WO2020032190A1 - SiC半導体装置 - Google Patents

SiC半導体装置 Download PDF

Info

Publication number
WO2020032190A1
WO2020032190A1 PCT/JP2019/031451 JP2019031451W WO2020032190A1 WO 2020032190 A1 WO2020032190 A1 WO 2020032190A1 JP 2019031451 W JP2019031451 W JP 2019031451W WO 2020032190 A1 WO2020032190 A1 WO 2020032190A1
Authority
WO
WIPO (PCT)
Prior art keywords
main surface
sic semiconductor
region
layer
reforming
Prior art date
Application number
PCT/JP2019/031451
Other languages
English (en)
French (fr)
Inventor
佑紀 中野
真弥 上野
沙和 春山
泰宏 川上
成哉 中澤
保徳 久津間
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018151454A external-priority patent/JP6664446B2/ja
Priority claimed from JP2018151453A external-priority patent/JP6630411B1/ja
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to DE212019000150.5U priority Critical patent/DE212019000150U1/de
Priority to CN201980054015.7A priority patent/CN112567531A/zh
Priority to US17/265,453 priority patent/US11621319B2/en
Priority to DE112019004619.5T priority patent/DE112019004619T5/de
Publication of WO2020032190A1 publication Critical patent/WO2020032190A1/ja
Priority to US18/172,830 priority patent/US20230223433A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation
    • H01L21/0465Making n or p doped regions or layers, e.g. using diffusion using ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/761PN junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3171Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3192Multilayer coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/4824Pads with extended contours, e.g. grid structure, branch structure, finger structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/34Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being on the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • H01L29/4933Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement with a silicide layer contacting the silicon layer, e.g. Polycide gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/6606Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7804Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode
    • H01L29/7805Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode in antiparallel, e.g. freewheel diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0727Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8611Planar PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Definitions

