WO2020031537A1 - 駆動回路、駆動システム - Google Patents
駆動回路、駆動システム Download PDFInfo
- Publication number
- WO2020031537A1 WO2020031537A1 PCT/JP2019/025518 JP2019025518W WO2020031537A1 WO 2020031537 A1 WO2020031537 A1 WO 2020031537A1 JP 2019025518 W JP2019025518 W JP 2019025518W WO 2020031537 A1 WO2020031537 A1 WO 2020031537A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gate
- transistor
- drain
- potential
- pmos transistor
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/16—Modifications for eliminating interference voltages or currents
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/51—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
- H03K17/56—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
- H03K17/687—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/0175—Coupling arrangements; Interface arrangements
Definitions
- the present invention relates to a drive circuit and a drive system.
- a dedicated IC When a dedicated IC is provided in a drive circuit for driving a load such as a motor, the degree of freedom in design is high, so that advantages such as power consumption, responsiveness, and energy loss are more advantageous than when a dedicated IC is not provided. However, it is disadvantageous in terms of cost. Therefore, it is preferable to configure a drive circuit without using a dedicated IC. Further, depending on the system specifications, it is required that the output terminal of a drive circuit connected to the motor is set in a floating state when the motor as a load is started.
- An exemplary first invention of the present application is a driving NMOS transistor and a driving PMOS transistor having a common drain connected to a load, and a first voltage varying between a reference potential and a first potential higher than the reference potential.
- a signal processing is performed such that the potential of the gate of the driving NMOS transistor varies between the reference potential and a second potential higher than the first potential based on the potentials of the input terminal and the second input terminal.
- a first level shift circuit, and a potential of a gate of the driving PMOS transistor is set to a value equal to the reference potential based on potentials of a third input terminal and a fourth input terminal that vary between the reference potential and the first potential.
- a second level shift circuit that performs signal processing so as to fluctuate between the second potential and the second potential, wherein a source of the driving NMOS transistor is provided on the reference potential side.
- the source of the driving PMOS transistor is set to the second potential, and each level shift circuit is an NMOS transistor having a first source set to the reference potential, a first gate, and a first drain.
- a second transistor which is an NMOS transistor having a first transistor, a second source set to the reference potential, a second gate, and a second drain; and a third source set to the second potential
- a third transistor which is a PMOS transistor having a third gate, a third drain connected to the first drain, a fourth source set to the second potential, a fourth gate,
- a fourth transistor which is a PMOS transistor having a fourth drain connected to a second drain;
- the second drain of the first level shift circuit is connected to the gate of the driving NMOS transistor, and the fourth drain of the second level shift circuit is connected to the gate of the driving PMOS transistor.
- a drive circuit which is an NMOS transistor having a first transistor, a
- FIG. 2 is a circuit diagram of a drive circuit according to the first embodiment.
- 5 is a timing chart illustrating an operation of the drive circuit according to the first embodiment.
- FIG. 3 is a diagram illustrating a configuration example of a MOS transistor of the drive circuit according to the first embodiment.
- FIG. 5 is a diagram illustrating another example of the structure of the MOS transistor of the drive circuit according to the first embodiment.
- It is a circuit diagram of a drive circuit of a second embodiment.
- FIG. 9 is a diagram illustrating an example of a current waveform of each unit of the drive circuit according to the second embodiment.
- FIG. 9 is a diagram illustrating an example of a current waveform of each unit of the drive circuit according to the second embodiment.
- FIG. 9 is a diagram illustrating an example of a current waveform of each unit of the drive circuit according to the second embodiment.
- It is a circuit diagram of a drive circuit of a third embodiment.
- FIG. 13 is a diagram illustrating an equivalent circuit of each variable resistor included in the drive circuit according to the third embodiment.
- FIG. 9 is a diagram illustrating a configuration example of a P / N type variable resistor included in a drive circuit according to a third embodiment.
- FIG. 14 is a circuit diagram of a drive circuit according to a fourth embodiment. It is a circuit diagram of a drive circuit of a fifth embodiment.
- FIG. 1 is a diagram illustrating a system configuration of a motor drive system 1 according to the embodiment.
- the motor drive system 1 includes an inverter device 2, a linear regulator (LDO: Low Dropout) 3, a CPU (Central Processing Unit) 5, and a three-phase AC motor M.
- the CPU 5 is an example of a microcontroller.
- the inverter device 2 includes a three-phase voltage generator 10 and a level shift circuit group 20, generates three-phase AC power, and supplies the three-phase AC power to the three-phase AC motor M.
- the three-phase AC motor M is provided with a Hall sensor 100 for each phase for detecting the position of the rotor.
- a voltage of a node or a terminal in a circuit means a potential with reference to a ground potential GND (hereinafter, referred to as “GND potential”).
- GND potential ground potential
- the linear regulator 3 lowers the power supply voltage Vcc (+12 V) to a predetermined voltage (+3.3 V in the example of the present embodiment) required for the operation of the CPU 5 and supplies it to the CPU 5.
- the CPU 5 supplies a pulse signal having an amplitude of 3.3 V to each of the level shift circuits 21 to 23 of the level shift circuit group 20.
- Each level shift circuit converts the pulse signal from the CPU 5 to a signal level at which the MOS transistor in the three-phase voltage generator 10 can operate.
- the level shift circuits 21 to 23 correspond to the nodes N11 to N13, respectively, and correspond to output terminals of a drive circuit described later.
- the three-phase voltage generator 10 of the inverter device 2 includes NMOS transistors Q11, Q21, and Q31 as low-side switches, and PMOS transistors Q12, Q22, and Q32 as high-side switches. Since the three-phase AC motor M may operate at 100% duty in some cases, the three-phase voltage generator 10 uses the high-side switch as a PMOS transistor.
- the PMOS transistor Q12 and the NMOS transistor Q11 are provided for the U-phase of the three-phase AC power supplied to the three-phase AC motor M.
- the U-phase voltage Vu which is the U-phase output voltage, is generated by the switching operation of the PMOS transistor Q12 and the NMOS transistor Q11.
- the PMOS transistor Q22 and the NMOS transistor Q21 are provided for the V phase of the three-phase AC power supplied to the three-phase AC motor M.
- the switching operation of the PMOS transistor Q22 and the NMOS transistor Q21 generates a V-phase voltage Vv, which is a V-phase output voltage.
- the PMOS transistor Q32 and the NMOS transistor Q31 are provided for the W phase of the three-phase AC power supplied to the three-phase AC motor M.
- the switching operation of the PMOS transistor Q32 and the NMOS transistor Q31 generates a W-phase voltage Vw, which is a W-phase output voltage.
- the sources of the NMOS transistors Q11, Q21, Q31 are set to the ground potential GND.
- the sources of the PMOS transistors Q12, Q22, Q32 are connected to the power supply voltage Vcc of the inverter device 2.
- the common drain (node N11) of U-phase NMOS transistor Q11 and PMOS transistor Q12 is connected to one end of a U-phase winding (not shown) of three-phase AC motor M.
- a common drain (node N12) of the V-phase NMOS transistor Q21 and the PMOS transistor Q22 is connected to one end of a V-phase winding (not shown) of the three-phase AC motor M, and a W-phase NMOS transistor
- a common drain (node N13) of Q31 and PMOS transistor Q32 is connected to one end of a W-phase winding (not shown) of three-phase AC motor M.
- the CPU 5 sends signals to the level shift circuits 21 to 23 of the level shift circuit group 20 based on signals Hu, Hv, and Hw indicating the detected values of each phase of the Hall sensor 100 that detects the position of the rotor of the three-phase AC motor M.
- the duty ratio of the pulse signal to be supplied is determined.
- the signals Hu, Hv, Hw are sine wave signals having a phase difference of 120 degrees in order.
- the CPU 5 supplies a pulse signal having the determined duty ratio to each level shift circuit.
- the amplitude of the pulse signal supplied to each level shift circuit is 3.3 V, which is the same as the operating voltage of the CPU 5.
- Each level shift circuit of the level shift circuit group 20 converts the level of a pulse signal from the CPU 5 having an amplitude of 3.3 V into a pulse signal having an amplitude of 12 V.
- the level shift circuit 21 inputs the level-converted pulse signal to each gate of the U-phase NMOS transistor Q11 and PMOS transistor Q12.
- the level shift circuit 22 inputs a level-converted pulse signal to each gate of the V-phase NMOS transistor Q21 and PMOS transistor Q22.
