit 210B through the target signal obtained by the dust detection unit 111B.
  • the target signal obtained by the dust detection unit 111C can determine whether the gas-solid separation unit 210C has an abnormal state of the net gas dust concentration.
  • the above-mentioned additional means may be: the judgment of whether the net gas dust concentration output by a certain gas-solid separation unit 210 is abnormal is based on the target signal obtained by the dust detection component 111 corresponding to the gas-solid separation unit 210 and the The combination channel 220 is made after the target signals obtained by the at least one dust detection component 111 upstream or / and downstream of the dust detection component 111 corresponding to the gas-solid separation unit 210 are determined. This will be specifically described in the next embodiment of the present invention.
  • Step S103B When it is determined through step S103A that an abnormal state of the net gas dust concentration occurs in a certain gas-solid separation unit 210, the presence of net gas dust is determined according to the information provided by the backflush control component and used to characterize whether the gas-solid separation unit 210 has a backflush behavior. Whether the gas-solid separation unit 210 in the abnormal concentration state performs backflushing.
  • the signal processing unit 130 needs to receive the information provided by the backflush control component and used to characterize whether there is backflush behavior of the gas-solid separation unit 210, so as to determine whether the gas-solid separation unit 210 in which the abnormal state of the net gas dust concentration occurs has been performed Backflush.
  • Step S103C When it is judged in step S103B that the gas-solid separation unit 210 having an abnormal state of the net gas and dust concentration has performed a backflush, it is connected to the busway 220 and is used to transport the net to the busway 220 according to the backflush control component.
  • the opening / closing information of the valve 240 on the clean gas delivery channel of the gas determines whether the valve 240 corresponding to the gas-solid separation unit 210 in which the abnormal concentration of the clean gas dust occurs has opened.
  • valve 240 According to the opening and closing information of the valve 240 on the clean air delivery channel connected to the merge channel 220 and used to deliver clean air to the merge channel 220 provided by the backflush control component, if there is a gas-solid separation in the abnormal state of the clean air dust concentration
  • the valve 240 corresponding to the unit 210 is opened within a set time before the abnormal state of the net gas dust concentration of the gas-solid separation unit 210, indicating that the abnormal state of the net gas dust concentration output by the gas-solid separation unit 210 is caused by the gas.
  • the solid separation unit 210 is caused by backflushing.
  • Step S103D When it is determined in step S103C that the abnormal state of the gas-solid separation unit 210 that has an abnormal state of net gas and dust concentration is opened, it is determined that the abnormal state of the net gas and dust concentration output by the gas-solid separation unit 210 is caused by the gas-solid separation unit After the 210 blows back by itself, the signal processing unit 130 outputs a monitoring result, and the detection result is expressed as a notification that the filtering component in the gas-solid separation unit 210 where the abnormal state of the net gas and dust concentration is abnormal may be abnormal.
  • FIGS. 1, 3 and 6 Another embodiment of the dust monitoring system of the present invention and a dust monitoring method using the embodiment will be specifically described with reference to FIGS. 1, 3 and 6.
  • the gas-solid separation system includes a plurality of gas-solid separation units 210 arranged in a row (see a dashed box labeled "210"), where each gas-solid separation unit 210 includes two filters 211, each Each of the filters 211 is a bag filter.
  • Each filter bag dust collector is installed with multiple sets of gas-solid separation components 211A.
  • Each group of gas-solid separation components 211A includes multiple filter bags and a backflushing device that can perform pulse backflushing and dust removal on these filter bags at the same time.
  • a plurality of sets of gas-solid separation components 211A in the filter bag dust remover perform pulse back-blow dust removal in sequence.
  • connection points connected to the net gas output side of any one of the gas-solid separation units 210 on the merge channel 220 include sub-connection points respectively corresponding to the net gas output sides of the two filters 211 of the gas-solid separation unit 210 respectively.
  • a valve 240 is provided on the clean air delivery channel between each sub-connection point and the corresponding filter 211.
  • the cross-sectional area of the bus channel 220 along its airflow direction gradually increases (not shown in the figure), so that the cross-sectional area of the bus channel 220 becomes larger as more The inflow of net gas increases, thereby maintaining the pressure and flow velocity in the convergence channel 220 within a relatively consistent range.
  • the busway 220 is divided into different pipe sections, and the pipes in the same pipe section have the same diameter, and the pipe diameters of the different pipe sections gradually increase along the airflow direction of the busway.
  • the junction between adjacent pipe sections is preferably close to the intermediate point between two adjacent connection points on the merge channel 220 that are respectively connected to the net gas output side of the adjacent gas-solid separation unit 210, so that the diameter of the pipe is reduced. Place as far away from the connection point as possible.
  • the raw gas enters the two filters 211 of each gas-solid separation unit 210 and is filtered by a filter bag.
  • the filtered net gas passes through each net gas transmission channel (at this time, the valves 240 on each net gas transmission channel are open) ) And enters into the convergence channel 220, and then outputs through the convergence channel 220.
  • each of the gas-solid separation units 210 is cleaned online in order.
  • performing on-line cleaning of a gas-solid separation unit 210 includes:
  • the backflush control component instructs the backflushing device of a group of gas-solid separation components 211A of one of the filters 211 in the gas-solid separation unit 210 at the upstream of the confluence channel 220 to pulse the gas-solid separation components 211A. Blow airflow, so that each filter bag in the gas-solid separation module 211A is pulsed back blown by pulsed blowback airflow to separate the dust from the filter bags;
  • the backflush control unit instructs the next group of gas-solid separation module 211A backflushing device to perform the same process, so that all the gas in one filter 211 is sequentially
  • the other filter 211 of the gas-solid separation unit 210 continues to perform pulse backflushing.
  • a dust monitoring system is installed on the gas-solid separation system.
  • the dust monitoring system includes a signal acquisition section 110, a signal transmission section 120, and a signal processing section 130.
  • the plurality of dust detection components 111 of the signal acquisition unit 110 are deployed on the busway 220 in FIG. 3 and are respectively arranged on the busway 220 for connection with the net gas output side of each gas-solid separation unit 210. After the point.
  • two dust detection components 111 are provided on the collecting channel 220 after the connection point located at the most downstream point along the flow direction of the collecting channel 220 along the direction of the gas flow.
  • the dust detection component 111 in the dust monitoring system of this embodiment uses the same dust detection component as the dust detection component in the previous embodiment.
  • the dust detection component 111 near the junction between adjacent pipe sections is preferably disposed on a pipe section with a smaller pipe diameter in the adjacent pipe section, so as to better ensure that the dust detection component 111 obtains a higher accuracy of the target signal.
  • FIG. 6 is a schematic flowchart of an embodiment of a dust monitoring method according to the present invention. As shown in FIG. 6, the following dust monitoring method is implemented based on the above-mentioned dust monitoring system, and the method includes:
  • Step S101 The signal acquisition unit 110 acquires a target signal through the dust detection components 111 respectively located on the net gas output side of each gas-solid separation unit 210.
  • Step S102 The signal transmission unit 120 transmits the target signal acquired by the signal acquisition unit 110.
  • Step S103 The signal processing unit 130 receives the target signal transmitted by the signal transmission unit 120, performs signal processing, and outputs a monitoring result.
  • step S103 includes:
  • Step S103A It is determined whether an abnormal state of the net air dust concentration occurs in the gas-solid separation unit 210 according to the target signal transmitted by the signal transmission unit 120.
  • the determination of whether the net gas dust concentration output by any solid separation unit 210 (hereinafter referred to as a target unit) is abnormal is based on the target signal obtained by the dust detection unit 111 corresponding to the target unit and the convergence channel.
  • the target signal obtained by at least one dust detection component 111 downstream of the dust detection component 111 corresponding to the target unit on 220 is made after performing correlation judgment, thereby improving the judgment accuracy.
  • the determination of whether the net gas dust concentration output by the target unit is abnormal is determined by detecting the dust corresponding to the target unit.
  • the target signals obtained by the component 111 and the target signals obtained by the two dust detection components 111 downstream of the dust detection component 111 corresponding to the target unit on the merge channel 220 are determined after being associated with each other.
  • the dust detection component 111 corresponding to the target unit and the two dust detection components 111 on the merge channel 220 located downstream of the target unit that is, a total of three dust detection components 111 are sequentially disposed adjacent to each other.
  • the determination of whether the net gas dust concentration output by the target unit is abnormal or not is obtained by the dust detection component 111 corresponding to the target unit.
  • the target signal and the target signal obtained by a dust detection component 111 downstream of the dust detection component 111 corresponding to the target unit on the convergence channel 220 are determined after being associated with each other.
  • FIG. 7 is a schematic diagram of an association judgment process according to an embodiment of the dust monitoring method of the present invention.
  • the above-mentioned correlation judgment specifically includes (taking the target unit as the non-most downstream solid separation unit 210 as an example):
  • Step S201 A first determination is made as to whether the target signal acquired by the dust detection unit 111 corresponding to the target unit reaches a set condition.
  • Step S202 Perform a second judgment on whether the target signals acquired by the two dust detection components 111 downstream of the dust detection component 111 corresponding to the target unit on the busway 220 have reached a set condition.
  • Step S203 Perform a third judgment on whether the net air dust concentration output by the target unit is abnormal according to the results of the first judgment and the second judgment.
  • step S204 is performed to make an analysis judgment result according to a preset analysis strategy.
  • Step S204 Analyze and determine whether there is an abnormal state in the net air dust concentration output by the target unit according to the majority of the judgment results of the first judgment and the second judgment.
  • the target signal obtained by the dust detection unit 111 corresponding to the target unit is expressed as a curve with time as the abscissa and dust concentration as the ordinate (the uppermost part in FIG. 8). Curve), a peak appearing in the curve is interpreted as a sudden increase in dust concentration. If the peak value exceeds a set threshold, the result of the first judgment is "yes" (otherwise, the result of the first judgment is "no"), Specifically, it indicates that the target signal obtained by the dust detection component 111 corresponding to the target unit has reached a set condition.
  • the target signal obtained by a dust detection unit 111 adjacent to the dust detection unit 111 is expressed as a curve with time as the abscissa and dust concentration as the ordinate (the middle curve in FIG. 8).
  • a peak appearing in the curve is interpreted as a sudden increase in dust concentration.
  • the appearance time of the peak is after the peak appearance time of the top curve in FIG. 8 and the interval between the two is ⁇ T. If the peak of the middle curve in FIG.
  • the analysis and judgment result of the abnormal state of the net gas dust concentration output by the target unit is made. Otherwise, the analysis result of the abnormal state of the net air dust concentration output as the target unit does not appear.
  • the above step S204 may further include a step of determining that the dust detection component whose contradiction between the obtained target signal and the analysis judgment result is a failure, and at this time, the signal processing unit 130 may further output a notification pointing to the failure of the corresponding dust detection component.
  • Step S103B Determine whether any of the gas-solid separation unit 211A is activated according to the information provided by the backflush control component and used to characterize whether the gas-solid separation unit 210 has backflush behavior. Within a certain period of time after backflushing and other gas-solid separation components 211A have not yet started backflushing.
  • step S103B is actually determining that a net Whether there is a target component in the gas-solid separation unit 210 in an abnormal state of the air dust concentration.
  • Step S103C If it is determined in step S103B that there is a target component in the gas-solid separation unit 210 where the abnormal state of the net gas and dust concentration exists, it is considered that the abnormal state of the net gas and dust concentration output by the gas-solid separation unit 210 is caused by the gas-solid separation unit
  • the signal processing unit 130 outputs a monitoring result caused by the back blow of the target component in 210, and the detection result is expressed as a notification that the filter component of the target component in the gas-solid separation unit in which the abnormal state of the net gas and dust concentration is abnormal may be abnormal.
  • the above-mentioned dust monitoring method of the present invention can be implemented by means of a signal processing device of a dust monitoring system.
  • the device includes at least one processor, at least one memory, and computer program instructions stored in the memory.
  • the computer program instructions When executed by the processor, the device implements processing by the signal processing unit in the method shown in FIG. 5.
  • the processor may include a central processing unit (CPU), or a special integrated circuit (ASIC), or one or more integrated circuits that may be configured to implement the method of the present invention.
  • CPU central processing unit
  • ASIC special integrated circuit
  • the memory may include mass storage for data or instructions.
  • the memory may include a hard disk drive (HDD), a floppy disk drive, a flash memory, an optical disk, a magneto-optical disk, a magnetic tape or a universal serial bus (USB) drive, or two or more A combination of these.
  • HDD hard disk drive
  • floppy disk drive a floppy disk drive
  • flash memory an optical disk
  • magneto-optical disk a magnetic tape
  • USB universal serial bus
  • storage 520 may include removable or non-removable (or fixed) media.
  • the memory may be internal or external to the data processing device.
  • the memory is a non-volatile solid-state memory.
  • the memory includes a read-only memory (ROM).
  • ROM read-only memory
  • the ROM may be a mask-programmed ROM, a programmable ROM (PROM), an erasable PROM (EPROM), an electrically erasable PROM (EEPROM), an electrically rewritable ROM (EAROM), or a flash memory, or A combination of two or more of these.
  • the processor implements the above-mentioned dust monitoring method by reading and executing computer program instructions stored in the memory.
  • the signal processing device may further include a communication interface and a bus.
  • the processor, the memory, and the communication interface are connected through a bus and complete communication with each other.
  • the communication interface is mainly used to implement communication between relevant parts in the embodiments of the present invention.
  • the bus includes hardware, software, or both, coupling the components of the load balancing device to each other.
  • the bus may include an accelerated graphics port (AGP) or other graphics bus, an enhanced industry standard architecture (EISA) bus, a front side bus (FSB), a super transfer (HT) interconnect, an industry standard architecture (ISA) Bus, unlimited bandwidth interconnect, low pin count (LPC) bus, memory bus, microchannel architecture (MCA) bus, peripheral component interconnect (PCI) bus, PCI-Express (PCI-X) bus, serial advanced technology An accessory (SATA) bus, a Video Electronics Standards Association local (VLB) bus, or other suitable bus, or a combination of two or more of these.
  • AGP accelerated graphics port
  • EISA enhanced industry standard architecture
  • FFB front side bus
  • HT super transfer
  • ISA industry standard architecture
  • ISA industry standard architecture
  • LPC low pin count
  • MCA microchannel architecture
  • PCI peripheral component interconnect
  • PCI-X PCI-Express
  • SATA Serial Advanced technology An accessory
  • VLB Video Electronics Standards Association local
  • the bus may include one or more buses.
  • the present invention describes and illustrates a particular bus, the present invention contemplates any suitable bus or interconnect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种粉尘监测方法、粉尘监测系统以及粉尘监测系统的信号处理装置,以便对不同气固分离单元(210)的输出的净气中的粉尘状况进行监测。方法包括:信号获取部(110)通过分别位于不同气固分离单元净气输出侧的粉尘检测部件(111)获取目标信号;信号传输部(120)输送由信号获取部(110)获取的目标信号;信号处理部(130)接收由信号传输部(120)输送的目标信号、进行信号处理并输出监测结果;所述信号获取部的粉尘检测部件(111)部署在同时与所述不同气固分离单元(210)的净气输出侧连接的汇流通道(220)上并分别设置在该汇流通道(220)上各个用于与所述不同气固分离单元(210)的净气输出侧连接的连接点之后。

