WO2020031901A1 - シャント装置 - Google Patents

シャント装置 Download PDF

Info

Publication number
WO2020031901A1
WO2020031901A1 PCT/JP2019/030530 JP2019030530W WO2020031901A1 WO 2020031901 A1 WO2020031901 A1 WO 2020031901A1 JP 2019030530 W JP2019030530 W JP 2019030530W WO 2020031901 A1 WO2020031901 A1 WO 2020031901A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
frame
shunt device
shunt
frame terminal
Prior art date
Application number
PCT/JP2019/030530
Other languages
English (en)
French (fr)
Inventor
健司 亀子
Original Assignee
Koa株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa株式会社 filed Critical Koa株式会社
Publication of WO2020031901A1 publication Critical patent/WO2020031901A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/203Resistors used for electric measuring, e.g. decade resistors standards, resistors for comparators, series resistors, shunts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C13/00Resistors not provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C3/00Non-adjustable metal resistors made of wire or ribbon, e.g. coiled, woven or formed as grids

Definitions

  • the present invention relates to a shunt resistor for current detection, and more particularly to a shunt resistor for a large current application in which electrodes made of a metal are joined to both ends of a resistor made of a resistance alloy, and a voltage generated at both ends of the resistor is provided.
  • the present invention relates to a shunt device to which a lead terminal to be detected is connected.
  • Shunt resistors have been widely used for large current detection applications, such as monitoring the charge / discharge current of onboard batteries.
  • a shunt resistor includes a resistor made of a resistance alloy plate and electrodes made of a copper material fixed to both ends thereof, and a detection electrode portion is provided at an appropriate place of the electrode, for example, an aluminum wire is provided there.
  • a detection electrode portion is provided at an appropriate place of the electrode, for example, an aluminum wire is provided there.
  • Such a shunt resistor has excellent detection accuracy for a large current, has a small temperature drift, does not generate excessive heat even when a large current is applied, and has a low resistance value of 1 m ⁇ or less. Is required.
  • a voltage generated at both ends of the resistor is detected in addition to a type of a resistance alloy material, a shape and a structure of the resistor. The position of the terminal is significantly related.
  • connection position of the terminal is on the electrode, the voltage generated at both ends of the resistor can be detected for the time being.
  • the internal resistance of the electrode cannot be neglected, and the connection position of the terminal is not clearly determined. There is a problem that the detection accuracy of is not stable.
  • a wide metal frame terminal as an extraction terminal for detecting a voltage.
  • a wide metal frame terminal is used as a lead terminal, unlike a terminal having a small diameter such as wire bonding, the use of a wide metal frame terminal makes it easy for the voltage detection value to fluctuate depending on the mounting position of the wide electrode. In particular, it is difficult to achieve positional accuracy when mounting the lead terminals by welding, and the influence of variations in the mounting positions tends to be remarkable.
  • the present invention has been made based on the above-described circumstances, and improves the current detection accuracy by connecting a wide metal frame terminal as a voltage detection lead terminal to a shunt resistor for detecting a large current with a low resistance value. It is an object of the present invention to provide a shunt device.
  • One embodiment is a shunt resistor including a resistor made of a resistance alloy and a pair of electrodes made of a high-conductivity metal joined to both ends of the resistor, and a pair of shunt resistors connected to the shunt resistor.
  • a wide metal frame terminal, the electrode has a first step on a joint surface with the resistor, and the frame terminal has a contact portion adjacent to the first step, A shunt device connected to the electrode.
  • the electrode has an outer end face, and is provided with a second step that partitions a voltage detection unit between the first step and the outer end face.
  • at least one end face of the frame terminal is located in substantially the same plane as the first step or the second step.
  • a part of the frame terminal is arranged so as to straddle the first step and protrude into a space formed by the first step.
  • the distance between the first step and the second step is the same as the length of the frame terminal in the width direction or is longer than the length of the frame terminal in the width direction. I do.
  • the frame terminal can be connected to an ideal point closest to the joint surface of the electrode with the resistor, and current can be detected. Further, even when the frame terminal protrudes from the step and is located on the resistor, the frame terminal can be connected to the ideal point without contacting the resistor at all. As a result, the shunt device can improve the current detection accuracy.
  • FIG. 4 is a diagram illustrating a relationship between a connection position of a frame terminal and a voltage detection position of the frame terminal. It is a top view of a shunt device.
  • FIG. 4 is a sectional view taken along line AA of FIG. 3. It is a longitudinal cross-sectional view which shows the shunt device when a part of frame terminal protrudes from the step and was connected to the electrode.
  • It is a perspective view showing other embodiments of a shunt device.
  • FIG. 8 is a sectional view taken along line AA of FIG. 7. It is a figure explaining an effect by formation of the 2nd step.
  • FIG. 8 is a diagram illustrating a relationship between a connection position of a frame terminal and a voltage detection position of the frame terminal.
  • FIG. 4 is a sectional view taken along line AA of FIG. 3.
  • It is a longitudinal cross-sectional view which shows the shunt device when a
  • FIG. 4 is a diagram illustrating a relationship between a width of a voltage detection unit and a width of a frame terminal.
  • 5 is a graph illustrating an effect obtained by forming a first step and a second step.
  • It is a perspective view showing other embodiment of a shunt device.
  • It is a top view of the shunt device shown in FIG.
  • FIG. 14 is a sectional view taken along line AA of FIG. 13.
  • It is a top view showing other embodiment of a shunt device.
  • It is a top view showing other embodiment of a shunt device.
  • It is a top view showing other embodiment of a shunt device.
  • It is a top view showing other embodiment of a shunt device.
  • It is a perspective view showing other embodiment of a shunt device.
  • It is a perspective view showing other embodiment of a shunt device.
  • It is a perspective view showing other embodiment of a shunt device.
  • It is a perspective
  • FIG. 1 is a perspective view showing an embodiment of the shunt device 1.
  • the shunt device 1 includes a shunt resistor 2 and a pair of wide metal frame terminals (lead frame terminals) 3 and 4 fixed to the shunt resistor 2.
  • the shunt resistor 2 may be simply referred to as the resistor 2.
  • the resistor 2 includes a resistor 5 made of a resistance alloy plate having a predetermined thickness and width, and a pair of electrodes 6 and 7 made of a high conductivity metal joined to both ends of the resistor 5. Both end surfaces of the resistor 5 are joined to inner end surfaces (inner electrode end surfaces) 6a and 7a of the electrodes 6 and 7 by means of welding (for example, electron beam welding, laser beam welding, or brazing). The inner end faces 6 a and 7 a are bonding surfaces with the resistor 5.
  • Bolt holes 8 and 9 for fixing the resistor 2 with screws or the like are formed in the electrodes 6 and 7.
  • the frame terminal 3 includes a contact portion 3a that contacts the surface of the electrode 6, a vertical portion 3b perpendicular to the contact portion 3a, and a bent portion 3c perpendicular to the vertical portion 3b and parallel to the contact portion 3a. I have.
  • the frame terminals 3 and 4 have the same structure. That is, similarly to the frame terminal 3, the frame terminal 4 includes a contact portion 4a, a vertical portion 4b, and a bent portion 4c.
  • a low-resistance alloy material such as a Cu—Mg—Ni-based alloy can be given.
  • An example of the material of the electrodes 6 and 7 is copper (Cu).
  • Examples of the material of the frame terminals 3 and 4 include copper (Cu) plated with tin (Sn) or unplated copper.
  • the two detection terminals detect voltages at positions closer to the resistor and at substantially equal distances from the resistor.