- the level shift circuit 23 inputs the level-converted pulse signal to each gate of the W-phase NMOS transistor Q31 and PMOS transistor Q32.
- NMOS transistors Q11, Q21, Q31, which are low-side switches, and the PMOS transistors Q12, Q22, Q32, which are high-side switches, are controlled by the pulse signals whose levels have been converted by the level shift circuits 21, 22, 23.
- FIG. 2 shows a circuit configuration of a drive circuit including a level shift circuit 21 and a U-phase NMOS transistor Q11 and a PMOS transistor Q12 corresponding to the level shift circuit 21 in the three-phase voltage generator 10.
- a drive circuit including a level shift circuit 22, a corresponding V-phase NMOS transistor Q21 and PMOS transistor Q22, and a level shift circuit 23 and a corresponding W-phase NMOS transistor Q31 and PMOS transistor Q32 The drive circuit used is the same as in the case of the U phase. Therefore, only the case of the U phase will be described below, and redundant description of the V phase and the W phase will be omitted.
- the common drain of the NMOS transistor Q11 (an example of a driving NMOS transistor) and the PMOS transistor Q12 (an example of a driving PMOS transistor) is connected to a three-phase AC motor M as a load.
- the source of the NMOS transistor Q11 is set to the ground potential GND, and the source of the PMOS transistor Q12 is set to the power supply potential V CC.
- the level shift circuit 21 controls the NMOS based on the potential of the first input terminal P1 and the potential of the second input terminal P2 which fluctuate between a ground potential GND (an example of a reference potential) and 3.3 V (an example of a first potential). Signal processing is performed so that the potentials of the gates of the transistor Q11 and the PMOS transistor Q12 fluctuate between the ground potential GND and the power supply potential V CC (+12 V; an example of the second potential). Complementary pulse signals varying between the ground potential GND and 3.3 V are input from the CPU 5 to the first input terminal P1 and the second input terminal P2.
- the level shift circuit 21 includes an NMOS transistor M1 (an example of a first transistor), an NMOS transistor M2 (an example of a second transistor), a PMOS transistor M3 (an example of a third transistor), and a PMOS transistor M4 (an example of a fourth transistor).
- the NMOS transistor M1 includes a source (an example of a first source) set to a ground potential GND, a gate (an example of a first gate) connected to the first input terminal P1, and a drain (an example of a first drain).
- the NMOS transistor M2 is connected to a source (an example of a second source) set to the ground potential GND, a gate connected to the second input terminal P2 (an example of the second gate), and a gate of the NMOS transistor Q11.
- a drain an example of a second drain.
- the PMOS transistor M3 has a source (an example of a third source) set at the power supply potential VCC , a gate (an example of a third gate), and a drain connected to the drain of the NMOS transistor M1 (an example of a third drain).
- the PMOS transistor M4 has a source (an example of a fourth source) set to the power supply potential VCC , a gate (an example of a fourth gate), and a drain connected to the gate of the PMOS transistor Q12 (an example of a fourth drain). And The gate of the PMOS transistor M4 is connected to the drain of the NMOS transistor M2. The drain of the NMOS transistor M1 is connected to the gate of the PMOS transistor M4, and the drain of the NMOS transistor M2 is connected to the gate of the PMOS transistor M3.
- the level shift circuit 21 has a drain resistance Rd1 (an example of a first drain resistance) and a drain resistance Rd2 (an example of a second drain resistance).
- the drain resistance Rd1 is provided between the drain of the NMOS transistor M1 and the drain of the PMOS transistor M3.
- the drain resistance Rd2 is provided between the drain of the NMOS transistor M2 and the drain of the PMOS transistor M4.
- FIG. 3 is a timing chart showing the operation of the drive circuit shown in FIG.
- the first and second timing charts from the top show the on / off state of the PMOS transistor Q12 and the on / off state of the NMOS transistor Q11, respectively.
- the third, fourth, and fifth timing charts from the top show the drain voltage Vd1 of the NMOS transistor M1, the drain voltage Vd4 of the PMOS transistor M4, and the drain voltage Vd2 of the NMOS transistor M2, respectively. .
- FIG. 3 is a timing chart showing the operation of the drive circuit shown in FIG.
- the first and second timing charts from the top show the on / off state of the PMOS transistor Q12 and the on / off state of the NMOS transistor Q11, respectively.
- the third, fourth, and fifth timing charts from the top show the drain voltage Vd1 of the NMOS transistor M1, the drain voltage Vd4 of the PMOS transistor M4, and the drain voltage Vd2 of the NMOS transistor M2, respectively. .
- the sixth and seventh timing charts from the top show the voltage V2 of the second input terminal P2 and the voltage V1 of the first input terminal P1.
- the maximum value (12 V) of each drain voltage shown in FIG. 3 is a value ignoring the voltage drop due to the ON resistance and the drain resistance of each MOS transistor.
- the operation example shown in FIG. 3 shows, for the purpose of explanation, a case where the voltage V2 of the second input terminal P2 and the voltage V1 of the first input terminal P1 are pulses and the duty ratio thereof is approximately 50%.
- the voltage V1 of the first input terminal P1 is 3.3 V (hereinafter, referred to as “H level”)
- the voltage V2 of the second input terminal P2 is GND level (hereinafter, referred to as “H”). L level). Therefore, from time t0 to before time t1, the NMOS transistor M1 is turned off, the NMOS transistor M2 is turned on, the PMOS transistor M3 is turned on, the PMOS transistor M4 is turned off, the PMOS transistor Q12 is turned on, and the NMOS transistor Q11 is turned off. I have.
- the voltage V2 of the second input terminal P2 changes from H level to L level.
- both the NMOS transistors M1 and M2 are connected. Turn off to prevent shoot-through current.
- the drain voltage Vd2 of the NMOS transistor M2 (that is, the gate of the NMOS transistor Q11) is at the GND level, and the NMOS transistor Q11 is off.
- the voltage V1 of the first input terminal P1 becomes H level, so that the NMOS transistor M1 is turned on, and as shown in FIG. 3, the drain voltage Vd1 of the NMOS transistor M1 falls from 12V to the GND level.
- the drain voltage Vd1 reaches the threshold voltage TH1 during the lowering, the voltage of the gate of the PMOS transistor M4 also decreases to the threshold voltage TH1, so that the PMOS transistor M4 is turned on. Therefore, the drain voltage Vd4 of the PMOS transistor M4 rises from the GND level to 12V.
- the gate of the PMOS transistor Q12 When the drain voltage Vd4 reaches the threshold voltage TH4 during the rise, the gate of the PMOS transistor Q12 also rises to the threshold voltage TH4, so that the PMOS transistor Q12 is turned off.
- the drain voltage Vd4 of the PMOS transistor M4 rises, the drain voltage Vd2 of the NMOS transistor M2 rises with a delay time determined by the drain resistance Rd2 and the parasitic capacitor.
- the gate of the NMOS transistor Q11 When the drain voltage Vd2 reaches the threshold voltage TH2, the gate of the NMOS transistor Q11 also rises to the threshold voltage TH2, turning on the NMOS transistor Q11. Note that, since the gate potential of the PMOS transistor M3 increases as the drain voltage Vd2 of the NMOS transistor M2 increases, the PMOS transistor M3 is turned off.
- the voltage V1 of the first input terminal P1 changes from H level to L level.
- both the NMOS transistors M1 and M2 are connected. Turn off to prevent shoot-through current.
- the drain voltage Vd1 of the NMOS transistor M1 maintains the GND level.
- the voltage V2 of the second input terminal P2 changes from the L level to the H level, so that the NMOS transistor M2 is turned on.
- the drain voltage Vd2 of the NMOS transistor M2 changes from 12V to the GND level. Descend.
- the gate of the NMOS transistor Q11 also drops to the threshold voltage TH2, so that the NMOS transistor Q11 is turned off.
- the drain voltage Vd2 of the NMOS transistors M2 With a decrease of the drain voltage Vd2 of the NMOS transistors M2, also decreases the voltage of the gate of the PMOS transistor M3 connected to the drain of the NMOS transistors M2, the gate-source voltage V GS of the PMOS transistor M3 exceeds the threshold voltage, The PMOS transistor M3 turns on.
- the drain voltage Vd1 of the NMOS transistor M1 rises with a delay time determined by the drain resistance Rd1 and the parasitic capacitor, as shown in FIG.
- the gate voltage of the PMOS transistor M4 connected to the drain of the NMOS transistor M1 also becomes the threshold voltage TH1, and the gate-source voltage V GS of the PMOS transistor M4 becomes the threshold voltage. It falls below the voltage. As a result, the PMOS transistor M4 is turned off.