  • the present invention relates to a SiC semiconductor device.
  • stealth dicing In recent years, a method of processing a SiC semiconductor wafer called stealth dicing has attracted attention.
  • stealth dicing method after a SiC semiconductor wafer is selectively irradiated with laser light, the SiC semiconductor wafer is cut along a portion irradiated with the laser light.
  • a SiC semiconductor wafer having relatively high hardness can be cut without using a cutting member such as a dicing blade, so that the manufacturing time can be reduced.
  • Patent Document 1 discloses a method of manufacturing a SiC semiconductor device using a stealth dicing method.
  • a plurality of SiC semiconductor layers are cut out from a SiC semiconductor wafer having a predetermined off-angle.
  • the two side surfaces of the SiC semiconductor layer facing the a-plane of the SiC single crystal are inclined surfaces along the c-axis of the SiC single crystal.
  • the SiC semiconductor device is mounted on a connection target such as a lead frame or a mounting board using a semiconductor assembly device.
  • the step of transporting the SiC semiconductor device in the semiconductor assembling apparatus is performed, for example, by a pickup nozzle that sucks and holds the main surface of the SiC semiconductor layer.
  • suction by the pickup nozzle is hindered due to the inclined surface of the SiC semiconductor layer, and a pickup error may occur.
  • One embodiment of the present invention provides a SiC semiconductor device capable of suppressing a pickup error in a semiconductor assembly device.
  • One embodiment of the present invention includes a first main surface serving as a device surface including a hexagonal SiC single crystal, facing a c-plane of the SiC single crystal, and having an off-angle inclined with respect to the c-plane.
  • a SiC semiconductor device including a SiC semiconductor layer having a side surface having an angle smaller than an angle.
  • a pickup error in the semiconductor assembly device can be suppressed.
  • One embodiment of the present invention includes a first main surface serving as a device surface including a hexagonal SiC single crystal, facing a c-plane of the SiC single crystal, and having an off-angle inclined with respect to the c-plane.
  • a SiC semiconductor device including a SiC semiconductor layer having a side surface having a sloped portion.
  • the formation region of the inclined surface extending along the c-axis can be reduced on the side surface of the SiC semiconductor layer by the inclined portion inclined toward the direction opposite to the c-axis. Thereby, a pickup error in the semiconductor assembly device can be suppressed.
  • FIG. 1 is a diagram showing a unit cell of a 4H—SiC single crystal applied to an embodiment of the present invention.
  • FIG. 2 is a plan view showing a silicon surface of the unit cell shown in FIG.
  • FIG. 3 is a perspective view of the SiC semiconductor device according to the first embodiment of the present invention viewed from one angle, and is a perspective view showing a first embodiment of the reforming line.
  • FIG. 4 is a perspective view of the SiC semiconductor device shown in FIG. 3 as viewed from another angle.
  • FIG. 5 is an enlarged view of a region V shown in FIG.
  • FIG. 6 is an enlarged view of a region VI shown in FIG.
  • FIG. 7 is a plan view of the SiC semiconductor device shown in FIG. FIG.
  • FIG. 8 is a sectional view taken along the line VIII-VIII shown in FIG.
  • FIG. 9 is a perspective view showing a SiC semiconductor wafer used for manufacturing the SiC semiconductor device shown in FIG.
  • FIG. 10A is a cross-sectional view showing one example of the method for manufacturing the SiC semiconductor device shown in FIG.
  • FIG. 10B is a view showing a step after FIG. 10A.
  • FIG. 10C is a diagram showing a step after FIG. 10B.
  • FIG. 10D is a diagram showing a step after FIG. 10C.
  • FIG. 10E is a diagram showing a step after FIG. 10D.
  • FIG. 10F is a diagram showing a step after FIG. 10E.
  • FIG. 10G is a diagram showing a step after FIG. 10F.
  • FIG. 10A is a cross-sectional view showing one example of the method for manufacturing the SiC semiconductor device shown in FIG.
  • FIG. 10B is a view showing a step after FIG. 10A.
  • FIG. 10H is a diagram showing a step after FIG. 10G.
  • FIG. 10I is a view showing a step after FIG. 10H.
  • FIG. 10J is a view showing a step after FIG. 10I.
  • FIG. 10K is a diagram showing a step after FIG. 10J.
  • FIG. 10L is a diagram showing a step after FIG. 10K.
  • FIG. 10M is a diagram showing a step after FIG. 10L.
  • FIG. 11 is a perspective view showing a semiconductor package in which the SiC semiconductor device shown in FIG. 3 is incorporated, through a sealing resin.
  • FIG. 12 is a perspective view showing a transport state of the SiC semiconductor device shown in FIG.
  • FIG. 13 is a diagram for explaining the structure of the SiC semiconductor device according to the reference example.
  • FIG. 12 is a perspective view showing a transport state of the SiC semiconductor device shown in FIG.
  • FIG. 13 is a diagram for explaining the structure of the SiC semiconductor device according to the reference example
  • FIG. 14A is a perspective view showing the SiC semiconductor device shown in FIG. 3, and is a perspective view showing a second embodiment of the reforming line.
  • FIG. 14B is a perspective view showing the SiC semiconductor device shown in FIG. 3, and is a perspective view showing a third embodiment of the reforming line.
  • FIG. 14C is a perspective view showing the SiC semiconductor device shown in FIG. 3 and is a perspective view showing a fourth embodiment of the reforming line.
  • FIG. 14D is a perspective view showing the SiC semiconductor device shown in FIG. 3, and is a perspective view showing a fifth embodiment of the reforming line.
  • FIG. 14E is a perspective view of the SiC semiconductor device shown in FIG. 3 as viewed from one angle, and is a perspective view showing a sixth embodiment of the reforming line.
  • FIG. 14E is a perspective view of the SiC semiconductor device shown in FIG. 3 as viewed from one angle, and is a perspective view showing a sixth embodiment of the reforming line.
  • FIG. 14F is a perspective view of the SiC semiconductor device shown in FIG. 14E viewed from another angle.
  • FIG. 14G is a perspective view showing the SiC semiconductor device shown in FIG. 3 and is a perspective view showing a seventh embodiment of the reforming line.
  • FIG. 14H is a perspective view showing the SiC semiconductor device shown in FIG. 3 and is a perspective view showing an eighth embodiment of the reforming line.
  • FIG. 14I is a perspective view showing the SiC semiconductor device shown in FIG. 3, and is a perspective view showing a ninth embodiment of the reforming line.
  • FIG. 14J is a perspective view showing the SiC semiconductor device shown in FIG. 3 and is a perspective view showing a tenth embodiment of the reforming line.
  • FIG. 14G is a perspective view showing the SiC semiconductor device shown in FIG. 3 and is a perspective view showing a seventh embodiment of the reforming line.
  • FIG. 14H is a perspective view showing the SiC semiconductor device shown in FIG. 3 and is a perspective view showing an eighth
  • FIG. 14K is a perspective view showing the SiC semiconductor device shown in FIG. 3, and is a perspective view showing an eleventh embodiment of the reforming line.
  • FIG. 14L is a perspective view showing the SiC semiconductor device shown in FIG. 3 and a perspective view showing a twelfth embodiment of the reforming line.
  • FIG. 14M is a perspective view showing the SiC semiconductor device shown in FIG. 3 and a perspective view showing a thirteenth embodiment of the reforming line.
  • FIG. 15 is a perspective view showing the SiC semiconductor device according to the second embodiment of the present invention, and is a perspective view showing a structure to which the reforming line according to the first embodiment is applied.
  • FIG. 15 is a perspective view showing the SiC semiconductor device according to the second embodiment of the present invention, and is a perspective view showing a structure to which the reforming line according to the first embodiment is applied.
  • FIG. 16 is a perspective view of the SiC semiconductor device according to the third embodiment of the present invention viewed from one angle, and is a perspective view showing a structure to which the reforming line according to the first embodiment is applied.
  • FIG. 17 is a perspective view of the SiC semiconductor device shown in FIG. 16 as viewed from another angle.
  • FIG. 18 is a plan view showing the SiC semiconductor device shown in FIG.
  • FIG. 19 is a plan view in which the resin layer is removed from FIG.
  • FIG. 20 is an enlarged view of region XX shown in FIG. 19 and is a diagram for explaining the structure of the first main surface of the SiC semiconductor layer.
  • FIG. 21 is a sectional view taken along the line XXI-XXI shown in FIG. FIG.
  • FIG. 22 is a sectional view taken along the line XXII-XXII shown in FIG.
  • FIG. 23 is an enlarged view of a region XXIII shown in FIG.
  • FIG. 24 is a sectional view taken along the line XXIV-XXIV shown in FIG.
  • FIG. 25 is an enlarged view of a region XXV shown in FIG.
  • FIG. 26 is a graph for explaining sheet resistance.
  • FIG. 27 is an enlarged view of a region corresponding to FIG. 20, and is an enlarged view showing the SiC semiconductor device according to the fourth embodiment of the present invention.
  • FIG. 28 is a sectional view taken along the line XXVIII-XXVIII shown in FIG.
  • FIG. 29 is an enlarged view of a region corresponding to FIG. 23 and is an enlarged view showing the SiC semiconductor device according to the fifth embodiment of the present invention.
  • FIG. 30 is an enlarged view of a region corresponding to FIG. 20, and is an enlarged view showing the Si
  • a hexagonal SiC (silicon carbide) single crystal is applied.
  • the hexagonal SiC single crystal has a plurality of polytypes including a 2H (Hexagonal) -SiC single crystal, a 4H-SiC single crystal, and a 6H-SiC single crystal according to the period of the atomic arrangement.
  • a 4H—SiC single crystal is applied in the embodiment of the present invention, but other polytypes are not excluded from the present invention.
  • FIG. 1 is a diagram showing a unit cell of 4H—SiC single crystal (hereinafter, simply referred to as “unit cell”) applied to the embodiment of the present invention.
  • FIG. 2 is a plan view showing a silicon surface of the unit cell shown in FIG.
  • the unit cell has a tetrahedral structure in which four C atoms are bonded to one Si atom in a tetrahedral arrangement (tetrahedral arrangement).
  • the unit cell has an atomic arrangement in which tetrahedral structures are stacked in four periods.
  • the unit cell has a regular hexagonal silicon surface, a regular hexagonal carbon surface, and a hexagonal prism structure having six side surfaces connecting the silicon surface and the carbon surface.
  • the silicon surface is a termination surface terminated by Si atoms.
  • Si atom is located at each of the six vertices of the regular hexagon, and one Si atom is located at the center of the regular hexagon.
  • the carbon surface is a terminal surface terminated by C atoms.
  • one C atom is located at each of the six vertices of the regular hexagon, and one C atom is located at the center of the regular hexagon.
  • the crystal plane of the unit cell is defined by four coordinate axes (a1, a2, a3, c) including the a1, a2, a3, and c axes.
  • the value of a3 of the four coordinate axes takes a value of-(a1 + a2).
  • a crystal plane of a 4H—SiC single crystal will be described with reference to a silicon plane as an example of a hexagonal terminal plane.
  • the a1 axis, a2 axis, and a3 axis are the arrangement directions of the closest Si atoms (hereinafter simply referred to as “nearest atom directions”) with respect to the Si atom located at the center in a plan view of the silicon surface viewed from the c axis. )).
  • the a1, a2, and a3 axes are set at an angle of 120 ° in accordance with the arrangement of Si atoms.
  • the c axis is set in the normal direction of the silicon surface with reference to the Si atom located at the center.
  • the silicon plane is a (0001) plane.
  • the carbon plane is the (000-1) plane.
  • the side surface of the hexagonal prism includes six crystal planes along the direction of the nearest atom in a plan view of the silicon surface viewed from the c-axis. More specifically, the side surface of the hexagonal prism includes six crystal planes each including two closest Si atoms in plan view of the silicon plane viewed from the c-axis.
  • the side surfaces of the unit cell are (1-100) plane, (0-110) plane, (-1010) plane, and (-1100) plane in the clockwise direction from the tip of the a1 axis when the silicon plane is viewed from the c axis.
  • Plane (01-10) plane and (10-10) plane.
  • the diagonal planes that do not pass through the center in the unit cell include six crystal planes along the intersecting direction that intersects the nearest atom direction in plan view of the silicon plane viewed from the c-axis. When viewed from the Si atom located at the center, the direction of intersection in the direction of the closest atom is orthogonal to the direction of the closest atom.
  • the diagonal plane that does not pass through the center in the unit cell more specifically includes six crystal planes each including two Si atoms that are not closest to each other.
  • the diagonal planes that do not pass through the center in the unit cell are (11-20) plane, (1-210) plane, (-2110) plane, and (-1-120) plane when the silicon plane is viewed from the c-axis. Plane, (-12-10) plane and (2-1-10) plane.
  • the crystal direction of the unit cell is defined by the normal direction of the crystal plane.
  • the normal direction of the (1-100) plane is the [1-100] direction.
  • the normal direction of the (0-110) plane is the [0-110] direction.
  • the normal direction of the (-1010) plane is the [-1010] direction.
  • the normal direction of the (-1100) plane is the [-1100] direction.
  • the normal direction of the (01-10) plane is the [01-10] direction.
  • the normal direction of the (10-10) plane is the [10-10] direction.
  • the normal direction of the (11-20) plane is the [11-20] direction.
  • the normal direction of the (1-210) plane is the [1-210] direction.
  • the normal direction of the (-2110) plane is the [-2110] direction.
  • the normal direction of the (-1-120) plane is the [-1-120] direction.
  • the normal direction of the (-12-10) plane is the [-12-10] direction.
  • the normal direction of the (2-1-10) plane is the [2-1-10] direction.
  • the hexagonal crystal is six-fold symmetric and has an equivalent crystal plane and an equivalent crystal direction every 60 °.
  • the (1-100), (0-110), (-1010), (-1100), (01-10), and (10-10) planes form equivalent crystal planes.
  • the (11-20) plane, (1-210) plane, (-2110) plane, (-1-120) plane, (-12-10) plane and (2-1-10) plane are equivalent.
  • a crystal plane is formed.
  • the [1-100] direction, [0-110] direction, [-1010] direction, [-1100] direction, [01-10] direction, and [10-10] direction form equivalent crystal directions. ing.
  • the [11-20] direction, [1-210] direction, [-2110] direction, [-1-120] direction, [-12-10] direction, and [2-1-10] direction are equivalent.
  • a crystal direction is formed.
  • the c axis is in the [0001] direction ([000-1] direction).
  • the a1 axis is in the [2-1-10] direction ([-2110] direction).
  • the a2 axis is the [-12-10] direction ([1-210] direction).
  • the a3 axis is in the [-1-120] direction ([11-20] direction).
  • [0001] direction and [000-1] direction are called c-axis.
  • the (0001) plane and the (000-1) plane are called a c-plane.
  • the [11-20] direction and the [-1-120] direction are referred to as the a-axis.
  • the (11-20) plane and the (-1-120) plane are referred to as an a-plane.
  • the [1-100] and [-1100] directions are referred to as the m-axis.
  • the (1-100) plane and the (-1100) plane are called m-planes.
  • FIG. 3 is a perspective view of the SiC semiconductor device 1 according to the first embodiment of the present invention viewed from one angle, and is a perspective view showing a first embodiment of the reforming lines 22A to 22D.
  • FIG. 4 is a perspective view of the SiC semiconductor device 1 shown in FIG. 3 as viewed from another angle.
  • FIG. 5 is an enlarged view of a region V shown in FIG.
  • FIG. 6 is an enlarged view of a region VI shown in FIG.
  • FIG. 7 is a plan view of the SiC semiconductor device 1 shown in FIG.
  • FIG. 8 is a sectional view taken along the line VIII-VIII shown in FIG.
  • SiC semiconductor device 1 includes SiC semiconductor layer 2.
  • SiC semiconductor layer 2 includes a 4H—SiC single crystal as an example of a hexagonal SiC single crystal.
  • the SiC semiconductor layer 2 is formed in a rectangular chip shape.
  • the SiC semiconductor layer 2 has a first main surface 3 on one side, a second main surface 4 on the other side, and side surfaces 5A, 5B, 5C, 5D connecting the first main surface 3 and the second main surface 4. are doing.
  • the first main surface 3 and the second main surface 4 are formed in a quadrangular shape (here, a square shape) in a plan view (hereinafter, simply referred to as “plan view”) viewed from the normal direction Z thereof.
  • the first main surface 3 is a device surface on which a functional device (semiconductor element) is formed.
  • the second main surface 4 is a ground surface having a grinding mark.
  • the side surfaces 5A to 5D are each formed of a smooth cleavage plane facing the crystal plane of the SiC single crystal. The side surfaces 5A to 5D do not have grinding marks.
  • the thickness TL of the SiC semiconductor layer 2 may be not less than 40 ⁇ m and not more than 200 ⁇ m. Even if the thickness TL is 40 ⁇ m to 60 ⁇ m, 60 ⁇ m to 80 ⁇ m, 80 ⁇ m to 100 ⁇ m, 100 ⁇ m to 120 ⁇ m, 120 ⁇ m to 140 ⁇ m, 140 ⁇ m to 160 ⁇ m, 160 ⁇ m to 180 ⁇ m, or 180 ⁇ m to 200 ⁇ m Good.
  • the thickness TL is preferably not less than 60 ⁇ m and not more than 150 ⁇ m.
  • the first main surface 3 and the second main surface 4 face the c-plane of the SiC single crystal in this form (in this embodiment).
  • the first main surface 3 faces the (0001) plane (silicon surface).
  • Second main surface 4 faces the (000-1) plane (carbon plane) of the SiC single crystal.
  • the first main surface 3 and the second main surface 4 have an off angle ⁇ inclined at an angle of 10 ° or less in the [11-20] direction with respect to the c-plane of the SiC single crystal.
  • the normal direction Z is inclined by an off angle ⁇ with respect to the c-axis ([0001] direction) of the SiC single crystal.
  • the off angle ⁇ may be 0 ° or more and 5.0 ° or less. Off angle ⁇ is 0 ° or more and 1.0 ° or less, 1.0 ° or more and 1.5 ° or less, 1.5 ° or more and 2.0 ° or less, 2.0 ° or more and 2.5 ° or less, 2.5 3.0 ° to 3.5 °, 3.5 ° to 4.0 °, 3.5 ° to 4.0 °, 4.0 ° to 4.5 °, or 4.5 ° to 4.5 °.
  • the angle may be set to a range of 0 ° or less.
  • the off angle ⁇ preferably exceeds 0 °.
  • the off angle ⁇ may be less than 4.0 °.
  • the off angle ⁇ may be set in a range from 3.0 ° to 4.5 °. In this case, it is preferable that the off-angle ⁇ is set in the range of 3.0 ° to 3.5 °, or 3.5 ° to 4.0 °.
  • the off angle ⁇ may be set in the range of 1.5 ° or more and 3.0 ° or less. In this case, it is preferable that the off-angle ⁇ is set in a range from 1.5 ° to 2.0 °, or from 2.0 ° to 2.5 °.
  • each of the side surfaces 5A to 5D may be 0.5 mm or more and 10 mm or less.
  • the surface areas of the sides 5A-5D are equal to one another in this configuration.
  • the surface area of the side surfaces 5A and 5C may be smaller than the surface area of the side surfaces 5B and 5D, or the side surfaces 5B and 5D. May be exceeded.
  • the side surface 5A and the side surface 5C extend along the first direction X and face each other in a second direction Y intersecting with the first direction X.
  • the side surfaces 5B and 5D extend along the second direction Y and face each other in the first direction X.
  • the second direction Y is more specifically a direction orthogonal to the first direction X.
  • the first direction X is set in the m-axis direction ([1-100] direction) of the SiC single crystal.
  • the second direction Y is set in the a-axis direction ([11-20] direction) of the SiC single crystal.
  • the side surface 5A and the side surface 5C are formed by the a-plane of the SiC single crystal, and face each other in the a-axis direction.
  • the side surface 5A is formed by the ( ⁇ 1-120) plane of the SiC single crystal.
  • Side surface 5C is formed by the (11-20) plane of the SiC single crystal.
  • the side surface 5A and the side surface 5C have an angle ⁇ a ( ⁇ a ⁇ ) smaller than the off angle ⁇ with respect to the normal to the first main surface 3 when the normal to the first main surface 3 is 0 °. . More specifically, the angle ⁇ a is not less than 0 ° and less than the off angle ⁇ (0 ° ⁇ ⁇ a ⁇ ).
  • the angle ⁇ a may be defined by an angle formed by a line connecting a peripheral point of the first main surface 3 and a peripheral point of the second main surface 4 with a normal line of the first main surface 3 in a sectional view.
  • the side surface 5B and the side surface 5D are formed by the m-plane of the SiC single crystal, and face each other in the m-axis direction.
  • Side surface 5B is formed by the (-1100) plane of the SiC single crystal.
  • Side surface 5D is formed by the (1-100) plane of the SiC single crystal.
  • the side surface 5B and the side surface 5D extend in a plane along the normal line of the first main surface 3. More specifically, the side surfaces 5B and 5D are formed substantially perpendicular to the first main surface 3 and the second main surface 4.
  • SiC semiconductor layer 2 has a stacked structure including n + -type SiC semiconductor substrate 6 and n-type SiC epitaxial layer 7.
  • the second main surface 4 of the SiC semiconductor layer 2 is formed by the SiC semiconductor substrate 6.
  • the first main surface 3 of the SiC semiconductor layer 2 is formed by the SiC epitaxial layer 7.
  • Side surfaces 5A to 5D of SiC semiconductor layer 2 are formed by SiC semiconductor substrate 6 and SiC epitaxial layer 7.
  • the n-type impurity concentration of SiC epitaxial layer 7 is lower than the n-type impurity concentration of SiC semiconductor substrate 6. More specifically, the n-type impurity concentration of SiC epitaxial layer 7 is lower than the n-type impurity concentration of SiC semiconductor substrate 6.
  • the n-type impurity concentration of SiC semiconductor substrate 6 may be not less than 1.0 ⁇ 10 18 cm ⁇ 3 and not more than 1.0 ⁇ 10 21 cm ⁇ 3 .
  • the n-type impurity concentration of SiC epitaxial layer 7 may be not less than 1.0 ⁇ 10 15 cm ⁇ 3 and not more than 1.0 ⁇ 10 18 cm ⁇ 3 .
  • the thickness TS of the SiC semiconductor substrate 6 may be 40 ⁇ m or more and 150 ⁇ m or less.
  • the thickness TS is 40 ⁇ m to 50 ⁇ m, 50 ⁇ m to 60 ⁇ m, 60 ⁇ m to 70 ⁇ m, 70 ⁇ m to 80 ⁇ m, 80 ⁇ m to 90 ⁇ m, 90 ⁇ m to 100 ⁇ m, 100 ⁇ m to 110 ⁇ m, 110 ⁇ m to 120 ⁇ m, 120 ⁇ m to 130 ⁇ m, It may be 130 ⁇ m or more and 140 ⁇ m or less, or 140 ⁇ m or more and 150 ⁇ m or less.
  • the thickness TS is preferably 40 ⁇ m or more and 130 ⁇ m or less. Since the current path is shortened by reducing the thickness of the SiC semiconductor substrate 6, the resistance value can be reduced.
  • the thickness TE of the SiC epitaxial layer 7 may be 1 ⁇ m or more and 50 ⁇ m or less.
  • the thickness TE is 1 ⁇ m to 5 ⁇ m, 5 ⁇ m to 10 ⁇ m, 10 ⁇ m to 15 ⁇ m, 15 ⁇ m to 20 ⁇ m, 20 ⁇ m to 25 ⁇ m, 25 ⁇ m to 30 ⁇ m, 30 ⁇ m to 35 ⁇ m, 35 ⁇ m to 40 ⁇ m, 40 ⁇ m to 45 ⁇ m, Alternatively, it may be 45 ⁇ m or more and 50 ⁇ m or less.
  • the thickness TE is preferably 5 ⁇ m or more and 15 ⁇ m or less.
  • SiC semiconductor layer 2 includes active region 8 and outer region 9.
  • the active region 8 is a region where a Schottky barrier diode D as an example of a functional device is formed.
  • the active region 8 is formed at the center of the SiC semiconductor layer 2 with an interval from the side surfaces 5A to 5D of the SiC semiconductor layer 2 to an inner region in plan view.
  • the active region 8 is formed in a square shape having four sides parallel to the side surfaces 5A to 5D in plan view.
  • the outer region 9 is a region outside the active region 8.
  • the outer region 9 is formed in a region between the side surfaces 5A to 5D and the periphery of the active region 8.
  • the outer region 9 is formed in an endless shape (square ring in this embodiment) surrounding the active region 8 in plan view.
  • SiC semiconductor device 1 includes a main surface insulating layer 10 formed on first main surface 3.
  • Main surface insulating layer 10 selectively covers active region 8 and outer region 9.
  • the main surface insulating layer 10 may have a single-layer structure made of a silicon oxide (SiO 2 ) layer or a silicon nitride (SiN) layer.
  • Main surface insulating layer 10 may have a stacked structure including a silicon oxide layer and a silicon nitride layer.
  • the silicon oxide layer may be formed on the silicon nitride layer.
  • the silicon nitride layer may be formed on the silicon oxide layer.
  • main surface insulating layer 10 has a single-layer structure made of a silicon oxide layer.
  • the main surface insulating layer 10 has insulating side surfaces 11A, 11B, 11C and 11D exposed from the side surfaces 5A to 5D of the SiC semiconductor layer 2.
  • the insulating side surfaces 11A to 11D are continuous with the side surfaces 5A to 5D.
  • the insulating side surfaces 11A to 11D are formed flush with the side surfaces 5A to 5D.
  • the insulating side surfaces 11A to 11D are formed of cleavage planes.
  • the thickness of the main surface insulating layer 10 may be 1 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the main surface insulating layer 10 may be 1 ⁇ m or more and 10 ⁇ m or less, 10 ⁇ m or more and 20 ⁇ m or less, 20 ⁇ m or more and 30 ⁇ m or less, 30 ⁇ m or more and 40 ⁇ m or less, or 40 ⁇ m or more and 50 ⁇ m or less.
  • SiC semiconductor device 1 includes first main surface electrode layer 12 formed on main surface insulating layer 10.
  • the first main surface electrode layer 12 is formed at the center of the SiC semiconductor layer 2 with an interval from the side surfaces 5A to 5D to the inner region in plan view.
  • SiC semiconductor device 1 includes a passivation layer 13 (insulating layer) formed on main surface insulating layer 10.
  • Passivation layer 13 may have a single-layer structure including a silicon oxide layer or a silicon nitride layer.
  • Passivation layer 13 may have a stacked structure including a silicon oxide layer and a silicon nitride layer.
  • the silicon oxide layer may be formed on the silicon nitride layer.
  • the silicon nitride layer may be formed on the silicon oxide layer.
  • the passivation layer 13 has a single-layer structure made of a silicon nitride layer.
  • the passivation layer 13 includes four side surfaces 14A, 14B, 14C, and 14D.
  • the side surfaces 14A to 14D of the passivation layer 13 are formed at intervals from the side surfaces 5A to 5D of the SiC semiconductor layer 2 to an inner region in plan view.
  • the passivation layer 13 exposes the periphery of the first main surface 3 in plan view.
  • the passivation layer 13 exposes the main surface insulating layer 10.
  • Side surfaces 14A to 14D of passivation layer 13 may be formed flush with side surfaces 5A to 5D of SiC semiconductor layer 2.
  • the passivation layer 13 includes a subpad opening 15 exposing a part of the first main surface electrode layer 12 as a pad region.
  • the subpad opening 15 is formed in a square shape having four sides parallel to the side surfaces 5A to 5D in plan view.
  • the thickness of the passivation layer 13 may be 1 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the passivation layer 13 may be 1 ⁇ m or more and 10 ⁇ m or less, 10 ⁇ m or more and 20 ⁇ m or less, 20 ⁇ m or more and 30 ⁇ m or less, 30 ⁇ m or more and 40 ⁇ m or less, or 40 ⁇ m or more and 50 ⁇ m or less.
  • SiC semiconductor device 1 includes resin layer 16 (insulating layer) formed on passivation layer 13.
  • the resin layer 16 and the passivation layer 13 form one insulating laminated structure (insulating layer).
  • the resin layer 16 is indicated by hatching.
  • the resin layer 16 may contain a negative type or positive type photosensitive resin.
  • the resin layer 16 contains polybenzoxazole as an example of a positive type photosensitive resin.
  • the resin layer 16 may include polyimide as an example of a negative type photosensitive resin.
  • the resin layer 16 includes four resin side surfaces 17A, 17B, 17C, 17D.
  • the resin side surfaces 17A to 17D of the resin layer 16 are formed at intervals from the side surfaces 5A to 5D of the SiC semiconductor layer 2 to the inner region in plan view.
  • the resin layer 16 exposes the peripheral portion of the first main surface 3 in plan view.
  • the resin layer 16 exposes the main surface insulating layer 10 together with the passivation layer 13.
  • the resin side surfaces 17A to 17D of the resin layer 16 are formed flush with the side surfaces 14A to 14D of the passivation layer 13.
  • the resin side surfaces 17A to 17D of the resin layer 16 define dicing streets with the side surfaces 5A to 5D of the SiC semiconductor layer 2.
  • the side surfaces 14A to 14D of the passivation layer 13 also define dicing streets. According to the dicing street, it is not necessary to physically cut the resin layer 16 and the passivation layer 13 when cutting out the SiC semiconductor device 1 from one SiC semiconductor wafer. Thereby, SiC semiconductor device 1 can be smoothly cut out from one SiC semiconductor wafer. Further, the insulation distance from the side surfaces 5A to 5D can be increased.
  • the width of the dicing street may be 1 ⁇ m or more and 25 ⁇ m or less.
  • the width of the dicing street may be 1 ⁇ m or more and 5 ⁇ m or less, 5 ⁇ m or more and 10 ⁇ m or less, 10 ⁇ m or more and 15 ⁇ m or less, 15 ⁇ m or more and 20 ⁇ m or less, or 20 ⁇ m or more and 25 ⁇ m or less.
  • the resin layer 16 includes a pad opening 18 that exposes a part of the first main surface electrode layer 12 as a pad region.
  • the pad opening 18 is formed in a quadrangular shape having four sides parallel to the side surfaces 5A to 5D in plan view.
  • the pad opening 18 communicates with the sub pad opening 15.
  • the inner wall of the pad opening 18 is formed flush with the inner wall of the sub pad opening 15.
  • the inner wall of the pad opening 18 may be located on the side surfaces 5A to 5D with respect to the inner wall of the sub pad opening 15.
  • the inner wall of the pad opening 18 may be located in a region inside the SiC semiconductor layer 2 with respect to the inner wall of the sub pad opening 15.
  • the resin layer 16 may cover the inner wall of the subpad opening 15.
  • the thickness of the resin layer 16 may be 1 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the resin layer 16 may be 1 ⁇ m or more and 10 ⁇ m or less, 10 ⁇ m or more and 20 ⁇ m or less, 20 ⁇ m or more and 30 ⁇ m or less, 30 ⁇ m or more and 40 ⁇ m or less, or 40 ⁇ m or more and 50 ⁇ m or less.
  • the SiC semiconductor device 1 includes a second main surface electrode layer 19 formed on the second main surface 4 of the SiC semiconductor layer 2.
  • the second main surface electrode layer 19 forms an ohmic contact with the second main surface 4 (SiC semiconductor substrate 6).
  • SiC semiconductor device 1 includes a plurality of reforming lines 22A to 22D (modified layers) formed on side surfaces 5A to 5D.
  • the reforming lines 22A to 22D are not formed on the main surface insulating layer 10, the passivation layer 13, and the resin layer 16.
  • the reforming lines 22A to 22D include a reforming line 22A formed on the side surface 5A, a reforming line 22B formed on the side surface 5B, a reforming line 22C formed on the side surface 5C, and a reforming line formed on the side surface 5D. Quality line 22D.
  • the reforming lines 22A and 22C are respectively formed on the a-plane of the SiC single crystal.
  • a plurality (two or more layers, in this embodiment, three layers) of the reforming line 22A is formed on the side surface 5A.
  • the reforming line 22C is formed in a plurality (two or more layers, three layers in this embodiment) on the side surface 5C. It is preferable that the number of layers of the reforming lines 22A and 22C be 2 or more and 6 or less.
  • the reforming lines 22B and 22D are respectively formed on the m-plane of the SiC single crystal.
  • the reforming line 22B has one or more layers (two or more layers, one layer in this embodiment) formed on the side surface 5B.
  • the reforming line 22D has one or more layers (two or more layers, one layer in this embodiment) formed on the side surface 5D. It is preferable that the number of layers of the reforming lines 22B and 22D is equal to or less than the number of layers of the reforming lines 22A and 22C. More preferably, the number of layers in the reforming lines 22B and 22D is less than the number of layers in the reforming lines 22A and 22C.
  • the modified lines 22A to 22D include layered regions in which a part of the SiC single crystal forming the side surfaces 5A to 5D has been modified to have a property different from that of the SiC single crystal.
  • the modified lines 22A to 22D include regions in which the density, the refractive index, or the mechanical strength (crystal strength), or other physical properties are changed to properties different from those of the SiC single crystal.
  • the reforming lines 22A to 22D may include at least one of a melt-rehardened layer, a defect layer, a dielectric breakdown layer, and a refractive index change layer.
  • the melt-recured layer is a layer that is cured again after a part of the SiC semiconductor layer 2 is melted.
  • the defect layer is a layer including holes, cracks, and the like formed in the SiC semiconductor layer 2.
  • the dielectric breakdown layer is a layer in which a part of the SiC semiconductor layer 2 has been subjected to dielectric breakdown.
  • the refractive index change layer is a layer in which a part of the SiC semiconductor layer 2 has changed to a refractive index different from that of the SiC single crystal.
  • the reforming lines 22A to 22D extend in a belt shape along the tangential direction of the first main surface 3.
  • the tangent direction of the first main surface 3 is a direction orthogonal to the normal direction Z.
  • the tangential direction includes a first direction X (m-axis direction of the SiC single crystal) and a second direction Y (a-axis direction of the SiC single crystal).
  • the plurality of reforming lines 22A are each formed in a strip shape extending linearly along the m-axis direction on side surface 5A.
  • the plurality of reforming lines 22A are formed so as to be shifted from each other in the normal direction Z.
  • the plurality of reforming lines 22A may overlap each other in the normal direction Z.
  • the plurality of reforming lines 22A are preferably formed at intervals in the normal direction Z.
  • the plurality of reforming lines 22A each have a thickness TR in the normal direction Z.
  • the thicknesses TR of the plurality of reforming lines 22A may be equal to each other or may be different from each other.
  • the reforming line 22A on the first main surface 3 side is formed at an interval from the first main surface 3 to the second main surface 4 side.
  • the reforming line 22A on the first main surface 3 side exposes the surface layer portion of the first main surface 3 from the side surface 5A.
  • the reforming line 22A on the second main surface 4 side is formed at an interval from the second main surface 4 to the first main surface 3 side.
  • the reforming line 22A on the second main surface 4 side exposes the surface portion of the second main surface 4 from the side surface 5A.
  • the plurality of reforming lines 22A are formed on the SiC semiconductor substrate 6.
  • the plurality of reforming lines 22A are formed at intervals from the boundary between SiC semiconductor substrate 6 and SiC epitaxial layer 7 to second main surface 4 side. Thereby, the plurality of reforming lines 22 ⁇ / b> A expose the SiC epitaxial layer 7 in the surface portion of the first main surface 3.
  • the side surface 5A facing the a-plane of the SiC single crystal has physical properties of being cleaved with the c-axis of the SiC single crystal as a cleavage direction. Therefore, when a plurality of modified lines 22A are formed along the c-axis of the SiC single crystal or the normal direction Z, the side surface 5A becomes an inclined surface along the c-axis of the SiC single crystal.
  • one or more (in this embodiment, one or more) inclined toward the direction opposite to the c-axis (side surface 5C side) of the SiC single crystal from the normal line of first main surface 3 in the a-axis direction. ) are introduced into the side surface 5A. More specifically, the direction opposite to the c-axis is a direction between the normal direction Z and the a-axis direction ([11-20] direction) of the SiC single crystal.
  • a plurality of reforming lines 22A formed so as to be shifted from each other in the a-axis direction of the SiC single crystal in a cross-sectional view cause the inclined portion facing the opposite side (the side surface 5C side) of the SiC single crystal to the c axis. 5A.
  • One or more inclined portions along the c-axis of the SiC single crystal are also formed on side surface 5A. The formation region of the inclined portion toward the c-axis is reduced by the inclined portion of the SiC single crystal that faces away from the c-axis.
  • the plurality of reforming lines 22A are alternately formed on one side (the [11-20] direction side) and the other side (the [-1-120] direction side) of the a-axis direction with respect to the normal direction Z in cross-sectional view. Have been.
  • four or more reforming lines 22A are formed on the side surface 5A, it is not necessary that all the reforming lines 22A be alternately formed on one side and the other side in the a-axis direction. It is preferable that the plurality of reforming lines 22A include portions that are alternately shifted on one side and the other side in the a-axis direction.
  • the plurality of reforming lines 22A are preferably formed in such a manner that a straight line connecting any two layers of reforming lines 22A intersects at least the normal line of the first main surface 3. It is preferable that a straight line connecting any two layers of the reforming lines 22A intersects the c-axis of the SiC single crystal. It is preferable that a straight line connecting any two layers of the reforming lines 22A intersects the normal of the first main surface 3 and the c-axis of the SiC single crystal.
  • the plurality of reforming lines 22A are one layer formed so as to be shifted inward (on the [11-20] direction) of the SiC semiconductor layer 2 with respect to the reforming line 22A on the second main surface 4 side in the a-axis direction.
  • the intermediate reforming line 22A is formed so as to be shifted inward of the SiC semiconductor layer 2 with respect to the reforming line 22A on the second main surface 4 side.
  • the inclined portion of the SiC single crystal directed toward the opposite side to the c-axis is formed in a region between the intermediate reforming line 22A and the reforming line 22A on the second main surface 4 side.
  • a straight line connecting the intermediate reforming line 22A and the reforming line 22A on the second main surface 4 side intersects the normal line of the first main surface 3 and the c-axis of the SiC single crystal.
  • the plurality of reforming lines 22A are one layer formed so as to be shifted inward (on the [11-20] direction side) of the SiC semiconductor layer 2 with respect to the reforming line 22A on the first main surface 3 side in the a-axis direction.
  • the intermediate reforming line 22A is formed so as to be shifted inward of the SiC semiconductor layer 2 with respect to the reforming line 22A on the first main surface 3 side.
  • the inclined portion of the SiC single crystal toward the c-axis is formed in a region between the intermediate reforming line 22A and the reforming line 22A on the first main surface 3 side.
  • a straight line connecting the intermediate reforming line 22A and the reforming line 22A on the first main surface 3 side intersects the normal line of the first main surface 3.
  • a straight line connecting the intermediate reforming line 22A and the reforming line 22A on the first main surface 3 side may extend along the c-axis of the SiC single crystal, or may intersect the c-axis of the SiC single crystal. Is also good.
  • the plurality of reforming lines 22A are located inside the SiC semiconductor layer 2 with respect to a straight line connecting any two layers of the reforming lines 22A. It is preferable to include one or a plurality of reforming lines 22A formed so as to be shifted in the [11-20] direction).
  • the intermediate reforming line 22A is shifted inward of the SiC semiconductor layer 2 with respect to a straight line connecting the reforming line 22A on the first main surface 3 side and the reforming line 22A on the second main surface 4 side. It is formed.
  • the distance DR between the two adjacent reforming lines 22A in the a-axis direction may be more than 0 ⁇ m and 20 ⁇ m or less.
  • the distance DR may be more than 0 ⁇ m and 5 ⁇ m or less, 5 ⁇ m or more and 10 ⁇ m or less, 10 ⁇ m or more and 15 ⁇ m or less, or 15 ⁇ m or more and 20 ⁇ m or less.
  • the farthest distance DD in the a-axis direction of the plurality of reforming lines 22A may be more than 0 ⁇ m and 40 ⁇ m or less.
  • the farthest distance DD is a distance between the outermost reforming line 22A and the innermost reforming line 22A in the a-axis direction.
  • the farthest distance DD is more than 0 ⁇ m, 5 ⁇ m or less, 5 ⁇ m to 10 ⁇ m, 10 ⁇ m to 15 ⁇ m, 15 ⁇ m to 20 ⁇ m, 20 ⁇ m to 25 ⁇ m, 25 ⁇ m to 30 ⁇ m, 30 ⁇ m to 35 ⁇ m, 35 ⁇ m to 40 ⁇ m, 40 ⁇ m or more It may be 45 ⁇ m or less, or 45 ⁇ m or more and 50 ⁇ m or less.
  • the farthest distance DD may be equal to the distance DR.
  • Distance DR is preferably a value less than TL ⁇ tan ⁇ (0 ⁇ DR ⁇ TL ⁇ tan ⁇ ) using off angle ⁇ and thickness TL of SiC semiconductor layer 2. Further, it is preferable that the farthest distance DD is a value less than TL ⁇ tan ⁇ (0 ⁇ DD ⁇ TL ⁇ tan ⁇ ). In this case, it is preferable that three or more reforming lines 22A are formed.
  • the side surface 5A has a raised portion formed by the plurality of reforming lines 22A.
  • the top and base of the ridge on the side surface 5A are formed by a plurality of reforming lines 22A.
  • the top of the raised portion is formed by the reforming line 22A on the first main surface 3 side and the reforming line 22A on the second main surface 4 side, and the base of the raised portion is formed by the intermediate reforming line 22A. Is formed.
  • the side surface 5A is formed at an angular position between the c-axis of the SiC single crystal and the normal line of the first main surface 3 as a whole while having a raised portion.
  • reforming line 22B is formed in a band shape extending linearly along the a-axis direction on side surface 5B.
  • the reforming line 22B has a thickness TR in the normal direction Z.
  • the reforming line 22B is formed at an interval from the first main surface 3 to the second main surface 4 side.
  • the reforming line 22B exposes the surface layer of the first main surface 3 from the side surface 5B.
  • the reforming line 22B is formed at an interval from the second main surface 4 to the first main surface 3 side.
  • the reforming line 22B exposes the surface layer of the second main surface 4 from the side surface 5B.
  • the reforming line 22B is formed on the SiC semiconductor substrate 6.
  • the reforming line 22B is formed at a distance from the boundary between the SiC semiconductor substrate 6 and the SiC epitaxial layer 7 to the second main surface 4 side. Thereby, the reforming line 22 ⁇ / b> B exposes the SiC epitaxial layer 7 in the surface portion of the first main surface 3.
  • a plurality of reforming lines 22B may be formed on the side surface 5B.
  • the plurality of reforming lines 22B are formed to be shifted from each other in the normal direction Z.
  • the plurality of reforming lines 22B may overlap each other in the normal direction Z.
  • the plurality of reforming lines 22B are preferably formed at intervals in the normal direction Z.
  • the thicknesses TR of the plurality of reforming lines 22B may be equal to each other or may be different from each other.
  • a plurality of reforming lines 22C are formed in strips extending linearly along the m-axis direction on side surface 5C.
  • the plurality of reforming lines 22C are formed so as to be shifted from each other in the normal direction Z.
  • the plurality of reforming lines 22C may overlap each other in the normal direction Z.
  • the plurality of reforming lines 22C are preferably formed at intervals in the normal direction Z.
  • the plurality of reforming lines 22C each have a thickness TR in the normal direction Z.
  • the thicknesses TR of the plurality of reforming lines 22C may be equal to each other or may be different from each other.
  • the reforming line 22C on the first main surface 3 side is formed at an interval from the first main surface 3 to the second main surface 4 side.
  • the reforming line 22C on the first main surface 3 side exposes the surface layer of the first main surface 3 from the side surface 5C.
  • the reforming line 22C on the second main surface 4 side is formed at an interval from the second main surface 4 to the first main surface 3 side.
  • the reforming line 22C on the second main surface 4 side exposes the surface layer portion of the second main surface 4 from the side surface 5C.
  • the plurality of reforming lines 22C are formed on the SiC semiconductor substrate 6.
  • the plurality of reforming lines 22C are formed at intervals from the boundary between the SiC semiconductor substrate 6 and the SiC epitaxial layer 7 to the second main surface 4 side. Thereby, the plurality of reforming lines 22 ⁇ / b> C expose the SiC epitaxial layer 7 in the surface portion of the first main surface 3.
  • the side surface 5C facing the a-plane of the SiC single crystal has a property of being cleaved using the c-axis of the SiC single crystal as a cleavage direction. Therefore, when a plurality of modified lines 22C are formed along the c-axis of the SiC single crystal or the normal direction Z, the side surface 5C becomes an inclined surface along the c-axis of the SiC single crystal.
  • the plurality of reforming lines 22C formed so as to be shifted from each other in the a-axis direction of the SiC single crystal in a cross-sectional view cause the inclination toward the opposite side (the opposite side to the side surface 5A) from the c-axis of the SiC single crystal.
  • the part is introduced into the side face 5C.
  • One or more inclined portions along the c-axis of the SiC single crystal are also formed on side surface 5C. The formation region of the inclined portion toward the c-axis is reduced by the inclined portion of the SiC single crystal that faces away from the c-axis.
  • the plurality of reforming lines 22C are formed so as to be alternately shifted to one side (the [11-20] direction side) and the other side (the [-1-120] direction side) in the a-axis direction with respect to the normal direction Z in a sectional view. Have been.
  • four or more reforming lines 22C are formed on the side surface 5C, it is not necessary that all the reforming lines 22C are alternately formed on one side and the other side in the a-axis direction. It is preferable that the plurality of reforming lines 22C include portions alternately shifted to one side and the other side in the a-axis direction.
  • the plurality of reforming lines 22C are preferably formed in such a manner that a straight line connecting any two layers of the reforming lines 22C intersects at least the normal line of the first main surface 3. It is preferable that a straight line connecting any two layers of the reforming line 22C intersects the c-axis of the SiC single crystal. It is preferable that a straight line connecting any two layers of the reforming lines 22C intersects the normal of the first main surface 3 and the c-axis of the SiC single crystal.
  • the plurality of reforming lines 22C are one layer formed so as to be shifted outward (in the [11-20] direction) of the SiC semiconductor layer 2 with respect to the reforming line 22C on the second main surface 4 side in the a-axis direction.
  • the intermediate reforming line 22C is formed outside the SiC semiconductor layer 2 with respect to the reforming line 22C on the second main surface 4 side.
  • the inclined portion of the SiC single crystal directed toward the opposite side to the c-axis is formed in a region between the intermediate reforming line 22C and the reforming line 22C on the second main surface 4 side.
  • a straight line connecting the intermediate reforming line 22C and the reforming line 22C on the second main surface 4 side intersects the normal line of the first main surface 3 and the c-axis of the SiC single crystal.
  • the plurality of reforming lines 22C are one layer formed so as to be shifted outward (in the [11-20] direction) of the SiC semiconductor layer 2 with respect to the reforming line 22C on the first main surface 3 side in the a-axis direction.
  • the intermediate reforming line 22C is formed outside the SiC semiconductor layer 2 with respect to the reforming line 22C on the first main surface 3 side.
  • the inclined portion of the SiC single crystal toward the c-axis is formed in a region between the intermediate reforming line 22C and the reforming line 22C on the first main surface 3 side.
  • a straight line connecting the intermediate reforming line 22C and the reforming line 22C on the first main surface 3 side intersects the normal line of the first main surface 3.
  • a straight line connecting the intermediate reforming line 22C and the reforming line 22C on the first principal surface 3 side may extend along the c-axis of the SiC single crystal, or may intersect the c-axis of the SiC single crystal. Is also good.
  • the plurality of reforming lines 22C are located outside the SiC semiconductor layer 2 with respect to a straight line connecting any two layers of the reforming lines 22A. It is preferable to include one or a plurality of reforming lines 22C formed so as to be shifted in the [11-20] direction).
  • the intermediate reforming line 22C is shifted outward of the SiC semiconductor layer 2 with respect to a straight line connecting the reforming line 22C on the first main surface 3 side and the reforming line 22C on the second main surface 4 side. It is formed.
  • the distance DR between two adjacent reforming lines 22C in the a-axis direction may be more than 0 ⁇ m and 20 ⁇ m or less.
  • the distance DR may be more than 0 ⁇ m and 5 ⁇ m or less, 5 ⁇ m or more and 10 ⁇ m or less, 10 ⁇ m or more and 15 ⁇ m or less, or 15 ⁇ m or more and 20 ⁇ m or less.
  • the farthest distance DD of the plurality of reforming lines 22C may be more than 0 ⁇ m and 40 ⁇ m or less.
  • the farthest distance DD is a distance between the outermost reforming line 22C and the innermost reforming line 22C in the a-axis direction.
  • the farthest distance DD is more than 0 ⁇ m, 5 ⁇ m or less, 5 ⁇ m to 10 ⁇ m, 10 ⁇ m to 15 ⁇ m, 15 ⁇ m to 20 ⁇ m, 20 ⁇ m to 25 ⁇ m, 25 ⁇ m to 30 ⁇ m, 30 ⁇ m to 35 ⁇ m, 35 ⁇ m to 40 ⁇ m, 40 ⁇ m or more It may be 45 ⁇ m or less, or 45 ⁇ m or more and 50 ⁇ m or less.
  • the farthest distance DD may be equal to the distance DR.
  • Distance DR is preferably a value less than TL ⁇ tan ⁇ (0 ⁇ DR ⁇ TL ⁇ tan ⁇ ) using off angle ⁇ and thickness TL of SiC semiconductor layer 2. Further, it is preferable that the farthest distance DD is a value less than TL ⁇ tan ⁇ (0 ⁇ DD ⁇ TL ⁇ tan ⁇ ). In this case, it is preferable that three or more reforming lines 22C are formed.
  • the side surface 5C has a ridge formed by the plurality of reforming lines 22C.
  • the top and base of the ridge on the side surface 5C are formed by a plurality of reforming lines 22C.
  • the top of the raised portion is formed by the reforming line 22C on the first main surface 3 side and the reforming line 22C on the second main surface 4 side, and the base of the raised portion is formed by the intermediate reforming line 22C. Is formed.
  • the side surface 5C is formed at an angular position between the c-axis of the SiC single crystal and the normal line of the first main surface 3 as a whole, while having a raised portion.
  • reforming line 22D is formed in a band shape extending linearly along the a-axis direction on side surface 5D.
  • the reforming line 22D has a thickness TR in the normal direction Z.
  • the reforming line 22D is formed at an interval from the first main surface 3 to the second main surface 4 side.
  • the reforming line 22D exposes the surface portion of the first main surface 3 from the side surface 5D.
  • the reforming line 22D is formed at an interval from the second main surface 4 to the first main surface 3 side.
  • the reforming line 22D exposes the surface portion of the second main surface 4 from the side surface 5D.
  • the reforming line 22D is formed on the SiC semiconductor substrate 6.
  • the reforming line 22D is formed at a distance from the boundary between the SiC semiconductor substrate 6 and the SiC epitaxial layer 7 to the second main surface 4 side. Thereby, the reforming line 22 ⁇ / b> D exposes the SiC epitaxial layer 7 in the surface portion of the first main surface 3.
  • the plurality of reforming lines 22D may be formed on the side surface 5D. In this case, the plurality of reforming lines 22D are formed shifted from each other in the normal direction Z. The plurality of reforming lines 22D may overlap each other in the normal direction Z. The plurality of reforming lines 22D are preferably formed at intervals in the normal direction Z. The thicknesses TR of the plurality of reforming lines 22D may be equal to each other or may be different from each other.
  • the reforming line 22A and the reforming line 22B may be connected to each other at a corner connecting the side surface 5A and the side surface 5B.
  • the reforming line 22B and the reforming line 22C may be connected to each other at a corner connecting the side surface 5B and the side surface 5C.
  • the reforming line 22C and the reforming line 22D may be connected to each other at a corner connecting the side surface 5C and the side surface 5D.
  • the reforming line 22D and the reforming line 22A may be connected to each other at a corner connecting the side surface 5D and the side surface 5A.
  • the reforming lines 22A to 22D may be integrally formed so as to surround the SiC semiconductor layer 2.
  • the reforming lines 22A to 22D may form one endless (annular) reforming line surrounding the SiC semiconductor layer 2 on the side surfaces 5A to 5D.
  • the reforming lines 22A to 22D are formed with different occupation ratios RA, RB, RC, and RD on the side surfaces 5A to 5D.
  • the occupation ratio RA is a ratio of the reforming line 22A occupying the side surface 5A.
  • the exclusive ratio RB is a ratio of the reforming line 22B occupying the side surface 5B.
  • the exclusive ratio RC is a ratio of the reforming line 22C occupying the side surface 5C.
  • the exclusive ratio RD is a ratio of the reforming line 22D to the side surface 5D.
  • the occupation ratios RA to RD differ more specifically according to the crystal plane of the SiC single crystal.
  • the occupancy ratio RB, RD of the modified lines 22B, 22D formed on the m-plane of the SiC single crystal is less than the occupation ratio RA, RC (RB, RC) of the modified lines 22A, 22C formed on the a-plane of the SiC single crystal.
  • RD ⁇ RA, RC The occupation ratios RB and RD are more specifically less than the occupation ratios RA and RC (RB, RD ⁇ RA, RC).
  • the occupation ratios RA and RC of the reforming lines 22A and 22C may be equal to each other or may be different from each other.
  • the occupation ratios RB, RD of the reforming lines 22B, 22D may be equal to each other or may be different from each other.
  • the occupancy ratios RA to RD are adjusted by the number of layers, the thickness TR, the total surface area, and the like of the reforming lines 22A to 22D.
  • the occupation ratios RA to RD of the reforming lines 22A to 22D are adjusted by adjusting the number of layers and the thickness TR of the reforming lines 22A to 22D.
  • the number of layers of the reforming lines 22B and 22D is less than the number of layers of the reforming lines 22A and 22C, respectively.
  • the total value of the thicknesses TR of the reforming lines 22B and 22D is less than the total value of the thicknesses TR of the reforming lines 22A and 22C, respectively.
  • the total surface area of the reforming lines 22B and 22D is less than the total surface area of the reforming lines 22A and 22C, respectively.
  • the thickness TR of the modified lines 22A to 22D is preferably equal to or less than the thickness TL of the SiC semiconductor layer 2 (TR ⁇ TL). More preferably, the thickness TR of the reforming lines 22A to 22D is less than the thickness TS of the SiC semiconductor substrate 6 (TR ⁇ TS).
  • the thickness TR of the reforming lines 22A to 22D may be equal to or greater than the thickness TE of the SiC epitaxial layer 7 (TR ⁇ TE).
  • the thickness TR of the reforming line 22A, the thickness TR of the reforming line 22B, the thickness TR of the reforming line 22C, and the thickness TR of the reforming line 22D may be equal to or different from each other. You may.
  • the ratio TR / TL of the thickness TR of the modified lines 22A to 22D to the thickness TL of the SiC semiconductor layer 2 is preferably 0.1 or more and less than 1.0.
  • the ratio TR / TL is from 0.1 to 0.2, from 0.2 to 0.4, from 0.4 to 0.6, from 0.6 to 0.8, or from 0.8 to 1. It may be less than zero.
  • the ratio TR / TL is 0.1 to 0.2, 0.2 to 0.3, 0.3 to 0.4, 0.4 to 0.5, 0.5 to 0.6. , 0.6 to 0.7, 0.7 to 0.8, 0.8 to 0.9, or 0.9 to less than 1.0.
  • the ratio TR / TL is preferably 0.2 or more and 0.5 or less.
  • the ratio TR / TS of the thickness TR of the modified lines 22A to 22D to the thickness TS of the SiC semiconductor substrate 6 is more preferably 0.1 or more and less than 1.0.
  • the ratio TR / TS is from 0.1 to 0.2, from 0.2 to 0.4, from 0.4 to 0.6, from 0.6 to 0.8, or from 0.8 to 1. It may be less than zero.
  • the ratio TR / TS is 0.1 to 0.2, 0.2 to 0.3, 0.3 to 0.4, 0.4 to 0.5, 0.5 to 0.6. , 0.6 to 0.7, 0.7 to 0.8, 0.8 to 0.9, or 0.9 to less than 1.0.
  • the ratio TR / TS is preferably 0.2 or more and 0.5 or less.
  • reforming line 22A includes a plurality of a-plane reforming sections 28 (reforming sections).
  • the reforming line 22A is formed by an aggregate of a plurality of a-plane reforming sections 28.
  • the plurality of a-plane modified portions 28 are portions where the SiC single crystal exposed from the side surface 5A has been modified to have properties different from those of the SiC single crystal.
  • the area around the a-plane modified portion 28 on the side surface 5A may be modified to have properties different from those of the SiC single crystal.
  • the plurality of a-plane modified portions 28 connect one end 28a located on the first main surface 3 side, the other end 28b located on the second main surface 4 side, and one end 28a and the other end 28b. Each includes a connection portion 28c.
  • the plurality of a-plane modified portions 28 are each formed in a linear shape extending in the normal direction Z. Thereby, the plurality of a-plane modified portions 28 are formed in a stripe shape as a whole.
  • the plurality of a-plane modified portions 28 may include a plurality of a-plane modified portions 28 formed in a tapered shape in which the width in the m-axis direction decreases from the one end 28a to the other end 28b.
  • the plurality of a-plane modified portions 28 are formed at intervals in the m-axis direction so as to face each other in the m-axis direction.
  • the plurality of a-plane modified portions 28 may overlap each other in the m-axis direction.
  • a band-like region extending in the m-axis direction is formed by a line connecting one end portions 28a of the plurality of a-plane modified portions 28 and a line connecting the other end portions 28b of the plurality of a-plane modified portions 28.
  • the reforming line 22A is formed by this band-shaped region.
  • the plurality of a-plane modified portions 28 may be formed with cutouts formed by cutting the side surface 5A.
  • the plurality of a-plane modified portions 28 may respectively form recesses that are recessed from the side surface 5A in the a-axis direction.
  • the plurality of a-plane modified portions 28 may be formed in a dot shape (dot shape) according to the length in the normal direction Z or the width in the m-axis direction.
  • the pitch PR between the central portions of the plurality of a-plane modified portions 28 adjacent to each other may be more than 0 ⁇ m and 20 ⁇ m or less.
  • the pitch PR may be more than 0 ⁇ m and 5 ⁇ m or less, 5 ⁇ m or more and 10 ⁇ m or less, 10 ⁇ m or more and 15 ⁇ m or less, or 15 ⁇ m or more and 20 ⁇ m or less.
  • the width WR of each a-plane modified portion 28 may be more than 0 ⁇ m and 20 ⁇ m or less.
  • the width WR may be more than 0 ⁇ m and 5 ⁇ m or less, 5 ⁇ m or more and 10 ⁇ m or less, 10 ⁇ m or more and 15 ⁇ m or less, or 15 ⁇ m or more and 20 ⁇ m or less.
  • the reforming line 22C has the same structure as the reforming line 22A except that it is formed on the side surface 5C.
  • the description of the reforming line 22A is applied mutatis mutandis to the description of the reforming line 22C by replacing “side surface 5A” with “side surface 5C”.
  • reforming line 22D includes a plurality of m-plane reforming sections 29 (reforming sections).
  • the reforming line 22D is formed by an aggregate of a plurality of m-plane reforming sections 29.
  • the plurality of m-plane modified portions 29 are portions where the SiC single crystal exposed from the side surface 5D has been modified to have properties different from those of the SiC single crystal.
  • the area around each m-plane modified portion 29 on the side surface 5D may be modified to have a property different from that of the SiC single crystal.
  • the plurality of m-plane modifying portions 29 connect one end 29a located on the first main surface 3 side, the other end 29b located on the second main surface 4 side, and one end 29a and the other end 29b. It includes a connection portion 29c.
  • the plurality of m-plane modified portions 29 are each formed in a linear shape extending in the normal direction Z. Thereby, the plurality of m-plane modified portions 29 are formed in a stripe shape as a whole.
  • the plurality of m-plane reforming sections 29 may include a plurality of m-plane reforming sections 29 formed in a tapered shape in which the width in the a-axis direction decreases from the one end 29a side to the other end 29b side.
  • the plurality of m-plane reforming portions 29 are formed at intervals in the a-axis direction so as to face each other in the a-axis direction.
  • the plurality of m-plane reforming sections 29 may overlap each other in the a-axis direction.
  • a band-like region extending in the a-axis direction is formed by a line connecting one end portions 29a of the plurality of m-plane modified portions 29 and a line connecting the other end portions 29b of the plurality of m-plane modified portions 29.
  • the reforming line 22D is formed by this band-shaped region.
  • the plurality of m-plane reforming portions 29 may each have a cutout formed by cutting out the side surface 5D.
  • the plurality of m-plane modified portions 29 may form recesses that are recessed from the side surface 5D toward the m-axis direction.
  • the plurality of m-plane modified portions 29 may be formed in a dot shape (dot shape) according to the length in the normal direction Z or the width in the a-axis direction.
  • the pitch PR between the central portions of the plurality of m-plane modified portions 29 adjacent to each other may be 0 ⁇ m or more and 20 ⁇ m or less.
  • the pitch PR may be 0 ⁇ m or more and 5 ⁇ m or less, 5 ⁇ m or more and 10 ⁇ m or less, 10 ⁇ m or more and 15 ⁇ m or less, or 15 ⁇ m or more and 20 ⁇ m or less.
  • the width WR of each m-plane reforming section 29 may be more than 0 ⁇ m and 20 ⁇ m or less.
  • the width WR may be more than 0 ⁇ m and 5 ⁇ m or less, 5 ⁇ m or more and 10 ⁇ m or less, 10 ⁇ m or more and 15 ⁇ m or less, or 15 ⁇ m or more and 20 ⁇ m or less.
  • the reforming line 22B has the same structure as the reforming line 22D except that it is formed on the side surface 5B.
  • the description of the reforming line 22D is applied mutatis mutandis to the description of the reforming line 22B by replacing "side surface 5D" with "side surface 5B".
  • SiC semiconductor device 1 includes n-type diode region 35 formed in the surface portion of first main surface 3 in active region 8.
  • diode region 35 is formed at the center of first main surface 3.
  • the diode region 35 may be formed in a square shape having four sides parallel to the side surfaces 5A to 5D in plan view.
  • the diode region 35 is formed using a part of the SiC epitaxial layer 7.
  • the n-type impurity concentration of diode region 35 is equal to the n-type impurity concentration of SiC epitaxial layer 7.
  • the n-type impurity concentration of diode region 35 may be equal to or higher than the n-type impurity concentration of SiC epitaxial layer 7. That is, the diode region 35 may be formed by introducing an n-type impurity into the surface portion of the SiC epitaxial layer 7.
  • SiC semiconductor device 1 includes ap + -type guard region 36 formed in a surface layer portion of first main surface 3 in outer region 9.
  • the guard region 36 is formed in a band shape extending along the diode region 35 in a plan view. More specifically, the guard region 36 is formed in an endless shape surrounding the diode region 35 in a plan view.
  • the guard region 36 is formed in a square ring (more specifically, a square ring or a ring with a chamfered corner).
  • the guard region 36 is formed as a guard ring region.
  • the diode region 35 is defined by the guard region 36 in this embodiment.
  • the active area 8 is defined by the guard area 36.
  • the p-type impurity in the guard region 36 may not be activated.
  • the guard region 36 is formed as a non-semiconductor region.
  • the p-type impurity of the guard region 36 may be activated.
  • the guard region 36 is formed as a p-type semiconductor region.
  • the main surface insulating layer 10 includes the diode opening 37 exposing the diode region 35.
  • the diode opening 37 exposes the inner periphery of the guard region 36 in addition to the diode region 35.
  • the diode opening 37 may be formed in a square shape having four sides parallel to the side surfaces 5A to 5D in plan view.
  • the first main surface electrode layer 12 enters the diode opening 37 from above the main surface insulating layer 10.
  • First main surface electrode layer 12 is electrically connected to diode region 35 in diode opening 37. More specifically, the first main surface electrode layer 12 forms a Schottky junction with the diode region 35. As a result, a Schottky barrier diode D having the first main surface electrode layer 12 as an anode and the diode region 35 as a cathode is formed.
  • the passivation layer 13 and the resin layer 16 described above are formed on the main surface insulating layer 10.
  • FIG. 9 is a perspective view showing a SiC semiconductor wafer 41 used for manufacturing the SiC semiconductor device 1 shown in FIG.
  • the SiC semiconductor wafer 41 is a member serving as a base of the SiC semiconductor substrate 6.
  • the SiC semiconductor wafer 41 includes a 4H—SiC single crystal as an example of a hexagonal SiC single crystal.
  • SiC semiconductor wafer 41 has an n-type impurity concentration corresponding to the n-type impurity concentration of SiC semiconductor substrate 6.
  • SiC semiconductor wafer 41 is formed in a plate shape or a plate shape. SiC semiconductor wafer 41 may be formed in a disk shape.
  • the SiC semiconductor wafer 41 has a first wafer main surface 42 on one side, a second wafer main surface 43 on the other side, and a wafer side surface 44 connecting the first wafer main surface 42 and the second wafer main surface 43. ing.
  • the thickness TW of the SiC semiconductor wafer 41 exceeds the thickness TS of the SiC semiconductor substrate 6 (TS ⁇ TW).
  • the thickness TW of SiC semiconductor wafer 41 is adjusted to the thickness TS of SiC semiconductor substrate 6 by grinding.
  • the thickness TW may be more than 150 ⁇ m and 750 ⁇ m or less.
  • the thickness TW may be more than 150 ⁇ m and 300 ⁇ m or less, 300 ⁇ m or more and 450 ⁇ m or less, 450 ⁇ m or more and 600 ⁇ m or less, or 600 ⁇ m or more and 750 ⁇ m or less.
  • the thickness TW is preferably more than 150 ⁇ m and 500 ⁇ m or less.
  • the thickness TW is typically not less than 300 ⁇ m and not more than 450 ⁇ m.
  • the first wafer main surface 42 and the second wafer main surface 43 face the c-plane of the SiC single crystal in this embodiment.
  • the first wafer main surface 42 faces the (0001) plane (silicon surface).
  • Second wafer main surface 43 faces the (000-1) plane (carbon plane) of the SiC single crystal.
  • the first wafer main surface 42 and the second wafer main surface 43 have an off angle ⁇ inclined at an angle of 10 ° or less in the [11-20] direction with respect to the c-plane of the SiC single crystal.
  • the normal direction Z of the first wafer main surface 42 is inclined by an off angle ⁇ with respect to the c-axis ([0001] direction) of the SiC single crystal.
  • the off angle ⁇ may be 0 ° or more and 5.0 ° or less. Off angle ⁇ is 0 ° or more and 1.0 ° or less, 1.0 ° or more and 1.5 ° or less, 1.5 ° or more and 2.0 ° or less, 2.0 ° or more and 2.5 ° or less, 2.5 3.0 ° to 3.5 °, 3.5 ° to 4.0 °, 3.5 ° to 4.0 °, 4.0 ° to 4.5 °, or 4.5 ° to 4.5 °.
  • the angle may be set to a range of 0 ° or less.
  • the off angle ⁇ preferably exceeds 0 °.
  • the off angle ⁇ may be less than 4.0 °.
  • the off angle ⁇ may be set in a range from 3.0 ° to 4.5 °. In this case, it is preferable that the off-angle ⁇ is set in the range of 3.0 ° to 3.5 °, or 3.5 ° to 4.0 °.
  • the off angle ⁇ may be set in the range of 1.5 ° or more and 3.0 ° or less. In this case, it is preferable that the off-angle ⁇ is set in a range from 1.5 ° to 2.0 °, or from 2.0 ° to 2.5 °.
  • SiC semiconductor wafer 41 includes a first wafer corner 45 connecting first wafer main surface 42 and wafer side surface 44, and a second wafer corner 46 connecting second wafer main surface 43 and wafer side 44.
  • the first wafer corner 45 has a first chamfered portion 47 inclined downward from the first wafer main surface 42 toward the wafer side surface 44.
  • the second wafer corner portion 46 has a second chamfered portion 48 inclined downward from the second wafer main surface 43 toward the wafer side surface 44.
  • the first chamfered portion 47 may be formed in a convexly curved shape.
  • the second chamfered portion 48 may be formed in a convexly curved shape.
  • First chamfered portion 47 and second chamfered portion 48 suppress cracking of SiC semiconductor wafer 41.
  • orientation flat 49 is formed on the wafer side surface 44 as an example of a mark indicating the crystal orientation of the SiC single crystal.
  • the orientation flat 49 is a notch formed in the side surface 44 of the wafer.
  • the orientation flat 49 extends linearly along the a-axis direction ([11-20] direction) of the SiC single crystal.
  • a plurality of (for example, two) orientation flats 49 indicating the crystal orientation may be formed on the wafer side surface 44.
  • the plurality (for example, two) of the orientation flats 49 may include a first orientation flat and a second orientation flat.
  • the first orientation flat may be a notch extending linearly along the a-axis direction ([11-20] direction) of the SiC single crystal.
  • the second orientation flat may be a notch extending linearly along the m-axis direction ([1-100] direction) of the SiC single crystal.
  • a plurality of device forming regions 51 respectively corresponding to the SiC semiconductor device 1 are set on the first wafer main surface 42.
  • the plurality of device forming regions 51 are set in a matrix array at intervals in the m-axis direction ([1-100] direction) and the a-axis direction ([11-20] direction).
  • Each device formation region 51 has four sides 52A, 52B, 52C, 52D along the crystal orientation of the SiC single crystal.
  • the four sides 52A to 52D correspond to the four side surfaces 5A to 5D of the SiC semiconductor layer 2, respectively. That is, the four sides 52A to 52D are composed of two sides 52A and 52C along the m-axis direction ([1-100] direction) and two sides 52B and 52B along the a-axis direction ([11-20] direction). 52D.
  • the first wafer main surface 42 has a lattice shape extending along the m-axis direction ([1-100] direction) and the a-axis direction ([11-20] direction) so as to partition the plurality of device formation regions 51, respectively. Is set.
  • the planned cutting line 53 includes a plurality of first planned cutting lines 54 and a plurality of second planned cutting lines 55.
  • the plurality of first cutting lines 54 extend along the m-axis direction ([1-100] direction).
  • the plurality of second planned cutting lines 55 extend along the a-axis direction ([11-20] direction).
  • FIGS. 10A to 10M are cross-sectional views showing an example of a method for manufacturing the SiC semiconductor device 1 shown in FIG. 10A to 10M show only a region including three device forming regions 51 for convenience of description, and omit the illustration of other regions.
  • SiC semiconductor wafer 41 is prepared (also refer to FIG. 9).
  • n-type SiC epitaxial layer 7 is formed on first wafer main surface 42.
  • SiC is epitaxially grown from the first wafer main surface 42.
  • the thickness TE of the SiC epitaxial layer 7 may be 1 ⁇ m or more and 50 ⁇ m or less.
  • a SiC semiconductor wafer structure 61 including the SiC semiconductor wafer 41 and the SiC epitaxial layer 7 is formed.
  • SiC semiconductor wafer structure 61 includes a first main surface 62 and a second main surface 63.
  • First main surface 62 and second main surface 63 correspond to first main surface 3 and second main surface 4 of SiC semiconductor layer 2, respectively.
  • the thickness TWS of the SiC semiconductor wafer structure 61 may be more than 150 ⁇ m and 800 ⁇ m or less.
  • the thickness TWS is preferably more than 150 ⁇ m and 550 ⁇ m or less.
  • p + -type guard region 36 is formed on first main surface 62.
  • the step of forming the guard region 36 includes a step of selectively introducing a p-type impurity into the surface portion of the first main surface 62 via an ion implantation mask (not shown). More specifically, guard region 36 is formed in the surface portion of SiC epitaxial layer 7.
  • the guard region 36 partitions the active region 8 and the outer region 9 in the SiC semiconductor wafer structure 61.
  • An n-type diode region 35 is defined in a region (active region 8) surrounded by the guard region 36.
  • the diode region 35 may be formed by selectively introducing an n-type impurity into the surface portion of the first main surface 62 via an ion implantation mask (not shown).
  • Main surface insulating layer 10 is formed on first main surface 62.
  • Main surface insulating layer 10 includes silicon oxide (SiO 2 ).
  • the main surface insulating layer 10 may be formed by a CVD (Chemical Vapor Deposition) method or an oxidation treatment method (for example, a thermal oxidation treatment method).
  • a mask 64 having a predetermined pattern is formed on main surface insulating layer 10.
  • the mask 64 has a plurality of openings 65.
  • the plurality of openings 65 respectively expose regions where the diode openings 37 are to be formed in the main surface insulating layer 10.
  • base electrode layer 66 serving as a base of first main surface electrode layer 12 is formed on first main surface 62.
  • the base electrode layer 66 is formed over the entire area of the first main surface 62 and covers the main surface insulating layer 10.
  • the first main surface electrode layer 12 may be formed by a vapor deposition method, a sputtering method, or a plating method.
  • a mask 67 having a predetermined pattern is formed on base electrode layer 66.
  • the mask 67 has an opening 68 for exposing a region other than the region where the first main surface electrode layer 12 is to be formed in the base electrode layer 66.
  • the base electrode layer 66 is divided into the plurality of first main surface electrode layers 12. After the formation of the first main surface electrode layer 12, the mask 67 is removed.
  • passivation layer 13 is formed on first main surface 62.
  • Passivation layer 13 includes silicon nitride (SiN).
  • the passivation layer 13 may be formed by a CVD method.
  • resin layer 16 is applied on passivation layer 13.
  • the resin layer 16 collectively covers the active region 8 and the outer region 9.
  • the resin layer 16 may include polybenzoxazole as an example of a positive type photosensitive resin.
  • the resin layer 16 is developed after being selectively exposed. Thereby, pad openings 18 are formed in the resin layer 16. Further, dicing streets 69 along the cutting lines 53 (sides 52A to 52D of each device forming area 51) are partitioned into the resin layers 16.
  • the step of removing unnecessary portions of the passivation layer 13 using the resin layer 16 has been described.
  • the resin layer 16 and the pad opening 18 may be formed.
  • unnecessary portions of the passivation layer 13 are removed by an etching method using a mask, and a subpad opening 15 is formed.
  • the passivation layer 13 can be formed in any shape.
  • second main surface 63 (second wafer main surface 43) is ground.
  • SiC semiconductor wafer structure 61 SiC semiconductor wafer 41
  • grinding marks are formed on the second main surface 63 (second wafer main surface 43).
  • the SiC semiconductor wafer structure 61 is ground to a thickness TWS corresponding to the thickness TL of the SiC semiconductor layer 2.
  • SiC semiconductor wafer structure 61 may be ground to a thickness TWS of 40 ⁇ m or more and 200 ⁇ m or less. That is, the SiC semiconductor wafer 41 is ground until the thickness TW corresponds to the thickness TS of the SiC semiconductor substrate 6. The SiC semiconductor wafer 41 may be ground until the thickness TW becomes 40 ⁇ m or more and 150 ⁇ m or less.
  • a plurality of reforming lines 70 (reforming layers) serving as bases of reforming lines 22A to 22D are formed.
  • pulsed laser light is irradiated from the laser light irradiation device 71 toward the SiC semiconductor wafer structure 61.
  • Laser light is applied to the SiC semiconductor wafer structure 61 from the first main surface 62 side via the main surface insulating layer 10.
  • the laser light may be directly applied to the SiC semiconductor wafer structure 61 from the second main surface 63 side.
  • the condensing portion (focal point) of the laser beam is set at an intermediate portion in the thickness direction of the SiC semiconductor wafer structure 61.
  • the irradiation position of the laser beam on the SiC semiconductor wafer structure 61 is moved along the line 53 to be cut (four sides 52A to 52D of each device forming area 51). More specifically, the irradiation position of the laser beam on the SiC semiconductor wafer structure 61 is moved along the first cutting line 54.
  • the irradiation position of the laser beam on the SiC semiconductor wafer structure 61 is moved along the second scheduled cutting line 55.
  • the plurality of reforming lines 70 are formed in one or more layers in a one-to-one correspondence with the four sides 52A to 52D of each device forming region 51.
  • a plurality of (three layers in this embodiment) reforming lines 70 are formed in the first planned cutting line 54, and a single-layer reforming line 70 is formed in the second planned cutting line 55.
  • the plurality of reforming lines 70 on the first scheduled cutting line 54 side correspond to the reforming line 22A (reforming line 22C).
  • the one-layer reforming line 70 on the side of the second scheduled cutting line 55 corresponds to the reforming line 22B (the reforming line 22D).
  • the plurality of reforming lines 70 on the side of the first planned cutting line 54 are formed so as to be shifted in the normal direction Z in cross-sectional view, and are formed so as to be alternately shifted to one side and the other side in the a-axis direction.
  • the plurality of reforming lines 70 on the first cutting scheduled line 54 side are in the a-axis direction with respect to the reforming line 70 on the second main surface 63 side and / or the reforming line 70 on the first main surface 62 side.
  • Two reforming lines 70 along the sides 52A and 52C of the device forming region 51 include the a-plane reforming portions 28, respectively.
  • the two reforming lines 70 along the sides 52B and 52D of the device forming region 51 include the m-plane reforming portions 29, respectively.
  • the plurality of reforming lines 70 are also laser processing marks formed in the middle part of the SiC semiconductor wafer structure 61 in the thickness direction. More specifically, the a-plane reforming section 28 and the m-plane reforming section 29 of the reforming line 70 are laser processing marks.
  • the focusing part (focus) of the laser light, laser energy, pulse duty ratio, irradiation speed, etc. are arbitrary depending on the position, size, shape, thickness, etc. of the reforming line 70 (the reforming lines 22A to 22D) to be formed. Is determined.
  • second main surface electrode layer 19 is formed on second main surface 63.
  • the second main surface electrode layer 19 may be formed by a vapor deposition method, a sputtering method, or a plating method.
  • an annealing process may be performed on the second main surface 63 (ground surface).
  • the annealing may be performed by a laser annealing using a laser beam.
  • the SiC single crystal in the surface layer of the second main surface 63 is modified to form a Si amorphous layer.
  • the SiC semiconductor device 1 having the Si amorphous layer in the surface portion of the second main surface 4 of the SiC semiconductor layer 2 is manufactured.
  • a grinding mark and a Si amorphous layer coexist.
  • the ohmic property of the second main surface electrode layer 19 with respect to the second main surface 4 can be improved.
  • a plurality of SiC semiconductor devices 1 are cut out from SiC semiconductor wafer structure 61.
  • a tape-shaped support member 73 is attached to the second main surface 63 side.
  • an external force is applied to the line 53 to be cut from the second main surface 63 via the support member 73.
  • the external force to the cutting line 53 may be applied by a pressing member such as a blade.
  • the support member 73 may be attached to the first main surface 62 side. In this case, an external force may be applied to the cutting line 53 from the first main surface 62 via the support member 73.
  • the external force may be applied by a pressing member such as a blade.
  • the elastic supporting member 73 may be attached to the first main surface 62 side or the second main surface 63 side.
  • the SiC semiconductor wafer structure 61 may be cleaved by stretching the elastic support member 73 in the m-axis direction and the a-axis direction.
  • the SiC semiconductor wafer structure 61 is cleaved using the support member 73, it is preferable that the support member 73 be adhered to the second main surface 63 side with few obstacles. In this way, the SiC semiconductor wafer structure 61 is cleaved from the reforming line 70 along the line to be cut 53, and the plurality of SiC semiconductor devices 1 are separated from the single SiC semiconductor wafer structure 61 (SiC semiconductor wafer 41). It is cut out.
  • a portion of the reforming line 70 along the side 52A of each device forming region 51 becomes the reforming line 22A.
  • the portion of the reforming line 70 along the side 52B of each device forming region 51 becomes the reforming line 22B.
  • the portion of the reforming line 70 along the side 52C of each device forming region 51 becomes the reforming line 22C.
  • the portion of the reforming line 70 along the side 52D of each device forming region 51 becomes the reforming line 22D.
  • the plurality of reforming lines 70 on the side of the first scheduled cutting line 54 are formed so as to be alternately shifted to one side and the other side in the a-axis direction in a sectional view.
  • a straight line connecting at least two of the reforming lines 70 of the plurality of reforming lines 70 on the side of the first cutting scheduled line 54 is a direction opposite to the c-axis of the SiC single crystal from the normal line of the first main surface 62. It is inclined toward.
  • the SiC semiconductor wafer structure 61 is cleaved along the c-axis direction of the SiC single crystal at the first planned cutting line 54 and along a straight line connecting two adjacent modified lines 70. This suppresses the formation of inclined surfaces along the c-axis direction of the SiC single crystal on side surfaces 5A and 5C of chipped SiC semiconductor layer 2.
  • the step of grinding the SiC semiconductor wafer structure 61 was performed prior to the step of forming the reforming line 70 (the reforming lines 22A to 22D) (FIG. 10K).
  • the grinding step (FIG. 10J) of the SiC semiconductor wafer structure 61 is performed at an arbitrary timing after the step of preparing the SiC semiconductor wafer 41 (FIG. 10A) and before the step of forming the second main surface electrode layer 19 (FIG. 10L). Can be implemented.
  • the step of grinding the SiC semiconductor wafer structure 61 may be performed prior to the step of forming the SiC epitaxial layer 7 (FIG. 10A). Further, the grinding step (FIG. 10J) of the SiC semiconductor wafer structure 61 may be performed after the forming step (FIG. 10K) of the reforming line 70 (the reforming lines 22A to 22D).
  • the grinding step (FIG. 10J) of the SiC semiconductor wafer structure 61 includes a preparation step (FIG. 10A) of the SiC semiconductor wafer 41 and a forming step (FIG. 10K) of the reforming line 70 (the reforming lines 22A to 22D). It may be carried out a plurality of times at an arbitrary timing before.
  • the grinding step (FIG. 10J) of the SiC semiconductor wafer structure 61 is performed at an arbitrary timing after the step of preparing the SiC semiconductor wafer 41 (FIG. 10A) and before the step of forming the second main surface electrode layer 19 (FIG. 10L). May be implemented in plural times.
  • FIG. 11 is a perspective view showing a semiconductor package 74 in which the SiC semiconductor device 1 shown in FIG.
  • semiconductor package 74 is a so-called TO-220 type in this embodiment.
  • the semiconductor package 74 includes the SiC semiconductor device 1, a pad section 75, a heat sink 76, a plurality of (two in this embodiment) terminals 77, a plurality of (two in this embodiment) conductive wires 78, and a sealing resin 79.
  • the pad portion 75, the heat sink 76, and the plurality of terminals 77 form a lead frame as an example of an object to be connected.
  • the pad section 75 includes a metal plate.
  • the pad section 75 may include iron, gold, silver, copper, aluminum, and the like.
  • the pad section 75 is formed in a square shape in plan view.
  • Pad portion 75 has a plane area equal to or larger than the plane area of SiC semiconductor device 1.
  • SiC semiconductor device 1 is arranged on pad portion 75.
  • the second main surface electrode layer 19 of the SiC semiconductor device 1 is electrically connected to the pad portion 75 via the conductive bonding material 80.
  • the conductive bonding material 80 is interposed in a region between the second main surface electrode layer 19 and the pad portion 75.
  • the conductive bonding material 80 may be a metal paste or solder.
  • the metal paste may be a conductive paste containing Au (gold), Ag (silver), or Cu (copper).
  • the conductive bonding material 80 is preferably made of solder.
  • the solder may be a lead-free solder.
  • the solder may include at least one of SnAgCu, SnZnBi, SnCu, SnCuNi, and SnSbNi.
  • the heat sink 76 is connected to one side of the pad section 75.
  • the pad section 75 and the heat sink 76 are formed of a single metal plate.
  • the heat sink 76 has a through hole 76a.
  • the through hole 76a is formed in a circular shape.
  • the plurality of terminals 77 are arranged along the side of the pad portion 75 opposite to the heat sink 76.
  • the plurality of terminals 77 each include a metal plate.
  • the terminal 77 may include iron, gold, silver, copper, aluminum, and the like.
  • the plurality of terminals 77 include a first terminal 77A and a second terminal 77B.
  • the first terminal 77 ⁇ / b> A and the second terminal 77 ⁇ / b> B are arranged at intervals along the side of the pad portion 75 opposite to the heat sink 76.
  • the first terminal 77A and the second terminal 77B extend in a band along a direction orthogonal to the arrangement direction.
  • the plurality of conductive wires 78 may be bonding wires or the like.
  • the plurality of conductors 78 include a conductor 78A and a conductor 78B.
  • the conducting wire 78A is electrically connected to the first terminal 77A and the first main surface electrode layer 12 of the SiC semiconductor device 1. Thereby, the first terminal 77A is electrically connected to the first main surface electrode layer 12 of the SiC semiconductor device 1 via the conducting wire 78A.
  • the conducting wire 78B is electrically connected to the second terminal 77B and the pad portion 75.
  • the second terminal 77B is electrically connected to the second main surface electrode layer 19 of the SiC semiconductor device 1 via the conductive wire 78B.
  • the second terminal 77B may be formed integrally with the pad section 75.
  • the sealing resin 79 seals the SiC semiconductor device 1, the pad portion 75, and the plurality of conductive wires 78 so as to expose a part of the heat sink 76 and the plurality of terminals 77.
  • the sealing resin 79 is formed in a rectangular parallelepiped shape.
  • the form of the semiconductor package 74 is not limited to TO-220.
  • SOP Small Outline Package
  • QFN Quadrature Package
  • DFP Downlink Packet Packet Packet Packet Packet Packet Packet Packet Packet Packet Packet Packet Packet Packet Packet Packet Packet Packet Packet Packet Packet Packet Packet Packet Packe (Dual Flat Package), DIP (Dual Inline Package), QFP (Quad Flat Package), SIP (Single Inline Package) or SOJ (Small Outline J-leaded Package) or various forms similar to these may be applied.
  • FIG. 12 is a perspective view showing a transport state of the SiC semiconductor device 1 shown in FIG.
  • the SiC semiconductor device 1 is mounted on the pad portion 75 of the semiconductor package 74 using a semiconductor assembly device.
  • the transport process of the SiC semiconductor device 1 in the semiconductor assembling apparatus is performed by a pickup nozzle PN that sucks and holds the first main surface 3 of the SiC semiconductor layer 2.
  • FIG. 13 is a view for explaining the structure of the SiC semiconductor device 99 according to the reference example.
  • the SiC semiconductor device 99 has the same structure as the SiC semiconductor device 1 except that the side surfaces 5A and 5C of the SiC semiconductor layer 2 have inclined surfaces along the c-axis.
  • the same reference numerals are given to structures corresponding to structures described for SiC semiconductor device 1, and description thereof will be omitted.
  • the side surfaces 5A and 5C facing the a-plane of the SiC single crystal have physical properties of being cleaved with the c-axis of the SiC single crystal as a cleavage direction. Therefore, when a plurality of modified lines 70 (modified lines 22A and 22C) are formed along the c-axis of the SiC single crystal and the normal direction Z of the first main surface 3, the side surfaces 5A and 5C are formed of the SiC single crystal. It becomes an inclined surface along the c-axis of the crystal.
  • the apparent plane area S of the SiC semiconductor layer 2 increases by a plane integral corresponding to the inclined surface.
  • the apparent plane area S of the SiC semiconductor layer 2 is more specifically expressed by the following equations (1) and (2).
  • the suction by the pickup nozzle PN may be hindered by the side surfaces 5A and 5C (inclined surfaces) of the SiC semiconductor layer 2.
  • the pickup nozzle PN cannot properly hold the SiC semiconductor device 99, a pickup error occurs in the semiconductor assembly device.
  • the side surfaces 5A and 5C facing the a-plane of the SiC single crystal in the SiC semiconductor layer 2 have the following method when the normal of the first main surface 3 is 0 °. It has an angle ⁇ a smaller than the off angle ⁇ with respect to the line. More specifically, the angle ⁇ a is equal to or more than 0 ° and less than the off angle ⁇ (0 ° ⁇ ⁇ a ⁇ ).
  • the SiC semiconductor device 1 since “SI” in the above equation (1) can be reduced, it is possible to provide the SiC semiconductor device 1 that can suppress the pickup error in the semiconductor assembly device.
  • SiC semiconductor device 1 one or a plurality (one in this embodiment) of inclined portions inclined from the normal to first main surface 3 in the direction opposite to the c-axis of the SiC single crystal. Are introduced into the side surfaces 5A and 5C. This reduces the formation area of the inclined surface extending along the c-axis, so that “SI” in the above equation (1) can be reduced. As a result, it is possible to provide the SiC semiconductor device 1 that can suppress the pickup error in the semiconductor assembly device.
  • the reforming lines 22A and 22C formed on the side surfaces 5A and 5C are shifted from each other in the a-axis direction of the SiC single crystal in a cross-sectional view. More specifically, the plurality of reforming lines 22A, 22C are formed so as to be shifted from each other in the normal direction Z in a cross-sectional view, and are formed so as to be alternately shifted to one side and the other side in the a-axis direction. .
  • the distance DR in the a-axis direction between two adjacent reforming lines 22A and 22C is a value less than TL ⁇ tan ⁇ (0 ⁇ DR ⁇ TL ⁇ tan ⁇ ) using the off angle ⁇ and the thickness TL of the SiC semiconductor layer 2. It is.
  • the farthest distance DD of the reforming line 22A is a value less than TL ⁇ tan ⁇ (0 ⁇ DD ⁇ TL ⁇ tan ⁇ ).
  • the side surfaces 5A and 5C having the angle ⁇ a can be realized by the reforming lines 22A and 22C having six or less layers. Thereby, the time required for forming the reforming line 70 serving as the base of the reforming lines 22A and 22C can be reduced.
  • the SiC single crystal is easily broken along the nearest atom direction (see also FIG. 1 and FIG. 2) in a plan view of the c-plane (silicon surface) viewed from the c-axis, and along the crossing direction of the nearest atom direction. It has physical properties that it is hard to crack.
  • the closest atom direction is the a-axis direction and its equivalent direction.
  • the crystal plane along the nearest atom direction is the m-plane and its equivalent plane.
  • the cross direction of the closest atom direction is the m-axis direction and its equivalent direction.
  • the crystal plane along the crossing direction of the nearest atom direction is the a-plane and its equivalent plane.
  • the reforming line 70 since the crystal face along the nearest atom direction of the SiC single crystal has a relatively easy cracking property, the reforming line having a relatively large occupation ratio is relatively large.
  • the SiC single crystal can be appropriately cut (cleaved) without forming 70 (see also FIG. 10L). That is, in the forming process of the reforming line 70, the occupation ratio (the number of layers) of the reforming line 70 along the second cutting line 55 extending in the a-axis direction is changed along the first cutting line 54 extending in the m-axis direction. It can be smaller than the occupation ratio (the number of layers) of the reforming line 70.
  • a reforming line 70 having a relatively large occupation ratio (relatively large number of layers) is formed on the crystal plane of the SiC single crystal along the direction of the closest atomic direction.
  • inappropriate cutting (cleavage) of the SiC semiconductor wafer structure 61 can be suppressed, so that generation of cracks due to the physical properties of the SiC single crystal can be appropriately suppressed.
  • the occupation ratio and the number of layers of the modified lines 22A to 22D with respect to the side surfaces 5A to 5D can be adjusted by using the physical properties of the SiC single crystal. This makes it possible to appropriately reduce the area in which the reforming lines 22A to 22D are formed on the side surfaces 5A to 5D. Therefore, the influence on the SiC semiconductor layer 2 due to the reforming lines 22A to 22D can be reduced. Further, the time for forming the reforming line 70 can be reduced.
  • the influence on the SiC semiconductor layer 2 due to the reforming line includes a change in the electrical characteristics of the SiC semiconductor layer 2 due to the reforming line, generation of cracks in the SiC semiconductor layer 2 starting from the reforming line, and the like. Is exemplified. Fluctuations in the leakage current characteristics are exemplified as fluctuations in the electrical characteristics of the SiC semiconductor layer 2 caused by the reforming line.