  • FIG. 2 is a diagram illustrating the relationship between the connection positions of the frame terminals 300 and 400 and the voltage detection positions of the frame terminals 300 and 400.
  • the shunt device 100 shown in FIG. 2 includes a shunt resistor 200 and a pair of wide metal frame terminals (lead frame terminals) 300 and 400 fixed to the shunt resistor 200.
  • the shunt resistor 200 includes a resistor 500 made of a resistance alloy plate having a predetermined thickness and width, and a pair of electrodes 600 and 700 made of a high conductivity metal joined to both ends of the resistor 500.
  • the shunt device 1 has a structure for specifying the connection position of the frame terminals 3 and 4 in order to improve the current detection accuracy.
  • the electrodes 6, 7 have first steps 12, 13 on the joining surfaces (inner end surfaces 6 a, 7 a) with the resistor 5.
  • a space SP ⁇ b> 1 is formed on the resistor 5 by the first steps 12 and 13.
  • the surfaces of the electrodes 6 and 7 are higher than the surface of the resistor 5.
  • the frame terminal 3 can be connected to the surface of the electrode 6 such that the contact portion 3 a is adjacent to the first step 12, and the frame terminal 4 is such that the contact portion 4 a is connected to the first step 13. Adjacent, it can be connected to the surface of the electrode 7.
  • the frame terminal 3 can be connected to the surface of the electrode 6 such that the inner end surface (inner terminal end surface) 3 d of the contact portion 3 a is located on the same plane as the first step 12.
  • 4 can be connected to the surface of the electrode 7 such that the inner end surface (inner terminal end surface) 4d of the contact portion 4a is located on the same plane as the first step 13.
  • the frame terminal 3 is connected to the surface of the electrode 6 such that the inner end face 3d of the contact portion 3a is located substantially in the same plane as the first step 12, and the frame terminal 4 is connected to the contact portion 4a.
  • the inner end face 4d may be connected to the surface of the electrode 7 such that the inner end face 4d is located substantially in the same plane as the first step 13.
  • the frame terminals 3 and 4 (the inner end faces 3d and 4d) are connected adjacent to each other such that the respective sides overlap each other on a straight line, and current detection can be performed.
  • the inner end surfaces 3d and 4d are located in the same plane as the first steps 12 and 13, so that a stable bonding area is secured and ideal inner surfaces on the electrodes 6 and 7 are formed.
  • the frame terminals 3 and 4 can be connected to a suitable point, and current detection at an ideal position can be performed.
  • FIG. 3 is a plan view of the shunt device 1
  • FIG. 4 is a sectional view taken along line AA of FIG.
  • the white arrows indicate the current direction. 3 and 4, some of the components of the shunt device 1 are exaggerated for the sake of clarity.
  • the length L1 is the entire length of the resistor 2.
  • the horizontal length L2 of the first step 12 is shorter than the width W1 of the resistor 2 in the width direction, and the thickness t2 of the electrode 6 is larger than the thickness t1 of the resistor 5.
  • the length L2 may be the same as the length W1.
  • the horizontal length of the first step 13 is the same as the length L2
  • the thickness of the electrode 7 is the same as the thickness t2.
  • the length of the resistor 5 in the width direction (perpendicular to the current direction) is the same as the length L2
  • the length of the electrodes 6 and 7 in the width direction (perpendicular to the current direction) is the same as the length W1. It is.
  • the frame terminals 3 and 4 are preferably connected to the surfaces of the electrodes 6 and 7 such that the inner end faces 3 d and 4 d are located on the same plane as the first steps 12 and 13. , 13 so as to protrude and connect to the resistor 5 (the space SP1 formed by the first steps 12, 13).
  • FIG. 5 is a longitudinal sectional view showing the shunt device 1 when a part of the frame terminal 4 protrudes from the step 13 and is connected to the electrode 7. Since the electrodes 6, 7 have the first steps 12, 13, the user can connect the frame terminals 3, 4 to the inner edges of the electrodes 6, 7 without bringing the frame terminals 3, 4 into contact with the resistor 5 at all. 4 can be connected.
  • the user can connect the frame terminals 3 and 4 to an ideal point closest to the junction surface of the electrodes 6 and 7 with the resistor 5 and detect a current. Therefore, as a result, the shunt device 1 can improve the current detection accuracy.
  • FIG. 6 is a perspective view showing another embodiment of the shunt device 1.
  • the electrode 6 of the present embodiment includes a second step 14 that partitions the voltage detection unit 10 between the first step 12 and an outer end surface (outer electrode end surface) 6b of the electrode 6.
  • a first step 13 and an outer end face (outer electrode end face) 7 b of the electrode 7 are provided with a second step 15 for partitioning the voltage detecting section 11.
  • a space SP2 is formed on the electrode 6 by the second step 14, and a space SP3 is formed on the electrode 7 by the second step 15.
  • the frame terminal 3 is disposed on the voltage detection unit 10 and is connected to the voltage detection unit 10.
  • the frame terminal 4 is disposed on the voltage detection unit 11 and is connected to the voltage detection unit 11. In other words, each of the voltage detection units 10 and 11 forms a voltage detection area.
  • the user can connect the frame terminal 3 to the voltage detecting unit 10 adjacent to the first step 12 and the second step 14, and adjacent to the first step 13 and the second step 15,
  • the frame terminal 4 can be connected to the voltage detector 11.
  • the inner end surface 3 d of the contact portion 3 a is located on the same plane as the first step 12, and the outer end surface (outer terminal end surface) 3 e of the contact portion 3 a is located on the second step 14. It is arranged so that it may be located in the same plane as.
  • the inner end surface 4 d of the contact portion 4 a is located on the same plane as the first step 13, and the outer end surface (outer terminal end surface) 4 e of the contact portion 4 a is the same as the second step 15. It is arranged to be located in a plane.
  • FIG. 7 is a plan view of the shunt device 1 shown in FIG. 6, and FIG. 8 is a sectional view taken along line AA of FIG.
  • white arrows indicate the current direction. 7 and 8, some of the components of the shunt device 1 are exaggerated for the sake of clarity.
  • the voltage detectors 10 and 11 extend in a direction perpendicular to the current direction.
  • the voltage detection unit 10 is a part of the electrode 6 adjacent to the resistor 5 and is a part between the first step 12 and the second step 14.
  • the voltage detecting section 11 is a part of the electrode 7 adjacent to the resistor 5 and is a part between the first step 13 and the second step 15.
  • the horizontal length L3 of the second steps 14, 15 is the same as the width W1 of the resistor 2.
  • the distance D1 between the first step 12 and the second step 14 (that is, the length in the width direction of the voltage detection unit 10) is 2 mm, and the height Dp of the second step 14 is 0. 0.5 mm.
  • the distance D1 is the same as the length W2 of the frame terminal 3 in the width direction. In one embodiment, the distance D1 may be longer than the length W2.
  • the voltage detectors 10 and 11 are arranged symmetrically with respect to the resistor 5. Therefore, although not shown, the distance between the first step 13 and the second step 15 (that is, the length in the width direction of the voltage detection unit 11) is the same as the distance D1, and the distance of the second step 15 The height is the same as the height Dp. In the present embodiment, the distance between the first step 13 and the second step 15 is the same as the length of the frame terminal 4 in the width direction. In one embodiment, the distance between the first step 13 and the second step 15 may be longer than the length of the frame terminal 4 in the width direction.
  • the frame terminal 3 is configured such that the inner end face 3d of the contact portion 3a is in the first position. May be located in the same plane as the step 12 of the second step, and the outer end face 3 e of the contact portion 3 a may be located in the same plane as the second step 14.
  • the inner end surface 3 d of the contact portion 3 a may be located on substantially the same plane as the first step 12, and the outer end surface 3 e of the contact portion 3 a may be located on the second step 14. They may be located on substantially the same plane.
  • the frame terminal 4 is configured such that the inner end face 4d of the contact portion 4a has the first end. May be located on the same plane as the step 13 of the second step, and the outer end face 4 e of the contact portion 4 a may be located on the same plane as the second step 15.