Description

粉尘监测方法、系统及信号处理装置 技术领域
本发明涉及气固分离技术领域,具体而言,涉及可与气固分离过程配套的粉尘监测方法、粉尘监测系统以及粉尘监测系统的信号处理装置。
背景技术
为了对气固分离设备尤其是通过过滤部件拦截气流中的粉尘以实现气固分离(一般还会通过反吹控制部件对过滤部件进行周期性反吹以使粉尘从过滤部件上脱离从而恢复过滤部件的透气性)的气固分离设备(例如滤袋除尘器)的气固分离效率进行监测,可以在气固分离设备的净气输出侧安装粉尘检测部件,从而通过粉尘检测部件对气固分离设备输出的净气粉尘浓度进行测量,当发现气固分离设备输出的净气粉尘浓度升高到一定程度后,可以认为气固分离设备异常,这时往往需要对气固分离设备中的过滤部件进行检查,查找过滤部件是否存在具有可导致粉尘泄露的破损或者与密封部件之间的密封不良等过滤部件异常问题。
为了对气固分离设备的气固分离效率进行更有效的监测,需要选用适宜的粉尘检测部件。在公开号为CN107643149A、名称为“一种除尘器袋漏定位及故障诊断系统”的中国专利申请文件中提出用微电荷原理探测器(参见该专利申请文件说明书第4页、第[0041]段、第4行)作为粉尘检测部件。另外,该专利申请文件还提供了将反吹控制与粉尘检测部件配合运用从而实现不仅能够判断气固分离设备中过滤部件是否异常同时还能够从气固分离设备的众多过滤部件中将异常的过滤部件定位在一定范围内的技术,即异常过滤部件的定位技术。
工业上的气固分离系统常常包含多个分别作为气固分离单元的气固分离设备。通常,这样的气固分离系统的各气固分离单元的净气输出侧分别与同一汇流通道连接,从而通过该汇流通道将这些气固分离单元输出的净气汇集起来并集中向外输送。若需要对各气固分离单元的气固分离效率进行监测,目前采取的方法是分别在这些气固分离单元的净气输出口或者这些气固分离单元的净气输出口与汇流通道连接的净气输送通道上安装粉尘检测部件,总之就是要将粉尘检测部件设于汇流通道之前,从而确保各气固分离单元的净气输出侧都存在与之对应的粉尘检测部件。
发明内容
本发明旨在提供一种粉尘监测方法、粉尘监测系统以及粉尘监测系统的信号处理装置,以便对不同气固分离单元的输出的净气中的粉尘状况进行监测。
为了实现上述目的,根据本发明的一个方面,提供了一种粉尘监测方法。该方法包括:信号获取部通过分别位于不同气固分离单元净气输出侧的粉尘检测部件获取目标信号;信号传输部输送由信号获取部获取的目标信号;信号处理部接收由信号传输部输送的目标信号、进行信号处理并输出监测结果;所述信号获取部的粉尘检测部件部署在同时与所述不同气固分离单元的净气输出侧连接的汇流通道上并分别设置在该汇流通道上各个用于与所述不同气固分离单元的净气输出侧连接的连接点之后。
进一步地是,所述不同气固分离单元包括至少三个气固分离单元,所述不同气固分离单元以及与这些气固分离单元的净气输出侧连接的连接点沿汇流通道气流方向依次间隔排列。
进一步地是,所述信号获取部的粉尘检测部件包含在所述汇流通道上、位于沿该汇流通道的气流方向最下游的连接点之后,并且沿气流方向间隔设置的至少两个粉尘检测部件。
进一步地是,所述汇流通道的横截面形状包括但不限于圆形且通道长度沿一直线延伸。
进一步地是,所述汇流通道位于由所述不同气固分离单元所组成的气固分离部的一侧。
进一步地是,所述不同气固分离单元中的至少一个气固分离单元包含至少两个过滤器;所述汇流通道上与所述至少一个气固分离单元的净气输出侧连接的连接点分别与所述至少两个过滤器各自的净气输出侧连接。
进一步地是,所述至少一个气固分离单元包含相对设置于所述汇流通道左右两侧的过滤器;汇流通道上与所述至少一个气固分离单元的净气输出侧连接的连接点包含分别与所述相对设置于所述汇流通道左右两侧的过滤器各自的净气输出侧对应连接的子连接点。
进一步地是,沿所述汇流通道的气流方向,该汇流通道的通道横截面积逐渐增大。
进一步地是,所述汇流通道分为不同管段;同一管段内的管道直径相同,不同管段的管道直径沿所述汇流通道的气流方向逐渐增大。
进一步地是,靠近相邻管段之间结合处的粉尘检测部件设置于该相邻管段中管道直径较小的管段上。
进一步地是,所述不同气固分离单元中各个与所述汇流通道连接并用于向该汇流通道输送净气的净气输送通道上均设有阀门。
进一步地是,所述信号获取部的粉尘检测部件是一种以获取的气流中的粉尘颗粒物在经过该粉尘检测部件的感应探头时在该感应探头上产生的电信号为目标信号的粉尘检测部件。
进一步地是,所述电信号包括粉尘颗粒物撞击所述感应探头时在该感应探头上产生的撞击电流信号和粉尘颗粒物从所述感应探头旁边掠过时在该感应探头上产生的感应电流信号中的至少一种。
进一步地是,所述信号获取部使用了美国奥本费尔升有限公司(英文名:Auburn FilterSense LLC)制造的商品名称为TRIBO的粉尘检测部件。
进一步地是,所述信号处理部的信号处理工序包括至少根据信号传输部提供的目标信号并通过预设策略来判断所述不同气固分离单元中各气固分离单元输出的净气粉尘浓度是否出现异常状态的第一处理。
进一步地是,当通过所述第一处理将不同气固分离单元中的至少一个气固分离单元输出的净气粉尘浓度判断为异常状态时,所述信号处理部输出的监测结果表达为可指向相应气固分离单元异常的通知。
进一步地是,所述不同气固分离单元中各气固分离单元均为通过过滤部件拦截气流中的粉尘以实现气固分离、通过反吹控制部件对过滤部件进行周期性反吹以使粉尘从过滤部件上脱离的气固分离单元;则,所述第一处理至少根据反吹控制部件提供的用于表征各气固分离单元是否存在反吹行为的信息和信号传输部提供的目标信号并通过预设策略来判断所述不同气固分离单元中各气固分离单元基于自身反吹而引发的净气粉尘浓度变化是否出现净气粉尘浓度异常状态。
进一步地是,当通过所述第一处理将不同气固分离单元中的至少一个气固分离单元基于自身反吹而引发的净气粉尘浓度变化判断为净气粉尘浓度出现异常状态时,所述信号处理部输出的监测结果表达为可指向相应气固分离单元中过滤部件异常的通知。
进一步地是,所述不同气固分离单元中的至少一个气固分离单元包含至少两个可先后进行周期性反吹的气固分离组件;若将所述至少一个气固分离单元中的任意一个处于启动反吹后的一定时期内且其它气固分离组件还未开始反吹时的气固分离组件称为目标组件,当通过所述第一处理将目标组件所属的气固分离单元输出的净气粉尘浓度判断为异常状态时,则所述信号处理部输出的监测结果表达为指向目标组件中的过滤部件异常的通知。
进一步地是,所述第一处理至少根据反吹控制部件提供的用于表征气固分离单元是否存在反吹行为的信息、所述不同气固分离单元中与所述汇流通道连接并用于向该汇流通道输送净气的净气输送通道上阀门的启闭信息和信号传输部提供的目标信号并通过预设策略来判断所述不同气固分离单元中各气固分离单元基于自身反吹而引发的净气粉尘浓度变化是否出现净气粉尘浓度异常状态。
进一步地是,所述预设策略包括:根据信号传输部提供的目标信号判断所述不同气固分离单元中是否存在至少一个气固分离单元输出的净气粉尘浓度出现异常状态;至少根据反吹控制部件提供的用于表征气固分离单元是否存在反吹行为的信息判断所述至少一个气固分离单元输出的净气粉尘浓度出现异常状态是否由该至少一个气固分离单元自身反吹而引发。
进一步地是,所述预设策略包括:根据信号传输部提供的目标信号判断所述不同气固分离单元中是否存在至少一个气固分离单元输出的净气粉尘浓度出现异常状态;至少根据反吹控制部件提供的用于表征气固分离单元是否存在反吹行为的信息以及所述不同气固分离单元中与所述汇流通道连接并用于向该汇流通道输送净气的净气输送通道上阀门的启闭信息判断所述至少一个气固分离单元输出的净气粉尘浓度出现异常状态是否由该至少一个气固分离单元自身反吹而引发。
进一步地,所述第一处理中对于所述不同气固分离单元中的至少一个气固分离单元输出的净气粉尘浓度是否出现异常状态的判断是通过对与该至少一个气固分离单元对应的粉尘检测部件所获取的目标信号以及在所述汇流通道上位于与该至少一个气固分离单元对应的粉尘检测部件上游或/和下游的至少一个粉尘检测部件所获取的目标信号进行关联判断后作出的。
进一步地是,所述关联判断包括:进行对与所述至少一个气固分离单元对应的粉尘检测部件所获取的目标信号是否达到设定条件的第一判断;进行对在所述汇流通道上位于与该至少一个气固分离单元对应的粉尘检测部件下游的至少一个粉尘检测部件所获取的目标信号是否达到设定条件的第二判断;进行根据第一判断和第二判断的结果对所述至少一个气固分离单元输出的净气粉尘浓度是否出现异常状态的第三判断;第三判断时,当第一判断和第二判断的判断结果均为是时作出所述至少一个气固分离单元输出的净气粉尘浓度出现异常状态的判断结果,当第一判断和第二判断的判断结果均为否时作出所述至少一个气固分离单元输出的净气粉尘浓度未出现异常状态的判断结果,当第一判断和第二判断的判断结果存在矛盾时根据预设分析策略作出分析判断结果。
进一步地是,所述预设分析策略包括:当第二判断仅包含对一个粉尘检测部件所获取的目标信号是否达到设定条件的判断时,作出所述至少一个气固分离单元输出的净气粉尘浓度出现异常状态或未出现异常状态的分析判断结果;当第二判断包含对两个以上粉尘检测部件所获取的目标信号是否达到设定条件的判断时,根据第一判断和第二判断的判断结果总和中是与否所出现的多数者来作出所述至少一个气固分离单元输出的净气粉尘浓度是否出现异常状态的分析判断结果。
进一步地是,所述预设分析策略还包括将所获取的目标信号与所述分析判断结果相矛盾的粉尘检测部件判断为故障的环节;所述信号处理部输出指向相应粉尘检测部件故障的通知。