  • the SiC semiconductor device may be sealed by a sealing resin 79 as shown in FIG.
  • a sealing resin 79 As shown in FIG.
  • movable ions in the sealing resin 79 enter the SiC semiconductor layer 2 via the reforming line.
  • the risk of current path formation due to such an external structure increases.
  • the SiC semiconductor wafer structure 61 (SiC semiconductor wafer 41) is performed, the reforming of a small number of layers (for example, 6 layers or less, preferably 3 layers or less) is performed.
  • the SiC semiconductor wafer structure 61 can be appropriately cleaved by the line 70 (the modified lines 22A to 22D).
  • the reforming line 70 (the reforming lines 22A to 22D) extends in the normal direction over the entire thickness direction of the SiC semiconductor wafer structure 61.
  • the SiC semiconductor wafer structure 61 (SiC semiconductor wafer 41) can be appropriately cleaved without being formed at intervals in Z.
  • SiC semiconductor device 1 includes SiC semiconductor layer 2 having a thickness TL of not less than 40 ⁇ m and not more than 200 ⁇ m. SiC semiconductor layer 2 having such a thickness TL can be appropriately cut out from SiC semiconductor wafer structure 61 (SiC semiconductor wafer 41).
  • the thickness TS of the SiC semiconductor substrate 6 may be 40 ⁇ m or more and 150 ⁇ m or less.
  • the thickness TE of the SiC epitaxial layer 7 may be 1 ⁇ m or more and 50 ⁇ m or less. Thinning the SiC semiconductor layer 2 is also effective in reducing the resistance value.
  • the reforming lines 22A to 22D are formed at an interval from the first main surface 3 to the second main surface 4 side. Stress is likely to concentrate at the corner connecting the first main surface 3 and the side surfaces 5A to 5D. Therefore, by forming the modified lines 22A to 22D at an interval from the corner connecting the first main surface 3 and the side surfaces 5A to 5D, the occurrence of cracks at the corner of the SiC semiconductor layer 2 can be appropriately suppressed. .
  • the modified lines 22A to 22D are formed on the SiC semiconductor substrate 6 avoiding the SiC epitaxial layer 7. That is, the reforming lines 22A to 22D expose the SiC epitaxial layer 7 on which the main part of the functional device (the Schottky barrier diode D in this embodiment) is formed. Thereby, the influence on the functional device caused by the reforming lines 22A to 22D can be appropriately reduced.
  • the reforming lines 22A to 22D are formed at an interval from the second main surface 4 to the first main surface 3 side. Stress is likely to concentrate at the corner connecting the second main surface 4 and the side surfaces 5A to 5D. Therefore, by forming the modified lines 22A to 22D at intervals from the corners connecting the second main surface 4 and the side surfaces 5A to 5D, the occurrence of cracks at the corners of the SiC semiconductor layer 2 can be appropriately suppressed. .
  • main surface insulating layer 10 and first main surface electrode layer 12 formed on first main surface 3 are included.
  • the main surface insulating layer 10 has insulating side surfaces 11A to 11D connected to the side surfaces 5A to 5D of the SiC semiconductor layer 2.
  • the main surface insulating layer 10 enhances insulation between the side surfaces 5A to 5D and the first main surface electrode layer 12 in the structure in which the modified lines 22A to 22D are formed.
  • the stability of the electrical characteristics of the SiC semiconductor layer 2 can be improved.
  • FIG. 14A is a perspective view showing the SiC semiconductor device 1 shown in FIG. 3, and is a perspective view showing a second embodiment of the reforming lines 22A to 22D.
  • the structures corresponding to the structures described for SiC semiconductor device 1 are denoted by the same reference numerals, and description thereof is omitted.
  • the reforming lines 22 ⁇ / b> B and 22 ⁇ / b> D according to the first embodiment are formed in a belt shape that extends linearly along the tangential direction of the first main surface 3.
  • the reforming lines 22 ⁇ / b> B and 22 ⁇ / b> D according to the second embodiment are formed in a belt-like shape extending downward from the first main surface 3 toward the second main surface 4.
  • the reforming lines 22B and 22D according to the second embodiment include a first end region 81, a second end region 82, and an inclined region 83, respectively.
  • the first end region 81 is located on the first main surface 3 side near the corner of the SiC semiconductor layer 2.
  • the second end region 82 is located closer to the second main surface 4 than the first end region 81 near the corner of the SiC semiconductor layer 2.
  • the inclined region 83 is inclined downward from a region between the first end region 81 and the second end region 82 from the first main surface 3 to the second main surface 4.
  • the inclination direction and the inclination angle of the reforming lines 22B and 22D are arbitrary, and are not limited to the form of FIG. 14A.
  • the reforming lines 22B and 22D according to the second embodiment are formed by adjusting the condensing portion (focal point) of the laser light in the forming process of the reforming line 70 (the reforming lines 22B and 22D) ( See also FIG. 10K). Even when the reforming lines 22B and 22D according to the second embodiment are formed, the same effect as when the reforming lines 22A to 22D according to the first embodiment are formed can be obtained.
  • cleavage start points can be formed in different regions in the thickness direction of the SiC semiconductor wafer structure 61 (SiC semiconductor wafer 41).
  • the SiC semiconductor wafer structure 61 can be appropriately cleaved even when the reforming lines 22B and 22D each having one layer are formed.
  • the reforming lines 22A and 22C may be formed in a belt-like shape that extends downward from the first main surface 3 toward the second main surface 4 like the reforming lines 22B and 22D. That is, the reforming lines 22A and 22C may include the first end region 81, the second end region 82, and the inclined region 83, respectively. However, since it is premised that a plurality of the reforming lines 22A and 22C are formed on the side surfaces 5A and 5C, there is little need to perform control to intentionally incline the reforming line 70 during laser beam irradiation.
  • FIG. 14B is a perspective view showing the SiC semiconductor device 1 shown in FIG. 3, and is a perspective view showing a third embodiment of the reforming lines 22A to 22D.
  • the structures corresponding to the structures described for SiC semiconductor device 1 are denoted by the same reference numerals, and description thereof is omitted.
  • the reforming lines 22 ⁇ / b> B and 22 ⁇ / b> D according to the first embodiment are formed in a belt shape that extends linearly along the tangential direction of the first main surface 3.
  • the reforming lines 22 ⁇ / b> B and 22 ⁇ / b> D according to the third embodiment are formed in a strip shape extending in a curved (curved) shape from the first main surface 3 toward the second main surface 4. ing.
  • the reforming lines 22B and 22D according to the third embodiment include a first end region 84, a second end region 85, and a curved region 86, respectively.
  • the first end region 84 is located on the first main surface 3 side near the corner of the SiC semiconductor layer 2.
  • the second end region 85 is located closer to the second main surface 4 than the first end region 84 near the corner of the SiC semiconductor layer 2.
  • the curved region 86 is inclined downward in a concave curved manner from the first main surface 3 to the second main surface 4, and connects the first end region 84 and the second end region 85.
  • the inclination direction and the inclination angle of the reforming lines 22B and 22D are arbitrary, and are not limited to the form of FIG. 14B.
  • the reforming lines 22B and 22D according to the third embodiment are formed by adjusting a laser beam condensing portion (focal point) and the like in a process of forming the reforming line 70 (the reforming lines 22B and 22D) ( See also FIG. 10K). Even when the reforming lines 22B and 22D according to the third embodiment are formed, the same effects as when the reforming lines 22A to 22D according to the first embodiment are formed can be obtained.
  • cleavage start points can be formed in different regions in the thickness direction of the SiC semiconductor wafer structure 61 (SiC semiconductor wafer 41).
  • the SiC semiconductor wafer structure 61 can be appropriately cleaved even when the reforming lines 22B and 22D each having one layer are formed.
  • the reforming lines 22A and 22C may be inclined downward in a concave curve from the first main surface 3 to the second main surface 4 similarly to the reforming lines 22B and 22D. That is, the reforming lines 22A and 22C may include the first end region 84, the second end region 85, and the curved region 86, respectively. However, since it is premised that a plurality of the reforming lines 22A and 22C are formed on the side surfaces 5A and 5C, there is little need to perform control to intentionally incline the reforming line 70 during laser beam irradiation.
  • FIG. 14C is a perspective view showing the SiC semiconductor device 1 shown in FIG. 3, and is a perspective view showing a fourth embodiment of the reforming lines 22A to 22D.
  • the structures corresponding to the structures described for SiC semiconductor device 1 are denoted by the same reference numerals, and description thereof is omitted.
  • the reforming lines 22 ⁇ / b> B and 22 ⁇ / b> D according to the first embodiment are formed in a belt shape that extends linearly along the tangential direction of the first main surface 3.
  • the reforming lines 22 ⁇ / b> B and 22 ⁇ / b> D according to the fourth embodiment are formed in a belt-like shape that extends in a curved (curved) shape from the first main surface 3 toward the second main surface 4. ing.
  • the reforming lines 22B and 22D according to the third embodiment include a first end region 84, a second end region 85, and a curved region 86, respectively.
  • the first end region 84 is located on the first main surface 3 side near the corner of the SiC semiconductor layer 2.
  • the second end region 85 is located closer to the second main surface 4 than the first end region 84 near the corner of the SiC semiconductor layer 2.
  • the curved region 86 is inclined downward in a convex curve from the second main surface 4 toward the first main surface 3, and connects the first end region 84 and the second end region 85.
  • the inclination directions and the inclination angles of the reforming lines 22B and 22D are arbitrary, and are not limited to the form of FIG. 14C.
  • the reforming lines 22B and 22D according to the fourth embodiment are formed by adjusting the condensing portion (focal point) of the laser light in the forming process of the reforming line 70 (the reforming lines 22B and 22D) ( See also FIG. 10K). Even when the reforming lines 22B and 22D according to the fourth embodiment are formed, the same effects as when the reforming lines 22A to 22D according to the first embodiment are formed can be obtained.
  • cleavage start points can be formed in different regions in the thickness direction of the SiC semiconductor wafer structure 61 (SiC semiconductor wafer 41).
  • the SiC semiconductor wafer structure 61 can be appropriately cleaved even when the reforming lines 22B and 22D each having one layer are formed.
  • the reforming lines 22A and 22C may be inclined downward in a convex curve from the second main surface 4 to the first main surface 3 similarly to the reforming lines 22B and 22D. That is, the reforming lines 22A and 22C may include the first end region 84, the second end region 85, and the curved region 86, respectively. However, since it is premised that a plurality of the reforming lines 22A and 22C are formed on the side surfaces 5A and 5C, there is little need to perform control to intentionally incline the reforming line 70 during laser beam irradiation.
  • FIG. 14D is a perspective view showing the SiC semiconductor device 1 shown in FIG. 3, and is a perspective view showing a fifth embodiment of the reforming lines 22A to 22D.
  • the structures corresponding to the structures described for SiC semiconductor device 1 are denoted by the same reference numerals, and description thereof is omitted.
  • the reforming lines 22 ⁇ / b> B and 22 ⁇ / b> D according to the first embodiment are formed in a belt shape that extends linearly along the tangential direction of the first main surface 3.
  • the reforming lines 22 ⁇ / b> B and 22 ⁇ / b> D according to the fifth embodiment are formed in a belt shape extending in a curved shape (curved shape) meandering toward the first main surface 3 and the second main surface 4.
  • the reforming lines 22B and 22D according to the fifth embodiment include a plurality of first regions 87, a plurality of second regions 88, and a plurality of connection regions 89, respectively.
  • the plurality of first regions 87 are located in the region on the first main surface 3 side.
  • the plurality of second regions 88 are located on the second main surface 4 side with respect to the plurality of first regions 87.
  • the plurality of curved regions 86 connect the corresponding first region 87 and corresponding second region 88, respectively.
  • the meandering cycle of the reforming lines 22B and 22D is arbitrary.
  • the reforming lines 22 ⁇ / b> B and 22 ⁇ / b> D may be formed in a single band shape extending in a concavely curved shape from the first main surface 3 to the second main surface 4.
  • the reforming lines 22B and 22D may include two first regions 87, one second region 88, and two connection regions 89, respectively.
  • the reforming lines 22 ⁇ / b> B and 22 ⁇ / b> D may be formed in a single band shape that extends in a convex curve from the second main surface 4 to the first main surface 3.
  • the reforming lines 22B and 22D may include one first region 87, two second regions 88, and two connection regions 89, respectively.
  • the reforming lines 22B and 22D according to the fifth embodiment are formed by adjusting the condensing portion (focal point) of the laser light in the forming process of the reforming line 70 (the reforming lines 22B and 22D) ( See also FIG. 10K). Even when the reforming lines 22B and 22D according to the fifth embodiment are formed, the same effect as when the reforming lines 22A to 22D according to the first embodiment are formed can be obtained.
  • cleavage start points can be formed in different regions in the thickness direction of the SiC semiconductor wafer structure 61 (SiC semiconductor wafer 41).
  • the SiC semiconductor wafer structure 61 can be appropriately cleaved even when the reforming lines 22B and 22D each having one layer are formed.
  • the reforming lines 22A and 22C may be formed in a belt shape extending in a curved shape (curved shape) meandering toward the first main surface 3 and the second main surface 4. Good. That is, the reforming lines 22A and 22C may include the first region 87, the second region 88, and the connection region 89, respectively. However, since it is premised that a plurality of the reforming lines 22A and 22C are formed on the side surfaces 5A and 5C, there is little need to perform control to intentionally meander the reforming line 70 during laser beam irradiation.
  • SiC semiconductor device 1 containing at least two of the above may be formed.
  • the features of the reforming lines 22A to 22D according to the first to fifth embodiments can be combined between them in any mode and in any mode. That is, the reforming lines 22A to 22D having a form in which at least two of the characteristics of the reforming lines 22A to 22D according to the first to fifth embodiments are combined may be employed.
  • the structures of the reforming lines 22A to 22D according to the sixth to thirteenth embodiments will be described with reference to FIGS. 14E to 14M.
  • the SiC semiconductor device 1 that can reduce the influence on the SiC semiconductor layer 2 due to the reforming lines 22A to 22D is provided.
  • FIG. 14E is a perspective view of the SiC semiconductor device 1 shown in FIG. 3 as viewed from one angle, and is a perspective view showing a sixth embodiment of the reforming lines 22A to 22D.
  • FIG. 14F is a perspective view of the SiC semiconductor device 1 shown in FIG. 14E as viewed from another angle.
  • side surface 5A and side surface 5C are in the c-axis direction ([0001] direction) of the SiC single crystal with respect to the normal, with reference to the normal of first main surface 3.
  • An inclined surface inclined toward may be formed.
  • the side surface 5A and the side surface 5C may be inclined at an angle corresponding to the off angle ⁇ with respect to the normal line of the first main surface 3 when the normal line of the first main surface 3 is 0 °. .
  • the angle corresponding to the off angle ⁇ may be equal to the off angle ⁇ , or may be an angle exceeding 0 ° and less than the off angle ⁇ .
  • the reforming line 22A has one or more (two or more layers, in this embodiment, two layers) formed on the side surface 5A.
  • the reforming line 22C has one or more (two or more layers, in this embodiment, two layers) formed on the side surface 5C.
  • the reforming line 22B has one or more layers (two or more layers, one layer in this embodiment) formed on the side surface 5B.
  • the reforming line 22D has one or more layers (two or more layers, one layer in this embodiment) formed on the side surface 5D. It is preferable that the number of layers of the reforming lines 22B and 22D is less than the number of layers of the reforming lines 22A and 22C.
  • the reforming lines 22A to 22D extend in a belt shape along the tangential direction of the first main surface 3.
  • the tangent direction of the first main surface 3 is a direction orthogonal to the normal direction Z.
  • the tangential direction includes a first direction X (m-axis direction of the SiC single crystal) and a second direction Y (a-axis direction of the SiC single crystal).
  • the plurality of reforming lines 22A are each formed in a strip shape extending linearly along the m-axis direction on the side surface 5A.
  • the plurality of reforming lines 22A are formed so as to be shifted from each other in the normal direction Z.
  • the plurality of reforming lines 22A may overlap each other in the normal direction Z.
  • the plurality of reforming lines 22A may be formed at intervals in the normal direction Z.
  • the plurality of reforming lines 22A each have a thickness TR in the normal direction Z.
  • the thicknesses TR of the plurality of reforming lines 22A may be equal to each other or may be different from each other.
  • the total value Tall of the plurality of reforming lines 22A determines the total thickness Tall of the plurality of reforming lines 22A.
  • the one-layer reforming line 22B is formed in a strip shape extending linearly along the a-axis direction on the side surface 5B.
  • the single-layer reforming line 22B has a thickness TR in the normal direction Z.
  • the total thickness Tall of the reforming line 22B is determined by the thickness TR of the single-layer reforming line 22B.
  • a plurality of reforming lines 22B may be formed on the side surface 5B.
  • the plurality of reforming lines 22B are formed to be shifted from each other in the normal direction Z.
  • the plurality of reforming lines 22B may overlap each other in the normal direction Z.
  • the plurality of reforming lines 22B may be formed at intervals in the normal direction Z.
  • the plurality of reforming lines 22B each have a thickness TR in the normal direction Z.
  • the thicknesses TR of the plurality of reforming lines 22B may be equal to each other or may be different from each other.
  • the total value Tall of the plurality of reforming lines 22B determines the total thickness Tall of the plurality of reforming lines 22B.
  • the plurality of reforming lines 22C are each formed in a strip shape extending linearly along the m-axis direction on the side surface 5C.
  • the plurality of reforming lines 22C are formed so as to be shifted from each other in the normal direction Z.
  • the plurality of reforming lines 22C may overlap each other in the normal direction Z.
  • the plurality of reforming lines 22C may be formed at intervals in the normal direction Z.
  • the plurality of reforming lines 22C each have a thickness TR in the normal direction Z.
  • the thicknesses TR of the plurality of reforming lines 22C may be equal to each other or may be different from each other.
  • the total value Tall of the plurality of reforming lines 22C determines the total thickness Tall of the plurality of reforming lines 22C.
  • the reforming line 22D of one layer is formed in a strip shape extending linearly along the a-axis direction on the side surface 5D.
  • the single-layer reforming line 22D has a thickness TR in the normal direction Z.
  • the total thickness Tall of the reforming line 22D is determined by the thickness TR of the single-layer reforming line 22D.
  • a plurality of reforming lines 22D may be formed on the side surface 5D.
  • the plurality of reforming lines 22D are formed shifted from each other in the normal direction Z.
  • the plurality of reforming lines 22D may overlap each other in the normal direction Z.
  • the plurality of reforming lines 22D may be formed at intervals in the normal direction Z.
  • the plurality of reforming lines 22D each have a thickness TR in the normal direction Z.
  • the thicknesses TR of the plurality of reforming lines 22D may be equal to each other or may be different from each other.
  • the total thickness Tall of the plurality of reforming lines 22D is determined by the total value of the thicknesses TR of the plurality of reforming lines 22D.
  • the thicknesses TR of the reforming lines 22A to 22D may be equal to each other or may be different from each other.
  • the total thickness Tall of the reforming lines 22A and 22C may be equal to each other or may be different from each other.
  • the total thickness Tall of the reforming lines 22B and 22D may be equal to each other or may be different from each other.
  • the total thickness Tall of the reforming lines 22A to 22D is preferably equal to or less than the thickness TL of the SiC semiconductor layer 2 (TR ⁇ TL). More preferably, the total thickness Tall is less than the thickness TS of the SiC semiconductor substrate 6 (TR ⁇ TS). The total thickness Tall may be each equal to or larger than the thickness TE of the SiC epitaxial layer 7 (TR ⁇ TE).
  • the ratio Tall / TL of the total thickness Tall to the thickness TL of the SiC semiconductor layer 2 is preferably 0.1 or more and less than 1.0.
  • the ratio Tall / TL is from 0.1 to 0.2, from 0.2 to 0.4, from 0.4 to 0.6, from 0.6 to 0.8, or from 0.8 to 1. It may be less than zero.
  • the ratio Tall / TL is 0.1 or more and 0.2 or less, 0.2 or more and 0.3 or less, 0.3 or more and 0.4 or less, 0.4 or more and 0.5 or less, and 0.5 or more and 0.5 or more, respectively. It may be 6 or less, 0.6 or more and 0.7 or less, 0.7 or more and 0.8 or less, 0.8 or more and 0.9 or less, or 0.9 or more and less than 1.0.
  • the ratio Tall / TL is preferably 0.2 or more and 0.5 or less.
  • the ratio Tall / TS of the total thickness Tall to the thickness TS of the SiC semiconductor substrate 6 is more preferably 0.1 or more and less than 1.0.
  • the ratio Tall / TS is 0.1 or more and 0.2 or less, 0.2 or more and 0.4 or less, 0.4 or more and 0.6 or less, 0.6 or more and 0.8 or less, or 0.8 or more, respectively. It may be less than 1.0.
  • the ratio Tall / TS is 0.1 or more and 0.2 or less, 0.2 or more and 0.3 or less, 0.3 or more and 0.4 or less, 0.4 or more and 0.5 or less, and 0.5 or more and 0.5 or more, respectively. It may be 6 or less, 0.6 or more and 0.7 or less, 0.7 or more and 0.8 or less, 0.8 or more and 0.9 or less, or 0.9 or more and less than 1.0.
  • the ratio Tall / TS is preferably 0.2 or more and 0.5 or less, respectively.
  • the reforming lines 22A to 22D are formed at an interval from the first main surface 3 to the second main surface 4 side.
  • the reforming lines 22A to 22D expose the surface layer of the first main surface 3 from the side surfaces 5A to 5D. That is, the modified lines 22A to 22D are not formed in the main surface insulating layer 10, the passivation layer 13, and the resin layer 16.
  • the reforming lines 22A to 22D are formed at an interval from the second main surface 4 to the first main surface 3 side.
  • the reforming lines 22A to 22D expose the surface portion of the second main surface 4 from the side surfaces 5A to 5D.
  • the reforming lines 22A to 22D are formed on the SiC semiconductor substrate 6.
  • the reforming lines 22A to 22D are formed at intervals from the boundary between the SiC semiconductor substrate 6 and the SiC epitaxial layer 7 to the second main surface 4 side.
  • the reforming lines 22A to 22D expose the SiC epitaxial layer 7 in the surface portion of the first main surface 3.
  • the reforming line 22A and the reforming line 22B may be connected to each other at a corner connecting the side surface 5A and the side surface 5B.
  • the reforming line 22B and the reforming line 22C may be connected to each other at a corner connecting the side surface 5B and the side surface 5C.
  • the reforming line 22C and the reforming line 22D may be connected to each other at a corner connecting the side surface 5C and the side surface 5D.
  • the reforming line 22D and the reforming line 22A may be connected to each other at a corner connecting the side surface 5D and the side surface 5A.
  • the reforming lines 22A to 22D may be integrally formed so as to surround the SiC semiconductor layer 2.
  • the reforming lines 22A to 22D may form one endless (annular) reforming line surrounding the SiC semiconductor layer 2 on the side surfaces 5A to 5D.
  • the reforming lines 22A to 22D are formed with different occupation ratios RA, RB, RC, and RD on the side surfaces 5A to 5D.
  • the occupation ratio RA is a ratio of the reforming line 22A occupying the side surface 5A.
  • the exclusive ratio RB is a ratio of the reforming line 22B occupying the side surface 5B.
  • the exclusive ratio RC is a ratio of the reforming line 22C occupying the side surface 5C.
  • the exclusive ratio RD is a ratio of the reforming line 22D to the side surface 5D.
  • the occupation ratios RA to RD differ more specifically according to the crystal plane of the SiC single crystal.
  • the occupancy ratio RB, RD of the modified lines 22B, 22D formed on the m-plane of the SiC single crystal is less than the occupation ratio RA, RC (RB, RC) of the modified lines 22A, 22C formed on the a-plane of the SiC single crystal.
  • RD ⁇ RA, RC The occupation ratios RB and RD are more specifically less than the occupation ratios RA and RC (RB, RD ⁇ RA, RC).
  • the occupation ratios RA and RC of the reforming lines 22A and 22C may be equal to each other or may be different from each other.
  • the occupation ratios RB, RD of the reforming lines 22B, 22D may be equal to each other or may be different from each other.
  • the occupancy ratios RA to RD are adjusted by the number of layers of the reforming lines 22A to 22D, the total thickness Tall, the total surface area, and the like.
  • the occupation ratio RA to RD (total thickness Tall and total surface area) of the reforming lines 22A to 22D is adjusted by adjusting the number of layers of the reforming lines 22A to 22D having the same thickness TR. Has been adjusted.
  • the number of layers in the reforming lines 22B and 22D is less than the number of layers in the reforming lines 22A and 22C.
  • the total thickness Tall of the reforming lines 22B and 22D is smaller than the total thickness Tall of the reforming lines 22A and 22C.
  • the total surface area of the reforming lines 22B and 22D is smaller than the total surface area of the reforming lines 22A and 22C.
  • the number of layers of the reforming lines 22B and 22D may be set to be equal to or greater than the number of layers of the reforming lines 22A and 22C, respectively.
  • the thickness TR of the reforming lines 22B and 22D may be set to be equal to or greater than the thickness TR of the reforming lines 22A and 22C, respectively.
  • the reforming lines 22A to 22D include a laser beam condensing portion (focus), laser energy, a pulse duty ratio, and an irradiation speed in the process of forming the reforming line 70 (the reforming lines 22A to 22D). (See also FIG. 10K).
  • SiC semiconductor device 1 includes modified lines 22A to 22D having different occupation ratios RA to RD depending on the crystal planes of the SiC single crystal. More specifically, the exclusive ratios RB and RD of the modified lines 22B and 22D formed on the m-plane of the SiC single crystal are the exclusive ratios RA of the modified lines 22A and 22C formed on the a-plane of the SiC single crystal. , RC or less (RB, RD ⁇ RA, RC). The occupancy ratios RB and RD are more specifically less than the occupation ratios RA and RC (RB, RD ⁇ RA, RC).
  • the SiC single crystal is easily broken along the nearest atom direction (see also FIG. 1 and FIG. 2) in a plan view of the c-plane (silicon surface) viewed from the c-axis, and along the crossing direction of the nearest atom direction. It has physical properties that it is hard to crack.
  • the closest atom direction is the a-axis direction and its equivalent direction.
  • the crystal plane along the nearest atom direction is the m-plane and its equivalent plane.
  • the crossing direction of the closest atom direction is the m-axis direction and its equivalent direction.
  • the crystal plane along the crossing direction of the closest atom direction is the a-plane and its equivalent plane.
  • the reforming line 70 since the crystal face along the nearest atom direction of the SiC single crystal has a relatively easy cracking property, the reforming line having a relatively large occupation ratio is relatively large.
  • the SiC single crystal can be appropriately cut (cleaved) without forming 70 (see also FIG. 10L). That is, in the forming process of the reforming line 70, the occupation ratio of the reforming line 70 along the second scheduled cutting line 55 extending in the a-axis direction is changed to the reforming line 70 along the first scheduled cutting line 54 extending in the m-axis direction. Can be smaller than the occupancy ratio.
  • a reforming line 70 having a relatively large occupation ratio is formed on the crystal plane of the SiC single crystal along the direction intersecting the closest atomic direction.
  • the number of layers of the modified lines 22B and 22D formed on the m-plane of the SiC single crystal is changed to the number of layers formed on the a-plane of the SiC single crystal. It is less than the number of layers of the quality lines 22A and 22C.
  • the SiC single crystal is easily broken along the nearest atom direction (see also FIG. 1 and FIG. 2) in a plan view of the c-plane (silicon surface) viewed from the c-axis, and along the crossing direction of the nearest atom direction. It has physical properties that it is hard to crack.
  • the closest atom direction is the a-axis direction and its equivalent direction.
  • the crystal plane along the nearest atom direction is the m-plane and its equivalent plane.
  • the cross direction of the closest atom direction is the m-axis direction and its equivalent direction.
  • the crystal plane along the crossing direction of the closest atom direction is the a-plane and its equivalent plane.
  • the SiC single crystal is appropriately cut (cleaved) without increasing the number of layers of the modified line 70 on the crystal plane along the nearest atom direction of the SiC single crystal. )it can. That is, in the forming process of the reforming line 70, the number of layers of the reforming line 70 along the second cut line 55 extending in the a-axis direction is changed to the reforming line 70 along the first cut line 54 extending in the m-axis direction. Less than the number of layers.
  • a relatively large number of reforming lines 70 are formed on the crystal plane of the SiC single crystal along the direction of the closest atomic direction.
  • the SiC semiconductor wafer structure 61 can be appropriately cut (cleaved), so that generation of cracks due to the physical properties of the SiC single crystal can be appropriately suppressed.
  • the occupation ratios RA to RD and the number of layers of the modified lines 22A to 22D with respect to the side surfaces 5A to 5D are determined by using the physical properties of the SiC single crystal. Can be adjusted. This makes it possible to appropriately reduce the area in which the reforming lines 22A to 22D are formed on the side surfaces 5A to 5D. Therefore, the influence on the SiC semiconductor layer 2 due to the reforming lines 22A to 22D can be reduced. Further, the time for forming the reforming line 70 can be reduced.
  • the influence on the SiC semiconductor layer 2 due to the reforming line includes a change in the electrical characteristics of the SiC semiconductor layer 2 due to the reforming line, generation of cracks in the SiC semiconductor layer 2 starting from the reforming line, and the like. Is exemplified. Fluctuations in the leakage current characteristics are exemplified as fluctuations in the electrical characteristics of the SiC semiconductor layer 2 caused by the reforming line.
  • the SiC semiconductor device may be sealed by a sealing resin 79 as shown in FIG.
  • a sealing resin 79 As shown in FIG.
  • movable ions in the sealing resin 79 enter the SiC semiconductor layer 2 via the reforming line.
  • the risk of current path formation due to such an external structure increases.
  • the SiC semiconductor wafer structure 61 can be appropriately cleaved.
  • the plurality of modified lines 22B and 22D are not formed at intervals in the normal direction Z.
  • the SiC semiconductor wafer structure 61 SiC semiconductor wafer 41
  • the SiC semiconductor wafer structure 61 SiC semiconductor wafer 41
  • the influence on the SiC semiconductor layer 2 due to the reforming lines 22A to 22D can be further reduced.
  • the time for forming the reforming line 70 can be reduced.
  • SiC semiconductor device 1 preferably includes SiC semiconductor layer 2 having a thickness TL of not less than 40 ⁇ m and not more than 200 ⁇ m. SiC semiconductor layer 2 having such a thickness TL can be appropriately cut from SiC semiconductor wafer structure 61 (SiC semiconductor wafer 41).
  • the thickness TS of the SiC semiconductor substrate 6 may be 40 ⁇ m or more and 150 ⁇ m or less.
  • the thickness TE of the SiC epitaxial layer 7 may be 1 ⁇ m or more and 50 ⁇ m or less. Thinning the SiC semiconductor layer 2 is also effective in reducing the resistance value.
  • the reforming lines 22A to 22D are formed at an interval from the first main surface 3 to the second main surface 4 side. Stress is likely to concentrate at the corner connecting the first main surface 3 and the side surfaces 5A to 5D. Therefore, by forming the modified lines 22A to 22D at an interval from the corner connecting the first main surface 3 and the side surfaces 5A to 5D, the occurrence of cracks at the corner of the SiC semiconductor layer 2 can be appropriately suppressed. .
  • the modified lines 22A to 22D are formed on the SiC semiconductor substrate 6 so as to avoid the SiC epitaxial layer 7. That is, the reforming lines 22A to 22D expose the SiC epitaxial layer 7 on which the main part of the functional device (the Schottky barrier diode D in this embodiment) is formed. Thereby, the influence on the functional device caused by the reforming lines 22A to 22D can be appropriately reduced.
  • the reforming lines 22A to 22D are formed at an interval from the second main surface 4 to the first main surface 3 side. Stress is likely to concentrate at the corner connecting the second main surface 4 and the side surfaces 5A to 5D. Therefore, by forming the modified lines 22A to 22D at intervals from the corners connecting the second main surface 4 and the side surfaces 5A to 5D, the occurrence of cracks at the corners of the SiC semiconductor layer 2 can be appropriately suppressed. .
  • the SiC semiconductor device 1 (see FIGS. 14E and 14F) includes a main surface insulating layer 10 and a first main surface electrode layer 12 formed on the first main surface 3.
  • the main surface insulating layer 10 has insulating side surfaces 11A to 11D connected to the side surfaces 5A to 5D of the SiC semiconductor layer 2.
  • the main surface insulating layer 10 enhances insulation between the side surfaces 5A to 5D and the first main surface electrode layer 12 in the structure in which the modified lines 22A to 22D are formed.
  • the stability of the electrical characteristics of the SiC semiconductor layer 2 can be improved.
  • FIG. 14G is a perspective view showing the SiC semiconductor device 1 shown in FIG. 3, and is a perspective view showing a seventh embodiment of the reforming lines 22A to 22D.
  • the structures corresponding to the structures described for SiC semiconductor device 1 are denoted by the same reference numerals, and description thereof is omitted.
  • a plurality of reforming lines 22A and 22C and a single-layer reforming line 22B and 22D are formed.
  • a plurality of reforming lines 22A to 22D are formed under the condition that the exclusive ratios RB and RD are less than the exclusive ratios RA and RC (RB, RD ⁇ RA, RC). Have been.
  • a plurality (three layers in this embodiment) of reforming lines 22A and 22C are formed, and a plurality (two layers in this embodiment) of reforming lines 22B and 22D less than the number of layers of the reforming lines 22A and 22C are formed. Is formed.
  • the reforming lines 22A to 22D according to the seventh embodiment are formed by adjusting a condensing portion (focal point) of a laser beam in a process of forming the reforming line 70 (the reforming lines 22A to 22D) ( See also FIG. 10K).
  • the reforming lines 22A to 22D according to the seventh embodiment are formed, the same effect as when the reforming lines 22A to 22D according to the sixth embodiment are formed can be obtained.
  • the reforming lines 22A to 22D according to the sixth embodiment are more preferable from the viewpoint of the time required for forming the reforming line 70 (the reforming lines 22A to 22D).
  • FIG. 14H is a perspective view showing the SiC semiconductor device 1 shown in FIG. 3, and is a perspective view showing an eighth embodiment of the reforming lines 22A to 22D.
  • the structures corresponding to the structures described for SiC semiconductor device 1 are denoted by the same reference numerals, and description thereof is omitted.
  • a plurality of reforming lines 22A and 22C and a single-layer reforming line 22B and 22D are formed.
  • the side surfaces 5A to 5D are one-to-one.
  • the reforming lines 22A to 22D are formed one by one.
  • the thickness TR of the reforming lines 22B and 22D is less than the thickness TR of the reforming lines 22A and 22C.
  • the reforming lines 22A to 22D according to the eighth embodiment are formed by adjusting the condensing portion (focal point) of the laser light in the process of forming the reforming line 70 (the reforming lines 22A to 22D) ( See also FIG. 10K).
  • the reforming lines 22A to 22D according to the eighth embodiment are formed, the same effect as when the reforming lines 22A to 22D according to the sixth embodiment are formed can be obtained.
  • the reforming line 70 since it is not necessary to form a plurality of reforming lines 22A to 22D along the normal direction Z, the reforming line 70 (the reforming line 22A To 22D) can be further shortened.
  • FIG. 14I is a perspective view showing the SiC semiconductor device 1 shown in FIG. 3, and is a perspective view showing a ninth embodiment of the reforming lines 22A to 22D.
  • the structures corresponding to the structures described for SiC semiconductor device 1 are denoted by the same reference numerals, and description thereof is omitted.
  • a plurality of reforming lines 22A and 22C and a single-layer reforming line 22B and 22D are formed.
  • the plurality of reforming lines 22A to 22D are formed under the condition that the occupation ratios RB and RD are less than the occupation ratios RA and RC (RB, RD ⁇ RA, RC). Have been.
  • a plurality of (two layers in this embodiment) reforming lines 22A and 22C are formed, and a plurality (four layers in this embodiment) of reforming lines 22B and 22D equal to or more than the number of the reforming lines 22A and 22C are formed. Is formed.
  • the number of layers in the reforming lines 22B and 22D may be the same as the number of layers in the reforming lines 22A and 22C.
  • the thickness TR of each reforming line 22B, 22D is less than the thickness TR of each reforming line 22A, 22C.
  • the reforming lines 22A to 22D according to the ninth embodiment are formed by adjusting the condensing portion (focal point) of the laser light in the process of forming the reforming line 70 (the reforming lines 22A to 22D) ( See also FIG. 10K).
  • the reforming lines 22A to 22D according to the ninth embodiment are formed, the same effect as when the reforming lines 22A to 22D according to the sixth embodiment are formed can be obtained.
  • the reforming lines 22A to 22D according to the sixth embodiment are more preferable from the viewpoint of the time required for forming the reforming line 70 (the reforming lines 22A to 22D).
  • FIG. 14J is a perspective view showing the SiC semiconductor device 1 shown in FIG. 3, and is a perspective view showing a tenth embodiment of the reforming lines 22A to 22D.
  • the structures corresponding to the structures described for SiC semiconductor device 1 are denoted by the same reference numerals, and description thereof is omitted.
  • the reforming lines 22 ⁇ / b> B and 22 ⁇ / b> D according to the sixth embodiment are formed in a strip shape that extends linearly along the tangential direction of the first main surface 3.
  • the reforming lines 22 ⁇ / b> B and 22 ⁇ / b> D according to the tenth embodiment are formed in a belt shape inclined downward from the first main surface 3 to the second main surface 4.
  • the reforming lines 22B and 22D according to the tenth embodiment include a first end region 81, a second end region 82, and an inclined region 83, respectively.
  • the first end region 81 is located on the first main surface 3 side near the corner of the SiC semiconductor layer 2.
  • the second end region 82 is located closer to the second main surface 4 than the first end region 81 near the corner of the SiC semiconductor layer 2.
  • the inclined region 83 is linearly inclined downward from the first main surface 3 toward the second main surface 4 in a region between the first end region 81 and the second end region 82.
  • the inclined region 83 may be inclined downwardly in a concavely curved shape (curved shape) from the first main surface 3 toward the second main surface 4.
  • the inclined region 83 may be inclined downward from the first main surface 3 toward the second main surface 4 in a convexly curved shape (curved shape).
  • the reforming lines 22A and 22C are formed in a strip shape extending linearly along the tangential direction of the first main surface 3.
  • the reforming lines 22A and 22C may be formed in a belt shape inclined downward from the first main surface 3 toward the second main surface 4. That is, the reforming lines 22A and 22C may also include the first end region 81, the second end region 82, and the inclined region 83, respectively.
  • the reforming lines 22A to 22D according to the tenth embodiment are formed by adjusting the condensing portion (focal point) of the laser beam in the forming process of the reforming line 70 (the reforming lines 22A to 22D) ( See also FIG. 10K).
  • cleavage start points can be formed in different regions in the thickness direction of the SiC semiconductor wafer structure 61 (SiC semiconductor wafer 41).
  • SiC semiconductor wafer structure 61 can be appropriately cleaved even when the reforming lines 22B and 22D each having one layer are formed.
  • FIG. 14K is a perspective view showing the SiC semiconductor device 1 shown in FIG. 3, and is a perspective view showing an eleventh embodiment of the reforming lines 22A to 22D.
  • the structures corresponding to the structures described for SiC semiconductor device 1 are denoted by the same reference numerals, and description thereof is omitted.
  • the reforming lines 22 ⁇ / b> B and 22 ⁇ / b> D according to the sixth embodiment are formed in a strip shape that extends linearly along the tangential direction of the first main surface 3.
  • the reforming lines 22 ⁇ / b> B and 22 ⁇ / b> D according to the eleventh embodiment are formed in a belt shape inclined downward from the first main surface 3 to the second main surface 4. More specifically, the reforming lines 22B and 22D according to the eleventh embodiment include a first end region 81, a second end region 82, and an inclined region 83, respectively.
  • the first end region 81 is located on the first main surface 3 side near one corner of the SiC semiconductor layer 2.
  • the first end region 81 extends linearly along the tangential direction of the first main surface 3.
  • the second end region 82 is located closer to the second main surface 4 than the first end region 81 near the other corner of the SiC semiconductor layer 2.
  • the second end region 82 extends linearly along the tangential direction of the first main surface 3.
  • the inclined region 83 connects the first end region 81 and the second end region 82.
  • the inclined region 83 is inclined linearly downward from the first end region 81 to the second end region 82.
  • the inclined region 83 may be inclined downward in a concave curve from the first end region 81 to the second end region 82.
  • the reforming lines 22A and 22C are formed in a strip shape extending linearly along the tangential direction of the first main surface 3.
  • the reforming lines 22A and 22C may be formed in a belt shape inclined downward from the first main surface 3 toward the second main surface 4. That is, the reforming lines 22A and 22C may also include the first end region 81, the second end region 82, and the inclined region 83, respectively.
  • the reforming lines 22A to 22D according to the eleventh embodiment are formed by adjusting the condensing portion (focal point) of the laser light in the forming process of the reforming line 70 (the reforming lines 22A to 22D) ( See also FIG. 10K).
  • cleavage start points can be formed in different regions in the thickness direction of the SiC semiconductor wafer structure 61 (SiC semiconductor wafer 41).
  • SiC semiconductor wafer structure 61 can be appropriately cleaved even when the reforming lines 22B and 22D each having one layer are formed.
  • FIG. 14L is a perspective view showing the SiC semiconductor device 1 shown in FIG. 3, and is a perspective view showing a twelfth example of the reforming lines 22A to 22D.
  • the structures corresponding to the structures described for SiC semiconductor device 1 are denoted by the same reference numerals, and description thereof is omitted.
  • the reforming lines 22 ⁇ / b> B and 22 ⁇ / b> D according to the sixth embodiment are formed in a strip shape that extends linearly along the tangential direction of the first main surface 3.
  • the reforming lines 22B and 22D according to the twelfth embodiment are formed in a belt shape extending in a curved shape (curved shape) meandering toward the first main surface 3 and the second main surface 4. More specifically, the reforming lines 22B and 22D according to the twelfth embodiment include a plurality of first regions 87, a plurality of second regions 88, and a plurality of connection regions 89, respectively.
  • the plurality of first regions 87 are located in the region on the first main surface 3 side.
  • the plurality of second regions 88 are located on the second main surface 4 side with respect to the plurality of first regions 87.
  • the plurality of inclined regions 83 connect the corresponding first region 87 and corresponding second region 88, respectively.
  • the reforming lines 22A and 22C are formed in a strip shape extending linearly along the tangential direction of the first main surface 3.
  • the reforming lines 22A and 22C are formed in a belt shape extending in a curved shape (curved shape) meandering toward the first main surface 3 and the second main surface 4. Is also good. That is, the reforming lines 22A and 22C may include a plurality of first regions 87, a plurality of second regions 88, and a plurality of connection regions 89, respectively.
  • the meandering cycle of the reforming lines 22A to 22D is arbitrary.
  • the reforming lines 22A to 22D may be formed in a single band shape extending in a concavely curved shape from the first main surface 3 to the second main surface 4.
  • the reforming lines 22A to 22D may include two first regions 87, one second region 88, and two connection regions 89, respectively.
  • the reforming lines 22A to 22D may each be formed in a single band extending in a convex curve from the second main surface 4 to the first main surface 3.
  • the reforming lines 22A to 22D may include one first region 87, two second regions 88, and two connection regions 89, respectively.
  • the reforming lines 22A to 22D according to the twelfth embodiment are formed by adjusting the condensing portion (focal point) of the laser light in the process of forming the reforming line 70 (the reforming lines 22A to 22D) ( See also FIG. 10K).
  • cleavage start points can be formed in different regions in the thickness direction of the SiC semiconductor wafer structure 61 (SiC semiconductor wafer 41).
  • SiC semiconductor wafer structure 61 can be appropriately cleaved even when the reforming lines 22B and 22D each having one layer are formed.
  • FIG. 14M is a perspective view showing the SiC semiconductor device 1 shown in FIG. 3, and is a perspective view showing a thirteenth embodiment of the reforming line.
  • the structures corresponding to the structures described for SiC semiconductor device 1 are denoted by the same reference numerals, and description thereof is omitted.
  • the plurality of reforming lines 22A and 22C and the one-layer reforming line are provided under the condition that the occupation ratios RB and RD are less than the occupation ratios RA and RC (RB, RD ⁇ RA, RC). 22B and 22D are formed.
  • the reforming lines 22A to 22D are formed under the condition that the occupation ratios RB and RD are not less than the occupation ratios RA and RC (RB, RD ⁇ RA, RC). I have.
  • a plurality of (two or more layers; two layers in this embodiment) reforming lines 22A and 22C are formed, and one or more (one in this embodiment) less than the number of reforming lines 22A and 22C are formed.
  • Reforming lines 22B and 22D are formed. It is preferable that the reforming lines 22B and 22D have one layer.
  • the reforming lines 22B and 22D are formed at an interval from the first main surface 3 to the second main surface 4 as in the sixth embodiment. Further, it is preferable that the reforming lines 22B and 22D are formed at an interval from the second main surface 4 to the first main surface 3 side.
  • the reforming lines 22A to 22D according to the thirteenth embodiment are formed by adjusting the condensing portion (focal point) of the laser light in the process of forming the reforming line 70 (the reforming lines 22A to 22D) ( See also FIG. 10K).
  • the formation area of the reforming lines 22B and 22D can be limited. Thereby, the same effect as when the reforming lines 22A to 22D according to the sixth embodiment are formed can be obtained.
  • the reforming lines 22A to 22D From the viewpoint of reducing the time for forming the reforming line 70 (the reforming lines 22A to 22D), it is almost the same as that of the sixth embodiment. However, from the viewpoint of the exclusive ratios RA to RD, the reforming lines 22A to 22D according to the sixth embodiment are more preferable.
  • SiC semiconductor device 1 including at least two of reforming lines 22A to 22D according to “Example”) at the same time.
  • the features of the reforming lines 22A to 22D according to the sixth to thirteenth embodiments can be combined in any mode and any mode between them. That is, the reforming lines 22A to 22D having a form in which at least two of the characteristics of the reforming lines 22A to 22D according to the sixth to thirteenth embodiments are combined may be employed.
  • the features of the reforming lines 22A to 22D according to the tenth embodiment may be combined with the features of the reforming lines 22A to 22D according to the eleventh embodiment and the twelfth embodiment.
  • strip-shaped reforming lines 22A to 22D that are inclined downward from the first main surface 3 toward the second main surface 4 and meander toward the first main surface 3 and the second main surface 4 are formed.
  • FIG. 15 is a perspective view showing the SiC semiconductor device 91 according to the second embodiment of the present invention, and is a perspective view showing a structure to which the modified lines 22A to 22D according to the first embodiment are applied.
  • the structures corresponding to the structures described for SiC semiconductor device 1 are denoted by the same reference numerals, and description thereof is omitted.
  • the reforming lines 22A to 22D according to the first embodiment are applied.
  • the reforming lines 22A to 22D according to the second to fifth embodiments may be employed instead of or in addition to the reforming lines 22A to 22D according to the first embodiment.
  • the reforming lines 22A to 22D having a form in which at least two of the characteristics of the reforming lines 22A to 22D according to the first to fifth embodiments are combined may be employed.
  • the reforming lines 22A to 22D according to the sixth embodiment may be adopted.
  • any one of the reforming lines 22A to 22D according to the seventh to thirteenth embodiments may be employed.
  • the reforming lines 22A to 22D having a form in which at least two of the characteristics of the reforming lines 22A to 22D according to the sixth to thirteenth embodiments are combined may be adopted.
  • insulating side surfaces 11A to 11D of main surface insulating layer 10 are formed at an interval from side surfaces 5A to 5D of SiC semiconductor layer 2 to an inner region.
  • the main surface insulating layer 10 exposes a peripheral portion of the first main surface 3 in a plan view.
  • the main surface insulating layer 10 exposes the peripheral portion of the first main surface 3 together with the resin layer 16 and the passivation layer 13.
  • the insulating side surfaces 11A to 11D of the main surface insulating layer 10 are formed flush with the resin side surfaces 17A to 17D of the resin layer 16 and the side surfaces 14A to 14D of the passivation layer 13.
  • the insulating side surfaces 11A to 11D define a dicing street.
  • the main surface insulating layer 10 is formed by performing a process of removing the main surface insulating layer 10 by an etching method after the process of removing the passivation layer 13 in the process of FIG. 10I described above.
  • laser light may be directly applied to the inside of SiC semiconductor wafer structure 61 from first main surface 62 side of SiC semiconductor wafer structure 61 without through main surface insulating layer 10. .
  • the same effects as those described for the SiC semiconductor device 1 can also be obtained by the SiC semiconductor device 91.
  • the structure of the SiC semiconductor device 1 according to the first embodiment is preferable for enhancing the insulation between the side surfaces 5A to 5D of the SiC semiconductor layer 2 and the first main surface electrode layer 12.
  • FIG. 16 is a perspective view of the SiC semiconductor device 101 according to the third embodiment of the present invention viewed from one angle, showing a structure to which the modified lines 22A to 22D according to the first embodiment are applied.
  • FIG. 17 is a perspective view of the SiC semiconductor device 101 shown in FIG. 16 viewed from another angle.
  • FIG. 18 is a plan view showing the SiC semiconductor device 101 shown in FIG.
  • FIG. 19 is a plan view in which the resin layer 129 is removed from FIG.
  • the reforming lines 22A to 22D according to the first embodiment are applied. That is, in the manufacturing process of the SiC semiconductor device 101, the same processes as those of the above-described processes of FIGS. 10A to 10M are applied.
  • any one of the reforming lines 22A to 22D according to the second to fifth embodiments is employed instead of or in addition to the reforming lines 22A to 22D according to the first embodiment. May be done. Further, the reforming lines 22A to 22D having a form in which at least two of the characteristics of the reforming lines 22A to 22D according to the first to fifth embodiments are combined may be employed.
  • the reforming lines 22A to 22D according to the sixth embodiment may be employed instead of the reforming lines 22A to 22D according to the first embodiment. Further, instead of or in addition to the reforming lines 22A to 22D according to the sixth embodiment, any one of the reforming lines 22A to 22D according to the seventh to thirteenth embodiments may be employed. . Further, the reforming lines 22A to 22D having a form in which at least two of the characteristics of the reforming lines 22A to 22D according to the sixth to thirteenth embodiments are combined may be adopted.
  • SiC semiconductor device 101 includes SiC semiconductor layer 102.
  • the SiC semiconductor layer 102 includes a 4H—SiC single crystal as an example of a hexagonal SiC single crystal.
  • the SiC semiconductor layer 102 is formed in a rectangular parallelepiped chip shape.
  • the SiC semiconductor layer 102 has a first main surface 103 on one side, a second main surface 104 on the other side, and side surfaces 105A, 105B, 105C, and 105D connecting the first main surface 103 and the second main surface 104. are doing.
  • the first main surface 103 and the second main surface 104 are formed in a quadrangular shape (here, a rectangular shape) in plan view (hereinafter, simply referred to as “plan view”) as viewed from the normal direction Z thereof.
  • the first main surface 103 is a device surface on which functional devices are formed.
  • the second main surface 104 is formed of a ground surface having a grinding mark.
  • Side surfaces 105A to 105D are each formed of a smooth cleavage plane facing the crystal plane of the SiC single crystal. The side surfaces 105A to 105D have no grinding marks.
  • the thickness TL of the SiC semiconductor layer 102 may be not less than 40 ⁇ m and not more than 200 ⁇ m. Even if the thickness TL is 40 ⁇ m to 60 ⁇ m, 60 ⁇ m to 80 ⁇ m, 80 ⁇ m to 100 ⁇ m, 100 ⁇ m to 120 ⁇ m, 120 ⁇ m to 140 ⁇ m, 140 ⁇ m to 160 ⁇ m, 160 ⁇ m to 180 ⁇ m, or 180 ⁇ m to 200 ⁇ m Good.
  • the thickness TL is preferably not less than 60 ⁇ m and not more than 150 ⁇ m.
  • first main surface 103 and second main surface 104 face the c-plane of the SiC single crystal.
  • the first main surface 103 faces the (0001) plane (silicon surface).
  • Second main surface 104 faces the (000-1) plane (carbon plane) of the SiC single crystal.
  • the first main surface 103 and the second main surface 104 have an off angle ⁇ inclined at an angle of 10 ° or less in the [11-20] direction with respect to the c-plane of the SiC single crystal.
  • the normal direction Z is inclined by an off angle ⁇ with respect to the c-axis ([0001] direction) of the SiC single crystal.
  • the off angle ⁇ may be 0 ° or more and 5.0 ° or less. Off angle ⁇ is 0 ° or more and 1.0 ° or less, 1.0 ° or more and 1.5 ° or less, 1.5 ° or more and 2.0 ° or less, 2.0 ° or more and 2.5 ° or less, 2.5 3.0 ° to 3.5 °, 3.5 ° to 4.0 °, 3.5 ° to 4.0 °, 4.0 ° to 4.5 °, or 4.5 ° to 4.5 °.
  • the angle may be set to a range of 0 ° or less.
  • the off angle ⁇ preferably exceeds 0 °.
  • the off angle ⁇ may be less than 4.0 °.
  • the off angle ⁇ may be set in a range from 3.0 ° to 4.5 °. In this case, it is preferable that the off-angle ⁇ is set in the range of 3.0 ° to 3.5 °, or 3.5 ° to 4.0 °.
  • the off angle ⁇ may be set in the range of 1.5 ° or more and 3.0 ° or less. In this case, it is preferable that the off-angle ⁇ is set in a range from 1.5 ° to 2.0 °, or from 2.0 ° to 2.5 °.
  • each of the side surfaces 105A to 105D may be 1 mm or more and 10 mm or less (for example, 2 mm or more and 5 mm or less).
  • the surface area of the side surfaces 105B and 105D exceeds the surface area of the side surfaces 105A and 105C.
  • the first main surface 103 and the second main surface 104 may be formed in a square shape in plan view. In this case, the surface areas of the side surfaces 105A and 105C are equal to the side surfaces 105B and 105D.
  • the side surface 105A and the side surface 105C extend along the first direction X and face each other in a second direction Y intersecting with the first direction X.
  • the side surfaces 105B and 105D extend along the second direction Y and face each other in the first direction X.
  • the second direction Y is more specifically a direction orthogonal to the first direction X.
  • the first direction X is set in the m-axis direction ([1-100] direction) of the SiC single crystal.
  • the second direction Y is set in the a-axis direction ([11-20] direction) of the SiC single crystal.
  • the side surface 105A and the side surface 105C form short sides of the SiC semiconductor layer 102 in plan view.
  • Side surface 105A and side surface 105C are formed by the a-plane of the SiC single crystal, and face each other in the a-axis direction.
  • the side surface 105A is formed by the ( ⁇ 1-120) plane of the SiC single crystal.
  • Side surface 105C is formed by the (11-20) plane of the SiC single crystal.
  • the side surface 105A and the side surface 105C form an inclined surface which is inclined toward the c-axis direction ([0001] direction) of the SiC single crystal with respect to the normal line with respect to the normal line of the first main surface 103. You may. In this case, when the normal to the first main surface 103 is 0 °, the side surfaces 105A and 105C may be inclined at an angle corresponding to the off angle ⁇ with respect to the normal to the first main surface 103. .
  • the angle corresponding to the off angle ⁇ may be equal to the off angle ⁇ , or may be an angle exceeding 0 ° and less than the off angle ⁇ .
  • the side surface 105B and the side surface 105D form long sides of the SiC semiconductor layer 102 in plan view.
  • Side surface 105B and side surface 105D are formed by the m-plane of the SiC single crystal, and face each other in the m-axis direction.
  • Side surface 105B is formed by the (-1100) plane of the SiC single crystal.
  • Side surface 105D is formed by the (1-100) plane of the SiC single crystal.
  • the side surface 105B and the side surface 105D extend in a plane along the normal line of the first main surface 103. More specifically, the side surfaces 105B and 105D are formed substantially perpendicular to the first main surface 103 and the second main surface 104.
  • SiC semiconductor layer 102 has a stacked structure including n + -type SiC semiconductor substrate 106 and n-type SiC epitaxial layer 107.
  • the SiC semiconductor substrate 106 and the SiC epitaxial layer 107 correspond to the SiC semiconductor substrate 6 and the SiC epitaxial layer 7 according to the first embodiment, respectively.
  • the second main surface 104 of the SiC semiconductor layer 102 is formed by the SiC semiconductor substrate 106.
  • SiC epitaxial layer 107 forms first main surface 103. Side surfaces 105A to 105D of SiC semiconductor layer 102 are formed by SiC semiconductor substrate 106 and SiC epitaxial layer 107.
  • the thickness TS of the SiC semiconductor substrate 106 may be not less than 40 ⁇ m and not more than 150 ⁇ m.
  • the thickness TS is 40 ⁇ m to 50 ⁇ m, 50 ⁇ m to 60 ⁇ m, 60 ⁇ m to 70 ⁇ m, 70 ⁇ m to 80 ⁇ m, 80 ⁇ m to 90 ⁇ m, 90 ⁇ m to 100 ⁇ m, 100 ⁇ m to 110 ⁇ m, 110 ⁇ m to 120 ⁇ m, 120 ⁇ m to 130 ⁇ m, It may be 130 ⁇ m or more and 140 ⁇ m or less, or 140 ⁇ m or more and 150 ⁇ m or less.
  • the thickness TS is preferably 40 ⁇ m or more and 130 ⁇ m or less. Since the current path can be shortened by thinning the SiC semiconductor substrate 106, the resistance value can be reduced.
  • the thickness TE of the SiC epitaxial layer 107 may be 1 ⁇ m or more and 50 ⁇ m or less.
  • the thickness TE is 1 ⁇ m to 5 ⁇ m, 5 ⁇ m to 10 ⁇ m, 10 ⁇ m to 15 ⁇ m, 15 ⁇ m to 20 ⁇ m, 20 ⁇ m to 25 ⁇ m, 25 ⁇ m to 30 ⁇ m, 30 ⁇ m to 35 ⁇ m, 35 ⁇ m to 40 ⁇ m, 40 ⁇ m to 45 ⁇ m, Alternatively, it may be 45 ⁇ m or more and 50 ⁇ m or less.
  • the thickness TE is preferably 5 ⁇ m or more and 15 ⁇ m or less.
  • the n-type impurity concentration of SiC epitaxial layer 107 is lower than the n-type impurity concentration of SiC semiconductor substrate 106. More specifically, the n-type impurity concentration of SiC epitaxial layer 107 is lower than the n-type impurity concentration of SiC semiconductor substrate 106.
  • the n-type impurity concentration of SiC semiconductor substrate 106 may be not less than 1.0 ⁇ 10 18 cm ⁇ 3 and not more than 1.0 ⁇ 10 21 cm ⁇ 3 .
  • the n-type impurity concentration of SiC epitaxial layer 107 may be not less than 1.0 ⁇ 10 15 cm ⁇ 3 and not more than 1.0 ⁇ 10 18 cm ⁇ 3 .
  • the ⁇ ⁇ SiC epitaxial layer 107 has a plurality of regions having different n-type impurity concentrations along the normal direction Z. More specifically, SiC epitaxial layer 107 includes a high-concentration region 108 having a relatively high n-type impurity concentration, and a low-concentration region 109 having a lower n-type impurity concentration than high-concentration region 108.
  • the high concentration region 108 is formed in a region on the first main surface 103 side.
  • the low concentration region 109 is formed in a region on the second main surface 104 side with respect to the high concentration region 108.
  • the n-type impurity concentration of the high-concentration region 108 may be 1 ⁇ 10 16 cm ⁇ 3 or more and 1 ⁇ 10 18 cm ⁇ 3 or less.
  • the n-type impurity concentration of the low concentration region 109 may be not less than 1 ⁇ 10 15 cm ⁇ 3 and not more than 1 ⁇ 10 16 cm ⁇ 3 .
  • the thickness of the high concentration region 108 is equal to or less than the thickness of the low concentration region 109. More specifically, the thickness of the high concentration region 108 is less than the thickness of the low concentration region 109. The thickness of the high concentration region 108 is less than half the total thickness of the SiC epitaxial layer 107.
  • the SiC semiconductor layer 102 includes an active region 111 and an outer region 112.
  • the active region 111 is a region where a vertical MISFET (Metal Insulator Field Effect Transistor) as an example of a functional device is formed.
  • the active region 111 is formed at the center of the SiC semiconductor layer 102 with an interval from the side surfaces 105A to 105D to the inner region in plan view.
  • the active region 111 is formed in a square shape (a rectangular shape in this embodiment) having four sides parallel to the side surfaces 105A to 105D in a plan view.
  • the outer region 112 is a region outside the active region 111.
  • the outer region 112 is formed in a region between the side surfaces 105A to 105D and the periphery of the active region 111.
  • the outer region 112 is formed in an endless shape (square ring in this embodiment) surrounding the active region 111 in plan view.
  • SiC semiconductor device 101 includes a main surface insulating layer 113 formed on first main surface 103.
  • Main surface insulating layer 113 selectively covers active region 111 and outer region 112.
  • Main surface insulating layer 113 may include silicon oxide (SiO 2 ).
  • the main surface insulating layer 113 has four insulating side surfaces 114A, 114B, 114C, 114D exposed from the side surfaces 105A to 105D.
  • the insulating side surfaces 114A to 114D are continuous with the side surfaces 105A to 105D.
  • the insulating side surfaces 114A to 114D are formed flush with the side surfaces 105A to 105D.
  • the insulating side surfaces 114A to 114D are formed of cleavage planes.
  • the thickness of the main surface insulating layer 113 may be 1 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the main surface insulating layer 113 may be 1 ⁇ m or more and 10 ⁇ m or less, 10 ⁇ m or more and 20 ⁇ m or less, 20 ⁇ m or more and 30 ⁇ m or less, 30 ⁇ m or more and 40 ⁇ m or less, or 40 ⁇ m or more and 50 ⁇ m or less.
  • SiC semiconductor device 101 includes main surface gate electrode layer 115 as one of first main surface electrode layers formed on main surface insulating layer 113.
  • a gate voltage is applied to main surface gate electrode layer 115.
  • the gate voltage may be 10 V or more and 50 V or less (for example, about 30 V).
  • Main surface gate electrode layer 115 penetrates main surface insulating layer 113 and is electrically connected to an arbitrary region of SiC semiconductor layer 102.
  • Main surface gate electrode layer 115 includes gate pad 116 and gate fingers 117 and 118. Gate pad 116 and gate fingers 117 and 118 are arranged in active region 111.
  • the gate pad 116 is formed along the side surface 105A in a plan view. Gate pad 116 is formed along the central region of side surface 105A in plan view. The gate pad 116 may be formed along a corner connecting any two of the side surfaces 105A to 105D in plan view. Gate pad 116 may be formed in a square shape in plan view.
  • the gate fingers 117 and 118 include the outer gate finger 117 and the inner gate finger 118.
  • the outer gate finger 117 extends from the gate pad 116 and extends in a band along the periphery of the active region 111.
  • the outer gate finger 117 is formed along the three side surfaces 105A, 105B, and 105D so as to partition the inner region of the active region 111 from three directions.
  • the outer gate finger 117 has a pair of open ends 119 and 120.
  • the pair of open ends 119 and 120 are formed in a region facing the gate pad 116 with the region inside the active region 111 interposed therebetween.
  • the pair of open ends 119 and 120 are formed along the side surface 105C.
  • the inner gate finger 118 is extended from the gate pad 116 to an area inside the active area 111.
  • the inner gate finger 118 extends in a band shape in an area inside the active area 111.
  • the inner gate finger 118 extends from the gate pad 116 toward the side surface 105C.
  • the SiC semiconductor device 101 includes a main surface source electrode layer 121 as one of the first main surface electrode layers formed on the main surface insulating layer 113.
  • a source voltage is applied to the main surface source electrode layer 121.
  • the source voltage may be a reference voltage (for example, a GND voltage).
  • Main surface source electrode layer 121 penetrates main surface insulating layer 113 and is electrically connected to an arbitrary region of SiC semiconductor layer 102.
  • the main surface source electrode layer 121 includes a source pad 122, a source routing wiring 123, and a source connection part 124.
  • the source pad 122 is formed in the active region 111 at a distance from the gate pad 116 and the gate fingers 117 and 118.
  • the source pad 122 has a C-shape in plan view (FIG. 18) so as to cover a C-shaped (inverted C-shape in FIGS. 18 and 19) region defined by the gate pad 116 and the gate fingers 117 and 118. 19 and FIG. 19).
  • the source routing wiring 123 is formed in the outer region 112.
  • the source lead-out line 123 extends in a strip shape along the active region 111.
  • the source lead-out wiring 123 is formed in an endless shape (in this embodiment, a square ring) surrounding the active region 111 in a plan view.
  • the source routing wiring 123 is electrically connected to the SiC semiconductor layer 102 in the outer region 112.
  • the source connection part 124 connects the source pad 122 and the source lead-out line 123.
  • the source connection part 124 is provided in a region between the pair of open ends 119 and 120 of the outer gate finger 117.
  • the source connection portion 124 crosses the boundary region between the active region 111 and the outer region 112 from the source pad 122, and is connected to the source routing wiring 123.
  • the MISFET formed in the active region 111 includes an npn-type parasitic bipolar transistor due to its structure.
  • the parasitic bipolar transistor is turned on. In this case, control of the MISFET may become unstable due to, for example, latch-up.
  • an avalanche current absorption structure for absorbing an avalanche current generated in the outer region 112 is formed by utilizing the structure of the main surface source electrode layer 121. More specifically, the avalanche current generated in the outer region 112 is absorbed by the source routing wiring 123 and reaches the source pad 122 via the source connection part 124. When a conducting wire (for example, a bonding wire) for external connection is connected to the source pad 122, the avalanche current is taken out by the conducting wire.
  • a conducting wire for example, a bonding wire
  • SiC semiconductor device 101 includes a passivation layer 125 (insulating layer) formed on main surface insulating layer 113.
  • the passivation layer 125 may have a single-layer structure including a silicon oxide layer or a silicon nitride layer.
  • the passivation layer 125 may have a stacked structure including a silicon oxide layer and a silicon nitride layer.
  • the silicon oxide layer may be formed on the silicon nitride layer.
  • the silicon nitride layer may be formed on the silicon oxide layer.
  • the passivation layer 125 has a single-layer structure made of a silicon nitride layer.
  • the passivation layer 125 includes four side surfaces 126A, 126B, 126C, 126D.
  • the side surfaces 126A to 126D of the passivation layer 125 are formed at an interval from the side surfaces 105A to 105D of the SiC semiconductor layer 102 to an inner region in plan view.
  • Passivation layer 125 exposes the periphery of SiC semiconductor layer 102 in plan view.
  • the passivation layer 125 exposes the main surface insulating layer 113.
  • Side surfaces 126A to 126D of passivation layer 125 may be formed flush with side surfaces 105A to 105D of SiC semiconductor layer 102.
  • the passivation layer 125 selectively covers the main surface gate electrode layer 115 and the main surface source electrode layer 121.
  • Passivation layer 125 includes a gate subpad opening 127 and a source subpad opening 128.
  • Gate subpad opening 127 exposes gate pad 116.
  • Source subpad opening 128 exposes source pad 122.
  • the thickness of the passivation layer 125 may be 1 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the passivation layer 125 may be 1 ⁇ m or more and 10 ⁇ m or less, 10 ⁇ m or more and 20 ⁇ m or less, 20 ⁇ m or more and 30 ⁇ m or less, 30 ⁇ m or more and 40 ⁇ m or less, or 40 ⁇ m or more and 50 ⁇ m or less.
  • @SiC semiconductor device 101 includes a resin layer 129 (insulating layer) formed on passivation layer 125.
  • the passivation layer 125 and the resin layer 129 form one insulating laminated structure (insulating layer).
  • the resin layer 129 is indicated by hatching.
  • the resin layer 129 may include a negative type or positive type photosensitive resin.
  • the resin layer 129 includes polybenzoxazole as an example of a positive-type photosensitive resin.
  • the resin layer 129 may include polyimide as an example of a negative type photosensitive resin.
  • the resin layer 129 selectively covers the main surface gate electrode layer 115 and the main surface source electrode layer 121.
  • the resin layer 129 includes four resin side surfaces 130A, 130B, 130C, and 130D.
  • the resin side surfaces 130A to 130D are formed at intervals from the side surfaces 105A to 105D of the SiC semiconductor layer 102 to an inner region.
  • the resin layer 129 exposes the main surface insulating layer 113 together with the passivation layer 125.
  • the resin side surfaces 130A to 130D are formed flush with the side surfaces 126A to 126D of the passivation layer 125.
  • the resin side surfaces 130A to 130D of the resin layer 129 define dicing streets with the side surfaces 105A to 105D of the SiC semiconductor layer 102.
  • the side surfaces 126A to 126D of the passivation layer 125 also define dicing streets. According to the dicing street, it is not necessary to physically cut the resin layer 129 and the passivation layer 125 when cutting out the SiC semiconductor device 101 from one SiC semiconductor wafer. Thereby, SiC semiconductor device 101 can be smoothly cut out from one SiC semiconductor wafer. Further, the insulation distance from the side surfaces 105A to 105D can be increased.
  • the width of the dicing street may be 1 ⁇ m or more and 25 ⁇ m or less.
  • the width of the dicing street may be 1 ⁇ m or more and 5 ⁇ m or less, 5 ⁇ m or more and 10 ⁇ m or less, 10 ⁇ m or more and 15 ⁇ m or less, 15 ⁇ m or more and 20 ⁇ m or less, or 20 ⁇ m or more and 25 ⁇ m or less.
  • Resin layer 129 includes gate pad opening 131 and source pad opening 132.
  • the gate pad opening 131 exposes the gate pad 116.
  • the source pad opening 132 exposes the source pad 122.
  • the gate pad opening 131 communicates with the gate subpad opening 127 of the passivation layer 125.
  • the inner wall of the gate pad opening 131 may be located outside the inner wall of the gate subpad opening 127.
  • the inner wall of the gate pad opening 131 may be located inside the inner wall of the gate subpad opening 127.
  • the resin layer 129 may cover the inner wall of the gate subpad opening 127.
  • the source pad opening 132 communicates with the source subpad opening 128 of the passivation layer 125.
  • the inner wall of the gate pad opening 131 may be located outside the inner wall of the source subpad opening 128.
  • the inner wall of the source pad opening 132 may be located inside the inner wall of the source subpad opening 128.
  • the resin layer 129 may cover the inner wall of the source subpad opening 128.
  • the thickness of the resin layer 129 may be 1 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the resin layer 129 may be 1 ⁇ m or more and 10 ⁇ m or less, 10 ⁇ m or more and 20 ⁇ m or less, 20 ⁇ m or more and 30 ⁇ m or less, 30 ⁇ m or more and 40 ⁇ m or less, or 40 ⁇ m or more and 50 ⁇ m or less.
  • the SiC semiconductor device 101 includes a drain electrode layer 133 as a second main surface electrode layer formed on the second main surface 104.
  • the drain electrode layer 133 forms an ohmic contact with the second main surface 104 (SiC semiconductor substrate 106). That is, the SiC semiconductor substrate 106 is formed as the drain region 134 of the MISFET.
  • the SiC epitaxial layer 107 is formed as a drift region 135 of the MISFET.
  • the maximum voltage that can be applied between main surface source electrode layer 121 and drain electrode layer 133 during off-time may be 1000 V or more and 10,000 V or less.
  • the drain electrode layer 133 may include at least one of a Ti layer, a Ni layer, an Au layer, an Ag layer, and an Al layer.
  • the drain electrode layer 133 may have a single-layer structure including a Ti layer, a Ni layer, an Au layer, an Ag layer, or an Al layer.
  • the drain electrode layer 133 may have a laminated structure in which at least two of a Ti layer, a Ni layer, an Au layer, an Ag layer, and an Al layer are laminated in any mode.
  • the drain electrode layer 133 may have a four-layer structure including a Ti layer, a Ni layer, an Au layer, and an Ag layer stacked in this order from the second main surface 104.
  • the SiC semiconductor device 101 includes a plurality of reforming lines 22A to 22D according to the first embodiment formed on the side surfaces 105A to 105D of the SiC semiconductor layer 102.
  • the structure of the modified lines 22A to 22D according to the SiC semiconductor device 1 is the same as that of the modified lines 22A to 22D according to the SiC semiconductor device 101 except that the modified lines 22A to 22D are formed in the SiC semiconductor layer 102 instead of the SiC semiconductor layer 2. Same as the structure.
  • the description of the reforming lines 22A to 22D according to the SiC semiconductor device 1 applies mutatis mutandis to the description of the reforming lines 22A to 22D according to the SiC semiconductor device 101, respectively. Specific description of the reforming lines 22A to 22D related to the SiC semiconductor device 101 is omitted.
  • FIG. 20 is an enlarged view of the area XX shown in FIG. 19 and is a view for explaining the structure of the first main surface 103.
  • FIG. 21 is a sectional view taken along the line XXI-XXI shown in FIG.
  • FIG. 22 is a sectional view taken along the line XXII-XXII shown in FIG.
  • FIG. 23 is an enlarged view of a region XXIII shown in FIG.
  • FIG. 24 is a sectional view taken along the line XXIV-XXIV shown in FIG.
  • FIG. 25 is an enlarged view of a region XXV shown in FIG.
  • SiC semiconductor device 101 includes a p-type body region 141 formed in a surface layer portion of first main surface 103 in active region 111.
  • body region 141 is formed in the entire region of first main surface 103 where active region 111 is formed.
  • the body region 141 defines the active region 111.
  • the body region 141 may have a p-type impurity concentration of 1.0 ⁇ 10 17 cm ⁇ 3 or more and 1.0 ⁇ 10 19 cm ⁇ 3 or less.
  • SiC semiconductor device 101 includes a plurality of gate trenches 142 formed in the surface region of first main surface 103 in active region 111.
  • the plurality of gate trenches 142 are each formed in a band shape extending along the first direction X (m-axis direction of the SiC single crystal) in plan view, and are spaced along the second direction Y (a-axis direction of the SiC single crystal). Are formed.
  • each gate trench 142 extends from the peripheral portion on one side (side surface 105B side) to the peripheral portion on the other side (side surface 105D side) in the active region 111.
  • the plurality of gate trenches 142 are formed in a stripe shape as a whole in plan view.
  • Each gate trench 142 crosses an intermediate portion between the peripheral portion on one side and the peripheral portion on the other side in the active region 111.
  • One end of each gate trench 142 is located at one peripheral edge in the active region 111.
  • the other end of each gate trench 142 is located on the other side of the active region 111.
  • each gate trench 142 may be 0.5 mm or more.
  • the length of each gate trench 142 is the length from the end on the connection portion side of each gate trench 142 and outer gate finger 117 to the end on the opposite side in the cross section shown in FIG.
  • the length of each gate trench 142 is 1 mm or more and 10 mm or less (for example, 2 mm or more and 5 mm or less).
  • the total extension of the one or more gate trenches 142 per unit area may be not less than 0.5 ⁇ m / ⁇ m 2 and not more than 0.75 ⁇ m / ⁇ m 2 .
  • Each gate trench 142 integrally includes an active trench portion 143 and a contact trench portion 144.
  • the active trench portion 143 is a portion along the channel of the MISFET in the active region 111.
  • the contact trench portion 144 is a portion mainly intended for contact with the outer gate finger 117 in the gate trench 142.
  • the contact trench 144 extends from the active trench 143 to the periphery of the active region 111.
  • the contact trench portion 144 is formed in a region immediately below the outer gate finger 117.
  • the lead-out amount of the contact trench portion 144 is arbitrary.
  • Each gate trench 142 penetrates the body region 141 and reaches the SiC epitaxial layer 107.
  • Each gate trench 142 includes a side wall and a bottom wall.
  • the sidewall forming the long side of each gate trench 142 is formed by the a-plane of the SiC single crystal.
  • the side wall forming the short side of each gate trench 142 is formed by the m-plane of the SiC single crystal.
  • each gate trench 142 may extend along the normal direction Z.
  • the side wall of each gate trench 142 may be formed substantially perpendicular to the first main surface 103.
  • the angle formed by the side wall of each gate trench 142 with respect to first main surface 103 in SiC semiconductor layer 102 may be 90 ° or more and 95 ° or less (eg, 91 ° or more and 93 ° or less).
  • Each gate trench 142 may be formed in a tapered shape such that the opening area on the bottom wall side is smaller than the opening area on the opening side in cross-sectional view.
  • each gate trench 142 is located in the SiC epitaxial layer 107. More specifically, the bottom wall of each gate trench 142 is located in high concentration region 108 of SiC epitaxial layer 107. The bottom wall of each gate trench 142 faces the c-plane of the SiC single crystal. The bottom wall of each gate trench 142 has an off angle ⁇ inclined in the [11-20] direction with respect to the c-plane of the SiC single crystal.
  • each gate trench 142 may be formed parallel to the first main surface 103. Needless to say, the bottom wall of each gate trench 142 may be formed in a curved shape toward the second main surface 104.
  • each gate trench 142 may be 0.5 ⁇ m or more and 3.0 ⁇ m or less.
  • the depth of each gate trench 142 is 0.5 ⁇ m to 1.0 ⁇ m, 1.0 ⁇ m to 1.5 ⁇ m, 1.5 ⁇ m to 2.0 ⁇ m, 2.0 ⁇ m to 2.5 ⁇ m, or 2.5 ⁇ m. It may be not less than 3.0 ⁇ m.
  • each gate trench 142 along the second direction Y may be 0.1 ⁇ m or more and 2 ⁇ m or less.
  • the width of each gate trench 142 may be from 0.1 ⁇ m to 0.5 ⁇ m, from 0.5 ⁇ m to 1.0 ⁇ m, from 1.0 ⁇ m to 1.5 ⁇ m, or from 1.5 ⁇ m to 2 ⁇ m.
  • opening edge portion 146 of each gate trench 142 includes an inclined portion 147 inclined downward from first main surface 103 toward the inside of each gate trench 142.
  • the opening edge 146 of each gate trench 142 is a corner connecting the first main surface 103 and the side wall of each gate trench 142.
  • the inclined portion 147 is formed in a curved shape depressed toward the SiC semiconductor layer 102 side.
  • the inclined portion 147 may be formed in a curved shape protruding toward each gate trench 142 side.
  • the inclined portion 147 reduces the electric field concentration on the opening edge portion 146 of each gate trench 142.
  • SiC semiconductor device 101 includes a gate insulating layer 148 and a gate electrode layer 149 formed in each gate trench 142.
  • the gate insulating layer 148 and the gate electrode layer 149 are indicated by hatching.
  • the gate insulating layer 148 includes at least one of silicon oxide (SiO 2 ), silicon nitride (SiN), aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), and tantalum oxide (Ta 2 O 3 ). Including.
  • the gate insulating layer 148 may have a stacked structure including a SiN layer and a SiO 2 layer stacked in this order from the SiC semiconductor layer 102 side.
  • the gate insulating layer 148 may have a stacked structure including a SiO 2 layer and a SiN layer stacked in this order from the SiC semiconductor layer 102 side.
  • the gate insulating layer 148 may have a single-layer structure including a SiO 2 layer or a SiN layer.
  • the gate insulating layer 148 has a single-layer structure composed of a SiO 2 layer.
  • the gate insulating layer 148 is formed in a film shape along the inner wall surface of the gate trench 142, and defines a recess space in the gate trench 142.
  • the gate insulating layer 148 includes a first region 148a, a second region 148b, and a third region 148c.
  • the first region 148a is formed along the side wall of the gate trench 142.
  • the second region 148b is formed along the bottom wall of the gate trench 142.
  • the third region 148c is formed along the first main surface 103.
  • the third region 148 c of the gate insulating layer 148 forms a part of the main surface insulating layer 113.
  • the thickness Ta of the first region 148a is smaller than the thickness Tb of the second region 148b and the thickness Tc of the third region 148c.
  • the ratio Tb / Ta of the thickness Tb of the second region 148b to the thickness Ta of the first region 148a may be 2 or more and 5 or less.
  • the ratio T3 / Ta of the thickness Tc of the third region 148c to the thickness Ta of the first region 148a may be 2 or more and 5 or less.
  • the thickness Ta of the first region 148a may be 0.01 ⁇ m or more and 0.2 ⁇ m or less.
  • the thickness Tb of the second region 148b may be 0.05 ⁇ m or more and 0.5 ⁇ m or less.
  • the thickness Tc of the third region 148c may be 0.05 ⁇ m or more and 0.5 ⁇ m or less.
  • the breakdown voltage of the gate insulating layer 148 near the opening edge 146 of each gate trench 142 can be improved. Further, by increasing the thickness of the third region 148c, the loss of the third region 148c by the etching method can be suppressed.
  • gate electrode layer 149 can be appropriately opposed to SiC semiconductor layer 102 (body region 141) with gate insulating layer 148 interposed therebetween.
  • the gate insulating layer 148 further includes a bulge 148d bulging toward the inside of each gate trench 142 at the opening edge 146 of each gate trench 142.
  • the bulge 148d is formed at a corner connecting the first region 148a and the third region 148c of the gate insulating layer 148.
  • the bulging portion 148d protrudes in a curved shape into each gate trench 142.
  • the bulging portion 148 d narrows the opening of each gate trench 142 at the opening edge 146 of each gate trench 142.
  • the bulge 148 d increases the dielectric strength of the gate insulating layer 148 at the opening edge 146.
  • the gate insulating layer 148 having no bulging portion 148d may be formed.
  • a gate insulating layer 148 having a uniform thickness may be formed.
  • the gate electrode layer 149 is embedded in each gate trench 142 with the gate insulating layer 148 interposed therebetween. More specifically, the gate electrode layer 149 is embedded in a recess space defined by the gate insulating layer 148 in each gate trench 142. The gate electrode layer 149 is controlled by a gate voltage.
  • the gate electrode layer 149 has an upper end located on the opening side of each gate trench 142.
  • the upper end of the gate electrode layer 149 is formed in a curved shape depressed toward the bottom wall of each gate trench 142.
  • the upper end of the gate electrode layer 149 has a constricted portion constricted along the bulged portion 148d of the gate insulating layer 148.
  • the cross-sectional area of gate electrode layer 149 may be 0.05 ⁇ m 2 or more and 0.5 ⁇ m 2 or less.
  • the cross-sectional area of the gate electrode layer 149 is the area of a cross section that appears when the gate electrode layer 149 is cut in a direction orthogonal to the direction in which the gate trench 142 extends.
  • the cross-sectional area of the gate electrode layer 149 is defined by the product of the depth of the gate electrode layer 149 and the width of the gate electrode layer 149.
  • the depth of the gate electrode layer 149 is the distance from the upper end to the lower end of the gate electrode layer 149.
  • the width of the gate electrode layer 149 is the width of the gate trench 142 at an intermediate position between the upper end and the lower end of the gate electrode layer 149.
  • the position of the upper end of the gate electrode layer 149 is an intermediate position in the upper end of the gate electrode layer 149.
  • the gate electrode layer 149 includes p-type polysilicon to which p-type impurities are added.
  • the p-type impurity of the gate electrode layer 149 may include at least one of boron (B), aluminum (Al), indium (In), and gallium (Ga).
  • the p-type impurity concentration of gate electrode layer 149 is equal to or higher than the p-type impurity concentration of body region 141. More specifically, the p-type impurity concentration of gate electrode layer 149 exceeds the p-type impurity concentration of body region 141.
  • the p-type impurity concentration of the gate electrode layer 149 may be 1 ⁇ 10 18 cm ⁇ 3 or more and 1 ⁇ 10 22 cm ⁇ 3 or less.
  • the sheet resistance of the gate electrode layer 149 may be 10 ⁇ / ⁇ or more and 500 ⁇ / ⁇ or less (about 200 ⁇ / ⁇ in this embodiment).
  • SiC semiconductor device 101 includes a gate wiring layer 150 formed in active region 111.
  • Gate wiring layer 150 is electrically connected to gate pad 116 and gate fingers 117 and 118.
  • the gate wiring layer 150 is indicated by hatching.
  • the gate wiring layer 150 is formed on the first main surface 103. More specifically, gate wiring layer 150 is formed on third region 148c of gate insulating layer 148. In this embodiment, the gate wiring layer 150 is formed along the outer gate finger 117. More specifically, gate wiring layer 150 is formed along three side surfaces 105A, 105B, and 105D of SiC semiconductor layer 102 so as to partition an inner region of active region 111 from three directions.
  • the gate wiring layer 150 is connected to the gate electrode layer 149 exposed from the contact trench portion 144 of each gate trench 142.
  • the gate wiring layer 150 is formed by a lead portion of the gate electrode layer 149 drawn from each gate trench 142 onto the first main surface 103.
  • the upper end of the gate wiring layer 150 is connected to the upper end of the gate electrode layer 149.
  • SiC semiconductor device 101 includes a plurality of source trenches 155 formed in first main surface 103 in active region 111. Each source trench 155 is formed in a region between two adjacent gate trenches 142.
  • the plurality of source trenches 155 are each formed in a belt shape extending along the first direction X (m-axis direction of the SiC single crystal).
  • the plurality of source trenches 155 are formed in a stripe shape as a whole in plan view.
  • the pitch between the central portions of the adjacent source trenches 155 may be not less than 1.5 ⁇ m and not more than 3 ⁇ m.
  • Each source trench 155 penetrates the body region 141 and reaches the SiC epitaxial layer 107.
  • Each source trench 155 includes a side wall and a bottom wall.
  • the side wall forming the long side of each source trench 155 is formed by the a-plane of the SiC single crystal.
  • the side wall forming the short side of each source trench 155 is formed by the m-plane of the SiC single crystal.
  • each source trench 155 may extend along the normal direction Z.
  • the side wall of each source trench 155 may be formed substantially perpendicular to first main surface 103.
  • the angle formed by the side wall of each source trench 155 with respect to first main surface 103 in SiC semiconductor layer 102 may be 90 ° or more and 95 ° or less (eg, 91 ° or more and 93 ° or less).
  • Each source trench 155 may be formed in a tapered shape such that the opening area on the bottom wall side is smaller than the opening area on the opening side in cross-sectional view.
  • each source trench 155 is located in SiC epitaxial layer 107. More specifically, the bottom wall of each source trench 155 is located in high concentration region 108 of SiC epitaxial layer 107. The bottom wall of each source trench 155 is located on the second main surface 104 side with respect to the bottom wall of each gate trench 142. The bottom wall of each source trench 155 is located in a region between the bottom wall of each gate trench 142 and the lightly doped region 109.
  • each source trench 155 faces the c-plane of the SiC single crystal.
  • the bottom wall of each source trench 155 has an off angle ⁇ inclined in the [11-20] direction with respect to the c-plane of the SiC single crystal.
  • the bottom wall of each source trench 155 may be formed parallel to first main surface 103.
  • the bottom wall of each source trench 155 may be formed in a curved shape toward the second main surface 104.
  • each source trench 155 is equal to or greater than the depth of each gate trench 142 in this embodiment. More specifically, the depth of each source trench 155 is greater than the depth of each gate trench 142. The depth of each source trench 155 may be equal to the depth of each gate trench 142.
  • the depth of each source trench 155 may be not less than 0.5 ⁇ m and not more than 10 ⁇ m (for example, about 2 ⁇ m).
  • the ratio of the depth of each source trench 155 to the depth of each gate trench 142 may be 1.5 or more.
  • the ratio of the depth of each source trench 155 to the depth of each gate trench 142 is preferably 2 or more.
  • each source trench 155 in the first direction may be substantially equal to the width of each gate trench 142 in the first direction.
  • the first direction width of each source trench 155 may be greater than or equal to the first direction width of each gate trench 142.
  • the first direction width of each source trench 155 may be 0.1 ⁇ m or more and 2 ⁇ m or less (for example, about 0.5 ⁇ m).
  • SiC semiconductor device 101 includes source insulating layer 156 and source electrode layer 157 formed in each source trench 155.
  • the source insulating layer 156 and the source electrode layer 157 are indicated by hatching.
  • the source insulating layer 156 includes at least one of silicon oxide (SiO 2 ), silicon nitride (SiN), aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), and tantalum oxide (Ta 2 O 3 ). Including.
  • the source insulating layer 156 may have a stacked structure including a SiN layer and a SiO 2 layer stacked in this order from the first main surface 103 side.
  • the source insulating layer 156 may have a stacked structure including a SiO 2 layer and a SiN layer stacked in this order from the first main surface 103 side.
  • the source insulating layer 156 may have a single-layer structure including a SiO 2 layer or a SiN layer.
  • the source insulating layer 156 has a single-layer structure composed of a SiO 2 layer.