  • the inner end surface 4 d of the contact portion 4 a may be located substantially in the same plane as the first step 12, and the outer end surface 4 e of the contact portion 4 a may be located on the second step 14. They may be located on substantially the same plane.
  • the frame terminal 3 straddles the second step 14, protrudes into the space SP ⁇ b> 2, and there is no problem even if the frame terminal 3 is connected to cover a part of the space SP ⁇ b> 2.
  • the connection method of the frame terminal 4 to the voltage detection unit 11 is the same as the connection method of the frame terminal 3.
  • FIG. 9 is a diagram illustrating an effect obtained by forming the second step 14.
  • the voltage detection position P1 is at the center of the contact surface of the frame terminal 3 with the electrode 6.
  • a part of the frame terminal 3 is arranged to protrude from the second step 14.
  • the voltage detection position P2 is the center of the contact surface of the frame terminal 3 with the electrode 6. Therefore, the distance Da between the resistor 5 and the voltage detection position P2 is smaller than the distance Db between the resistor 5 and the voltage detection position P1.
  • the second step 14 can restrict the contact surface of the frame terminal 3 with the electrode 6 to the inside of the second step 14 (that is, the resistor 5 side). Therefore, even if the frame terminal 3 is arranged apart from the resistor 5, the voltage is detected at a position closer to the resistor 5, and variations occurring at the connection positions of the frame terminals 3 and 4 are reduced. Therefore, the shunt device 1 can improve the current detection accuracy.
  • FIG. 10 is a diagram showing the relationship between the width of the voltage detection units 10 and 11 and the width of the frame terminals 3 and 4.
  • the first step 13 and the second step 15 are As a result, the frame terminal 4 contacts only the voltage detection unit 11.
  • the first step 12 and the second step 14 cause the displacement of the contact position of the frame terminal 3 with the electrode 6. Can be regulated.
  • the frame terminals 3 and 4 are connected to ideal points on the electrodes 6 and 7 regardless of the width of the frame terminals 3 and 4. Can be done.
  • FIG. 11 is a graph showing the effect of forming the first step 12 and the second step 14. 11, the horizontal axis represents the relative position of the frame terminal 3 to the electrode 6, and the vertical axis represents the temperature coefficient of resistance (TCR).
  • TCR temperature coefficient of resistance
  • the reference (zero) on the horizontal axis is the center position between the steps 12 and 14 in FIG.
  • the numerical value indicating the position of the frame terminal 3 becomes a positive number.
  • the numerical value indicating the position of the frame terminal 3 becomes a negative number.
  • the positive side is the surface of the electrode 6 having the same height and the negative side is also the surface of the electrode 6 having the same height.
  • FIG. 12 is a perspective view showing still another embodiment of the shunt device 1.
  • the electrode 6 has a concave groove 22 formed on its surface
  • the electrode 7 has a concave groove 23 formed on its surface.
  • the second step 14 forms an inner wall of the groove 22, and the third step 18 forms an outer wall of the groove 22.
  • the second step 15 forms the inner wall of the groove 23, and the third step 19 forms the outer wall of the groove 23.
  • FIG. 13 is a plan view of the shunt device 1 shown in FIG. 12, and FIG. 14 is a sectional view taken along line AA of FIG. In FIG. 13, the white arrows indicate the current direction. 13 and 14, some of the components of the shunt device 1 are exaggerated for the sake of clarity. As shown in FIG. 13, the horizontal length L4 of the third steps 18 and 19 is the same as the width W1 of the resistor 2.
  • the space SP2 is formed by the second step 14 and the third step 18, and the space SP3 is formed by the second step 15 and the third step 19.
  • the shunt device 1 of the present embodiment can provide the same effects as those of the shunt device 1 described with reference to FIGS.
  • FIG. 15 is a plan view showing still another embodiment of the shunt device 1.
  • illustration of the frame terminals 3 and 4 is omitted for easy viewing of the drawing.
  • the horizontal length L3 of the second steps 14, 15 and the horizontal length L4 of the third steps 18, 19 of the present embodiment are shorter than the width W1 of the resistor 2 in the width direction.
  • the voltage detecting unit 10 is formed between the first step 12 and the second step 14, and the voltage detecting unit 11 is formed between the first step 13 and the second step 15.
  • the shunt device 1 can provide the same effects as those of the shunt device 1 described with reference to FIGS.
  • FIGS. 16 to 18 are plan views showing still another embodiment of the shunt device 1. 16 to 18, illustration of the frame terminals 3 and 4 is omitted to make the drawings easy to see.
  • the second steps 14, 15 and the third steps 18, 19 may be formed in an arc shape when viewed from above.
  • each of the second steps 14 and 15 and the third steps 18 and 19 has a shape curved in a direction away from the resistor 5.
  • the voltage detecting unit 10 is formed between the first step 12 and the second step 14, and the voltage detecting unit 11 is formed between the first step 13 and the second step 15.
  • the second steps 14, 15 and the third steps 18, 19 may be formed in a U-shape when viewed from above.
  • each of the second steps 14 and 15 and the third steps 18 and 19 has a shape protruding in a direction away from the resistor 5.
  • the voltage detecting unit 10 is formed between the first step 12 and the second step 14, and the voltage detecting unit 11 is formed between the first step 13 and the second step 15.
  • the concave grooves 22 and 23 may be arranged diagonally across the resistor 5 when viewed from above.
  • the concave grooves 22 and 23 face each other with the resistor 5 interposed therebetween.
  • the concave grooves 22 and 23 It is arranged diagonally across.
  • the voltage detecting unit 10 is formed between the first step 12 and the second step 14, and the voltage detecting unit 11 is formed between the first step 13 and the second step 15.
  • FIG. 19 is a perspective view showing still another embodiment of the shunt device 1.
  • the frame terminals 3 and 4 of the present embodiment do not include the bent portions 3c and 4c.
  • the frame terminals 3 and 4 may be arranged such that the vertical portions 3b and 4b face each other.
  • the shunt device 1 has the same configuration as the shunt device 1 described with reference to FIG. 1 and FIGS.
  • the frame terminals 3 and 4 may be arranged diagonally across the resistor 5 when viewed from above.
  • the vertical portion 3b of the frame terminal 3 is adjacent to the first step 13
  • the vertical portion 4b of the frame terminal 4 is adjacent to the first step 12.
  • the shunt device 1 has the same configuration as the shunt device 1 described with reference to FIG. 1 and FIGS.
  • FIG. 21 is a perspective view showing still another embodiment of the shunt device 1.
  • the lengths of the contact portions 3 a and 4 a of the frame terminals 3 and 4 in the current direction are determined by the voltage detecting portions 10 and 11 defined by the first steps 12 and 13 and the second steps 14 and 15. Longer than the width.
  • the frame terminals 3 and 4 are arranged so that the vertical portion 3b and the vertical portion 4b, which are portions for extracting a voltage generated in the resistor 5, face each other.
  • FIG. 22 is a perspective view showing still another embodiment of the shunt device 1. Also in the shunt device 1, the length of the contact portions 3 a and 4 a of the frame terminals 3 and 4 in the current direction is determined by the voltage detecting portions 10 and 11 defined by the first steps 12 and 13 and the second steps 14 and 15. Much longer than the width. In the frame terminals 3 and 4, a vertical portion 3b and a vertical portion 4b, which are portions for extracting a voltage generated in the resistor 5, are arranged obliquely.
  • the detection accuracy of the current can be improved without being affected by the “width dimension” of the wide frame terminal and without being affected by the “position shift of the connection position” of the frame terminal.
  • the present invention is applied to a shunt device in which a metal electrode is joined to both ends of a resistor made of a resistive alloy and a shunt resistor for large current use, and a lead terminal for detecting a voltage generated at both ends of the resistor is connected. It is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