- the drain voltage Vd4 of the PMOS transistor M4 decreases.
- the PMOS transistor Q12 also decreases to the threshold voltage TH4, the PMOS transistor Q12 is turned on the gate-source voltage V GS of the PMOS transistor Q12 exceeds the threshold voltage.
- the voltage V2 of the second input terminal P2 changes from H level to L level.
- the state of each part at time t5 is the same as the state of each part at time t1, and thereafter, the same operation is repeated.
- a period in which both the PMOS transistor Q12 and the NMOS transistor Q11 are off is shown as a dead time DT. That is, the dead time DT is a period during which the pulse signals input to the first input terminal P1 and the second input terminal P2 are both at the ground potential GND when the signal level switches.
- the dead time DT is determined by the dead time dt set by the voltage V1 of the first input terminal P1 and the voltage V2 of the second input terminal P2, and the delay time caused by the drain resistors Rd1, Rd2 and the parasitic capacitor.
- the driving circuit of the present invention has the following advantageous effects.
- the NMOS transistor Q11 is on, the NMOS transistor M1 is on, the NMOS transistor M2 is off, the PMOS transistor M3 is off, and the PMOS transistor M4 is on.
- the current flowing through the PMOS transistor M3, the drain resistor Rd1, and the NMOS transistor M1, and the current flowing through the PMOS transistor M4, the drain resistor Rd2, and the NMOS transistor M2 become zero in a steady state, and low power consumption is realized.
- the drain of the PMOS transistor M4 is connected to the gate of the PMOS transistor Q12. Therefore, when the voltage V1 of the first input terminal P1 changes from L level to H level (time t2 in FIG. 3), the NMOS transistor M1 turns on and the PMOS transistor M4 turns on, and the gate potential of the PMOS transistor Q12 rises rapidly. As a result, the PMOS transistor Q12 is turned off. That is, the PMOS transistor Q12 can be turned off at high speed.
- the drive circuit for driving the three-phase AC motor M in the motor drive system 1 of the present embodiment boosts the low-voltage pulse signal of 3.3 V from the CPU 5 to the power supply voltage Vcc (+12 V).
- the driving MOS transistors are controlled by providing level shift circuits 21 to 23 for driving.
- Each of the level shift circuits consumes low power, has excellent responsiveness, and operates with low loss, so that the performance can be improved without using a dedicated IC.
- the drain resistance Rd1 and the drain resistance Rd2 it is not always essential to have the drain resistance Rd1 and the drain resistance Rd2.
- the dead time DT of the NMOS transistor Q11 and the PMOS transistor Q12 can be provided even when the dead time dt is not set for the input signal. Further, by setting the dead time dt for the input signal, the dead time margin can be expanded.
- FIG. 4 is a diagram illustrating a structural example of a MOS transistor of the drive circuit according to the present embodiment.
- FIG. 5 is a diagram illustrating another example of the structure of the MOS transistor of the drive circuit according to the present embodiment. Note that FIG. 4 shows only the NMOS transistor M2, the drain resistor Rd2, and the PMOS transistor M4 in the level shift circuit 21 of the drive circuit shown in FIG. 2, but the NMOS transistor M1, the drain resistor Rd1, and the PMOS transistor M4.
- the transistor M3 can have a similar structure.
- the NMOS transistor Q11 and the PMOS transistor Q12 which are driving MOS transistors, have a vertical structure.
- the drain electrode is provided on the side opposite to the gate electrode and the source electrode. Since the NMOS transistor Q11 and the PMOS transistor Q12 have a common drain connected to the node N11 (see FIG. 1), they can be mounted on the same metal (lead frame). By employing the vertical structure, the on-resistance of the NMOS transistor Q11 and the PMOS transistor Q12 can be reduced.
- the NMOS transistor M2 and the PMOS transistor M4 included in the level shift circuit 21 have a horizontal structure.
- the integration degree is increased and the cost is reduced by forming the MOS transistors in the level shift circuit into a horizontal structure on a single chip.
- the MOS transistors in the level shift circuit may have a vertical structure, and all the MOS transistors of the drive circuit may be configured with only the vertical structure together with the vertical structure of the NMOS transistor Q11 and the PMOS transistor Q12.
- the maximum rated voltage V GSS between the gate and the source needs to satisfy the power supply voltage Vcc (+12 V).
- the maximum rated voltage V GSS is about 5V.
- the gate oxide film can be made thicker by increasing the thickness of the gate oxide film than a general lateral type MOS transistor.
- the maximum rated voltage V GSS can be increased. That is, the maximum rated voltage V GSS between the gate and the source can be set to 12 V or more even in the case of a MOS transistor having a horizontal structure.
- a bonding pad region is provided on a chip for a horizontal structure MOS transistor of a level shift circuit, and connection with a vertical structure drive MOS transistor is performed by wire bonding.
- the structure example of the MOS transistor shown in FIG. 5 has a structure in which a p-well of a MOS transistor having a lateral structure is different from that in FIG. Such a structure may be applied as a MOS transistor having a horizontal structure, or may be combined with the MOS transistor having a vertical structure in FIG.
- FIG. 6 is a circuit diagram of the drive circuit according to the second embodiment.
- the drive circuit shown in FIG. 6 differs from the drive circuit shown in FIG. 2 in that a source resistance and a gate resistance are provided for each MOS transistor in the level shift circuit. That is, the level shift circuit 21A of the drive circuit of the present embodiment includes the following resistors.
- the level shift circuit 21A including all the source resistances Rs1 to Rs4 and the gate resistances Rg1 to Rg4 of each MOS transistor is shown.
- the present invention is not limited thereto. At least one resistor may be provided.
- the source resistances Rs1 to Rs4 and the gate resistances Rg1 to Rg4 of each MOS transistor are provided to suppress a through current and a drain current of each MOS transistor.
- FIGS. 7 to 9 show current waveforms of the respective parts when the on / off of the NMOS transistor Q11 and the PMOS transistor Q12 is switched when the source resistances Rs1 to Rs4 and the gate resistances Rg1 to Rg4 are changed, respectively.
- the output current I OUT the drain current I Q11 of the drain current I Q12, NMOS transistor Q11 of the PMOS transistors Q12 and shows a drain current I M4D waveforms of the PMOS transistor M4. Since the drain current IM4D of the PMOS transistor M4 is the largest of the drain currents of the MOS transistors in the level shift circuit 21A, only the waveform of the drain current IM4D is shown in FIGS.
- FIG. 7 to 9 show the case where the drain resistances Rd1 and Rd2 are both 500 ⁇ .
- FIG. 7 shows a case where the source resistances Rs1 to Rs4 and the gate resistances Rg1 to Rg4 are not set.
- FIG. 8 shows a case where the source resistances Rs1 and Rs2 are both 50 ⁇ , the source resistances Rs3 and Rs4 are both 100 ⁇ , the gate resistances Rg1 and Rg2 are both 500 ⁇ , and the gate resistances Rg3 and Rg4 are both 100 ⁇ .
- FIG. 9 shows a case where the drain resistance Rd2 is changed from 500 ⁇ to 2000 ⁇ with respect to the case of FIG.
- the condition in FIG. 7 is substantially the same as the condition in FIG. 2 when the drain resistances Rd1 and Rd2 are set to 500 ⁇ .
- the peak current of the drain current IM4D is as high as 800 mA .
- the peak current of the drain current I M4D becomes 80 mA, and the drain current I M4D becomes about 1/10 compared with the case of FIG.
- the through current of the NMOS transistor Q11 and the PMOS transistor Q12 increases to 20A. This is because the NMOS transistor Q11 and the PMOS transistor Q12 are simultaneously turned on, and a through current flows. Therefore, by increasing the drain resistance Rd2, as shown in FIG.
- the through current of the NMOS transistor Q11 and the PMOS transistor Q12 is eliminated, and the drain current I of the PMOS transistor M4 is reduced while the drain current is reduced to a steady current of 600 mA.
- M4D can be maintained at 80 mA.
- the through current of the NMOS transistor Q11 and the PMOS transistor Q12 can be reduced by appropriately providing the source resistance and the gate resistance for each MOS transistor in the level shift circuit 21A.
- the drain current of each MOS transistor in the level shift circuit 21A can be reduced.
- the presence or absence of the source resistance and / or the gate resistance, and the resistance value when the source resistance and / or the gate resistance are provided are determined by the value of the power supply voltage and the driving MOS transistor. It can be appropriately determined according to the on-resistance and the like.