  • the source insulating layer 156 is formed in a film shape along the inner wall surface of each source trench 155, and defines a recess space in each source trench 155.
  • the source insulating layer 156 includes a first region 156a and a second region 156b.
  • the first region 156a is formed along the side wall of each source trench 155.
  • the second region 156b is formed along the bottom wall of each source trench 155.
  • the thickness Tsa of the first region 156a is smaller than the thickness Tsb of the second region 156b.
  • the ratio Tsb / Tsa of the thickness Tsb of the second region 156b to the thickness Tsa of the first region 156a may be 2 or more and 5 or less.
  • the thickness Tsa of the first region 156a may be not less than 0.01 ⁇ m and not more than 0.2 ⁇ m.
  • the thickness Tsb of the second region 156b may be not less than 0.05 ⁇ m and not more than 0.5 ⁇ m.
  • the thickness Tsa of the first region 156a may be substantially equal to the thickness Ta of the first region 156a of the gate insulating layer 148.
  • the thickness Tsb of the second region 156b may be substantially equal to the thickness Tb of the second region 156b of the gate insulating layer 148.
  • the source insulating layer 156 having a uniform thickness may be formed.
  • the source electrode layer 157 is embedded in each source trench 155 with the source insulating layer 156 interposed therebetween. More specifically, the source electrode layer 157 is embedded in a recess space defined by the source insulating layer 156 in each source trench 155.
  • the source electrode layer 157 is controlled by a source voltage.
  • the source electrode layer 157 has an upper end located on the opening side of each source trench 155.
  • the upper end of the source electrode layer 157 is formed on the bottom wall side of the source trench 155 with respect to the first main surface 103.
  • the upper end of the source electrode layer 157 may be located above the first main surface 103.
  • the upper end of the source electrode layer 157 is formed in a concave curved shape depressed toward the bottom wall of each source trench 155.
  • the upper end of the source electrode layer 157 may be formed parallel to the first main surface 103.
  • the upper end of the source electrode layer 157 may protrude above the upper end of the source insulating layer 156.
  • the upper end of the source electrode layer 157 may be located on the bottom wall side of the source trench 155 with respect to the upper end of the source insulating layer 156.
  • the thickness of the source electrode layer 157 may be 0.5 ⁇ m or more and 10 ⁇ m or less (for example, about 1 ⁇ m).
  • the source electrode layer 157 preferably includes polysilicon having a property close to SiC in material. Thereby, stress generated in SiC semiconductor layer 102 can be reduced.
  • the source electrode layer 157 includes p-type polysilicon to which p-type impurities are added. In this case, the source electrode layer 157 can be formed simultaneously with the gate electrode layer 149.
  • the p-type impurity of the source electrode layer 157 may include at least one of boron (B), aluminum (Al), indium (In), and gallium (Ga).
  • the p-type impurity concentration of source electrode layer 157 is equal to or higher than the p-type impurity concentration of body region 141. More specifically, the p-type impurity concentration of source electrode layer 157 exceeds the p-type impurity concentration of body region 141.
  • the p-type impurity concentration of the source electrode layer 157 may be from 1 ⁇ 10 18 cm ⁇ 3 to 1 ⁇ 10 22 cm ⁇ 3 .
  • the sheet resistance of the source electrode layer 157 may be not less than 10 ⁇ / ⁇ and not more than 500 ⁇ / ⁇ (about 200 ⁇ / ⁇ in this embodiment).
  • the p-type impurity concentration of the source electrode layer 157 may be substantially equal to the p-type impurity concentration of the gate electrode layer 149.
  • the sheet resistance of the source electrode layer 157 may be substantially equal to the sheet resistance of the gate electrode layer 149.
  • the source electrode layer 157 may include n-type polysilicon instead of or in addition to p-type polysilicon.
  • the source electrode layer 157 may include at least one of tungsten, aluminum, copper, an aluminum alloy, and a copper alloy instead of or in addition to the p-type polysilicon.
  • the SiC semiconductor device 101 has the plurality of trench gate structures 161 and the plurality of trench source structures 162.
  • Each trench gate structure 161 includes a gate trench 142, a gate insulating layer 148, and a gate electrode layer 149.
  • Each trench source structure 162 includes a source trench 155, a source insulating layer 156, and a source electrode layer 157.
  • SiC semiconductor device 101 includes an n + -type source region 163 formed in a surface layer portion of body region 141 along a side wall of each gate trench 142.
  • the n-type impurity concentration of the source region 163 may be from 1.0 ⁇ 10 18 cm ⁇ 3 to 1.0 ⁇ 10 21 cm ⁇ 3 .
  • the n-type impurity of the source region 163 may be phosphorus (P).
  • a plurality of source regions 163 are formed along one side wall and the other side wall of each gate trench 142.
  • the plurality of source regions 163 are each formed in a band shape extending in the first direction X.
  • the plurality of source regions 163 are formed in a stripe shape as a whole in plan view. Each source region 163 is exposed from the side wall of each gate trench 142 and the side wall of each source trench 155.
  • source region 163, body region 141, and drift region 135 are formed from first main surface 103 toward second main surface 104. They are formed in this order.
  • a channel of the MISFET is formed in a region along the side wall of the gate trench 142.
  • the channel is formed in the gate trench 142 in a region along the side wall facing the a-plane of the SiC single crystal. ON / OFF of the channel is controlled by the gate electrode layer 149.
  • SiC semiconductor device 101 includes a plurality of p + -type contact regions 164 formed in a surface portion of first main surface 103 in active region 111. Each contact region 164 is formed in a region between two adjacent gate trenches 142 in plan view. Each contact region 164 is formed in a region opposite to the gate trench 142 with respect to each source region 163.
  • Each contact region 164 is formed along the inner wall of each source trench 155. In this embodiment, a plurality of contact regions 164 are formed at intervals along the inner wall of each source trench 155. Each contact region 164 is formed at an interval from each gate trench 142.
  • the p-type impurity concentration of each contact region 164 is higher than the p-type impurity concentration of body region 141.
  • the p-type impurity concentration of each contact region 164 may be not less than 1.0 ⁇ 10 18 cm ⁇ 3 and not more than 1.0 ⁇ 10 21 cm ⁇ 3 .
  • the p-type impurity of each contact region 164 may be aluminum (Al).
  • Each contact region 164 covers the side wall and bottom wall of each source trench 155.
  • the bottom of each contact region 164 may be formed parallel to the bottom wall of each source trench 155.
  • each contact region 164 integrally includes a first surface region 164a, a second surface region 164b, and an inner wall region 164c.
  • the first surface layer region 164 a covers one side wall of the source trench 155 in the surface layer portion of the body region 141.
  • First surface region 164a is electrically connected to body region 141 and source region 163.
  • the first surface layer region 164 a is located on the first main surface 103 side with respect to the bottom of the source region 163.
  • first surface layer region 164a has a bottom extending parallel to first main surface 103.
  • the bottom of first surface layer region 164a is located in a region between the bottom of body region 141 and the bottom of source region 163.
  • the bottom of first surface layer region 164a may be located in a region between first main surface 103 and the bottom of body region 141.
  • the first surface layer region 164a is drawn from the source trench 155 to the adjacent gate trench 142.
  • the first surface region 164a may extend to an intermediate region between the gate trench 142 and the source trench 155.
  • the first surface region 164a is formed at an interval from the gate trench 142 to the source trench 155 side.
  • the second surface layer region 164b covers the other side wall of the source trench 155 in the surface layer portion of the body region 141. Second surface layer region 164b is electrically connected to body region 141 and source region 163. The second surface layer region 164b is located in a region on the first main surface 103 side with respect to the bottom of the source region 163. In this embodiment, second surface layer region 164b has a bottom portion extending parallel to first main surface 103.
  • the bottom of the second surface region 164b is located in a region between the bottom of the body region 141 and the bottom of the source region 163.
  • the bottom of second surface layer region 164b may be located in a region between first main surface 103 and the bottom of body region 141.
  • the second surface layer region 164b extends from the other side wall of the source trench 155 toward the adjacent gate trench 142.
  • the second surface region 164b may extend to an intermediate region between the source trench 155 and the gate trench 142.
  • the second surface region 164b is formed at a distance from the gate trench 142 to the source trench 155.
  • the inner wall region 164c is located in a region on the second main surface 104 side with respect to the first surface region 164a and the second surface region 164b (the bottom of the source region 163).
  • the inner wall region 164c is formed in the SiC semiconductor layer 102 in a region along the inner wall of the source trench 155.
  • Inner wall region 164c covers the side wall of source trench 155.
  • the inner wall region 164c covers a corner connecting the side wall and the bottom wall of the source trench 155.
  • the inner wall region 164c covers the bottom wall of the source trench 155 from the side wall of the source trench 155 via a corner.
  • the bottom of the contact region 164 is formed by the inner wall region 164c.
  • SiC semiconductor device 101 includes a plurality of deep well regions 165 formed in a surface portion of first main surface 103 in active region 111.
  • Each deep well region 165 is also referred to as a breakdown voltage adjustment region (breakdown voltage holding region) for adjusting the breakdown voltage of SiC semiconductor layer 102.
  • Each deep well region 165 is formed in the SiC epitaxial layer 107. More specifically, each deep well region 165 is formed in the high concentration region 108 of the SiC epitaxial layer 107.
  • Each deep well region 165 is formed along the inner wall of each source trench 155 so as to cover each contact region 164. Each deep well region 165 is electrically connected to each contact region 164. Each deep well region 165 is formed in a band shape extending along each source trench 155 in plan view. Each deep well region 165 covers the side wall of each source trench 155.
  • Each deep well region 165 covers a corner connecting the side wall and bottom wall of each source trench 155.
  • Each deep well region 165 covers the bottom wall of each source trench 155 from the side wall of each source trench 155 via a corner.
  • Each deep well region 165 is continuous with the body region 141 on the side wall of each source trench 155.
  • Each deep well region 165 has a bottom located on the second main surface 104 side with respect to the bottom wall of each gate trench 142.
  • the bottom of each deep well region 165 may be formed parallel to the bottom wall of each source trench 155.
  • the p-type impurity concentration of each deep well region 165 may be substantially equal to the p-type impurity concentration of body region 141.
  • the p-type impurity concentration of each deep well region 165 may exceed the p-type impurity concentration of body region 141.
  • the p-type impurity concentration of each deep well region 165 may be lower than the p-type impurity concentration of body region 141.
  • the p-type impurity concentration of each deep well region 165 may be equal to or less than the p-type impurity concentration of contact region 164.
  • the p-type impurity concentration of each deep well region 165 may be lower than the p-type impurity concentration of contact region 164.
  • the p-type impurity concentration of each deep well region 165 may be 1.0 ⁇ 10 17 cm ⁇ 3 or more and 1.0 ⁇ 10 19 cm ⁇ 3 or less.
  • Each deep well region 165 forms a pn junction with the SiC semiconductor layer 102 (the high concentration region 108 of the SiC epitaxial layer 107). From this pn junction, a depletion layer extends toward a region between a plurality of gate trenches 142 adjacent to each other. This depletion layer extends toward the region on the second main surface 104 side with respect to the bottom wall of each gate trench 142.
  • each deep well region 165 may overlap the bottom wall of each gate trench 142.
  • a depletion layer extending from the bottom of each deep well region 165 may overlap the bottom wall of each gate trench 142.
  • SiC semiconductor device 101 includes a p-type peripheral deep well region 166 formed on the peripheral portion of active region 111.
  • the peripheral deep well region 166 is formed in the SiC epitaxial layer 107. More specifically, the peripheral deep well region 166 is formed in the high concentration region 108 of the SiC epitaxial layer 107.
  • the peripheral deep well region 166 is electrically connected to each deep well region 165.
  • the peripheral deep well region 166 has the same potential as each deep well region 165.
  • the peripheral deep well region 166 is formed integrally with each deep well region 165.
  • the peripheral deep well region 166 is formed in a region along the inner wall of the contact trench portion 144 of each gate trench 142 at the peripheral portion of the active region 111.
  • the peripheral deep well region 166 covers the side wall of the contact trench 144 of each gate trench 142.
  • the peripheral deep well region 166 covers a corner connecting the side wall and the bottom wall of each contact trench portion 144.
  • the peripheral deep well region 166 covers the bottom wall of each contact trench 144 from the side wall of each contact trench 144 via the corner.
  • Each deep well region 165 is continuous with the body region 141 on the side wall of each contact trench portion 144.
  • the bottom of the peripheral deep well region 166 is located on the second main surface 104 side with respect to the bottom wall of each contact trench 144.
  • the peripheral deep well region 166 overlaps the gate wiring layer 150 in plan view.
  • the peripheral deep well region 166 faces the gate wiring layer 150 with the gate insulating layer 148 (third region 148c) interposed therebetween.
  • the peripheral deep well region 166 includes a lead portion 166a drawn from each contact trench portion 144 to each active trench portion 143.
  • the lead portion 166a is formed in the high concentration region 108 of the SiC epitaxial layer 107.
  • the lead portion 166a extends along the side wall of each active trench portion 143, and covers the bottom wall of the active trench portion 143 through a corner.
  • the lead portion 166a covers the side wall of each active trench portion 143.
  • the lead portion 166a covers a corner connecting the side wall and the bottom wall of each active trench portion 143.
  • the lead portion 166a covers the bottom wall of each active trench portion 143 from the side wall of each active trench portion 143 via a corner.
  • the lead portion 166a is continuous with the body region 141 on the side wall of each active trench portion 143.
  • the bottom of the lead portion 166a is located on the second main surface 104 side with respect to the bottom wall of each active trench portion 143.
  • the p-type impurity concentration of the peripheral deep well region 166 may be substantially equal to the p-type impurity concentration of the body region 141.
  • the p-type impurity concentration of peripheral deep well region 166 may be greater than the p-type impurity concentration of body region 141.
  • the p-type impurity concentration of peripheral deep well region 166 may be lower than the p-type impurity concentration of body region 141.
  • the p-type impurity concentration of the peripheral deep well region 166 may be substantially equal to the p-type impurity concentration of each deep well region 165.
  • the p-type impurity concentration of the peripheral deep well region 166 may exceed the p-type impurity concentration of each deep well region 165.
  • the p-type impurity concentration of the peripheral deep well region 166 may be lower than the p-type impurity concentration of each deep well region 165.
  • the p-type impurity concentration of the peripheral deep well region 166 may be lower than the p-type impurity concentration of the contact region 164.
  • the p-type impurity concentration of the peripheral deep well region 166 may be lower than the p-type impurity concentration of the contact region 164.
  • the p-type impurity concentration of the peripheral deep well region 166 may be 1.0 ⁇ 10 17 cm ⁇ 3 or more and 1.0 ⁇ 10 19 cm ⁇ 3 or less.
  • Each deep well region 165 brings a trench gate type MISFET closer to a pn junction diode structure. Thereby, in the trench gate type MISFET, the electric field in the SiC semiconductor layer 102 can be reduced. Therefore, narrowing the pitch between a plurality of deep well regions 165 adjacent to each other is effective in reducing electric field concentration.
  • each deep well region 165 having the bottom on the second main surface 104 side with respect to the bottom wall of each gate trench 142 the electric field concentration on each gate trench 142 can be appropriately reduced by the depletion layer.
  • the distance between the bottoms of the plurality of deep well regions 165 and the second main surface 104 is preferably substantially constant.
  • the withstand voltage for example, breakdown strength
  • SiC semiconductor layer 102 can be suppressed from being limited by the form of each deep well region 165, and thus the withstand voltage can be appropriately improved.
  • each deep well region 165 can be formed conformally to the source trench 155, the occurrence of variation in the depth of each deep well region 165 can be appropriately suppressed.
  • each source trench 155 each deep well region 165 can be appropriately formed in a relatively deep region of SiC semiconductor layer 102.
  • the high concentration region 108 of the SiC epitaxial layer 107 is interposed between the deep well regions 165 adjacent to each other.
  • a JFET Joint Field Effect Transistor
  • each deep well region 165 is located in the high concentration region 108 of the SiC epitaxial layer 107.
  • the current path can be extended in the horizontal direction parallel to the first main surface 103 from the bottom of each deep well region 165. Thereby, the current spreading resistance can be reduced.
  • the low-concentration region 109 of the SiC epitaxial layer 107 increases the breakdown voltage of the SiC semiconductor layer 102 in such a structure.
  • SiC semiconductor device 101 includes a low-resistance electrode layer 167 formed on gate electrode layer 149.
  • the low-resistance electrode layer 167 covers the upper end of the gate electrode layer 149 in each gate trench 142.
  • the low-resistance electrode layer 167 includes a conductive material having a sheet resistance lower than the sheet resistance of the gate electrode layer 149.
  • the sheet resistance of the low-resistance electrode layer 167 may be from 0.01 ⁇ / ⁇ to 10 ⁇ / ⁇ .
  • the low resistance electrode layer 167 is formed in a film shape.
  • the low-resistance electrode layer 167 has a connection portion 167a in contact with the upper end of the gate electrode layer 149 and a non-connection portion 167b opposite thereto.
  • the connection portion 167a and the non-connection portion 167b of the low-resistance electrode layer 167 may be formed in a curved shape along the upper end of the gate electrode layer 149.
  • the connection portion 167a and the non-connection portion 167b of the low-resistance electrode layer 167 can take various forms.
  • connection portion 167a may be located above the first main surface 103.
  • the entirety of the connection portion 167a may be located below the first main surface 103.
  • the connection portion 167a may include a portion located above the first main surface 103.
  • the connection portion 167a may include a portion located below the first main surface 103.
  • the central portion of the connection portion 167a may be located below the first main surface 103, and the peripheral edge of the connection portion 167a may be located above the first main surface 103.
  • the entire non-connection portion 167b may be located above the first main surface 103.
  • the entire non-connection portion 167b may be located below the first main surface 103.
  • the non-connection portion 167b may include a portion located above the first main surface 103.
  • the non-connection portion 167b may include a portion located below the first main surface 103.
  • the central portion of non-connection portion 167b may be located below first main surface 103, and the periphery of non-connection portion 167b may be located above first main surface 103.
  • the low-resistance electrode layer 167 has an edge 167c that is in contact with the gate insulating layer 148.
  • the edge 167c is in contact with a corner connecting the first region 148a and the second region 148b in the gate insulating layer 148.
  • the edge 167c is in contact with the third region 148c of the gate insulating layer 148. More specifically, the edge 167c is in contact with the bulge 148d of the gate insulating layer 148.
  • the edge 167c is formed in a region on the first main surface 103 side with respect to the bottom of the source region 163. Edge 167c is formed in a region closer to first main surface 103 than a boundary region between body region 141 and source region 163. Therefore, the edge 167c faces the source region 163 with the gate insulating layer 148 interposed therebetween. Edge 167c is not opposed to body region 141 with gate insulating layer 148 interposed therebetween.
  • the current path may be formed by undesired diffusion of the electrode material of the low resistance electrode layer 167 to the gate insulating layer 148.
  • a design in which the edge 167c is connected to the third region 148c (the corner of the gate insulating layer 148) of the relatively thick gate insulating layer 148 is effective in reducing the risk of forming a current path.
  • the thickness Tr of the low-resistance electrode layer 167 is equal to or less than the thickness TG of the gate electrode layer 149 (Tr ⁇ TG).
  • the thickness Tr of the low-resistance electrode layer 167 is preferably smaller than the thickness TG of the gate electrode layer 149 (Tr ⁇ TG). More specifically, it is preferable that the thickness Tr of the low-resistance electrode layer 167 be equal to or less than half (Tr ⁇ TG / 2) the thickness TG of the gate electrode layer 149.
  • the ratio Tr / TG of the thickness Tr of the low-resistance electrode layer 167 to the thickness TG of the gate electrode layer 149 is 0.01 or more and 1 or less.
  • the thickness TG of the gate electrode layer 149 may be 0.5 ⁇ m or more and 3 ⁇ m or less.
  • the thickness Tr of the low resistance electrode layer 167 may be 0.01 ⁇ m or more and 3 ⁇ m or less.
  • each gate trench 142 flows through the low-resistance electrode layer 167 having a relatively low sheet resistance, and is transmitted to the entire gate electrode layer 149. Accordingly, the entire gate electrode layer 149 (the entire area of the active region 111) can be promptly shifted from the off state to the on state, so that a delay in switching response can be suppressed.
  • the low-resistance electrode layer 167 can appropriately suppress the switching response delay. That is, the low-resistance electrode layer 167 is formed as a current diffusion electrode layer that diffuses a current into each gate trench 142.
  • the width, depth, cross-sectional area, and the like of the gate electrode layer 149 become smaller, so that there is a concern about a delay in switching response due to an increase in electric resistance in each gate trench 142. .
  • the entire gate electrode layer 149 can be promptly shifted from the off state to the on state, so that the switching response delay due to miniaturization can be appropriately suppressed.
  • low-resistance electrode layer 167 also covers the upper end of gate wiring layer 150 in this embodiment.
  • the portion of the low resistance electrode layer 167 covering the upper end of the gate wiring layer 150 is formed integrally with the portion of the low resistance electrode layer 167 covering the upper end of the gate electrode layer 149.
  • the low-resistance electrode layer 167 covers the entire area of the gate electrode layer 149 and the entire area of the gate wiring layer 150.
  • the current supplied from the gate pad 116 and the gate fingers 117 and 118 to the gate wiring layer 150 is applied to the entire gate electrode layer 149 and the gate wiring layer 150 via the low-resistance electrode layer 167 having a relatively low sheet resistance. Is transmitted.
  • the entire gate electrode layer 149 (the entire area of the active region 111) can be promptly shifted from the off state to the on state via the gate wiring layer 150, a delay in switching response can be suppressed.
  • the delay of the switching response can be appropriately suppressed by the low-resistance electrode layer 167 covering the upper end of the gate wiring layer 150.
  • the low resistance electrode layer 167 includes a polycide layer.
  • the polycide layer is formed by silicidizing a portion of the gate electrode layer 149 forming a surface layer portion with a metal material. More specifically, the polycide layer is formed of a p-type polycide layer containing a p-type impurity added to the gate electrode layer 149 (p-type polysilicon).
  • the polycide layer preferably has a specific resistance of 10 ⁇ ⁇ cm or more and 110 ⁇ ⁇ cm or less.
  • the sheet resistance in the gate trench 142 in which the gate electrode layer 149 and the low-resistance electrode layer 167 are embedded is equal to or less than the sheet resistance of the gate electrode layer 149 alone.
  • the sheet resistance in the gate trench 142 is preferably equal to or less than the sheet resistance of n-type polysilicon doped with n-type impurities.
  • the sheet resistance in the gate trench 142 is approximated to the sheet resistance of the low resistance electrode layer 167. That is, the sheet resistance in the gate trench 142 may be 0.01 ⁇ / ⁇ or more and 10 ⁇ / ⁇ or less. The sheet resistance in the gate trench 142 is preferably less than 10 ⁇ / ⁇ .
  • the low-resistance electrode layer 167 may include at least one of TiSi, TiSi 2 , NiSi, CoSi, CoSi 2 , MoSi 2 and WSi 2 .
  • NiSi, CoSi 2 and TiSi 2 are suitable as a polycide layer for forming the low-resistance electrode layer 167 because of their relatively small specific resistance and low temperature dependency.
  • SiC semiconductor device 101 includes a source subtrench 168 formed in a region along the upper end of source electrode layer 157 so as to communicate with each source trench 155 on first main surface 103.
  • Source sub-trench 168 forms a part of the side wall of each source trench 155.
  • the source subtrench 168 is formed in an endless shape (in this embodiment, a square ring) surrounding the upper end of the source electrode layer 157 in plan view.
  • the source subtrench 168 borders the upper end of the source electrode layer 157.
  • the source subtrench 168 is formed by digging down a part of the source insulating layer 156. More specifically, source sub-trench 168 is formed by digging the upper end of source insulating layer 156 and the upper end of source electrode layer 157 from first main surface 103.
  • the upper end of the source electrode layer 157 has a shape confined inside the lower end of the source electrode layer 157.
  • the lower end of the source electrode layer 157 is a portion located on the bottom wall side of each source trench 155 in the source electrode layer 157.
  • the first direction width of the upper end of the source electrode layer 157 may be smaller than the first direction width of the lower end of the source electrode layer 157.
  • the source sub-trench 168 is formed in a tapered shape having a bottom area smaller than an opening area in a cross-sectional view.
  • the bottom wall of source subtrench 168 may be formed in a curved shape toward second main surface 104.
  • the inner wall of the source subtrench 168 exposes the source region 163, the contact region 164, the source insulating layer 156, and the source electrode layer 157.
  • the inner wall of source subtrench 168 exposes first surface region 164a and second surface region 164b of contact region 164.
  • the bottom wall of the source subtrench 168 exposes at least the first region 156a of the source insulating layer 156.
  • the upper end of the first region 156 a in the source insulating layer 156 is located below the first main surface 103.
  • each source trench 155 includes an inclined portion 170 inclined downward from the first main surface 103 toward the inside of each source trench 155.
  • the opening edge 169 of each source trench 155 is a corner connecting the first main surface 103 and the side wall of each source trench 155.
  • the inclined portion 170 of each source trench 155 is formed by the source sub-trench 168.
  • the inclined portion 170 is formed in a curved shape depressed toward the SiC semiconductor layer 102 side.
  • the inclined portion 170 may be formed in a curved shape protruding toward the source sub-trench 168 side.
  • the inclined portion 170 reduces the electric field concentration on the opening edge 169 of each source trench 155.
  • active region 111 has an active main surface 171 forming a part of first main surface 103.
  • the outer region 112 has an outer main surface 172 that forms a part of the first main surface 103.
  • Outer main surface 172 is connected to side surfaces 105A to 105D of SiC semiconductor layer 102 in this embodiment.
  • the active main surface 171 and the outer main surface 172 face the c-plane of the SiC single crystal, respectively.
  • the active main surface 171 and the outer main surface 172 each have an off angle ⁇ inclined in the [11-20] direction with respect to the c-plane of the SiC single crystal.
  • the outer main surface 172 is located on the second main surface 104 side with respect to the active main surface 171.
  • the outer region 112 is formed by digging the first main surface 103 toward the second main surface 104. Therefore, the outer main surface 172 is formed in a region depressed toward the second main surface 104 with respect to the active main surface 171.
  • the outer main surface 172 may be located on the second main surface 104 side with respect to the bottom wall of each gate trench 142. Outer main surface 172 may be formed at a depth substantially equal to the bottom wall of each source trench 155. The outer main surface 172 may be located substantially on the same plane as the bottom wall of each source trench 155.
  • the distance between the outer main surface 172 and the second main surface 104 may be substantially equal to the distance between the bottom wall of each source trench 155 and the second main surface 104.
  • the outer main surface 172 may be located on the second main surface 104 side with respect to the bottom wall of each source trench 155.
  • the outer main surface 172 may be located on the second main surface 104 side in a range of 0 ⁇ m or more and 1 ⁇ m or less with respect to the bottom wall of each source trench 155.
  • the outer main surface 172 exposes the SiC epitaxial layer 107. More specifically, the outer main surface 172 exposes the high concentration region 108 of the SiC epitaxial layer 107. Thus, the outer main surface 172 faces the low-density region 109 with the high-density region 108 interposed therebetween.
  • the active area 111 is divided into a plateau by the outer area 112. That is, the active region 111 is formed as a plateau-shaped active plateau 173 protruding upward from the outer region 112.
  • the active plateau 173 includes an active side wall 174 connecting the active main surface 171 and the outer main surface 172.
  • the active side wall 174 defines a boundary region between the active region 111 and the outer region 112.
  • the first main surface 103 is formed by an active main surface 171, an outer main surface 172, and an active side wall 174.
  • the active side wall 174 extends along the normal direction Z of the active main surface 171 (outer main surface 172). Active side wall 174 is formed by the m-plane and the a-plane of the SiC single crystal.
  • the active side wall 174 may have an inclined surface that is inclined downward from the active main surface 171 toward the outer main surface 172.
  • the inclination angle of the active side wall 174 is an angle formed between the active side wall 174 and the active main surface 171 in the SiC semiconductor layer 102.
  • the inclination angle of the active side wall 174 may be more than 90 ° and 135 ° or less.
  • the inclination angle of the active side wall 174 may be more than 90 ° and 95 ° or less, 95 ° or more and 100 ° or less, 100 ° or more and 110 ° or less, 110 ° or more and 120 ° or less, or 120 ° or more and 135 ° or less.
  • the inclination angle of the active side wall 174 is preferably more than 90 ° and 95 ° or less.
  • the active side wall 174 exposes the SiC epitaxial layer 107. More specifically, the active sidewall 174 exposes the high concentration region 108. Active side wall 174 exposes at least body region 141 in a region on active main surface 171 side. 24 and 25 show an example in which the active side wall 174 exposes the body region 141 and the source region 163.
  • SiC semiconductor device 101 includes ap + -type diode region 181 (impurity region) formed in a surface layer portion of outer main surface 172. Further, SiC semiconductor device 101 includes a p-type outer deep well region 182 formed in a surface layer portion of outer main surface 172. Further, SiC semiconductor device 101 includes a p-type field limit structure 183 formed in a surface layer portion of outer main surface 172.
  • the diode region 181 is formed in the outer region 112 in a region between the active side wall 174 and the side surfaces 105A to 105D. Diode region 181 is formed at a distance from active side wall 174 and side surfaces 105A to 105D.
  • Diode region 181 extends in a band along active region 111 in plan view.
  • the diode region 181 is formed in an endless shape (square ring in this embodiment) surrounding the active region 111 in plan view.
  • the diode region 181 overlaps with the source lead-out line 123 in plan view.
  • the diode region 181 is electrically connected to the source routing wiring 123.
  • the diode region 181 forms a part of the avalanche current absorption structure.
  • Diode region 181 forms a pn junction with SiC semiconductor layer 102. More specifically, diode region 181 is located in SiC epitaxial layer 107. Therefore, diode region 181 forms a pn junction with SiC epitaxial layer 107.
  • the diode region 181 is more specifically located in the high concentration region 108. Therefore, the diode region 181 forms a pn junction with the high-concentration region 108. Thus, a pn junction diode Dpn having the diode region 181 as an anode and the SiC semiconductor layer 102 as a cathode is formed.
  • the entire diode region 181 is located on the second main surface 104 side with respect to the bottom wall of each gate trench 142.
  • the bottom of diode region 181 is located on the second main surface 104 side with respect to the bottom wall of each source trench 155.
  • the bottom of diode region 181 may be formed at a depth substantially equal to the bottom of contact region 164.
  • the bottom of diode region 181 may be located substantially flush with the bottom of contact region 164.
  • the p-type impurity concentration of diode region 181 is substantially equal to the p-type impurity concentration of contact region 164.
  • Diode region 181 has a higher p-type impurity concentration than body region 141.
  • the p-type impurity concentration of diode region 181 may be not less than 1.0 ⁇ 10 18 cm ⁇ 3 and not more than 1.0 ⁇ 10 21 cm ⁇ 3 .
  • the outer deep well region 182 is formed in a region between the active side wall 174 and the diode region 181 in plan view. In this embodiment, the outer deep well region 182 is formed at a distance from the active sidewall 174 to the diode region 181 side.
  • the outer deep well region 182 is also referred to as a withstand voltage adjustment region (withstand voltage holding region) for adjusting the withstand voltage of the SiC semiconductor layer 102.
  • the outer deep well region 182 extends in a band along the active region 111 in a plan view.
  • the outer deep well region 182 is formed in an endless shape (square ring in this embodiment) surrounding the active region 111 in plan view.
  • the outer deep well region 182 is electrically connected to the source lead-out line 123 via the diode region 181.
  • the outer deep well region 182 may form a part of the pn junction diode Dpn.
  • the outer deep well region 182 may form part of an avalanche current absorbing structure.
  • the entire outer deep well region 182 is located on the second main surface 104 side with respect to the bottom wall of each gate trench 142.
  • the bottom of outer deep well region 182 is located on the second main surface 104 side with respect to the bottom wall of each source trench 155.
  • the bottom of the outer deep well region 182 is located on the second main surface 104 side with respect to the bottom of the diode region 181.
  • the bottom of the outer deep well region 182 may be formed at a depth substantially equal to the bottom of each deep well region 165.
  • the bottom of outer deep well region 182 may be substantially coplanar with the bottom of each deep well region 165.
  • the distance between the bottom of outer deep well region 182 and outer major surface 172 may be approximately equal to the distance between the bottom of each deep well region 165 and the bottom wall of each source trench 155.
  • the distance between the bottom of the outer deep well region 182 and the second main surface 104 may be substantially equal to the distance between the bottom of each deep well region 165 and the second main surface 104. This suppresses the occurrence of variation between the distance between the bottom of outer deep well region 182 and second main surface 104 and the distance between the bottom of each deep well region 165 and second main surface 104. it can.
  • the withstand voltage (for example, breakdown strength) of the SiC semiconductor layer 102 can be suppressed from being restricted by the form of the outer deep well region 182 and the form of each deep well region 165, so that the withstand voltage can be appropriately improved. .
  • the bottom of the outer deep well region 182 may be located on the second main surface 104 side with respect to the bottom of each deep well region 165.
  • the bottom of the outer deep well region 182 may be located on the second main surface 104 side in a range of 0 ⁇ m or more and 1 ⁇ m or less with respect to the bottom of each deep well region 165.
  • the inner peripheral edge of the outer deep well region 182 may extend to near the boundary region between the active region 111 and the outer region 112.
  • the outer deep well region 182 may cross a boundary region between the active region 111 and the outer region 112.
  • An inner peripheral edge of the outer deep well region 182 may cover a corner connecting the active side wall 174 and the outer main surface 172.
  • the inner peripheral edge of the outer deep well region 182 may further extend along the active side wall 174 and may be connected to the body region 141.
  • the outer peripheral edge of the outer deep well region 182 covers the diode region 181 from the second main surface 104 side.
  • the outer deep well region 182 may overlap with the source routing wiring 123 in plan view.
  • the outer peripheral edge of the outer deep well region 182 may be formed at an interval from the diode region 181 to the active side wall 174 side.
  • the p-type impurity concentration of the outer deep well region 182 may be lower than the p-type impurity concentration of the diode region 181.
  • the p-type impurity concentration of outer deep well region 182 may be lower than the p-type impurity concentration of diode region 181.
  • the p-type impurity concentration of the outer deep well region 182 may be substantially equal to the p-type impurity concentration of each deep well region 165.
  • the p-type impurity concentration of outer deep well region 182 may be substantially equal to the p-type impurity concentration of body region 141.
  • the p-type impurity concentration of the outer deep well region 182 may exceed the p-type impurity concentration of the body region 141.
  • the p-type impurity concentration of outer deep well region 182 may be lower than the p-type impurity concentration of body region 141.
  • the p-type impurity concentration of outer deep well region 182 may be equal to or less than the p-type impurity concentration of contact region 164.
  • the p-type impurity concentration of outer deep well region 182 may be lower than the p-type impurity concentration of contact region 164.
  • the p-type impurity concentration of the outer deep well region 182 may be 1.0 ⁇ 10 17 cm ⁇ 3 or more and 1.0 ⁇ 10 19 cm ⁇ 3 or less.
  • the ⁇ ⁇ ⁇ ⁇ field limit structure 183 is formed in a region between the diode region 181 and the side surfaces 105A to 105D in plan view. In this embodiment, the field limit structure 183 is formed at a distance from the side surfaces 105A to 105D toward the diode region 181.
  • the ⁇ ⁇ ⁇ ⁇ field limit structure 183 includes one or more (for example, two or more and twenty or less) field limit regions 184.
  • the field limit structure 183 includes a field limit area group having a plurality (five) of field limit areas 184A, 184B, 184C, 184D, and 184E.
  • the field limit regions 184A to 184E are formed in this order at intervals along the direction away from the diode region 181.
  • the field limit areas 184A to 184E each extend in a band along the periphery of the active area 111 in plan view. More specifically, the field limit regions 184A to 184E are each formed in an endless shape (square ring in this embodiment) surrounding the active region 111 in plan view.
  • the field limit areas 184A to 184E are also called FLR (Field Limiting Ring) areas.
  • the bottoms of the field limit regions 184A to 184E are located on the second main surface 104 side with respect to the bottom of the diode region 181 in this embodiment.
  • the innermost field limit region 184A of the field limit regions 184A to 184E covers the diode region 181 from the second main surface 104 side.
  • the field limit region 184A may overlap with the above-described source routing wiring 123 in plan view.
  • the ⁇ ⁇ ⁇ ⁇ field limit region 184A is electrically connected to the source lead-out line 123 via the diode region 181.
  • Field limit region 184A may form a part of pn junction diode Dpn.
  • the field limit region 184A may form a part of the avalanche current absorption structure.
  • the entire field limit regions 184A to 184E are located on the second main surface 104 side with respect to the bottom wall of each gate trench 142.
  • the bottoms of the field limit regions 184A to 184E are located on the second main surface 104 side with respect to the bottom wall of each source trench 155.
  • the field limit regions 184A to 184E may be formed at a depth position substantially equal to each deep well region 165 (outer deep well region 182).
  • the bottoms of the field limit regions 184A to 184E may be located on substantially the same plane as the bottom of each deep well region 165 (outer deep well region 182).
  • the bottoms of the field limit regions 184A to 184E may be located on the outer main surface 172 side with respect to the bottom of each deep well region 165 (outer deep well region 182).
  • the bottoms of the field limit regions 184A to 184E may be located on the second main surface 104 side with respect to the bottom of each deep well region 165 (outer deep well region 182).
  • the width between the adjacent field limit areas 184A to 184E may be different from each other.
  • the width between the adjacent field limit regions 184A to 184E may increase in a direction away from the active region 111.
  • the width between the adjacent field limit regions 184A to 184E may decrease in the direction away from the active region 111.
  • the depths of the field limit areas 184A to 184E may be different from each other.
  • the depth of the field limit regions 184A to 184E may decrease in a direction away from the active region 111.
  • the depths of the field limit regions 184A to 184E may increase in a direction away from the active region 111.
  • the p-type impurity concentration of the field limit regions 184A to 184E may be lower than the p-type impurity concentration of the diode region 181.
  • the p-type impurity concentration of the field limit regions 184A to 184E may be lower than the p-type impurity concentration of the diode region 181.
  • the p-type impurity concentration of the field limit regions 184A to 184E may be lower than the p-type impurity concentration of the outer deep well region 182.
  • the p-type impurity concentration of the field limit regions 184A to 184E may be lower than the p-type impurity concentration of the outer deep well region 182.
  • the p-type impurity concentration of the field limit regions 184A to 184E may be equal to or higher than the p-type impurity concentration of the outer deep well region 182.
  • the p-type impurity concentration of the field limit regions 184A to 184E may be higher than the p-type impurity concentration of the outer deep well region 182.
  • the p-type impurity concentration of the field limit regions 184A to 184E may be 1.0 ⁇ 10 15 cm ⁇ 3 or more and 1.0 ⁇ 10 18 cm ⁇ 3 or less. It is preferable that p-type impurity concentration of diode region 181> p-type impurity concentration of outer deep well region 182> p-type impurity concentration of field limit regions 184A to 184E.
  • the field limit structure 183 reduces the electric field concentration in the outer region 112.
  • the number, width, depth, p-type impurity concentration, and the like of the field limit region 184 can take various values according to the electric field to be relaxed.
  • the field limit structure 183 includes one or more field limit regions 184 formed in a region between the diode region 181 and the side surfaces 105A to 105D in plan view.
  • the field limit structure 183 includes one or more field limit regions formed in the region between the active sidewall 174 and the diode region 181 in plan view, instead of the region between the diode region 181 and the side surfaces 105A to 105D. 184 may be included.
  • the field limit structure 183 includes one or more field limit regions 184 formed in the region between the diode region 181 and the side surfaces 105A to 105D in plan view, and the active side wall 174 and the diode region 181 in plan view. It may include one or more field limit regions 184 formed in the intervening region.
  • SiC semiconductor device 101 includes an outer insulating layer 191 formed on first main surface 103 in outer region 112.
  • the outer insulating layer 191 forms a part of the main surface insulating layer 113.
  • the outer insulating layer 191 forms a part of the insulating side surfaces 114A to 114D of the main surface insulating layer 113.
  • the outer insulating layer 191 selectively covers the diode region 181, the outer deep well region 182, and the field limit structure 183 in the outer region 112.
  • the outer insulating layer 191 is formed in a film shape along the active side wall 174 and the outer main surface 172.
  • Outer insulating layer 191 is connected to gate insulating layer 148 on active main surface 171. More specifically, the outer insulating layer 191 is continuous with the third region 148c of the gate insulating layer 148.
  • the outer insulating layer 191 may include silicon oxide.
  • the outer insulating layer 191 may include another insulating film such as silicon nitride.
  • the outer insulating layer 191 is formed of the same type of insulating material as the gate insulating layer 148.
  • the outer insulating layer 191 includes a first region 191a and a second region 191b.
  • the first region 191a of the outer insulating layer 191 covers the active side wall 174.
  • the second region 191b of the outer insulating layer 191 covers the outer main surface 172.
  • the thickness of the second region 191b of the outer insulating layer 191 may be equal to or less than the thickness of the first region 191a of the outer insulating layer 191.
  • the thickness of the second region 191b of the outer insulating layer 191 may be smaller than the thickness of the first region 191a of the outer insulating layer 191.
  • the thickness of the first region 191a of the outer insulating layer 191 may be substantially equal to the thickness of the first region 191a of the gate insulating layer 148.
  • the thickness of the second region 191b of the outer insulating layer 191 may be substantially equal to the thickness of the third region 148c of the gate insulating layer 148.
  • the outer insulating layer 191 having a uniform thickness may be formed.
  • SiC semiconductor device 101 further includes a sidewall structure 192 covering active side wall 174.
  • the sidewall structure 192 protects and reinforces the active plateau 173 from the outer region 112 side.
  • the sidewall structure 192 forms a step reduction structure that reduces a step formed between the active main surface 171 and the outer main surface 172.
  • an upper layer structure (covering layer) covering the boundary region between the active region 111 and the outer region 112 is formed, the upper layer structure covers the sidewall structure 192.
  • the sidewall structure 192 improves the flatness of the upper layer structure.
  • the sidewall structure 192 may have an inclined portion 193 that is inclined downward from the active main surface 171 toward the outer main surface 172. By the inclined portion 193, the step can be appropriately reduced.
  • the inclined portion 193 may be formed in a curved shape depressed toward the SiC semiconductor layer 102 side.
  • the inclined portion 193 may be formed in a curved shape protruding in a direction away from the SiC semiconductor layer 102.
  • the inclined portion 193 may extend planarly from the active main surface 171 toward the outer main surface 172.
  • the inclined portion 193 may extend linearly from the active main surface 171 side to the outer main surface 172 side.
  • the inclined portion 193 may be formed in a downward staircase from the active main surface 171 to the outer main surface 172. That is, the inclined portion 193 may have one or a plurality of steps depressed toward the SiC semiconductor layer 102 side. The plurality of steps increase the surface area of the inclined portion 193 and increase the adhesion to the upper layer structure.
  • the inclined portion 193 may include a plurality of raised portions that are raised in a direction away from the SiC semiconductor layer 102.
  • the plurality of raised portions increase the surface area of the inclined portion 193 and increase the adhesion to the upper layer structure.
  • the inclined part 193 may include a plurality of depressions that are depressed toward the SiC semiconductor layer 102 side. The plurality of depressions increase the surface area of the inclined portion 193 and increase the adhesion to the upper layer structure.
  • the sidewall structure 192 is formed in a self-aligned manner with respect to the active main surface 171. More specifically, the sidewall structure 192 is formed along the active side wall 174. In this embodiment, the sidewall structure 192 is formed in an endless shape (square ring in this embodiment) surrounding the active region 111 in a plan view.
  • the sidewall structure 192 preferably includes p-type polysilicon to which p-type impurities are added.
  • the sidewall structure 192 can be formed at the same time as the gate electrode layer 149 and the source electrode layer 157.
  • the p-type impurity concentration of the sidewall structure 192 is equal to or higher than the p-type impurity concentration of the body region 141. More specifically, the p-type impurity concentration of sidewall structure 192 is higher than the p-type impurity concentration of body region 141.
  • the p-type impurity of the sidewall structure 192 may include at least one of boron (B), aluminum (Al), indium (In), and gallium (Ga).
  • the p-type impurity concentration of the sidewall structure 192 may be not less than 1 ⁇ 10 18 cm ⁇ 3 and not more than 1 ⁇ 10 22 cm ⁇ 3 .
  • the sheet resistance of the sidewall structure 192 may be 10 ⁇ / ⁇ or more and 500 ⁇ / ⁇ or less (about 200 ⁇ / ⁇ in this embodiment).
  • the p-type impurity concentration of the sidewall structure 192 may be substantially equal to the p-type impurity concentration of the gate electrode layer 149.
  • the sheet resistance of the sidewall structure 192 may be substantially equal to the sheet resistance of the gate electrode layer 149.
  • the sidewall structure 192 may include n-type polysilicon instead of or in addition to p-type polysilicon.
  • the sidewall structure 192 may include at least one of tungsten, aluminum, copper, an aluminum alloy, and a copper alloy instead of or in addition to the p-type polysilicon.
  • the sidewall structure 192 may include an insulating material. In this case, the insulating property of the active region 111 with respect to the outer region 112 can be increased by the sidewall structure 192.
  • SiC semiconductor device 101 includes an interlayer insulating layer 201 formed on first main surface 103.
  • the interlayer insulating layer 201 forms a part of the main surface insulating layer 113.
  • the interlayer insulating layer 201 forms part of the insulating side surfaces 114A to 114D of the main surface insulating layer 113. That is, the main surface insulating layer 113 has a stacked structure including the gate insulating layer 148 (outer insulating layer 191) and the interlayer insulating layer 201.
  • the interlayer insulating layer 201 selectively covers the active region 111 and the outer region 112. More specifically, the interlayer insulating layer 201 selectively covers the third region 148 c of the gate insulating layer 148 and the outer insulating layer 191.
  • the interlayer insulating layer 201 is formed in a film shape along the active main surface 171 and the outer main surface 172.
  • the interlayer insulating layer 201 selectively covers the trench gate structure 161, the gate wiring layer 150, and the trench source structure 162 in the active region 111.
  • the interlayer insulating layer 201 selectively covers the diode region 181, the outer deep well region 182, and the field limit structure 183 in the outer region 112.
  • the interlayer insulating layer 201 is formed along the outer surface (inclined portion 193) of the sidewall structure 192 in a boundary region between the active region 111 and the outer region 112.
  • the interlayer insulating layer 201 forms a part of an upper layer structure that covers the sidewall structure 192.
  • the interlayer insulating layer 201 may contain silicon oxide or silicon nitride.
  • the interlayer insulating layer 201 may include PSG (Phosphor @ Silicate @ Glass) and / or BPSG (Boron @ Phosphor @ Silicate @ Glass) as an example of silicon oxide.
  • the interlayer insulating layer 201 may have a stacked structure including a PSG layer and a BPSG layer stacked in this order from the first main surface 103 side.
  • the interlayer insulating layer 201 may have a stacked structure including a BPSG layer and a PSG layer stacked in this order from the first main surface 103 side.
  • the interlayer insulating layer 201 includes a gate contact hole 202, a source contact hole 203, and a diode contact hole 204.
  • the interlayer insulating layer 201 includes an anchor hole 205.
  • the gate contact hole 202 exposes the gate wiring layer 150 in the active region 111.
  • the gate contact hole 202 may be formed in a band shape along the gate wiring layer 150.
  • the opening edge of the gate contact hole 202 is formed in a curved shape toward the gate contact hole 202 side.
  • the source contact hole 203 exposes the source region 163, the contact region 164, and the trench source structure 162 in the active region 111.
  • the source contact hole 203 may be formed in a strip shape along the trench source structure 162 or the like.
  • the opening edge of the source contact hole 203 is formed in a curved shape toward the source contact hole 203 side.
  • the diode contact hole 204 exposes the diode region 181 in the outer region 112.
  • the diode contact hole 204 may be formed in a band shape (more specifically, an endless shape) extending along the diode region 181.
  • the diode contact hole 204 may expose the outer deep well region 182 and / or the field limit structure 183.
  • the opening edge of the diode contact hole 204 is formed in a curved shape toward the diode contact hole 204 side.
  • the anchor hole 205 is formed by digging down the interlayer insulating layer 201 in the outer region 112.
  • the anchor hole 205 is formed in a region between the diode region 181 and the side surfaces 105A to 105D in plan view. More specifically, the anchor hole 205 is formed in a region between the field limit structure 183 and the side surfaces 105A to 105D in plan view.
  • the anchor hole 205 exposes the first main surface 103 (outer main surface 172).
  • An opening edge of the anchor hole 205 is formed in a curved shape toward the anchor hole 205 side.
  • anchor hole 205 extends in a band along active region 111 in plan view.
  • the anchor hole 205 is formed in an endless shape (square ring in this embodiment) surrounding the active region 111 in plan view.
  • one anchor hole 205 is formed in a portion of the interlayer insulating layer 201 that covers the outer region 112.
  • a plurality of anchor holes 205 may be formed in a portion of the interlayer insulating layer 201 that covers the outer region 112.
  • the main surface gate electrode layer 115 and the main surface source electrode layer 121 are formed on the interlayer insulating layer 201, respectively.
  • the main surface gate electrode layer 115 and the main surface source electrode layer 121 have a laminated structure including a barrier electrode layer 206 and a main electrode layer 207 laminated in this order from the SiC semiconductor layer 102 side.
  • the barrier electrode layer 206 may have a single-layer structure including a titanium layer or a titanium nitride layer.
  • the barrier electrode layer 206 may have a stacked structure including a titanium layer and a titanium nitride layer stacked in this order from the SiC semiconductor layer 102 side.
  • the thickness of the main electrode layer 207 exceeds the thickness of the barrier electrode layer 206.
  • the main electrode layer 207 includes a conductive material having a resistance lower than the resistance of the barrier electrode layer 206.
  • the main electrode layer 207 may include at least one of aluminum, copper, an aluminum alloy, and a copper alloy.
  • the main electrode layer 207 may include at least one of an AlSi alloy, an AlSiCu alloy, and an AlCu alloy. In this embodiment, main electrode layer 207 contains an AlSiCu alloy.
  • the outer gate finger 117 of the main surface gate electrode layer 115 enters the gate contact hole 202 from above the interlayer insulating layer 201.
  • the outer gate finger 117 is electrically connected to the gate wiring layer 150 in the gate contact hole 202. Accordingly, an electric signal from the gate pad 116 is transmitted to the gate electrode layer 149 via the outer gate finger 117.
  • Source pad 122 of the main surface source electrode layer 121 enters the source contact hole 203 and the source subtrench 168 from above the interlayer insulating layer 201.
  • Source pad 122 is electrically connected to source region 163, contact region 164 and source electrode layer 157 in source contact hole 203 and source subtrench 168.
  • the source electrode layer 157 may be formed using a part of the source pad 122.
  • the source electrode layer 157 may be formed by a part of the source pad 122 that enters each source trench 155.
  • the source lead-out wiring 123 of the main surface source electrode layer 121 enters the diode contact hole 204 from above the interlayer insulating layer 201.
  • the source routing wiring 123 is electrically connected to the diode region 181 in the diode contact hole 204.
  • the source connection portion 124 of the main surface source electrode layer 121 extends from the active region 111 across the sidewall structure 192 to the outer region 112.
  • the source connection part 124 forms a part of an upper layer structure that covers the sidewall structure 192.
  • the above-mentioned passivation layer 125 is formed on the interlayer insulating layer 201.
  • the passivation layer 125 is formed in a film shape along the interlayer insulating layer 201.
  • the passivation layer 125 selectively covers the active region 111 and the outer region 112 via the interlayer insulating layer 201.
  • the passivation layer 125 extends from the active region 111 across the sidewall structure 192 to the outer region 112.
  • the passivation layer 125 forms a part of an upper layer structure that covers the sidewall structure 192.
  • passivation layer 125 enters anchor hole 205 from above interlayer insulating layer 201 in outer region 112.
  • the passivation layer 125 is connected to the outer main surface 172 (the first main surface 103) in the anchor hole 205.
  • a recess 211 that is depressed following the anchor hole 205 is formed.
  • the above-mentioned resin layer 129 is formed on the passivation layer 125.
  • the resin layer 129 is formed in a film shape along the passivation layer 125.
  • the resin layer 129 selectively covers the active region 111 and the outer region 112 with the passivation layer 125 and the interlayer insulating layer 201 interposed therebetween.
  • the resin layer 129 extends from the active region 111 to the outer region 112 across the sidewall structure 192.
  • the resin layer 129 forms a part of an upper layer structure that covers the sidewall structure 192.
  • resin layer 129 has an anchor portion which enters recess 211 of passivation layer 125 in outer region 112. As described above, the anchor structure for increasing the connection strength of the resin layer 129 is formed in the outer region 112.
  • the anchor structure includes an uneven structure (Uneven Structure) formed on the first main surface 103 in the outer region 112. More specifically, the uneven structure (anchor structure) includes unevenness formed using the interlayer insulating layer 201 covering the outer main surface 172. More specifically, the uneven structure (anchor structure) includes an anchor hole 205 formed in the interlayer insulating layer 201.
  • the resin layer 129 is engaged with the anchor hole 205.
  • the resin layer 129 is engaged with the anchor hole 205 via the passivation layer 125. Thereby, the connection strength of the resin layer 129 to the first main surface 103 can be increased, so that peeling of the resin layer 129 can be suppressed.
  • the same effects as those described for the SiC semiconductor device 1 can also be obtained by the SiC semiconductor device 101.
  • the boundary region (pn junction) between SiC semiconductor layer 102 and deep well region 165 is directed toward the region on the second main surface 104 side with respect to the bottom wall of gate trench 142.
  • the depletion layer can be expanded.
  • the current path of the short-circuit current flowing between the main surface source electrode layer 121 and the drain electrode layer 133 can be narrowed.
  • the depletion layer extending from the boundary region between SiC semiconductor layer 102 and deep well region 165 can reduce feedback capacitance Crss in inverse proportion. Therefore, it is possible to provide the SiC semiconductor device 101 capable of improving short-circuit withstand capability and reducing the feedback capacitance Crss.
  • the feedback capacitance Crss is a capacitance between the gate electrode layer 149 and the drain electrode layer 133.
  • the depletion layer extending from the boundary region (pn junction) between the SiC semiconductor layer 102 and the deep well region 165 may overlap the bottom wall of the gate trench 142.
  • a depletion layer extending from the bottom of deep well region 165 may overlap the bottom wall of gate trench 142.
  • the distance between the bottom of each deep well region 165 and second main surface 104 is substantially constant.
  • the withstand voltage (for example, breakdown strength) of the SiC semiconductor layer 102 can be suppressed from being limited by the form of the deep well region 165, so that the withstand voltage can be appropriately improved.
  • diode region 181 is formed in outer region 112.
  • This diode region 181 is electrically connected to main surface source electrode layer 121.
  • the avalanche current generated in the outer region 112 can flow into the main surface source electrode layer 121 via the diode region 181. That is, the avalanche current generated in the outer region 112 can be absorbed by the diode region 181 and the main surface source electrode layer 121. As a result, the stability of the operation of the MISFET can be improved.
  • the outer deep well region 182 is formed in the outer region 112. Thereby, in the outer region 112, the breakdown voltage of the SiC semiconductor layer 102 can be adjusted.
  • outer deep well region 182 is formed at a depth position substantially equal to deep well region 165. More specifically, the bottom of outer deep well region 182 is located substantially on the same plane as the bottom of deep well region 165.
  • the distance between the bottom of the outer deep well region 182 and the second main surface 104 is substantially equal to the distance between the bottom of the deep well region 165 and the second main surface 104.
  • outer region 112 is formed in a region on second main surface 104 side with respect to active region 111. Accordingly, the position of the bottom of outer deep well region 182 can be appropriately brought closer to the position of the bottom of deep well region 165.
  • outer main surface 172 is located on substantially the same plane as the bottom wall of source trench 155.
  • deep well region 165 and outer deep well region 182 can be formed at substantially equal depth positions.
  • the field limit structure 183 is formed in the outer region 112.
  • the effect of reducing the electric field by the field limit structure 183 can be obtained. Therefore, the breakdown strength of the SiC semiconductor layer 102 can be appropriately improved.
  • the active region 111 is formed as a plateau-shaped active plateau 173.
  • Active plateau 173 includes an active side wall 174 connecting active main surface 171 and outer main surface 172 of active region 111.
  • a step reducing structure for reducing a step between the active main surface 171 and the outer main surface 172 is formed.
  • the step reduction structure includes a sidewall structure 192.
  • an interlayer insulating layer 201, a main surface source electrode layer 121, a passivation layer 125, and a resin layer 129 are formed as an example of an upper layer structure.
  • the anchor structure for increasing the connection strength of the resin layer 129 is formed in the outer region 112.
  • the anchor structure includes an uneven structure (Uneven structure) formed on the first main surface 103 in the outer region 112. More specifically, the uneven structure (anchor structure) includes unevenness formed using the interlayer insulating layer 201 formed on the first main surface 103 in the outer region 112. More specifically, the uneven structure (anchor structure) includes an anchor hole 205 formed in the interlayer insulating layer 201.
  • the resin layer 129 is engaged with the anchor hole 205.
  • the resin layer 129 is engaged with the anchor hole 205 via the passivation layer 125.
  • the connection strength of the resin layer 129 to the first main surface 103 can be increased, so that peeling of the resin layer 129 can be appropriately suppressed.
  • trench gate structure 161 in which gate electrode layer 149 is embedded in gate trench 142 with gate insulating layer 148 interposed therebetween is formed.
  • the gate electrode layer 149 is covered with the low-resistance electrode layer 167 in a limited space called the gate trench 142. According to such a structure, the effects described with reference to FIG. 26 can be obtained.
  • FIG. 26 is a graph for explaining the sheet resistance in the gate trench 142.
  • the vertical axis represents sheet resistance [ ⁇ / ⁇ ], and the horizontal axis represents items.
  • FIG. 26 shows a first bar graph BL1, a second bar graph BL2, and a third bar graph BL3.
  • the first bar graph BL1 represents the sheet resistance in the gate trench 142 in which the n-type polysilicon is buried.
  • the second bar graph BL2 represents the sheet resistance in the gate trench 142 in which p-type polysilicon is buried.
  • the third bar graph BL3 represents the sheet resistance in the gate trench 142 in which the gate electrode layer 149 (p-type polysilicon) and the low-resistance electrode layer 167 are embedded.
  • a low-resistance electrode layer 167 made of TiSi 2 (p-type titanium silicide) as an example of polycide (silicide) will be described.
  • the sheet resistance in the gate trench 142 in which the n-type polysilicon is buried was 10 ⁇ / ⁇ .
  • the sheet resistance in the gate trench 142 in which the p-type polysilicon is buried was 200 ⁇ / ⁇ .
  • the sheet resistance in gate trench 142 in which gate electrode layer 149 (p-type polysilicon) and low-resistance electrode layer 167 were buried was 2 ⁇ / ⁇ .
  • P-type polysilicon has a work function different from that of n-type polysilicon. According to the structure in which the p-type polysilicon is embedded in the gate trench 142, the gate threshold voltage Vth can be increased by about 1V.
  • gate resistance the parasitic resistance in the gate trench 142
  • the sheet resistance is reduced by 100/100 as compared with the case where the low-resistance electrode layer 167 is not formed. It can be reduced to 1 or less. That is, according to the structure having the low-resistance electrode layer 167, the sheet resistance can be reduced to 1/5 or less as compared with the gate electrode layer 149 including n-type polysilicon.
  • the sheet resistance in the gate trench 142 can be reduced while increasing the gate threshold voltage Vth (for example, by about 1 V).
  • Vth for example, by about 1 V.
  • the p-type impurity concentration in the body region 141 and the p-type impurity concentration in the contact region 164 do not need to be increased. Therefore, it is possible to appropriately increase the gate threshold voltage Vth while suppressing an increase in channel resistance.
  • the low resistance electrode layer 167 may include at least one of TiSi, TiSi 2 , NiSi, CoSi, CoSi 2 , MoSi 2 and WSi 2 .
  • NiSi, CoSi 2 and TiSi 2 are suitable as a polycide layer for forming the low-resistance electrode layer 167 because of their relatively small specific resistance and low temperature dependency.
  • gate wiring layer 150 is covered with low-resistance electrode layer 167.
  • the gate resistance of the gate wiring layer 150 can be reduced.
  • current can be efficiently diffused along the trench gate structure 161. Therefore, it is possible to appropriately reduce the switching delay.
  • FIG. 27 is an enlarged view of a region corresponding to FIG. 20, and is an enlarged view showing the SiC semiconductor device 221 according to the fourth embodiment of the present invention.
  • FIG. 28 is a sectional view taken along the line XXVIII-XXVIII shown in FIG.
  • structures corresponding to structures described for SiC semiconductor device 101 are denoted by the same reference numerals, and description thereof is omitted.
  • SiC semiconductor device 221 includes an outer gate trench 222 formed on first main surface 103 in active region 111.
  • the outer gate trench 222 extends like a band along the periphery of the active region 111.
  • the outer gate trench 222 is formed in a region directly below the outer gate finger 117 on the first main surface 103.
  • the outer gate trench 222 extends along the outer gate finger 117. More specifically, outer gate trench 222 is formed along three side surfaces 105A, 105B, and 105D of SiC semiconductor layer 102 so as to partition the inner region of active region 111 from three directions.
  • the outer gate trench 222 may be formed in an endless shape (for example, a square ring) surrounding the inner region of the active region 111.
  • the outer gate trench 222 communicates with the contact trench portion 144 of each gate trench 142.
  • the outer gate trench 222 and the gate trench 142 are formed by one trench.
  • the above-described gate wiring layer 150 is embedded in the outer gate trench 222.
  • the gate wiring layer 150 is connected to the gate electrode layer 149 at a portion where the gate trench 142 and the outer gate trench 222 communicate with each other.
  • the low-resistance electrode layer 167 covers the gate wiring layer 150 in the outer gate trench 222. In this case, the low-resistance electrode layer 167 covering the gate electrode layer 149 and the low-resistance electrode layer 167 covering the gate wiring layer 150 are located in one trench.
  • the same effects as those described for the SiC semiconductor device 101 can also be obtained with the SiC semiconductor device 221. Further, according to SiC semiconductor device 221, there is no need to pull out gate wiring layer 150 above first main surface 103. Thereby, at the opening edge portion 146 of the gate trench 142 (outer gate trench 222), the gate wiring layer 150 can be suppressed from facing the SiC semiconductor layer 102 with the gate insulating layer 148 interposed therebetween. As a result, concentration of an electric field at the opening edge 146 of the gate trench 142 (outer gate trench 222) can be suppressed.
  • FIG. 29 is an enlarged view of a region corresponding to FIG. 23, and is an enlarged view showing the SiC semiconductor device 231 according to the fifth embodiment of the present invention.
  • structures corresponding to structures described for SiC semiconductor device 101 are denoted by the same reference numerals, and description thereof is omitted.
  • SiC epitaxial layer 107 includes, in this embodiment, high concentration region 108, low concentration region 109, and concentration gradient region 232 interposed between high concentration region 108 and low concentration region 109.
  • the concentration gradient region 232 is formed not only in the active region 111 but also in the outer region 112 in the SiC epitaxial layer 107.
  • the concentration gradient region 232 is formed over the entire area of the SiC epitaxial layer 107.
  • the ⁇ ⁇ concentration gradient region 232 has a concentration gradient in which the n-type impurity concentration gradually decreases from the high concentration region 108 to the low concentration region 109.
  • the concentration gradient region 232 has a concentration gradient in which the n-type impurity concentration gradually increases from the low concentration region 109 to the high concentration region 108.
  • the concentration gradient region 232 suppresses a rapid change in the n-type impurity concentration in a region between the high concentration region 108 and the low concentration region 109.
  • the n-type impurity concentration of the high concentration region 108 is preferably 1.5 times or more and 5 times or less of the n-type impurity concentration of the low concentration region 109.
  • the n-type impurity concentration of the high concentration region 108 may be three times or more and five times or less than the n-type impurity concentration of the low concentration region 109.
  • the thickness of the concentration gradient region 232 may be 0.5 ⁇ m or more and 2.0 ⁇ m or less.
  • the thickness of the concentration gradient region 232 may be 0.5 ⁇ m or more and 1.0 ⁇ m or less, 1.0 ⁇ m or more and 1.5 ⁇ m or less, or 1.5 ⁇ m or more and 2.0 ⁇ m or less.
  • the above-described gate trench 142, source trench 155, deep well region 165, outer deep well region 182, and the like are formed in the high concentration region 108. That is, the gate trench 142, source trench 155, deep well region 165, outer deep well region 182, and the like are formed on the first main surface 103 with respect to the boundary region between the high concentration region 108 and the concentration gradient region 232 in the SiC semiconductor layer 102. Side region.
  • the same effects as those described for the SiC semiconductor device 101 can also be obtained by the SiC semiconductor device 231.
  • FIG. 30 is an enlarged view of a region corresponding to FIG. 20, and is an enlarged view showing the SiC semiconductor device 241 according to the sixth embodiment of the present invention.
  • structures corresponding to structures described for SiC semiconductor device 101 are denoted by the same reference numerals, and description thereof is omitted.
  • gate trench 142 is formed in a lattice shape in plan view. More specifically, the gate trench 142 includes a plurality of first gate trenches 242 and a plurality of second gate trenches 243. The plurality of first gate trenches 242 and the plurality of second gate trenches 243 form an active trench portion 143.
  • the plurality of first gate trenches 242 are formed at intervals in the second direction Y, and are each formed in a strip shape extending along the first direction X.
  • the plurality of first gate trenches 242 are formed in a stripe shape as a whole in plan view.
  • the side wall forming the long side in each first gate trench 242 is formed by the a-plane of the SiC single crystal.
  • the side wall forming the short side in each first gate trench 242 is formed by the m-plane of the SiC single crystal.
  • the plurality of second gate trenches 243 are formed at intervals in the first direction X, and are each formed in a strip shape extending along the second direction Y.
  • the plurality of second gate trenches 243 are formed in a stripe shape as a whole in plan view.
  • the side wall forming the long side in each second gate trench 243 is formed by the m-plane of the SiC single crystal.
  • the side wall forming the short side in each second gate trench 243 is formed by the a-plane of the SiC single crystal.
  • the plurality of first gate trenches 242 and the plurality of second gate trenches 243 cross each other.
  • one gate trench 142 having a lattice shape in a plan view is formed.
  • a plurality of cell regions 244 are defined.
  • the plurality of cell regions 244 are arranged in a matrix at intervals in the first direction X and the second direction Y in plan view.
  • the plurality of cell regions 244 are formed in a square shape in plan view.
  • body region 141 is exposed from the side wall of gate trench 142.
  • Body region 141 is exposed from the side wall formed by m-plane and a-plane of the SiC single crystal in gate trench 142.
  • the gate trench 142 may be formed in a honeycomb shape as one mode of a lattice shape in a plan view.
  • the plurality of cell regions 244 may be arranged in a staggered manner at intervals in the first direction X and the second direction Y.
  • the plurality of cell regions 244 may be formed in a hexagonal shape in a plan view.
  • Each source trench 155 is formed at the center of each cell region 244 in plan view. Each source trench 155 is formed in a pattern that appears on a cut surface that appears when each cell region 244 is cut along the first direction X. Further, each source trench 155 is formed in a pattern that appears on a cut surface that appears when each cell region 244 is cut along the second direction Y.
  • each source trench 155 is formed in a square shape in plan view.
  • Four side walls of each source trench 155 are formed by the m-plane and the a-plane of the SiC single crystal.
  • the planar shape of each source trench 155 is arbitrary.
  • Each source trench 155 may be formed in a polygonal shape such as a triangular shape, a pentagonal shape, a hexagonal shape, or a circular shape or an elliptical shape in plan view.
  • the cross-sectional view along the line XXI-XXI in FIG. 30 corresponds to the cross-sectional view shown in FIG.
  • the cross-sectional view along the line XXII-XXII in FIG. 30 corresponds to the cross-sectional view shown in FIG.
  • side surfaces 5A and 105A and side surfaces 5C and 105C of SiC semiconductor layers 2 and 102 face the a-plane of the SiC single crystal
  • side surfaces 5B and 105B and side surfaces 5D and 105D correspond to the m-plane of the SiC single crystal.
  • a form may be adopted in which side surfaces 5A and 105A and side surfaces 5C and 105C face the m-plane of the SiC single crystal
  • side surfaces 5B and 105B and side surfaces 5D and 105D face the a-plane of the SiC single crystal.
  • the reforming lines 22A to 22D having a dashed band shape may be formed. That is, the reforming lines 22A to 22D may be formed in a band shape extending intermittently. In this case, one, two or three of the reforming lines 22A to 22D may be formed in a dashed band shape, and the rest may be formed in a band shape.
  • the example in which the source electrode layer 157 is embedded in the source trench 155 with the source insulating layer 156 interposed therebetween has been described.
  • the source electrode layer 157 may be directly buried in the source trench 155 without using the source insulating layer 156.
  • the source insulating layer 156 may be formed along the side wall of the source trench 155 so as to expose the bottom wall of the source trench 155.
  • the source insulating layer 156 may be formed along the side wall and the bottom wall of the source trench 155 so as to expose a part of the bottom wall of the source trench 155.
  • the source insulating layer 156 may be formed along the bottom wall of the source trench 155 so as to expose the side wall of the source trench 155.
  • the source insulating layer 156 may be formed along the side wall and the bottom wall of the source trench 155 so as to expose a part of the side wall of the source trench 155.
  • the gate electrode layer 149 and the gate wiring layer 150 including p-type polysilicon to which p-type impurities are added has been described.
  • the gate electrode layer 149 and the gate wiring layer 150 may be replaced with or in addition to the p-type polysilicon, and may be made of n-type polysilicon doped with an n-type impurity. May be included.
  • the low-resistance electrode layer 167 may be formed by silicidizing a portion of the gate electrode layer 149 (n-type polysilicon) forming a surface layer portion with a metal material. That is, the low-resistance electrode layer 167 may include n-type polycide. In the case of such a structure, the gate resistance can be reduced.
  • ap + -type SiC semiconductor substrate (106) may be used instead of the n + -type SiC semiconductor substrate 106.
  • an IGBT Insulated Gate Bipolar Transistor
  • the “source” of the MISFET is replaced with the “emitter” of the IGBT, and the “drain” of the MISFET is replaced with the “collector” of the IGBT.
  • the p-type portion may be n-type
  • the n-type portion may be p-type
  • the semiconductor material different from SiC may be a compound semiconductor material.
  • the compound semiconductor material may be one or both of gallium nitride (GaN) and gallium oxide (Ga 2 O 3 ).
  • the above-described third to sixth embodiments may be a compound semiconductor device including a vertical compound semiconductor MISFET employing a compound semiconductor material instead of SiC.
  • a compound semiconductor magnesium may be employed as a p-type impurity (acceptor).
  • germanium (Ge), oxygen (O), or silicon (Si) may be employed as the n-type impurity (donor).
  • the first to sixth embodiments can be combined in any mode and any mode between them. That is, an SiC semiconductor device in which the features shown in the first to sixth embodiments are combined in any mode and in any mode may be adopted.
  • JP-A-2012-146878 discloses a method of manufacturing a SiC semiconductor device using a stealth dicing method.
  • a plurality of rows of modified regions (modified layers) are formed on the entire side surfaces of the SiC semiconductor layer cut from the SiC semiconductor wafer.
  • a plurality of rows of modified regions (modified layers) extend along the tangent direction of the main surface of the SiC semiconductor layer and are formed at intervals in the normal direction of the main surface of the SiC semiconductor layer.
  • the modified layer is formed by modifying the SiC single crystal of the SiC semiconductor layer to another property. Therefore, considering the influence of the modified layer on the SiC semiconductor layer, it is not desirable to form a plurality of modified layers on the entire side surface of the SiC semiconductor layer. Examples of the influence of the modified layer on the SiC semiconductor layer include a change in the electrical characteristics of the SiC semiconductor layer due to the modified layer, generation of cracks in the SiC semiconductor layer starting from the modified layer, and the like. You.
  • a first main surface serving as a device surface including a hexagonal SiC single crystal, a second main surface opposite to the first main surface, a first side surface facing an a-plane of the SiC single crystal, A SiC semiconductor layer having a second side face facing the m-plane of the SiC single crystal; and a first occupation ratio formed on the first side face of the SiC semiconductor layer to have a property different from that of the SiC single crystal.
  • a second modified layer formed on the second side surface of the SiC semiconductor layer at a second occupation ratio less than the first occupation ratio and modified to have a property different from that of the SiC single crystal.
  • a SiC semiconductor device comprising: a modified layer.
  • the first modified layer and the second modified layer are formed at different exclusive ratios depending on the crystal plane of the SiC single crystal.
  • the SiC single crystal is easily broken along the nearest atom direction of Si atoms (a-axis direction and its equivalent direction) in a plan view when the c-plane is viewed from the c-axis direction, and the cross direction of the nearest atom direction (m-axis direction). And its equivalent direction).
  • the crystal plane (m-plane and its equivalent plane) of the SiC single crystal which has relatively easy cracking properties, can be appropriately cut without forming a modified layer having a relatively large occupation ratio.
  • the area where the modified layer is formed can be reduced, so that the influence of the modified layer on the SiC semiconductor layer can be reduced.
  • A2 a first main surface as a device surface, including a hexagonal SiC single crystal, a second main surface opposite to the first main surface, a first side surface facing an a-plane of the SiC single crystal, And a SiC semiconductor layer having a second side surface facing the m-plane of the SiC single crystal, and formed on the first side surface of the SiC semiconductor layer at intervals along a direction normal to the first main surface.
  • a plurality of first modified layers modified to have properties different from those of the SiC single crystal; and a number less than the number of the first modified layers formed on the second side surface of the SiC semiconductor layer;
  • a SiC semiconductor device comprising: one or more second modified layers modified to have properties different from those of a single crystal.
  • the first modified layer and the second modified layer are formed in different numbers according to the crystal plane of the SiC single crystal.
  • the SiC single crystal is easily broken along the nearest atom direction of Si atoms (a-axis direction and its equivalent direction) in a plan view when the c-plane is viewed from the c-axis direction, and the cross direction of the nearest atom direction (m-axis direction). And its equivalent direction).
  • the crystal plane (m-plane and its equivalent plane) of the SiC single crystal which has a relatively fragile property, can be cut appropriately without increasing the number of modified layers.
  • the area where the modified layer is formed can be reduced, so that the influence of the modified layer on the SiC semiconductor layer can be reduced.
  • a plurality of the first modified layers are formed on the first side surface of the SiC semiconductor layer at intervals along a direction normal to the first main surface, and the number of the first modified layers is The A1 according to A1, wherein one or more of the second modified layers that are less than or equal to each other are formed on the second side surface of the SiC semiconductor layer at intervals along a direction normal to the first main surface.
  • SiC semiconductor device SiC semiconductor device.
  • the first modified layer has a first thickness in a direction normal to the first main surface
  • the second modified layer has a first thickness in a direction normal to the first main surface.
  • the first modified layer extends in a straight line, a curved line, or a broken line along the m-axis direction of the SiC single crystal
  • the second modified layer is an a-axis of the SiC single crystal.
  • SiC semiconductor device according to any one of A1 to A13, wherein the SiC single crystal is made of a 2H (Hexagonal) -SiC single crystal, a 4H-SiC single crystal, or a 6H-SiC single crystal.
  • the SiC semiconductor layer includes a SiC semiconductor substrate and a SiC epitaxial layer, has a stacked structure in which the first main surface is formed by the SiC epitaxial layer, and the first modified layer is The SiC semiconductor device according to any one of A1 to A17, wherein the SiC semiconductor substrate is formed on the SiC semiconductor substrate, and the second modified layer is formed on the SiC semiconductor substrate.
  • a first modified layer formed at a first exclusive ratio and modified to have a property different from that of the SiC single crystal, and a second thickness less than or equal to the first thickness in a direction normal to the first main surface.
  • the formation region of the modified layer can be reduced, so that the influence of the modified layer on the SiC semiconductor layer can be reduced.
  • a first side surface, a second side surface facing the m-plane of the SiC single crystal, and a first occupancy ratio on the first side surface of the SiC semiconductor layer, Are formed on the second side surface of the SiC semiconductor layer at a second occupation ratio less than the first occupation ratio, and are modified to have different characteristics from the SiC single crystal.
  • a modified second modified layer is formed on the second side surface of the SiC semiconductor layer at a second occupation ratio less than the first occupation ratio.
  • the formation region of the modified layer can be reduced, so that the influence of the modified layer on the SiC semiconductor layer can be reduced.
  • a hexagonal SiC single crystal including a first main surface as an element formation surface, a second main surface opposite to the first main surface, an a-plane of the SiC single crystal, and a cleavage plane A first side surface of the SiC single crystal, a SiC semiconductor layer facing the m-plane of the SiC single crystal and having a second side surface of a cleavage plane, and a first occupation ratio formed on the first side surface of the SiC semiconductor layer.
  • a first modified layer modified to have a property different from that of the SiC single crystal, and a second exclusive ratio less than the first exclusive ratio on the second side surface of the SiC semiconductor layer; And a second modified layer modified to have a property different from that of the SiC semiconductor device.
  • the formation region of the modified layer can be reduced, so that the influence of the modified layer on the SiC semiconductor layer can be reduced.
  • the formation region of the modified layer can be reduced, so that the influence of the modified layer on the SiC semiconductor layer can be reduced.
  • a first modified portion formed at a first occupation ratio in a portion of the SiC semiconductor layer that forms the first side surface of the SiC semiconductor layer and having a property different from that of the SiC single crystal.
  • the formation region of the modified layer can be reduced, so that the influence of the modified layer on the SiC semiconductor layer can be reduced.
  • the first modified layer has a first thickness with respect to a normal direction of the first main surface
  • the second modified layer has a first thickness with respect to the normal direction of the first main surface.
  • a plurality of the first modified layers are formed on the first side surface of the SiC semiconductor layer at intervals along a normal direction of the first main surface, and the number of the first modified layers is B1 to B8, wherein one or a plurality of the second modified layers of less than B1 are formed on the second side surface of the SiC semiconductor layer at intervals along a direction normal to the first main surface.
  • the SiC semiconductor device according to any one of the above.
  • a plurality of first modified layers formed at intervals along the direction of the normal to the first main surface and modified to have properties different from those of the SiC single crystal; and a normal to the first main surface.
  • the formation region of the modified layer can be reduced, so that the influence of the modified layer on the SiC semiconductor layer can be reduced.
  • a plurality of first modified layers modified to have properties different from those of the SiC single crystal, and a plurality of first modified layers having a number less than the number of the first modified layers are formed on the second side surface of the SiC semiconductor layer.
  • the formation region of the modified layer can be reduced, so that the influence of the modified layer on the SiC semiconductor layer can be reduced.
  • a hexagonal SiC single crystal, a first main surface as an element forming surface, a second main surface opposite to the first main surface, a surface of the SiC single crystal, and a cleavage plane A first side surface made of SiC semiconductor layer having a second side surface facing the m-plane of the SiC single crystal and having a cleavage plane, and a method of forming the first main surface on the first side surface of the SiC semiconductor layer.
  • a plurality of first modified layers formed at intervals along a line direction and modified to have properties different from those of the SiC single crystal; and a SiC semiconductor layer having a number less than the number of the first modified layers. And at least one second modified layer formed on the second side surface and having a property different from that of the SiC single crystal.
  • the formation region of the modified layer can be reduced, so that the influence of the modified layer on the SiC semiconductor layer can be reduced.
  • the formation region of the modified layer can be reduced, so that the influence of the modified layer on the SiC semiconductor layer can be reduced.
  • a SiC semiconductor layer, and a portion of the SiC semiconductor substrate on which the first side surface of the SiC semiconductor layer is formed is formed at intervals along a direction normal to the first main surface.
  • the formation region of the modified layer can be reduced, so that the influence of the modified layer on the SiC semiconductor layer can be reduced.
  • the first modified layer has a first thickness with respect to the normal direction of the first main surface
  • the second modified layer has the first thickness with respect to the normal direction of the first main surface.
  • the first modified layer extends in a straight line, a curved line, or a broken line along the m-axis direction of the SiC single crystal
  • the second modified layer is an a-axis of the SiC single crystal.
  • SiC semiconductor device according to any one of B1 to B26, wherein the SiC single crystal is formed of a 2H (Hexagonal) -SiC single crystal, a 4H-SiC single crystal, or a 6H-SiC single crystal.
  • SiC semiconductor device 2 SiC semiconductor layer 3 1st main surface of SiC semiconductor layer 4 2nd main surface of SiC semiconductor layer 5A Side surface of SiC semiconductor layer 5B Side surface of SiC semiconductor layer 5C Side surface of SiC semiconductor layer 5D Side surface of SiC semiconductor layer 6
  • SiC semiconductor substrate 7 SiC epitaxial layer 22A Reforming line 22B Reforming line 22C Reforming line 22D Reforming line 81
  • SiC semiconductor device 101 SiC semiconductor device 102 SiC semiconductor layer 103
  • First main surface 104 of SiC semiconductor layer 104 Second principal surface 105A Side surface of SiC semiconductor layer 105B Side surface of SiC semiconductor layer 105C Side surface of SiC semiconductor layer 105D Side surface of SiC semiconductor layer 106