本発明は、抵抗合金からなる抵抗体の両端部に金属からなる電極を接合した大電流用途のシャント抵抗器に、抵抗体の両端部に生じる電圧を検出する引出端子を接続したシャント装置に関するものである。シャント装置(1)は、抵抗合金からなる抵抗体(5)と、抵抗体(5)の両端に接合された高導電率金属からなる一対の電極(6,7)と、を備えたシャント抵抗器(2)と、シャント抵抗器(2)に接続された一対の幅広の金属フレーム端子(3,4)と、を備え、電極(6,7)は、抵抗体(5)との接合面に第1の段差(12,13)を備えており、フレーム端子(3,4)は、その接触部(3a,4a)が第1の段差(12,13)に隣接して、電極(6,7)に接続されている。

Description

シャント装置
 本発明は、電流検出用のシャント抵抗器に係り、特に抵抗合金からなる抵抗体の両端部に金属からなる電極を接合した大電流用途のシャント抵抗器に、抵抗体の両端部に生じる電圧を検出する引出端子を接続したシャント装置に関するものである。
 従来から、シャント抵抗器は、車載用バッテリーの充放電の電流を監視するなどの大電流の電流検出用途に広く用いられている。このようなシャント抵抗器は、抵抗合金板材からなる抵抗体と、その両端に固着した銅材からなる電極とを備えており、電極の適当な場所に検出電極部を設け、例えばそこにアルミワイヤーを接続することにより抵抗体両端部で発生した電圧を検出する(特開2016-054224号公報、特開2015-184206号公報、特開2017-009419号公報、特開2001-118701号公報参照)。
 このようなシャント抵抗器では、大電流の検出精度に優れていること、温度ドリフトが小さいこと、大電流が印加されても過剰な発熱をしないこと、1mΩ以下の低抵抗値であること、などが要求される。このような低抵抗値の抵抗器に生じる電圧を高精度且つ温度ドリフトを小さく検出するには、抵抗合金材料の種類や抵抗器の形状、構造の他、抵抗体両端部に生じる電圧を検出する端子の位置が大きく関係する。
 すなわち、上記端子の接続位置が電極上であれば、抵抗体の両端部に生じる電圧は一応検出可能である。しかしながら、1mΩ以下の低抵抗値の抵抗器では、電極の内部抵抗を無視することができず、端子の接続位置が明確に定まらないために、端子の接続位置にばらつきが生じ、結果として、電流の検出精度が安定しないという問題がある。
 ところで、近年、大電流回路で用いられる電流検出用抵抗器では、幅広の金属フレーム端子を、電圧を検出する引出端子とする要求がみられるようになってきている。係る幅広の金属フレーム端子を引出端子とすると、ワイヤボンディングのような細い径の端子と異なり、幅広の金属フレーム端子を用いることにより、幅広の電極の取付け位置によって、その電圧検出値はブレやすい。特に溶接による引出端子の取付けは位置精度を出すことが難しく、取付け位置のばらつきの影響が顕著に出やすい。
 本発明は、上述の事情に基づいてなされたもので、低抵抗値の大電流検出用途のシャント抵抗器に、幅広の金属フレーム端子を電圧検出引出端子として接続して、電流の検出精度を向上させたシャント装置を提供することを目的とする。
 一態様は、抵抗合金からなる抵抗体と、前記抵抗体の両端に接合された高導電率金属からなる一対の電極と、を備えたシャント抵抗器と、前記シャント抵抗器に接続された一対の幅広の金属フレーム端子と、を備え、前記電極は、前記抵抗体との接合面に第1の段差を備えており、前記フレーム端子は、その接触部が前記第1の段差に隣接して、前記電極に接続されていることを特徴とするシャント装置である。
 一態様は、前記電極は、外側端面を有し、前記第1の段差と前記外側端面との間に電圧検出部を区画する第2の段差を備えていることを特徴とする。
 一態様は、前記フレーム端子の少なくとも一方の端面は、前記第1の段差または前記第2の段差と略同一平面内に位置していることを特徴とする。
 一態様は、前記フレーム端子の一部は、前記第1の段差に跨がって、前記第1の段差によって形成された空間にはみ出して配置されていることを特徴とする。
 一態様は、前記第1の段差と前記第2の段差との距離は、前記フレーム端子の幅方向の長さと同じであるか、または前記フレーム端子の幅方向の長さよりも長いことを特徴とする。
 電極は、抵抗体との接合面に段差を有しているため、電極の抵抗体との接合面に最も近い理想的な地点にフレーム端子を接続させ、電流検出をすることができる。また、フレーム端子が段差からはみ出して抵抗体上に位置することがあったとしても、抵抗体に全く接触することなく、上記理想地点にフレーム端子を接続させることができる。結果として、シャント装置は、電流の検出精度を向上させることができる。
シャント装置の一実施形態を示す斜視図である。 フレーム端子の接続位置とフレーム端子の電圧検出位置との関係を説明する図である。 シャント装置の平面図である。 図3のA-A線断面図である。 フレーム端子の一部が段差からはみ出して電極に接続されたときのシャント装置を示す縦断面図である。 シャント装置の他の実施形態を示す斜視図である。 図6に示すシャント装置の平面図である。 図7のA-A線断面図である。 第2の段差の形成による効果を説明する図である。 電圧検出部の幅と、フレーム端子の幅の関係を示す図である。 第1の段差および第2の段差の形成による効果を示すグラフである。 シャント装置のさらに他の実施形態を示す斜視図である。 図12に示すシャント装置の平面図である。 図13のA-A線断面図である。 シャント装置のさらに他の実施形態を示す平面図である。 シャント装置のさらに他の実施形態を示す平面図である。 シャント装置のさらに他の実施形態を示す平面図である。 シャント装置のさらに他の実施形態を示す平面図である。 シャント装置のさらに他の実施形態を示す斜視図である。 シャント装置のさらに他の実施形態を示す斜視図である。 シャント装置のさらに他の実施形態を示す斜視図である。 シャント装置のさらに他の実施形態を示す斜視図である。
 以下、本発明の実施形態について図面を参照して説明する。なお、以下で説明する図面において、同一又は相当する構成要素には、同一の符号を付して重複した説明を省略する。以下で説明する複数の実施形態において、特に説明しない一実施形態の構成は、他の実施形態と同じであるので、その重複する説明を省略する。
 図1は、シャント装置1の一実施形態を示す斜視図である。図1に示すように、シャント装置1は、シャント抵抗器2と、シャント抵抗器2に固定された一対の幅広の金属フレーム端子(リードフレーム端子)3,4を備えている。以下、本明細書において、シャント抵抗器2を単に抵抗器2と呼ぶことがある。
 抵抗器2は、所定の厚みと幅を有する抵抗合金板材からなる抵抗体5と、抵抗体5の両端に接合された高導電率金属からなる一対の電極6,7とを備えている。抵抗体5の両端面は、電極6,7の内側端面(内側電極端面)6a,7aに溶接(例えば、電子ビーム溶接、レーザービーム溶接、または、ろう接)などの手段によって接合されている。内側端面6a,7aは、抵抗体5との接合面である。電極6,7には、抵抗器2をねじなどで固定するためのボルト穴8,9が形成されている。