- the upper limit value of the resistance value of the source resistance and / or the gate resistance can be determined according to an allowable level of responsiveness to a high-frequency pulse input signal.
- the source circuit and / or the gate resistance of the MOS transistor in the level shift circuit are provided in the drive circuit of the first embodiment. Current and drain current can be further suppressed.
- FIG. 10 is a circuit diagram of a drive circuit according to the third embodiment.
- FIG. 11 is a diagram illustrating an equivalent circuit of each variable resistor included in the drive circuit of the present embodiment.
- FIG. 12 is a diagram illustrating a configuration example of a P / N type variable resistor included in the drive circuit of the present embodiment.
- the drive circuit shown in FIG. 10 differs from the drive circuit shown in FIG. 6 in that each MOS transistor in the level shift circuit is provided with a drain variable resistor, a source variable resistor, and a gate variable resistor. That is, the level shift circuit 21B of the drive circuit of the present embodiment includes the following resistors.
- a drain variable resistor Rd2_pn between the drain of the NMOS transistor M2 and the drain of the PMOS transistor M4 (an example of a second drain variable resistor) Ground potential GND at the node N GND and the source variable resistor Rs1_n between the source of the NMOS transistor M1 (first example of the source variable resistor)
- a gate variable resistor Rg2_n between the second input terminal P2 and the gate of the NMOS transistor M2 (an example of a second gate variable resist
- the source variable resistors Rs1_n and Rs2_n and the gate variable resistors Rg1_n and Rg2_n are N-type variable resistors whose equivalent circuits are illustrated in FIG.
- resistors Ra and Rb are provided in parallel between both ends T1 and T2 of the variable resistor (terminal T2 is a terminal on the high voltage side, and terminal T1 is a terminal on the low voltage side).
- a switch element SW is provided in series with Rb.
- the switch element SW can be constituted by, for example, an NMOS transistor. The reason why the switch element SW is provided on the low voltage side in the N-type variable resistor is to enable the gate-source voltage VGS when the switch element SW is turned on to be large.
- the source variable resistors Rs3_p and Rs4_p are P-type variable resistors whose equivalent circuit is illustrated in FIG.
- resistors Ra and Rb are provided in parallel between both ends T1 and T2 of the variable resistor (the terminal T2 is a terminal on the high voltage side, and the terminal T1 is a terminal on the low voltage side).
- a switch element SW is provided in series with Rb.
- the switch element SW can be constituted by, for example, a PMOS transistor. The reason why the switch element SW is provided on the high voltage side in the P-type variable resistor is to enable a large gate-source voltage V GS when the switch element SW is turned on.
- the drain variable resistors Rd1_pn, Rd2_pn and the gate variable resistors Rg3_pn, Rg4_pn are P / N type variable resistors whose equivalent circuits are illustrated in FIG. 11C.
- resistors Ra and Rb are provided in parallel between both ends T1 and T2 of the variable resistor (the terminal T2 is a terminal on the high voltage side, and the terminal T1 is a terminal on the low voltage side).
- Switch elements SW1 and SW2 are provided in series with Rb.
- the switch elements SW1 and SW2 can be configured by NMOS transistors and PMOS transistors, respectively.
- the reason why the switch elements SW1 and SW2 are provided in the drain variable resistor and the gate variable resistor is that the node where the drain variable resistor and the gate variable resistor are set can be on either the low voltage side or the high voltage side.
- the conduction state of the switch element SW or the switch elements SW1 and SW2 is individually controlled by a control signal from the CPU 5, so that the combined resistance value is Ra or Ra ⁇ Rb / (Ra + Rb). ).
- the values of the resistors Ra and Rb may be set independently, but it is preferable that the resistor Ra not connected in series with the switch element has a relatively large value.
- variable resistor illustrated in FIG. 11, an example is shown in which two resistors are provided in parallel and a switch element is provided in series with any one of the resistors, but this is not a limitation.
- the variable resistance value combined resistance value
- the variable resistance value can be set to an arbitrary number of possible resistance values.
- variable resistor illustrated in FIG. 11 an open state is not established between both ends T1 and T2 irrespective of the state of the switch element, but an open state is established between both ends T1 and T2 depending on the state of the switch element. Is also good.
- a switch element is provided in series with each resistor.
- a switch element is provided in series with each resistor.
- the level shift circuit 8 converts the switch control signals sw_off and sw_on (for example, a GND level or a 3.3 V signal) from the CPU 5 into a signal that becomes the GND level or the power supply voltage Vcc (+12 V) The level is converted and input to the gates of the NMOS transistor m5 and the PMOS transistor m6.
- the circuit configuration of the level shift circuit 8 is the same as that of the level shift circuit 21 in FIG.
- the switch control signals sw_off and sw_on have a fixed signal level initially set so as to have a desired resistance value, so that the operation of the level shift circuit 8 may be slow. Therefore, the drain resistances rd1 and rd2 of the level shift circuit 8 can be set to a large value, and a through current in the level shift circuit 8 can be suppressed.
- a level shift circuit 21B including all source variable resistors Rs1_n, Rs2_n, Rs3_p, Rs4_p, gate variable resistors Rg1_n, Rg2_n, Rg3_pn, Rg4_pn, and drain variable resistors Rd1_pn, Rd2_pn of each MOS transistor is shown.
- the present invention is not limited to this, and at least any one of these resistors may be provided.
- the variable resistance is provided at the source, the gate, and the drain of each MOS transistor of the level shift circuit 21B, so that the variable resistance is provided according to the load (the three-phase AC motor M).
- An optimum resistance value that is, a resistance value that suppresses the through current and the drain current and does not deteriorate the response
- FIG. 13 is a circuit diagram of a drive circuit according to the fourth embodiment.
- the dead time DT when the transistor Q12 turns from off to on is the same.
- the drive circuit of the present embodiment shown in FIG. 13 is provided with a level shift circuit independently for the NMOS transistor Q11 and the PMOS transistor Q12. That is, the level shift circuit 21C of the present embodiment includes the first level shift circuit 211 corresponding to the NMOS transistor Q11 and the second level shift circuit 212 corresponding to the PMOS transistor Q12.
- the first level shift circuit 211 changes the potential of the gate of the NMOS transistor Q11 to the ground potential GND based on the potentials of the first input terminal P11 and the second input terminal P12 that change between the ground potential GND and 3.3V. Signal processing so as to fluctuate between the power supply potential VCC and the power supply potential VCC .
- the first level shift circuit 211 includes NMOS transistors M11 and M21, PMOS transistors M31 and M41, and drain resistors Rd11 and Rd21.
- the second level shift circuit 212 changes the potential of the gate of the PMOS transistor Q12 to the ground potential GND based on the potentials of the third input terminal P13 and the fourth input terminal P14 that change between the ground potential GND and 3.3V. Signal processing so as to fluctuate between the power supply potential VCC and the power supply potential VCC .
- the second level shift circuit 212 includes NMOS transistors M12 and M22, PMOS transistors M32 and M42, and drain resistors Rd12 and Rd22.
- the operations of the first level shift circuit 211 and the second level shift circuit 212 are the same as those of the level shift circuit 21 in FIG.
- the timing at which the NMOS transistor Q11 turns from off to on and the timing from on to off. Is determined. That is, when the first input terminal P11 is at H level and the second input terminal P12 is at L level, the NMOS transistor M11 is turned on, the NMOS transistor M21 is turned off, the PMOS transistor M31 is turned off, and the PMOS transistor M41 is turned on. Therefore, the NMOS transistor Q11 turns on.
- the NMOS transistor M11 when the first input terminal P11 is at L level and the second input terminal P12 is at H level, the NMOS transistor M11 is off, the NMOS transistor M21 is on, the PMOS transistor M31 is on, and the PMOS transistor M41 is off. Therefore, the NMOS transistor Q11 turns off. Further, in the second level shift circuit 212, based on a pulse signal complementarily input to the third input terminal P13 and the fourth input terminal P14, the timing at which the PMOS transistor Q12 turns from off to on and the timing at which the PMOS transistor Q12 turns on , The timing of turning off is determined.
- the NMOS transistor M12 when the third input terminal P13 is at the H level and the fourth input terminal P14 is at the L level, the NMOS transistor M12 is turned on, the NMOS transistor M22 is turned off, the PMOS transistor M32 is turned off, and the PMOS transistor M42 is turned on. Therefore, the PMOS transistor Q12 is turned off.