Abstract

半導体装置は、六方晶からなるSiC単結晶を含み、前記SiC単結晶のc面に面し、前記c面に対して傾斜したオフ角を有するデバイス面としての第1主面、前記第1主面の反対側の第2主面、および、前記SiC単結晶のa面に面し、前記第1主面の法線を0°とした時、前記法線に対して前記オフ角未満の角度を有する側面を有するSiC半導体層を含む。

Description

SiC半導体装置
 本発明は、SiC半導体装置に関する。
 近年、ステルスダイシング法と称されるSiC半導体ウエハの加工方法が注目されている。ステルスダイシング法では、SiC半導体ウエハにレーザ光が選択的に照射された後、レーザ光が照射された部分に沿ってSiC半導体ウエハが切断される。この方法によれば、ダイシングブレード等の切断部材を用いずに、比較的高い硬度を有するSiC半導体ウエハを切断できるので、製造時間を短縮できる。
 特許文献1は、ステルスダイシング法を利用したSiC半導体装置の製造方法を開示している。特許文献1の製造方法では、所定のオフ角を有するSiC半導体ウエハから複数のSiC半導体層が切り出される。SiC半導体層においてSiC単結晶のa面に面する2つ側面は、SiC単結晶のc軸に沿う傾斜面となる。
特開2016-207908号公報
 SiC半導体装置は、半導体組立装置を用いてリードフレームや実装基板などの接続対象物に実装される。半導体組立装置におけるSiC半導体装置の搬送工程は、たとえば、SiC半導体層の主面を吸着して保持するピックアップノズルによって行われる。特許文献1に係るSiC半導体装置の場合、SiC半導体層の傾斜面に起因してピックアップノズルによる吸着が妨げられ、ピックアップエラーが発生する可能性がある。
 本発明の一実施形態は、半導体組立装置におけるピックアップエラーを抑制できるSiC半導体装置を提供する。
 本発明の一実施形態は、六方晶からなるSiC単結晶を含み、前記SiC単結晶のc面に面し、前記c面に対して傾斜したオフ角を有するデバイス面としての第1主面、前記第1主面の反対側の第2主面、および、前記SiC単結晶のa面に面し、前記第1主面の法線を0°とした時、前記法線に対して前記オフ角未満の角度を有する側面を有するSiC半導体層を含む、SiC半導体装置を提供する。
 このSiC半導体装置によれば、半導体組立装置におけるピックアップエラーを抑制できる。
 本発明の一実施形態は、六方晶からなるSiC単結晶を含み、前記SiC単結晶のc面に面し、前記c面に対して傾斜したオフ角を有するデバイス面としての第1主面、前記第1主面の反対側の第2主面、および、前記SiC単結晶のa面に面し、前記第1主面の法線から前記SiC単結晶のc軸とは反対側の方向に向けて傾斜した傾斜部を有する側面を有するSiC半導体層を含む、SiC半導体装置を提供する。
 このSiC半導体装置によれば、SiC半導体層の側面において、c軸とは反対側の方向に向けて傾斜した傾斜部によってc軸に沿って延びる傾斜面の形成領域を削減できる。これにより、半導体組立装置におけるピックアップエラーを抑制できる。
 本発明における上述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。
図1は、本発明の実施形態に適用される4H-SiC単結晶の単位セルを示す図である。 図2は、図1に示す単位セルのシリコン面を示す平面図である。 図3は、本発明の第1実施形態に係るSiC半導体装置を1つの角度から見た斜視図であって、改質ラインの第1形態例を示す斜視図である。 図4は、図3に示すSiC半導体装置を別の角度から見た斜視図である。 図5は、図3に示す領域Vの拡大図である。 図6は、図3に示す領域VIの拡大図である。 図7は、図3に示すSiC半導体装置の平面図である。 図8は、図7に示すVIII-VIII線に沿う断面図である。 図9は、図3に示すSiC半導体装置の製造に使用されるSiC半導体ウエハを示す斜視図である。 図10Aは、図3に示すSiC半導体装置の製造方法の一例を示す断面図である。 図10Bは、図10Aの後の工程を示す図である。 図10Cは、図10Bの後の工程を示す図である。 図10Dは、図10Cの後の工程を示す図である。 図10Eは、図10Dの後の工程を示す図である。 図10Fは、図10Eの後の工程を示す図である。 図10Gは、図10Fの後の工程を示す図である。 図10Hは、図10Gの後の工程を示す図である。 図10Iは、図10Hの後の工程を示す図である。 図10Jは、図10Iの後の工程を示す図である。 図10Kは、図10Jの後の工程を示す図である。 図10Lは、図10Kの後の工程を示す図である。 図10Mは、図10Lの後の工程を示す図である。 図11は、図3に示すSiC半導体装置が組み込まれた半導体パッケージを、封止樹脂を透過して示す斜視図である。 図12は、図3に示すSiC半導体装置の搬送状態を示す斜視図である。 図13は、参考例に係るSiC半導体装置の構造を説明するための図である。 図14Aは、図3に示すSiC半導体装置を示す斜視図であって、改質ラインの第2形態例を示す斜視図である。 図14Bは、図3に示すSiC半導体装置を示す斜視図であって、改質ラインの第3形態例を示す斜視図である。 図14Cは、図3に示すSiC半導体装置を示す斜視図であって、改質ラインの第4形態例を示す斜視図である。 図14Dは、図3に示すSiC半導体装置を示す斜視図であって、改質ラインの第5形態例を示す斜視図である。 図14Eは、図3に示すSiC半導体装置を1つの角度から見た斜視図であって、改質ラインの第6形態例を示す斜視図である。 図14Fは、図14Eに示すSiC半導体装置を別の角度から見た斜視図である。 図14Gは、図3に示すSiC半導体装置を示す斜視図であって、改質ラインの第7形態例を示す斜視図である。 図14Hは、図3に示すSiC半導体装置を示す斜視図であって、改質ラインの第8形態例を示す斜視図である。 図14Iは、図3に示すSiC半導体装置を示す斜視図であって、改質ラインの第9形態例を示す斜視図である。 図14Jは、図3に示すSiC半導体装置を示す斜視図であって、改質ラインの第10形態例を示す斜視図である。 図14Kは、図3に示すSiC半導体装置を示す斜視図であって、改質ラインの第11形態例を示す斜視図である。 図14Lは、図3に示すSiC半導体装置を示す斜視図であって、改質ラインの第12形態例を示す斜視図である。 図14Mは、図3に示すSiC半導体装置を示す斜視図であって、改質ラインの第13形態例を示す斜視図である。 図15は、本発明の第2実施形態に係るSiC半導体装置を示す斜視図であって、第1形態例に係る改質ラインが適用された構造を示す斜視図である。 図16は、本発明の第3実施形態に係るSiC半導体装置を1つの角度から見た斜視図であって、第1形態例に係る改質ラインが適用された構造を示す斜視図である。 図17は、図16に示すSiC半導体装置を別の角度から見た斜視図である。 図18は、図16に示すSiC半導体装置を示す平面図である。 図19は、図18から樹脂層を取り除いた平面図である。 図20は、図19に示す領域XXの拡大図であって、SiC半導体層の第1主面の構造を説明するための図である。 図21は、図20に示すXXI-XXI線に沿う断面図である。 図22は、図20に示すXXII-XXII線に沿う断面図である。 図23は、図21に示す領域XXIIIの拡大図である。 図24は、図19に示すXXIV-XXIV線に沿う断面図である。 図25は、図24に示す領域XXVの拡大図である。 図26は、シート抵抗を説明するためのグラフである。 図27は、図20に対応する領域の拡大図であって、本発明の第4実施形態に係るSiC半導体装置を示す拡大図である。 図28は、図27に示すXXVIII-XXVIII線に沿う断面図である。 図29は、図23に対応する領域の拡大図であって、本発明の第5実施形態に係るSiC半導体装置を示す拡大図である。 図30は、図20に対応する領域の拡大図であって、本発明の第6実施形態に係るSiC半導体装置を示す拡大図である。
 本発明の実施形態では、六方晶からなるSiC(炭化シリコン)単結晶が適用される。六方晶からなるSiC単結晶は、原子配列の周期に応じて、2H(Hexagonal)-SiC単結晶、4H-SiC単結晶および6H-SiC単結晶を含む複数種のポリタイプを有している。本発明の実施形態では、4H-SiC単結晶が適用された例について説明するが、他のポリタイプを本発明から除外するものではない。
 以下、4H-SiC単結晶の結晶構造について説明する。図1は、本発明の実施形態に適用される4H-SiC単結晶の単位セル(以下、単に「単位セル」という。)を示す図である。図2は、図1に示す単位セルのシリコン面を示す平面図である。
 図1および図2を参照して、単位セルは、1つのSi原子に対して4つのC原子が四面体配列(正四面体配列)の関係で結合された四面体構造を含む。単位セルは、四面体構造が4周期積層された原子配列を有している。単位セルは、正六角形のシリコン面、正六角形のカーボン面、ならびに、シリコン面およびカーボン面を接続する6つの側面を有する六角柱構造を有している。
 シリコン面は、Si原子によって終端された終端面である。シリコン面では、正六角形の6つの頂点に1つのSi原子がそれぞれ位置し、正六角形の中心に1つのSi原子が位置している。カーボン面は、C原子によって終端された終端面である。カーボン面では、正六角形の6つの頂点に1つのC原子がそれぞれ位置し、正六角形の中心に1つのC原子が位置している。
 単位セルの結晶面は、a1軸、a2軸、a3軸およびc軸を含む4つの座標軸(a1,a2,a3,c)によって定義される。4つの座標軸のうちのa3の値は、-(a1+a2)の値をとる。以下、六方晶の終端面の一例としてのシリコン面を基準にして、4H-SiC単結晶の結晶面について説明する。
 a1軸、a2軸およびa3軸は、シリコン面をc軸から見た平面視において、中心に位置するSi原子を基準に、最近接するSi原子の配列方向(以下、単に「最近接原子方向」という。)に沿ってそれぞれ設定されている。a1軸、a2軸およびa3軸は、それぞれ、Si原子の配列に倣って120°ずつ角度をずらして設定されている。
 c軸は、中心に位置するSi原子を基準に、シリコン面の法線方向に設定されている。シリコン面は、(0001)面である。カーボン面は、(000-1)面である。六角柱の側面は、シリコン面をc軸から見た平面視において、最近接原子方向に沿う6つの結晶面を含む。六角柱の側面は、より具体的には、シリコン面をc軸から見た平面視において、最近接する2つのSi原子をそれぞれ含む6つの結晶面を含む。
 単位セルの側面は、シリコン面をc軸から見た平面視において、a1軸の先端から時計回りに(1-100)面、(0-110)面、(-1010)面、(-1100)面、(01-10)面および(10-10)面を含む。
 単位セルにおいて中心を通らない対角面は、シリコン面をc軸から見た平面視において最近接原子方向に交差する交差方向に沿う6つの結晶面を含む。中心に位置するSi原子を基準に見たとき、最近接原子方向の交差方向は、最近接原子方向の直交方向となる。単位セルにおいて中心を通らない対角面は、より具体的には、最近接しない2つのSi原子をそれぞれ含む6つの結晶面を含む。
 単位セルにおいて中心を通らない対角面は、シリコン面をc軸から見た平面視において、(11-20)面、(1-210)面、(-2110)面、(-1-120)面、(-12-10)面および(2-1-10)面を含む。
 単位セルの結晶方向は、結晶面の法線方向によって定義される。(1-100)面の法線方向は[1-100]方向である。(0-110)面の法線方向は[0-110]方向である。(-1010)面の法線方向は[-1010]方向である。(-1100)面の法線方向は[-1100]方向である。(01-10)面の法線方向は[01-10]方向である。(10-10)面の法線方向は[10-10]方向である。
 (11-20)面の法線方向は[11-20]方向である。(1-210)面の法線方向は[1-210]方向である。(-2110)面の法線方向は[-2110]方向である。(-1-120)面の法線方向は[-1-120]方向である。(-12-10)面の法線方向は[-12-10]方向である。(2-1-10)面の法線方向は[2-1-10]方向である。
 六方晶は6回対称であり、60°毎に等価な結晶面および等価な結晶方向を有している。たとえば、(1-100)面、(0-110)面、(-1010)面、(-1100)面、(01-10)面および(10-10)面は、等価な結晶面を形成している。また、(11-20)面、(1-210)面、(-2110)面、(-1-120)面、(-12-10)面および(2-1-10)面は、等価な結晶面を形成している。
 また、[1-100]方向、[0-110]方向、[-1010]方向、[-1100]方向、[01-10]方向および[10-10]方向は、等価な結晶方向を形成している。また、[11-20]方向、[1-210]方向、[-2110]方向、[-1-120]方向、[-12-10]方向および[2-1-10]方向は、等価な結晶方向を形成している。
 c軸は、[0001]方向([000-1]方向)である。a1軸は、[2-1-10]方向([-2110]方向)である。a2軸は、[-12-10]方向([1-210]方向)である。a3軸は、[-1-120]方向([11-20]方向)である。
 [0001]方向および[000-1]方向は、c軸と称される。(0001)面および(000-1)面は、c面と称される。[11-20]方向および[-1-120]方向は、a軸と称される。(11-20)面および(-1-120)面は、a面と称される。[1-100]方向および[-1100]方向は、m軸と称される。(1-100)面および(-1100)面は、m面と称される。
 図3は、本発明の第1実施形態に係るSiC半導体装置1を1つの角度から見た斜視図であって、改質ライン22A~22Dの第1形態例を示す斜視図である。図4は、図3に示すSiC半導体装置1を別の角度から見た斜視図である。図5は、図3に示す領域Vの拡大図である。図6は、図3に示す領域VIの拡大図である。図7は、図3に示すSiC半導体装置1の平面図である。図8は、図7に示すVIII-VIII線に沿う断面図である。
 図3~図8を参照して、SiC半導体装置1は、SiC半導体層2を含む。SiC半導体層2は、六方晶からなるSiC単結晶の一例としての4H-SiC単結晶を含む。SiC半導体層2は、直方体形状のチップ状に形成されている。
 SiC半導体層2は、一方側の第1主面3、他方側の第2主面4、ならびに、第1主面3および第2主面4を接続する側面5A,5B,5C,5Dを有している。第1主面3および第2主面4は、それらの法線方向Zから見た平面視(以下、単に「平面視」という。)において四角形状(ここでは正方形状)に形成されている。
 第1主面3は、機能デバイス(半導体素子)が形成されたデバイス面である。第2主面4は、研削痕を有する研削面からなる。側面5A~5Dは、SiC単結晶の結晶面に面する平滑な劈開面からそれぞれなる。側面5A~5Dは、研削痕を有していない。
 SiC半導体層2の厚さTLは、40μm以上200μm以下であってもよい。厚さTLは、40μm以上60μm以下、60μm以上80μm以下、80μm以上100μm以下、100μm以上120μm以下、120μm以上140μm以下、140μm以上160μm以下、160μm以上180μm以下、または、180μm以上200μm以下であってもよい。厚さTLは、60μm以上150μm以下であることが好ましい。
 第1主面3および第2主面4は、この形態(in this embodiment)では、SiC単結晶のc面に面している。第1主面3は、(0001)面(シリコン面)に面している。第2主面4は、SiC単結晶の(000-1)面(カーボン面)に面している。
 第1主面3および第2主面4は、SiC単結晶のc面に対して[11-20]方向に10°以下の角度で傾斜したオフ角θを有している。法線方向Zは、SiC単結晶のc軸([0001]方向)に対してオフ角θ分だけ傾斜している。
 オフ角θは、0°以上5.0°以下であってもよい。オフ角θは、0°以上1.0°以下、1.0°以上1.5°以下、1.5°以上2.0°以下、2.0°以上2.5°以下、2.5°以上3.0°以下、3.0°以上3.5°以下、3.5°以上4.0°以下、4.0°以上4.5°以下、または、4.5°以上5.0°以下の角度の範囲に設定されてもよい。オフ角θは、0°を超えていることが好ましい。オフ角θは、4.0°未満であってもよい。
 オフ角θは、3.0°以上4.5°以下の角度の範囲に設定されていてもよい。この場合、オフ角θは、3.0°以上3.5°以下、または、3.5°以上4.0°以下の角度の範囲に設定されていることが好ましい。オフ角θは、1.5°以上3.0°以下の角度の範囲に設定されていてもよい。この場合、オフ角θは、1.5°以上2.0°以下、または、2.0°以上2.5°以下の角度の範囲に設定されていることが好ましい。
 側面5A~5Dの長さは、それぞれ、0.5mm以上10mm以下であってもよい。側面5A~5Dの表面積は、この形態では、互いに等しい。第1主面3および第2主面4が平面視において長方形状に形成されている場合、側面5A,5Cの表面積は、側面5B,5Dの表面積未満であってもよいし、側面5B,5Dの表面積を超えていてもよい。
 側面5Aおよび側面5Cは、この形態では、第1方向Xに沿って延び、第1方向Xに交差する第2方向Yに互いに対向している。側面5Bおよび側面5Dは、この形態では、第2方向Yに沿って延び、第1方向Xに互いに対向している。第2方向Yは、より具体的には第1方向Xに直交する方向である。
 第1方向Xは、この形態では、SiC単結晶のm軸方向([1-100]方向)に設定されている。第2方向Yは、SiC単結晶のa軸方向([11-20]方向)に設定されている。
 側面5Aおよび側面5Cは、SiC単結晶のa面によって形成され、a軸方向に互いに対向している。側面5Aは、SiC単結晶の(-1-120)面によって形成されている。側面5Cは、SiC単結晶の(11-20)面によって形成されている。
 側面5Aおよび側面5Cは、第1主面3の法線を0°としたとき、第1主面3の法線に対してオフ角θ未満の角度θa(θa<θ)を有している。角度θaは、より具体的には、0°以上かつオフ角θ未満(0°≦θa<θ)である。角度θaは、断面視において第1主面3の周縁点および第2主面4の周縁点を結ぶラインが、第1主面3の法線との間で成す角度によって定義されてもよい。
 側面5Bおよび側面5Dは、SiC単結晶のm面によって形成され、m軸方向に互いに対向している。側面5Bは、SiC単結晶の(-1100)面によって形成されている。側面5Dは、SiC単結晶の(1-100)面によって形成されている。側面5Bおよび側面5Dは、第1主面3の法線に沿って平面的に延びている。側面5Bおよび側面5Dは、より具体的には、第1主面3および第2主面4に対して略垂直に形成されている。
 SiC半導体層2は、この形態では、n型のSiC半導体基板6およびn型のSiCエピタキシャル層7を含む積層構造を有している。SiC半導体基板6によって、SiC半導体層2の第2主面4が形成されている。SiCエピタキシャル層7によって、SiC半導体層2の第1主面3が形成されている。SiC半導体基板6およびSiCエピタキシャル層7によって、SiC半導体層2の側面5A~5Dが形成されている。
 SiCエピタキシャル層7のn型不純物濃度は、SiC半導体基板6のn型不純物濃度以下である。SiCエピタキシャル層7のn型不純物濃度は、より具体的には、SiC半導体基板6のn型不純物濃度未満である。SiC半導体基板6のn型不純物濃度は、1.0×1018cm-3以上1.0×1021cm-3以下であってもよい。SiCエピタキシャル層7のn型不純物濃度は、1.0×1015cm-3以上1.0×1018cm-3以下であってもよい。
 SiC半導体基板6の厚さTSは、40μm以上150μm以下であってもよい。厚さTSは、40μm以上50μm以下、50μm以上60μm以下、60μm以上70μm以下、70μm以上80μm以下、80μm以上90μm以下、90μm以上100μm以下、100μm以上110μm以下、110μm以上120μm以下、120μm以上130μm以下、130μm以上140μm以下、または、140μm以上150μm以下であってもよい。厚さTSは、40μm以上130μm以下であることが好ましい。SiC半導体基板6の薄化によって、電流経路が短縮されるから、抵抗値の低減を図ることができる。
 SiCエピタキシャル層7の厚さTEは、1μm以上50μm以下であってもよい。厚さTEは、1μm以上5μm以下、5μm以上10μm以下、10μm以上15μm以下、15μm以上20μm以下、20μm以上25μm以下、25μm以上30μm以下、30μm以上35μm以下、35μm以上40μm以下、40μm以上45μm以下、または、45μm以上50μm以下であってもよい。厚さTEは、5μm以上15μm以下であることが好ましい。
 SiC半導体層2は、アクティブ領域8および外側領域9を含む。アクティブ領域8は、機能デバイスの一例としてのショットキーバリアダイオードDが形成された領域である。アクティブ領域8は、平面視においてSiC半導体層2の側面5A~5Dから内方領域に間隔を空けてSiC半導体層2の中央部に形成されている。アクティブ領域8は、平面視において側面5A~5Dに平行な4辺を有する四角形状に形成されている。
 外側領域9は、アクティブ領域8の外側の領域である。外側領域9は、側面5A~5Dおよびアクティブ領域8の周縁の間の領域に形成されている。外側領域9は、平面視においてアクティブ領域8を取り囲む無端状(この形態では四角環状)に形成されている。
 SiC半導体装置1は、第1主面3の上に形成された主面絶縁層10を含む。主面絶縁層10は、アクティブ領域8および外側領域9を選択的に被覆している。主面絶縁層10は、酸化シリコン(SiO)層または窒化シリコン(SiN)層からなる単層構造を有していてもよい。主面絶縁層10は、酸化シリコン層および窒化シリコン層を含む積層構造を有していてもよい。酸化シリコン層は、窒化シリコン層の上に形成されていてもよい。窒化シリコン層は、酸化シリコン層の上に形成されていてもよい。主面絶縁層10は、この形態では、酸化シリコン層からなる単層構造を有している。
 主面絶縁層10は、SiC半導体層2の側面5A~5Dから露出する絶縁側面11A,11B,11C,11Dを有している。絶縁側面11A~11Dは、側面5A~5Dに連なっている。絶縁側面11A~11Dは、側面5A~5Dに対して面一に形成されている。絶縁側面11A~11Dは、劈開面からなる。
 主面絶縁層10の厚さは、1μm以上50μm以下であってもよい。主面絶縁層10の厚さは、1μm以上10μm以下、10μm以上20μm以下、20μm以上30μm以下、30μm以上40μm以下、または、40μm以上50μm以下であってもよい。
 SiC半導体装置1は、主面絶縁層10の上に形成された第1主面電極層12を含む。第1主面電極層12は、平面視において側面5A~5Dから内方領域に間隔を空けてSiC半導体層2の中央部に形成されている。
 SiC半導体装置1は、主面絶縁層10の上に形成されたパッシベーション層13(絶縁層)を含む。パッシベーション層13は、酸化シリコン層または窒化シリコン層からなる単層構造を有していてもよい。パッシベーション層13は、酸化シリコン層および窒化シリコン層を含む積層構造を有していてもよい。酸化シリコン層は、窒化シリコン層の上に形成されていてもよい。窒化シリコン層は、酸化シリコン層の上に形成されていてもよい。パッシベーション層13は、この形態では、窒化シリコン層からなる単層構造を有している。
 パッシベーション層13は、4つの側面14A,14B,14C,14Dを含む。パッシベーション層13の側面14A~14Dは、平面視においてSiC半導体層2の側面5A~5Dから内方領域に間隔を空けて形成されている。パッシベーション層13は、平面視において第1主面3の周縁部を露出させている。パッシベーション層13は、主面絶縁層10を露出させている。パッシベーション層13の側面14A~14Dは、SiC半導体層2の側面5A~5Dに対して面一に形成されていてもよい。
 パッシベーション層13は、第1主面電極層12の一部をパッド領域として露出させるサブパッド開口15を含む。サブパッド開口15は、平面視において側面5A~5Dに平行な4辺を有する四角形状に形成されている。
 パッシベーション層13の厚さは、1μm以上50μm以下であってもよい。パッシベーション層13の厚さは、1μm以上10μm以下、10μm以上20μm以下、20μm以上30μm以下、30μm以上40μm以下、または、40μm以上50μm以下であってもよい。
 SiC半導体装置1は、パッシベーション層13の上に形成された樹脂層16(絶縁層)を含む。樹脂層16は、パッシベーション層13との間で1つの絶縁積層構造(絶縁層)を形成している。図7では、樹脂層16がハッチングによって示されている。
 樹脂層16は、ネガティブタイプまたはポジティブタイプの感光性樹脂を含んでいてもよい。樹脂層16は、この形態では、ポジティブタイプの感光性樹脂の一例としてのポリベンゾオキサゾールを含む。樹脂層16は、ネガティブタイプの感光性樹脂の一例としてのポリイミドを含んでいてもよい。
 樹脂層16は、4つの樹脂側面17A,17B,17C,17Dを含む。樹脂層16の樹脂側面17A~17Dは、平面視においてSiC半導体層2の側面5A~5Dから内方領域に間隔を空けて形成されている。樹脂層16は、平面視において第1主面3の周縁部を露出させている。樹脂層16は、パッシベーション層13と共に主面絶縁層10を露出させている。樹脂層16の樹脂側面17A~17Dは、この形態では、パッシベーション層13の側面14A~14Dに面一に形成されている。
 樹脂層16の樹脂側面17A~17Dは、SiC半導体層2の側面5A~5Dとの間でダイシングストリートを区画している。この形態では、パッシベーション層13の側面14A~14Dもダイシングストリートを区画している。ダイシングストリートによれば、一枚のSiC半導体ウエハからSiC半導体装置1を切り出す際に、樹脂層16やパッシベーション層13を物理的に切断する必要がなくなる。これにより、一枚のSiC半導体ウエハからSiC半導体装置1を円滑に切り出すことができる。また、側面5A~5Dからの絶縁距離を増加させることができる。
 ダイシングストリートの幅は、1μm以上25μm以下であってもよい。ダイシングストリートの幅は、1μm以上5μm以下、5μm以上10μm以下、10μm以上15μm以下、15μm以上20μm以下、または、20μm以上25μm以下であってもよい。
 樹脂層16は、第1主面電極層12の一部をパッド領域として露出させるパッド開口18を含む。パッド開口18は、平面視において側面5A~5Dに平行な4辺を有する四角形状に形成されている。
 パッド開口18は、サブパッド開口15に連通している。パッド開口18の内壁は、サブパッド開口15の内壁に面一に形成されている。パッド開口18の内壁は、サブパッド開口15の内壁に対して側面5A~5D側に位置していてもよい。パッド開口18の内壁は、サブパッド開口15の内壁に対してSiC半導体層2の内方領域に位置していてもよい。樹脂層16は、サブパッド開口15の内壁を被覆していてもよい。
 樹脂層16の厚さは、1μm以上50μm以下であってもよい。樹脂層16の厚さは、1μm以上10μm以下、10μm以上20μm以下、20μm以上30μm以下、30μm以上40μm以下、または、40μm以上50μm以下であってもよい。
 SiC半導体装置1は、SiC半導体層2の第2主面4の上に形成された第2主面電極層19を含む。第2主面電極層19は、第2主面4(SiC半導体基板6)との間でオーミック接触を形成している。
 SiC半導体装置1は、側面5A~5Dに形成された複数の改質ライン22A~22D(改質層)を含む。改質ライン22A~22Dは、主面絶縁層10、パッシベーション層13および樹脂層16に形成されていない。改質ライン22A~22Dは、側面5Aに形成された改質ライン22A、側面5Bに形成された改質ライン22B、側面5Cに形成された改質ライン22C、および、側面5Dに形成された改質ライン22Dを含む。
 改質ライン22A,22CはSiC単結晶のa面にそれぞれ形成されている。改質ライン22Aは、側面5Aに複数(2層以上。この形態では3層)形成されている。改質ライン22Cは、側面5Cに複数(2層以上。この形態では3層)形成されている。改質ライン22A,22Cの層数は、2層以上6層以下であることが好ましい。
 改質ライン22B,22DはSiC単結晶のm面にそれぞれ形成されている。改質ライン22Bは、側面5Bに1層または複数(2層以上。この形態では1層)形成されている。改質ライン22Dは、側面5Dに1層または複数(2層以上。この形態では1層)形成されている。改質ライン22B,22Dの層数は、改質ライン22A,22Cの層数以下であることが好ましい。改質ライン22B,22Dの層数は、改質ライン22A,22Cの層数未満であることがさらに好ましい。
 改質ライン22A~22Dは、側面5A~5Dを形成するSiC単結晶の一部がSiC単結晶とは異なる性質に改質された層状の領域を含む。改質ライン22A~22Dは、密度、屈折率または機械的強度(結晶強度)、もしくは、その他の物理的特性がSiC単結晶とは異なる性質に改質された領域を含む。改質ライン22A~22Dは、溶融再硬化層、欠陥層、絶縁破壊層および屈折率変化層のうちの少なくとも1つの層を含んでいてもよい。
 溶融再硬化層は、SiC半導体層2の一部が溶融した後再度硬化した層である。欠陥層は、SiC半導体層2に形成された空孔や亀裂等を含む層である。絶縁破壊層は、SiC半導体層2の一部が絶縁破壊した層である。屈折率変化層は、SiC半導体層2の一部がSiC単結晶とは異なる屈折率に変化した層である。
 改質ライン22A~22Dは、第1主面3の接線方向に沿って帯状に延びている。第1主面3の接線方向は、法線方向Zに直交する方向である。接線方向は、第1方向X(SiC単結晶のm軸方向)および第2方向Y(SiC単結晶のa軸方向)を含む。
 図3および図8を参照して、複数の改質ライン22Aは、側面5Aにおいてm軸方向に沿って直線状に延びる帯状にそれぞれ形成されている。複数の改質ライン22Aは、法線方向Zに互いにずれて形成されている。
 複数の改質ライン22Aは、法線方向Zに互いに重なっていてもよい。複数の改質ライン22Aは、法線方向Zに間隔を空けて形成されていることが好ましい。複数の改質ライン22Aは、法線方向Zに関して厚さTRをそれぞれ有している。複数の改質ライン22Aの厚さTRは、互いに等しくてもよいし、互いに異なっていてもよい。
 複数の改質ライン22Aのうち第1主面3側の改質ライン22Aは、第1主面3から第2主面4側に間隔を空けて形成されている。第1主面3側の改質ライン22Aは、側面5Aから第1主面3の表層部を露出させている。複数の改質ライン22Aのうち第2主面4側の改質ライン22Aは、第2主面4から第1主面3側に間隔を空けて形成されている。第2主面4側の改質ライン22Aは、側面5Aから第2主面4の表層部を露出させている。
 複数の改質ライン22Aは、SiC半導体基板6に形成されている。複数の改質ライン22Aは、SiC半導体基板6およびSiCエピタキシャル層7の間の境界から第2主面4側に間隔を空けて形成されている。これにより、複数の改質ライン22Aは、第1主面3の表層部においてSiCエピタキシャル層7を露出させている。
 SiC単結晶のa面に面する側面5Aは、SiC単結晶のc軸を劈開方向として劈開する物性を有している。したがって、SiC単結晶のc軸や法線方向Zに沿って複数の改質ライン22Aを形成した場合には、側面5AはSiC単結晶のc軸に沿う傾斜面となる。
 そこで、この形態では、a軸方向に関して第1主面3の法線からSiC単結晶のc軸とは反対側(側面5C側)の方向に向けて傾斜した1つまたは複数(この形態では1つ)の傾斜部が、側面5Aに導入されている。c軸の反対方向は、より具体的には、法線方向ZおよびSiC単結晶のa軸方向([11-20]方向)の間の方向である。
 この形態では、断面視においてSiC単結晶のa軸方向に互いにずれて形成された複数の改質ライン22Aによって、SiC単結晶のc軸とは反対側(側面5C側)に向かう傾斜部が側面5Aに導入されている。側面5Aには、SiC単結晶のc軸に沿う1つまたは複数の傾斜部も形成されている。c軸に向かう傾斜部の形成領域は、SiC単結晶のc軸とは反対側に向かう傾斜部によって削減されている。
 複数の改質ライン22Aは、断面視において法線方向Zに関してa軸方向の一方側([11-20]方向側)および他方側([-1-120]方向側)に交互にずれて形成されている。4層以上の改質ライン22Aが側面5Aに形成されている場合、全ての改質ライン22Aがa軸方向の一方側および他方側に交互にずれて形成されている必要はない。複数の改質ライン22Aは、a軸方向の一方側および他方側に交互にずれて形成された部分を含むことが好ましい。
 複数の改質ライン22Aは、任意の2層の改質ライン22Aを結ぶ直線が少なくとも第1主面3の法線に交差する態様で形成されていることが好ましい。任意の2層の改質ライン22Aを結ぶ直線は、SiC単結晶のc軸に交差することが好ましい。任意の2層の改質ライン22Aを結ぶ直線は、第1主面3の法線およびSiC単結晶のc軸に交差することが好ましい。
 複数の改質ライン22Aは、a軸方向に関して第2主面4側の改質ライン22Aに対してSiC半導体層2の内方([11-20]方向側)にずれて形成された1層または複数の改質ライン22Aを含むことが好ましい。
 この形態では、中間の改質ライン22Aが第2主面4側の改質ライン22Aに対してSiC半導体層2の内方にずれて形成されている。SiC単結晶のc軸とは反対側に向かう傾斜部は、中間の改質ライン22Aおよび第2主面4側の改質ライン22Aの間の領域に形成されている。中間の改質ライン22Aおよび第2主面4側の改質ライン22Aを結ぶ直線は、第1主面3の法線およびSiC単結晶のc軸に交差している。
 複数の改質ライン22Aは、a軸方向に関して第1主面3側の改質ライン22Aに対してSiC半導体層2の内方([11-20]方向側)にずれて形成された1層または複数の改質ライン22Aを含むことが好ましい。
 この形態では、中間の改質ライン22Aが第1主面3側の改質ライン22Aに対してSiC半導体層2の内方にずれて形成されている。SiC単結晶のc軸に向かう傾斜部は、中間の改質ライン22Aおよび第1主面3側の改質ライン22Aの間の領域に形成されている。中間の改質ライン22Aおよび第1主面3側の改質ライン22Aを結ぶ直線は、第1主面3の法線に交差している。中間の改質ライン22Aおよび第1主面3側の改質ライン22Aを結ぶ直線は、SiC単結晶のc軸に沿って延びていてもよいし、SiC単結晶のc軸に交差していてもよい。
 このように、3層以上の改質ライン22Aが形成されている場合、複数の改質ライン22Aは、任意の2層の改質ライン22Aを結ぶ直線に対してSiC半導体層2の内方([11-20]方向側)にずれて形成された1層または複数の改質ライン22Aを含むことが好ましい。この形態では、中間の改質ライン22Aが、第1主面3側の改質ライン22Aおよび第2主面4側の改質ライン22Aを結ぶ直線に対してSiC半導体層2の内方にずれて形成されている。
 隣り合う2つの改質ライン22Aのa軸方向の距離DRは、0μmを超えて20μm以下であってもよい。距離DRは、0μmを超えて5μm以下、5μm以上10μm以下、10μm以上15μm以下、または、15μm以上20μm以下であってもよい。
 複数の改質ライン22Aのa軸方向の最遠距離DDは、0μmを超えて40μm以下であってもよい。最遠距離DDは、a軸方向に関して最も外側に位置する改質ライン22Aおよび最も内側に位置する改質ライン22Aの間の距離である。
 最遠距離DDは、0μmを超えて5μm以下、5μm以上10μm以下、10μm以上15μm以下、15μm以上20μm以下、20μm以上25μm以下、25μm以上30μm以下、30μm以上35μm以下、35μm以上40μm以下、40μm以上45μm以下、45μm以上50μm以下であってもよい。最遠距離DDは、距離DRと一致していてもよい。
 距離DRは、オフ角θおよびSiC半導体層2の厚さTLを用いて、TL×tanθ未満の値(0<DR<TL×tanθ)であることが好ましい。また、最遠距離DDは、TL×tanθ未満の値(0<DD<TL×tanθ)であることが好ましい。この場合、3層以上の改質ライン22Aが形成されていることが好ましい。
 側面5Aは、複数の改質ライン22Aによって形成された隆起部を有している。側面5Aの隆起部の頂部および基部は、複数の改質ライン22Aによって形成されている。この形態では、第1主面3側の改質ライン22Aおよび第2主面4側の改質ライン22Aによって、隆起部の頂部が形成され、中間の改質ライン22Aによって、隆起部の基部が形成されている。側面5Aは、隆起部を有しながら、全体として、SiC単結晶のc軸および第1主面3の法線の間の角度位置に形成されている。
 図4を参照して、改質ライン22Bは、側面5Bにおいてa軸方向に沿って直線状に延びる帯状に形成されている。改質ライン22Bは、法線方向Zに関して厚さTRを有している。改質ライン22Bは、第1主面3から第2主面4側に間隔を空けて形成されている。改質ライン22Bは、側面5Bから第1主面3の表層部を露出させている。改質ライン22Bは、第2主面4から第1主面3側に間隔を空けて形成されている。改質ライン22Bは、側面5Bから第2主面4の表層部を露出させている。
 改質ライン22Bは、SiC半導体基板6に形成されている。改質ライン22Bは、SiC半導体基板6およびSiCエピタキシャル層7の間の境界から第2主面4側に間隔を空けて形成されている。これにより、改質ライン22Bは、第1主面3の表層部においてSiCエピタキシャル層7を露出させている。
 複数の改質ライン22Bが、側面5Bに形成されていてもよい。この場合、複数の改質ライン22Bは、法線方向Zに互いにずれて形成される。複数の改質ライン22Bは、法線方向Zに互いに重なっていてもよい。複数の改質ライン22Bは、法線方向Zに間隔を空けて形成されていることが好ましい。複数の改質ライン22Bの厚さTRは、互いに等しくてもよいし、互いに異なっていてもよい。
 図4および図8を参照して、複数の改質ライン22Cは、側面5Cにおいてm軸方向に沿って直線状に延びる帯状にそれぞれ形成されている。複数の改質ライン22Cは、法線方向Zに互いにずれて形成されている。
 複数の改質ライン22Cは、法線方向Zに互いに重なっていてもよい。複数の改質ライン22Cは、法線方向Zに間隔を空けて形成されていることが好ましい。複数の改質ライン22Cは、法線方向Zに関して厚さTRをそれぞれ有している。複数の改質ライン22Cの厚さTRは、互いに等しくてもよいし、互いに異なっていてもよい。
 複数の改質ライン22Cのうち第1主面3側の改質ライン22Cは、第1主面3から第2主面4側に間隔を空けて形成されている。第1主面3側の改質ライン22Cは、側面5Cから第1主面3の表層部を露出させている。複数の改質ライン22Cのうち第2主面4側の改質ライン22Cは、第2主面4から第1主面3側に間隔を空けて形成されている。第2主面4側の改質ライン22Cは、側面5Cから第2主面4の表層部を露出させている。
 複数の改質ライン22Cは、SiC半導体基板6に形成されている。複数の改質ライン22Cは、SiC半導体基板6およびSiCエピタキシャル層7の間の境界から第2主面4側に間隔を空けて形成されている。これにより、複数の改質ライン22Cは、第1主面3の表層部においてSiCエピタキシャル層7を露出させている。
 SiC単結晶のa面に面する側面5Cは、SiC単結晶のc軸を劈開方向として劈開する物性を有している。したがって、SiC単結晶のc軸や法線方向Zに沿って複数の改質ライン22Cを形成した場合には、側面5CはSiC単結晶のc軸に沿う傾斜面となる。
 そこで、この形態では、第1主面3の法線からSiC単結晶のc軸とは反対側(側面5Aとは反対側)の方向に向けて傾斜した1つまたは複数(この形態では1つ)の傾斜部が、側面5Cに導入されている。c軸の反対方向は、より具体的には、法線方向ZおよびSiC単結晶のa軸方向([11-20]方向)の間の方向である。
 この形態では、断面視においてSiC単結晶のa軸方向に互いにずれて形成された複数の改質ライン22Cによって、SiC単結晶のc軸とは反対側(側面5Aとは反対側)に向かう傾斜部が側面5Cに導入されている。側面5Cには、SiC単結晶のc軸に沿う1つまたは複数の傾斜部も形成されている。c軸に向かう傾斜部の形成領域は、SiC単結晶のc軸とは反対側に向かう傾斜部によって削減されている。
 複数の改質ライン22Cは、断面視において法線方向Zに関してa軸方向の一方側([11-20]方向側)および他方側([-1-120]方向側)に交互にずれて形成されている。4層以上の改質ライン22Cが側面5Cに形成されている場合、全ての改質ライン22Cがa軸方向の一方側および他方側に交互にずれて形成されている必要はない。複数の改質ライン22Cは、a軸方向の一方側および他方側に交互にずれて形成された部分を含むことが好ましい。
 複数の改質ライン22Cは、任意の2層の改質ライン22Cを結ぶ直線が少なくとも第1主面3の法線に交差する態様で形成されていることが好ましい。任意の2層の改質ライン22Cを結ぶ直線は、SiC単結晶のc軸に交差することが好ましい。任意の2層の改質ライン22Cを結ぶ直線は、第1主面3の法線およびSiC単結晶のc軸に交差することが好ましい。
 複数の改質ライン22Cは、a軸方向に関して第2主面4側の改質ライン22Cに対してSiC半導体層2の外方([11-20]方向側)にずれて形成された1層または複数の改質ライン22Cを含むことが好ましい。
 この形態では、中間の改質ライン22Cが第2主面4側の改質ライン22Cに対してSiC半導体層2の外方にずれて形成されている。SiC単結晶のc軸とは反対側に向かう傾斜部は、中間の改質ライン22Cおよび第2主面4側の改質ライン22Cの間の領域に形成されている。中間の改質ライン22Cおよび第2主面4側の改質ライン22Cを結ぶ直線は、第1主面3の法線およびSiC単結晶のc軸に交差している。
 複数の改質ライン22Cは、a軸方向に関して第1主面3側の改質ライン22Cに対してSiC半導体層2の外方([11-20]方向側)にずれて形成された1層または複数の改質ライン22Cを含むことが好ましい。
 この形態では、中間の改質ライン22Cが第1主面3側の改質ライン22Cに対してSiC半導体層2の外方にずれて形成されている。SiC単結晶のc軸に向かう傾斜部は、中間の改質ライン22Cおよび第1主面3側の改質ライン22Cの間の領域に形成されている。中間の改質ライン22Cおよび第1主面3側の改質ライン22Cを結ぶ直線は、第1主面3の法線に交差している。中間の改質ライン22Cおよび第1主面3側の改質ライン22Cを結ぶ直線は、SiC単結晶のc軸に沿って延びていてもよいし、SiC単結晶のc軸に交差していてもよい。
 このように、3層以上の改質ライン22Cが形成されている場合、複数の改質ライン22Cは、任意の2層の改質ライン22Aを結ぶ直線に対してSiC半導体層2の外方([11-20]方向側)にずれて形成された1層または複数の改質ライン22Cを含むことが好ましい。この形態では、中間の改質ライン22Cが、第1主面3側の改質ライン22Cおよび第2主面4側の改質ライン22Cを結ぶ直線に対してSiC半導体層2の外方にずれて形成されている。
 隣り合う2つの改質ライン22Cのa軸方向の距離DRは、0μmを超えて20μm以下であってもよい。距離DRは、0μmを超えて5μm以下、5μm以上10μm以下、10μm以上15μm以下、または、15μm以上20μm以下であってもよい。
 複数の改質ライン22Cの最遠距離DDは、0μmを超えて40μm以下であってもよい。最遠距離DDは、a軸方向に関して最も外側に位置する改質ライン22Cおよび最も内側に位置する改質ライン22Cの間の距離である。
 最遠距離DDは、0μmを超えて5μm以下、5μm以上10μm以下、10μm以上15μm以下、15μm以上20μm以下、20μm以上25μm以下、25μm以上30μm以下、30μm以上35μm以下、35μm以上40μm以下、40μm以上45μm以下、45μm以上50μm以下であってもよい。最遠距離DDは、距離DRと一致していてもよい。
 距離DRは、オフ角θおよびSiC半導体層2の厚さTLを用いて、TL×tanθ未満の値(0<DR<TL×tanθ)であることが好ましい。また、最遠距離DDは、TL×tanθ未満の値(0<DD<TL×tanθ)であることが好ましい。この場合、3層以上の改質ライン22Cが形成されていることが好ましい。
 側面5Cは、複数の改質ライン22Cによって形成された隆起部を有している。側面5Cの隆起部の頂部および基部は、複数の改質ライン22Cによって形成されている。この形態では、第1主面3側の改質ライン22Cおよび第2主面4側の改質ライン22Cによって、隆起部の頂部が形成され、中間の改質ライン22Cによって、隆起部の基部が形成されている。側面5Cは、隆起部を有しながら、全体として、SiC単結晶のc軸および第1主面3の法線の間の角度位置に形成されている。
 図3を参照して、改質ライン22Dは、側面5Dにおいてa軸方向に沿って直線状に延びる帯状に形成されている。改質ライン22Dは、法線方向Zに関して厚さTRを有している。改質ライン22Dは、第1主面3から第2主面4側に間隔を空けて形成されている。改質ライン22Dは、側面5Dから第1主面3の表層部を露出させている。改質ライン22Dは、第2主面4から第1主面3側に間隔を空けて形成されている。改質ライン22Dは、側面5Dから第2主面4の表層部を露出させている。
 改質ライン22Dは、SiC半導体基板6に形成されている。改質ライン22Dは、SiC半導体基板6およびSiCエピタキシャル層7の間の境界から第2主面4側に間隔を空けて形成されている。これにより、改質ライン22Dは、第1主面3の表層部においてSiCエピタキシャル層7を露出させている。
 複数の改質ライン22Dは、側面5Dに形成されていてもよい。この場合、複数の改質ライン22Dは、法線方向Zに互いにずれて形成される。複数の改質ライン22Dは、法線方向Zに互いに重なっていてもよい。複数の改質ライン22Dは、法線方向Zに間隔を空けて形成されていることが好ましい。複数の改質ライン22Dの厚さTRは、互いに等しくてもよいし、互いに異なっていてもよい。
 改質ライン22Aおよび改質ライン22Bは、側面5Aおよび側面5Bを接続する角部で互いに連なっていてもよい。改質ライン22Bおよび改質ライン22Cは、側面5Bおよび側面5Cを接続する角部で互いに連なっていてもよい。改質ライン22Cおよび改質ライン22Dは、側面5Cおよび側面5Dを接続する角部で互いに連なっていてもよい。改質ライン22Dおよび改質ライン22Aは、側面5Dおよび側面5Aを接続する角部で互いに連なっていてもよい。
 改質ライン22A~22Dは、SiC半導体層2を取り囲むように一体的に形成されていてもよい。改質ライン22A~22Dは、側面5A~5DにおいてSiC半導体層2を取り囲む1つの無端状(環状)の改質ラインを形成していてもよい。
 改質ライン22A~22Dは、側面5A~5Dにおいて異なる専有割合RA,RB,RC,RDで形成されている。専有割合RAは、改質ライン22Aが側面5Aに占める割合である。専有割合RBは、改質ライン22Bが側面5Bに占める割合である。専有割合RCは、改質ライン22Cが側面5Cに占める割合である。専有割合RDは、改質ライン22Dが側面5Dに占める割合である。
 専有割合RA~RDは、より具体的には、SiC単結晶の結晶面に応じて異なっている。SiC単結晶のm面に形成された改質ライン22B,22Dの専有割合RB,RDは、SiC単結晶のa面に形成された改質ライン22A,22Cの専有割合RA,RC以下(RB,RD≦RA,RC)である。専有割合RB,RDは、より具体的には、専有割合RA,RC未満(RB,RD<RA,RC)である。
 改質ライン22A,22Cの専有割合RA,RCは、互いに等しくてもよいし、互いに異なっていてもよい。改質ライン22B,22Dの専有割合RB,RDは、互いに等しくてもよいし、互いに異なっていてもよい。
 専有割合RA~RDは、改質ライン22A~22Dの層数、厚さTR、総表面積等によって調整される。この形態では、一例として、改質ライン22A~22Dの層数および厚さTRを調節することによって、改質ライン22A~22Dの専有割合RA~RDが調整されている。
 改質ライン22B,22Dの層数は、それぞれ改質ライン22A,22Cの層数未満である。また、改質ライン22B,22Dの厚さTRの合計値は、それぞれ改質ライン22A,22Cの厚さTRの合計値未満である。また、改質ライン22B,22Dの表面積の合計値は、それぞれ改質ライン22A,22Cの表面積の合計値未満である。
 法線方向Zに関して改質ライン22A~22Dの厚さTRは、SiC半導体層2の厚さTL以下(TR≦TL)であることが好ましい。改質ライン22A~22Dの厚さTRは、SiC半導体基板6の厚さTS未満(TR<TS)であることがさらに好ましい。
 改質ライン22A~22Dの厚さTRは、SiCエピタキシャル層7の厚さTE以上(TR≧TE)であってもよい。改質ライン22Aの厚さTR、改質ライン22Bの厚さTR、改質ライン22Cの厚さTRおよび改質ライン22Dの厚さTRの厚さは、互いに等しくてもよいし、互いに異なっていてもよい。
 SiC半導体層2の厚さTLに対する改質ライン22A~22Dの厚さTRの比TR/TLは、0.1以上1.0未満であることが好ましい。比TR/TLは、0.1以上0.2以下、0.2以上0.4以下、0.4以上0.6以下、0.6以上0.8以下、または、0.8以上1.0未満であってもよい。
 比TR/TLは、0.1以上0.2以下、0.2以上0.3以下、0.3以上0.4以下、0.4以上0.5以下、0.5以上0.6以下、0.6以上0.7以下、0.7以上0.8以下、0.8以上0.9以下、または、0.9以上1.0未満であってもよい。比TR/TLは、0.2以上0.5以下であることが好ましい。
 SiC半導体基板6の厚さTSに対する改質ライン22A~22Dの厚さTRの比TR/TSは、0.1以上1.0未満であることがさらに好ましい。比TR/TSは、0.1以上0.2以下、0.2以上0.4以下、0.4以上0.6以下、0.6以上0.8以下、または、0.8以上1.0未満であってもよい。
 比TR/TSは、0.1以上0.2以下、0.2以上0.3以下、0.3以上0.4以下、0.4以上0.5以下、0.5以上0.6以下、0.6以上0.7以下、0.7以上0.8以下、0.8以上0.9以下、または、0.9以上1.0未満であってもよい。比TR/TSは、0.2以上0.5以下であることが好ましい。
 図5を参照して、改質ライン22Aは、複数のa面改質部28(改質部)を含む。換言すると、改質ライン22Aは、複数のa面改質部28の集合体によって形成されている。複数のa面改質部28は、側面5Aから露出するSiC単結晶がSiC単結晶とは異なる性質に改質された部分である。側面5Aにおいて各a面改質部28の周囲の領域は、SiC単結晶とは異なる性質に改質されていてもよい。
 複数のa面改質部28は、第1主面3側に位置する一端部28a、第2主面4側に位置する他端部28b、ならびに、一端部28aおよび他端部28bを接続する接続部28cをそれぞれ含む。
 複数のa面改質部28は、法線方向Zに延びる線状にそれぞれ形成されている。これにより、複数のa面改質部28は、全体として縞状に形成されている。複数のa面改質部28は、m軸方向幅が一端部28a側から他端部28b側に向けて狭まる先細り形状に形成された複数のa面改質部28を含んでいてもよい。
 複数のa面改質部28は、m軸方向に互いに対向するようにm軸方向に間隔を空けて形成されている。複数のa面改質部28は、m軸方向に互いに重なり合っていてもよい。m軸方向に延びる帯状の領域が、複数のa面改質部28の一端部28aを結ぶラインおよび複数のa面改質部28の他端部28bを結ぶラインによって形成されている。改質ライン22Aは、この帯状の領域によって形成されている。
 複数のa面改質部28は、側面5Aを切り欠いた切欠部をそれぞれ形成していてもよい。複数のa面改質部28は、側面5Aからa軸方向に向けて窪んだリセスをそれぞれ形成していてもよい。複数のa面改質部28は、法線方向Zの長さやm軸方向幅に応じて点状(ドット状)に形成されていてもよい。
 m軸方向に関して、互いに隣り合う複数のa面改質部28の中央部間のピッチPRは、0μmを超えて20μm以下であってもよい。ピッチPRは、0μmを超えて5μm以下、5μm以上10μm以下、10μm以上15μm以下、または、15μm以上20μm以下であってもよい。
 m軸方向に関して、各a面改質部28の幅WRは、0μmを超えて20μm以下であってもよい。幅WRは、0μmを超えて5μm以下、5μm以上10μm以下、10μm以上15μm以下、または、15μm以上20μm以下であってもよい。
 改質ライン22Cは、側面5Cに形成されている点を除いて、改質ライン22Aと同様の構造を有している。改質ライン22Aの説明は、「側面5A」を「側面5C」と読み替えて改質ライン22Cの説明に準用される。
 図6を参照して、改質ライン22Dは、複数のm面改質部29(改質部)を含む。換言すると、改質ライン22Dは、複数のm面改質部29の集合体によって形成されている。複数のm面改質部29は、側面5Dから露出するSiC単結晶がSiC単結晶とは異なる性質に改質された部分である。側面5Dにおいて各m面改質部29の周囲の領域は、SiC単結晶とは異なる性質に改質されていてもよい。
 複数のm面改質部29は、第1主面3側に位置する一端部29a、第2主面4側に位置する他端部29b、ならびに、一端部29aおよび他端部29bを接続する接続部29cをそれぞれ含む。
 複数のm面改質部29は、法線方向Zに延びる線状にそれぞれ形成されている。これにより、複数のm面改質部29は、全体として縞状に形成されている。複数のm面改質部29は、a軸方向幅が一端部29a側から他端部29b側に向けて狭まる先細り形状に形成された複数のm面改質部29を含んでいてもよい。
 複数のm面改質部29は、a軸方向に互いに対向するようにa軸方向に間隔を空けて形成されている。複数のm面改質部29は、a軸方向に互いに重なり合っていてもよい。a軸方向に延びる帯状の領域が、複数のm面改質部29の一端部29aを結ぶラインおよび複数のm面改質部29の他端部29bを結ぶラインによって形成されている。改質ライン22Dは、この帯状の領域によって形成されている。
 複数のm面改質部29は、側面5Dを切り欠いた切欠部をそれぞれ形成していてもよい。複数のm面改質部29は、側面5Dからm軸方向に向けて窪んだリセスをそれぞれ形成していてもよい。複数のm面改質部29は、法線方向Zの長さやa軸方向幅に応じて点状(ドット状)に形成されていてもよい。
 a軸方向に関して、互いに隣り合う複数のm面改質部29の中央部間のピッチPRは、0μm以上20μm以下であってもよい。ピッチPRは、0μm以上5μm以下、5μm以上10μm以下、10μm以上15μm以下、または、15μm以上20μm以下であってもよい。
 a軸方向に関して、各m面改質部29の幅WRは、0μmを超えて20μm以下であってもよい。幅WRは、0μmを超えて5μm以下、5μm以上10μm以下、10μm以上15μm以下、または、15μm以上20μm以下であってもよい。
 改質ライン22Bは、側面5Bに形成されている点を除いて、改質ライン22Dと同様の構造を有している。改質ライン22Dの説明は、「側面5D」を「側面5B」と読み替えて改質ライン22Bの説明に準用される。
 図8を参照して、SiC半導体装置1は、アクティブ領域8において第1主面3の表層部に形成されたn型のダイオード領域35を含む。ダイオード領域35は、この形態では、第1主面3の中央部に形成されている。ダイオード領域35は、平面視において側面5A~5Dに平行な4辺を有する四角形状に形成されていてもよい。
 ダイオード領域35は、この形態では、SiCエピタキシャル層7の一部を利用して形成されている。ダイオード領域35のn型不純物濃度は、SiCエピタキシャル層7のn型不純物濃度と等しい。ダイオード領域35のn型不純物濃度は、SiCエピタキシャル層7のn型不純物濃度以上であってもよい。つまり、ダイオード領域35は、SiCエピタキシャル層7の表層部に対するn型不純物の導入によって形成されていてもよい。
 SiC半導体装置1は、外側領域9において第1主面3の表層部に形成されたp型のガード領域36を含む。ガード領域36は、平面視においてダイオード領域35に沿って延びる帯状に形成されている。ガード領域36は、より具体的には、平面視においてダイオード領域35を取り囲む無端状に形成されている。ガード領域36は、四角環状(より具体的には、角部が面取りされた四角環状または円環状)に形成されている。
 これにより、ガード領域36は、ガードリング領域として形成されている。ダイオード領域35は、この形態では、ガード領域36によって画定されている。また、アクティブ領域8は、ガード領域36によって画定されている。
 ガード領域36のp型不純物は、活性化されていなくてもよい。この場合、ガード領域36は、非半導体領域として形成される。ガード領域36のp型不純物は、活性化されていてもよい。この場合、ガード領域36は、p型半導体領域として形成される。
 前述の主面絶縁層10は、ダイオード領域35を露出させるダイオード開口37含む。ダイオード開口37は、ダイオード領域35に加えてガード領域36の内周縁も露出させている。ダイオード開口37は、平面視において側面5A~5Dに平行な4辺を有する四角形状に形成されていてもよい。
 前述の第1主面電極層12は、主面絶縁層10の上からダイオード開口37に入り込んでいる。第1主面電極層12は、ダイオード開口37内においてダイオード領域35に電気的に接続されている。第1主面電極層12は、より具体的には、ダイオード領域35との間でショットキー接合を形成している。これにより、第1主面電極層12をアノードとし、ダイオード領域35をカソードとするショットキーバリアダイオードDが形成されている。主面絶縁層10の上には、前述のパッシベーション層13および樹脂層16が形成されている。
 図9は、図3に示すSiC半導体装置1の製造に使用されるSiC半導体ウエハ41を示す斜視図である。
 SiC半導体ウエハ41は、SiC半導体基板6のベースとなる部材である。SiC半導体ウエハ41は、六方晶からなるSiC単結晶の一例としての4H-SiC単結晶を含む。SiC半導体ウエハ41は、この形態では、SiC半導体基板6のn型不純物濃度に対応したn型不純物濃度を有している。
 SiC半導体ウエハ41は板状または盤状に形成されている。SiC半導体ウエハ41は、円盤状に形成されていてもよい。SiC半導体ウエハ41は、一方側の第1ウエハ主面42、他方側の第2ウエハ主面43、ならびに、第1ウエハ主面42および第2ウエハ主面43を接続するウエハ側面44を有している。
 SiC半導体ウエハ41の厚さTWは、SiC半導体基板6の厚さTSを超えている(TS<TW)。SiC半導体ウエハ41の厚さTWは、研削によってSiC半導体基板6の厚さTSに合わせ込まれる。
 厚さTWは、150μmを超えて750μm以下であってもよい。厚さTWは、150μmを超えて300μm以下、300μm以上450μm以下、450μm以上600μm以下、または、600μm以上750μm以下であってもよい。SiC半導体ウエハ41の研削時間を鑑みると、厚さTWは、150μmを超えて500μm以下であることが好ましい。厚さTWは、典型的には、300μm以上450μm以下である。
 第1ウエハ主面42および第2ウエハ主面43は、この形態では、SiC単結晶のc面に面している。第1ウエハ主面42は、(0001)面(シリコン面)に面している。第2ウエハ主面43は、SiC単結晶の(000-1)面(カーボン面)に面している。
 第1ウエハ主面42および第2ウエハ主面43は、SiC単結晶のc面に対して[11-20]方向に10°以下の角度で傾斜したオフ角θを有している。第1ウエハ主面42の法線方向Zは、SiC単結晶のc軸([0001]方向)に対してオフ角θ分だけ傾斜している。
 オフ角θは、0°以上5.0°以下であってもよい。オフ角θは、0°以上1.0°以下、1.0°以上1.5°以下、1.5°以上2.0°以下、2.0°以上2.5°以下、2.5°以上3.0°以下、3.0°以上3.5°以下、3.5°以上4.0°以下、4.0°以上4.5°以下、または、4.5°以上5.0°以下の角度の範囲に設定されてもよい。オフ角θは、0°を超えていることが好ましい。オフ角θは、4.0°未満であってもよい。
 オフ角θは、3.0°以上4.5°以下の角度の範囲に設定されていてもよい。この場合、オフ角θは、3.0°以上3.5°以下、または、3.5°以上4.0°以下の角度の範囲に設定されていることが好ましい。オフ角θは、1.5°以上3.0°以下の角度の範囲に設定されていてもよい。この場合、オフ角θは、1.5°以上2.0°以下、または、2.0°以上2.5°以下の角度の範囲に設定されていることが好ましい。
 SiC半導体ウエハ41は、第1ウエハ主面42およびウエハ側面44を接続する第1ウエハ角部45、ならびに、第2ウエハ主面43およびウエハ側面44を接続する第2ウエハ角部46を含む。第1ウエハ角部45は、第1ウエハ主面42からウエハ側面44に向かって下り傾斜した第1面取り部47を有している。第2ウエハ角部46は、第2ウエハ主面43からウエハ側面44に向かって下り傾斜した第2面取り部48を有している。
 第1面取り部47は、凸湾曲状に形成されていてもよい。第2面取り部48は、凸湾曲状に形成されていてもよい。第1面取り部47および第2面取り部48は、SiC半導体ウエハ41のクラックを抑制する。
 ウエハ側面44には、SiC単結晶の結晶方位を示す目印の一例として1つのオリエンテーションフラット49が形成されている。オリエンテーションフラット49は、ウエハ側面44に形成された切欠部である。オリエンテーションフラット49は、この形態では、SiC単結晶のa軸方向([11-20]方向)に沿って直線状に延びている。
 ウエハ側面44には、結晶方位を示す複数(たとえば2つ)のオリエンテーションフラット49が形成されていてもよい。複数(たとえば2つ)のオリエンテーションフラット49は、第1オリエンテーションフラットおよび第2オリエンテーションフラットを含んでいてもよい。
 第1オリエンテーションフラットは、SiC単結晶のa軸方向([11-20]方向)に沿って直線状に延びる切欠部であってもよい。第2オリエンテーションフラットは、SiC単結晶のm軸方向([1-100]方向)に沿って直線状に延びる切欠部であってもよい。
 SiC半導体装置1にそれぞれ対応した複数の装置形成領域51が、第1ウエハ主面42に設定される。複数の装置形成領域51は、m軸方向([1-100]方向)およびa軸方向([11-20]方向)に間隔を空けて行列状の配列で設定される。
 各装置形成領域51は、SiC単結晶の結晶方位に沿った4つの辺52A,52B,52C,52Dを有している。4つの辺52A~52Dは、SiC半導体層2の4つの側面5A~5Dにそれぞれ対応している。つまり、4つの辺52A~52Dは、m軸方向([1-100]方向)に沿う2つの辺52A,52C、および、a軸方向([11-20]方向)に沿う2つの辺52B,52Dを含む。
 第1ウエハ主面42には、複数の装置形成領域51をそれぞれ区画するようにm軸方向([1-100]方向)およびa軸方向([11-20]方向)に沿って延びる格子状の切断予定ライン53が設定される。切断予定ライン53は、複数の第1切断予定ライン54および複数の第2切断予定ライン55を含む。
 複数の第1切断予定ライン54は、m軸方向([1-100]方向)に沿ってそれぞれ延びている。複数の第2切断予定ライン55は、a軸方向([11-20]方向)に沿ってそれぞれ延びている。複数の装置形成領域51に所定の構造が作り込まれた後、切断予定ライン53に沿ってSiC半導体ウエハ41を切断することによって、複数のSiC半導体装置1が切り出される。
 図10A~図10Mは、図3に示すSiC半導体装置1の製造方法の一例を示す断面図である。図10A~図10Mでは、説明の便宜上、3つの装置形成領域51を含む領域だけを示し、他の領域についての図示を省略している。
 図10Aを参照して、まず、SiC半導体ウエハ41が用意される(図9も併せて参照)。次に、第1ウエハ主面42にn型のSiCエピタキシャル層7が形成される。SiCエピタキシャル層7の形成工程では、第1ウエハ主面42からSiCがエピタキシャル成長される。SiCエピタキシャル層7の厚さTEは、1μm以上50μm以下であってもよい。これにより、SiC半導体ウエハ41およびSiCエピタキシャル層7を含むSiC半導体ウエハ構造61が形成される。
 SiC半導体ウエハ構造61は、第1主面62および第2主面63を含む。第1主面62および第2主面63は、SiC半導体層2の第1主面3および第2主面4にそれぞれ対応している。SiC半導体ウエハ構造61の厚さTWSは、150μmを超えて800μm以下であってもよい。厚さTWSは、150μmを超えて550μm以下であることが好ましい。
 次に、図10Bを参照して、第1主面62にp型のガード領域36が形成される。ガード領域36の形成工程は、イオン注入マスク(図示せず)を介して第1主面62の表層部にp型不純物を選択的に導入する工程を含む。ガード領域36は、より具体的には、SiCエピタキシャル層7の表層部に形成される。
 ガード領域36は、SiC半導体ウエハ構造61においてアクティブ領域8および外側領域9を区画する。ガード領域36によって取り囲まれた領域(アクティブ領域8)には、n型のダイオード領域35が区画される。ダイオード領域35は、イオン注入マスク(図示せず)を介して第1主面62の表層部にn型不純物を選択的に導入することによって形成されてもよい。
 次に、図10Cを参照して、第1主面62の上に主面絶縁層10が形成される。主面絶縁層10は、酸化シリコン(SiO)を含む。主面絶縁層10は、CVD(Chemical Vapor Deposition)法または酸化処理法(たとえば熱酸化処理法)によって形成されてもよい。
 次に、図10Dを参照して、所定パターンを有するマスク64が、主面絶縁層10の上に形成される。マスク64は、複数の開口65を有している。複数の開口65は、主面絶縁層10においてダイオード開口37を形成すべき領域をそれぞれ露出させている。
 次に、主面絶縁層10の不要な部分が、マスク64を介するエッチング法によって除去される。これにより、主面絶縁層10にダイオード開口37が形成される。ダイオード開口37の形成後、マスク64は除去される。
 次に、図10Eを参照して、第1主面電極層12のベースとなるベース電極層66が、第1主面62の上に形成される。ベース電極層66は、第1主面62の全域に形成され、主面絶縁層10を被覆する。第1主面電極層12は、蒸着法、スパッタ法またはめっき法によって形成されてもよい。
 次に、図10Fを参照して、所定パターンを有するマスク67が、ベース電極層66の上に形成される。マスク67は、ベース電極層66において第1主面電極層12を形成すべき領域以外の領域を露出させる開口68を有している。
 次に、マスク67を介するエッチング法によって、ベース電極層66の不要な部分が除去される。これにより、ベース電極層66が複数の第1主面電極層12に分割される。第1主面電極層12の形成後、マスク67は除去される。
 次に、図10Gを参照して、パッシベーション層13が、第1主面62の上に形成される。パッシベーション層13は、窒化シリコン(SiN)を含む。パッシベーション層13は、CVD法によって形成されてもよい。
 次に、図10Hを参照して、樹脂層16が、パッシベーション層13の上に塗布される。樹脂層16は、アクティブ領域8および外側領域9を一括して被覆する。樹脂層16は、ポジティブタイプの感光性樹脂の一例としてのポリベンゾオキサゾールを含んでいてもよい。
 次に、図10Iを参照して、樹脂層16が選択的に露光された後、現像される。これにより、パッド開口18が樹脂層16に形成される。また、切断予定ライン53(各装置形成領域51の辺52A~52D)に沿うダイシングストリート69が樹脂層16に区画される。
 次に、パッシベーション層13の不要な部分が除去される。パッシベーション層13の不要な部分は、樹脂層16を介するエッチング法によって除去されてもよい。これにより、サブパッド開口15がパッシベーション層13に形成される。また、切断予定ライン53に沿うダイシングストリート69がパッシベーション層13に区画される。
 この形態では、樹脂層16を利用してパッシベーション層13の不要な部分を除去する工程について説明した。しかし、パッシベーション層13にサブパッド開口15を形成した後、樹脂層16およびパッド開口18が形成されてもよい。この場合、樹脂層16の形成工程に先立って、マスクを介するエッチング法によってパッシベーション層13の不要な部分が除去され、サブパッド開口15が形成される。この工程によれば、パッシベーション層13を任意の形状に形成できる。
 次に、図10Jを参照して、第2主面63(第2ウエハ主面43)が研削される。これにより、SiC半導体ウエハ構造61(SiC半導体ウエハ41)が薄化される。また、第2主面63(第2ウエハ主面43)に研削痕が形成される。SiC半導体ウエハ構造61は、SiC半導体層2の厚さTLに対応する厚さTWSになるまで研削される。
 SiC半導体ウエハ構造61は、40μm以上200μm以下の厚さTWSになるまで研削されてもよい。つまり、SiC半導体ウエハ41は、SiC半導体基板6の厚さTSに対応する厚さTWになるまで研削される。SiC半導体ウエハ41は、40μm以上150μm以下の厚さTWになるまで研削されてもよい。
 次に、図10Kを参照して、改質ライン22A~22Dのベースとなる複数の改質ライン70(改質層)が形成される。改質ライン70の形成工程では、レーザ光照射装置71からSiC半導体ウエハ構造61に向けてパルス状のレーザ光が照射される。
 レーザ光は、第1主面62側から主面絶縁層10を介してSiC半導体ウエハ構造61に照射される。レーザ光は、第2主面63側からSiC半導体ウエハ構造61に直接照射されてもよい。
 レーザ光の集光部(焦点)は、SiC半導体ウエハ構造61の厚さ方向途中部に設定される。SiC半導体ウエハ構造61に対するレーザ光の照射位置は、切断予定ライン53(各装置形成領域51の4つの辺52A~52D)に沿って移動される。より具体的には、SiC半導体ウエハ構造61に対するレーザ光の照射位置は、第1切断予定ライン54に沿って移動される。また、SiC半導体ウエハ構造61に対するレーザ光の照射位置は、第2切断予定ライン55に沿って移動される。
 これにより、SiC半導体ウエハ構造61の厚さ方向途中部に、切断予定ライン53(各装置形成領域51の4つの辺52A~52D)に沿って延び、SiC単結晶の結晶状態が他の領域とは異なる性質に改質した複数の改質ライン70が形成される。
 複数の改質ライン70は、各装置形成領域51の4つの辺52A~52Dに対して1対1対応の関係で1層または複数ずつ形成される。この形態では、第1切断予定ライン54に複数(この形態では3層)の改質ライン70が形成され、第2切断予定ライン55に1層の改質ライン70が形成される。
 第1切断予定ライン54側の複数の改質ライン70は、改質ライン22A(改質ライン22C)に対応している。第2切断予定ライン55側の1層の改質ライン70は、改質ライン22B(改質ライン22D)に対応している。
 第1切断予定ライン54側の複数の改質ライン70は、断面視において法線方向Zにずれて形成され、かつ、a軸方向の一方側および他方側に交互にずれて形成される。第1切断予定ライン54側の複数の改質ライン70は、第2主面63側の改質ライン70および/または第1主面62側の改質ライン70を基準にしたとき、a軸方向に関してSiC単結晶のc軸方向とは反対側([11-20]方向側)にずれて形成された1層または複数の改質ライン70を含む。
 装置形成領域51の辺52A,52Cに沿う2つの改質ライン70は、a面改質部28をそれぞれ含む。装置形成領域51の辺52B,52Dに沿う2つの改質ライン70は、m面改質部29をそれぞれ含む。
 複数の改質ライン70は、SiC半導体ウエハ構造61の厚さ方向途中部に形成されたレーザ加工痕でもある。より具体的には、改質ライン70のa面改質部28およびm面改質部29がレーザ加工痕である。レーザ光の集光部(焦点)、レーザエネルギ、パルスデューティ比、照射速度等は、形成すべき改質ライン70(改質ライン22A~22D)の位置、大きさ、形状、厚さ等によって任意の値に定められる。
 次に、図10Lを参照して、第2主面63に第2主面電極層19が形成される。第2主面電極層19は、蒸着法、スパッタ法またはめっき法によって形成されてもよい。第2主面電極層19の形成工程に先立って、第2主面63(研削面)に対してアニール処理を実施してもよい。アニール処理は、レーザ光を用いたレーザアニール処理法によって実施されてもよい。
 レーザアニール処理法によれば、第2主面63の表層部のSiC単結晶が改質されてSiアモルファス層が形成される。この場合、SiC半導体層2の第2主面4の表層部にSiアモルファス層を有するSiC半導体装置1が製造される。第2主面4では、研削痕およびSiアモルファス層が併存する。レーザアニール処理法によれば、第2主面4に対する第2主面電極層19のオーミック性を高めることができる。
 次に、図10Mを参照して、SiC半導体ウエハ構造61から複数のSiC半導体装置1が切り出される。この工程では、テープ状の支持部材73が、第2主面63側に貼着される。次に、第2主面63側から支持部材73を介して切断予定ライン53に外力が加えられる。切断予定ライン53に対する外力は、ブレード等の押圧部材によって加えられてもよい。
 支持部材73は、第1主面62側に貼着されてもよい。この場合、第1主面62側から支持部材73を介して切断予定ライン53に外力が加えられてもよい。外力は、ブレード等の押圧部材によって加えられてもよい。
 伸縮性の支持部材73が、第1主面62側または第2主面63側に貼着されてもよい。この場合、SiC半導体ウエハ構造61は、伸縮性の支持部材73をm軸方向およびa軸方向に引き伸ばすことによって劈開されてもよい。
 支持部材73を用いてSiC半導体ウエハ構造61を劈開する場合は、障害物の少ない第2主面63側に支持部材73が貼着されることが好ましい。このようにして、SiC半導体ウエハ構造61が改質ライン70を起点に切断予定ライン53に沿って劈開され、複数のSiC半導体装置1が1枚のSiC半導体ウエハ構造61(SiC半導体ウエハ41)から切り出される。
 改質ライン70のうち各装置形成領域51の辺52Aに沿う部分は、改質ライン22Aとなる。改質ライン70のうち各装置形成領域51の辺52Bに沿う部分は、改質ライン22Bとなる。改質ライン70のうち各装置形成領域51の辺52Cに沿う部分は、改質ライン22Cとなる。改質ライン70のうち各装置形成領域51の辺52Dに沿う部分は、改質ライン22Dとなる。以上を含む工程を経てSiC半導体装置1が製造される。
 第1切断予定ライン54側の複数の改質ライン70は、断面視においてa軸方向の一方側および他方側に交互にずれて形成されている。第1切断予定ライン54側の複数の改質ライン70のうちの少なくとも2つの改質ライン70を結ぶ直線は、第1主面62の法線からSiC単結晶のc軸とは反対側の方向に向けて傾斜している。
 SiC半導体ウエハ構造61は、第1切断予定ライン54においてSiC単結晶のc軸方向に加えて、互いに隣り合う2つの改質ライン70を結ぶ直線に沿って劈開される。これにより、チップ化されたSiC半導体層2の側面5A,5CにおいてSiC単結晶のc軸方向に沿う傾斜面が形成されることが抑制される。
 この形態では、SiC半導体ウエハ構造61の研削工程(図10J)が、改質ライン70(改質ライン22A~22D)の形成工程(図10K)に先立って実施された。しかし、SiC半導体ウエハ構造61の研削工程(図10J)は、SiC半導体ウエハ41の用意工程(図10A)の後、第2主面電極層19の形成工程(図10L)の前の任意のタイミングで実施され得る。
 たとえば、SiC半導体ウエハ構造61の研削工程(図10J)は、SiCエピタキシャル層7の形成工程(図10A)に先立って実施されてもよい。また、SiC半導体ウエハ構造61の研削工程(図10J)は、改質ライン70(改質ライン22A~22D)の形成工程(図10K)の後に実施されてもよい。
 また、SiC半導体ウエハ構造61の研削工程(図10J)は、SiC半導体ウエハ41の用意工程(図10A)の後、改質ライン70(改質ライン22A~22D)の形成工程(図10K)の前の任意のタイミングで複数回に分けて実施されてもよい。また、SiC半導体ウエハ構造61の研削工程(図10J)は、SiC半導体ウエハ41の用意工程(図10A)の後、第2主面電極層19の形成工程(図10L)の前の任意のタイミングで複数回に分けて実施されてもよい。
 図11は、図3に示すSiC半導体装置1が組み込まれた半導体パッケージ74を、封止樹脂79を透過して示す斜視図である。
 図11を参照して、半導体パッケージ74は、この形態では、所謂TO-220タイプである。半導体パッケージ74は、SiC半導体装置1、パッド部75、ヒートシンク76、複数(この形態では2本)の端子77、複数(この形態では2本)の導線78および封止樹脂79を含む。パッド部75、ヒートシンク76および複数の端子77は、接続対象物の一例としてのリードフレームを形成している。
 パッド部75は、金属板を含む。パッド部75は、鉄、金、銀、銅、アルミニウム等を含んでいてもよい。パッド部75は、平面視において四角形状に形成されている。パッド部75は、SiC半導体装置1の平面積以上の平面積を有している。SiC半導体装置1は、パッド部75の上に配置されている。
 SiC半導体装置1の第2主面電極層19は、導電接合材80を介してパッド部75に電気的に接続されている。導電接合材80は、第2主面電極層19およびパッド部75の間の領域に介在されている。
 導電接合材80は、金属製ペーストまたは半田であってもよい。金属製ペーストは、Au(金)、Ag(銀)またはCu(銅)を含む導電性ペーストであってもよい。導電接合材80は、半田からなることが好ましい。半田は、鉛フリー型の半田であってもよい。半田は、SnAgCu、SnZnBi、SnCu、SnCuNiおよびSnSbNiのうちの少なくとも1つを含んでいてもよい。
 ヒートシンク76は、パッド部75の一辺に接続されている。この形態では、パッド部75およびヒートシンク76が、一枚の金属板によって形成されている。ヒートシンク76には、貫通孔76aが形成されている。貫通孔76aは、円形状に形成されている。
 複数の端子77は、パッド部75に対してヒートシンク76とは反対側の辺に沿って配列されている。複数の端子77は、金属板をそれぞれ含む。端子77は、鉄、金、銀、銅、アルミニウム等を含んでいてもよい。
 複数の端子77は、第1端子77Aおよび第2端子77Bを含む。第1端子77Aおよび第2端子77Bは、パッド部75においてヒートシンク76とは反対側の辺に沿って間隔を空けて配列されている。第1端子77Aおよび第2端子77Bは、それらの配列方向に直交する方向に沿って帯状に延びている。
 複数の導線78は、ボンディングワイヤ等であってもよい。複数の導線78は、導線78Aおよび導線78Bを含む。導線78Aは、第1端子77AおよびSiC半導体装置1の第1主面電極層12に電気的に接続されている。これにより、第1端子77Aは、導線78Aを介してSiC半導体装置1の第1主面電極層12に電気的に接続されている。
 導線78Bは、第2端子77Bおよびパッド部75に電気的に接続されている。これにより、第2端子77Bは、導線78Bを介してSiC半導体装置1の第2主面電極層19に電気的に接続されている。第2端子77Bは、パッド部75と一体的に形成されていてもよい。
 封止樹脂79は、ヒートシンク76および複数の端子77の一部を露出させるように、SiC半導体装置1、パッド部75および複数の導線78を封止している。封止樹脂79は、直方体形状に形成されている。
 半導体パッケージ74の形態は、TO-220に制限されない。半導体パッケージ74としては、SOP(Small Outline Package)、QFN(Quad For Non Lead Package)、DFP(Dual Flat Package)、DIP(Dual Inline Package)、QFP(Quad Flat Package)、SIP(Single Inline Package)またはSOJ(Small Outline J-leaded Package)、もしくは、これらに類する種々の形態が適用されてもよい。
 図12は、図3に示すSiC半導体装置1の搬送状態を示す斜視図である。
 SiC半導体装置1は、半導体組立装置を用いて半導体パッケージ74のパッド部75に実装される。半導体組立装置におけるSiC半導体装置1の搬送工程は、SiC半導体層2の第1主面3を吸着して保持するピックアップノズルPNによって行われる。
 図13は、参考例に係るSiC半導体装置99の構造を説明するための図である。
 SiC半導体装置99は、SiC半導体層2の側面5A,5Cがc軸に沿う傾斜面を有している点を除いて、SiC半導体装置1と同様の構造を有している。図13においてSiC半導体装置1に対して述べた構造に対応する構造については同一の参照符号を付して説明を省略する。
 SiC単結晶のa面に面する側面5A,5Cは、SiC単結晶のc軸を劈開方向として劈開する物性を有している。したがって、SiC単結晶のc軸や第1主面3の法線方向Zに沿って複数の改質ライン70(改質ライン22A,22C)を形成した場合には、側面5A,5CはSiC単結晶のc軸に沿う傾斜面となる。
 この場合、SiC半導体層2の見かけ上の平面積Sは、傾斜面に応じた平面積分だけ増加する。SiC半導体層2の見かけ上の平面積Sは、より具体的には、下記(1)式および(2)式によって表される。
  S=SM+SI…(1)
  SI=W×TL×tanθ…(2)
 上記(1),(2)式において、「SM」は第1主面3の平面積であり、「SI」は傾斜面によって増加した平面積であり、「W」は側面5A,5Cの長さであり、「θ」はオフ角である。
 参考例に係るSiC半導体装置99が半導体組立装置に搬入された場合、ピックアップノズルPNによる吸着が、SiC半導体層2の側面5A,5C(傾斜面)によって妨げられる虞がある。この場合、ピックアップノズルPNはSiC半導体装置99を適切に保持できないため、半導体組立装置においてピックアップエラーが発生する。
 これに対して、SiC半導体装置1によれば、SiC半導体層2においてSiC単結晶のa面に面する側面5A,5Cは、第1主面3の法線を0°とした時、当該法線に対してオフ角θ未満の角度θaを有している。角度θaは、より具体的には、0°以上オフ角θ未満(0°≦θa<θ)である。これにより、上記(1)式において「SI」を低減させることができるから、半導体組立装置におけるピックアップエラーを抑制できるSiC半導体装置1を提供できる。
 また、SiC半導体装置1によれば、第1主面3の法線からSiC単結晶のc軸とは反対側の方向に向けて傾斜した1つまたは複数(この形態では1つ)の傾斜部が側面5A,5Cに導入されている。これにより、c軸に沿って延びる傾斜面の形成領域が削減されるから、上記(1)式において「SI」を低減させることができる。その結果、半導体組立装置におけるピックアップエラーを抑制できるSiC半導体装置1を提供できる。
 また、SiC半導体装置1によれば、側面5A,5Cに形成された複数の改質ライン22A,22Cが、断面視においてSiC単結晶のa軸方向に互いにずれている。複数の改質ライン22A,22Cは、より具体的には、断面視において法線方向Zに互いにずれて形成され、かつ、a軸方向の一方側および他方側に交互にずれて形成されている。
 隣り合う2つの改質ライン22A,22Cのa軸方向の距離DRは、オフ角θおよびSiC半導体層2の厚さTLを用いて、TL×tanθ未満の値(0<DR<TL×tanθ)である。また、改質ライン22Aの最遠距離DDは、TL×tanθ未満の値(0<DD<TL×tanθ)である。これにより、側面5A,5Cの傾斜幅(TL×tanθ)を適切に低減できる。よって、上記(1)式において「SI」を適切に低減させることができる。
 また、SiC半導体装置1によれば、角度θaを有する側面5A,5Cを6層以下の改質ライン22A,22Cで実現できる。これにより、改質ライン22A,22Cのベースとなる改質ライン70の形成工程の時短を図ることができる。
 SiC単結晶は、c面(シリコン面)をc軸から見た平面視において最近接原子方向(図1および図2も併せて参照)に沿って割れ易く、最近接原子方向の交差方向に沿って割れ難いという物性を有している。最近接原子方向は、a軸方向およびその等価方向である。最近接原子方向に沿う結晶面は、m面およびその等価面である。最近接原子方向の交差方向は、m軸方向およびその等価方向である。最近接原子方向の交差方向に沿う結晶面は、a面およびその等価面である。
 したがって、改質ライン70の形成工程では、SiC単結晶の最近接原子方向に沿う結晶面に対しては、比較的割れ易い性質を有しているから、比較的大きい専有割合を有する改質ライン70を形成しなくてもSiC単結晶を適切に切断(劈開)できる(図10Lも併せて参照)。つまり、改質ライン70の形成工程において、a軸方向に延びる第2切断予定ライン55に沿う改質ライン70の専有割合(層数)を、m軸方向に延びる第1切断予定ライン54に沿う改質ライン70の専有割合(層数)よりも小さくできる。
 その一方で、SiC単結晶の最近接原子方向の交差方向に沿う結晶面には、比較的大きい専有割合(比較的多い層数)を有する改質ライン70が形成されている。これにより、SiC半導体ウエハ構造61の不適切な切断(劈開)を抑制できるから、SiC単結晶の物性に起因したクラックの発生を適切に抑制できる。
 このように、SiC半導体装置1によれば、SiC単結晶の物性を利用して側面5A~5Dに対する改質ライン22A~22Dの専有割合や層数を調整できる。これにより、側面5A~5Dに対する改質ライン22A~22Dの形成領域の低減を適切に図ることができる。よって、改質ライン22A~22Dに起因するSiC半導体層2への影響も低減できる。また、改質ライン70の形成工程の時短を図ることができる。
 改質ラインに起因するSiC半導体層2への影響としては、改質ラインに起因するSiC半導体層2の電気的特性の変動や、改質ラインを起点とするSiC半導体層2のクラックの発生等が例示される。漏れ電流特性の変動が、改質ラインに起因するSiC半導体層2の電気的特性の変動として例示される。
 SiC半導体装置は、図11に示されたように、封止樹脂79によって封止されることがある。この場合、封止樹脂79中の可動イオンが改質ラインを介してSiC半導体層2に進入することが考えられる。複数の改質ラインが各側面5A~5Dの全域に法線方向Zに沿って間隔を空けて形成された構造では、このような外部構造に起因する電流経路形成のリスクが高まる。
 また、各側面5A~5Dの全域に複数の改質ラインが法線方向Zに沿って形成された構造では、SiC半導体層2のクラックの発生リスクも高まる。したがって、SiC半導体装置1のように、改質ライン22A~22Dの形成領域を制限することによってSiC半導体層2の電気的特性の変動やクラックの発生を抑制できる。
 また、SiC半導体装置1によれば、SiC半導体ウエハ構造61(SiC半導体ウエハ41)の薄化工程を実施しているから、少ない層数(たとえば6層以下。好ましくは3層以下)の改質ライン70(改質ライン22A~22D)によってSiC半導体ウエハ構造61を適切に劈開できる。
 換言すれば、薄化されたSiC半導体ウエハ構造61(SiC半導体ウエハ41)によれば、SiC半導体ウエハ構造61の厚さ方向全域に改質ライン70(改質ライン22A~22D)を法線方向Zに間隔を空けて形成せずに、SiC半導体ウエハ構造61(SiC半導体ウエハ41)を適切に劈開できる。
 この場合、第2主面4は、研削面からなる。SiC半導体装置1は、40μm以上200μm以下の厚さTLを有するSiC半導体層2を含むことが好ましい。このような厚さTLを有するSiC半導体層2は、SiC半導体ウエハ構造61(SiC半導体ウエハ41)から適切に切り出されることができる。
 SiC半導体層2においてSiC半導体基板6の厚さTSは、40μm以上150μm以下であってもよい。SiC半導体層2においてSiCエピタキシャル層7の厚さTEは、1μm以上50μm以下であってもよい。SiC半導体層2の薄化は、抵抗値を低減する上でも有効である。
 また、SiC半導体装置1によれば、改質ライン22A~22Dが第1主面3から第2主面4側に間隔を空けて形成されている。第1主面3および側面5A~5Dを接続する角部では応力が集中しやすい。したがって、第1主面3および側面5A~5Dを接続する角部から間隔を空けて改質ライン22A~22Dを形成することにより、SiC半導体層2の角部におけるクラックの発生を適切に抑制できる。
 特に、SiC半導体装置1によれば、改質ライン22A~22Dは、SiCエピタキシャル層7を避けてSiC半導体基板6に形成されている。つまり、改質ライン22A~22Dは、機能デバイス(この形態ではショットキーバリアダイオードD)の主要部が形成されるSiCエピタキシャル層7を露出させている。これにより、改質ライン22A~22Dに起因する機能デバイスへの影響も適切に低減できる。
 また、SiC半導体装置1によれば、改質ライン22A~22Dが、第2主面4から第1主面3側に間隔を空けて形成されている。第2主面4および側面5A~5Dを接続する角部では応力が集中しやすい。したがって、第2主面4および側面5A~5Dを接続する角部から間隔を空けて改質ライン22A~22Dを形成することにより、SiC半導体層2の角部におけるクラックの発生を適切に抑制できる。
 また、SiC半導体装置1によれば、第1主面3の上に形成された主面絶縁層10および第1主面電極層12を含む。主面絶縁層10は、SiC半導体層2の側面5A~5Dに連なる絶縁側面11A~11Dを有している。主面絶縁層10は、改質ライン22A~22Dが形成された構造において、側面5A~5Dおよび第1主面電極層12の間の絶縁性を高める。これにより、側面5A~5Dに改質ライン22A~22Dが形成された構造において、SiC半導体層2の電気的特性の安定性を高めることができる。
 図14Aは、図3に示すSiC半導体装置1を示す斜視図であって、改質ライン22A~22Dの第2形態例を示す斜視図である。以下では、SiC半導体装置1に対して述べた構造に対応する構造については同一の参照符号を付して説明を省略する。
 第1形態例に係る改質ライン22B,22Dは、第1主面3の接線方向に沿って直線状に延びる帯状に形成されている。これに対して、第2形態例に係る改質ライン22B,22Dは、第1主面3から第2主面4に向けて下り傾斜した傾斜状に延びる帯状に形成されている。第2形態例に係る改質ライン22B,22Dは、より具体的には、第1端部領域81、第2端部領域82および傾斜領域83をそれぞれ含む。
 第1端部領域81は、SiC半導体層2の角部近傍において第1主面3側に位置している。第2端部領域82は、SiC半導体層2の角部近傍において第1端部領域81に対して第2主面4側に位置している。傾斜領域83は、第1端部領域81および第2端部領域82の間の領域を第1主面3から第2主面4に向けて下り傾斜している。改質ライン22B,22Dの傾斜方向および傾斜角度は任意であり、図14Aの形態に限定されない。
 第2形態例に係る改質ライン22B,22Dは、改質ライン70(改質ライン22B,22D)の形成工程において、レーザ光の集光部(焦点)等を調節することによって形成される(図10Kも併せて参照)。第2形態例に係る改質ライン22B,22Dが形成される場合であっても、第1形態例に係る改質ライン22A~22Dが形成された場合と同様の効果を奏することができる。
 特に、第2形態例に係る改質ライン22B,22Dによれば、SiC半導体ウエハ構造61(SiC半導体ウエハ41)の厚さ方向の異なる領域において劈開起点を形成できる。これにより、1層からなる改質ライン22B,22Dを形成する場合であっても、SiC半導体ウエハ構造61を適切に劈開できる。
 改質ライン22A,22Cは、改質ライン22B,22Dと同様に、第1主面3から第2主面4に向けて下り傾斜した傾斜状に延びる帯状に形成されていてもよい。つまり、改質ライン22A,22Cは、第1端部領域81、第2端部領域82および傾斜領域83をそれぞれ含んでいてもよい。ただし、改質ライン22A,22Cは、側面5A,5Cに複数形成されることを前提とするため、レーザ光照射時において、改質ライン70を敢えて傾斜させる制御を実施する必要性は乏しい。
 図14Bは、図3に示すSiC半導体装置1を示す斜視図であって、改質ライン22A~22Dの第3形態例を示す斜視図である。以下では、SiC半導体装置1に対して述べた構造に対応する構造については同一の参照符号を付して説明を省略する。
 第1形態例に係る改質ライン22B,22Dは、第1主面3の接線方向に沿って直線状に延びる帯状に形成されている。これに対して、第3形態例に係る改質ライン22B,22Dは、第1主面3から第2主面4に向けて曲線状(湾曲状)に下り傾斜するように延びる帯状に形成されている。第3形態例に係る改質ライン22B,22Dは、より具体的には、第1端部領域84、第2端部領域85および湾曲領域86をそれぞれ含む。
 第1端部領域84は、SiC半導体層2の角部近傍において第1主面3側に位置している。第2端部領域85は、SiC半導体層2の角部近傍において第1端部領域84に対して第2主面4側に位置している。湾曲領域86は、第1主面3から第2主面4に向かう凹湾曲状に下り傾斜し、第1端部領域84および第2端部領域85を接続している。改質ライン22B,22Dの傾斜方向および傾斜角度は任意であり、図14Bの形態に限定されない。
 第3形態例に係る改質ライン22B,22Dは、改質ライン70(改質ライン22B,22D)の形成工程において、レーザ光の集光部(焦点)等を調節することによって形成される(図10Kも併せて参照)。第3形態例に係る改質ライン22B,22Dが形成される場合であっても、第1形態例に係る改質ライン22A~22Dが形成された場合と同様の効果を奏することができる。