 フレーム端子3は、電極6の表面と接触する接触部3aと、接触部3aと垂直な垂直部3bと、垂直部3bと垂直であり、かつ接触部3aと平行な屈曲部3cとを備えている。フレーム端子3,4は同一の構造を有している。つまり、フレーム端子4は、フレーム端子3と同様に、接触部4aと、垂直部4bと、屈曲部4cとを備えている。
 抵抗体5の材質の一例として、Cu-Mg-Ni系合金などの低抵抗合金材を挙げることができる。電極6,7の材質の一例として、銅(Cu)を挙げることができる。フレーム端子3,4の材質の一例として、錫(Sn)めっきされた銅(Cu)またはめっきされていない銅を挙げることができる。
 一般的に、1mΩ以下の低抵抗値を有する抵抗器では、電極内部の抵抗成分によって生じる電位分布を無視することができない。したがって、フレーム端子3,4の接続位置が抵抗体5から外側に離れるほど、電極内部の抵抗成分によって生じる電圧が増加してしまう。結果として、電流を精度よく検出することができない。そこで、2つの検出端子は抵抗体により近接した位置で、かつ、抵抗体からほぼ等しい距離地点で電圧を検出することが理想的である。
 上述したシャント装置の場合、フレーム端子の接続位置がずれて接続されることにより生じるばらつきは、電流の検出精度に大きな影響を及ぼし、結果として、電流の検出精度にばらつきが生じてしまう。図2は、フレーム端子300,400の接続位置とフレーム端子300,400の電圧検出位置との関係を説明する図である。
 図2に示すシャント装置100は、シャント抵抗器200と、シャント抵抗器200に固定された一対の幅広の金属フレーム端子(リードフレーム端子)300,400を備えている。シャント抵抗器200は、所定の厚みと幅を有する抵抗合金板材からなる抵抗体500と、抵抗体500の両端に接合された高導電率金属からなる一対の電極600,700とを備えている。
 幅広のフレーム端子300,400が電極600,700に接続されている場合、図2の黒丸Xに示すように、実質的な電圧の検出位置は、フレーム端子の電極との接触面の中央である(A=A’)。したがって、フレーム端子300,400の接続位置が明確に特定されていない場合、抵抗体500とその両側のフレーム端子300,400との間の距離が異なる場合がある。図2に示す例では、抵抗体500とフレーム端子400の検出位置との間の距離Bは、抵抗体とフレーム端子300の検出位置との間の距離B’よりも小さい(B<B’)。
 そこで、本実施形態では、電流の検出精度を向上させるために、シャント装置1は、フレーム端子3,4の接続位置を特定するための構造を備えている。具体的には、図1に示すように、電極6,7は、抵抗体5との接合面(内側端面6a,7a)に第1の段差12,13を備えている。抵抗体5上には、第1の段差12,13によって空間SP1が形成されている。電極6,7のそれぞれの表面は、抵抗体5の表面よりも高い位置にある。
 ユーザーは、第1の段差12,13に基づいて、フレーム端子3,4を電極6,7上に配置することができる。本実施形態では、フレーム端子3は、接触部3aが第1の段差12に隣接して、電極6の表面に接続することができ、フレーム端子4は、接触部4aが第1の段差13に隣接して、電極7の表面に接続することができる。具体的には、フレーム端子3は、接触部3aの内側端面(内側端子端面)3dが第1の段差12と同一平面内に位置するように電極6の表面に接続することができ、フレーム端子4は、接触部4aの内側端面(内側端子端面)4dが第1の段差13と同一平面内に位置するように電極7の表面に接続することができる。一実施形態では、フレーム端子3を、接触部3aの内側端面3dが第1の段差12と略同一平面内に位置するように電極6の表面に接続し、フレーム端子4を、接触部4aの内側端面4dが第1の段差13と略同一平面内に位置するように電極7の表面に接続してもよい。
 すなわち、電極6,7は第1の段差12,13を備えているため、ユーザーは電極6,7の抵抗体5との接合面に最も近い理想的な地点(電極6,7の内側エッジ部)にフレーム端子3,4(の内側端面3d,4d)を、それぞれの辺同士を一直線上に重ね合わせるように隣接して接続させ、電流検出をすることができる。本実施形態によれば、内側端面3d,4dは、第1の段差12,13と同一平面内に位置しているため、安定した接着面積を確保した上で、電極6,7上の理想的な地点に、フレーム端子3,4を接続させることができ、理想的な位置における電流検出をすることができる。
 図3は、シャント装置1の平面図であり、図4は、図3のA-A線断面図である。図3において、白抜き矢印は電流方向を表している。図3および図4では、図面を見やすくするために、シャント装置1の構成要素の一部は誇張して描かれている。図3および図4に示すように、長さL1は、抵抗器2の全体の長さである。第1の段差12の水平方向の長さL2は、抵抗器2の幅方向の長さW1よりも短く、電極6の厚さt2は、抵抗体5の厚さt1よりも大きい。
 一実施形態では、長さL2は、長さW1と同一であってもよい。図示はしないが、第1の段差13の水平方向の長さは、長さL2と同一であり、電極7の厚さは、厚さt2と同一である。抵抗体5の幅方向(電流方向と垂直方向)の長さは、長さL2と同一であり、電極6,7の幅方向(電流方向と垂直方向)の長さは、長さW1と同一である。
 フレーム端子3,4は、内側端面3d,4dが第1の段差12,13と同一平面内に位置するように、電極6,7の表面に接続されることが好ましいが、第1の段差12,13に跨がって、抵抗体5上(第1の段差12,13によって形成された空間SP1)にはみ出して接続されても支障がない。
 図5は、フレーム端子4の一部が段差13からはみ出して電極7に接続されたときのシャント装置1を示す縦断面図である。電極6,7は第1の段差12,13を備えているため、ユーザーは、フレーム端子3,4を抵抗体5に全く接触させることなく、電極6,7の内側エッジ部にフレーム端子3,4を接続させることができる。
 フレーム端子3,4は、ユーザー側で溶接により固定するため、電極6,7の抵抗体5との接合面である段差12,13に正確に隣接して接続することは必ずしも容易ではない。しかしながら、上述したように段差をはみ出して接続しても、支障はなく、或いは段差から少し離隔して接続しても、影響は微々たるものである。よって、段差12,13はフレーム端子3,4を隣接して接続する目標位置としての意義を有する。
 よって、上述した各実施形態において、ユーザーは、上述する電極6,7の抵抗体5との接合面に最も近い理想的な地点にフレーム端子3,4を接続させ、電流検出をすることができるため、結果として、シャント装置1は、電流の検出精度を向上させることができる。
 図6は、シャント装置1の他の実施形態を示す斜視図である。本実施形態の電極6は、第1の段差12と、電極6の外側端面(外側電極端面)6bとの間に電圧検出部10を区画する第2の段差14を備えており、電極7は、第1の段差13と、電極7の外側端面(外側電極端面)7bとの間に電圧検出部11を区画する第2の段差15を備えている。電極6上には、第2の段差14によって空間SP2が形成されており、電極7上には、第2の段差15によって空間SP3が形成されている。