为了实现上述目的,根据本发明的另一个方面,提供了一种粉尘监测系统。该系统包括:信号获取部,用于通过分别位于不同气固分离单元净气输出侧的粉尘检测部件获取目标信号;信号传输部,用于输送由信号获取部获取的目标信号;信号处理部,用于接收由信号传输部输送的目标信号、进行信号处理并输出监测结果;所述信号获取部的粉尘检测部件用于部署在同时与所述不同气固分离单元的净气输出侧连接的汇流通道上并分别设置在该汇流通道上各个用于与所述不同气固分离单元的净气输出侧连接的连接点之后。
进一步地是,所述不同气固分离单元包括至少三个气固分离单元,所述不同气固分离单元以及与这些气固分离单元的净气输出侧连接的连接点沿汇流通道气流方向依次间隔排列。
进一步地是,所述信号获取部的粉尘检测部件包含在所述汇流通道上、位于沿该汇流通道的气流方向最下游的连接点之后,并且沿气流方向间隔设置的至少两个粉尘检测部件。
进一步地是,所述汇流通道的横截面形状包括但不限于圆形且通道长度沿一直线延伸。
进一步地是,所述汇流通道位于由所述不同气固分离单元所组成的气固分离部的一侧。
进一步地是,所述不同气固分离单元中的至少一个气固分离单元包含至少两个过滤器;所述汇流通道上与所述至少一个气固分离单元的净气输出侧连接的连接点分别与所述至少两个过滤器各自的净气输出侧连接。
进一步地是,所述至少一个气固分离单元包含相对设置于所述汇流通道左右两侧的过滤器;汇流通道上与所述至少一个气固分离单元的净气输出侧连接的连接点包含分别与所 述相对设置于所述汇流通道左右两侧的过滤器各自的净气输出侧对应连接的子连接点。
进一步地是,沿所述汇流通道的气流方向,该汇流通道的通道横截面积逐渐增大。
进一步地是,所述汇流通道分为不同管段;同一管段内的管道直径相同,不同管段的管道直径沿所述汇流通道的气流方向逐渐增大。
进一步地是,靠近相邻管段之间结合处的粉尘检测部件设置于该相邻管段中管道直径较小的管段上。
进一步地是,所述不同气固分离单元中各个与所述汇流通道连接并用于向该汇流通道输送净气的净气输送通道上均设有阀门。
进一步地是,所述信号获取部的粉尘检测部件是一种以获取的气流中的粉尘颗粒物在经过该粉尘检测部件的感应探头时在该感应探头上产生的电信号为目标信号的粉尘检测部件。
进一步地是,所述电信号包括粉尘颗粒物撞击所述感应探头时在该感应探头上产生的撞击电流信号和粉尘颗粒物从所述感应探头旁边掠过时在该感应探头上产生的感应电流信号中的至少一种。
进一步地是,所述信号获取部使用了美国奥本费尔升有限公司(英文名:Auburn FilterSense LLC)制造的商品名称为TRIBO的粉尘检测部件。
进一步地是,所述信号处理部的信号处理工序包括至少根据信号传输部提供的目标信号并通过预设策略来判断所述不同气固分离单元中各气固分离单元输出的净气粉尘浓度是否出现异常状态的第一处理。
进一步地是,当通过所述第一处理将不同气固分离单元中的至少一个气固分离单元输出的净气粉尘浓度判断为异常状态时,所述信号处理部输出的监测结果表达为可指向相应气固分离单元异常的通知。
进一步地是,所述不同气固分离单元中各气固分离单元均为通过过滤部件拦截气流中的粉尘以实现气固分离、通过反吹控制部件对过滤部件进行周期性反吹以使粉尘从过滤部件上脱离的气固分离单元;则,所述第一处理至少根据反吹控制部件提供的用于表征各气固分离单元是否存在反吹行为的信息和信号传输部提供的目标信号并通过预设策略来判断所述不同气固分离单元中各气固分离单元基于自身反吹而引发的净气粉尘浓度变化是否出现净气粉尘浓度异常状态。
进一步地是,当通过所述第一处理将不同气固分离单元中的至少一个气固分离单元基于自身反吹而引发的净气粉尘浓度变化判断为净气粉尘浓度出现异常状态时,所述信号处 理部输出的监测结果表达为可指向相应气固分离单元中过滤部件异常的通知。
进一步地是,所述不同气固分离单元中的至少一个气固分离单元包含至少两个可先后进行周期性反吹的气固分离组件;若将所述至少一个气固分离单元中的任意一个处于启动反吹后的一定时期内且其它气固分离组件还未开始反吹时的气固分离组件称为目标组件,当通过所述第一处理将目标组件所属的气固分离单元输出的净气粉尘浓度判断为异常状态时,则所述信号处理部输出的监测结果表达为指向目标组件中的过滤部件异常的通知。
进一步地是,所述第一处理至少根据反吹控制部件提供的用于表征气固分离单元是否存在反吹行为的信息、所述不同气固分离单元中与所述汇流通道连接并用于向该汇流通道输送净气的净气输送通道上阀门的启闭信息和信号传输部提供的目标信号并通过预设策略来判断所述不同气固分离单元中各气固分离单元基于自身反吹而引发的净气粉尘浓度变化是否出现净气粉尘浓度异常状态。
进一步地是,所述预设策略包括:根据信号传输部提供的目标信号判断所述不同气固分离单元中是否存在至少一个气固分离单元输出的净气粉尘浓度出现异常状态;至少根据反吹控制部件提供的用于表征气固分离单元是否存在反吹行为的信息判断所述至少一个气固分离单元输出的净气粉尘浓度出现异常状态是否由该至少一个气固分离单元自身反吹而引发。
进一步地是,所述预设策略包括:根据信号传输部提供的目标信号判断所述不同气固分离单元中是否存在至少一个气固分离单元输出的净气粉尘浓度出现异常状态;至少根据反吹控制部件提供的用于表征气固分离单元是否存在反吹行为的信息以及所述不同气固分离单元中与所述汇流通道连接并用于向该汇流通道输送净气的净气输送通道上阀门的启闭信息判断所述至少一个气固分离单元输出的净气粉尘浓度出现异常状态是否由该至少一个气固分离单元自身反吹而引发。
进一步地,所述第一处理中对于所述不同气固分离单元中的至少一个气固分离单元输出的净气粉尘浓度是否出现异常状态的判断是通过对与该至少一个气固分离单元对应的粉尘检测部件所获取的目标信号以及在所述汇流通道上位于与该至少一个气固分离单元对应的粉尘检测部件上游或/和下游的至少一个粉尘检测部件所获取的目标信号进行关联判断后作出的。
进一步地是,所述关联判断包括:进行对与所述至少一个气固分离单元对应的粉尘检测部件所获取的目标信号是否达到设定条件的第一判断;进行对在所述汇流通道上位于与该至少一个气固分离单元对应的粉尘检测部件下游的至少一个粉尘检测部件所获取的目 标信号是否达到设定条件的第二判断;进行根据第一判断和第二判断的结果对所述至少一个气固分离单元输出的净气粉尘浓度是否出现异常状态的第三判断;第三判断时,当第一判断和第二判断的判断结果均为是时作出所述至少一个气固分离单元输出的净气粉尘浓度出现异常状态的判断结果,当第一判断和第二判断的判断结果均为否时作出所述至少一个气固分离单元输出的净气粉尘浓度未出现异常状态的判断结果,当第一判断和第二判断的判断结果存在矛盾时根据预设分析策略作出分析判断结果。
进一步地是,所述预设分析策略包括:当第二判断仅包含对一个粉尘检测部件所获取的目标信号是否达到设定条件的判断时,作出所述至少一个气固分离单元输出的净气粉尘浓度出现异常状态或未出现异常状态的分析判断结果;当第二判断包含对两个以上粉尘检测部件所获取的目标信号是否达到设定条件的判断时,根据第一判断和第二判断的判断结果总和中是与否所出现的多数者来作出所述至少一个气固分离单元输出的净气粉尘浓度是否出现异常状态的分析判断结果。
进一步地是,所述预设分析策略还包括将所获取的目标信号与所述分析判断结果相矛盾的粉尘检测部件判断为故障的环节;所述信号处理部输出指向相应粉尘检测部件故障的通知。
总而言之,本发明上述粉尘监测系统具有用于实施本发明上述任意一种粉尘监测方法所需的必要的设置。
为了实现上述目的,根据本发明的又一个方面,还提供了一种粉尘监测系统的信号处理装置。该装置包括至少一个处理器、至少一个存储器以及存储在所述存储器中的计算机程序指令,当所述计算机程序指令被所述处理器执行时实现本发明上述任意一种粉尘监测方法中由信号处理部处理的工序。
本发明的上述粉尘监测方法、粉尘监测系统以及粉尘监测系统的信号处理装置,基于创造性的将信号获取部的粉尘检测部件部署在了同时与所述不同气固分离单元的净气输出侧连接的汇流通道上并分别设置在该汇流通道上各个用于与所述不同气固分离单元的净气输出侧连接的连接点之后,不仅仍可使所述不同气固分离单元中各气固分离单元输出的净气中的粉尘状况(如粉尘浓度变化)被对应的粉尘检测部件获取从而对粉尘状况进行监测,更重要的是,汇流通道中气流运动更为规则,且汇流通道中粉尘均匀性较高,此时粉尘检测部件容易获取更为真实的目标信号,从而提高粉尘检测的准确度。
下面结合附图和具体实施方式对本发明做进一步的说明。本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
构成本发明的一部分的附图用来辅助对本发明的理解,附图中所提供的内容及其在本发明中有关的说明可用于解释本发明,但不构成对本发明的不当限定。在附图中:
图1为本发明的粉尘监测系统的一个实施例中信号获取部与信号处理部连接示意图。
图2为本发明的粉尘监测系统的一个实施例中粉尘检测部件部署示意图。
图3为本发明的粉尘监测系统的一个实施例中粉尘检测部件部署示意图。
图4为本发明的粉尘监测系统的一个实施例中粉尘检测部件构造示意图。
图5为本发明的粉尘监测方法的一个实施例的流程示意图。
图6为本发明的粉尘监测方法的一个实施例的流程示意图。
图7为本发明的粉尘监测方法的一个实施例的关联判断流程示意图。
图8为本发明的粉尘监测方法的一个实施例的关联判断原理示意图。
具体实施方式
下面结合附图对本发明进行清楚、完整的说明。本领域普通技术人员在基于这些说明的情况下将能够实现本发明。在结合附图对本发明进行说明前,需要特别指出的是:
本发明中在包括下述说明在内的各部分中所提供的技术方案、技术特征,在不冲突的情况下,这些技术方案、技术特征可以相互组合。