 特に、第3形態例に係る改質ライン22B,22Dによれば、SiC半導体ウエハ構造61(SiC半導体ウエハ41)の厚さ方向の異なる領域において劈開起点を形成できる。これにより、1層からなる改質ライン22B,22Dを形成する場合であっても、SiC半導体ウエハ構造61を適切に劈開できる。
 改質ライン22A,22Cは、改質ライン22B,22Dと同様に、第1主面3から第2主面4に向かう凹湾曲状に下り傾斜していてもよい。つまり、改質ライン22A,22Cは、第1端部領域84、第2端部領域85および湾曲領域86をそれぞれ含んでいてもよい。ただし、改質ライン22A,22Cは、側面5A,5Cに複数形成されることを前提とするため、レーザ光照射時において改質ライン70を敢えて傾斜させる制御を実施する必要性は乏しい。
 図14Cは、図3に示すSiC半導体装置1を示す斜視図であって、改質ライン22A~22Dの第4形態例を示す斜視図である。以下では、SiC半導体装置1に対して述べた構造に対応する構造については同一の参照符号を付して説明を省略する。
 第1形態例に係る改質ライン22B,22Dは、第1主面3の接線方向に沿って直線状に延びる帯状に形成されている。これに対して、第4形態例に係る改質ライン22B,22Dは、第1主面3から第2主面4に向けて曲線状(湾曲状)に下り傾斜するように延びる帯状に形成されている。第3形態例に係る改質ライン22B,22Dは、より具体的には、第1端部領域84、第2端部領域85および湾曲領域86をそれぞれ含む。
 第1端部領域84は、SiC半導体層2の角部近傍において第1主面3側に位置している。第2端部領域85は、SiC半導体層2の角部近傍において第1端部領域84に対して第2主面4側に位置している。湾曲領域86は、第2主面4から第1主面3に向かう凸湾曲状に下り傾斜し、第1端部領域84および第2端部領域85を接続している。改質ライン22B,22Dの傾斜方向および傾斜角度は任意であり、図14Cの形態に限定されない。
 第4形態例に係る改質ライン22B,22Dは、改質ライン70(改質ライン22B,22D)の形成工程において、レーザ光の集光部(焦点)等を調節することによって形成される(図10Kも併せて参照)。第4形態例に係る改質ライン22B,22Dが形成される場合であっても、第1形態例に係る改質ライン22A~22Dが形成された場合と同様の効果を奏することができる。
 特に、第4形態例に係る改質ライン22B,22Dによれば、SiC半導体ウエハ構造61(SiC半導体ウエハ41)の厚さ方向の異なる領域において劈開起点を形成できる。これにより、1層からなる改質ライン22B,22Dを形成する場合であっても、SiC半導体ウエハ構造61を適切に劈開できる。
 改質ライン22A,22Cは、改質ライン22B,22Dと同様に、第2主面4から第1主面3に向かう凸湾曲状に下り傾斜していてもよい。つまり、改質ライン22A,22Cは、第1端部領域84、第2端部領域85および湾曲領域86をそれぞれ含んでいてもよい。ただし、改質ライン22A,22Cは、側面5A,5Cに複数形成されることを前提とするため、レーザ光照射時において改質ライン70を敢えて傾斜させる制御を実施する必要性は乏しい。
 図14Dは、図3に示すSiC半導体装置1を示す斜視図であって、改質ライン22A~22Dの第5形態例を示す斜視図である。以下では、SiC半導体装置1に対して述べた構造に対応する構造については同一の参照符号を付して説明を省略する。
 第1形態例に係る改質ライン22B,22Dは、第1主面3の接線方向に沿って直線状に延びる帯状に形成されている。これに対して、第5形態例に係る改質ライン22B,22Dは、第1主面3および第2主面4に向けて蛇行した曲線状(湾曲状)に延びる帯状に形成されている。第5形態例に係る改質ライン22B,22Dは、より具体的には、複数の第1領域87、複数の第2領域88および複数の接続領域89をそれぞれ含む。
 複数の第1領域87は、第1主面3側の領域に位置している。複数の第2領域88は、複数の第1領域87に対して第2主面4側の領域に位置している。複数の湾曲領域86は、対応する第1領域87および第2領域88をそれぞれ接続している。
 改質ライン22B,22Dの蛇行周期は、任意である。改質ライン22B,22Dは、第1主面3から第2主面4に向けて凹湾曲状に延びる1つの帯状にそれぞれ形成されていてもよい。この場合、改質ライン22B,22Dは、2つの第1領域87、1つの第2領域88および2つの接続領域89をそれぞれ含んでいてもよい。
 また、改質ライン22B,22Dは、第2主面4から第1主面3に向けて凸湾曲状に延びる1つの帯状にそれぞれ形成されていてもよい。この場合、改質ライン22B,22Dは、1つの第1領域87、2つの第2領域88および2つの接続領域89をそれぞれ含んでいてもよい。
 第5形態例に係る改質ライン22B,22Dは、改質ライン70(改質ライン22B,22D)の形成工程において、レーザ光の集光部(焦点)等を調節することによって形成される(図10Kも併せて参照)。第5形態例に係る改質ライン22B,22Dが形成される場合であっても、第1形態例に係る改質ライン22A~22Dが形成された場合と同様の効果を奏することができる。
 特に、第5形態例に係る改質ライン22B,22Dによれば、SiC半導体ウエハ構造61(SiC半導体ウエハ41)の厚さ方向の異なる領域において劈開起点を形成できる。これにより、1層からなる改質ライン22B,22Dを形成する場合であっても、SiC半導体ウエハ構造61を適切に劈開できる。
 むろん、改質ライン22A,22Cも改質ライン22B,22Dと同様に、第1主面3および第2主面4に向けて蛇行した曲線状(湾曲状)に延びる帯状に形成されていてもよい。つまり、改質ライン22A,22Cは、第1領域87、第2領域88および接続領域89をそれぞれ含んでいてもよい。ただし、改質ライン22A,22Cは、側面5A,5Cに複数形成されることを前提とするため、レーザ光照射時において改質ライン70を敢えて蛇行させる制御を実施する必要性は乏しい。
 第1形態例、第2形態例、第3形態例、第4形態例および第5形態例(以下、単に「第1~第5形態例」という。)に係る改質ライン22A~22Dのうちの少なくとも2種を同時に含むSiC半導体装置1が形成されてもよい。
 また、第1~第5形態例に係る改質ライン22A~22Dの特徴は、それらの間で任意の態様および任意の形態で組み合わされることができる。つまり、第1~第5形態例に係る改質ライン22A~22Dの特徴のうちの少なくとも2つの特徴が組み合わされた形態を有する改質ライン22A~22Dが採用されてもよい。
 以下、図14E~図14Mを参照して、第6~第13形態例に係る改質ライン22A~22Dの構造について説明する。第6~第13形態例では、改質ライン22A~22Dに起因するSiC半導体層2への影響を低減できるSiC半導体装置1を提供する。
 図14Eは、図3に示すSiC半導体装置1を1つの角度から見た斜視図であって、改質ライン22A~22Dの第6形態例を示す斜視図である。図14Fは、図14Eに示すSiC半導体装置1を別の角度から見た斜視図である。
 図14Eおよび図14Fを参照して、側面5Aおよび側面5Cは、第1主面3の法線を基準にしたとき、法線に対してSiC単結晶のc軸方向([0001]方向)に向けて傾斜した傾斜面を形成していてもよい。この場合、側面5Aおよび側面5Cは、第1主面3の法線を0°としたとき、第1主面3の法線に対してオフ角θに応じた角度で傾斜していてもよい。オフ角θに応じた角度は、オフ角θと等しくてもよいし、0°を超えてオフ角θ未満の角度であってもよい。
 改質ライン22Aは、側面5Aに1層または複数(2層以上。この形態では2層)形成されている。改質ライン22Cは、側面5Cに1層または複数(2層以上。この形態では2層)形成されている。改質ライン22Bは、側面5Bに1層または複数(2層以上。この形態では1層)形成されている。改質ライン22Dは、側面5Dに1層または複数(2層以上。この形態では1層)形成されている。改質ライン22B,22Dの層数は、改質ライン22A,22Cの層数未満であることが好ましい。
 改質ライン22A~22Dは、第1主面3の接線方向に沿って帯状に延びている。第1主面3の接線方向は、法線方向Zに直交する方向である。接線方向は、第1方向X(SiC単結晶のm軸方向)および第2方向Y(SiC単結晶のa軸方向)を含む。
 複数の改質ライン22Aは、側面5Aにおいてm軸方向に沿って直線状に延びる帯状にそれぞれ形成されている。複数の改質ライン22Aは、法線方向Zに互いにずれて形成されている。複数の改質ライン22Aは、法線方向Zに互いに重なっていてもよい。複数の改質ライン22Aは、法線方向Zに間隔を空けて形成されていてもよい。
 複数の改質ライン22Aは、法線方向Zに関して厚さTRをそれぞれ有している。複数の改質ライン22Aの厚さTRは、互いに等しくてもよいし、互いに異なっていてもよい。複数の改質ライン22Aの厚さTRの合計値によって、複数の改質ライン22Aの総厚さTallが定まる。
 1層の改質ライン22Bは、側面5Bにおいてa軸方向に沿って直線状に延びる帯状に形成されている。1層の改質ライン22Bは、法線方向Zに関して厚さTRを有している。1層の改質ライン22Bの厚さTRによって、改質ライン22Bの総厚さTallが定まる。
 複数の改質ライン22Bが、側面5Bに形成されていてもよい。この場合、複数の改質ライン22Bは、法線方向Zに互いにずれて形成される。複数の改質ライン22Bは、法線方向Zに互いに重なっていてもよい。複数の改質ライン22Bは、法線方向Zに間隔を空けて形成されていてもよい。
 複数の改質ライン22Bは、法線方向Zに関して厚さTRをそれぞれ有している。複数の改質ライン22Bの厚さTRは、互いに等しくてもよいし、互いに異なっていてもよい。複数の改質ライン22Bの厚さTRの合計値によって、複数の改質ライン22Bの総厚さTallが定まる。
 複数の改質ライン22Cは、側面5Cにおいてm軸方向に沿って直線状に延びる帯状にそれぞれ形成されている。複数の改質ライン22Cは、法線方向Zに互いにずれて形成されている。複数の改質ライン22Cは、法線方向Zに互いに重なっていてもよい。複数の改質ライン22Cは、法線方向Zに間隔を空けて形成されていてもよい。
 複数の改質ライン22Cは、法線方向Zに関して厚さTRをそれぞれ有している。複数の改質ライン22Cの厚さTRは、互いに等しくてもよいし、互いに異なっていてもよい。複数の改質ライン22Cの厚さTRの合計値によって、複数の改質ライン22Cの総厚さTallが定まる。
 1層の改質ライン22Dは、側面5Dにおいてa軸方向に沿って直線状に延びる帯状に形成されている。1層の改質ライン22Dは、法線方向Zに関して厚さTRを有している。1層の改質ライン22Dの厚さTRによって、改質ライン22Dの総厚さTallが定まる。
 複数の改質ライン22Dが、側面5Dに形成されていてもよい。この場合、複数の改質ライン22Dは、法線方向Zに互いにずれて形成される。複数の改質ライン22Dは、法線方向Zに互いに重なっていてもよい。複数の改質ライン22Dは、法線方向Zに間隔を空けて形成されていてもよい。
 複数の改質ライン22Dは、法線方向Zに関して厚さTRをそれぞれ有している。複数の改質ライン22Dの厚さTRは、互いに等しくてもよいし、互いに異なっていてもよい。複数の改質ライン22Dの厚さTRの合計値によって、複数の改質ライン22Dの総厚さTallが定まる。
 改質ライン22A~22Dの厚さTRは、互いに等しくてもよいし、互いに異なっていてもよい。改質ライン22A,22Cの総厚さTallは、互いに等しくてもよいし、互いに異なっていてもよい。改質ライン22B,22Dの総厚さTallは、互いに等しくてもよいし、互いに異なっていてもよい。
 改質ライン22A~22Dの総厚さTallは、それぞれ、SiC半導体層2の厚さTL以下(TR≦TL)であることが好ましい。総厚さTallは、それぞれ、SiC半導体基板6の厚さTS未満(TR<TS)であることがさらに好ましい。総厚さTallは、それぞれ、SiCエピタキシャル層7の厚さTE以上(TR≧TE)であってもよい。
 SiC半導体層2の厚さTLに対する総厚さTallの比Tall/TLは、それぞれ、0.1以上1.0未満であることが好ましい。比Tall/TLは、0.1以上0.2以下、0.2以上0.4以下、0.4以上0.6以下、0.6以上0.8以下、または、0.8以上1.0未満であってもよい。
 比Tall/TLは、それぞれ、0.1以上0.2以下、0.2以上0.3以下、0.3以上0.4以下、0.4以上0.5以下、0.5以上0.6以下、0.6以上0.7以下、0.7以上0.8以下、0.8以上0.9以下、または、0.9以上1.0未満であってもよい。比Tall/TLは、それぞれ、0.2以上0.5以下であることが好ましい。
 SiC半導体基板6の厚さTSに対する総厚さTallの比Tall/TSは、それぞれ、0.1以上1.0未満であることがさらに好ましい。比Tall/TSは、それぞれ、0.1以上0.2以下、0.2以上0.4以下、0.4以上0.6以下、0.6以上0.8以下、または、0.8以上1.0未満であってもよい。
 比Tall/TSは、それぞれ、0.1以上0.2以下、0.2以上0.3以下、0.3以上0.4以下、0.4以上0.5以下、0.5以上0.6以下、0.6以上0.7以下、0.7以上0.8以下、0.8以上0.9以下、または、0.9以上1.0未満であってもよい。比Tall/TSは、それぞれ、0.2以上0.5以下であることが好ましい。
 改質ライン22A~22Dは、第1主面3から第2主面4側に間隔を空けて形成されている。改質ライン22A~22Dは、側面5A~5Dから第1主面3の表層部を露出させている。つまり、改質ライン22A~22Dは、主面絶縁層10、パッシベーション層13および樹脂層16に形成されていない。
 改質ライン22A~22Dは、第2主面4から第1主面3側に間隔を空けて形成されている。改質ライン22A~22Dは、側面5A~5Dから第2主面4の表層部を露出させている。
 改質ライン22A~22Dは、SiC半導体基板6に形成されている。改質ライン22A~22Dは、SiC半導体基板6およびSiCエピタキシャル層7の間の境界から第2主面4側に間隔を空けて形成されている。改質ライン22A~22Dは、第1主面3の表層部においてSiCエピタキシャル層7を露出させている。
 改質ライン22Aおよび改質ライン22Bは、側面5Aおよび側面5Bを接続する角部で互いに連なっていてもよい。改質ライン22Bおよび改質ライン22Cは、側面5Bおよび側面5Cを接続する角部で互いに連なっていてもよい。改質ライン22Cおよび改質ライン22Dは、側面5Cおよび側面5Dを接続する角部で互いに連なっていてもよい。改質ライン22Dおよび改質ライン22Aは、側面5Dおよび側面5Aを接続する角部で互いに連なっていてもよい。
 改質ライン22A~22Dは、SiC半導体層2を取り囲むように一体的に形成されていてもよい。改質ライン22A~22Dは、側面5A~5DにおいてSiC半導体層2を取り囲む1つの無端状(環状)の改質ラインを形成していてもよい。
 改質ライン22A~22Dは、側面5A~5Dにおいて異なる専有割合RA,RB,RC,RDで形成されている。専有割合RAは、改質ライン22Aが側面5Aに占める割合である。専有割合RBは、改質ライン22Bが側面5Bに占める割合である。専有割合RCは、改質ライン22Cが側面5Cに占める割合である。専有割合RDは、改質ライン22Dが側面5Dに占める割合である。
 専有割合RA~RDは、より具体的には、SiC単結晶の結晶面に応じて異なっている。SiC単結晶のm面に形成された改質ライン22B,22Dの専有割合RB,RDは、SiC単結晶のa面に形成された改質ライン22A,22Cの専有割合RA,RC以下(RB,RD≦RA,RC)である。専有割合RB,RDは、より具体的には、専有割合RA,RC未満(RB,RD<RA,RC)である。
 改質ライン22A,22Cの専有割合RA,RCは、互いに等しくてもよいし、互いに異なっていてもよい。改質ライン22B,22Dの専有割合RB,RDは、互いに等しくてもよいし、互いに異なっていてもよい。
 専有割合RA~RDは、改質ライン22A~22Dの層数、総厚さTall、総表面積等によって調整される。この形態では、一例として、等しい厚さTRをそれぞれ有する改質ライン22A~22Dの層数を調節することによって、改質ライン22A~22Dの専有割合RA~RD(総厚さTallおよび総表面積)が調整されている。
 つまり、改質ライン22B,22Dの層数は、改質ライン22A,22Cの層数未満である。また、改質ライン22B,22Dの総厚さTallは、改質ライン22A,22Cの総厚さTall未満である。また、改質ライン22B,22Dの総表面積は、改質ライン22A,22Cの総表面積未満である。これらは、比較的簡単な設計によって、改質ライン22B,22Dの専有割合RB,RDを改質ライン22A,22Cの専有割合RA,RC未満にする構造である。
 専有割合RB,RDが専有割合RA,RC未満であるという条件の下で、改質ライン22B,22Dの層数は、改質ライン22A,22Cの層数以上にそれぞれ設定されてもよい。専有割合RB,RDが専有割合RA,RC未満であるという条件の下で、改質ライン22B,22Dの厚さTRは、改質ライン22A,22Cの厚さTR以上にそれぞれ設定されてもよい。
 第6形態例に係る改質ライン22A~22Dは、改質ライン70(改質ライン22A~22D)の形成工程において、レーザ光の集光部(焦点)、レーザエネルギ、パルスデューティ比、照射速度等を調節することによって形成される(図10Kも併せて参照)。
 以上、SiC半導体装置1(図14Eおよび図14F参照)は、SiC単結晶の結晶面に応じて異なる専有割合RA~RDを有する改質ライン22A~22Dを含む。より具体的には、SiC単結晶のm面に形成された改質ライン22B,22Dの専有割合RB,RDは、SiC単結晶のa面に形成された改質ライン22A,22Cの専有割合RA,RC以下(RB,RD≦RA,RC)である。専有割合RB,RDは、さらに具体的には、専有割合RA,RC未満(RB,RD<RA,RC)である。
 SiC単結晶は、c面(シリコン面)をc軸から見た平面視において最近接原子方向(図1および図2も併せて参照)に沿って割れ易く、最近接原子方向の交差方向に沿って割れ難いという物性を有している。最近接原子方向は、a軸方向およびその等価方向である。最近接原子方向に沿う結晶面は、m面およびその等価面である。最近接原子方向の交差方向は、m軸方向およびその等価方向である。最近接原子方向の交差方向に沿う結晶面は、a面およびその等価面である。
 したがって、改質ライン70の形成工程では、SiC単結晶の最近接原子方向に沿う結晶面に対しては、比較的割れ易い性質を有しているから、比較的大きい専有割合を有する改質ライン70を形成しなくてもSiC単結晶を適切に切断(劈開)できる(図10Lも併せて参照)。つまり、改質ライン70の形成工程において、a軸方向に延びる第2切断予定ライン55に沿う改質ライン70の専有割合を、m軸方向に延びる第1切断予定ライン54に沿う改質ライン70の専有割合よりも小さくできる。
 その一方で、SiC単結晶の最近接原子方向の交差方向に沿う結晶面には、比較的大きい専有割合を有する改質ライン70が形成されている。これにより、SiC半導体ウエハ構造61の不適切な切断(劈開)を抑制できるから、SiC単結晶の物性に起因したクラックの発生を適切に抑制できる。
 また、SiC半導体装置1(図14Eおよび図14F参照)によれば、SiC単結晶のm面に形成された改質ライン22B,22Dの層数が、SiC単結晶のa面に形成された改質ライン22A,22Cの層数未満である。
 SiC単結晶は、c面(シリコン面)をc軸から見た平面視において最近接原子方向(図1および図2も併せて参照)に沿って割れ易く、最近接原子方向の交差方向に沿って割れ難いという物性を有している。最近接原子方向は、a軸方向およびその等価方向である。最近接原子方向に沿う結晶面は、m面およびその等価面である。最近接原子方向の交差方向は、m軸方向およびその等価方向である。最近接原子方向の交差方向に沿う結晶面は、a面およびその等価面である。
 したがって、改質ライン70の形成工程では、SiC単結晶の最近接原子方向に沿う結晶面に対しては、改質ライン70の層数を増加させなくてもSiC単結晶を適切に切断(劈開)できる。つまり、改質ライン70の形成工程において、a軸方向に延びる第2切断予定ライン55に沿う改質ライン70の層数を、m軸方向に延びる第1切断予定ライン54に沿う改質ライン70の層数よりも少なくできる。
 その一方で、SiC単結晶の最近接原子方向の交差方向に沿う結晶面には、比較的多い改質ライン70が形成されている。これにより、SiC半導体ウエハ構造61を適切に切断(劈開)できるから、SiC単結晶の物性に起因したクラックの発生を適切に抑制できる。
 このように、SiC半導体装置1(図14Eおよび図14F参照)によれば、SiC単結晶の物性を利用して側面5A~5Dに対する改質ライン22A~22Dの専有割合RA~RDや層数を調整できる。これにより、側面5A~5Dに対する改質ライン22A~22Dの形成領域の低減を適切に図ることができる。よって、改質ライン22A~22Dに起因するSiC半導体層2への影響を低減できる。また、改質ライン70の形成工程の時短を図ることができる。
 改質ラインに起因するSiC半導体層2への影響としては、改質ラインに起因するSiC半導体層2の電気的特性の変動や、改質ラインを起点とするSiC半導体層2のクラックの発生等が例示される。漏れ電流特性の変動が、改質ラインに起因するSiC半導体層2の電気的特性の変動として例示される。
 SiC半導体装置は、図11に示されたように、封止樹脂79によって封止されることがある。この場合、封止樹脂79中の可動イオンが改質ラインを介してSiC半導体層2に進入することが考えられる。複数の改質ラインが各側面5A~5Dの全域に法線方向Zに沿って間隔を空けて形成された構造では、このような外部構造に起因する電流経路形成のリスクが高まる。
 また、SiC半導体層2の各側面5A~5Dの全域に複数の改質ラインが法線方向Zに沿って形成された構造では、SiC半導体層2のクラックの発生リスクも高まる。したがって、SiC半導体装置1(図14Eおよび図14F参照)のように、改質ライン22A~22Dの形成領域を制限することによってSiC半導体層2の電気的特性の変動やクラックの発生を抑制できる。
 また、SiC半導体装置1(図14Eおよび図14F参照)によれば、SiC半導体ウエハ構造61(SiC半導体ウエハ41)の薄化工程を実施しているから、1層の改質ライン22B,22D(改質ライン70)を形成する場合であっても、SiC半導体ウエハ構造61を適切に劈開できる。
 換言すれば、薄化されたSiC半導体ウエハ構造61(SiC半導体ウエハ41)によれば、複数の改質ライン22B,22D(改質ライン70)を法線方向Zに間隔を空けて形成せずに、SiC半導体ウエハ構造61(SiC半導体ウエハ41)を適切に劈開できる。これにより、改質ライン22A~22Dに起因するSiC半導体層2への影響をさらに低減できる。また、改質ライン70の形成工程の時短を図ることができる。
 この場合、第2主面4は、研削面からなる。SiC半導体装置1(図14Eおよび図14F参照)は、40μm以上200μm以下の厚さTLを有するSiC半導体層2を含むことが好ましい。このような厚さTLを有するSiC半導体層2は、SiC半導体ウエハ構造61(SiC半導体ウエハ41)から適切に切り出されることができる。
 SiC半導体層2においてSiC半導体基板6の厚さTSは、40μm以上150μm以下であってもよい。SiC半導体層2においてSiCエピタキシャル層7の厚さTEは、1μm以上50μm以下であってもよい。SiC半導体層2の薄化は、抵抗値を低減する上でも有効である。
 また、SiC半導体装置1(図14Eおよび図14F参照)によれば、改質ライン22A~22Dが、第1主面3から第2主面4側に間隔を空けて形成されている。第1主面3および側面5A~5Dを接続する角部では応力が集中しやすい。したがって、第1主面3および側面5A~5Dを接続する角部から間隔を空けて改質ライン22A~22Dを形成することにより、SiC半導体層2の角部におけるクラックの発生を適切に抑制できる。
 特に、SiC半導体装置1(図14Eおよび図14F参照)によれば、改質ライン22A~22Dは、SiCエピタキシャル層7を避けてSiC半導体基板6に形成されている。つまり、改質ライン22A~22Dは、機能デバイス(この形態ではショットキーバリアダイオードD)の主要部が形成されるSiCエピタキシャル層7を露出させている。これにより、改質ライン22A~22Dに起因する機能デバイスへの影響も適切に低減できる。
 また、SiC半導体装置1(図14Eおよび図14F参照)によれば、改質ライン22A~22Dが、第2主面4から第1主面3側に間隔を空けて形成されている。第2主面4および側面5A~5Dを接続する角部では応力が集中しやすい。したがって、第2主面4および側面5A~5Dを接続する角部から間隔を空けて改質ライン22A~22Dを形成することにより、SiC半導体層2の角部におけるクラックの発生を適切に抑制できる。
 また、SiC半導体装置1(図14Eおよび図14F参照)は、第1主面3の上に形成された主面絶縁層10および第1主面電極層12を含む。主面絶縁層10は、SiC半導体層2の側面5A~5Dに連なる絶縁側面11A~11Dを有している。
 主面絶縁層10は、改質ライン22A~22Dが形成された構造において、側面5A~5Dおよび第1主面電極層12の間の絶縁性を高める。これにより、側面5A~5Dに改質ライン22A~22Dが形成された構造において、SiC半導体層2の電気的特性の安定性を高めることができる。
 図14Gは、図3に示すSiC半導体装置1を示す斜視図であって、改質ライン22A~22Dの第7形態例を示す斜視図である。以下では、SiC半導体装置1に対して述べた構造に対応する構造については同一の参照符号を付して説明を省略する。
 第6形態例では、複数の改質ライン22A,22Cおよび1層の改質ライン22B,22Dが形成されている。これに対して、第7形態例では、専有割合RB,RDが専有割合RA,RC未満(RB,RD<RA,RC)であるという条件の下で、複数の改質ライン22A~22Dが形成されている。
 この形態では、複数(この形態では3層)の改質ライン22A,22Cが形成され、改質ライン22A,22Cの層数未満の複数(この形態では2層)の改質ライン22B,22Dが形成されている。
 第7形態例に係る改質ライン22A~22Dは、改質ライン70(改質ライン22A~22D)の形成工程において、レーザ光の集光部(焦点)等を調節することによって形成される(図10Kも併せて参照)。
 第7形態例に係る改質ライン22A~22Dが形成される場合であっても、第6形態例に係る改質ライン22A~22Dが形成された場合と同様の効果を奏することができる。ただし、改質ライン70(改質ライン22A~22D)の形成工程の時短の観点からすると、第6形態例に係る改質ライン22A~22Dの方が好ましい。
 図14Hは、図3に示すSiC半導体装置1を示す斜視図であって、改質ライン22A~22Dの第8形態例を示す斜視図である。以下では、SiC半導体装置1に対して述べた構造に対応する構造については同一の参照符号を付して説明を省略する。
 第6形態例では、複数の改質ライン22A,22Cおよび1層の改質ライン22B,22Dが形成されている。これに対して、第8形態例では、専有割合RB,RDが専有割合RA,RC未満(RB,RD<RA,RC)であるという条件の下で、側面5A~5Dに対して1対1対応の関係で改質ライン22A~22Dが1層ずつ形成されている。改質ライン22B,22Dの厚さTRは、改質ライン22A,22Cの厚さTR未満である。
 第8形態例に係る改質ライン22A~22Dは、改質ライン70(改質ライン22A~22D)の形成工程において、レーザ光の集光部(焦点)等を調節することによって形成される(図10Kも併せて参照)。
 第8形態例に係る改質ライン22A~22Dが形成される場合であっても、第6形態例に係る改質ライン22A~22Dが形成された場合と同様の効果を奏することができる。特に、第8形態例に係る改質ライン22A~22Dによれば、法線方向Zに沿って複数の改質ライン22A~22Dを形成する必要がないため、改質ライン70(改質ライン22A~22D)の形成工程のさらなる時短を図ることができる。
 図14Iは、図3に示すSiC半導体装置1を示す斜視図であって、改質ライン22A~22Dの第9形態例を示す斜視図である。以下では、SiC半導体装置1に対して述べた構造に対応する構造については同一の参照符号を付して説明を省略する。
 第6形態例では、複数の改質ライン22A,22Cおよび1層の改質ライン22B,22Dが形成されている。これに対して、第9形態例では、専有割合RB,RDが専有割合RA,RC未満(RB,RD<RA,RC)であるという条件の下で、複数の改質ライン22A~22Dが形成されている。
 この形態では、複数(この形態では2層)の改質ライン22A,22Cが形成され、改質ライン22A,22Cの層数以上の複数(この形態では4層)の改質ライン22B,22Dが形成されている。改質ライン22B,22Dの層数は、改質ライン22A,22Cの層数と同数であってもよい。各改質ライン22B,22Dの厚さTRは、各改質ライン22A,22Cの厚さTR未満である。
 第9形態例に係る改質ライン22A~22Dは、改質ライン70(改質ライン22A~22D)の形成工程において、レーザ光の集光部(焦点)等を調節することによって形成される(図10Kも併せて参照)。
 第9形態例に係る改質ライン22A~22Dが形成される場合であっても、第6形態例に係る改質ライン22A~22Dが形成された場合と同様の効果を奏することができる。ただし、改質ライン70(改質ライン22A~22D)の形成工程の時短の観点からすると、第6形態例に係る改質ライン22A~22Dの方が好ましい。
 図14Jは、図3に示すSiC半導体装置1を示す斜視図であって、改質ライン22A~22Dの第10形態例を示す斜視図である。以下では、SiC半導体装置1に対して述べた構造に対応する構造については同一の参照符号を付して説明を省略する。
 第6形態例に係る改質ライン22B,22Dは、第1主面3の接線方向に沿って直線状に延びる帯状に形成されている。これに対して、第10形態例に係る改質ライン22B,22Dは、第1主面3から第2主面4に向けて下り傾斜した帯状に形成されている。第10形態例に係る改質ライン22B,22Dは、より具体的には、第1端部領域81、第2端部領域82および傾斜領域83をそれぞれ含む。
 第1端部領域81は、SiC半導体層2の角部近傍において第1主面3側に位置している。第2端部領域82は、SiC半導体層2の角部近傍において第1端部領域81に対して第2主面4側に位置している。傾斜領域83は、第1端部領域81および第2端部領域82の間の領域を第1主面3から第2主面4に向けて直線状に下り傾斜している。
 傾斜領域83は、第1主面3から第2主面4に向けて凹湾曲状(曲線状)に下り傾斜していてもよい。傾斜領域83は、第1主面3から第2主面4に向けて凸湾曲状(曲線状)に下り傾斜していてもよい。
 改質ライン22A,22Cは、この形態では、第1主面3の接線方向に沿って直線状に延びる帯状に形成されている。しかし、改質ライン22A,22Cは、改質ライン22B,22Dと同様に、第1主面3から第2主面4に向けて下り傾斜した帯状に形成されていてもよい。つまり、改質ライン22A,22Cも、第1端部領域81、第2端部領域82および傾斜領域83をそれぞれ含んでいてもよい。
 第10形態例に係る改質ライン22A~22Dは、改質ライン70(改質ライン22A~22D)の形成工程において、レーザ光の集光部(焦点)等を調節することによって形成される(図10Kも併せて参照)。
 第10形態例に係る改質ライン22A~22Dが形成される場合であっても、第6形態例に係る改質ライン22A~22Dが形成された場合と同様の効果を奏することができる。特に、第10形態例に係る改質ライン22B,22Dによれば、SiC半導体ウエハ構造61(SiC半導体ウエハ41)の厚さ方向の異なる領域において劈開起点を形成できる。これにより、1層からなる改質ライン22B,22Dを形成する場合であっても、SiC半導体ウエハ構造61を適切に劈開できる。
 図14Kは、図3に示すSiC半導体装置1を示す斜視図であって、改質ライン22A~22Dの第11形態例を示す斜視図である。以下では、SiC半導体装置1に対して述べた構造に対応する構造については同一の参照符号を付して説明を省略する。
 第6形態例に係る改質ライン22B,22Dは、第1主面3の接線方向に沿って直線状に延びる帯状に形成されている。これに対して、第11形態例に係る改質ライン22B,22Dは、第1主面3から第2主面4に向けて下り傾斜した帯状に形成されている。第11形態例に係る改質ライン22B,22Dは、より具体的には、第1端部領域81、第2端部領域82および傾斜領域83をそれぞれ含む。
 第1端部領域81は、SiC半導体層2の一方の角部近傍において第1主面3側に位置している。第1端部領域81は、第1主面3の接線方向に沿って直線状に延びている。第2端部領域82は、SiC半導体層2の他方の角部近傍において第1端部領域81に対して第2主面4側に位置している。第2端部領域82は、第1主面3の接線方向に沿って直線状に延びている。
 傾斜領域83は、第1端部領域81および第2端部領域82を接続している。傾斜領域83は、第1端部領域81から第2端部領域82に向けて直線状に下り傾斜している。傾斜領域83は、第1端部領域81から第2端部領域82に向けて凹湾曲状に下り傾斜していてもよい。
 改質ライン22A,22Cは、この形態では、第1主面3の接線方向に沿って直線状に延びる帯状に形成されている。しかし、改質ライン22A,22Cは、改質ライン22B,22Dと同様に、第1主面3から第2主面4に向けて下り傾斜した帯状に形成されていてもよい。つまり、改質ライン22A,22Cも、第1端部領域81、第2端部領域82および傾斜領域83をそれぞれ含んでいてもよい。
 第11形態例に係る改質ライン22A~22Dは、改質ライン70(改質ライン22A~22D)の形成工程において、レーザ光の集光部(焦点)等を調節することによって形成される(図10Kも併せて参照)。
 第11形態例に係る改質ライン22A~22Dが形成される場合であっても、第6形態例に係る改質ライン22A~22Dが形成された場合と同様の効果を奏することができる。特に、第11形態例に係る改質ライン22B,22Dによれば、SiC半導体ウエハ構造61(SiC半導体ウエハ41)の厚さ方向の異なる領域において劈開起点を形成できる。これにより、1層からなる改質ライン22B,22Dを形成する場合であっても、SiC半導体ウエハ構造61を適切に劈開できる。
 図14Lは、図3に示すSiC半導体装置1を示す斜視図であって、改質ライン22A~22Dの第12形態例を示す斜視図である。以下では、SiC半導体装置1に対して述べた構造に対応する構造については同一の参照符号を付して説明を省略する。
 第6形態例に係る改質ライン22B,22Dは、第1主面3の接線方向に沿って直線状に延びる帯状に形成されている。これに対して、第12形態例に係る改質ライン22B,22Dは、第1主面3および第2主面4に向けて蛇行した湾曲状(曲線状)に延びる帯状に形成されている。第12形態例に係る改質ライン22B,22Dは、より具体的には、複数の第1領域87、複数の第2領域88および複数の接続領域89をそれぞれ含む。
 複数の第1領域87は、第1主面3側の領域に位置している。複数の第2領域88は、複数の第1領域87に対して第2主面4側の領域に位置している。複数の傾斜領域83は、対応する第1領域87および第2領域88をそれぞれ接続している。
 改質ライン22A,22Cは、この形態では、第1主面3の接線方向に沿って直線状に延びる帯状に形成されている。しかし、改質ライン22A,22Cは、改質ライン22B,22Dと同様に、第1主面3および第2主面4に向けて蛇行した曲線状(湾曲状)に延びる帯状に形成されていてもよい。つまり、改質ライン22A,22Cは、複数の第1領域87、複数の第2領域88および複数の接続領域89をそれぞれ含んでいてもよい。
 改質ライン22A~22Dの蛇行周期は、任意である。改質ライン22A~22Dは、第1主面3から第2主面4に向けて凹湾曲状に延びる1つの帯状にそれぞれ形成されていてもよい。この場合、改質ライン22A~22Dは、2つの第1領域87、1つの第2領域88および2つの接続領域89をそれぞれ含んでいてもよい。
 また、改質ライン22A~22Dは、第2主面4から第1主面3に向けて凸湾曲状に延びる1つの帯状にそれぞれ形成されていてもよい。この場合、改質ライン22A~22Dは、1つの第1領域87、2つの第2領域88および2つの接続領域89をそれぞれ含んでいてもよい。
 第12形態例に係る改質ライン22A~22Dは、改質ライン70(改質ライン22A~22D)の形成工程において、レーザ光の集光部(焦点)等を調節することによって形成される(図10Kも併せて参照)。
 第12形態例に係る改質ライン22A~22Dが形成される場合であっても、第6形態例に係る改質ライン22A~22Dが形成された場合と同様の効果を奏することができる。特に、第12形態例に係る改質ライン22B,22Dによれば、SiC半導体ウエハ構造61(SiC半導体ウエハ41)の厚さ方向の異なる領域において劈開起点を形成できる。これにより、1層からなる改質ライン22B,22Dを形成する場合であっても、SiC半導体ウエハ構造61を適切に劈開できる。
 図14Mは、図3に示すSiC半導体装置1を示す斜視図であって、改質ラインの第13形態例を示す斜視図である。以下では、SiC半導体装置1に対して述べた構造に対応する構造については同一の参照符号を付して説明を省略する。
 第6形態例では、専有割合RB,RDが専有割合RA,RC未満(RB,RD<RA,RC)であるという条件の下で、複数の改質ライン22A,22Cおよび1層の改質ライン22B,22Dが形成されている。
 これに対して、第13形態例では、専有割合RB,RDが専有割合RA,RC以上(RB,RD≧RA,RC)であるという条件の下で、改質ライン22A~22Dが形成されている。この形態では、複数(2層以上。この形態では2層)の改質ライン22A,22Cが形成され、改質ライン22A,22Cの層数未満の1層または複数(この形態では1層)の改質ライン22B,22Dが形成されている。改質ライン22B,22Dは、1層からなることが好ましい。
 改質ライン22B,22Dは、第6形態例と同様に、第1主面3から第2主面4側に間隔を空けて形成されていることが好ましい。また、改質ライン22B,22Dは、第2主面4から第1主面3側に間隔を空けて形成されていることが好ましい。
 第13形態例に係る改質ライン22A~22Dは、改質ライン70(改質ライン22A~22D)の形成工程において、レーザ光の集光部(焦点)等を調節することによって形成される(図10Kも併せて参照)。
 第13形態例に係る改質ライン22A~22Dが形成される場合であっても、改質ライン22B,22Dの形成領域を制限できる。これにより、第6形態例に係る改質ライン22A~22Dが形成された場合と同様の効果を奏することができる。
 改質ライン70(改質ライン22A~22D)の形成工程の時短の観点では、第6形態例の場合とほぼ同様である。ただし、専有割合RA~RDの観点からすると、第6形態例に係る改質ライン22A~22Dの方が好ましい。
 第6形態例、第7形態例、第8形態例、第9形態例、第10形態例、第11形態例、第12形態例および第13形態例(以下、単に「第6~第13形態例」という。)に係る改質ライン22A~22Dのうちの少なくとも2種を同時に含むSiC半導体装置1が形成されてもよい。
 また、第6~第13形態例に係る改質ライン22A~22Dの特徴は、それらの間で任意の態様および任意の形態で組み合わされることができる。つまり、第6~第13形態例に係る改質ライン22A~22Dの特徴のうちの少なくとも2つの特徴が組み合わされた形態を有する改質ライン22A~22Dが採用されてもよい。
 たとえば、第10形態例に係る改質ライン22A~22Dの特徴が第11形態例や第12形態例に係る改質ライン22A~22Dの特徴に組み合わせられてもよい。この場合、第1主面3から第2主面4に向けて下り傾斜し、第1主面3および第2主面4に向けて蛇行した帯状の改質ライン22A~22Dが形成される。
 図15は、本発明の第2実施形態に係るSiC半導体装置91を示す斜視図であって、第1形態例に係る改質ライン22A~22Dが適用された構造を示す斜視図である。以下では、SiC半導体装置1に対して述べた構造に対応する構造については同一の参照符号を付して説明を省略する。
 この形態では、第1形態例に係る改質ライン22A~22Dが適用されている。しかし、第1形態例に係る改質ライン22A~22Dに代えてまたはこれに加えて、第2~第5形態例に係る改質ライン22A~22Dが採用されてもよい。また、第1~第5形態例に係る改質ライン22A~22Dの特徴のうちの少なくとも2つの特徴が組み合わされた形態を有する改質ライン22A~22Dが採用されてもよい。
 また、第1形態例に係る改質ライン22A~22Dに代えて、第6形態例に係る改質ライン22A~22Dが採用されてもよい。また、第6形態例に係る改質ライン22A~22Dに代えてまたはこれに加えて、第7~第13形態例に係る改質ライン22A~22Dのうちのいずれか1つが採用されてもよい。また、第6~第13形態例に係る改質ライン22A~22Dの特徴のうちの少なくとも2つの特徴が組み合わされた形態を有する改質ライン22A~22Dが採用されてもよい。
 図15を参照して、この形態では、主面絶縁層10の絶縁側面11A~11Dが、SiC半導体層2の側面5A~5Dから内方領域に間隔を空けて形成されている。主面絶縁層10は、平面視において第1主面3の周縁部を露出させている。
 主面絶縁層10は、樹脂層16およびパッシベーション層13と共に第1主面3の周縁部を露出させている。主面絶縁層10の絶縁側面11A~11Dは、この形態では、樹脂層16の樹脂側面17A~17Dおよびパッシベーション層13の側面14A~14Dに面一に形成されている。絶縁側面11A~11Dは、この形態では、ダイシングストリートを区画している。
 主面絶縁層10は、前述の図10Iの工程において、パッシベーション層13の除去工程の後、主面絶縁層10をエッチング法によって除去する工程を実施することによって形成される。この場合、前述の図10Kの工程において、SiC半導体ウエハ構造61の第1主面62側から主面絶縁層10を介さずにSiC半導体ウエハ構造61の内部にレーザ光が直接照射されてもよい。
 以上、SiC半導体装置91によっても、SiC半導体装置1に対して述べた効果と同様の効果を奏することできる。ただし、SiC半導体層2の側面5A~5Dおよび第1主面電極層12の間の絶縁性を高める上では、第1実施形態に係るSiC半導体装置1の構造が好ましい。
 図16は、本発明の第3実施形態に係るSiC半導体装置101を1つの角度から見た斜視図であって、第1形態例に係る改質ライン22A~22Dが適用された構造を示す斜視図である。図17は、図16に示すSiC半導体装置101を別の角度から見た斜視図である。図18は、図16に示すSiC半導体装置101を示す平面図である。図19は、図18から樹脂層129を取り除いた平面図である。
 この形態では、第1形態例に係る改質ライン22A~22Dが適用されている。つまり、SiC半導体装置101の製造工程では、前述の図10A~図10Mの工程と同様の工程が適用されている。
 SiC半導体装置101において、第1形態例に係る改質ライン22A~22Dに代えてまたはこれに加えて、第2~第5形態例に係る改質ライン22A~22Dのうちのいずれか1つが採用されてもよい。また、第1~第5形態例に係る改質ライン22A~22Dの特徴のうちの少なくとも2つの特徴が組み合わされた形態を有する改質ライン22A~22Dが採用されてもよい。
 また、SiC半導体装置101において、第1形態例に係る改質ライン22A~22Dに代えて、第6形態例に係る改質ライン22A~22Dが採用されてもよい。また、第6形態例に係る改質ライン22A~22Dに代えてまたはこれに加えて、第7~第13形態例に係る改質ライン22A~22Dのうちのいずれか1つが採用されてもよい。また、第6~第13形態例に係る改質ライン22A~22Dの特徴のうちの少なくとも2つの特徴が組み合わされた形態を有する改質ライン22A~22Dが採用されてもよい。
 図16~図19を参照して、SiC半導体装置101は、SiC半導体層102を含む。SiC半導体層102は、六方晶からなるSiC単結晶の一例としての4H-SiC単結晶を含む。SiC半導体層102は、直方体形状のチップ状に形成されている。
 SiC半導体層102は、一方側の第1主面103、他方側の第2主面104、ならびに、第1主面103および第2主面104を接続する側面105A,105B,105C,105Dを有している。第1主面103および第2主面104は、それらの法線方向Zから見た平面視(以下、単に「平面視」という。)において四角形状(ここでは長方形状)に形成されている。
 第1主面103は、機能デバイスが形成されたデバイス面である。第2主面104は、研削痕を有する研削面からなる。側面105A~105Dは、SiC単結晶の結晶面に面する平滑な劈開面からそれぞれなる。側面105A~105Dは、研削痕を有していない。
 SiC半導体層102の厚さTLは、40μm以上200μm以下であってもよい。厚さTLは、40μm以上60μm以下、60μm以上80μm以下、80μm以上100μm以下、100μm以上120μm以下、120μm以上140μm以下、140μm以上160μm以下、160μm以上180μm以下、または、180μm以上200μm以下であってもよい。厚さTLは、60μm以上150μm以下であることが好ましい。
 第1主面103および第2主面104は、この形態では、SiC単結晶のc面に面している。第1主面103は、(0001)面(シリコン面)に面している。第2主面104は、SiC単結晶の(000-1)面(カーボン面)に面している。
 第1主面103および第2主面104は、SiC単結晶のc面に対して[11-20]方向に10°以下の角度で傾斜したオフ角θを有している。法線方向Zは、SiC単結晶のc軸([0001]方向)に対してオフ角θ分だけ傾斜している。
 オフ角θは、0°以上5.0°以下であってもよい。オフ角θは、0°以上1.0°以下、1.0°以上1.5°以下、1.5°以上2.0°以下、2.0°以上2.5°以下、2.5°以上3.0°以下、3.0°以上3.5°以下、3.5°以上4.0°以下、4.0°以上4.5°以下、または、4.5°以上5.0°以下の角度の範囲に設定されてもよい。オフ角θは、0°を超えていることが好ましい。オフ角θは、4.0°未満であってもよい。
 オフ角θは、3.0°以上4.5°以下の角度の範囲に設定されていてもよい。この場合、オフ角θは、3.0°以上3.5°以下、または、3.5°以上4.0°以下の角度の範囲に設定されていることが好ましい。オフ角θは、1.5°以上3.0°以下の角度の範囲に設定されていてもよい。この場合、オフ角θは、1.5°以上2.0°以下、または、2.0°以上2.5°以下の角度の範囲に設定されていることが好ましい。
 側面105A~105Dの長さは、それぞれ、1mm以上10mm以下(たとえば2mm以上5mm以下)であってもよい。側面105B,105Dの表面積は、この形態では、側面105A,105Cの表面積を超えている。第1主面103および第2主面104は、平面視において正方形状に形成されていてもよい。この場合、側面105A,105Cの表面積は、側面105B,105Dと等しくなる。
 側面105Aおよび側面105Cは、この形態では、第1方向Xに沿って延び、第1方向Xに交差する第2方向Yに互いに対向している。側面105Bおよび側面105Dは、この形態では、第2方向Yに沿って延び、第1方向Xに互いに対向している。第2方向Yは、より具体的には第1方向Xに直交する方向である。
 第1方向Xは、この形態では、SiC単結晶のm軸方向([1-100]方向)に設定されている。第2方向Yは、SiC単結晶のa軸方向([11-20]方向)に設定されている。
 側面105Aおよび側面105Cは、平面視においてSiC半導体層102の短辺を形成している。側面105Aおよび側面105Cは、SiC単結晶のa面によって形成され、a軸方向に互いに対向している。側面105Aは、SiC単結晶の(-1-120)面によって形成されている。側面105Cは、SiC単結晶の(11-20)面によって形成されている。
 側面105Aおよび側面105Cは、第1主面103の法線を基準にしたとき、法線に対してSiC単結晶のc軸方向([0001]方向)に向けて傾斜した傾斜面を形成していてもよい。この場合、側面105Aおよび側面105Cは、第1主面103の法線を0°としたとき、第1主面103の法線に対してオフ角θに応じた角度で傾斜していてもよい。オフ角θに応じた角度は、オフ角θと等しくてもよいし、0°を超えてオフ角θ未満の角度であってもよい。
 側面105Bおよび側面105Dは、平面視においてSiC半導体層102の長辺を形成している。側面105Bおよび側面105Dは、SiC単結晶のm面によって形成され、m軸方向に互いに対向している。側面105Bは、SiC単結晶の(-1100)面によって形成されている。側面105Dは、SiC単結晶の(1-100)面によって形成されている。側面105Bおよび側面105Dは、第1主面103の法線に沿って平面的に延びている。側面105Bおよび側面105Dは、より具体的には、第1主面103および第2主面104に対して略垂直に形成されている。
 SiC半導体層102は、この形態では、n型のSiC半導体基板106およびn型のSiCエピタキシャル層107を含む積層構造を有している。SiC半導体基板106およびSiCエピタキシャル層107は、第1実施形態に係るSiC半導体基板6およびSiCエピタキシャル層7にそれぞれ対応している。SiC半導体基板106によって、SiC半導体層102の第2主面104が形成されている。
 SiCエピタキシャル層107によって、第1主面103が形成されている。SiC半導体基板106およびSiCエピタキシャル層107によって、SiC半導体層102の側面105A~105Dが形成されている。
 SiC半導体基板106の厚さTSは、40μm以上150μm以下であってもよい。厚さTSは、40μm以上50μm以下、50μm以上60μm以下、60μm以上70μm以下、70μm以上80μm以下、80μm以上90μm以下、90μm以上100μm以下、100μm以上110μm以下、110μm以上120μm以下、120μm以上130μm以下、130μm以上140μm以下、または、140μm以上150μm以下であってもよい。厚さTSは、40μm以上130μm以下であることが好ましい。SiC半導体基板106の薄化によって、電流経路を短縮できるから、抵抗値の低減を図ることができる。
 SiCエピタキシャル層107の厚さTEは、1μm以上50μm以下であってもよい。厚さTEは、1μm以上5μm以下、5μm以上10μm以下、10μm以上15μm以下、15μm以上20μm以下、20μm以上25μm以下、25μm以上30μm以下、30μm以上35μm以下、35μm以上40μm以下、40μm以上45μm以下、または、45μm以上50μm以下であってもよい。厚さTEは、5μm以上15μm以下であることが好ましい。
 SiCエピタキシャル層107のn型不純物濃度は、SiC半導体基板106のn型不純物濃度以下である。SiCエピタキシャル層107のn型不純物濃度は、より具体的には、SiC半導体基板106のn型不純物濃度未満である。SiC半導体基板106のn型不純物濃度は、1.0×1018cm-3以上1.0×1021cm-3以下であってもよい。SiCエピタキシャル層107のn型不純物濃度は、1.0×1015cm-3以上1.0×1018cm-3以下であってもよい。
 SiCエピタキシャル層107は、この形態では、法線方向Zに沿って異なるn型不純物濃度を有する複数の領域を有している。SiCエピタキシャル層107は、より具体的には、n型不純物濃度が比較的高い高濃度領域108、および、高濃度領域108に対してn型不純物濃度が低い低濃度領域109を含む。高濃度領域108は、第1主面103側の領域に形成されている。低濃度領域109は、高濃度領域108に対して第2主面104側の領域に形成されている。
 高濃度領域108のn型不純物濃度は、1×1016cm-3以上1×1018cm-3以下であってもよい。低濃度領域109のn型不純物濃度は、1×1015cm-3以上1×1016cm-3以下であってもよい。
 高濃度領域108の厚さは、低濃度領域109の厚さ以下である。高濃度領域108の厚さは、より具体的には、低濃度領域109の厚さ未満である。高濃度領域108の厚さは、SiCエピタキシャル層107の総厚さの2分の1未満である。
 SiC半導体層102は、アクティブ領域111および外側領域112を含む。アクティブ領域111は、機能デバイスの一例としての縦型のMISFET(Metal Insulator Field Effect Transistor)が形成された領域である。アクティブ領域111は、平面視において、側面105A~105Dから内方領域に間隔を空けてSiC半導体層102の中央部に形成されている。アクティブ領域111は、平面視において側面105A~105Dに平行な4辺を有する四角形状(この形態では長方形状)に形成されている。
 外側領域112は、アクティブ領域111の外側の領域である。外側領域112は、側面105A~105Dおよびアクティブ領域111の周縁の間の領域に形成されている。外側領域112は、平面視においてアクティブ領域111を取り囲む無端状(この形態では四角環状)に形成されている。
 SiC半導体装置101は、第1主面103の上に形成された主面絶縁層113を含む。主面絶縁層113は、アクティブ領域111および外側領域112を選択的に被覆している。主面絶縁層113は、酸化シリコン(SiO)を含んでいてもよい。
 主面絶縁層113は、側面105A~105Dから露出する4つの絶縁側面114A,114B,114C,114Dを有している。絶縁側面114A~114Dは、側面105A~105Dに連なっている。絶縁側面114A~114Dは、側面105A~105Dに対して面一に形成されている。絶縁側面114A~114Dは、劈開面からなる。
 主面絶縁層113の厚さは、1μm以上50μm以下であってもよい。主面絶縁層113の厚さは、1μm以上10μm以下、10μm以上20μm以下、20μm以上30μm以下、30μm以上40μm以下、または、40μm以上50μm以下であってもよい。
 SiC半導体装置101は、主面絶縁層113の上に形成された第1主面電極層の1つとしての主面ゲート電極層115を含む。主面ゲート電極層115には、ゲート電圧が印加される。ゲート電圧は、10V以上50V以下(たとえば30V程度)であってもよい。主面ゲート電極層115は、主面絶縁層113を貫通して、SiC半導体層102の任意の領域に電気的に接続されている。
 主面ゲート電極層115は、ゲートパッド116およびゲートフィンガー117,118を含む。ゲートパッド116およびゲートフィンガー117,118は、アクティブ領域111に配置されている。
 ゲートパッド116は、平面視において側面105Aに沿って形成されている。ゲートパッド116は、平面視において側面105Aの中央領域に沿って形成されている。ゲートパッド116は、平面視において側面105A~105Dのうちの任意の2つを接続する角部に沿って形成されていてもよい。ゲートパッド116は、平面視において四角形状に形成されていてもよい。
 ゲートフィンガー117,118は、外側ゲートフィンガー117および内側ゲートフィンガー118を含む。外側ゲートフィンガー117は、ゲートパッド116から引き出されており、アクティブ領域111の周縁に沿って帯状に延びている。外側ゲートフィンガー117は、この形態では、アクティブ領域111の内方領域を3方向から区画するように、3つの側面105A,105B,105Dに沿って形成されている。
 外側ゲートフィンガー117は、一対の開放端部119,120を有している。一対の開放端部119,120は、アクティブ領域111の内方領域を挟んでゲートパッド116と対向する領域に形成されている。一対の開放端部119,120は、この形態では、側面105Cに沿って形成されている。
 内側ゲートフィンガー118は、ゲートパッド116からアクティブ領域111の内方領域に引き出されている。内側ゲートフィンガー118は、アクティブ領域111の内方領域を帯状に延びている。内側ゲートフィンガー118は、ゲートパッド116から側面105Cに向けて延びている。
 SiC半導体装置101は、主面絶縁層113の上に形成された第1主面電極層の1つとしての主面ソース電極層121を含む。主面ソース電極層121には、ソース電圧が印加される。ソース電圧は、基準電圧(たとえばGND電圧)であってもよい。主面ソース電極層121は、主面絶縁層113を貫通して、SiC半導体層102の任意の領域に電気的に接続されている。主面ソース電極層121は、この形態では、ソースパッド122、ソース引き回し配線123およびソース接続部124を含む。
 ソースパッド122は、ゲートパッド116およびゲートフィンガー117,118から間隔を空けてアクティブ領域111に形成されている。ソースパッド122は、ゲートパッド116およびゲートフィンガー117,118によって区画されたC字形状(図18および図19では逆C字形状)の領域を被覆するように、平面視においてC字形状(図18および図19では逆C字形状)に形成されている。
 ソース引き回し配線123は、外側領域112に形成されている。ソース引き回し配線123は、アクティブ領域111に沿って帯状に延びている。ソース引き回し配線123は、この形態では、平面視においてアクティブ領域111を取り囲む無端状(この形態では四角環状)に形成されている。ソース引き回し配線123は、外側領域112においてSiC半導体層102に電気的に接続されている。
 ソース接続部124は、ソースパッド122およびソース引き回し配線123を接続している。ソース接続部124は、外側ゲートフィンガー117の一対の開放端部119,120の間の領域に設けられている。ソース接続部124は、ソースパッド122からアクティブ領域111および外側領域112の間の境界領域を横切り、ソース引き回し配線123に接続されている。
 アクティブ領域111に形成されたMISFETは、その構造上、npn型の寄生バイポーラトランジスタを含む。外側領域112で生じたアバランシェ電流がアクティブ領域111に流れ込むと、寄生バイポーラトランジスタがオン状態となる。この場合、たとえばラッチアップにより、MISFETの制御が不安定になる可能性がある。
 そこで、SiC半導体装置101では、主面ソース電極層121の構造を利用して、外側領域112で生じたアバランシェ電流を吸収するアバランシェ電流吸収構造を形成している。より具体的には、外側領域112で生じたアバランシェ電流は、ソース引き回し配線123によって吸収され、ソース接続部124を介してソースパッド122に至る。ソースパッド122に外部接続用の導線(たとえばボンディングワイヤ)が接続されている場合には、アバランシェ電流は、この導線によって取り出される。
 これにより、外側領域112で生じた不所望な電流によって寄生バイポーラトランジスタがオン状態になるのを抑制できる。よって、ラッチアップを抑制できるから、MISFETの制御の安定性を高めることができる。
 SiC半導体装置101は、主面絶縁層113の上に形成されたパッシベーション層125(絶縁層)を含む。パッシベーション層125は、酸化シリコン層または窒化シリコン層からなる単層構造を有していてもよい。パッシベーション層125は、酸化シリコン層および窒化シリコン層を含む積層構造を有していてもよい。酸化シリコン層は、窒化シリコン層の上に形成されていてもよい。窒化シリコン層は、酸化シリコン層の上に形成されていてもよい。パッシベーション層125は、この形態では、窒化シリコン層からなる単層構造を有している。
 パッシベーション層125は、4つの側面126A,126B,126C,126Dを含む。パッシベーション層125の側面126A~126Dは、平面視においてSiC半導体層102の側面105A~105Dから内方領域に間隔を空けて形成されている。パッシベーション層125は、平面視においてSiC半導体層102の周縁部を露出させている。パッシベーション層125は、主面絶縁層113を露出させている。パッシベーション層125の側面126A~126Dは、SiC半導体層102の側面105A~105Dに対して面一に形成されていてもよい。
 パッシベーション層125は、主面ゲート電極層115および主面ソース電極層121を選択的に被覆している。パッシベーション層125は、ゲートサブパッド開口127およびソースサブパッド開口128を含む。ゲートサブパッド開口127は、ゲートパッド116を露出させている。ソースサブパッド開口128は、ソースパッド122を露出させている。
 パッシベーション層125の厚さは、1μm以上50μm以下であってもよい。パッシベーション層125の厚さは、1μm以上10μm以下、10μm以上20μm以下、20μm以上30μm以下、30μm以上40μm以下、または、40μm以上50μm以下であってもよい。
 SiC半導体装置101は、パッシベーション層125の上に形成された樹脂層129(絶縁層)を含む。パッシベーション層125および樹脂層129は、1つの絶縁積層構造(絶縁層)を形成している。図18では、樹脂層129がハッチングによって示されている。
 樹脂層129は、ネガティブタイプまたはポジティブタイプの感光性樹脂を含んでいてもよい。樹脂層129は、この形態では、ポジティブタイプの感光性樹脂の一例としてのポリベンゾオキサゾールを含む。樹脂層129は、ネガティブタイプの感光性樹脂の一例としてのポリイミドを含んでいてもよい。
 樹脂層129は、主面ゲート電極層115および主面ソース電極層121を選択的に被覆している。樹脂層129は、4つの樹脂側面130A,130B,130C,130Dを含む。樹脂側面130A~130Dは、SiC半導体層102の側面105A~105Dから内方領域に間隔を空けて形成されている。樹脂層129は、パッシベーション層125と共に主面絶縁層113を露出させている。樹脂側面130A~130Dは、この形態では、パッシベーション層125の側面126A~126Dに面一に形成されている。
 樹脂層129の樹脂側面130A~130Dは、SiC半導体層102の側面105A~105Dとの間でダイシングストリートを区画している。この形態では、パッシベーション層125の側面126A~126Dもダイシングストリートを区画している。ダイシングストリートによれば、一枚のSiC半導体ウエハからSiC半導体装置101を切り出す際に、樹脂層129やパッシベーション層125を物理的に切断する必要がなくなる。これにより、一枚のSiC半導体ウエハからSiC半導体装置101を円滑に切り出すことができる。また、側面105A~105Dからの絶縁距離を増加させることができる。
 ダイシングストリートの幅は、1μm以上25μm以下であってもよい。ダイシングストリートの幅は、1μm以上5μm以下、5μm以上10μm以下、10μm以上15μm以下、15μm以上20μm以下、または、20μm以上25μm以下であってもよい。
 樹脂層129は、ゲートパッド開口131およびソースパッド開口132を含む。ゲートパッド開口131は、ゲートパッド116を露出させている。ソースパッド開口132は、ソースパッド122を露出させている。
 ゲートパッド開口131は、パッシベーション層125のゲートサブパッド開口127に連通している。ゲートパッド開口131の内壁は、ゲートサブパッド開口127の内壁の外側に位置していてもよい。ゲートパッド開口131の内壁は、ゲートサブパッド開口127の内壁の内側に位置していてもよい。樹脂層129は、ゲートサブパッド開口127の内壁を被覆していてもよい。
 ソースパッド開口132は、パッシベーション層125のソースサブパッド開口128に連通している。ゲートパッド開口131の内壁は、ソースサブパッド開口128の内壁の外側に位置していてもよい。ソースパッド開口132の内壁は、ソースサブパッド開口128の内壁の内側に位置していてもよい。樹脂層129は、ソースサブパッド開口128の内壁を被覆していてもよい。
 樹脂層129の厚さは、1μm以上50μm以下であってもよい。樹脂層129の厚さは、1μm以上10μm以下、10μm以上20μm以下、20μm以上30μm以下、30μm以上40μm以下、または、40μm以上50μm以下であってもよい。
 SiC半導体装置101は、第2主面104の上に形成された第2主面電極層としてのドレイン電極層133を含む。ドレイン電極層133は、第2主面104(SiC半導体基板106)との間でオーミック接触を形成している。つまり、SiC半導体基板106は、MISFETのドレイン領域134として形成されている。また、SiCエピタキシャル層107は、MISFETのドリフト領域135として形成されている。オフ時において主面ソース電極層121およびドレイン電極層133の間に印加可能な最大電圧は、1000V以上10000V以下であってもよい。
 ドレイン電極層133は、Ti層、Ni層、Au層、Ag層およびAl層のうちの少なくとも1つを含んでいてもよい。ドレイン電極層133は、Ti層、Ni層、Au層、Ag層またはAl層を含む単層構造を有していてもよい。ドレイン電極層133は、Ti層、Ni層、Au層、Ag層およびAl層のうちの少なくとも2つを任意の態様で積層させた積層構造を有していてもよい。ドレイン電極層133は、第2主面104からこの順に積層されたTi層、Ni層、Au層およびAg層を含む4層構造を有していてもよい。
 SiC半導体装置101は、SiC半導体層102の側面105A~105Dに形成された第1形態例に係る複数の改質ライン22A~22Dを含む。SiC半導体装置101に係る改質ライン22A~22Dの構造は、SiC半導体層2に代えてSiC半導体層102に形成されている点を除いて、SiC半導体装置1に係る改質ライン22A~22Dの構造と同様である。
 SiC半導体装置1に係る改質ライン22A~22Dの説明は、それぞれ、SiC半導体装置101に係る改質ライン22A~22Dの説明に準用される。SiC半導体装置101に係る改質ライン22A~22Dの具体的な説明は省略される。
 図20は、図19に示す領域XXの拡大図であって、第1主面103の構造を説明するための図である。図21は、図20に示すXXI-XXI線に沿う断面図である。図22は、図20に示すXXII-XXII線に沿う断面図である。図23は、図21に示す領域XXIIIの拡大図である。図24は、図19に示すXXIV-XXIV線に沿う断面図である。図25は、図24に示す領域XXVの拡大図である。
 図20~図24を参照して、SiC半導体装置101は、アクティブ領域111において第1主面103の表層部に形成されたp型のボディ領域141を含む。ボディ領域141は、この形態では、第1主面103においてアクティブ領域111を形成する領域の全域に形成されている。これにより、ボディ領域141は、アクティブ領域111を画定している。ボディ領域141のp型不純物濃度は、1.0×1017cm-3以上1.0×1019cm-3以下であってもよい。
 SiC半導体装置101は、アクティブ領域111において第1主面103の表層部に形成された複数のゲートトレンチ142を含む。複数のゲートトレンチ142は、平面視において第1方向X(SiC単結晶のm軸方向)に沿って延びる帯状にそれぞれ形成され、第2方向Y(SiC単結晶のa軸方向)に沿って間隔を空けて形成されている。
 各ゲートトレンチ142は、この形態では、アクティブ領域111において一方側(側面105B側)の周縁部から他方側(側面105D側)の周縁部に向けて延びている。複数のゲートトレンチ142は、平面視において全体としてストライプ状に形成されている。
 各ゲートトレンチ142は、アクティブ領域111において一方側の周縁部および他方側の周縁部の間の中間部を横切っている。各ゲートトレンチ142の一端部は、アクティブ領域111において一方側の周縁部に位置している。各ゲートトレンチ142の他端部は、アクティブ領域111において他方側の周縁部に位置している。
 各ゲートトレンチ142の長さは、0.5mm以上であってもよい。各ゲートトレンチ142の長さは、図22に示す断面において、各ゲートトレンチ142および外側ゲートフィンガー117の接続部分側の端部から、反対側の端部までの長さである。各ゲートトレンチ142の長さは、この形態では、1mm以上10mm以下(たとえば2mm以上5mm以下)である。単位面積当たりの1つまたは複数のゲートトレンチ142の総延長は、0.5μm/μm以上0.75μm/μm以下であってもよい。
 各ゲートトレンチ142は、アクティブトレンチ部143およびコンタクトトレンチ部144を一体的に含む。アクティブトレンチ部143は、アクティブ領域111においてMISFETのチャネルに沿う部分である。
 コンタクトトレンチ部144は、主としてゲートトレンチ142において外側ゲートフィンガー117とのコンタクトを目的とした部分である。コンタクトトレンチ部144は、アクティブトレンチ部143からアクティブ領域111の周縁部に引き出されている。コンタクトトレンチ部144は、外側ゲートフィンガー117の直下の領域に形成されている。コンタクトトレンチ部144の引き出し量は任意である。
 各ゲートトレンチ142は、ボディ領域141を貫通し、SiCエピタキシャル層107に至っている。各ゲートトレンチ142は、側壁および底壁を含む。各ゲートトレンチ142の長辺を形成する側壁は、SiC単結晶のa面によって形成されている。各ゲートトレンチ142の短辺を形成する側壁は、SiC単結晶のm面によって形成されている。
 各ゲートトレンチ142の側壁は、法線方向Zに沿って延びていてもよい。各ゲートトレンチ142の側壁は、第1主面103に対してほぼ垂直に形成されていてもよい。SiC半導体層102内において各ゲートトレンチ142の側壁が第1主面103に対して成す角度は、90°以上95°以下(たとえば91°以上93°以下)であってもよい。各ゲートトレンチ142は、断面視において底壁側の開口面積が開口側の開口面積よりも小さいテーパ形状に形成されていてもよい。
 各ゲートトレンチ142の底壁は、SiCエピタキシャル層107に位置している。各ゲートトレンチ142の底壁は、より具体的には、SiCエピタキシャル層107の高濃度領域108に位置している。各ゲートトレンチ142の底壁は、SiC単結晶のc面に面している。各ゲートトレンチ142の底壁は、SiC単結晶のc面に対して[11-20]方向に傾斜したオフ角θを有している。
 各ゲートトレンチ142の底壁は、第1主面103に対して平行に形成されていてもよい。むろん、各ゲートトレンチ142の底壁は、第2主面104に向かう湾曲状に形成されていてもよい。
 法線方向Zに関して、各ゲートトレンチ142の深さは、0.5μm以上3.0μm以下であってもよい。各ゲートトレンチ142の深さは、0.5μm以上1.0μm以下、1.0μm以上1.5μm以下、1.5μm以上2.0μm以下、2.0μm以上2.5μm以下、または、2.5μm以上3.0μm以下であってもよい。
 各ゲートトレンチ142の第2方向Yに沿う幅は、0.1μm以上2μm以下であってもよい。各ゲートトレンチ142の幅は、0.1μm以上0.5μm以下、0.5μm以上1.0μm以下、1.0μm以上1.5μm以下、または、1.5μm以上2μm以下であってもよい。
 図23を参照して、各ゲートトレンチ142の開口エッジ部146は、第1主面103から各ゲートトレンチ142の内方に向かって下り傾斜した傾斜部147を含む。各ゲートトレンチ142の開口エッジ部146は、第1主面103および各ゲートトレンチ142の側壁を接続する角部である。
 傾斜部147は、この形態では、SiC半導体層102側に向けて窪んだ湾曲状に形成されている。傾斜部147は、各ゲートトレンチ142側に向けて突出した湾曲状に形成されていてもよい。傾斜部147は、各ゲートトレンチ142の開口エッジ部146に対する電界集中を緩和する。
 SiC半導体装置101は、各ゲートトレンチ142内に形成されたゲート絶縁層148およびゲート電極層149を含む。図20では、ゲート絶縁層148およびゲート電極層149は、ハッチングによって示されている。
 ゲート絶縁層148は、酸化シリコン(SiO)、窒化シリコン(SiN)、酸化アルミニウム(Al)、酸化ジルコニウム(ZrO)および酸化タンタル(Ta)のうちの少なくとも1種を含む。ゲート絶縁層148は、SiC半導体層102側からこの順に積層されたSiN層およびSiO層を含む積層構造を有していてもよい。   
 ゲート絶縁層148は、SiC半導体層102側からこの順に積層されたSiO層およびSiN層を含む積層構造を有していてもよい。ゲート絶縁層148は、SiO層またはSiN層からなる単層構造を有していてもよい。ゲート絶縁層148は、この形態では、SiO層からなる単層構造を有している。
 ゲート絶縁層148は、ゲートトレンチ142の内壁面に沿って膜状に形成され、ゲートトレンチ142内においてリセス空間を区画している。ゲート絶縁層148は、第1領域148a、第2領域148bおよび第3領域148cを含む。
 第1領域148aは、ゲートトレンチ142の側壁に沿って形成されている。第2領域148bは、ゲートトレンチ142の底壁に沿って形成されている。第3領域148cは、第1主面103に沿って形成されている。ゲート絶縁層148の第3領域148cは、主面絶縁層113の一部を形成している。
 第1領域148aの厚さTaは、第2領域148bの厚さTbおよび第3領域148cの厚さTc未満である。第1領域148aの厚さTaに対する第2領域148bの厚さTbの比Tb/Taは、2以上5以下であってもよい。第1領域148aの厚さTaに対する第3領域148cの厚さTcの比T3/Taは、2以上5以下であってもよい。
 第1領域148aの厚さTaは、0.01μm以上0.2μm以下であってもよい。第2領域148bの厚さTbは、0.05μm以上0.5μm以下であってもよい。第3領域148cの厚さTcは、0.05μm以上0.5μm以下であってもよい。
 第1領域148aを薄くすることによって、ボディ領域141において各ゲートトレンチ142の側壁近傍の領域に誘起されるキャリアの増加を抑制できる。これにより、チャネル抵抗の増加を抑制できる。第2領域148bを厚くすることにより、各ゲートトレンチ142の底壁に対する電界集中を緩和できる。
 第3領域148cを厚くすることにより、各ゲートトレンチ142の開口エッジ部146近傍におけるゲート絶縁層148の耐圧を向上できる。また、第3領域148cを厚くすることにより、第3領域148cがエッチング法によって消失することを抑制できる。
 これにより、第3領域148cの消失に起因して、第1領域148aがエッチング法によって除去されることを抑制できる。その結果、ゲート電極層149を、ゲート絶縁層148を挟んでSiC半導体層102(ボディ領域141)に適切に対向させることができる。
 ゲート絶縁層148は、さらに、各ゲートトレンチ142の開口エッジ部146において各ゲートトレンチ142内に向けて膨出した膨出部148dを含む。膨出部148dは、ゲート絶縁層148の第1領域148aおよび第3領域148cを接続する角部に形成されている。
 膨出部148dは、各ゲートトレンチ142内に向けて湾曲状に張り出している。膨出部148dは、各ゲートトレンチ142の開口エッジ部146において各ゲートトレンチ142の開口を狭めている。
 膨出部148dは、開口エッジ部146におけるゲート絶縁層148の絶縁耐圧を高めている。むろん、膨出部148dを有さないゲート絶縁層148が形成されていてもよい。また、一様な厚さを有するゲート絶縁層148が形成されていてもよい。
 ゲート電極層149は、ゲート絶縁層148を挟んで各ゲートトレンチ142に埋め込まれている。ゲート電極層149は、より具体的には、各ゲートトレンチ142においてゲート絶縁層148によって区画されたリセス空間に埋め込まれている。ゲート電極層149は、ゲート電圧によって制御される。
 ゲート電極層149は、各ゲートトレンチ142の開口側に位置する上端部を有している。ゲート電極層149の上端部は、各ゲートトレンチ142の底壁に向かって窪んだ湾曲状に形成されている。ゲート電極層149の上端部は、ゲート絶縁層148の膨出部148dに沿って括れた括れ部を有している。
 ゲート電極層149の断面積は、0.05μm以上0.5μm以下であってもよい。ゲート電極層149の断面積は、ゲートトレンチ142が延びる方向に直交する方向にゲート電極層149を切断したときに現れる断面の面積である。ゲート電極層149の断面積は、ゲート電極層149の深さおよびゲート電極層149の幅の積で定義される。
 ゲート電極層149の深さは、ゲート電極層149の上端部から下端部までの距離である。ゲート電極層149の幅は、ゲート電極層149の上端部および下端部の間の中間位置におけるゲートトレンチ142の幅である。上端部が曲面である場合、ゲート電極層149の上端部の位置は、ゲート電極層149の上端部における中間位置とする。
 ゲート電極層149は、p型不純物が添加されたp型ポリシリコンを含む。ゲート電極層149のp型不純物は、ホウ素(B)、アルミニウム(Al)、インジウム(In)およびガリウム(Ga)のうちの少なくとも1種を含んでいてもよい。
 ゲート電極層149のp型不純物濃度は、ボディ領域141のp型不純物濃度以上である。ゲート電極層149のp型不純物濃度は、より具体的には、ボディ領域141のp型不純物濃度を超えている。ゲート電極層149のp型不純物濃度は、1×1018cm-3以上1×1022cm-3以下であってもよい。ゲート電極層149のシート抵抗は、10Ω/□以上500Ω/□以下(この形態では200Ω/□程度)であってもよい。
 図20および図22を参照して、SiC半導体装置101は、アクティブ領域111に形成されたゲート配線層150を含む。ゲート配線層150は、ゲートパッド116およびゲートフィンガー117,118に電気的に接続される。図22では、ゲート配線層150がハッチングによって示されている。
 ゲート配線層150は、第1主面103の上に形成されている。ゲート配線層150は、より具体的には、ゲート絶縁層148の第3領域148cの上に形成されている。ゲート配線層150は、この形態では、外側ゲートフィンガー117に沿って形成されている。ゲート配線層150は、より具体的には、アクティブ領域111の内方領域を3方向から区画するように、SiC半導体層102の3つの側面105A,105B,105Dに沿って形成されている。
 ゲート配線層150は、各ゲートトレンチ142のコンタクトトレンチ部144から露出するゲート電極層149に接続されている。ゲート配線層150は、この形態では、各ゲートトレンチ142から第1主面103の上に引き出されたゲート電極層149の引き出し部によって形成されている。ゲート配線層150の上端部は、ゲート電極層149の上端部に接続されている。
 図20、図21および図23を参照して、SiC半導体装置101は、アクティブ領域111において第1主面103に形成された複数のソーストレンチ155を含む。各ソーストレンチ155は、互いに隣り合う2つのゲートトレンチ142の間の領域に形成されている。
 複数のソーストレンチ155は、第1方向X(SiC単結晶のm軸方向)に沿って延びる帯状にそれぞれ形成されている。複数のソーストレンチ155は、平面視において全体としてストライプ状に形成されている。第2方向Yに関して、互いに隣り合うソーストレンチ155の中央部間のピッチは、1.5μm以上3μm以下であってもよい。
 各ソーストレンチ155は、ボディ領域141を貫通し、SiCエピタキシャル層107に至っている。各ソーストレンチ155は、側壁および底壁を含む。各ソーストレンチ155の長辺を形成する側壁は、SiC単結晶のa面によって形成されている。各ソーストレンチ155の短辺を形成する側壁は、SiC単結晶のm面によって形成されている。
 各ソーストレンチ155の側壁は、法線方向Zに沿って延びていてもよい。各ソーストレンチ155の側壁は、第1主面103に対してほぼ垂直に形成されていてもよい。SiC半導体層102内において各ソーストレンチ155の側壁が第1主面103に対して成す角度は、90°以上95°以下(たとえば91°以上93°以下)であってもよい。各ソーストレンチ155は、断面視において底壁側の開口面積が開口側の開口面積よりも小さいテーパ形状に形成されていてもよい。
 各ソーストレンチ155の底壁は、SiCエピタキシャル層107に位置している。各ソーストレンチ155の底壁は、より具体的には、SiCエピタキシャル層107の高濃度領域108に位置している。各ソーストレンチ155の底壁は、各ゲートトレンチ142の底壁に対して第2主面104側に位置している。各ソーストレンチ155の底壁は、各ゲートトレンチ142の底壁および低濃度領域109の間の領域に位置している。
 各ソーストレンチ155の底壁は、SiC単結晶のc面に面している。各ソーストレンチ155の底壁は、SiC単結晶のc面に対して[11-20]方向に傾斜したオフ角θを有している。各ソーストレンチ155の底壁は、第1主面103に対して平行に形成されていてもよい。各ソーストレンチ155の底壁は、第2主面104に向かう湾曲状に形成されていてもよい。
 各ソーストレンチ155の深さは、この形態では、各ゲートトレンチ142の深さ以上である。各ソーストレンチ155の深さは、より具体的には、各ゲートトレンチ142の深さよりも大きい。各ソーストレンチ155の深さは、各ゲートトレンチ142の深さと等しくてもよい。
 法線方向Zに関して、各ソーストレンチ155の深さは、0.5μm以上10μm以下(たとえば2μm程度)であってもよい。各ゲートトレンチ142の深さに対する各ソーストレンチ155の深さの比は、1.5以上であってもよい。各ゲートトレンチ142の深さに対する各ソーストレンチ155の深さの比は、2以上であることが好ましい。
 各ソーストレンチ155の第1方向幅は、各ゲートトレンチ142の第1方向幅とほぼ等しくてもよい。各ソーストレンチ155の第1方向幅は、各ゲートトレンチ142の第1方向幅以上であってもよい。各ソーストレンチ155の第1方向幅は、0.1μm以上2μm以下(たとえば0.5μm程度)であってもよい。
 SiC半導体装置101は、各ソーストレンチ155内に形成されたソース絶縁層156およびソース電極層157を含む。図20においてソース絶縁層156およびソース電極層157は、ハッチングによって示されている。
 ソース絶縁層156は、酸化シリコン(SiO)、窒化シリコン(SiN)、酸化アルミニウム(Al)、酸化ジルコニウム(ZrO)および酸化タンタル(Ta)のうちの少なくとも1種を含む。ソース絶縁層156は、第1主面103側からこの順に積層されたSiN層およびSiO層を含む積層構造を有していてもよい。
 ソース絶縁層156は、第1主面103側からこの順に積層されたSiO層およびSiN層を含む積層構造を有していてもよい。ソース絶縁層156は、SiO層またはSiN層からなる単層構造を有していてもよい。ソース絶縁層156は、この形態では、SiO層からなる単層構造を有している。
 ソース絶縁層156は、各ソーストレンチ155の内壁面に沿って膜状に形成され、各ソーストレンチ155内においてリセス空間を区画している。ソース絶縁層156は、第1領域156aおよび第2領域156bを含む。
 第1領域156aは、各ソーストレンチ155の側壁に沿って形成されている。第2領域156bは、各ソーストレンチ155の底壁に沿って形成されている。第1領域156aの厚さTsaは、第2領域156bの厚さTsb未満である。
 第1領域156aの厚さTsaに対する第2領域156bの厚さTsbの比Tsb/Tsaは、2以上5以下であってもよい。第1領域156aの厚さTsaは、0.01μm以上0.2μm以下であってもよい。第2領域156bの厚さTsbは、0.05μm以上0.5μm以下であってもよい。
 第1領域156aの厚さTsaは、ゲート絶縁層148の第1領域156aの厚さTaとほぼ等しくてもよい。第2領域156bの厚さTsbは、ゲート絶縁層148の第2領域156bの厚さTbとほぼ等しくてもよい。むろん、一様な厚さを有するソース絶縁層156が形成されていてもよい。
 ソース電極層157は、ソース絶縁層156を挟んで各ソーストレンチ155に埋め込まれている。ソース電極層157は、より具体的には、各ソーストレンチ155においてソース絶縁層156によって区画されたリセス空間に埋め込まれている。ソース電極層157は、ソース電圧によって制御される。
 ソース電極層157は、各ソーストレンチ155の開口側に位置する上端部を有している。ソース電極層157の上端部は、第1主面103に対してソーストレンチ155の底壁側に形成されている。ソース電極層157の上端部は、第1主面103よりも上方に位置していてもよい。
 ソース電極層157の上端部は、各ソーストレンチ155の底壁に向かって窪んだ凹湾曲状に形成されている。ソース電極層157の上端部は、第1主面103に対して平行に形成されていてもよい。
 ソース電極層157の上端部は、ソース絶縁層156の上端部よりも上方に突出していてもよい。ソース電極層157の上端部は、ソース絶縁層156の上端部に対してソーストレンチ155の底壁側に位置していてもよい。ソース電極層157の厚さは、0.5μm以上10μm以下(たとえば1μm程度)であってもよい。
 ソース電極層157は、材質的にSiCに近い性質を有するポリシリコンを含むことが好ましい。これにより、SiC半導体層102内において生じる応力を低減できる。ソース電極層157は、この形態では、p型不純物が添加されたp型ポリシリコンを含む。この場合、ゲート電極層149と同時にソース電極層157を形成できる。ソース電極層157のp型不純物は、ホウ素(B)、アルミニウム(Al)、インジウム(In)およびガリウム(Ga)のうちの少なくとも1種を含んでいてもよい。
 ソース電極層157のp型不純物濃度は、ボディ領域141のp型不純物濃度以上である。ソース電極層157のp型不純物濃度は、より具体的には、ボディ領域141のp型不純物濃度を超えている。ソース電極層157のp型不純物濃度は、1×1018cm-3以上1×1022cm-3以下であってもよい。
 ソース電極層157のシート抵抗は、10Ω/□以上500Ω/□以下(この形態では200Ω/□程度)であってもよい。ソース電極層157のp型不純物濃度は、ゲート電極層149のp型不純物濃度とほぼ等しくてもよい。ソース電極層157のシート抵抗は、ゲート電極層149のシート抵抗とほぼ等しくてもよい。
 ソース電極層157は、p型ポリシリコンに代えてまたはこれに加えて、n型ポリシリコンを含んでいてもよい。ソース電極層157は、p型ポリシリコンに代えてまたはこれに加えて、タングステン、アルミニウム、銅、アルミニウム合金および銅合金のうちの少なくとも1種を含んでいてもよい。
 このように、SiC半導体装置101は、複数のトレンチゲート構造161および複数のトレンチソース構造162を有している。各トレンチゲート構造161は、ゲートトレンチ142、ゲート絶縁層148、ゲート電極層149を含む。各トレンチソース構造162は、ソーストレンチ155、ソース絶縁層156およびソース電極層157を含む。
 SiC半導体装置101は、ボディ領域141の表層部において各ゲートトレンチ142の側壁に沿う領域に形成されたn型のソース領域163を含む。ソース領域163のn型不純物濃度は、1.0×1018cm-3以上1.0×1021cm-3以下であってもよい。ソース領域163のn型不純物は、燐(P)であってもよい。
 ソース領域163は、各ゲートトレンチ142の一方側の側壁および他方側の側壁に沿って複数形成されている。複数のソース領域163は、第1方向Xに沿って延びる帯状にそれぞれ形成されている。複数のソース領域163は、平面視において全体としてストライプ状に形成されている。各ソース領域163は、各ゲートトレンチ142の側壁および各ソーストレンチ155の側壁から露出している。
 このように、第1主面103の表層部においてゲートトレンチ142の側壁に沿う領域には、第1主面103から第2主面104に向けてソース領域163、ボディ領域141およびドリフト領域135がこの順に形成されている。ボディ領域141においてゲートトレンチ142の側壁に沿う領域に、MISFETのチャネルが形成される。チャネルは、ゲートトレンチ142においてSiC単結晶のa面に面する側壁に沿う領域に形成される。チャネルのON/OFFは、ゲート電極層149によって制御される。
 SiC半導体装置101は、アクティブ領域111において第1主面103の表層部に形成された複数のp型のコンタクト領域164を含む。各コンタクト領域164は、平面視において互いに隣り合う2つのゲートトレンチ142の間の領域に形成されている。各コンタクト領域164は、各ソース領域163に対してゲートトレンチ142とは反対側の領域に形成されている。
 各コンタクト領域164は、各ソーストレンチ155の内壁に沿って形成されている。この形態では、複数のコンタクト領域164が、各ソーストレンチ155の内壁に沿って間隔を空けて形成されている。各コンタクト領域164は、各ゲートトレンチ142から間隔を空けて形成されている。
 各コンタクト領域164のp型不純物濃度は、ボディ領域141のp型不純物濃度よりも大きい。各コンタクト領域164のp型不純物濃度は、1.0×1018cm-3以上1.0×1021cm-3以下であってもよい。各コンタクト領域164のp型不純物は、アルミニウム(Al)であってもよい。
 各コンタクト領域164は、各ソーストレンチ155の側壁および底壁を被覆している。各コンタクト領域164の底部は、各ソーストレンチ155の底壁に対して平行に形成されていてもよい。各コンタクト領域164は、より具体的には、第1表層領域164a、第2表層領域164bおよび内壁領域164cを一体的に含む。
 第1表層領域164aは、ボディ領域141の表層部において、ソーストレンチ155の一方側の側壁を被覆している。第1表層領域164aは、ボディ領域141およびソース領域163に電気的に接続されている。
 第1表層領域164aは、ソース領域163の底部に対して第1主面103側の領域に位置している。第1表層領域164aは、この形態では、第1主面103に対して平行に延びる底部を有している。第1表層領域164aの底部は、この形態では、ボディ領域141の底部およびソース領域163の底部の間の領域に位置している。第1表層領域164aの底部は、第1主面103およびボディ領域141の底部の間の領域に位置していてもよい。
 第1表層領域164aは、この形態では、ソーストレンチ155から隣り合うゲートトレンチ142に向けて引き出されている。第1表層領域164aは、ゲートトレンチ142およびソーストレンチ155の間の中間領域まで延びていてもよい。第1表層領域164aは、ゲートトレンチ142からソーストレンチ155側に間隔を空けて形成されている。
 第2表層領域164bは、ボディ領域141の表層部において、ソーストレンチ155の他方側の側壁を被覆している。第2表層領域164bは、ボディ領域141およびソース領域163に電気的に接続されている。第2表層領域164bは、ソース領域163の底部に対して第1主面103側の領域に位置している。第2表層領域164bは、この形態では、第1主面103に対して平行に延びる底部を有している。
 第2表層領域164bの底部は、この形態では、ボディ領域141の底部およびソース領域163の底部の間の領域に位置している。第2表層領域164bの底部は、第1主面103およびボディ領域141の底部の間の領域に位置していてもよい。
 第2表層領域164bは、この形態では、ソーストレンチ155の他方側の側壁から隣り合うゲートトレンチ142に向けて引き出されている。第2表層領域164bは、ソーストレンチ155およびゲートトレンチ142の間の中間領域まで延びていてもよい。第2表層領域164bは、ゲートトレンチ142からソーストレンチ155側に間隔を空けて形成されている。
 内壁領域164cは、第1表層領域164aおよび第2表層領域164b(ソース領域163の底部)に対して第2主面104側の領域に位置している。内壁領域164cは、SiC半導体層102においてソーストレンチ155の内壁に沿う領域に形成されている。内壁領域164cは、ソーストレンチ155の側壁を被覆している。
 内壁領域164cは、ソーストレンチ155の側壁および底壁を接続する角部を被覆している。内壁領域164cは、ソーストレンチ155の側壁から角部を介してソーストレンチ155の底壁を被覆している。コンタクト領域164の底部は、内壁領域164cによって形成されている。
 SiC半導体装置101は、アクティブ領域111において第1主面103の表層部に形成された複数のディープウェル領域165を含む。各ディープウェル領域165は、SiC半導体層102の耐圧を調整する耐圧調整領域(耐圧保持領域)とも称される。
 各ディープウェル領域165は、SiCエピタキシャル層107に形成されている。各ディープウェル領域165は、より具体的には、SiCエピタキシャル層107の高濃度領域108に形成されている。
 各ディープウェル領域165は、各コンタクト領域164を被覆するように、各ソーストレンチ155の内壁に沿って形成されている。各ディープウェル領域165は、各コンタクト領域164に電気的に接続されている。各ディープウェル領域165は、平面視において各ソーストレンチ155に沿って延びる帯状に形成されている。各ディープウェル領域165は、各ソーストレンチ155の側壁を被覆している。
 各ディープウェル領域165は、各ソーストレンチ155の側壁および底壁を接続する角部を被覆している。各ディープウェル領域165は、各ソーストレンチ155の側壁から角部を介して各ソーストレンチ155の底壁を被覆している。各ディープウェル領域165は、各ソーストレンチ155の側壁においてボディ領域141に連なっている。