- the NMOS transistor M12 when the third input terminal P13 is at L level and the fourth input terminal P14 is at H level, the NMOS transistor M12 is off, the NMOS transistor M22 is on, the PMOS transistor M32 is on, and the PMOS transistor M42 is off. Therefore, the PMOS transistor Q12 is turned on.
- the timing of the level change of each signal of the first input terminal P11 and the second input terminal P12 and the timing of the level change of each signal of the third input terminal P13 and the fourth input terminal P14. Can be set individually, so that the dead times of the NMOS transistor Q11 and the PMOS transistor Q12 can be set independently to desired values.
- FIG. 14 is a circuit diagram of a drive circuit according to the fifth embodiment.
- the output terminal node N11 in FIG. 1
- the drive circuit shown in FIG. 2 the output terminal cannot be in a floating state.
- the drive circuit of the present embodiment shown in FIG. 14 is configured such that the output terminal (node N11 in FIG. 1) is in a floating state when the three-phase AC motor M is started.
- the drive circuit shown in FIG. 14 is different from the drive circuit shown in FIG. 2 in that a level shifter including a switch element including an NMOS transistor m5 and a PMOS transistor m6 is provided between the drain of the NMOS transistor M2 and the gate of the PMOS transistor M3. And a circuit 21D. With this switch element, the conduction state between the drain of the NMOS transistor M2 and the gate of the PMOS transistor M3 is controlled.
- the switch control signals sw_off and sw_on (for example, a GND level or a 3.3 V signal) from the CPU 5 are level-converted to a signal that becomes the GND level or the power supply voltage Vcc (+12 V), and are converted to the gates of the NMOS transistor m5 and the PMOS transistor m6. input.
- the CPU 5 when starting the three-phase AC motor M, the CPU 5 sets the switch control signals sw_off and sw_on to H level (3.3 V) and L level (GND level), respectively. Then, the gate of the NMOS transistor m5 goes to the GND level, and the gate of the PMOS transistor m6 goes to the power supply potential cc, so that both the NMOS transistor m5 and the PMOS transistor m6 are turned off. Therefore, the conduction between the drain of the NMOS transistor M2 and the gate of the PMOS transistor M3 is turned off. At this time, by setting both the signal levels applied to the input terminals P1 and P2 from the CPU 5 to the H level (3.3 V; an example of the first potential), the node N11 which is the output terminal enters a floating state.
- the operation of the motor drive system including the drive circuit of FIG. 14 is as follows.
- the switch control signals sw_off and sw_on are set to H level and L level, respectively.
- the state between the drain of the NMOS transistor M2 and the gate of the PMOS transistor M3 is turned off.
- the input signals of the first input terminal P1 and the second input terminal P2 are both at H level.
- the NMOS transistor M1 turns on
- the gate of the PMOS transistor M4 goes to the GND level
- the PMOS transistor M4 turns on. Therefore, the PMOS transistor Q12 is turned off.
- the gate of the PMOS transistor M3 is at the power supply potential cc, so that the PMOS transistor M3 is turned off.
- the NMOS transistor M2 since the input signal of the second input terminal P2 is at the H level, the NMOS transistor M2 is turned on, the gate potential of the NMOS transistor Q11 becomes the GND level, and the NMOS transistor Q11 is turned off.
- the drain of the NMOS transistor M2 is at the GND level, but since the drain of the NMOS transistor M2 and the gate of the PMOS transistor M3 are non-conductive, the off state of the PMOS transistor M3 is maintained.
- both the NMOS transistor Q11 and the PMOS transistor Q12 are turned off, and the node N11 as an output terminal is in a floating state.
- the output terminal can be brought into a floating state when the three-phase AC motor M is started.
- the drive circuit capable of setting the output terminal to the floating state when the three-phase AC motor M is started is not limited to the drive circuit shown in FIG. 14, but can be realized by the drive circuit shown in FIG.
- the CPU 5 sets the first input terminal P11 to L level (ground potential GND) and sets the second input terminal P12 to H level (3.3 V).
- the third input terminal P13 is set to H level (3.3 V)