此外,下述说明中涉及到的本发明的实施例通常仅是本发明的一分部实施例而不是全部实施例,因此,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
关于本发明中术语和单位:本发明的说明书和权利要求书及有关的部分中的术语“包括”、“包含”、“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本发明中的“气固分离”,是指气体与气体中固体颗粒物的分离。此外,本发明中的其他相关术语和单位,均可基于本发明相关内容得到合理的解释。
图1为本发明的粉尘监测系统的一个实施例中信号获取部与信号处理部连接示意图。如图1所示,本发明的粉尘监测系统包括信号获取部110、信号传输部120和信号处理部130;其中,信号获取部110用于通过分别位于不同气固分离单元净气输出侧的粉尘检测部件111获取目标信号,信号传输部120用于输送由信号获取部110获取的目标信号,信号处理部130用于接收由信号传输部120输送的目标信号、进行信号处理并输出监测结果。
图2为本发明的粉尘监测系统的一个实施例中粉尘检测部件部署示意图。结合图1和 图2所示,本发明的粉尘监测系统中的信号获取部110的粉尘检测部件111具体部署在同时与所述不同气固分离单元210的净气输出侧连接的汇流通道220上并分别设置在该汇流通道220上各个用于与所述不同气固分离单元210的净气输出侧连接的连接点之后。
其中,所述不同气固分离单元210包括至少两个一般为三个以上气固分离单元210。这些气固分离单元210可以是采用任何一种气固分离手段实现气固分离作用的气固分离单位。目前已知的气固分离手段很多,常见的有重力除尘、旋风除尘、电除尘、滤袋除尘、陶瓷滤芯除尘、金属滤芯除尘等等。
所述汇流通道220的常规结构为横截面为圆形或矩形的净气总管。但是,由于气固分离系统设计的多样性,汇流通道220也可能被设计为非常规结构。例如,在一个包括多个滤袋除尘器的气固分离系统中,每一个滤袋除尘器均作为一个气固分离单元,在这些滤袋除尘器的一侧设有一个横截面为矩形并向前延伸的通道,这些滤袋除尘器沿着该通道的长度方向间隔排列在该通道的外侧,该通道内有一块隔板将通道分别上下两层空间,下层空间作为原气输入通道与各滤袋除尘器的原气输入侧连通(“原气”是指待气固分离处理的气体),而上层空间则作为所述汇流通道220与各滤袋除尘器的净气输出侧连通,此外,该隔板相对于水平面还具有一定的倾斜角度,从而使原气输入通道的横截面面积沿原气输入方向由大变小、汇流通道220的横截面面积沿净气输出方向由小变大。显然,上述汇流通道220就属于一种非常规结构的汇流通道。
前文中还采用了“上述信号获取部110的粉尘检测部件111具体部署在同时与所述不同气固分离单元210的净气输出侧连接的汇流通道220上并分别设置在该汇流通道220上各个用于与所述不同气固分离单元210的净气输出侧连接的连接点之后”的描述或限定。这样的描述或限定可以理解为:在汇流通道220上任意相邻连接点(具体指与气固分离单元210连接的连接点)之间都部署有粉尘检测部件111;但是,该汇流通道220上任意相邻连接点之间并非只能部署一个粉尘检测部件111。
作为汇流通道220上任意相邻连接点之间部署超过一个粉尘检测部件111的一个例子,为:出于冗余设计的考虑,在汇流通道220上各相邻连接点之间部署了两个粉尘检测部件111。这时,可认为这两个粉尘检测部件均与一气固分离单元210对应。
此外,还存在这样的可能,即汇流通道220上任意相邻连接点之间看起来部署了两个以上粉尘检测部件,但它们实际上仍为一个粉尘检测部件。例如,若某粉尘检测部件需要结合两个以上的传感器探头才能获得目标信号,这时,即使这两个传感器探头被分别安装在了汇流通道220上任意相邻连接点之间的不同部位,但是,这两个传感器探头实质上仍 然属于同一个粉尘检测部件。
本发明的粉尘监测系统中,粉尘检测部件111优选采用以获取的气流中的粉尘颗粒物在经过该粉尘检测部件的感应探头时在该感应探头上产生的电信号为目标信号的粉尘检测部件。从目前已知的气固分离领域粉尘检测技术来看,上述这类粉尘检测部件检测精度较高,并且较为适合在本发明的粉尘监测系统中应用。本说明书“背景技术”部分引用的一篇现有技术所采用的微电荷原理探测器,也属于这类粉尘检测部件。
上述这类粉尘检测部件主要可分为几种具体的类型:一种是以获取气流中的粉尘颗粒物撞击所述感应探头时在该感应探头上产生的撞击电流信号为目标信号的粉尘检测部件;另一种以获取气流中的粉尘颗粒物从所述感应探头旁边掠过时在该感应探头上产生的感应电流信号为目标信号的粉尘检测部件;还有一种以同时获取上述撞击电流信号和感应电流信号为目标信号的粉尘检测部件。
针对上述几种粉尘检测部件,建议可以从美国奥本费尔升有限公司(英文名:Auburn FilterSense LLC)制造的商品名称为TRIBO的粉尘检测部件中选用。奥本费尔升有限公司的前身为奥本系统有限公司(英文名:Auburn system LLC),是上述几种粉尘检测部件及配套技术开发和应用的先驱和优秀供应商。
当然,粉尘检测部件111并非只能采用以获取的气流中的粉尘颗粒物在经过该粉尘检测部件的感应探头时在该感应探头上产生的电信号为目标信号的粉尘检测部件。尽管不同粉尘检测部件的原理有所不同,但是,为了提高粉尘检测的准确度,提升被检测气固两相流的流动均匀性以及粉尘分布的均匀性总是有利的。
本发明的粉尘监测系统中,信号传输部120可以采用所有适用的数据传输手段。但为了尽可能的避免干扰,建议通过抗干扰的信号线将信号获取部110的信号输出端口与信号处理部130的信号输入端口连接。
本发明的粉尘监测系统中,信号处理部130既可以由独立且分别与各粉尘检测部件111对应连接的信号处理单元组成,也可以是一个同时与各粉尘检测部件111连接的信号处理装置,该信号处理装置一般被配置成具有必要硬件和软件的用户终端。
此外,本发明的粉尘监测系统的信号获取部110、信号传输部120和信号处理部130还可以集成为一体,或者部分集成为一体。
本发明的粉尘监测系统用于执行这样的粉尘监测方法,该方法包括:信号获取部110通过分别位于不同气固分离单元210净气输出侧的粉尘检测部件111获取目标信号;信号传输部120输送由信号获取部110获取的目标信号;信号处理部130接收由信号传输部 120输送的目标信号、进行信号处理并输出监测结果。
一般而言,本发明的粉尘监测方法中所述信号处理部130的信号处理工序包括至少根据信号传输部120提供的目标信号并通过预设策略来判断所述不同气固分离单元210中各气固分离单元210输出的净气粉尘浓度是否出现异常状态的第一处理。
当通过所述第一处理将不同气固分离单元210中的至少一个气固分离单元210输出的净气粉尘浓度判断为异常状态时,信号处理部130输出的监测结果可表达为可指向相应气固分离单元210异常的通知。所述通知可以是指向相应气固分离单元210异常的报警或提示。
若所述不同气固分离单元210中各气固分离单元210均为通过过滤部件拦截气流中的粉尘以实现气固分离、通过反吹控制部件对过滤部件进行周期性反吹以使粉尘从过滤部件上脱离的气固分离单元(如滤袋除尘单元、陶瓷滤芯除尘单元等),鉴于当气固分离单元210中的过滤部件存在异常的情况下进行反吹时会导致净气粉尘浓度显著提高这个在本说明书背景技术中引用的CN107643149A中已经提到的现象,在此基础上,所述第一处理可至少根据反吹控制部件提供的用于表征各气固分离单元是否存在反吹行为的信息和信号传输部提供的目标信号并通过预设策略来判断所述不同气固分离单元中各气固分离单元基于自身反吹而引发的净气粉尘浓度变化是否出现净气粉尘浓度异常状态。
当通过所述第一处理将不同气固分离单元中的至少一个气固分离单元基于自身反吹而引发的净气粉尘浓度变化判断为净气粉尘浓度出现异常状态时,所述信号处理部输出的监测结果还可表达为可指向相应气固分离单元中过滤部件异常的通知。
本发明的粉尘监测系统和粉尘监测方法,由于将信号获取部110的粉尘检测部件111部署在了同时与所述不同气固分离单元210的净气输出侧连接的汇流通道220上并分别设置在该汇流通道220上各个用于与所述不同气固分离单元210的净气输出侧连接的连接点之后,因此,在汇流通道220上任意相邻连接点之间都部署有粉尘检测部件111并且任意粉尘检测部件111都与该粉尘检测部件111所属的相邻连接点中上游的那个连接点连接的气固分离单元210对应,从而可使所述不同气固分离单元210中各气固分离单元210输出的净气中的粉尘状况(如粉尘浓度变化)被对应的粉尘检测部件111获取,最后实现对粉尘状况的监测。
另外,由于汇流通道220中气流运动更为规则,且汇流通道220中粉尘均匀性较高,将粉尘检测部件部署在汇流通道220上容易获取更为真实的目标信号,提高粉尘检测的准确度。
而根据本说明书背景技术部分记载的内容可知,现有技术是将粉尘检测部件设于汇流通道之前。但本发明的发明人发现:气固分离单元至汇流通道之间的净气输送通道长度一般较短且存在变向,导致气流运行不规则,另外,净气中未被分离出的粉尘在气固分离单元至汇流通道之间的净气输送通道中无法充分扩散,导致气固分离单元至汇流通道之间的净气输送通道中的粉尘分布不均匀,因此,若将粉尘检测部件部署在气固分离单元至汇流通道之间的净气输送通道上,可能导致检测准确度较低。
下面结合图1、图2、图4和图5,对本发明的粉尘监测系统的一个实施例以及应用该实施例的粉尘监测方法进行具体说明。
如图2所示,气固分离系统200包括排成一排的多个气固分离单元210,其中每个气固分离单元210即为一个滤袋除尘器(带有反吹功能)。