 各ディープウェル領域165は、各ゲートトレンチ142の底壁に対して第2主面104側に位置する底部を有している。各ディープウェル領域165の底部は、各ソーストレンチ155の底壁に対して平行に形成されていてもよい。
 各ディープウェル領域165のp型不純物濃度は、ボディ領域141のp型不純物濃度とほぼ等しくてもよい。各ディープウェル領域165のp型不純物濃度は、ボディ領域141のp型不純物濃度を超えていてもよい。各ディープウェル領域165のp型不純物濃度は、ボディ領域141のp型不純物濃度未満であってもよい。
 各ディープウェル領域165のp型不純物濃度は、コンタクト領域164のp型不純物濃度以下であってもよい。各ディープウェル領域165のp型不純物濃度は、コンタクト領域164のp型不純物濃度未満であってもよい。各ディープウェル領域165のp型不純物濃度は、1.0×1017cm-3以上1.0×1019cm-3以下であってもよい。
 各ディープウェル領域165は、SiC半導体層102(SiCエピタキシャル層107の高濃度領域108)との間でpn接合部を形成している。このpn接合部からは、互いに隣り合う複数のゲートトレンチ142の間の領域に向けて空乏層が拡がる。この空乏層は、各ゲートトレンチ142の底壁に対して第2主面104側の領域に向けて拡がる。
 各ディープウェル領域165から拡がる空乏層は、各ゲートトレンチ142の底壁にオーバラップしてもよい。各ディープウェル領域165の底部から拡がる空乏層が、各ゲートトレンチ142の底壁にオーバラップしてもよい。
 図20および図22を参照して、SiC半導体装置101は、アクティブ領域111の周縁部に形成されたp型の周縁ディープウェル領域166を含む。周縁ディープウェル領域166は、SiCエピタキシャル層107に形成されている。周縁ディープウェル領域166は、より具体的には、SiCエピタキシャル層107の高濃度領域108に形成されている。
 周縁ディープウェル領域166は、各ディープウェル領域165に電気的に接続されている。周縁ディープウェル領域166は、各ディープウェル領域165と同電位を成している。周縁ディープウェル領域166は、この形態では、各ディープウェル領域165と一体的に形成されている。
 周縁ディープウェル領域166は、より具体的には、アクティブ領域111の周縁部において、各ゲートトレンチ142のコンタクトトレンチ部144の内壁に沿う領域に形成されている。周縁ディープウェル領域166は、各ゲートトレンチ142のコンタクトトレンチ部144の側壁を被覆している。周縁ディープウェル領域166は、各コンタクトトレンチ部144の側壁および底壁を接続する角部を被覆している。
 周縁ディープウェル領域166は、各コンタクトトレンチ部144の側壁から角部を介して各コンタクトトレンチ部144の底壁を被覆している。各ディープウェル領域165は、各コンタクトトレンチ部144の側壁においてボディ領域141に連なっている。周縁ディープウェル領域166の底部は、各コンタクトトレンチ部144の底壁に対して第2主面104側に位置している。
 周縁ディープウェル領域166は、平面視においてゲート配線層150に重なっている。周縁ディープウェル領域166は、ゲート絶縁層148(第3領域148c)を挟んでゲート配線層150に対向している。
 周縁ディープウェル領域166は、各コンタクトトレンチ部144から各アクティブトレンチ部143に引き出された引き出し部166aを含む。引き出し部166aは、SiCエピタキシャル層107の高濃度領域108に形成されている。引き出し部166aは、各アクティブトレンチ部143の側壁に沿って延び、角部を通ってアクティブトレンチ部143の底壁を被覆している。
 引き出し部166aは、各アクティブトレンチ部143の側壁を被覆している。引き出し部166aは、各アクティブトレンチ部143の側壁および底壁を接続する角部を被覆している。引き出し部166aは、各アクティブトレンチ部143の側壁から角部を介して各アクティブトレンチ部143の底壁を被覆している。引き出し部166aは、各アクティブトレンチ部143の側壁においてボディ領域141に連なっている。引き出し部166aの底部は、各アクティブトレンチ部143の底壁に対して第2主面104側に位置している。
 周縁ディープウェル領域166のp型不純物濃度は、ボディ領域141のp型不純物濃度とほぼ等しくてもよい。周縁ディープウェル領域166のp型不純物濃度は、ボディ領域141のp型不純物濃度を超えていてもよい。周縁ディープウェル領域166のp型不純物濃度は、ボディ領域141のp型不純物濃度未満であってもよい。
 周縁ディープウェル領域166のp型不純物濃度は、各ディープウェル領域165のp型不純物濃度とほぼ等しくてもよい。周縁ディープウェル領域166のp型不純物濃度は、各ディープウェル領域165のp型不純物濃度を超えていてもよい。周縁ディープウェル領域166のp型不純物濃度は、各ディープウェル領域165のp型不純物濃度未満であってもよい。
 周縁ディープウェル領域166のp型不純物濃度は、コンタクト領域164のp型不純物濃度以下であってもよい。周縁ディープウェル領域166のp型不純物濃度は、コンタクト領域164のp型不純物濃度未満であってもよい。周縁ディープウェル領域166のp型不純物濃度は、1.0×1017cm-3以上1.0×1019cm-3以下であってもよい。
 pn接合ダイオードだけを備えるSiC半導体装置では、トレンチを備えていないという構造上、SiC半導体層102内における電界集中の問題は少ない。各ディープウェル領域165(周縁ディープウェル領域166)は、トレンチゲート型のMISFETをpn接合ダイオードの構造に近づける。これにより、トレンチゲート型のMISFETにおいて、SiC半導体層102内における電界を緩和できる。したがって、互いに隣り合う複数のディープウェル領域165の間のピッチを狭めることは、電界集中を緩和する上で有効である。
 また、各ゲートトレンチ142の底壁に対して第2主面104側に底部を有する各ディープウェル領域165によれば、空乏層によって、各ゲートトレンチ142に対する電界集中を適切に緩和できる。複数のディープウェル領域165の底部および第2主面104の間の距離は、ほぼ一定であることが好ましい。
 これにより、複数のディープウェル領域165の底部および第2主面104の間の距離にバラツキが生じるのを抑制できる。よって、SiC半導体層102の耐圧(たとえば破壊耐量)が、各ディープウェル領域165の形態によって制限を受けることを抑制できるから、耐圧の向上を適切に図ることができる。
 ソーストレンチ155を形成することにより、ソーストレンチ155の内壁に対してp型不純物を導入できる。これにより、ソーストレンチ155に対して各ディープウェル領域165をコンフォーマルに形成できるから、各ディープウェル領域165の深さにバラツキが生じるのを適切に抑制できる。また、各ソーストレンチ155を利用することにより、SiC半導体層102の比較的深い領域に、各ディープウェル領域165を適切に形成できる。
 この形態では、互いに隣り合う複数のディープウェル領域165の間の領域に、SiCエピタキシャル層107の高濃度領域108が介在している。これにより、互いに隣り合う複数のディープウェル領域165の間の領域において、JFET(Junction Field Effect Transistor)抵抗を低減できる。
 さらに、この形態では、各ディープウェル領域165の底部がSiCエピタキシャル層107の高濃度領域108内に位置している。これにより、各ディープウェル領域165の底部から第1主面103に対して平行な横方向に電流経路を拡張できる。これにより、電流拡がり抵抗を低減できる。SiCエピタキシャル層107の低濃度領域109は、このような構造において、SiC半導体層102の耐圧を高める。
 図23を参照して、SiC半導体装置101は、ゲート電極層149の上に形成された低抵抗電極層167を含む。低抵抗電極層167は、各ゲートトレンチ142内において、ゲート電極層149の上端部を被覆している。低抵抗電極層167は、ゲート電極層149のシート抵抗未満のシート抵抗を有する導電材料を含む。低抵抗電極層167のシート抵抗は、0.01Ω/□以上10Ω/□以下であってもよい。
 低抵抗電極層167は、膜状に形成されている。低抵抗電極層167は、ゲート電極層149の上端部に接する接続部167aおよびその反対の非接続部167bを有している。低抵抗電極層167の接続部167aおよび非接続部167bは、ゲート電極層149の上端部に沿う湾曲状に形成されていてもよい。低抵抗電極層167の接続部167aおよび非接続部167bは、種々の形態を採り得る。
 接続部167aの全体が第1主面103よりも上方に位置していてもよい。接続部167aの全体が第1主面103よりも下方に位置していてもよい。接続部167aは、第1主面103よりも上方に位置する部分を含んでいてもよい。接続部167aは、第1主面103よりも下方に位置する部分を含んでいてもよい。たとえば、接続部167aの中央部が第1主面103よりも下方に位置し、接続部167aの周縁部が第1主面103よりも上方に位置していてもよい。
 非接続部167bの全体が第1主面103よりも上方に位置していてもよい。非接続部167bの全体が第1主面103よりも下方に位置していてもよい。非接続部167bは、第1主面103よりも上方に位置する部分を含んでいてもよい。非接続部167bは、第1主面103よりも下方に位置する部分を含んでいてもよい。たとえば、非接続部167bの中央部が第1主面103よりも下方に位置し、非接続部167bの周縁部が第1主面103よりも上方に位置していてもよい。
 低抵抗電極層167は、ゲート絶縁層148に接する縁部167cを有している。縁部167cは、ゲート絶縁層148において第1領域148aおよび第2領域148bを接続する角部に接している。縁部167cは、ゲート絶縁層148の第3領域148cに接している。縁部167cは、より具体的には、ゲート絶縁層148の膨出部148dに接している。
 縁部167cは、ソース領域163の底部に対して第1主面103側の領域に形成されている。縁部167cは、ボディ領域141およびソース領域163の間の境界領域よりも第1主面103側の領域に形成されている。したがって、縁部167cは、ゲート絶縁層148を挟んでソース領域163に対向している。縁部167cは、ゲート絶縁層148を挟んでボディ領域141とは対向していない。
 これにより、ゲート絶縁層148における低抵抗電極層167およびボディ領域141の間の領域において電流パスが形成されることを抑制できる。電流パスは、ゲート絶縁層148に対する低抵抗電極層167の電極材料の不所望な拡散によって形成され得る。特に、縁部167cを、比較的厚いゲート絶縁層148の第3領域148c(ゲート絶縁層148の角部)に接続させる設計は、電流パスが形成されるリスクを低減する上で有効である。
 法線方向Zに関して、低抵抗電極層167の厚さTrは、ゲート電極層149の厚さTG以下(Tr≦TG)である。低抵抗電極層167の厚さTrは、ゲート電極層149の厚さTG未満(Tr<TG)であることが好ましい。低抵抗電極層167の厚さTrは、より具体的には、ゲート電極層149の厚さTGの半分以下(Tr≦TG/2)であることが好ましい。
 ゲート電極層149の厚さTGに対する低抵抗電極層167の厚さTrの比Tr/TGは、0.01以上1以下である。ゲート電極層149の厚さTGは、0.5μm以上3μm以下であってもよい。低抵抗電極層167の厚さTrは、0.01μm以上3μm以下であってもよい。
 各ゲートトレンチ142内に供給された電流は、比較的低いシート抵抗を有する低抵抗電極層167を流れ、ゲート電極層149の全体に伝達される。これにより、ゲート電極層149の全体(アクティブ領域111の全域)を速やかにオフ状態からオン状態に移行させることができるから、スイッチング応答の遅延を抑制できる。
 特に、ミリメートルオーダの長さ(1mm以上の長さ)を有するゲートトレンチ142の場合には、電流の伝達に時間を要するが、低抵抗電極層167によればスイッチング応答の遅延を適切に抑制できる。つまり、低抵抗電極層167は、各ゲートトレンチ142内に電流を拡散する電流拡散電極層として形成されている。
 また、セル構造の微細化が進むと、ゲート電極層149の幅、深さ、断面積等が小さくなるため、各ゲートトレンチ142内における電気抵抗の増加に起因するスイッチング応答の遅延が懸念される。この点、低抵抗電極層167によれば、ゲート電極層149の全体を速やかにオフ状態からオン状態に移行させることができるから、微細化に起因するスイッチング応答の遅延を適切に抑制できる。
 図22を参照して、低抵抗電極層167は、この形態では、ゲート配線層150の上端部も被覆している。低抵抗電極層167においてゲート配線層150の上端部を被覆する部分は、低抵抗電極層167においてゲート電極層149の上端部を被覆する部分と一体的に形成されている。これにより、低抵抗電極層167は、ゲート電極層149の全域およびゲート配線層150の全域を被覆している。
 したがって、ゲートパッド116およびゲートフィンガー117,118からゲート配線層150に供給される電流は、比較的低いシート抵抗を有する低抵抗電極層167を介してゲート電極層149およびゲート配線層150の全体に伝達される。
 これにより、ゲート配線層150を介してゲート電極層149の全体(アクティブ領域111の全域)を速やかにオフ状態からオン状態に移行させることができるから、スイッチング応答の遅延を抑制できる。特に、ミリメートルオーダの長さを有するゲートトレンチ142の場合には、ゲート配線層150の上端部を被覆する低抵抗電極層167によってスイッチング応答の遅延を適切に抑制できる。
 低抵抗電極層167は、ポリサイド層を含む。ポリサイド層は、ゲート電極層149の表層部を形成する部分が金属材料によってシリサイド化されることによって形成されている。ポリサイド層は、より具体的には、ゲート電極層149(p型ポリシリコン)に添加されたp型不純物を含むp型ポリサイド層からなる。ポリサイド層は、10μΩ・cm以上110μΩ・cm以下の比抵抗を有していることが好ましい。
 ゲート電極層149および低抵抗電極層167が埋め込まれたゲートトレンチ142内のシート抵抗は、ゲート電極層149単体のシート抵抗以下である。ゲートトレンチ142内のシート抵抗は、n型不純物が添加されたn型ポリシリコンのシート抵抗以下であることが好ましい。
 ゲートトレンチ142内のシート抵抗は、低抵抗電極層167のシート抵抗に近似される。つまり、ゲートトレンチ142内のシート抵抗は、0.01Ω/□以上10Ω/□以下であってもよい。ゲートトレンチ142内のシート抵抗は、10Ω/□未満であることが好ましい。
 低抵抗電極層167は、TiSi、TiSi、NiSi、CoSi、CoSi、MoSiおよびWSiのうちの少なくとも1種を含んでいてもよい。とりわけ、これらの種のうちのNiSi、CoSiおよびTiSiは、比抵抗の値および温度依存性が比較的小さいことから、低抵抗電極層167を形成するポリサイド層として適している。
 SiC半導体装置101は、第1主面103において各ソーストレンチ155に連通するようにソース電極層157の上端部に沿う領域に形成されたソースサブトレンチ168を含む。ソースサブトレンチ168は、各ソーストレンチ155の側壁の一部を形成している。
 ソースサブトレンチ168は、この形態では、平面視においてソース電極層157の上端部を取り囲む無端状(この形態では四角環状)に形成されている。ソースサブトレンチ168は、ソース電極層157の上端部を縁取っている。
 ソースサブトレンチ168は、ソース絶縁層156の一部を掘り下げることによって形成されている。ソースサブトレンチ168は、より具体的には、第1主面103からソース絶縁層156の上端部およびソース電極層157の上端部を掘り下げることによって形成されている。
 ソース電極層157の上端部は、ソース電極層157の下端部に対して内側に括れた形状を有している。ソース電極層157の下端部は、ソース電極層157において各ソーストレンチ155の底壁側に位置する部分である。ソース電極層157の上端部の第1方向幅は、ソース電極層157の下端部の第1方向幅未満であってもよい。
 ソースサブトレンチ168は、断面視において底面積が開口面積よりも小さい先細り形状に形成されている。ソースサブトレンチ168の底壁は、第2主面104に向かう湾曲状に形成されていてもよい。
 ソースサブトレンチ168の内壁は、ソース領域163、コンタクト領域164、ソース絶縁層156およびソース電極層157を露出させている。ソースサブトレンチ168の内壁は、コンタクト領域164の第1表層領域164aおよび第2表層領域164bを露出させている。ソースサブトレンチ168の底壁は、少なくともソース絶縁層156の第1領域156aを露出させている。ソース絶縁層156において第1領域156aの上端部は、第1主面103よりも下方に位置している。
 各ソーストレンチ155の開口エッジ部169は、第1主面103から各ソーストレンチ155の内方に向かって下り傾斜した傾斜部170を含む。各ソーストレンチ155の開口エッジ部169は、第1主面103および各ソーストレンチ155の側壁を接続する角部である。各ソーストレンチ155の傾斜部170は、ソースサブトレンチ168によって形成されている。
 傾斜部170は、この形態では、SiC半導体層102側に向けて窪んだ湾曲状に形成されている。傾斜部170は、ソースサブトレンチ168側に向けて突出した湾曲状に形成されていてもよい。傾斜部170は、各ソーストレンチ155の開口エッジ部169に対する電界集中を緩和する。
 図24および図25を参照して、アクティブ領域111は、第1主面103の一部を形成するアクティブ主面171を有している。外側領域112は、第1主面103の一部を形成する外側主面172を有している。外側主面172は、この形態では、SiC半導体層102の側面105A~105Dに接続されている。
 アクティブ主面171および外側主面172は、SiC単結晶のc面にそれぞれ面している。また、アクティブ主面171および外側主面172は、SiC単結晶のc面に対して[11-20]方向に傾斜したオフ角θをそれぞれ有している。
 外側主面172は、アクティブ主面171に対して第2主面104側に位置している。外側領域112は、この形態では、第1主面103を第2主面104側に掘り下げることによって形成されている。したがって、外側主面172は、アクティブ主面171に対して第2主面104側に窪んだ領域に形成されている。
 外側主面172は、各ゲートトレンチ142の底壁に対して第2主面104側に位置していてもよい。外側主面172は、各ソーストレンチ155の底壁とほぼ等しい深さ位置に形成されていてもよい。外側主面172は、各ソーストレンチ155の底壁とほぼ同一平面上に位置していてもよい。
 外側主面172および第2主面104の間の距離は、各ソーストレンチ155の底壁および第2主面104の間の距離とほぼ等しくてもよい。外側主面172は、各ソーストレンチ155の底壁に対して第2主面104側に位置していてもよい。外側主面172は、各ソーストレンチ155の底壁に対して、0μm以上1μm以下の範囲で第2主面104側に位置していてもよい。
 外側主面172は、SiCエピタキシャル層107を露出させている。外側主面172は、より具体的には、SiCエピタキシャル層107の高濃度領域108を露出させている。これにより、外側主面172は、高濃度領域108を挟んで低濃度領域109と対向している。
 アクティブ領域111は、この形態では、外側領域112によって台地状に区画されている。つまり、アクティブ領域111は、外側領域112よりも上方に向かって突出した台地状のアクティブ台地173として形成されている。
 アクティブ台地173は、アクティブ主面171および外側主面172を接続するアクティブ側壁174を含む。アクティブ側壁174は、アクティブ領域111および外側領域112の間の境界領域を区画している。第1主面103は、アクティブ主面171、外側主面172およびアクティブ側壁174によって形成されている。
 アクティブ側壁174は、この形態では、アクティブ主面171(外側主面172)の法線方向Zに沿って延びている。アクティブ側壁174は、SiC単結晶のm面およびa面によって形成されている。
 アクティブ側壁174は、アクティブ主面171から外側主面172に向かって下り傾斜した傾斜面を有していてもよい。アクティブ側壁174の傾斜角度は、SiC半導体層102内においてアクティブ側壁174がアクティブ主面171との間で形成する角度である。
 この場合、アクティブ側壁174の傾斜角度は、90°を超えて135°以下であってもよい。アクティブ側壁174の傾斜角度は、90°を超えて95°以下、95°以上100°以下、100°以上110°以下、110°以上120°以下、または、120°以上135°以下であってもよい。アクティブ側壁174の傾斜角度は、90°を超えて95°以下であることが好ましい。
 アクティブ側壁174は、SiCエピタキシャル層107を露出させている。アクティブ側壁174は、より具体的には、高濃度領域108を露出させている。アクティブ側壁174は、アクティブ主面171側の領域において少なくともボディ領域141を露出させている。図24および図25では、アクティブ側壁174が、ボディ領域141およびソース領域163を露出させている形態例が示されている。
 SiC半導体装置101は、外側主面172の表層部に形成されたp型のダイオード領域181(不純物領域)を含む。また、SiC半導体装置101は、外側主面172の表層部に形成されたp型の外側ディープウェル領域182を含む。また、SiC半導体装置101は、外側主面172の表層部に形成されたp型のフィールドリミット構造183を含む。
 ダイオード領域181は、外側領域112においてアクティブ側壁174および側面105A~105Dの間の領域に形成されている。ダイオード領域181は、アクティブ側壁174および側面105A~105Dから間隔を空けて形成されている。
 ダイオード領域181は、平面視においてアクティブ領域111に沿って帯状に延びている。ダイオード領域181は、この形態では、平面視においてアクティブ領域111を取り囲む無端状(この形態では四角環状)に形成されている。ダイオード領域181は、平面視においてソース引き回し配線123と重なっている。ダイオード領域181は、ソース引き回し配線123に電気的に接続されている。ダイオード領域181は、アバランシェ電流吸収構造の一部を形成している。
 ダイオード領域181は、SiC半導体層102との間でpn接合部を形成する。ダイオード領域181は、より具体的には、SiCエピタキシャル層107内に位置している。したがって、ダイオード領域181は、SiCエピタキシャル層107との間でpn接合部を形成する。
 ダイオード領域181は、さらに具体的には、高濃度領域108内に位置している。したがって、ダイオード領域181は、高濃度領域108との間でpn接合部を形成する。これにより、ダイオード領域181をアノードとし、SiC半導体層102をカソードとするpn接合ダイオードDpnが形成されている。
 ダイオード領域181の全体は、各ゲートトレンチ142の底壁に対して第2主面104側に位置している。ダイオード領域181の底部は、各ソーストレンチ155の底壁に対して第2主面104側に位置している。ダイオード領域181の底部は、コンタクト領域164の底部とほぼ等しい深さ位置に形成されていてもよい。ダイオード領域181の底部は、コンタクト領域164の底部とほぼ同一平面上に位置していてもよい。
 ダイオード領域181のp型不純物濃度は、コンタクト領域164のp型不純物濃度とほぼ等しい。ダイオード領域181のp型不純物濃度は、ボディ領域141のp型不純物濃度よりも大きい。ダイオード領域181のp型不純物濃度は、1.0×1018cm-3以上1.0×1021cm-3以下であってもよい。
 外側ディープウェル領域182は、平面視においてアクティブ側壁174およびダイオード領域181の間の領域に形成されている。外側ディープウェル領域182は、この形態では、アクティブ側壁174からダイオード領域181側に間隔を空けて形成されている。外側ディープウェル領域182は、SiC半導体層102の耐圧を調整する耐圧調整領域(耐圧保持領域)とも称される。
 外側ディープウェル領域182は、平面視においてアクティブ領域111に沿って帯状に延びている。外側ディープウェル領域182は、この形態では、平面視においてアクティブ領域111を取り囲む無端状(この形態では四角環状)に形成されている。外側ディープウェル領域182は、ダイオード領域181を介してソース引き回し配線123に電気的に接続されている。外側ディープウェル領域182は、pn接合ダイオードDpnの一部を形成していてもよい。外側ディープウェル領域182は、アバランシェ電流吸収構造の一部を形成していてもよい。
 外側ディープウェル領域182の全体は、各ゲートトレンチ142の底壁に対して第2主面104側に位置している。外側ディープウェル領域182の底部は、各ソーストレンチ155の底壁に対して第2主面104側に位置している。外側ディープウェル領域182の底部は、ダイオード領域181の底部に対して第2主面104側に位置している。
 外側ディープウェル領域182の底部は、各ディープウェル領域165の底部とほぼ等しい深さ位置に形成されていてもよい。外側ディープウェル領域182の底部は、各ディープウェル領域165の底部とほぼ同一平面上に位置していてもよい。外側ディープウェル領域182の底部および外側主面172の間の距離は、各ディープウェル領域165の底部および各ソーストレンチ155の底壁の間の距離とほぼ等しくてもよい。
 外側ディープウェル領域182の底部および第2主面104の間の距離は、各ディープウェル領域165の底部および第2主面104の間の距離とほぼ等しくてもよい。これにより、外側ディープウェル領域182の底部および第2主面104の間の距離と、各ディープウェル領域165の底部および第2主面104の間の距離との間で、バラツキが生じるのを抑制できる。
 よって、SiC半導体層102の耐圧(たとえば破壊耐量)が、外側ディープウェル領域182の形態および各ディープウェル領域165の形態によって制限を受けることを抑制できるから、耐圧の向上を適切に図ることができる。
 外側ディープウェル領域182の底部は、各ディープウェル領域165の底部に対して第2主面104側に位置していてもよい。外側ディープウェル領域182の底部は、各ディープウェル領域165の底部に対して、0μm以上1μm以下の範囲で、第2主面104側に位置していてもよい。
 外側ディープウェル領域182の内周縁は、アクティブ領域111および外側領域112の境界領域近傍まで延びていてもよい。外側ディープウェル領域182は、アクティブ領域111および外側領域112の境界領域を横切っていてもよい。外側ディープウェル領域182の内周縁は、アクティブ側壁174および外側主面172を接続する角部を被覆していてもよい。外側ディープウェル領域182の内周縁は、さらに、アクティブ側壁174に沿って延び、ボディ領域141に接続されていてもよい。
 外側ディープウェル領域182の外周縁は、この形態では、第2主面104側からダイオード領域181を被覆している。外側ディープウェル領域182は、平面視においてソース引き回し配線123と重なっていてもよい。外側ディープウェル領域182の外周縁は、ダイオード領域181からアクティブ側壁174側に間隔を空けて形成されていてもよい。
 外側ディープウェル領域182のp型不純物濃度は、ダイオード領域181のp型不純物濃度以下であってもよい。外側ディープウェル領域182のp型不純物濃度は、ダイオード領域181のp型不純物濃度未満であってもよい。
 外側ディープウェル領域182のp型不純物濃度は、各ディープウェル領域165のp型不純物濃度とほぼ等しくてもよい。外側ディープウェル領域182のp型不純物濃度は、ボディ領域141のp型不純物濃度とほぼ等しくてもよい。
 外側ディープウェル領域182のp型不純物濃度は、ボディ領域141のp型不純物濃度を超えていてもよい。外側ディープウェル領域182のp型不純物濃度は、ボディ領域141のp型不純物濃度未満であってもよい。
 外側ディープウェル領域182のp型不純物濃度は、コンタクト領域164のp型不純物濃度以下であってもよい。外側ディープウェル領域182のp型不純物濃度は、コンタクト領域164のp型不純物濃度未満であってもよい。外側ディープウェル領域182のp型不純物濃度は、1.0×1017cm-3以上1.0×1019cm-3以下であってもよい。
 フィールドリミット構造183は、平面視においてダイオード領域181および側面105A~105Dの間の領域に形成されている。フィールドリミット構造183は、この形態では、側面105A~105Dからダイオード領域181側に間隔を空けて形成されている。
 フィールドリミット構造183は、1個または複数(たとえば2個以上20個以下)のフィールドリミット領域184を含む。フィールドリミット構造183は、この形態では、複数(5個)のフィールドリミット領域184A,184B,184C,184D,184Eを有するフィールドリミット領域群を含む。フィールドリミット領域184A~184Eは、ダイオード領域181から離れる方向に沿って間隔を空けてこの順に形成されている。
 フィールドリミット領域184A~184Eは、それぞれ、平面視においてアクティブ領域111の周縁に沿って帯状に延びている。フィールドリミット領域184A~184Eは、より具体的には、平面視においてアクティブ領域111を取り囲む無端状(この形態では四角環状)にそれぞれ形成されている。フィールドリミット領域184A~184Eは、それぞれ、FLR(Field Limiting Ring)領域とも称される。
 フィールドリミット領域184A~184Eの底部は、この形態では、ダイオード領域181の底部に対して第2主面104側に位置している。フィールドリミット領域184A~184Eのうち最内側のフィールドリミット領域184Aは、この形態では、第2主面104側からダイオード領域181を被覆している。フィールドリミット領域184Aは、平面視において前述のソース引き回し配線123と重なっていてもよい。
 フィールドリミット領域184Aは、ダイオード領域181を介してソース引き回し配線123に電気的に接続されている。フィールドリミット領域184Aは、pn接合ダイオードDpnの一部を形成していてもよい。フィールドリミット領域184Aは、アバランシェ電流吸収構造の一部を形成していてもよい。
 フィールドリミット領域184A~184Eの全体は、各ゲートトレンチ142の底壁に対して第2主面104側に位置している。フィールドリミット領域184A~184Eの底部は、各ソーストレンチ155の底壁に対して第2主面104側に位置している。
 フィールドリミット領域184A~184Eは、各ディープウェル領域165(外側ディープウェル領域182)とほぼ等しい深さ位置に形成されていてもよい。フィールドリミット領域184A~184Eの底部は、各ディープウェル領域165(外側ディープウェル領域182)の底部とほぼ同一平面上に位置していてもよい。
 フィールドリミット領域184A~184Eの底部は、各ディープウェル領域165(外側ディープウェル領域182)の底部に対して外側主面172側に位置していてもよい。フィールドリミット領域184A~184Eの底部は、各ディープウェル領域165(外側ディープウェル領域182)の底部に対して第2主面104側に位置していてもよい。
 互いに隣り合うフィールドリミット領域184A~184Eの間の幅は、互いに異なっていてもよい。互いに隣り合うフィールドリミット領域184A~184Eの間の幅は、アクティブ領域111から離れる方向に大きくなっていてもよい。互いに隣り合うフィールドリミット領域184A~184Eの間の幅は、アクティブ領域111から離れる方向に小さくなっていてもよい。
 フィールドリミット領域184A~184Eの深さは、互いに異なっていてもよい。フィールドリミット領域184A~184Eの深さは、アクティブ領域111から離れる方向に小さくなっていてもよい。フィールドリミット領域184A~184Eの深さは、アクティブ領域111から離れる方向に大きくなっていてもよい。
 フィールドリミット領域184A~184Eのp型不純物濃度は、ダイオード領域181のp型不純物濃度以下であってもよい。フィールドリミット領域184A~184Eのp型不純物濃度は、ダイオード領域181のp型不純物濃度よりも小さくてもよい。
 フィールドリミット領域184A~184Eのp型不純物濃度は、外側ディープウェル領域182のp型不純物濃度以下であってもよい。フィールドリミット領域184A~184Eのp型不純物濃度は、外側ディープウェル領域182のp型不純物濃度よりも小さくてもよい。
 フィールドリミット領域184A~184Eのp型不純物濃度は、外側ディープウェル領域182のp型不純物濃度以上であってもよい。フィールドリミット領域184A~184Eのp型不純物濃度は、外側ディープウェル領域182のp型不純物濃度よりも大きくてもよい。
 フィールドリミット領域184A~184Eのp型不純物濃度は、1.0×1015cm-3以上1.0×1018cm-3以下であってもよい。ダイオード領域181のp型不純物濃度>外側ディープウェル領域182のp型不純物濃度>フィールドリミット領域184A~184Eのp型不純物濃度であることが好ましい。
 フィールドリミット構造183は、外側領域112において電界集中を緩和する。フィールドリミット領域184の個数、幅、深さ、p型不純物濃度等は、緩和すべき電界に応じて種々の値を取り得る。
 この形態では、フィールドリミット構造183が、平面視においてダイオード領域181および側面105A~105Dの間の領域に形成された1つまたは複数のフィールドリミット領域184を含む例について説明した。
 しかし、フィールドリミット構造183は、ダイオード領域181および側面105A~105Dの間の領域に代えて、平面視においてアクティブ側壁174およびダイオード領域181の間の領域に形成された1つまたは複数のフィールドリミット領域184を含んでいてもよい。
 また、フィールドリミット構造183は、平面視においてダイオード領域181および側面105A~105Dの間の領域に形成された1つまたは複数のフィールドリミット領域184、および、平面視においてアクティブ側壁174およびダイオード領域181の間の領域に形成された1つまたは複数のフィールドリミット領域184を含んでいてもよい。
 SiC半導体装置101は、外側領域112において第1主面103の上に形成された外側絶縁層191を含む。外側絶縁層191は、主面絶縁層113の一部を形成している。外側絶縁層191は、主面絶縁層113の絶縁側面114A~114Dの一部を形成している。
 外側絶縁層191は、外側領域112においてダイオード領域181、外側ディープウェル領域182およびフィールドリミット構造183を選択的に被覆している。外側絶縁層191は、アクティブ側壁174および外側主面172に沿って膜状に形成されている。外側絶縁層191は、アクティブ主面171の上においてゲート絶縁層148に連なっている。外側絶縁層191は、より具体的には、ゲート絶縁層148の第3領域148cに連なっている。
 外側絶縁層191は、酸化シリコンを含んでいてもよい。外側絶縁層191は、窒化シリコン等の他の絶縁膜を含んでいてもよい。外側絶縁層191は、この形態では、ゲート絶縁層148と同一の絶縁材料種によって形成されている。
 外側絶縁層191は、第1領域191aおよび第2領域191bを含む。外側絶縁層191の第1領域191aは、アクティブ側壁174を被覆している。外側絶縁層191の第2領域191bは、外側主面172を被覆している。
 外側絶縁層191の第2領域191bの厚さは、外側絶縁層191の第1領域191aの厚さ以下であってもよい。外側絶縁層191の第2領域191bの厚さは、外側絶縁層191の第1領域191aの厚さ未満であってもよい。
 外側絶縁層191の第1領域191aの厚さは、ゲート絶縁層148の第1領域191aの厚さとほぼ等しくてもよい。外側絶縁層191の第2領域191bの厚さは、ゲート絶縁層148の第3領域148cの厚さとほぼ等しくてもよい。むろん、一様な厚さを有する外側絶縁層191が形成されていてもよい。
 図24および図25を参照して、SiC半導体装置101は、アクティブ側壁174を被覆するサイドウォール構造192をさらに含む。サイドウォール構造192は、アクティブ台地173を外側領域112側から保護し、補強する。
 また、サイドウォール構造192は、アクティブ主面171および外側主面172の間に形成された段差を緩和する段差緩和構造を形成する。アクティブ領域111および外側領域112の間の境界領域を被覆する上層構造(被覆層)が形成される場合、上層構造は、サイドウォール構造192を被覆する。サイドウォール構造192は、上層構造の平坦性を高める。
 サイドウォール構造192は、アクティブ主面171から外側主面172に向かって下り傾斜した傾斜部193を有していてもよい。傾斜部193によって、段差を適切に緩和できる。傾斜部193は、SiC半導体層102側に向かって窪んだ湾曲状に形成されていてもよい。傾斜部193は、SiC半導体層102から離れる方向に突出した湾曲状に形成されていてもよい。
 傾斜部193は、アクティブ主面171側から外側主面172側に向けて平面的に延びていてもよい。傾斜部193は、アクティブ主面171側から外側主面172側に向けて直線状に延びていてもよい。
 傾斜部193は、アクティブ主面171から外側主面172に向かう下り階段状に形成されていてもよい。つまり、傾斜部193は、SiC半導体層102側に向かって窪んだ1つまたは複数の段部を有していてもよい。複数の段部は、傾斜部193の表面積を増加させ、上層構造に対する密着力を高める。
 傾斜部193は、SiC半導体層102から離れる方向に隆起した複数の隆起部を含んでいてもよい。複数の隆起部は、傾斜部193の表面積を増加させ、上層構造に対する密着力を高める。傾斜部193は、SiC半導体層102側に向かって窪んだ複数の窪みを含んでいてもよい。複数の窪みは、傾斜部193の表面積を増加させ、上層構造に対する密着力を高める。
 サイドウォール構造192は、アクティブ主面171に対して自己整合的に形成されている。サイドウォール構造192は、より具体的には、アクティブ側壁174に沿って形成されている。サイドウォール構造192は、この形態では、平面視においてアクティブ領域111を取り囲む無端状(この形態では四角環状)に形成されている。
 サイドウォール構造192は、p型不純物が添加されたp型ポリシリコンを含むことが好ましい。この場合、ゲート電極層149やソース電極層157と同時に、サイドウォール構造192を形成できる。
 サイドウォール構造192のp型不純物濃度は、ボディ領域141のp型不純物濃度以上である。サイドウォール構造192のp型不純物濃度は、より具体的には、ボディ領域141のp型不純物濃度よりも大きい。サイドウォール構造192のp型不純物は、ホウ素(B)、アルミニウム(Al)、インジウム(In)およびガリウム(Ga)のうちの少なくとも1種を含んでいてもよい。
 サイドウォール構造192のp型不純物濃度は、1×1018cm-3以上1×1022cm-3以下であってもよい。サイドウォール構造192のシート抵抗は、10Ω/□以上500Ω/□以下(この形態では200Ω/□程度)であってもよい。サイドウォール構造192のp型不純物濃度は、ゲート電極層149のp型不純物濃度とほぼ等しくてもよい。サイドウォール構造192のシート抵抗は、ゲート電極層149のシート抵抗とほぼ等しくてもよい。
 サイドウォール構造192は、p型ポリシリコンに代えてまたはこれに加えて、n型ポリシリコンを含んでいてもよい。サイドウォール構造192は、p型ポリシリコンに代えてまたはこれに加えて、タングステン、アルミニウム、銅、アルミニウム合金および銅合金のうちの少なくとも1種を含んでいてもよい。サイドウォール構造192は、絶縁材料を含んでいてもよい。この場合、サイドウォール構造192によって外側領域112に対するアクティブ領域111の絶縁性を高めることができる。
 図21~図25を参照して、SiC半導体装置101は、第1主面103の上に形成された層間絶縁層201を含む。層間絶縁層201は、主面絶縁層113の一部を形成している。層間絶縁層201は、主面絶縁層113の絶縁側面114A~114Dの一部を形成している。つまり、主面絶縁層113は、ゲート絶縁層148(外側絶縁層191)および層間絶縁層201を含む積層構造を有している。
 層間絶縁層201は、アクティブ領域111および外側領域112を選択的に被覆している。層間絶縁層201は、より具体的には、ゲート絶縁層148の第3領域148cおよび外側絶縁層191を選択的に被覆している。
 層間絶縁層201は、アクティブ主面171および外側主面172に沿って膜状に形成されている。層間絶縁層201は、アクティブ領域111においてトレンチゲート構造161、ゲート配線層150およびトレンチソース構造162を選択的に被覆している。層間絶縁層201は、外側領域112においてダイオード領域181、外側ディープウェル領域182およびフィールドリミット構造183を選択的に被覆している。
 層間絶縁層201は、アクティブ領域111および外側領域112の間の境界領域において、サイドウォール構造192の外面(傾斜部193)に沿って形成されている。層間絶縁層201は、サイドウォール構造192を被覆する上層構造の一部を形成している。
 層間絶縁層201は、酸化シリコンまたは窒化シリコンを含んでいてもよい。層間絶縁層201は、酸化シリコンの一例としてのPSG(Phosphor Silicate Glass)および/またはBPSG(Boron Phosphor Silicate Glass)を含んでいてもよい。層間絶縁層201は、第1主面103側からこの順に積層されたPSG層およびBPSG層を含む積層構造を有していてもよい。層間絶縁層201は、第1主面103側からこの順に積層されたBPSG層およびPSG層を含む積層構造を有していてもよい。
 層間絶縁層201は、ゲートコンタクト孔202、ソースコンタクト孔203およびダイオードコンタクト孔204を含む。また、層間絶縁層201は、アンカー孔205を含む。
 ゲートコンタクト孔202は、アクティブ領域111においてゲート配線層150を露出させている。ゲートコンタクト孔202は、ゲート配線層150に沿う帯状に形成されていてもよい。ゲートコンタクト孔202の開口エッジ部は、ゲートコンタクト孔202側に向かう湾曲状に形成されている。
 ソースコンタクト孔203は、アクティブ領域111においてソース領域163、コンタクト領域164およびトレンチソース構造162を露出させている。ソースコンタクト孔203は、トレンチソース構造162等に沿う帯状に形成されていてもよい。ソースコンタクト孔203の開口エッジ部は、ソースコンタクト孔203側に向かう湾曲状に形成されている。
 ダイオードコンタクト孔204は、外側領域112においてダイオード領域181を露出させている。ダイオードコンタクト孔204は、ダイオード領域181に沿って延びる帯状(より具体的には無端状)に形成されていてもよい。
 ダイオードコンタクト孔204は、外側ディープウェル領域182および/またはフィールドリミット構造183を露出させていてもよい。ダイオードコンタクト孔204の開口エッジ部は、ダイオードコンタクト孔204側に向かう湾曲状に形成されている。
 アンカー孔205は、外側領域112において層間絶縁層201を掘り下げることによって形成されている。アンカー孔205は、平面視においてダイオード領域181および側面105A~105Dの間の領域に形成されている。アンカー孔205は、より具体的には、平面視においてフィールドリミット構造183および側面105A~105Dの間の領域に形成されている。アンカー孔205は、第1主面103(外側主面172)を露出させている。アンカー孔205の開口エッジ部は、アンカー孔205側に向かう湾曲状に形成されている。
 図19を参照して、アンカー孔205は、平面視においてアクティブ領域111に沿って帯状に延びている。アンカー孔205は、この形態では、平面視においてアクティブ領域111を取り囲む無端状(この形態では四角環状)に形成されている。
 この形態では、1つのアンカー孔205が、層間絶縁層201において外側領域112を被覆する部分に形成されている。しかし、層間絶縁層201において外側領域112を被覆する部分に、複数のアンカー孔205が形成されていてもよい。
 前述の主面ゲート電極層115および主面ソース電極層121は、層間絶縁層201の上にそれぞれ形成されている。主面ゲート電極層115および主面ソース電極層121は、SiC半導体層102側からこの順に積層されたバリア電極層206および主電極層207を含む積層構造をそれぞれ有している。
 バリア電極層206は、チタン層または窒化チタン層を含む単層構造を有していてもよい。バリア電極層206は、SiC半導体層102側からこの順に積層されたチタン層および窒化チタン層を含む積層構造を有していてもよい。
 主電極層207の厚さは、バリア電極層206の厚さを超えている。主電極層207は、バリア電極層206の抵抗値未満の抵抗値を有する導電材料を含む。主電極層207は、アルミニウム、銅、アルミニウム合金および銅合金のうちの少なくとも1つを含んでいてもよい。主電極層207は、AlSi合金、AlSiCu合金およびAlCu合金のうちの少なくとも1つを含んでいてもよい。主電極層207は、この形態では、AlSiCu合金を含む。
 主面ゲート電極層115のうちの外側ゲートフィンガー117は、層間絶縁層201の上からゲートコンタクト孔202に入り込んでいる。外側ゲートフィンガー117は、ゲートコンタクト孔202内においてゲート配線層150に電気的に接続されている。これにより、ゲートパッド116からの電気信号は、外側ゲートフィンガー117を介してゲート電極層149に伝達される。
 主面ソース電極層121のうちのソースパッド122は、層間絶縁層201の上からソースコンタクト孔203およびソースサブトレンチ168に入り込んでいる。ソースパッド122は、ソースコンタクト孔203およびソースサブトレンチ168内においてソース領域163、コンタクト領域164およびソース電極層157に電気的に接続されている。
 ソース電極層157は、ソースパッド122の一部の領域を利用して形成されていてもよい。ソース電極層157は、ソースパッド122において各ソーストレンチ155に入り込んだ部分によって形成されていてもよい。
 主面ソース電極層121のうちのソース引き回し配線123は、層間絶縁層201の上からダイオードコンタクト孔204に入り込んでいる。ソース引き回し配線123は、ダイオードコンタクト孔204内においてダイオード領域181に電気的に接続されている。
 主面ソース電極層121のうちのソース接続部124は、アクティブ領域111からサイドウォール構造192を横切って外側領域112に引き出されている。ソース接続部124は、サイドウォール構造192を被覆する上層構造の一部を形成している。
 前述のパッシベーション層125は、層間絶縁層201の上に形成されている。パッシベーション層125は、層間絶縁層201に沿って膜状に形成されている。パッシベーション層125は、層間絶縁層201を介してアクティブ領域111および外側領域112を選択的に被覆している。
 パッシベーション層125は、アクティブ領域111からサイドウォール構造192を横切って外側領域112に引き出されている。パッシベーション層125は、サイドウォール構造192を被覆する上層構造の一部を形成している。
 図24を参照して、パッシベーション層125は、外側領域112において、層間絶縁層201の上からアンカー孔205に入り込んでいる。パッシベーション層125は、アンカー孔205内において外側主面172(第1主面103)に接続されている。パッシベーション層125の外面においてアンカー孔205の上に位置する領域には、アンカー孔205に倣って窪んだリセス211が形成されている。
 前述の樹脂層129は、パッシベーション層125の上に形成されている。樹脂層129は、パッシベーション層125に沿って膜状に形成されている。樹脂層129は、パッシベーション層125および層間絶縁層201を挟んで、アクティブ領域111および外側領域112を選択的に被覆している。樹脂層129は、アクティブ領域111からサイドウォール構造192を横切って外側領域112に引き出されている。樹脂層129は、サイドウォール構造192を被覆する上層構造の一部を形成している。
 図24を参照して、樹脂層129は、外側領域112においてパッシベーション層125のリセス211に入り込んだアンカー部を有している。このように、外側領域112には、樹脂層129の接続強度を高めるためのアンカー構造が形成されている。
 アンカー構造は、外側領域112において第1主面103に形成された凹凸構造(Uneven Structure)を含む。凹凸構造(アンカー構造)は、より具体的には、外側主面172を被覆する層間絶縁層201を利用して形成された凹凸を含む。さらに具体的には、凹凸構造(アンカー構造)は、層間絶縁層201に形成されたアンカー孔205を含む。
 樹脂層129は、このアンカー孔205に噛合っている。樹脂層129は、この形態では、パッシベーション層125を介してアンカー孔205に噛合っている。これにより、第1主面103に対する樹脂層129の接続強度を高めることができるから、樹脂層129の剥離を抑制できる。
 以上、SiC半導体装置101によってもSiC半導体装置1に対して述べた効果と同様の効果を奏することができる。また、SiC半導体装置101によれば、SiC半導体層102およびディープウェル領域165の間の境界領域(pn接合部)から、ゲートトレンチ142の底壁に対して第2主面104側の領域に向けて空乏層を拡げることができる。
 これにより、主面ソース電極層121およびドレイン電極層133の間を流れる短絡電流の電流経路を狭めることができる。また、SiC半導体層102およびディープウェル領域165の境界領域から拡がる空乏層により、帰還容量Crssを反比例的に低減できる。よって、短絡耐量を向上し、帰還容量Crssを低減できるSiC半導体装置101を提供できる。帰還容量Crssは、ゲート電極層149およびドレイン電極層133の間の静電容量である。
 SiC半導体層102およびディープウェル領域165の間の境界領域(pn接合部)から拡がる空乏層は、ゲートトレンチ142の底壁にオーバラップしてもよい。この場合、ディープウェル領域165の底部から拡がる空乏層が、ゲートトレンチ142の底壁にオーバラップしてもよい。
 また、SiC半導体装置101によれば、各ディープウェル領域165の底部および第2主面104の間の距離が、ほぼ一定である。これにより、各ディープウェル領域165の底部および第2主面104の間の距離にバラツキが生じるのを抑制できる。よって、SiC半導体層102の耐圧(たとえば破壊耐量)が、ディープウェル領域165の形態によって制限を受けることを抑制できるから、耐圧の向上を適切に図ることができる。
 また、SiC半導体装置101によれば、外側領域112にダイオード領域181が形成されている。このダイオード領域181は、主面ソース電極層121に電気的に接続されている。これにより、外側領域112で生じたアバランシェ電流を、ダイオード領域181を介して主面ソース電極層121に流し込むことができる。つまり、外側領域112で生じたアバランシェ電流を、ダイオード領域181および主面ソース電極層121によって吸収できる。その結果、MISFETの動作の安定性を高めることができる。
 また、SiC半導体装置101によれば、外側領域112に外側ディープウェル領域182が形成されている。これにより、外側領域112において、SiC半導体層102の耐圧を調整できる。特に、SiC半導体装置101によれば、外側ディープウェル領域182は、ディープウェル領域165とほぼ等しい深さ位置に形成されている。より具体的には、外側ディープウェル領域182の底部は、ディープウェル領域165の底部とほぼ同一平面上に位置している。
 外側ディープウェル領域182の底部および第2主面104の間の距離は、ディープウェル領域165の底部および第2主面104の間の距離とほぼ等しい。これにより、外側ディープウェル領域182の底部および第2主面104の間の距離と、ディープウェル領域165の底部および第2主面104の間の距離との間で、バラツキが生じるのを抑制できる。
 よって、SiC半導体層102の耐圧(たとえば破壊耐量)が、外側ディープウェル領域182の形態およびディープウェル領域165の形態によって制限を受けることを抑制できる。その結果、耐圧の向上を適切に図ることができる。特に、SiC半導体装置101では、外側領域112をアクティブ領域111に対して第2主面104側の領域に形成している。これにより、外側ディープウェル領域182の底部の位置を、ディープウェル領域165の底部の位置に適切に近づけることができる。
 つまり、外側ディープウェル領域182の形成時において、第1主面103の表層部の比較的深い位置にp型不純物を導入する必要がなくなる。したがって、ディープウェル領域165の底部の位置に対して外側ディープウェル領域182の底部の位置が大きくずれ込むことを、適切に抑制できる。
 しかも、SiC半導体装置101では、外側主面172が、ソーストレンチ155の底壁とほぼ同一平面上に位置している。これにより、等しいエネルギによってソーストレンチ155の底壁および外側主面172に対してp型不純物を導入する場合には、ディープウェル領域165および外側ディープウェル領域182をほぼ等しい深さ位置に形成できる。その結果、ディープウェル領域165の底部の位置に対して外側ディープウェル領域182の底部の位置が大きくずれ込むことを、より一層適切に抑制できる。
 また、SiC半導体装置101によれば、外側領域112にフィールドリミット構造183が形成されている。これにより、外側領域112において、フィールドリミット構造183による電界緩和効果を得ることができる。よって、SiC半導体層102の破壊耐量を適切に向上できる。
 また、SiC半導体装置101によれば、アクティブ領域111が、台地状のアクティブ台地173として形成されている。アクティブ台地173は、アクティブ領域111のアクティブ主面171および外側主面172を接続するアクティブ側壁174を含む。アクティブ主面171および外側主面172の間の領域には、アクティブ主面171および外側主面172の間の段差を緩和する段差緩和構造が形成されている。段差緩和構造は、サイドウォール構造192を含む。
 これにより、アクティブ主面171および外側主面172の間の段差を適切に緩和できる。よって、サイドウォール構造192の上に形成される上層構造の平坦性を適切に高めることができる。SiC半導体装置101では、上層構造の一例として、層間絶縁層201、主面ソース電極層121、パッシベーション層125および樹脂層129が形成されている。
 また、SiC半導体装置101によれば、外側領域112において、樹脂層129の接続強度を高めるためのアンカー構造が形成されている。アンカー構造は、外側領域112において第1主面103に形成された凹凸構造(Uneven Structure)を含む。凹凸構造(アンカー構造)は、より具体的には、外側領域112において第1主面103に形成された層間絶縁層201を利用して形成された凹凸を含む。さらに具体的には、凹凸構造(アンカー構造)は、層間絶縁層201に形成されたアンカー孔205を含む。
 樹脂層129は、このアンカー孔205に噛合っている。樹脂層129は、この形態では、パッシベーション層125を介して、アンカー孔205に噛合っている。これにより、第1主面103に対する樹脂層129の接続強度を高めることができるから、樹脂層129の剥離を適切に抑制できる。
 また、SiC半導体装置101によれば、ゲートトレンチ142にゲート絶縁層148を挟んでゲート電極層149が埋め込まれたトレンチゲート構造161が形成されている。このトレンチゲート構造161では、ゲート電極層149が、ゲートトレンチ142という限られたスペースにおいて低抵抗電極層167によって被覆されている。このような構造によれば、図26を用いて説明される効果を奏することができる。
 図26は、ゲートトレンチ142内のシート抵抗を説明するためのグラフである。図26において縦軸はシート抵抗[Ω/□]を表しており、横軸は項目を表している。図26には、第1棒グラフBL1、第2棒グラフBL2および第3棒グラフBL3が示されている。
 第1棒グラフBL1は、n型ポリシリコンが埋め込まれたゲートトレンチ142内のシート抵抗を表している。第2棒グラフBL2は、p型ポリシリコンが埋め込まれたゲートトレンチ142内のシート抵抗を表している。
 第3棒グラフBL3は、ゲート電極層149(p型ポリシリコン)および低抵抗電極層167が埋め込まれたゲートトレンチ142内のシート抵抗を表している。ここでは、ポリサイド(シリサイド)の一例としてのTiSi(p型チタンシリサイド)からなる低抵抗電極層167が形成された場合について説明する。
 第1棒グラフBL1を参照して、n型ポリシリコンが埋め込まれたゲートトレンチ142内のシート抵抗は、10Ω/□であった。第2棒グラフBL2を参照して、p型ポリシリコンが埋め込まれたゲートトレンチ142内のシート抵抗は、200Ω/□であった。第3棒グラフBL3を参照して、ゲート電極層149(p型ポリシリコン)および低抵抗電極層167が埋め込まれたゲートトレンチ142内のシート抵抗は、2Ω/□であった。
 p型ポリシリコンは、n型ポリシリコンとは相異なる仕事関数を有している。p型ポリシリコンがゲートトレンチ142に埋め込まれた構造によれば、ゲート閾値電圧Vthを1V程度増加させることができる。
 しかし、p型ポリシリコンは、n型ポリシリコンのシート抵抗よりも数十倍(ここでは20倍)高いシート抵抗を有している。そのため、ゲート電極層149の材料としてp型ポリシリコンを採用した場合、ゲートトレンチ142内の寄生抵抗(以下、単に「ゲート抵抗」という。)の増加に伴ってエネルギ損失が著しく増大する。
 これに対して、ゲート電極層149(p型ポリシリコン)の上に低抵抗電極層167を有する構造によれば、低抵抗電極層167を形成しない場合と比較して、シート抵抗を100分の1以下に低下させることができる。つまり、低抵抗電極層167を有する構造によれば、n型ポリシリコンを含むゲート電極層149と比較して、シート抵抗を5分の1以下に低下させることができる。
 このように、低抵抗電極層167を有する構造によれば、ゲート閾値電圧Vthを増加(たとえば1V程度増加)させながら、ゲートトレンチ142内のシート抵抗を低減できる。これにより、ゲート抵抗の低減を図ることができるから、トレンチゲート構造161に沿って電流を効率的に拡散させることができる。その結果、スイッチング遅延の短縮を図ることができる。
 また、低抵抗電極層167を有する構造によれば、ボディ領域141のp型不純物濃度よびコンタクト領域164のp型不純物濃度を増加させなくて済む。よって、チャネル抵抗の増加を抑制しながら、ゲート閾値電圧Vthを適切に増加させることができる。
 低抵抗電極層167は、TiSi、TiSi、NiSi、CoSi、CoSi、MoSiおよびWSiのうちの少なくとも1種を含むことができる。とりわけ、これらの種のうちのNiSi、CoSiおよびTiSiは、比抵抗の値および温度依存性が比較的小さいことから、低抵抗電極層167を形成するポリサイド層として適している。
 本願発明者らのさらなる検証の結果、TiSiを低抵抗電極層167の材料として採用した場合、低電界印加時においてゲートソース間のリーク電流の増加が観られた。これに対して、CoSiが採用された場合は、低電界印加時においてゲートソース間のリーク電流の増加は見受けられなかった。この点を考慮すると、低抵抗電極層167を形成するポリサイド層としては、CoSiが最も好ましいと考えられる。
 さらに、SiC半導体装置101によれば、ゲート配線層150が低抵抗電極層167によって被覆されている。これにより、ゲート配線層150におけるゲート抵抗の低減も図ることができる。特に、ゲート電極層149およびゲート配線層150が低抵抗電極層167によって被覆されている構造では、トレンチゲート構造161に沿って電流を効率的に拡散させることができる。よって、スイッチング遅延の短縮を適切に図ることができる。
 図27は、図20に対応する領域の拡大図であって、本発明の第4実施形態に係るSiC半導体装置221を示す拡大図である。図28は、図27に示すXXVIII-XXVIII線に沿う断面図である。以下では、SiC半導体装置101に対して述べた構造に対応する構造については、同一の参照符号を付して説明を省略する。
 図27および図28を参照して、SiC半導体装置221は、アクティブ領域111において第1主面103に形成された外側ゲートトレンチ222を含む。外側ゲートトレンチ222は、アクティブ領域111の周縁部に沿って帯状に延びる。外側ゲートトレンチ222は、第1主面103において外側ゲートフィンガー117の直下の領域に形成されている。
 外側ゲートトレンチ222は、外側ゲートフィンガー117に沿って延びている。外側ゲートトレンチ222は、より具体的には、アクティブ領域111の内方領域を3方向から区画するように、SiC半導体層102の3つの側面105A,105B,105Dに沿って形成されている。外側ゲートトレンチ222は、アクティブ領域111の内方領域を取り囲む無端状(たとえば四角環状)に形成されていてもよい。
 外側ゲートトレンチ222は、各ゲートトレンチ142のコンタクトトレンチ部144に連通している。これにより、外側ゲートトレンチ222およびゲートトレンチ142は、1つのトレンチによって形成されている。
 前述のゲート配線層150は、外側ゲートトレンチ222に埋め込まれている。ゲート配線層150は、ゲートトレンチ142および外側ゲートトレンチ222の連通部においてゲート電極層149に接続されている。また、前述の低抵抗電極層167は、外側ゲートトレンチ222内においてゲート配線層150を被覆している。この場合、ゲート電極層149を被覆する低抵抗電極層167およびゲート配線層150を被覆する低抵抗電極層167は、1つのトレンチ内に位置する。
 以上、SiC半導体装置221によっても、SiC半導体装置101に対して述べた効果と同様の効果を奏することができる。また、SiC半導体装置221によれば、ゲート配線層150を第1主面103の上に引き出す必要がない。これにより、ゲートトレンチ142(外側ゲートトレンチ222)の開口エッジ部146において、ゲート配線層150がゲート絶縁層148を挟んでSiC半導体層102に対向することを抑制できる。その結果、ゲートトレンチ142(外側ゲートトレンチ222)の開口エッジ部146における電界の集中を抑制できる。
 図29は、図23に対応する領域の拡大図であって、本発明の第5実施形態に係るSiC半導体装置231を示す拡大図である。以下では、SiC半導体装置101に対して述べた構造に対応する構造については、同一の参照符号を付して説明を省略する。
 図29を参照して、SiCエピタキシャル層107は、この形態では、高濃度領域108、低濃度領域109、ならびに、高濃度領域108および低濃度領域109の間に介在する濃度勾配領域232を含む。濃度勾配領域232は、SiCエピタキシャル層107において、アクティブ領域111に加えて外側領域112にも形成されている。濃度勾配領域232は、SiCエピタキシャル層107の全域に形成されている。
 濃度勾配領域232は、高濃度領域108から低濃度領域109に向けてn型不純物濃度が漸減する濃度勾配を有している。換言すると、濃度勾配領域232は、低濃度領域109から高濃度領域108に向けてn型不純物濃度が漸増する濃度勾配を有している。濃度勾配領域232は、高濃度領域108および低濃度領域109の間の領域においてn型不純物濃度の急激な変動を抑制する。
 SiCエピタキシャル層107が濃度勾配領域232を含む場合、高濃度領域108のn型不純物濃度は、低濃度領域109のn型不純物濃度の1.5倍以上5倍以下であることが好ましい。高濃度領域108のn型不純物濃度は、低濃度領域109のn型不純物濃度の3倍以上5倍以下であってもよい。
 濃度勾配領域232の厚さは、0.5μm以上2.0μm以下であってもよい。濃度勾配領域232の厚さは、0.5μm以上1.0μm以下、1.0μm以上1.5μm以下、または、1.5μm以上2.0μm以下であってもよい。
 具体的な説明は省略されるが、前述のゲートトレンチ142、ソーストレンチ155、ディープウェル領域165、外側ディープウェル領域182等は、高濃度領域108に形成されている。つまり、前述のゲートトレンチ142、ソーストレンチ155、ディープウェル領域165、外側ディープウェル領域182等は、SiC半導体層102において高濃度領域108および濃度勾配領域232の境界領域に対して第1主面103側の領域に形成されている。
 以上、SiC半導体装置231によっても、SiC半導体装置101に対して述べた効果と同様の効果を奏することができる。
 図30は、図20に対応する領域の拡大図であって、本発明の第6実施形態に係るSiC半導体装置241を示す拡大図である。以下では、SiC半導体装置101に対して述べた構造に対応する構造については、同一の参照符号を付して説明を省略する。
 図30を参照して、ゲートトレンチ142は、この形態では、平面視において格子形状に形成されている。ゲートトレンチ142は、より具体的には、複数の第1ゲートトレンチ242および複数の第2ゲートトレンチ243を含む。複数の第1ゲートトレンチ242および複数の第2ゲートトレンチ243は、アクティブトレンチ部143を形成している。
 複数の第1ゲートトレンチ242は、第2方向Yに間隔を空けて形成され、第1方向Xに沿って延びる帯状にそれぞれ形成されている。複数の第1ゲートトレンチ242は、平面視において全体としてストライプ状に形成されている。各第1ゲートトレンチ242において長辺を形成する側壁は、SiC単結晶のa面によって形成されている。各第1ゲートトレンチ242において短辺を形成する側壁は、SiC単結晶のm面によって形成されている。
 複数の第2ゲートトレンチ243は、第1方向Xに間隔を空けて形成され、第2方向Yに沿って延びる帯状にそれぞれ形成されている。複数の第2ゲートトレンチ243は、平面視において全体としてストライプ状に形成されている。各第2ゲートトレンチ243において長辺を形成する側壁は、SiC単結晶のm面によって形成されている。各第2ゲートトレンチ243において短辺を形成する側壁は、SiC単結晶のa面によって形成されている。
 複数の第1ゲートトレンチ242および複数の第2ゲートトレンチ243は、互いに交差している。これにより、平面視において格子形状の1つのゲートトレンチ142が形成されている。ゲートトレンチ142によって取り囲まれた領域には、複数のセル領域244が区画されている。
 複数のセル領域244は、平面視において第1方向Xおよび第2方向Yに間隔を空けて行列状に配列されている。複数のセル領域244は、平面視において四角形状に形成されている。各セル領域244においてボディ領域141は、ゲートトレンチ142の側壁から露出している。ボディ領域141は、ゲートトレンチ142においてSiC単結晶のm面およびa面によって形成された側壁から露出している。
 むろん、ゲートトレンチ142は、平面視において格子形状の一態様としてのハニカム形状に形成されていてもよい。この場合、複数のセル領域244は、第1方向Xおよび第2方向Yに間隔を空けて千鳥状に配列されていてもよい。また、この場合、複数のセル領域244は、平面視において六角形状に形成されていてもよい。
 各ソーストレンチ155は、平面視において各セル領域244の中央部に形成されている。各ソーストレンチ155は、各セル領域244を第1方向Xに沿って切断したときに現れる切断面に1つ現れるパターンで形成されている。また、各ソーストレンチ155は、各セル領域244を第2方向Yに沿って切断したときに現れる切断面に1つ現れるパターンで形成されている。
 各ソーストレンチ155は、より具体的には、平面視において四角形状に形成されている。各ソーストレンチ155の4つの側壁は、SiC単結晶のm面およびa面によって形成されている。各ソーストレンチ155の平面形状は任意である。各ソーストレンチ155は、平面視において三角形状、五角形状、六角形状等の多角形状、もしくは、円形状または楕円形状に形成されていてもよい。
 図30のXXI-XXI線に沿う断面図は、図21に示す断面図に対応している。図30のXXII-XXII線に沿う断面図は、図22に示す断面図に対応している。
 以上、SiC半導体装置241によっても、SiC半導体装置101に対して述べた効果と同様の効果を奏することができる。
 本発明の実施形態は、さらに他の形態で実施できる。
 前述の各実施形態では、SiC半導体層2,102の側面5A,105Aおよび側面5C,105CがSiC単結晶のa面に面し、側面5B,105Bおよび側面5D,105DがSiC単結晶のm面に面する形態について説明した。しかし、側面5A,105Aおよび側面5C,105CがSiC単結晶のm面に面し、側面5B,105Bおよび側面5D,105DがSiC単結晶のa面に面する形態が採用されてもよい。
 前述の各実施形態では、連続的に延びる帯状の改質ライン22A~22Dが形成された例について説明した。しかし、前述の各実施形態において破線帯状(破線状)の改質ライン22A~22Dが形成されていてもよい。つまり、改質ライン22A~22Dは、断続的に延びる帯状に形成されていてもよい。この場合、改質ライン22A~22Dのうちの1つ、2つまたは3つが破線帯状に形成され、残りが帯状に形成されていてもよい。
 前述の第3~第6実施形態では、SiC単結晶のm軸方向([1-100]方向)に沿って延びる複数のゲートトレンチ142(第1ゲートトレンチ242)が形成された例について説明した。しかし、SiC単結晶のa軸方向([11-20]方向)に沿って延びる複数のゲートトレンチ142(第1ゲートトレンチ242)が形成されてもよい。この場合、SiC単結晶のa軸方向([11-20]方向)に沿って延びる複数のソーストレンチ155が形成される。
 前述の第3~第6実施形態では、ソース電極層157がソース絶縁層156を挟んでソーストレンチ155に埋め込まれた例について説明した。しかし、ソース電極層157は、ソース絶縁層156を介さずにソーストレンチ155に直接埋め込まれていてもよい。
 前述の第3~第6実施形態では、ソース絶縁層156がソーストレンチ155の側壁および底壁に沿って形成された例について説明した。しかし、ソース絶縁層156は、ソーストレンチ155の底壁を露出させるように、ソーストレンチ155の側壁に沿って形成されていてもよい。ソース絶縁層156は、ソーストレンチ155の底壁の一部を露出させるように、ソーストレンチ155の側壁および底壁に沿って形成されていてもよい。
 また、ソース絶縁層156は、ソーストレンチ155の側壁を露出させるように、ソーストレンチ155の底壁に沿って形成されていてもよい。ソース絶縁層156は、ソーストレンチ155の側壁の一部を露出させるように、ソーストレンチ155の側壁および底壁に沿って形成されていてもよい。
 前述の第3~第6実施形態では、p型不純物が添加されたp型ポリシリコンを含むゲート電極層149およびゲート配線層150が形成された例について説明した。しかし、ゲート閾値電圧Vthの増加を重視しない場合には、ゲート電極層149およびゲート配線層150は、p型ポリシリコンに代えてまたはこれに加えて、n型不純物が添加されたn型ポリシリコンを含んでいてもよい。
 この場合、低抵抗電極層167は、ゲート電極層149(n型ポリシリコン)において表層部を形成する部分を金属材料によってシリサイド化することによって形成されていてもよい。つまり、低抵抗電極層167は、n型ポリサイドを含んでいてもよい。このような構造の場合、ゲート抵抗の低減を図ることができる。
 前述の第3~第6実施形態において、n型のSiC半導体基板106に代えてp型のSiC半導体基板(106)が採用されてもよい。この構造によれば、MISFETに代えて、IGBT(Insulated Gate Bipolar Transistor)を提供できる。この場合、前述の第3~第6実施形態において、MISFETの「ソース」がIGBTの「エミッタ」に読み替えられ、MISFETの「ドレイン」がIGBTの「コレクタ」に読み替えられる。
 前述の各実施形態において、各半導体部分の導電型が反転された構造が採用されてもよい。つまり、p型の部分がn型とされ、n型の部分がp型とされてもよい。
 前述の各実施形態は、SiCとは異なる半導体材料を用いた半導体装置にも適用できる。SiCとは異なる半導体材料は、化合物半導体材料であってもよい。化合物半導体材料は、窒化ガリウム(GaN)および酸化ガリウム(Ga)のいずれか一方または双方であってもよい。
 たとえば、前述の第3~第6実施形態は、SiCに代えて化合物半導体材料が採用された縦型の化合物半導体MISFETを備えた化合物半導体装置であってもよい。化合物半導体では、p型不純物(アクセプタ)として、マグネシウムが採用されてもよい。また、n型不純物(ドナー)として、ゲルマニウム(Ge)、酸素(O)またはケイ素(Si)が採用されてもよい。
 この明細書は、第1~第6実施形態に示された特徴の如何なる組み合わせ形態をも制限しない。第1~第6実施形態は、それらの間で任意の態様および任意の形態において組み合わせられることができる。つまり、第1~第6実施形態に示された特徴が任意の態様および任意の形態で組み合わされたSiC半導体装置が採用されてもよい。
 以下、この明細書および図面(特に図14E~図14M)から抽出される特徴の例を示す。
 特開2012-146878号公報は、ステルスダイシング法を利用したSiC半導体装置の製造方法を開示している。特開2012-146878号公報の製造方法では、SiC半導体ウエハから切り出されたSiC半導体層の各側面の全域に複数列の改質領域(改質層)が形成される。複数列の改質領域(改質層)は、SiC半導体層の主面の接線方向に沿って延び、SiC半導体層の主面の法線方向に間隔を空けて形成される。
 改質層は、SiC半導体層のSiC単結晶を他の性質に改質させることによって形成される。そのため、改質層に起因するSiC半導体層への影響を考慮すると、SiC半導体層の側面の全域に複数の改質層が形成されることは望ましいとはいえない。改質層に起因するSiC半導体層への影響としては、改質層に起因するSiC半導体層の電気的特性の変動や、改質層を起点とするSiC半導体層のクラックの発生等が例示される。
 以下の[A1]~[A20]および[B1]~[B27]は、改質層に起因するSiC半導体層への影響を低減できるSiC半導体装置を提供する。
 [A1]六方晶からなるSiC単結晶を含み、デバイス面としての第1主面、前記第1主面の反対側の第2主面、前記SiC単結晶のa面に面する第1側面、および、前記SiC単結晶のm面に面する第2側面を有するSiC半導体層と、第1専有割合で前記SiC半導体層の前記第1側面に形成され、前記SiC単結晶とは異なる性質に改質された第1改質層と、前記第1専有割合未満の第2専有割合で前記SiC半導体層の前記第2側面に形成され、前記SiC単結晶とは異なる性質に改質された第2改質層と、を含む、SiC半導体装置。
 このSiC半導体装置によれば、SiC単結晶の結晶面に応じて異なる専有割合で第1改質層および第2改質層が形成されている。SiC単結晶は、c面をc軸方向から見た平面視においてSi原子の最近接原子方向(a軸方向およびその等価方向)に沿って割れ易く、最近接原子方向の交差方向(m軸方向およびその等価方向)に沿って割れ難いという物性を有している。
 したがって、SiC単結晶において比較的割れ易い性質を有する結晶面(m面およびその等価面)については、比較的大きい専有割合を有する改質層を形成しなくても適切に切断できる。これにより、改質層の形成領域の低減を図ることができるから、改質層に起因するSiC半導体層への影響を低減できる。
 [A2]六方晶からなるSiC単結晶を含み、デバイス面としての第1主面、前記第1主面の反対側の第2主面、前記SiC単結晶のa面に面する第1側面、および、前記SiC単結晶のm面に面する第2側面を有するSiC半導体層と、前記SiC半導体層の前記第1側面に前記第1主面の法線方向に沿って間隔を空けて形成され、前記SiC単結晶とは異なる性質に改質された複数の第1改質層と、前記第1改質層の個数未満の個数で前記SiC半導体層の前記第2側面に形成され、前記SiC単結晶とは異なる性質に改質された1つまたは複数の第2改質層と、を含む、SiC半導体装置。
 このSiC半導体装置によれば、SiC単結晶の結晶面に応じて異なる個数で第1改質層および第2改質層が形成されている。SiC単結晶は、c面をc軸方向から見た平面視においてSi原子の最近接原子方向(a軸方向およびその等価方向)に沿って割れ易く、最近接原子方向の交差方向(m軸方向およびその等価方向)に沿って割れ難いという物性を有している。
 したがって、SiC単結晶において比較的割れ易い性質を有する結晶面(m面およびその等価面)については、改質層の個数を増加させなくても適切に切断できる。これにより、改質層の形成領域の低減を図ることができるから、改質層に起因するSiC半導体層への影響を低減できる。
 [A3]複数の前記第1改質層が、前記SiC半導体層の前記第1側面に前記第1主面の法線方向に沿って間隔を空けて形成され、前記第1改質層の個数未満の1つまたは複数の前記第2改質層が、前記SiC半導体層の前記第2側面に前記第1主面の法線方向に沿って間隔を空けて形成されている、A1に記載のSiC半導体装置。
 [A4]前記第1改質層は、前記第1主面の法線方向に関して第1厚さを有し、前記第2改質層は、前記第1主面の法線方向に関して前記第1厚さ以下の第2厚さを有している、A1~3のいずれか1つに記載のSiC半導体装置。
 [A5]前記第1改質層は、前記SiC半導体層の前記第1主面から前記第2主面側に間隔を空けて形成されている、A1~A4のいずれか1つに記載のSiC半導体装置。
 [A6]前記第2改質層は、前記SiC半導体層の前記第1主面から前記第2主面側に間隔を空けて形成されている、A1~A5のいずれか1つに記載のSiC半導体装置。
 [A7]前記第1改質層は、前記SiC半導体層の前記第2主面から前記第1主面側に間隔を空けて形成されている、A1~A6のいずれか1つに記載のSiC半導体装置。
 [A8]前記第2改質層は、前記SiC半導体層の前記第2主面から前記第1主面側に間隔を空けて形成されている、A1~A7のいずれか1つに記載のSiC半導体装置。
 [A9]前記第1改質層は、前記SiC単結晶のm軸方向に沿って直線状、曲線状または破線状に延びており、前記第2改質層は、前記SiC単結晶のa軸方向に沿って直線状、曲線状または破線状に延びている、A1~A8のいずれか1つに記載のSiC半導体装置。
 [A10]前記SiC半導体層の前記第1主面は、前記SiC単結晶のc面に面している、A1~A9のいずれか1つに記載のSiC半導体装置。
 [A11]前記SiC半導体層の前記第1主面は、前記SiC単結晶のc面に対して0°以上10°以下の角度で傾斜したオフ角を有している、A1~A10のいずれか1つに記載のSiC半導体装置。
 [A12]前記オフ角は、5°以下の角度である、A11に記載のSiC半導体装置。
 [A13]前記オフ角は、0°を超えて4°未満の角度である、A11またはA12に記載のSiC半導体装置。
 [A14]前記SiC単結晶は、2H(Hexagonal)-SiC単結晶、4H-SiC単結晶または6H-SiC単結晶からなる、A1~A13のいずれか1つに記載のSiC半導体装置。
 [A15]前記SiC半導体層の前記第2主面は、研削面からなる、A1~A14のいずれか1つに記載のSiC半導体装置。
 [A16]前記SiC半導体層の前記第1側面は、劈開面からなり、前記SiC半導体層の前記第2側面は、劈開面からなる、A1~A15のいずれか1つに記載のSiC半導体装置。
 [A17]前記SiC半導体層は、40μm以上200μm以下の厚さを有している、A1~A16のいずれか1つに記載のSiC半導体装置。
 [A18]前記SiC半導体層は、SiC半導体基板およびSiCエピタキシャル層を含み、前記SiCエピタキシャル層によって前記第1主面が形成された積層構造を有しており、前記第1改質層は、前記SiC半導体基板に形成されており、前記第2改質層は、前記SiC半導体基板に形成されている、A1~A17のいずれか1つに記載のSiC半導体装置。
 [A19]前記SiCエピタキシャル層は、前記SiC半導体基板の厚さ以下の厚さを有している、A18に記載のSiC半導体装置。
 [A20]前記SiC半導体基板は、40μm以上150μm以下の厚さを有し、前記SiCエピタキシャル層は、1μm以上50μm以下の厚さを有している、A18または19に記載のSiC半導体装置。
 [B1]六方晶からなるSiC単結晶を含み、素子形成面としての第1主面、前記第1主面の反対側の第2主面、前記SiC単結晶のa面に面する第1側面、および、前記SiC単結晶のm面に面する第2側面を有するSiC半導体層と、前記第1主面の法線方向に関して第1厚さを有し、前記SiC半導体層の前記第1側面に第1専有割合で形成され、前記SiC単結晶とは異なる性質に改質された第1改質層と、前記第1主面の法線方向に関して前記第1厚さ以下の第2厚さを有し、前記SiC半導体層の前記第2側面に前記第1専有割合未満の第2専有割合で形成され、前記SiC単結晶とは異なる性質に改質された第2改質層と、を含む、SiC半導体装置。
 このSiC半導体装置によれば、改質層の形成領域の低減を図ることができるから、改質層に起因するSiC半導体層への影響を低減できる。
 [B2]六方晶からなるSiC単結晶を含み、素子形成面としての第1主面、前記第1主面の反対側の研削面からなる第2主面、前記SiC単結晶のa面に面する第1側面、および、前記SiC単結晶のm面に面する第2側面を有するSiC半導体層と、前記SiC半導体層の前記第1側面に第1専有割合で形成され、前記SiC単結晶とは異なる性質に改質された第1改質層と、前記SiC半導体層の前記第2側面に前記第1専有割合未満の第2専有割合で形成され、前記SiC単結晶とは異なる性質に改質された第2改質層と、を含む、SiC半導体装置。
 このSiC半導体装置によれば、改質層の形成領域の低減を図ることができるから、改質層に起因するSiC半導体層への影響を低減できる。
 [B3]六方晶からなるSiC単結晶を含み、素子形成面としての第1主面、前記第1主面の反対側の第2主面、前記SiC単結晶のa面に面し、劈開面からなる第1側面、および、前記SiC単結晶のm面に面し、劈開面からなる第2側面を有するSiC半導体層と、前記SiC半導体層の前記第1側面に第1専有割合で形成され、前記SiC単結晶とは異なる性質に改質された第1改質層と、前記SiC半導体層の前記第2側面に前記第1専有割合未満の第2専有割合で形成され、前記SiC単結晶とは異なる性質に改質された第2改質層と、を含む、SiC半導体装置。
 このSiC半導体装置によれば、改質層の形成領域の低減を図ることができるから、改質層に起因するSiC半導体層への影響を低減できる。
 [B4]六方晶からなるSiC単結晶を含み、素子形成面としての第1主面、前記第1主面の反対側の第2主面、前記SiC単結晶のa面に面する第1側面、および、前記SiC単結晶のm面に面する第2側面を有し、かつ、40μm以上200μm以下の厚さを有するSiC半導体層と、前記SiC半導体層の前記第1側面に第1専有割合で形成され、前記SiC単結晶とは異なる性質に改質された第1改質層と、前記SiC半導体層の前記第2側面に前記第1専有割合未満の第2専有割合で形成され、前記SiC単結晶とは異なる性質に改質された第2改質層と、を含む、SiC半導体装置。
 このSiC半導体装置によれば、改質層の形成領域の低減を図ることができるから、改質層に起因するSiC半導体層への影響を低減できる。
 [B5]六方晶からなるSiC単結晶を含み、素子形成面としての第1主面、前記第1主面の反対側の第2主面、前記SiC単結晶のa面に面する第1側面、および、前記SiC単結晶のm面に面する第2側面を有し、かつ、前記第2主面を形成するSiC半導体基板および前記第1主面を形成するSiCエピタキシャル層を含む積層構造を有するSiC半導体層と、前記SiC半導体基板において前記SiC半導体層の前記第1側面を形成する部分に第1専有割合で形成され、前記SiC単結晶とは異なる性質に改質された第1改質層と、前記SiC半導体基板において前記SiC半導体層の前記第2側面を形成する部分に前記第1専有割合未満の第2専有割合で形成され、前記SiC単結晶とは異なる性質に改質された第2改質層と、を含む、SiC半導体装置。
 このSiC半導体装置によれば、改質層の形成領域の低減を図ることができるから、改質層に起因するSiC半導体層への影響を低減できる。
 [B6]前記SiCエピタキシャル層は、前記SiC半導体基板の厚さ以下の厚さを有している、B5に記載のSiC半導体装置。
 [B7]前記SiC半導体基板は、40μm以上150μm以下の厚さを有し、前記SiCエピタキシャル層は、1μm以上50μm以下の厚さを有している、B5またはB6に記載のSiC半導体装置。
 [B8]前記第1改質層は、前記第1主面の法線方向に関して第1厚さを有し、前記第2改質層は、前記第1主面の法線方向に関して前記第1厚さ以下の第2厚さを有している、B2~B7のいずれか一つに記載のSiC半導体装置。
 [B9]複数の前記第1改質層が、前記SiC半導体層の前記第1側面に前記第1主面の法線方向に沿って間隔を空けて形成され、前記第1改質層の個数未満の1つまたは複数の前記第2改質層が、前記SiC半導体層の前記第2側面に前記第1主面の法線方向に沿って間隔を空けて形成されている、B1~B8のいずれか一つに記載のSiC半導体装置。
 [B10]六方晶からなるSiC単結晶を含み、素子形成面としての第1主面、前記第1主面の反対側の第2主面、前記SiC単結晶のa面に面する第1側面、および、前記SiC単結晶のm面に面する第2側面を有するSiC半導体層と、前記第1主面の法線方向に関して第1厚さを有し、前記SiC半導体層の前記第1側面に前記第1主面の法線方向に沿って間隔を空けて形成され、前記SiC単結晶とは異なる性質に改質された複数の第1改質層と、前記第1主面の法線方向に関して前記第1厚さ以下の第2厚さを有し、前記第1改質層の個数未満の個数で前記SiC半導体層の前記第2側面に形成され、前記SiC単結晶とは異なる性質に改質された1つまたは複数の第2改質層と、を含む、SiC半導体装置。
 このSiC半導体装置によれば、改質層の形成領域の低減を図ることができるから、改質層に起因するSiC半導体層への影響を低減できる。
 [B11]六方晶からなるSiC単結晶を含み、素子形成面としての第1主面、前記第1主面の反対側の研削面からなる第2主面、前記SiC単結晶のa面に面する第1側面、および、前記SiC単結晶のm面に面する第2側面を有するSiC半導体層と、前記SiC半導体層の前記第1側面に前記第1主面の法線方向に沿って間隔を空けて形成され、前記SiC単結晶とは異なる性質に改質された複数の第1改質層と、前記第1改質層の個数未満の個数で前記SiC半導体層の前記第2側面に形成され、前記SiC単結晶とは異なる性質に改質された1つまたは複数の第2改質層と、を含む、SiC半導体装置。
 このSiC半導体装置によれば、改質層の形成領域の低減を図ることができるから、改質層に起因するSiC半導体層への影響を低減できる。
 [B12]六方晶からなるSiC単結晶を含み、素子形成面としての第1主面、前記第1主面の反対側の第2主面、前記SiC単結晶のa面に面し、劈開面からなる第1側面、および、前記SiC単結晶のm面に面し、劈開面からなる第2側面を有するSiC半導体層と、前記SiC半導体層の前記第1側面に前記第1主面の法線方向に沿って間隔を空けて形成され、前記SiC単結晶とは異なる性質に改質された複数の第1改質層と、前記第1改質層の個数未満の個数で前記SiC半導体層の前記第2側面に形成され、前記SiC単結晶とは異なる性質に改質された1つまたは複数の第2改質層と、を含む、SiC半導体装置。
 このSiC半導体装置によれば、改質層の形成領域の低減を図ることができるから、改質層に起因するSiC半導体層への影響を低減できる。
 [B13]六方晶からなるSiC単結晶を含み、素子形成面としての第1主面、前記第1主面の反対側の第2主面、前記SiC単結晶のa面に面する第1側面、および、前記SiC単結晶のm面に面する第2側面を有し、かつ、40μm以上200μm以下の厚さを有するSiC半導体層と、前記SiC半導体層の前記第1側面に前記第1主面の法線方向に沿って間隔を空けて形成され、前記SiC単結晶とは異なる性質に改質された複数の第1改質層と、前記第1改質層の個数未満の個数で前記SiC半導体層の前記第2側面に形成され、前記SiC単結晶とは異なる性質に改質された1つまたは複数の第2改質層と、を含む、SiC半導体装置。
 このSiC半導体装置によれば、改質層の形成領域の低減を図ることができるから、改質層に起因するSiC半導体層への影響を低減できる。
 [B14]六方晶からなるSiC単結晶を含み、素子形成面としての第1主面、前記第1主面の反対側の第2主面、前記SiC単結晶のa面に面する第1側面、および、前記SiC単結晶のm面に面する第2側面を有し、かつ、前記第2主面を形成するSiC半導体基板および前記第1主面を形成するSiCエピタキシャル層を含む積層構造を有するSiC半導体層と、前記SiC半導体基板において前記SiC半導体層の前記第1側面を形成する部分に前記第1主面の法線方向に沿って間隔を空けて形成され、前記SiC単結晶とは異なる性質に改質された複数の第1改質層と、前記SiC半導体基板において前記SiC半導体層の前記第2側面を形成する部分に、前記第1改質層の個数未満の個数で形成され、前記SiC単結晶とは異なる性質に改質された1つまたは複数の第2改質層と、を含む、SiC半導体装置。
 このSiC半導体装置によれば、改質層の形成領域の低減を図ることができるから、改質層に起因するSiC半導体層への影響を低減できる。
 [B15]前記SiCエピタキシャル層は、前記SiC半導体基板の厚さ以下の厚さを有している、B14に記載のSiC半導体装置。
 [B16]前記SiC半導体基板は、40μm以上150μm以下の厚さを有し、前記SiCエピタキシャル層は、1μm以上50μm以下の厚さを有している、B14またはB15に記載のSiC半導体装置。
 [B17]前記第1改質層は、前記第1主面の法線方向に関して第1厚さを有し、前記第2改質層は、前記第1主面の法線方向に関して前記第1厚さ以下の第2厚さを有している、B11~B16のいずれか一つに記載のSiC半導体装置。
 [B18]前記第1改質層は、前記SiC半導体層の前記第1主面から前記第2主面側に間隔を空けて形成されている、B1~B17のいずれか一つに記載のSiC半導体装置。
 [B19]前記第2改質層は、前記SiC半導体層の前記第1主面から前記第2主面側に間隔を空けて形成されている、B1~B18のいずれか一つに記載のSiC半導体装置。
 [B20]前記第1改質層は、前記SiC半導体層の前記第2主面から前記第1主面側に間隔を空けて形成されている、B1~B19のいずれか一つに記載のSiC半導体装置。
 [B21]前記第2改質層は、前記SiC半導体層の前記第2主面から前記第1主面側に間隔を空けて形成されている、B1~B20のいずれか一つに記載のSiC半導体装置。
 [B22]前記第1改質層は、前記SiC単結晶のm軸方向に沿って直線状、曲線状または破線状に延びており、前記第2改質層は、前記SiC単結晶のa軸方向に沿って直線状、曲線状または破線状に延びている、B1~B21のいずれか一つに記載のSiC半導体装置。
 [B23]前記SiC半導体層の前記第1主面は、前記SiC単結晶のc面に面している、B1~B22のいずれか一つに記載のSiC半導体装置。
 [B24]前記SiC半導体層の前記第1主面は、前記SiC単結晶のc面に対して0°以上10°以下の角度で傾斜したオフ角を有している、B1~B23のいずれか一つに記載のSiC半導体装置。
 [B25]前記オフ角は、5°以下の角度である、B24に記載のSiC半導体装置。
 [B26]前記オフ角は、0°を超えて4°未満の角度である、B24またはB25に記載のSiC半導体装置。
 [B27]前記SiC単結晶は、2H(Hexagonal)-SiC単結晶、4H-SiC単結晶または6H-SiC単結晶からなる、B1~B26のいずれか一つに記載のSiC半導体装置。
 この出願は、2018年8月10日に日本国特許庁に提出された特願2018-151453号、および、2018年8月10日に日本国特許庁に提出された特願2018-151454号に対応しており、これらの出願の全開示はここに引用により組み込まれるものとする。
 本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の範囲は添付の請求の範囲によってのみ限定される。
1    SiC半導体装置
2    SiC半導体層
3    SiC半導体層の第1主面
4    SiC半導体層の第2主面
5A   SiC半導体層の側面
5B   SiC半導体層の側面
5C   SiC半導体層の側面
5D   SiC半導体層の側面
6    SiC半導体基板
7    SiCエピタキシャル層
22A  改質ライン
22B  改質ライン
22C  改質ライン
22D  改質ライン
81   SiC半導体装置
101  SiC半導体装置
102  SiC半導体層
103  SiC半導体層の第1主面
104  SiC半導体層の第2主面
105A SiC半導体層の側面
105B SiC半導体層の側面
105C SiC半導体層の側面
105D SiC半導体層の側面
106  SiC半導体基板
107  SiCエピタキシャル層
θ    オフ角
Z    法線方向
X    第1方向(m軸方向)
Y    第2方向(a軸方向)