- the fourth input terminal P14 is set to L level (ground potential GND).
- both the NMOS transistor Q11 is turned off and the PMOS transistor Q12 is turned off. Therefore, the output terminal enters a floating state.
- each driving MOS transistor of the three-phase voltage generation unit 10 is performed by 120-degree energization based on the position information of the Hall sensor.
- another energization control method such as 180-degree energization may be applied.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Electronic Switches (AREA)
Abstract
共通のドレインが負荷に接続された駆動用NMOSトランジスタおよび駆動用PMOSトランジスタと、レベルシフト回路と、を備えた駆動回路が提供される。レベルシフト回路は、NMOSトランジスタである第1トランジスタと、NMOSトランジスタである第2トランジスタと、第2電位に設定される第3ソースと、PMOSトランジスタである第3トランジスタと、PMOSトランジスタである第4トランジスタと、を有する。第1トランジスタの第1ドレインと第4トランジスタの第4ゲートとが接続され、第2トランジスタの第2ドレインと第3トランジスタの第3ゲートとが接続される。レベルシフト回路は、駆動用NMOSトランジスタおよび駆動用PMOSトランジスタにそれぞれ設けられる。
Description
本発明は、駆動回路および駆動システムに関する。
従来、モータを駆動するためのインバータ装置として、マイクロコントローラからの指令に基づき、モータに与える電圧を制御するスイッチ素子に対する信号を生成する専用ICが設けられたものが知られている(例えば、日本国登録公報特許第5652240号の図1を参照)。
モータ等の負荷を駆動する駆動回路において専用ICを設ける場合には、設計の自由度が高いため、専用ICを設けない場合よりも、例えば消費電力、応答性、エネルギー損失等の特性上で有利であるが、コスト面では不利である。したがって、専用ICを用いずに駆動回路を構成することが好ましい。
また、システム仕様によっては、負荷としてのモータの始動時に、モータに接続される駆動回路の出力端子をフローティング状態とすることがもとめられる。
また、システム仕様によっては、負荷としてのモータの始動時に、モータに接続される駆動回路の出力端子をフローティング状態とすることがもとめられる。
そこで、本発明は、負荷をスイッチング駆動する場合に専用ICを用いずに性能向上を実現し、かつ駆動開始時において負荷に対する出力端子をフローティング状態とすることができるようにすることを目的とする。
本願の例示的な第1発明は、共通のドレインが負荷に接続された駆動用NMOSトランジスタおよび駆動用PMOSトランジスタと、基準電位と前記基準電位よりも高い第1電位との間で変動する第1入力端子および第2入力端子の電位に基づいて、前記駆動用NMOSトランジスタのゲートの電位が、前記基準電位と前記第1電位よりも高い第2電位との間で変動するように信号処理する第1レベルシフト回路と、前記基準電位と前記第1電位との間で変動する第3入力端子および第4入力端子の電位に基づいて、前記駆動用PMOSトランジスタのゲートの電位が、前記基準電位と前記第2電位との間で変動するように信号処理する第2レベルシフト回路と、を備え、前記駆動用NMOSトランジスタのソースが前記基準電位側に設けられ、前記駆動用PMOSトランジスタのソースが前記第2電位に設定され、各レベルシフト回路は、前記基準電位に設定される第1ソースと、第1ゲートと、第1ドレインと、を有するNMOSトランジスタである第1トランジスタと、前記基準電位に設定される第2ソースと、第2ゲートと、第2ドレインと、を有するNMOSトランジスタである第2トランジスタと、前記第2電位に設定される第3ソースと、第3ゲートと、前記第1ドレインに接続される第3ドレインと、を有するPMOSトランジスタである第3トランジスタと、前記第2電位に設定される第4ソースと、第4ゲートと、前記第2ドレインに接続される第4ドレインと、を有するPMOSトランジスタである第4トランジスタと、を有し、前記第1ドレインと前記第4ゲートとが接続され、前記第2ドレインと前記第3ゲートとが接続され、前記第1レベルシフト回路の前記第1ゲートが前記第1入力端子に接続され、前記第1レベルシフト回路の前記第2ゲートが前記第2入力端子に接続され、前記第2レベルシフト回路の前記第1ゲートが前記第3入力端子に接続され、前記第2レベルシフト回路の前記第2ゲートが前記第4入力端子に接続され、前記第1レベルシフト回路の前記第2ドレインが前記駆動用NMOSトランジスタのゲートに接続され、前記第2レベルシフト回路の前記第4ドレインが前記駆動用PMOSトランジスタのゲートに接続される、駆動回路である。
本発明によれば、負荷をスイッチング駆動する場合に専用ICを用いずに性能向上を実現し、かつ駆動開始時において負荷に対する出力端子をフローティング状態とすることができる。
以下、本発明の駆動システムの実施形態であるモータ駆動システムについて説明する。
(1)第1の実施形態
(1-1)システム構成
以下、本発明のモータ駆動システムの一実施形態について図面を参照して説明する。
図1は、実施形態のモータ駆動システム1のシステム構成を示す図である。モータ駆動システム1は、インバータ装置2、リニアレギュレータ(LDO:Low Dropout)3、CPU(Central Processing Unit)5、および、3相交流モータMを備える。CPU5は、マイクロコントローラの例である。
インバータ装置2は、3相電圧生成部10およびレベルシフト回路群20を備え、3相交流電力を発生させて3相交流モータMに供給する。3相交流モータMには、回転子の位置を検出する相ごとのホールセンサ100が取り付けられている。
以下の説明において、回路内のノードまたは端子の電圧は、グランド電位GND(以下の説明では、「GND電位」とする。)を基準とした電位を意味している。例えば、インバータ装置2において最も高い電位は電源電位VCC(+12V)であるが、GND電位は0Vとみなしてよいため、適宜、「電源電圧Vcc」ともいう。
リニアレギュレータ3は、電源電圧Vcc(+12V)をCPU5が動作するのに必要となる所定の電圧(本実施形態の例では、+3.3V)まで低下させてCPU5に供給する。
CPU5は、レベルシフト回路群20のレベルシフト回路21~23の各々に対して、振幅が3.3Vのパルス信号を供給する。各レベルシフト回路は、CPU5からのパルス信号を、3相電圧生成部10内のMOSトランジスタを動作可能となる信号レベルに変換する。
図1では、レベルシフト回路21~23がそれぞれ、ノードN11~N13に対応しており、それぞれ後述する駆動回路の出力端子に相当する。
リニアレギュレータ3は、電源電圧Vcc(+12V)をCPU5が動作するのに必要となる所定の電圧(本実施形態の例では、+3.3V)まで低下させてCPU5に供給する。
CPU5は、レベルシフト回路群20のレベルシフト回路21~23の各々に対して、振幅が3.3Vのパルス信号を供給する。各レベルシフト回路は、CPU5からのパルス信号を、3相電圧生成部10内のMOSトランジスタを動作可能となる信号レベルに変換する。
図1では、レベルシフト回路21~23がそれぞれ、ノードN11~N13に対応しており、それぞれ後述する駆動回路の出力端子に相当する。
(1-2)インバータ装置2の構成
以下、インバータ装置2の構成を詳細に説明する。
図1に示すように、インバータ装置2の3相電圧生成部10は、ローサイドスイッチとしてのNMOSトランジスタQ11,Q21,Q31、および、ハイサイドスイッチとしてのPMOSトランジスタQ12,Q22,Q32を備える。3相交流モータMは100%デューティで動作する場合もあるため、3相電圧生成部10は、ハイサイドスイッチをPMOSトランジスタとしている。
本実施形態では、PMOSトランジスタQ12とNMOSトランジスタQ11は、3相交流モータMに供給される3相交流電力のU相に対して設けられる。PMOSトランジスタQ12とNMOSトランジスタQ11とがスイッチング動作を行うことによりU相の出力電圧であるU相電圧Vuが生成される。
同様に、PMOSトランジスタQ22とNMOSトランジスタQ21は、3相交流モータMに供給される3相交流電力のV相に対して設けられる。PMOSトランジスタQ22とNMOSトランジスタQ21とがスイッチング動作を行うことによりV相の出力電圧であるV相電圧Vvが生成される。PMOSトランジスタQ32とNMOSトランジスタQ31は、3相交流モータMに供給される3相交流電力のW相に対して設けられる。PMOSトランジスタQ32とNMOSトランジスタQ31とがスイッチング動作を行うことによりW相の出力電圧であるW相電圧Vwが生成される。
同様に、PMOSトランジスタQ22とNMOSトランジスタQ21は、3相交流モータMに供給される3相交流電力のV相に対して設けられる。PMOSトランジスタQ22とNMOSトランジスタQ21とがスイッチング動作を行うことによりV相の出力電圧であるV相電圧Vvが生成される。PMOSトランジスタQ32とNMOSトランジスタQ31は、3相交流モータMに供給される3相交流電力のW相に対して設けられる。PMOSトランジスタQ32とNMOSトランジスタQ31とがスイッチング動作を行うことによりW相の出力電圧であるW相電圧Vwが生成される。