由这些气固分离单元210组成的气固分离部的一侧具有一个沿这些气固分离单元210的排列方向直线延伸并作为汇流通道220的净气总管,各气固分离单元210(按汇流通道220的气流方向,各气固分离单元210依次为气固分离单元210A、气固分离单元210B、气固分离单元210C……)分别通过各自的净气输送通道230与汇流通道220连接。
各净气输送通道230的一端与对应的气固分离单元210的净气输出端连接、另一端与汇流通道220连接(连接处即为汇流通道220上各个分别用于与这些气固分离单元210的净气输出侧连接的连接点)。此外,各净气输送通道230上均设有阀门240。
参见图2所示,上述这些气固分离单元210以及与这些气固分离单元的净气输出侧连接的连接点沿汇流通道220的气流方向依次间隔排列。
上述气固分离系统200的基本工作过程为:
首先,原气(“原气”是指待气固分离处理的气体)分别进入各气固分离单元210并通过滤袋进行过滤,过滤后的净气经过各净气输送通道230(此时各净气输送通道230上的阀门240均打开)后进入汇流通道220中,然后通过汇流通道220输出。
然后,依次对各气固分离单元210进行离线清灰。其中,对一个气固分离单元210进行离线清灰包括:
先在反吹控制部件的指令下关闭气固分离单元210A的净气输送通道230上的阀门240;
然后通过反吹控制部件指令反吹装置向气固分离单元210A的中通入反吹气流,从而通过反吹气流对滤袋进行反吹以使粉尘从滤袋上脱离;
反吹结束后,反吹控制部件指令反吹装置停止向气固分离单元210A的中通入反吹气 流;
然后反吹控制部件再指令气固分离单元210A的净气输送通道230上的阀门240打开;
最后,气固分离单元210A恢复原先的过滤状态。
此后,依次对气固分离单元210B、气固分离单元210C……执行与上述操作相同的操作。
如图1、图2所示,在上述气固分离系统200上安装粉尘监测系统,该粉尘监测系统包括信号获取部110、信号传输部120和信号处理部130;其中,信号获取部110的多个粉尘检测部件111部署在图2中的汇流通道220上并分别设置在该汇流通道220上各个用于与各个滤袋除尘器的净气输出侧连接的连接点之后。
按汇流通道220的气流方向,各粉尘检测部件111依次为粉尘检测部件111A、粉尘检测部件111B、粉尘检测部件111C……,其中,粉尘检测部件111A与气固分离单元210A对应,粉尘检测部件111B与气固分离单元210B对应,粉尘检测部件111C与气固分离单元210C对应,以此类推。
图4为本发明的粉尘监测系统的一个实施例中粉尘检测部件构造示意图。上述粉尘检测部件111均采用图4所示的粉尘检测部件。
该粉尘检测部件111是一种以获取气流中的粉尘颗粒物撞击所述感应探头时在该感应探头上产生的撞击电流信号为目标信号的粉尘检测部件。具体选用奥本费尔升有限公司(英文名:Auburn FilterSense LLC)制造的商品名称为TRIBO的粉尘检测部件。
如图4所示,粉尘检测部件111的感应探头插入汇流通道220中。
图5为本发明的粉尘监测方法的一个实施例的流程示意图。如图5所示,基于上述粉尘监测系统实施如下粉尘监测方法,该包括:
步骤S101:信号获取部110通过分别位于各气固分离单元210净气输出侧的粉尘检测部件111获取目标信号。
步骤S102:信号传输部120输送由信号获取部110获取的目标信号。
步骤S103:信号处理部130接收由信号传输部120输送的目标信号、进行信号处理并输出监测结果。
其中,步骤S103具体包括:
步骤S103A:根据信号传输部120输送的目标信号判断是否有气固分离单元210出现净气粉尘浓度异常状态。
针对此步骤,由于在汇流通道220上任意相邻连接点之间都部署有粉尘检测部件111 并且任意粉尘检测部件111都与该粉尘检测部件111所属的相邻连接点中上游的那个连接点连接的气固分离单元210对应(粉尘检测部件111A与气固分离单元210A对应,粉尘检测部件111B与气固分离单元210B对应,粉尘检测部件111C与气固分离单元210C对应,以此类推),从而可使各气固分离单元210输出的净气粉尘浓度变化被对应的粉尘检测部件111获取,实现对净气粉尘浓度异常状态的监测。
显而易见,通过粉尘检测部件111A获得的目标信号可判断气固分离单元210A是否出现净气粉尘浓度异常状态。
而通过粉尘检测部件111B获得的目标信号可判断气固分离单元210B是否出现净气粉尘浓度异常状态。但需要指出的是:尽管气固分离单元210A若出现净气粉尘浓度异常状态会对粉尘检测部件111B获得的目标信号造成一定影响,但是,由于在汇流通道220中位于粉尘检测部件111B之前的管道内气固分离单元210A输出的净气与气固分离单元210B输出的净气发生了汇流,使得气固分离单元210A输出的净气中的粉尘被稀释,导致上述影响的效果降低,因此,就使得通过粉尘检测部件111B获得的目标信号判断气固分离单元210B是否出现净气粉尘浓度异常状态成为可能。
同理,通过粉尘检测部件111C获得的目标信号可判断气固分离单元210C是否出现净气粉尘浓度异常状态。
鉴于气固分离单元210与粉尘检测部件111的对应性以及粉尘检测部件111在汇流通道220上的部署方式,还可以通过附加手段来进一步确保根据信号传输部120输送的目标信号判断是否有气固分离单元210出现净气粉尘浓度异常状态的准确性。
上述的附加手段可以是:对某气固分离单元210输出的净气粉尘浓度是否出现异常状态的判断是通过对与该气固分离单元210对应的粉尘检测部件111所获取的目标信号以及在所述汇流通道220上位于与该气固分离单元210对应的粉尘检测部件111上游或/和下游的至少一个粉尘检测部件111所获取的目标信号进行关联判断后作出的。对此,将在本发明下一实施例中予以具体说明。
步骤S103B:当通过步骤S103A判断某气固分离单元210出现净气粉尘浓度异常状态时,根据反吹控制部件提供的用于表征气固分离单元210是否存在反吹行为的信息判断出现净气粉尘浓度异常状态的气固分离单元210是否进行了反吹。
该步骤中,信号处理部130需要接收反吹控制部件提供的用于表征气固分离单元210是否存在反吹行为的信息,从而判断出现净气粉尘浓度异常状态的气固分离单元210是否进行了反吹。
步骤S103C:当通过步骤S103B判断出现净气粉尘浓度异常状态的气固分离单元210进行了反吹时,根据反吹控制部件提供的与所述汇流通道220连接并用于向该汇流通道220输送净气的净气输送通道上的阀门240的启闭信息判断出现净气粉尘浓度异常状态的气固分离单元210所对应的阀门240是否开启。
根据反吹控制部件提供的与所述汇流通道220连接并用于向该汇流通道220输送净气的净气输送通道上的阀门240的启闭信息,如果出现净气粉尘浓度异常状态的气固分离单元210所对应的阀门240是在该气固分离单元210出现净气粉尘浓度异常状态之前的设定时间内开启,说明该气固分离单元210输出的净气粉尘浓度出现异常状态是由该气固分离单元210自身反吹而引发的。
步骤S103D:当通过步骤S103C判断出现净气粉尘浓度异常状态的气固分离单元210所对应的阀门240开启从而确定气固分离单元210输出的净气粉尘浓度出现异常状态是由该气固分离单元210自身反吹而引发后,信号处理部130输出监测结果,该检测结果表达为可指向出现净气粉尘浓度异常状态的气固分离单元210中过滤部件异常的通知。
下面结合图1、图3和图6,对本发明的粉尘监测系统的另一个实施例以及应用该实施例的粉尘监测方法进行具体说明。
如图3所示,气固分离系统包括排成一排的多个气固分离单元210(参见标号“210”的虚线框),其中每个气固分离单元210包含两个过滤器211,每个过滤器211均为滤袋除尘器。
每个滤袋除尘器中安装有多组气固分离组件211A,每一组气固分离组件211A包括多个滤袋以及可同时对这些滤袋进行脉冲反吹清灰的反吹装置,每个滤袋除尘器中的多组气固分离组件211A按顺序先后进行脉冲反吹清灰。
由这些气固分离单元210组成的气固分离部的中间具有一个沿这些气固分离单元210的排列方向直线延伸并作为汇流通道220的净气总管,每个气固分离单元210的两个过滤器211均相对设置于汇流通道220的左右两侧。
所述汇流通道220上与任意一个气固分离单元210的净气输出侧连接的连接点包含分别与该气固分离单元210的两个过滤器211各自的净气输出侧对应连接的子连接点。各子连接点与对应的过滤器211之间的净气输送通道上均设有阀门240。
此外,汇流通道220沿其气流方向(即图3中从左向右的方向)通道横截面积逐渐增大(图中未示出),以便使汇流通道220的通道横截面积随着更多净气的汇入而增大,从而将汇流通道220内的压力和流速维持在较为一致的范围内。
具体而言,为便于制造,所述汇流通道220分为不同管段,同一管段内的管道直径相同,不同管段的管道直径沿所述汇流通道的气流方向逐渐增大。其中,相邻管段之间结合处最好靠近汇流通道220上相邻两个分别与相邻气固分离单元210的净气输出侧连接的连接点之间的中间点,从而使管道直径变径位置尽可能远离所述连接点。
上述气固分离系统的基本工作过程为:
首先,原气分别进入各气固分离单元210的两个过滤器211并通过滤袋进行过滤,过滤后的净气经过各净气输送通道(此时各净气输送通道上的阀门240均打开)后进入汇流通道220中,然后通过汇流通道220输出。
然后,依次对各气固分离单元210进行在线清灰。其中,对一个气固分离单元210进行在线清灰包括:
先通过反吹控制部件指令汇流通道220最上游的气固分离单元210中的其中一个过滤器211的其中一组气固分离组件211A的反吹装置向该气固分离组件211A中通入脉冲反吹气流,从而通过脉冲反吹气流对该气固分离组件211A中的各个滤袋进行脉冲反吹清灰以使粉尘从这些滤袋上脱离;
对上述气固分离组件211A的脉冲反吹清灰结束后,反吹控制部件又指令下一组气固分离组件211A的反吹装置执行同样的过程,这样依次对一个过滤器211中的所有气固分离组件211A进行脉冲反吹清灰后,再继续对气固分离单元210的另一过滤器211进行脉冲反吹清灰。
当一个气固分离单元210中的两个滤器211均完成脉冲反吹清灰后,再继续对其他气固分离单元210进行在线清灰。
如图1、图3所示,在上述气固分离系统上安装粉尘监测系统。该粉尘监测系统包括信号获取部110、信号传输部120和信号处理部130。其中,信号获取部110的多个粉尘检测部件111部署在图3中的汇流通道220上并分别设置在该汇流通道220上各个用于与各气固分离单元210的净气输出侧连接的连接点之后。
该实施例的粉尘监测系统中,在所述汇流通道220上、位于沿该汇流通道220的气流方向最下游的连接点之后,沿气流方向间隔设置有两个粉尘检测部件111。
该实施例的粉尘监测系统中的粉尘检测部件111与前一实施例中的粉尘检测部件采用相同的粉尘检测部件。
此外,靠近相邻管段之间结合处的粉尘检测部件111优选设置于该相邻管段中管道直径较小的管段上,从而更好确保粉尘检测部件111获得目标信号较高的准确性。
图6为本发明的粉尘监测方法的一个实施例的流程示意图。如图6所示,基于上述粉尘监测系统实施如下粉尘监测方法,该方法包括:
步骤S101:信号获取部110通过分别位于各气固分离单元210净气输出侧的粉尘检测部件111获取目标信号。
步骤S102:信号传输部120输送由信号获取部110获取的目标信号。
步骤S103:信号处理部130接收由信号传输部120输送的目标信号、进行信号处理并输出监测结果。
其中,步骤S103具体包括:
步骤S103A:根据信号传输部120输送的目标信号判断是否有气固分离单元210出现净气粉尘浓度异常状态。
其中,对任意固分离单元210(下称目标单元)输出的净气粉尘浓度是否出现异常状态的判断是通过对与该目标单元对应的粉尘检测部件111所获取的目标信号以及在所述汇流通道220上位于与目标单元对应的粉尘检测部件111下游的至少一个粉尘检测部件111所获取的目标信号进行关联判断后作出的,从而提高判断准确性。
具体而言,若目标单元不是这些固分离单元210中最下游的固分离单元210,则对该目标单元输出的净气粉尘浓度是否出现异常状态的判断是通过对与该目标单元对应的粉尘检测部件111所获取的目标信号以及在所述汇流通道220上位于与目标单元对应的粉尘检测部件111下游的两个粉尘检测部件111所获取的目标信号进行关联判断后作出的。并且,与目标单元对应的粉尘检测部件111和汇流通道220上位于目标单元下游的两个粉尘检测部件111即一共三个粉尘检测部件111之间依次相邻设置。
若目标单元是这些固分离单元210中最下游的固分离单元210,对该目标单元输出的净气粉尘浓度是否出现异常状态的判断是通过对与该目标单元对应的粉尘检测部件111所获取的目标信号以及在所述汇流通道220上位于与目标单元对应的粉尘检测部件111下游的一个粉尘检测部件111所获取的目标信号进行关联判断后作出的。
图7为本发明的粉尘监测方法的一个实施例的关联判断流程示意图。如图7所示,上述关联判断具体包括(以目标单元为非最下游的固分离单元210为例):
步骤S201:进行对与目标单元对应的粉尘检测部件111所获取的目标信号是否达到设定条件的第一判断。
步骤S202:进行对在所述汇流通道220上位于与目标单元对应的粉尘检测部件111下游的两个粉尘检测部件111所获取的目标信号是否达到设定条件的第二判断。
步骤S203:进行根据第一判断和第二判断的结果对目标单元输出的净气粉尘浓度是否出现异常状态的第三判断。
第三判断时,当第一判断和第二判断的判断结果均为是时作出目标单元输出的净气粉尘浓度出现异常状态的判断结果;当第一判断和第二判断的判断结果均为否时作出目标单元输出的净气粉尘浓度未出现异常状态的判断结果;当第一判断和第二判断的判断结果存在矛盾时执行步骤S204,根据预设分析策略作出分析判断结果。
步骤S204:根据第一判断和第二判断的判断结果总和中是与否所出现的多数者来作出目标单元输出的净气粉尘浓度是否出现异常状态的分析判断结果。
例如,如图8所示,进行第一判断时,与目标单元对应的粉尘检测部件111所获取的目标信号表示为以时间为横坐标、粉尘浓度为纵坐标的曲线(图8中最上面的曲线),该曲线中出现的一个波峰解释为粉尘浓度的突然增加,若其峰值超过设定的阈值,第一判断的结果则为“是”(否则第一判断的结果为“否”),具体表示目标单元对应的粉尘检测部件111获取的目标信号达到了设定条件。进行第二判断时,与上述粉尘检测部件111相邻的一个粉尘检测部件111所获取的目标信号表示为以时间为横坐标、粉尘浓度为纵坐标的曲线(图8中中间的曲线),该曲线中出现的一个波峰解释为粉尘浓度的突然增加,该波峰的出现时间在图8中最上面的曲线的波峰出现时间之后且两者间隔时间为ΔT,若图8中中间的曲线的波峰的峰值超过设定的阈值且间隔时间ΔT也处于合理范围内(即与粉尘通过相关两个粉尘检测部件111的经验时间相差在一定范围内),则判断结果为“是”;同理,可判断后续粉尘检测部件111获取的目标信号是否达到了设定条件。
若第一判断和第二判断的判断结果总和全部为是或两个为是,则作出目标单元输出的净气粉尘浓度出现异常状态的分析判断结果。否则作为目标单元输出的净气粉尘浓度未出现异常状态的分析判断结果。
上述步骤S204还可以包含将所获取的目标信号与所述分析判断结果相矛盾的粉尘检测部件判断为故障的环节,这时,信号处理部130还可输出指向相应粉尘检测部件故障的通知。
如图6所示,当通过上述步骤S103A判断某气固分离单元210出现净气粉尘浓度异常状态时,还将进行以下操作:
步骤S103B:根据反吹控制部件提供的用于表征气固分离单元210是否存在反吹行为的信息判断出现净气粉尘浓度异常状态的气固分离单元210是否有任意一个气固分离组件211A处于启动反吹后一定时期内且其他气固分离组件211A还未开始反吹。
若将一气固分离单元210中任意一个处于启动反吹后一定时期内且其他气固分离组件211A还未开始反吹的气固分离组件211A称为目标组件,则步骤S103B实际上就是判断出现净气粉尘浓度异常状态的气固分离单元210中是否有目标组件。
步骤S103C:若通过步骤S103B判断出现净气粉尘浓度异常状态的气固分离单元210中有目标组件,则认为该气固分离单元210输出的净气粉尘浓度出现异常状态是由该气固分离单元210中的目标组件的反吹而引发的,信号处理部130输出监测结果,该检测结果表达为可指向出现净气粉尘浓度异常状态的气固分离单元中的目标组件的过滤部件异常的通知。
本发明的上述粉尘监测方法,可以借助粉尘监测系统的信号处理装置来实现。该装置括至少一个处理器、至少一个存储器以及存储在所述存储器中的计算机程序指令,当所述计算机程序指令被所述处理器执行时实现图5所示的方法中由信号处理部处理的工序或图6所示的方法中由信号处理部处理的工序。
上述处理器可以包括中央处理器(CPU),或者特定集成电路(Application Special Integrated Circuit,ASIC),或者可以被配置成实施本发明方法的一个或多个集成电路。
存储器可以包括用于数据可以包括用于数据或指令的大容量存储器。举例来说而非限制,存储器可包括硬盘驱动器(Hard Disk Drive,HDD)、软盘驱动器、闪存、光盘、磁光盘、磁带或通用串行总线(Universal Serial Bus,USB)驱动器或者两个或更多个以上这些的组合。
在合适的情况下,存储器520可包括可移除或不可移除(或固定)的介质。在合适的情况下,存储器可在数据处理装置的内部或外部。在特定实施例中,存储器是非易失性固态存储器。
在特定实施例中,存储器包括只读存储器(ROM)。在合适的情况下,该ROM可以是掩模编程的ROM、可编程ROM(PROM)、可擦除PROM(EPROM)、电可擦除PROM(EEPROM)、电可改写ROM(EAROM)或闪存或者两个或更多个以上这些的组合。
处理器通过读取并执行存储器中存储的计算机程序指令,以实现上述粉尘监测方法。
在一个实施例中,信号处理装置还可包括通信接口和总线。其中,处理器、存储器、通信接口通过总线连接并完成相互间的通信。
通信接口,主要用于实现本发明实施例中各有关部分之间的通信。总线包括硬件、软件或两者,将负载均衡设备的部件彼此耦接在一起。
举例来说而非限制,总线可包括加速图形端口(AGP)或其他图形总线、增强工业标准 架构(EISA)总线、前端总线(FSB)、超传输(HT)互连、工业标准架构(ISA)总线、无限带宽互连、低引脚数(LPC)总线、存储器总线、微信道架构(MCA)总线、外围组件互连(PCI)总线、PCI-Express(PCI-X)总线、串行高级技术附件(SATA)总线、视频电子标准协会局部(VLB)总线或其他合适的总线或者两个或更多个以上这些的组合。
在合适的情况下,总线可包括一个或多个总线。尽管本发明描述和示出了特定的总线,但本发明考虑任何合适的总线或互连。
以上对本发明的有关内容进行了说明。本领域普通技术人员在基于这些说明的情况下将能够实现本发明。基于本发明的上述内容,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他优选实施方式和实施例,都应当属于本发明保护的范围。