Claims (18)

  1.  六方晶からなるSiC単結晶を含み、前記SiC単結晶のc面に面し、前記c面に対して傾斜したオフ角を有するデバイス面としての第1主面、前記第1主面の反対側の第2主面、および、前記SiC単結晶のa面に面し、前記第1主面の法線を0°とした時、前記法線に対して前記オフ角未満の角度を有する側面を有するSiC半導体層を含む、SiC半導体装置。
  2.  六方晶からなるSiC単結晶を含み、前記SiC単結晶のc面に面し、前記c面に対して傾斜したオフ角を有するデバイス面としての第1主面、前記第1主面の反対側の第2主面、および、前記SiC単結晶のa面に面し、前記第1主面の法線から前記SiC単結晶のc軸とは反対側の方向に向けて傾斜した傾斜部を有する側面を有するSiC半導体層を含む、SiC半導体装置。
  3.  前記SiC半導体層の前記側面は、劈開面からなる、請求項1または2に記載のSiC半導体装置。
  4.  前記SiC半導体層の前記第2主面は、研削面からなる、請求項1~3のいずれか一項に記載のSiC半導体装置。
  5.  前記SiC半導体層は、40μm以上200μm以下の厚さを有している、請求項1~4のいずれか一項に記載のSiC半導体装置。
  6.  前記第1主面の法線方向に間隔を空けて前記SiC半導体層の前記側面に形成され、前記SiC単結晶とは異なる性質に改質された複数の改質層をさらに含む、請求項1~5のいずれか一項に記載のSiC半導体装置。
  7.  複数の前記改質層は、前記SiC単結晶のm軸方向に沿って延びる帯状にそれぞれ形成されている、請求項6に記載のSiC半導体装置。
  8.  複数の前記改質層は、断面視において前記SiC単結晶のa軸方向に互いにずれている、請求項6または7に記載のSiC半導体装置。
  9.  前記SiC単結晶のa軸方向に関して、複数の前記改質層のうちの最も外方に位置する前記改質層および最も内方に位置する前記改質層の間の距離は、前記SiC半導体層の厚さにtanθ(θ:前記オフ角)を乗じた値未満である、請求項8に記載のSiC半導体装置。
  10.  前記SiC半導体層の前記側面は、複数の前記改質層を頂部または基部とする隆起部を有している、請求項6~9のいずれか一項に記載のSiC半導体装置。
  11.  複数の前記改質層は、前記SiC半導体層の前記第1主面から前記第2主面側に間隔を空けて形成されている、請求項6~10のいずれか一項に記載のSiC半導体装置。
  12.  複数の前記改質層は、前記SiC半導体層の前記第2主面から前記第1主面側に間隔を空けて形成されている、請求項6~11のいずれか一項に記載のSiC半導体装置。
  13.  2層以上6層以下の前記改質層を含む、請求項6~12のいずれか一項に記載のSiC半導体装置。
  14.  前記SiC半導体層は、前記SiC単結晶のm面に面し、前記法線に沿って延びる第2の側面を有している、請求項1~13のいずれか一項に記載のSiC半導体装置。
  15.  前記SiC単結晶は、2H(Hexagonal)-SiC単結晶、4H-SiC単結晶または6H-SiC単結晶からなる、請求項1~14のいずれか一項に記載のSiC半導体装置。
  16.  前記オフ角は、0°を超えて10°以下である、請求項1~15のいずれか一項に記載のSiC半導体装置。
  17.  前記オフ角は、0°を超えて5°以下である、請求項1~16のいずれか一項に記載のSiC半導体装置。
  18.  前記オフ角は、0°を超えて4°未満である、請求項1~17のいずれか一項に記載のSiC半導体装置。
PCT/JP2019/031451 2018-08-10 2019-08-08 SiC半導体装置 WO2020032190A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE212019000150.5U DE212019000150U1 (de) 2018-08-10 2019-08-08 SiC-Halbleiterbauteil
CN201980054015.7A CN112567531A (zh) 2018-08-10 2019-08-08 SiC半导体装置
US17/265,453 US11621319B2 (en) 2018-08-10 2019-08-08 SiC semiconductor device
DE112019004619.5T DE112019004619T5 (de) 2018-08-10 2019-08-08 SiC-HALBLEITERBAUTEIL
US18/172,830 US20230223433A1 (en) 2018-08-10 2023-02-22 SiC SEMICONDUCTOR DEVICE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-151453 2018-08-10
JP2018-151454 2018-08-10
JP2018151454A JP6664446B2 (ja) 2018-08-10 2018-08-10 SiC半導体装置
JP2018151453A JP6630411B1 (ja) 2018-08-10 2018-08-10 SiC半導体装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/265,453 A-371-Of-International US11621319B2 (en) 2018-08-10 2019-08-08 SiC semiconductor device
US18/172,830 Continuation US20230223433A1 (en) 2018-08-10 2023-02-22 SiC SEMICONDUCTOR DEVICE

Publications (1)

Publication Number Publication Date
WO2020032190A1 true WO2020032190A1 (ja) 2020-02-13

Family

ID=69414802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031451 WO2020032190A1 (ja) 2018-08-10 2019-08-08 SiC半導体装置

Country Status (4)

Country Link
US (2) US11621319B2 (ja)
CN (1) CN112567531A (ja)
DE (2) DE112019004619T5 (ja)
WO (1) WO2020032190A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11772202B2 (en) 2020-09-30 2023-10-03 Nichia Corporation Method for manufacturing light-emitting element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012146878A (ja) * 2011-01-13 2012-08-02 Hamamatsu Photonics Kk レーザ加工方法
JP2015216140A (ja) * 2014-05-07 2015-12-03 株式会社ディスコ 光デバイスの加工方法
JP2017028145A (ja) * 2015-07-24 2017-02-02 住友電気工業株式会社 炭化珪素半導体装置
JP2017041482A (ja) * 2015-08-18 2017-02-23 株式会社ディスコ ウエーハの加工方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5721351B2 (ja) * 2009-07-21 2015-05-20 ローム株式会社 半導体装置
JP2012146876A (ja) 2011-01-13 2012-08-02 Hamamatsu Photonics Kk レーザ加工方法
JP2016207908A (ja) 2015-04-27 2016-12-08 三菱電機株式会社 炭化珪素半導体装置の製造方法および炭化珪素半導体装置
WO2016204126A1 (ja) 2015-06-17 2016-12-22 富士電機株式会社 半導体装置
JP6277173B2 (ja) 2015-11-20 2018-02-07 ローム株式会社 半導体装置
JP2017135245A (ja) 2016-01-27 2017-08-03 株式会社東芝 半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012146878A (ja) * 2011-01-13 2012-08-02 Hamamatsu Photonics Kk レーザ加工方法
JP2015216140A (ja) * 2014-05-07 2015-12-03 株式会社ディスコ 光デバイスの加工方法
JP2017028145A (ja) * 2015-07-24 2017-02-02 住友電気工業株式会社 炭化珪素半導体装置
JP2017041482A (ja) * 2015-08-18 2017-02-23 株式会社ディスコ ウエーハの加工方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11772202B2 (en) 2020-09-30 2023-10-03 Nichia Corporation Method for manufacturing light-emitting element

Also Published As

Publication number Publication date
DE212019000150U1 (de) 2020-07-29
DE112019004619T5 (de) 2021-06-02
US20210233994A1 (en) 2021-07-29
US11621319B2 (en) 2023-04-04
CN112567531A (zh) 2021-03-26
US20230223433A1 (en) 2023-07-13

Similar Documents

Publication Publication Date Title
US20230223445A1 (en) SiC SEMICONDUCTOR DEVICE
JP7401615B2 (ja) SiC半導体装置
WO2021065722A1 (ja) 半導体装置
US20190371932A1 (en) Semiconductor device
US11916112B2 (en) SiC semiconductor device
US20220181447A1 (en) SiC SEMICONDUCTOR DEVICE
US20230223433A1 (en) SiC SEMICONDUCTOR DEVICE
JP6664445B2 (ja) SiC半導体装置
JP6664446B2 (ja) SiC半導体装置
US11107913B2 (en) Semiconductor device
JP6647352B1 (ja) SiC半導体装置
JP6630411B1 (ja) SiC半導体装置
JP6630410B1 (ja) SiC半導体装置
JP7129437B2 (ja) SiC半導体装置
JP7402293B2 (ja) SiC半導体装置
JP7129436B2 (ja) SiC半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19848185

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19848185

Country of ref document: EP

Kind code of ref document: A1