NMOSトランジスタQ11,Q21,Q31のソースは、グランド電位GNDに設定されている。PMOSトランジスタQ12,Q22,Q32のソースは、インバータ装置2の電源電圧Vccに接続されている。
U相のNMOSトランジスタQ11とPMOSトランジスタQ12の共通のドレイン(ノードN11)は、3相交流モータMのU相の巻線(図示せず)の一端に接続される。同様に、V相のNMOSトランジスタQ21とPMOSトランジスタQ22の共通のドレイン(ノードN12)は、3相交流モータMのV相の巻線(図示せず)の一端に接続され、W相のNMOSトランジスタQ31とPMOSトランジスタQ32の共通のドレイン(ノードN13)は、3相交流モータMのW相の巻線(図示せず)の一端に接続される。
CPU5は、3相交流モータMの回転子の位置を検出するホールセンサ100の各相の検出値を示す信号Hu,Hv,Hwに基づいて、レベルシフト回路群20のレベルシフト回路21~23に供給するパルス信号のデューティ比を決定する。なお、信号Hu,Hv,Hwは、順に120度ずつ位相差がある正弦波信号である。CPU5は、決定したデューティ比のパルス信号を各レベルシフト回路に供給する。各レベルシフト回路に供給されるパルス信号の振幅は、CPU5の動作電圧と同一の3.3Vである。
レベルシフト回路群20の各レベルシフト回路は、振幅3.3VのCPU5からのパルス信号を振幅12Vのパルス信号にレベル変換する。レベルシフト回路21は、U相のNMOSトランジスタQ11およびPMOSトランジスタQ12の各ゲートに対してレベル変換したパルス信号を入力する。レベルシフト回路22は、V相のNMOSトランジスタQ21およびPMOSトランジスタQ22の各ゲートに対してレベル変換したパルス信号を入力する。レベルシフト回路23は、W相のNMOSトランジスタQ31およびPMOSトランジスタQ32の各ゲートに対してレベル変換したパルス信号を入力する。
レベルシフト回路21,22,23によってレベル変換されたパルス信号によって、ローサイドスイッチであるNMOSトランジスタQ11,Q21,Q31およびハイサイドスイッチであるPMOSトランジスタQ12,Q22,Q32の動作が制御される。
レベルシフト回路21,22,23によってレベル変換されたパルス信号によって、ローサイドスイッチであるNMOSトランジスタQ11,Q21,Q31およびハイサイドスイッチであるPMOSトランジスタQ12,Q22,Q32の動作が制御される。
(1-3)レベルシフト回路群20の構成
以下、レベルシフト回路群20の構成について、図2を参照してさらに詳しく説明する。図2は、レベルシフト回路21と、3相電圧生成部10においてレベルシフト回路21に対応するU相のNMOSトランジスタQ11およびPMOSトランジスタQ12と、を備えた駆動回路の回路構成を示している。
レベルシフト回路22と、対応するV相のNMOSトランジスタQ21およびPMOSトランジスタQ22と、を備えた駆動回路、および、レベルシフト回路23と、対応するW相のNMOSトランジスタQ31およびPMOSトランジスタQ32と、を備えた駆動回路は、U相の場合と同じである。そのため、以下ではU相の場合についてのみ説明し、V相およびW相についての重複説明は省略する。
NMOSトランジスタQ11(駆動用NMOSトランジスタの例)およびPMOSトランジスタQ12(駆動用PMOSトランジスタの例)の共通のドレインが、負荷としての3相交流モータMに接続される。NMOSトランジスタQ11のソースがグランド電位GNDに設定され、PMOSトランジスタQ12のソースが電源電位VCCに設定される。
レベルシフト回路21は、グランド電位GND(基準電位の例)と3.3V(第1電位の例)との間で変動する第1入力端子P1および第2入力端子P2の電位に基づいて、NMOSトランジスタQ11およびPMOSトランジスタQ12のゲートの電位が、グランド電位GNDと電源電位VCC(+12V;第2電位の例)との間で変動するように信号処理する。
第1入力端子P1と第2入力端子P2には、CPU5から、グランド電位GNDと3.3Vの間で変動する互いに相補的なパルス信号が入力される。
第1入力端子P1と第2入力端子P2には、CPU5から、グランド電位GNDと3.3Vの間で変動する互いに相補的なパルス信号が入力される。
レベルシフト回路21は、NMOSトランジスタM1(第1トランジスタの例)と、NMOSトランジスタM2(第2トランジスタの例)と、PMOSトランジスタM3(第3トランジスタの例)と、PMOSトランジスタM4(第4トランジスタの例)とを有する。
NMOSトランジスタM1は、グランド電位GNDに設定されるソース(第1ソースの例)と、第1入力端子P1に接続されるゲート(第1ゲートの例)と、ドレイン(第1ドレインの例)と、を有する。
NMOSトランジスタM2は、グランド電位GNDに設定されるソース(第2ソースの例)と、第2入力端子P2に接続されるゲート(第2ゲートの例)と、NMOSトランジスタQ11のゲートに接続されるドレイン(第2ドレインの例)と、を有する。
PMOSトランジスタM3は、電源電位VCCに設定されるソース(第3ソースの例)と、ゲート(第3ゲートの例)と、NMOSトランジスタM1のドレインに接続されるドレイン(第3ドレインの例)と、を有する。
PMOSトランジスタM4は、電源電位VCCに設定されるソース(第4ソースの例)と、ゲート(第4ゲートの例)と、PMOSトランジスタQ12のゲートに接続されるドレイン(第4ドレインの例)と、を有する。PMOSトランジスタM4のゲートは、NMOSトランジスタM2のドレインに接続される。
NMOSトランジスタM1のドレインとPMOSトランジスタM4のゲートとが接続され、NMOSトランジスタM2のドレインとPMOSトランジスタM3のゲートとが接続される。
NMOSトランジスタM1は、グランド電位GNDに設定されるソース(第1ソースの例)と、第1入力端子P1に接続されるゲート(第1ゲートの例)と、ドレイン(第1ドレインの例)と、を有する。
NMOSトランジスタM2は、グランド電位GNDに設定されるソース(第2ソースの例)と、第2入力端子P2に接続されるゲート(第2ゲートの例)と、NMOSトランジスタQ11のゲートに接続されるドレイン(第2ドレインの例)と、を有する。
PMOSトランジスタM3は、電源電位VCCに設定されるソース(第3ソースの例)と、ゲート(第3ゲートの例)と、NMOSトランジスタM1のドレインに接続されるドレイン(第3ドレインの例)と、を有する。
PMOSトランジスタM4は、電源電位VCCに設定されるソース(第4ソースの例)と、ゲート(第4ゲートの例)と、PMOSトランジスタQ12のゲートに接続されるドレイン(第4ドレインの例)と、を有する。PMOSトランジスタM4のゲートは、NMOSトランジスタM2のドレインに接続される。
NMOSトランジスタM1のドレインとPMOSトランジスタM4のゲートとが接続され、NMOSトランジスタM2のドレインとPMOSトランジスタM3のゲートとが接続される。
レベルシフト回路21は、ドレイン抵抗Rd1(第1ドレイン抵抗の例)とドレイン抵抗Rd2(第2ドレイン抵抗の例)を有する。ドレイン抵抗Rd1は、NMOSトランジスタM1のドレインとPMOSトランジスタM3のドレインとの間に設けられる。ドレイン抵抗Rd2は、NMOSトランジスタM2のドレインとPMOSトランジスタM4のドレインとの間に設けられる。
(1-4)駆動回路の動作
次に、レベルシフト回路21と、NMOSトランジスタQ11およびPMOSトランジスタQ12と、を備えた駆動回路の動作について、図3を参照して説明する。図3は、図2に示す駆動回路の動作を示すタイミングチャートである。図3において、上から1番目と2番目のタイミングチャートは、それぞれ、PMOSトランジスタQ12のオン/オフの状態、NMOSトランジスタQ11のオン/オフの状態を示している。図3において、上から3番目、4番目、および5番目のタイミングチャートは、それぞれ、NMOSトランジスタM1のドレイン電圧Vd1、PMOSトランジスタM4のドレイン電圧Vd4、およびNMOSトランジスタM2のドレイン電圧Vd2を示している。図3において、上から6番目と7番目のタイミングチャートは、第2入力端子P2の電圧V2と第1入力端子P1の電圧V1を示している。
なお、図3に示す各ドレイン電圧の最大値(12V)は、各MOSトランジスタのオン抵抗およびドレイン抵抗による電圧降下分を無視した値である。
図3に示す動作例では、説明の目的で、第2入力端子P2の電圧V2と第1入力端子P1の電圧V1がパルスであり、そのデューティ比が概ね50%である場合を示している。
時刻t0から時刻t1に達する前まで、第1入力端子P1の電圧V1が3.3V(以下、「Hレベル」という。)であり、第2入力端子P2の電圧V2がGNDレベル(以下、「Lレベル」という。)である。そのため、時刻t0から時刻t1に達する前まで、NMOSトランジスタM1がオフ、NMOSトランジスタM2がオン、PMOSトランジスタM3がオン、PMOSトランジスタM4がオフ、PMOSトランジスタQ12がオン、NMOSトランジスタQ11がオフとなっている。
時刻t1になると、第2入力端子P2の電圧V2がHレベルからLレベルとなる。時刻t1から時刻t2に達するまでの期間(デッドタイムdt)は、第1入力端子P1の電圧V1と第2入力端子P2の電圧V2を共にLレベルとすることで、NMOSトランジスタM1,M2を共にオフとし、貫通電流を防止する。
このとき、NMOSトランジスタM2のドレイン電圧Vd2(つまり、NMOSトランジスタQ11のゲート)はGNDレベルであり、NMOSトランジスタQ11はオフである。
このとき、NMOSトランジスタM2のドレイン電圧Vd2(つまり、NMOSトランジスタQ11のゲート)はGNDレベルであり、NMOSトランジスタQ11はオフである。