Claims (29)

  1. 粉尘监测方法,其特征在于,该方法包括:
    信号获取部通过分别位于不同气固分离单元净气输出侧的粉尘检测部件获取目标信号;
    信号传输部输送由信号获取部获取的目标信号;
    信号处理部接收由信号传输部输送的目标信号、进行信号处理并输出监测结果;
    所述信号获取部的粉尘检测部件部署在同时与所述不同气固分离单元的净气输出侧连接的汇流通道上并分别设置在该汇流通道上各个用于与所述不同气固分离单元的净气输出侧连接的连接点之后。
  2. 如权利要求1所述的粉尘监测方法,其特征在于:所述不同气固分离单元包括至少三个气固分离单元;所述不同气固分离单元以及与这些气固分离单元的净气输出侧连接的连接点沿汇流通道的气流方向依次间隔排列。
  3. 如权利要求1或2所述的粉尘监测方法,其特征在于:所述信号获取部的粉尘检测部件包含在所述汇流通道上、位于沿该汇流通道的气流方向最下游的连接点之后,并且沿气流方向间隔设置的至少两个粉尘检测部件。
  4. 如权利要求1或2所述的粉尘监测方法,其特征在于:所述汇流通道的横截面形状包括但不限于圆形且通道长度沿一直线延伸。
  5. 如权利要求1或2所述的粉尘监测方法,其特征在于:所述汇流通道位于由所述不同气固分离单元所组成的气固分离部的一侧。
  6. 如权利要求1或2所述的粉尘监测方法,其特征在于:所述不同气固分离单元中的至少一个气固分离单元包含至少两个过滤器;所述汇流通道上与所述至少一个气固分离单元的净气输出侧连接的连接点分别与所述至少两个过滤器各自的净气输出侧连接。
  7. 如权利要求6所述的粉尘监测方法,其特征在于:所述至少一个气固分离单元包含相对设置于所述汇流通道左右两侧的过滤器;所述汇流通道上与所述至少一个气固分离单元的净气输出侧连接的连接点包含分别与所述相对设置于所述汇流通道左右两侧的过滤器各自的净气输出侧对应连接的子连接点。
  8. 如权利要求1或2所述的粉尘监测方法,其特征在于:沿所述汇流通道的气流方向,该汇流通道的通道横截面积逐渐增大。
  9. 如权利要求8所述的粉尘监测方法,其特征在于:所述汇流通道分为不同管段;同一管段内的管道直径相同,不同管段的管道直径沿所述汇流通道的气流方向逐渐增大。
  10. 如权利要求9所述的粉尘监测方法,其特征在于:靠近相邻管段之间结合处的粉尘检测部件设置于该相邻管段中管道直径较小的管段上。
  11. 如权利要求1或2所述的粉尘监测方法,其特征在于:所述不同气固分离单元中各个与所述汇流通道连接并用于向该汇流通道输送净气的净气输送通道上均设有阀门。
  12. 如权利要求1或2所述的粉尘监测方法,其特征在于:所述信号获取部的粉尘检测部件是一种以获取的气流中的粉尘颗粒物在经过该粉尘检测部件的感应探头时在该感应探头上产生的电信号为目标信号的粉尘检测部件。
  13. 如权利要求12所述的粉尘监测方法,其特征在于:所述电信号包括粉尘颗粒物撞击所述感应探头时在该感应探头上产生的撞击电流信号和粉尘颗粒物从所述感应探头旁边掠过时在该感应探头上产生的感应电流信号中的至少一种。
  14. 如权利要求13所述的粉尘监测方法,其特征在于:所述信号获取部使用了美国奥本费尔升有限公司(英文名:Auburn FilterSense LLC)制造的商品名称为TRIBO的粉尘检测部件。
  15. 如权利要求1所述的粉尘监测方法,其特征在于:所述信号处理部的信号处理工序包括至少根据信号传输部提供的目标信号并通过预设策略来判断所述不同气固分离单元中各气固分离单元输出的净气粉尘浓度是否出现异常状态的第一处理。
  16. 如权利要求15所述的粉尘监测方法,其特征在于:当通过所述第一处理将不同气固分离单元中的至少一个气固分离单元输出的净气粉尘浓度判断为异常状态时,所述信号处理部输出的监测结果表达为可指向相应气固分离单元异常的通知。
  17. 如权利要求15所述的粉尘监测方法,其特征在于:所述不同气固分离单元中各气固分离单元均为通过过滤部件拦截气流中的粉尘以实现气固分离、通过反吹控制部件对过滤部件进行周期性反吹以使粉尘从过滤部件上脱离的气固分离单元;则,所述第一处理至少根据反吹控制部件提供的用于表征各气固分离单元是否存在反吹行为的信息和信号传输部提供的目标信号并通过预设策略来判断所述不同气固分离单元中各气固分离单元基于自身反吹而引发的净气粉尘浓度变化是否出现净气粉尘浓度异常状态。
  18. 如权利要求17所述的粉尘监测方法,其特征在于:当通过所述第一处理将不同气固分离单元中的至少一个气固分离单元基于自身反吹而引发的净气粉尘浓度变化判断为净气粉尘浓度出现异常状态时,所述信号处理部输出的监测结果表达为可指向相应气固分 离单元中过滤部件异常的通知。
  19. 如权利要求18所述的粉尘监测方法,其特征在于:所述不同气固分离单元中的至少一个气固分离单元包含至少两个可先后进行周期性反吹的气固分离组件;若将所述至少一个气固分离单元中的任意一个处于启动反吹后的一定时期内且其它气固分离组件还未开始反吹时的气固分离组件称为目标组件,当通过所述第一处理将目标组件所属的气固分离单元输出的净气粉尘浓度判断为异常状态时,则所述信号处理部输出的监测结果表达为指向目标组件中的过滤部件异常的通知。
  20. 如权利要求17所述的粉尘监测方法,其特征在于:所述第一处理至少根据反吹控制部件提供的用于表征气固分离单元是否存在反吹行为的信息、所述不同气固分离单元中与所述汇流通道连接并用于向该汇流通道输送净气的净气输送通道上阀门的启闭信息和信号传输部提供的目标信号并通过预设策略来判断所述不同气固分离单元中各气固分离单元基于自身反吹而引发的净气粉尘浓度变化是否出现净气粉尘浓度异常状态。
  21. 如权利要求17-20中任意一项权利要求所述的粉尘监测方法,其特征在于,所述预设策略包括:根据信号传输部提供的目标信号判断所述不同气固分离单元中是否存在至少一个气固分离单元输出的净气粉尘浓度出现异常状态;至少根据反吹控制部件提供的用于表征气固分离单元是否存在反吹行为的信息判断所述至少一个气固分离单元输出的净气粉尘浓度出现异常状态是否由该至少一个气固分离单元自身反吹而引发。
  22. 如权利要求21所述的粉尘监测方法,其特征在于,所述预设策略包括:根据信号传输部提供的目标信号判断所述不同气固分离单元中是否存在至少一个气固分离单元输出的净气粉尘浓度出现异常状态;至少根据反吹控制部件提供的用于表征气固分离单元是否存在反吹行为的信息以及所述不同气固分离单元中与所述汇流通道连接并用于向该汇流通道输送净气的净气输送通道上阀门的启闭信息判断所述至少一个气固分离单元输出的净气粉尘浓度出现异常状态是否由该至少一个气固分离单元自身反吹而引发。
  23. 如权利要求15所述的粉尘监测方法,其特征在于:所述第一处理中对于所述不同气固分离单元中的至少一个气固分离单元输出的净气粉尘浓度是否出现异常状态的判断是通过对与该至少一个气固分离单元对应的粉尘检测部件所获取的目标信号以及在所述汇流通道上位于与该至少一个气固分离单元对应的粉尘检测部件上游或/和下游的至少一个粉尘检测部件所获取的目标信号进行关联判断后作出的。
  24. 如权利要求23所述的粉尘监测方法,其特征在于,所述关联判断包括:进行对与所述至少一个气固分离单元对应的粉尘检测部件所获取的目标信号是否达到设定条件的 第一判断;进行对在所述汇流通道上位于与该至少一个气固分离单元对应的粉尘检测部件下游的至少一个粉尘检测部件所获取的目标信号是否达到设定条件的第二判断;进行根据第一判断和第二判断的结果对所述至少一个气固分离单元输出的净气粉尘浓度是否出现异常状态的第三判断;第三判断时,当第一判断和第二判断的判断结果均为是时作出所述至少一个气固分离单元输出的净气粉尘浓度出现异常状态的判断结果,当第一判断和第二判断的判断结果均为否时作出所述至少一个气固分离单元输出的净气粉尘浓度未出现异常状态的判断结果,当第一判断和第二判断的判断结果存在矛盾时根据预设分析策略作出分析判断结果。
  25. 如权利要求24所述的粉尘监测方法,其特征在于,所述预设分析策略包括:当第二判断仅包含对一个粉尘检测部件所获取的目标信号是否达到设定条件的判断时,作出所述至少一个气固分离单元输出的净气粉尘浓度出现异常状态或未出现异常状态的分析判断结果;当第二判断包含对两个以上粉尘检测部件所获取的目标信号是否达到设定条件的判断时,根据第一判断和第二判断的判断结果总和中是与否所出现的多数者来作出所述至少一个气固分离单元输出的净气粉尘浓度是否出现异常状态的分析判断结果。
  26. 如权利要求25所述的粉尘监测方法,其特征在于:所述预设分析策略还包括将所获取的目标信号与所述分析判断结果相矛盾的粉尘检测部件判断为故障的环节;则,所述信号处理部输出指向相应粉尘检测部件故障的通知。
  27. 粉尘监测系统,包括:信号获取部,用于通过分别位于不同气固分离单元净气输出侧的粉尘检测部件获取目标信号;信号传输部,用于输送由信号获取部获取的目标信号;信号处理部,用于接收由信号传输部输送的目标信号、进行信号处理并输出监测结果;其特征在于:所述信号获取部的粉尘检测部件用于部署在同时与所述不同气固分离单元的净气输出侧连接的汇流通道上并分别设置在该汇流通道上各个用于与所述不同气固分离单元的净气输出侧连接的连接点之后。
  28. 如权利要求27所述的粉尘监测系统,其特征在于:该系统具有用于实施如权利要求2-26中任意一项权利要求所述的粉尘监测方法所需的必要的设置。
  29. 粉尘监测系统的信号处理装置,包括至少一个处理器、至少一个存储器以及存储在所述存储器中的计算机程序指令,其特征在于:当所述计算机程序指令被所述处理器执行时实现如权利要求1-26中任意一项权利要求所述的粉尘监测方法中由信号处理部处理的工序。
PCT/CN2019/098506 2018-08-16 2019-07-31 粉尘监测方法、系统及信号处理装置 WO2020034838A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/267,629 US11953418B2 (en) 2018-08-16 2019-07-31 Dust monitoring method, system and signal processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810935501.7 2018-08-16
CN201810935501.7A CN110836839B (zh) 2018-08-16 2018-08-16 粉尘监测方法、系统及信号处理装置