 フレーム端子3は、電圧検出部10上に配置されており、電圧検出部10に接続されている。フレーム端子4は、電圧検出部11上に配置されており、電圧検出部11に接続されている。電圧検出部10,11のそれぞれは、言い換えれば、電圧検出領域を構成している。
 ユーザーは、第1の段差12および第2の段差14に隣接して、フレーム端子3を電圧検出部10に接続することができ、第1の段差13および第2の段差15に隣接して、フレーム端子4を電圧検出部11に接続することができる。
 本実施形態では、フレーム端子3は、接触部3aの内側端面3dが第1の段差12と同一平面内に位置し、かつ接触部3aの外側端面(外側端子端面)3eが第2の段差14と同一平面内に位置するように配置されている。同様に、フレーム端子4は、接触部4aの内側端面4dが第1の段差13と同一平面内に位置し、かつ接触部4aの外側端面(外側端子端面)4eが第2の段差15と同一平面内に位置するように配置されている。
 図7は、図6に示すシャント装置1の平面図であり、図8は、図7のA-A線断面図である。図7において、白抜き矢印は電流方向を表している。図7および図8では、図面を見やすくするために、シャント装置1の構成要素の一部は誇張して描かれている。図7に示すように、電圧検出部10,11は、電流方向と垂直な方向に延びている。電圧検出部10は、抵抗体5に隣接する電極6の一部分であり、第1の段差12と第2の段差14との間の部分である。電圧検出部11は、抵抗体5に隣接する電極7の一部分であり、第1の段差13と第2の段差15との間の部分である。
 第2の段差14,15の水平方向の長さL3は、抵抗器2の幅方向の長さW1と同一である。一例では、第1の段差12と第2の段差14との間の距離(すなわち、電圧検出部10の幅方向の長さ)D1は2mmであり、第2の段差14の高さDpは0.5mmである。本実施形態では、距離D1は、フレーム端子3の幅方向の長さW2と同じである。一実施形態では、距離D1は、長さW2よりも長くてもよい。
 電圧検出部10,11は、抵抗体5に関して対称的に配置されている。したがって、図示しないが、第1の段差13と第2の段差15との間の距離(すなわち、電圧検出部11の幅方向の長さ)は距離D1と同一であり、第2の段差15の高さは、高さDpと同一である。本実施形態では、第1の段差13と第2の段差15との間の距離は、フレーム端子4の幅方向の長さと同じである。一実施形態では、第1の段差13と第2の段差15との間の距離は、フレーム端子4の幅方向の長さよりも長くてもよい。
 第1の段差12と第2の段差14との間の距離D1が、フレーム端子3の幅方向の長さW2よりも長い場合は、フレーム端子3は、接触部3aの内側端面3dが第1の段差12と同一平面内に位置していてもよく、接触部3aの外側端面3eが第2の段差14と同一平面内に位置していてもよい。一実施形態では、フレーム端子3は、接触部3aの内側端面3dが第1の段差12と略同一平面内に位置していてもよく、接触部3aの外側端面3eが第2の段差14と略同一平面内に位置していてもよい。
 同様に、第1の段差13と第2の段差15との間の距離が、フレーム端子4の幅方向の長さよりも長い場合は、フレーム端子4は、接触部4aの内側端面4dが第1の段差13と同一平面内に位置していてもよく、接触部4aの外側端面4eが第2の段差15と同一平面内に位置していてもよい。一実施形態では、フレーム端子4は、接触部4aの内側端面4dが第1の段差12と略同一平面内に位置していてもよく、接触部4aの外側端面4eが第2の段差14と略同一平面内に位置していてもよい。
 一実施形態では、フレーム端子3は、第2の段差14に跨がって、空間SP2にはみ出して、空間SP2の一部を覆うように接続しても支障がない。フレーム端子4の電圧検出部11への接続方法も、フレーム端子3の接続方法と同様である。
 なお、フレーム端子3,4は、ユーザー側で溶接により固定するため、電極6,7の段差に正確に隣接して接続することは必ずしも容易ではない。ところが、以下に詳述するように、段差12,14、或いは、段差13,15をはみ出して接続しても、良好な検出精度が得られ、段差12,13,14,15はフレーム端子3,4を隣接して接続する目標位置としての意義を有する。
 図6乃至図8を参照して説明したシャント装置1は、図1、および図3乃至図5を参照して説明した実施形態が奏する効果に加え、以下の効果を奏することができる。図9は、第2の段差14の形成による効果を説明する図である。第2の段差14が設けられていない場合、電圧の検出位置P1はフレーム端子3の電極6との接触面の中央である。これに対し、図9に示すように、第2の段差14が形成されている場合、フレーム端子3の一部は第2の段差14からはみ出して配置される。電圧の検出位置P2はフレーム端子3の電極6との接触面の中央である。したがって、抵抗体5と電圧検出位置P2との間の距離Daは、抵抗体5と電圧検出位置P1との間の距離Dbよりも小さい。
 このように、第2の段差14は、フレーム端子3の電極6との接触面を第2の段差14の内側(すなわち、抵抗体5側)に制限することができる。したがって、フレーム端子3が抵抗体5から離間して配置されても、電圧は抵抗体5により近接した位置で検出され、かつフレーム端子3,4の接続位置に生じるばらつきは低減される。したがって、シャント装置1は電流の検出精度を向上させることができる。
 図10は、電圧検出部10,11の幅と、フレーム端子3,4の幅の関係を示す図である。図10に示すように、フレーム端子4の幅が電圧検出部11の幅より大きく、フレーム端子4の一部が電圧検出部11からはみ出しても、第1の段差13および第2の段差15があることにより、フレーム端子4は、電圧検出部11のみと接触する。また、フレーム端子3の幅が、電圧検出部10の幅より小さくても、第1の段差12および第2の段差14があることにより、フレーム端子3の電極6との接触位置の位置ずれを規制することができる。
 したがって、図6乃至図8を参照して説明した実施形態では、フレーム端子3,4の幅に左右されることなく、電極6,7上の理想的な地点に、フレーム端子3,4を接続させることができる。
 図11は、第1の段差12および第2の段差14の形成による効果を示すグラフである。図11において、横軸はフレーム端子3の電極6に対する相対位置を表しており、縦軸は抵抗温度係数(TCR)を表している。
 図11では、横軸の基準(ゼロ)は、図9における段差12,14間の中央位置である。フレーム端子3が抵抗体5から離間する位置に配置されると、フレーム端子3の位置を示す数値は正数になる。フレーム端子3が抵抗体5に近接する位置に配置されると、フレーム端子3の位置を示す数値は負数になる。