Publications (1)

Publication Number Publication Date
WO2020034838A1 true WO2020034838A1 (zh) 2020-02-20

Family

ID=69525165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098506 WO2020034838A1 (zh) 2018-08-16 2019-07-31 粉尘监测方法、系统及信号处理装置

Country Status (3)

Country Link
US (1) US11953418B2 (zh)
CN (1) CN110836839B (zh)
WO (1) WO2020034838A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11953418B2 (en) 2018-08-16 2024-04-09 Reachclean Engineering And Technical Chengdu Co., Ltd Dust monitoring method, system and signal processing device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111780340B (zh) * 2020-07-17 2021-06-29 珠海格力电器股份有限公司 空调器的控制方法及装置、空调器
CN111981652B (zh) * 2020-07-23 2021-07-23 珠海格力电器股份有限公司 一种空调器的控制方法、控制装置及空调器
CN112362118B (zh) * 2020-10-13 2023-04-21 成都瑞柯林工程技术有限公司 微电荷感应装置、除尘系统及其监测方法、设备和装置
CN112525436B (zh) * 2020-12-16 2022-10-14 浙江大学 一种基于电荷法检测滤袋破损的系统及其检测方法
TWI773471B (zh) * 2021-08-02 2022-08-01 桓達科技股份有限公司 節能集塵系統及其方法
CN115831830B (zh) * 2023-02-23 2023-04-18 泓浒(苏州)半导体科技有限公司 一种用于半导体晶圆传送的环境检测预警系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020001983A (ko) * 2000-06-29 2002-01-09 이구택 집진기용 거름천 파공시 분진 흡수 장치
JP2010151554A (ja) * 2008-12-24 2010-07-08 Honda Motor Co Ltd 粒子状物質検出装置
CN201643914U (zh) * 2010-04-06 2010-11-24 江汉大学 基于可编程逻辑控制器的布袋除尘器检漏系统
JP2013160617A (ja) * 2012-02-03 2013-08-19 Honda Motor Co Ltd 粒子状物質検出装置
CN103877801A (zh) * 2014-04-14 2014-06-25 中材装备集团有限公司 脉冲袋收尘器用的漏袋检测定位装置及其检测定位方法
CN205719879U (zh) * 2016-04-19 2016-11-23 成都瑞柯林工程技术有限公司 气固分离效率测量系统
CN106405015A (zh) * 2016-11-04 2017-02-15 大唐环境产业集团股份有限公司 一种用于锅炉高灰烟气成分测试的系统
CN206208862U (zh) * 2016-11-04 2017-05-31 大唐环境产业集团股份有限公司 一种用于锅炉高灰烟气成分测试的系统

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633019A (en) * 1979-08-25 1981-04-03 Sumitomo Heavy Ind Ltd Detection of damaged bag filter of multiroom dust collector
JPH01307424A (ja) * 1988-06-03 1989-12-12 Sumitomo Metal Ind Ltd バグフィルタにおける破損濾布検知装置
US6955072B2 (en) * 2003-06-25 2005-10-18 Mks Instruments, Inc. System and method for in-situ flow verification and calibration
CN1267180C (zh) * 2004-08-18 2006-08-02 武汉天澄环保科技股份有限公司 直通导流式袋式除尘器
KR101301457B1 (ko) * 2004-08-31 2013-08-29 필름텍 코포레이션 분리 모듈의 시험 방법
CN101161308B (zh) * 2007-10-09 2011-09-28 中钢集团武汉安全环保研究院 自吸过滤式防颗粒物呼吸器过滤效率和泄漏性检测装置及检测方法
MX345079B (es) * 2007-12-27 2017-01-16 3M Innovative Properties Co Dispositivo de recolección de polvo para herramienta de esmerilar.
CN201280566Y (zh) * 2008-09-27 2009-07-29 上海梅山钢铁股份有限公司 一种大高炉荒煤气全干法布袋除尘装置
CN101732920B (zh) * 2009-12-29 2012-03-21 东莞市汇乐清洁设备有限公司 一种布袋除尘器检漏仪
DE102010014468B4 (de) * 2010-04-09 2013-10-31 Umicore Ag & Co. Kg Verfahren zur Verminderung von Lachgas bei der Abgasnachbehandlung von Magermotoren
JP5450897B2 (ja) * 2010-06-15 2014-03-26 エンパイア テクノロジー ディベロップメント エルエルシー 空気前処理デバイス
CN102049163A (zh) * 2010-11-05 2011-05-11 合肥天翔环境工程有限公司 金属回收除尘脱硫系统
EP2492481A1 (en) * 2011-02-22 2012-08-29 Delphi Technologies Holding S.à.r.l. Soot sensor functional capability monitoring
CN202006068U (zh) * 2011-03-09 2011-10-12 四川启明星铝业有限责任公司 脉冲除尘器漏袋定位装置
DE102011007364A1 (de) * 2011-04-14 2012-10-18 Robert Bosch Gmbh Verfahren und Vorrichtung zur Regeneration eines Partikelfilters bei einem Y-Abgassystem
US20120297750A1 (en) * 2011-05-25 2012-11-29 GM Global Technology Operations LLC Method for monitoring an exhaust particulate filter
CN102698529B (zh) * 2012-06-13 2014-05-14 成都瑞柯林工程技术有限公司 高炉煤气气相脉动反吹风内滤式袋式除尘装置
CN105980030B (zh) * 2014-01-21 2018-08-14 卡万塔能源有限责任公司 用于自动控制袋式集尘室系统中的压差的系统及方法
EP3782721B1 (en) * 2014-03-21 2023-08-23 Life Technologies Corporation Gas filter systems for fluid processing systems
CN104028059B (zh) * 2014-06-12 2016-08-31 成都瑞柯林工程技术有限公司 用于气固分离的过滤装置
CN204008391U (zh) * 2014-07-14 2014-12-10 南昌煤矿仪器设备厂 一种矿用粉尘浓度检测传感器
CN204255579U (zh) * 2014-08-19 2015-04-08 上海信孚环保技术工程有限公司 一种多箱体除尘器的粉尘检漏装置
CN204395675U (zh) * 2014-12-31 2015-06-17 辛集市海洋皮革有限公司 一种革屑回收处理装置
CN104535466A (zh) * 2015-01-09 2015-04-22 靖江市恩菲环境工程技术研究所 粉尘浓度监测方法及系统、plc
CN205269276U (zh) * 2016-01-12 2016-06-01 北京瑞昌隆混凝土有限责任公司 一种布袋除尘器滤袋检查停用装置
CN106237736A (zh) * 2016-09-09 2016-12-21 新疆广汇中化能源技术开发有限公司 除尘装置
JP6730154B2 (ja) * 2016-09-28 2020-07-29 日本特殊陶業株式会社 微粒子測定装置および微粒子測定システム
JP6730155B2 (ja) * 2016-09-29 2020-07-29 日本特殊陶業株式会社 微粒子測定装置および微粒子測定システム
CN206526619U (zh) * 2017-01-13 2017-09-29 湖南省三联环保科技有限公司 一种新型智能脉冲布袋除尘器
CN106769742B (zh) * 2017-03-01 2023-02-21 西安科技大学 一种抑尘剂、防尘剂除尘效果测试装置及测试方法
CN206688382U (zh) * 2017-03-06 2017-12-01 中华人民共和国日照出入境检验检疫局 一种快速过滤装置
CN206715525U (zh) * 2017-04-28 2017-12-08 科林环保技术有限责任公司 一种光纤预制棒生产线细颗粒物干法净化回收装置
CN207024938U (zh) * 2017-07-25 2018-02-23 武汉中理环保科技有限公司 除尘装置
CN107297107B (zh) * 2017-07-27 2023-06-09 广东盛达穗南环保科技有限公司 脉冲式布袋除尘设备
CN107643149B (zh) * 2017-09-18 2019-11-08 北京奥本中仪自控工程有限公司 一种除尘器袋漏定位及故障诊断系统
CN107607270B (zh) * 2017-11-08 2019-08-06 龙口市车辆油管有限公司 一种自动检测排气歧管气密性的节能设备及使用方法
CN110836839B (zh) 2018-08-16 2022-02-22 成都瑞柯林工程技术有限公司 粉尘监测方法、系统及信号处理装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020001983A (ko) * 2000-06-29 2002-01-09 이구택 집진기용 거름천 파공시 분진 흡수 장치
JP2010151554A (ja) * 2008-12-24 2010-07-08 Honda Motor Co Ltd 粒子状物質検出装置
CN201643914U (zh) * 2010-04-06 2010-11-24 江汉大学 基于可编程逻辑控制器的布袋除尘器检漏系统
JP2013160617A (ja) * 2012-02-03 2013-08-19 Honda Motor Co Ltd 粒子状物質検出装置
CN103877801A (zh) * 2014-04-14 2014-06-25 中材装备集团有限公司 脉冲袋收尘器用的漏袋检测定位装置及其检测定位方法
CN205719879U (zh) * 2016-04-19 2016-11-23 成都瑞柯林工程技术有限公司 气固分离效率测量系统
CN106405015A (zh) * 2016-11-04 2017-02-15 大唐环境产业集团股份有限公司 一种用于锅炉高灰烟气成分测试的系统
CN206208862U (zh) * 2016-11-04 2017-05-31 大唐环境产业集团股份有限公司 一种用于锅炉高灰烟气成分测试的系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11953418B2 (en) 2018-08-16 2024-04-09 Reachclean Engineering And Technical Chengdu Co., Ltd Dust monitoring method, system and signal processing device

Also Published As

Publication number Publication date
CN110836839B (zh) 2022-02-22
CN110836839A (zh) 2020-02-25
US20210404934A1 (en) 2021-12-30
US11953418B2 (en) 2024-04-09

Similar Documents

Publication Publication Date Title
WO2020034838A1 (zh) 粉尘监测方法、系统及信号处理装置
CN105089758B (zh) 用于诊断压差传感器的方法和诊断单元
CA2554962A1 (en) High impedance fault detection
CN103913668B (zh) 一种ad信号或开关信号的处理及其诊断电路
WO2006026267A3 (en) Fault diagnostics and prognostics based on distance fault classifiers
CN105067940A (zh) 一种机车牵引变流器主回路的接地诊断方法
WO2022078378A1 (zh) 微电荷感应装置、除尘系统及其监测方法、设备和装置
CN106646076A (zh) 高压互锁检测电路
CN107727541A (zh) 管道内气溶胶监测装置及方法以及管道系统
CN104903941A (zh) 起火探测
CN101971115A (zh) 冷凝水回收系统的改进或与其相关的改进
CN107606821B (zh) 空调压缩机回油系统及其回油管路堵塞判断方法
CN109779727A (zh) 用于诊断颗粒过滤器的压差传感器的方法和设备
CN103032626B (zh) 调节阀故障诊断系统及方法
CN109794486A (zh) 一种节能可靠的收尘管网系统
CN110307617B (zh) 换热器及其脏堵检测方法、装置和系统、电器设备
JP2011191278A (ja) 圧力センサ
CN104459376B (zh) 一种接口电路及基于该电路的外设检测方法、外置传感器
CN106248436A (zh) 全粒径在线取样装置
CN105473205B (zh) 检测具有在空间上彼此偏置布置的过滤器的设备中的清洁过程
CN215962682U (zh) 一种微电荷感应装置以及应用它的除尘系统和新风系统
CN215232943U (zh) 一种微电荷感应装置、绝缘密封套及除尘系统
CN111317953A (zh) 一种基于智能算法的消防用水管网漏水监测方法
CN114142063B (zh) 燃料电池空气系统的管路泄漏诊断方法及系统、车辆
CN205679426U (zh) 全粒径在线取样装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19849880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19849880

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/10/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19849880

Country of ref document: EP

Kind code of ref document: A1