 図11に示すように、段差12,14が無い場合、正側は同一高さの電極6の面となり、負側も同一高さの電極6の面となると仮定すると、電極6は銅(Cu)等の抵抗温度係数(TCR)が高い材料で構成されているので、フレーム端子3が抵抗体5から離間する位置に配置されると、TCRは図中点線で記載されているように、離間する距離に比例して増大し、フレーム端子3が抵抗体5に近接する位置に配置されると、近接する距離に比例して負方向に増大する。
 段差12,14が有る場合、フレーム端子3が抵抗体5から離間または近接する位置に配置されると、フレーム端子3の一部は段差12,14からはみ出して配置される。そうすると、フレーム端子3の電圧検出部分は段差12,14間の電極6上であるため、TCRは、図11の実線で記載されているように、フレーム端子3が抵抗体5と離間または近接する距離に比例せず、低い変動で抑えることが可能となる。
 図12は、シャント装置1のさらに他の実施形態を示す斜視図である。本実施形態では、電極6は、その表面に形成された凹溝22を有しており、電極7は、その表面に形成された凹溝23を有している。第2の段差14は凹溝22の内側壁を構成しており、第3の段差18は凹溝22の外側壁を構成している。同様に、第2の段差15は凹溝23の内側壁を構成しており、第3の段差19は凹溝23の外側壁を構成している。
 図13は、図12に示すシャント装置1の平面図であり、図14は、図13のA-A線断面図である。図13において、白抜き矢印は電流方向を表している。図13および図14では、図面を見やすくするために、シャント装置1の構成要素の一部は誇張して描かれている。図13に示すように、第3の段差18,19の水平方向の長さL4は、抵抗器2の幅方向の長さW1と同一である。
 本実施形態では、第2の段差14および第3の段差18によって空間SP2が形成されており、第2の段差15および第3の段差19によって空間SP3が形成されている。本実施形態のシャント装置1は、図6乃至図8を参照して説明したシャント装置1と同様の効果を奏することができる。
 図15は、シャント装置1のさらに他の実施形態を示す平面図である。図15において、図面を見やすくするために、フレーム端子3,4の図示は省略されている。本実施形態の第2の段差14,15の水平方向の長さL3および第3の段差18,19の水平方向の長さL4は、抵抗器2の幅方向の長さW1よりも短い。電圧検出部10は第1の段差12と第2の段差14との間に形成されており、電圧検出部11は第1の段差13と第2の段差15との間に形成されている。本実施形態においても、シャント装置1は、図6乃至図8を参照して説明したシャント装置1と同様の効果を奏することができる。
 図16乃至図18は、シャント装置1のさらに他の実施形態を示す平面図である。図16乃至図18において、図面を見やすくするために、フレーム端子3,4の図示は省略されている。
 図16に示すように、第2の段差14,15および第3の段差18,19は、上から見たときに円弧状に形成されてもよい。図16に示す実施形態では、第2の段差14,15および第3の段差18,19のそれぞれは、抵抗体5から離れる方向に湾曲した形状を有している。電圧検出部10は第1の段差12と第2の段差14との間に形成されており、電圧検出部11は第1の段差13と第2の段差15との間に形成されている。
 図17に示すように、第2の段差14,15および第3の段差18,19は、上から見たときにコの字状に形成されてもよい。図17に示す実施形態では、第2の段差14,15および第3の段差18,19のそれぞれは、抵抗体5から離れる方向に突出する形状を有している。電圧検出部10は第1の段差12と第2の段差14との間に形成されており、電圧検出部11は第1の段差13と第2の段差15との間に形成されている。
 図18に示すように、凹溝22,23は、上から見たときに抵抗体5を挟んで斜交いに配置されてもよい。図15乃至図17に示す実施形態では、凹溝22,23は、抵抗体5を挟んで互いに対向しているが、図18に示す実施形態では、凹溝22,23は、抵抗体5を挟んで斜めに配置されている。電圧検出部10は第1の段差12と第2の段差14との間に形成されており、電圧検出部11は第1の段差13と第2の段差15との間に形成されている。
 図19は、シャント装置1のさらに他の実施形態を示す斜視図である。本実施形態のフレーム端子3,4は、屈曲部3c,4cを備えていない。図19に示すように、フレーム端子3,4を、垂直部3bと垂直部4bとが対向するように配置してもよい。本実施形態においても、シャント装置1は、図1、および図3乃至図5を参照して説明したシャント装置1と同様の構成を備えることで、同様の効果を奏することができる。
 さらに一実施形態では、図20に示すように、フレーム端子3,4は、上から見たときに抵抗体5を挟んで斜交いに配置されてもよい。本実施形態では、フレーム端子3の垂直部3bは、第1の段差13に隣接しており、フレーム端子4の垂直部4bは、第1の段差12に隣接している。本実施形態においても、シャント装置1は、図1、および図3乃至図5を参照して説明したシャント装置1と同様の構成を備えることで、同様の効果を奏することができる。
 図21は、シャント装置1のさらに他の実施形態を示す斜視図である。このシャント装置1においては、フレーム端子3,4の接触部3a,4aの電流方向の長さは、第1の段差12,13および第2の段差14,15で区画する電圧検出部10,11の幅よりも長い。そして、フレーム端子3,4は、抵抗体5に生じる電圧の取り出し部である垂直部3bと垂直部4bとが対向するように配置されている。
 図22は、シャント装置1のさらに他の実施形態を示す斜視図である。このシャント装置1においても、フレーム端子3,4の接触部3a,4aの電流方向の長さは、第1の段差12,13および第2の段差14,15で区画する電圧検出部10,11の幅よりもはるかに長い。そして、フレーム端子3,4は、抵抗体5に生じる電圧の取り出し部である垂直部3bと垂直部4bとが斜交いに配置されている。
 これにより、フレーム端子3,4の「接続位置の位置ずれ」が生じても、すなわち、空間SP1,SP2,SP3上にはみ出す程度に差が生じても、フレーム端子3,4の接触部3a,4aの範囲内で電圧検出部10,11に接続している限り、フレーム端子3,4の電圧取り出し部である垂直部3bと垂直部4b間からは、図11に示すように殆ど同一の検出電圧が得られる。そして、電圧検出部10,11は、抵抗体5に隣接しているので、フレーム端子の「接続位置の位置ずれ」の影響を受けることなく、抵抗体直近の理想的な位置の電圧検出部の電圧を検出することが可能となる。
 換言すれば、幅広のフレーム端子の「幅寸法」の影響を受けることなく、フレーム端子の「接続位置の位置ずれ」の影響を受けることなく、電流の検出精度を向上させることができる。
 これまで本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。
 本発明は、抵抗合金からなる抵抗体の両端部に金属からなる電極を接合した大電流用途のシャント抵抗器に、抵抗体の両端部に生じる電圧を検出する引出端子を接続したシャント装置に利用可能である。

Claims (5)

  1.  抵抗合金からなる抵抗体と、前記抵抗体の両端に接合された高導電率金属からなる一対の電極と、を備えたシャント抵抗器と、
     前記シャント抵抗器に接続された一対の幅広の金属フレーム端子と、を備え、
     前記電極は、前記抵抗体との接合面に第1の段差を備えており、
     前記フレーム端子は、その接触部が前記第1の段差に隣接して、前記電極に接続されていることを特徴とするシャント装置。
  2.  前記電極は、外側端面を有し、前記第1の段差と前記外側端面との間に電圧検出部を区画する第2の段差を備えていることを特徴とする請求項1に記載のシャント装置。
  3.  前記フレーム端子の少なくとも一方の端面は、前記第1の段差または前記第2の段差と略同一平面内に位置していることを特徴とする請求項2に記載のシャント装置。
  4.  前記フレーム端子の一部は、前記第1の段差に跨がって、前記第1の段差によって形成された空間にはみ出して配置されていることを特徴とする請求項1に記載のシャント装置。
  5.  前記第1の段差と前記第2の段差との距離は、前記フレーム端子の幅方向の長さと同じであるか、または前記フレーム端子の幅方向の長さよりも長いことを特徴とする請求項2に記載のシャント装置。
PCT/JP2019/030530 2018-08-10 2019-08-02 シャント装置 WO2020031901A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018151328A JP2020027847A (ja) 2018-08-10 2018-08-10 シャント装置
JP2018-151328 2018-08-10

Publications (1)

Publication Number Publication Date
WO2020031901A1 true WO2020031901A1 (ja) 2020-02-13

Family

ID=69414841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030530 WO2020031901A1 (ja) 2018-08-10 2019-08-02 シャント装置

Country Status (2)

Country Link
JP (1) JP2020027847A (ja)
WO (1) WO2020031901A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117095886A (zh) * 2023-08-11 2023-11-21 钧崴电子科技股份有限公司 一种分流器的加工方法及分流器
DE102022115522A1 (de) 2022-06-22 2023-12-28 Isabellenhütte Heusler Gmbh & Co. Kg Strommesswiderstand

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022177468A (ja) * 2021-05-18 2022-12-01 Koa株式会社 電流検出装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005181056A (ja) * 2003-12-18 2005-07-07 Microjenics Inc 電流検出用抵抗器
JP2010272712A (ja) * 2009-05-22 2010-12-02 Koa Corp シャント抵抗器の製造方法
JP2011003694A (ja) * 2009-06-18 2011-01-06 Koa Corp シャント抵抗器およびその製造方法
WO2014038372A1 (ja) * 2012-09-07 2014-03-13 コーア株式会社 電流検出用抵抗器
JP2014059269A (ja) * 2012-09-19 2014-04-03 Koa Corp 電流検出用抵抗器
JP2017505899A (ja) * 2013-11-26 2017-02-23 スマート エレクトロニクス インク 電流測定素子及び電流測定素子アセンブリの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5117248B2 (ja) * 2008-03-31 2013-01-16 古河電気工業株式会社 シャント抵抗およびシャント抵抗への端子取付け方法
KR101537169B1 (ko) * 2013-11-26 2015-07-22 스마트전자 주식회사 전류측정소자 어셈블리
JP6650409B2 (ja) * 2014-10-22 2020-02-19 Koa株式会社 電流検出用抵抗器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005181056A (ja) * 2003-12-18 2005-07-07 Microjenics Inc 電流検出用抵抗器
JP2010272712A (ja) * 2009-05-22 2010-12-02 Koa Corp シャント抵抗器の製造方法
JP2011003694A (ja) * 2009-06-18 2011-01-06 Koa Corp シャント抵抗器およびその製造方法
WO2014038372A1 (ja) * 2012-09-07 2014-03-13 コーア株式会社 電流検出用抵抗器
JP2014059269A (ja) * 2012-09-19 2014-04-03 Koa Corp 電流検出用抵抗器
JP2017505899A (ja) * 2013-11-26 2017-02-23 スマート エレクトロニクス インク 電流測定素子及び電流測定素子アセンブリの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022115522A1 (de) 2022-06-22 2023-12-28 Isabellenhütte Heusler Gmbh & Co. Kg Strommesswiderstand
CN117095886A (zh) * 2023-08-11 2023-11-21 钧崴电子科技股份有限公司 一种分流器的加工方法及分流器

Also Published As

Publication number Publication date
JP2020027847A (ja) 2020-02-20

Similar Documents

Publication Publication Date Title
WO2020031901A1 (ja) シャント装置
CN102640233B (zh) 分流电阻器及其制造方法
US10600559B2 (en) Coil component
JP6384211B2 (ja) シャント抵抗器
JP5263733B2 (ja) 金属板抵抗器
WO2017203963A1 (ja) シャント抵抗器およびシャント抵抗器の実装構造
JP6714974B2 (ja) 電流検出装置
WO2013005824A1 (ja) シャント抵抗器およびその製造方法
JP6064254B2 (ja) 電流検出用抵抗器
JP6426945B2 (ja) 蓄電装置
WO2021215229A1 (ja) シャント抵抗器
US20230170112A1 (en) Shunt resistor, method for manufacturing shunt resistor, and current detection device
WO2013121872A1 (ja) 抵抗器の端子接続構造
JP6564482B2 (ja) 金属板抵抗器
WO2021220758A1 (ja) シャント抵抗器
WO2020008845A1 (ja) シャント装置
JP2017174843A (ja) シャント抵抗器
US20230081784A1 (en) Resistor arrangement
JP7567261B2 (ja) 電流検出装置
JP4256404B2 (ja) 固体電解コンデンサ
WO2021246034A1 (ja) 抵抗器
JP6643859B2 (ja) シャント抵抗器の製造方法
JP2019091824A (ja) シャント抵抗器
JP2023087730A (ja) シャント抵抗器および電流検出装置
JP7490351B2 (ja) シャント抵抗モジュール及び、シャント抵抗モジュールの実装構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19846399

Country of ref document: EP

Kind code of ref document: A1