時刻t2になると、第1入力端子P1の電圧V1がHレベルとなるため、NMOSトランジスタM1がオンとなり、図3に示すように、NMOSトランジスタM1のドレイン電圧Vd1が12VからGNDレベルに下降する。その下降途中でドレイン電圧Vd1が閾値電圧TH1に達すると、PMOSトランジスタM4のゲートの電圧も閾値電圧TH1まで低下することによって、PMOSトランジスタM4がオンとなる。そのため、PMOSトランジスタM4のドレイン電圧Vd4がGNDレベルから12Vに上昇する。その上昇の途中でドレイン電圧Vd4が閾値電圧TH4に達すると、PMOSトランジスタQ12のゲートも閾値電圧TH4まで上昇することによって、PMOSトランジスタQ12がオフとなる。
他方、PMOSトランジスタM4のドレイン電圧Vd4の上昇に伴って、ドレイン抵抗Rd2と寄生キャパシタによって定まる遅延時間遅れて、NMOSトランジスタM2のドレイン電圧Vd2が上昇する。ドレイン電圧Vd2が閾値電圧TH2に達すると、NMOSトランジスタQ11のゲートも閾値電圧TH2まで上昇することによってNMOSトランジスタQ11がオンとなる。
なお、NMOSトランジスタM2のドレイン電圧Vd2が上昇に伴ってPMOSトランジスタM3のゲート電位が上昇するため、PMOSトランジスタM3がオフとなる。
他方、PMOSトランジスタM4のドレイン電圧Vd4の上昇に伴って、ドレイン抵抗Rd2と寄生キャパシタによって定まる遅延時間遅れて、NMOSトランジスタM2のドレイン電圧Vd2が上昇する。ドレイン電圧Vd2が閾値電圧TH2に達すると、NMOSトランジスタQ11のゲートも閾値電圧TH2まで上昇することによってNMOSトランジスタQ11がオンとなる。
なお、NMOSトランジスタM2のドレイン電圧Vd2が上昇に伴ってPMOSトランジスタM3のゲート電位が上昇するため、PMOSトランジスタM3がオフとなる。
時刻t3になると、第1入力端子P1の電圧V1がHレベルからLレベルとなる。時刻t3から時刻t4に達するまでの期間(デッドタイムdt)は、第1入力端子P1の電圧V1と第2入力端子P2の電圧V2を共にLレベルとすることで、NMOSトランジスタM1,M2を共にオフとし、貫通電流を防止する。
このとき、NMOSトランジスタM1のドレイン電圧Vd1はGNDレベルを維持している。
このとき、NMOSトランジスタM1のドレイン電圧Vd1はGNDレベルを維持している。
時刻t4になると、第2入力端子P2の電圧V2がLレベルからHレベルとなるため、NMOSトランジスタM2がオンとなり、図3に示すように、NMOSトランジスタM2のドレイン電圧Vd2が12VからGNDレベルに下降する。その下降途中でドレイン電圧Vd2が閾値電圧TH2に達すると、NMOSトランジスタQ11のゲートも閾値電圧TH2まで低下することによってNMOSトランジスタQ11がオフとなる。
NMOSトランジスタM2のドレイン電圧Vd2の低下に伴って、NMOSトランジスタM2のドレインに接続されたPMOSトランジスタM3のゲートの電圧も低下し、PMOSトランジスタM3のゲートソース間電圧VGSが閾値電圧を超えると、PMOSトランジスタM3がオンとなる。PMOSトランジスタM3がオンになると、ドレイン抵抗Rd1と寄生キャパシタによって定まる遅延時間遅れて、図3に示すように、NMOSトランジスタM1のドレイン電圧Vd1が上昇する。その上昇の途中でドレイン電圧Vd1が閾値電圧TH1に達すると、NMOSトランジスタM1のドレインに接続されたPMOSトランジスタM4のゲート電圧も閾値電圧TH1になり、PMOSトランジスタM4のゲートソース間電圧VGSが閾値電圧より低下する。その結果、PMOSトランジスタM4がオフとなる。
PMOSトランジスタM4がオフになると、PMOSトランジスタM4のドレイン電圧Vd4が低下する。ドレイン電圧Vd4が閾値電圧TH4まで低下すると、PMOSトランジスタQ12も閾値電圧TH4まで低下し、PMOSトランジスタQ12のゲートソース間電圧VGSが閾値電圧を超えてPMOSトランジスタQ12がオンとなる。
NMOSトランジスタM2のドレイン電圧Vd2の低下に伴って、NMOSトランジスタM2のドレインに接続されたPMOSトランジスタM3のゲートの電圧も低下し、PMOSトランジスタM3のゲートソース間電圧VGSが閾値電圧を超えると、PMOSトランジスタM3がオンとなる。PMOSトランジスタM3がオンになると、ドレイン抵抗Rd1と寄生キャパシタによって定まる遅延時間遅れて、図3に示すように、NMOSトランジスタM1のドレイン電圧Vd1が上昇する。その上昇の途中でドレイン電圧Vd1が閾値電圧TH1に達すると、NMOSトランジスタM1のドレインに接続されたPMOSトランジスタM4のゲート電圧も閾値電圧TH1になり、PMOSトランジスタM4のゲートソース間電圧VGSが閾値電圧より低下する。その結果、PMOSトランジスタM4がオフとなる。
PMOSトランジスタM4がオフになると、PMOSトランジスタM4のドレイン電圧Vd4が低下する。ドレイン電圧Vd4が閾値電圧TH4まで低下すると、PMOSトランジスタQ12も閾値電圧TH4まで低下し、PMOSトランジスタQ12のゲートソース間電圧VGSが閾値電圧を超えてPMOSトランジスタQ12がオンとなる。
時刻t5になると、第2入力端子P2の電圧V2がHレベルからLレベルとなる。時刻t5の各部の状態は時刻t1の各部の状態と同じであり、以後、同じ動作を繰り返す。
図3では、PMOSトランジスタQ12とNMOSトランジスタQ11が共にオフである期間をデッドタイムDTとして示している。つまり、デッドタイムDTは、第1入力端子P1と第2入力端子P2に入力されるパルス信号が、信号レベルが切り替わるときにおいて、共にグランド電位GNDとなる期間である。デッドタイムDTは、第1入力端子P1の電圧V1と第2入力端子P2の電圧V2において設定されるデッドタイムdtと、ドレイン抵抗Rd1,Rd2および寄生キャパシタによって生ずる遅延時間とによって決定される。
図3では、PMOSトランジスタQ12とNMOSトランジスタQ11が共にオフである期間をデッドタイムDTとして示している。つまり、デッドタイムDTは、第1入力端子P1と第2入力端子P2に入力されるパルス信号が、信号レベルが切り替わるときにおいて、共にグランド電位GNDとなる期間である。デッドタイムDTは、第1入力端子P1の電圧V1と第2入力端子P2の電圧V2において設定されるデッドタイムdtと、ドレイン抵抗Rd1,Rd2および寄生キャパシタによって生ずる遅延時間とによって決定される。
図2および図3を参照して説明したように、本願発明の駆動回路には以下の有利な効果がある。
(i) PMOSトランジスタQ12がオン時には、NMOSトランジスタM1がオフ、NMOSトランジスタM2がオン、PMOSトランジスタM3がオン、PMOSトランジスタM4がオフとなる。また、NMOSトランジスタQ11がオン時には、NMOSトランジスタM1がオン、NMOSトランジスタM2がオフ、PMOSトランジスタM3がオフ、PMOSトランジスタM4がオンとなる。そのため、PMOSトランジスタM3、ドレイン抵抗Rd1、NMOSトランジスタM1を流れる電流、および、PMOSトランジスタM4、ドレイン抵抗Rd2,NMOSトランジスタM2に流れる電流は、定常時にはゼロとなり、低消費電力化が実現する。
(i) PMOSトランジスタQ12がオン時には、NMOSトランジスタM1がオフ、NMOSトランジスタM2がオン、PMOSトランジスタM3がオン、PMOSトランジスタM4がオフとなる。また、NMOSトランジスタQ11がオン時には、NMOSトランジスタM1がオン、NMOSトランジスタM2がオフ、PMOSトランジスタM3がオフ、PMOSトランジスタM4がオンとなる。そのため、PMOSトランジスタM3、ドレイン抵抗Rd1、NMOSトランジスタM1を流れる電流、および、PMOSトランジスタM4、ドレイン抵抗Rd2,NMOSトランジスタM2に流れる電流は、定常時にはゼロとなり、低消費電力化が実現する。
(ii) 図2の駆動回路では、PMOSトランジスタM4のドレインがPMOSトランジスタQ12のゲートに接続されている。そのため、第1入力端子P1の電圧V1がLレベルからHレベルになるときには(図3の時刻t2)、NMOSトランジスタM1オン、PMOSトランジスタM4オンとなり、PMOSトランジスタQ12のゲート電位が急速に上昇することで、PMOSトランジスタQ12がオフになる。すなわち、PMOSトランジスタQ12を高速にオフとすることができる。
(iii) NMOSトランジスタQ11のオン時には、NMOSトランジスタM1がオン、NMOSトランジスタM2がオフ、PMOSトランジスタM3オフ、PMOSトランジスタM4がオンとなる。そのため、NMOSトランジスタQ11のゲートソース間電圧VGSは、入力電圧の3.3Vではなく電源電圧Vcc(+12V)となる。よって、NMOSトランジスタQ11のオン抵抗を低い値とすることができ、損失低減に寄与する。
以上説明したように、本実施形態のモータ駆動システム1において3相交流モータMを駆動するための駆動回路は、CPU5からの3.3Vの低電力のパルス信号を電源電圧Vcc(+12V)まで昇圧させるレベルシフト回路21~23を設けることによって駆動用MOSトランジスタを制御する。そして、各レベルシフト回路は、低消費電力であり、応答性に優れ、かつ低損失にて動作することから、専用ICを用いずに性能向上を実現することができる。
上述した実施形態の駆動回路において、ドレイン抵抗Rd1とドレイン抵抗Rd2を有することは必ずしも必須ではない。しかし、ドレイン抵抗Rd1とドレイン抵抗Rd2を設けることで、入力信号にデッドタイムdtを設定しない場合でも、NMOSトランジスタQ11とPMOSトランジスタQ12のデッドタイムDTを設けることが可能となる。さらに入力信号にデッドタイムdtを設定することで、デッドタイムのマージンを拡大することができる。
(1-5)MOSトランジスタの構造
本実施形態の駆動回路における好ましいMOSトランジスタの構造について、図4および図5を参照して説明する。図4は、本実施形態の駆動回路のMOSトランジスタの構造例を示す図である。図5は、本実施形態の駆動回路のMOSトランジスタの別の構造例を示す図である。
なお、図4では、図2に示す駆動回路のレベルシフト回路21のうちNMOSトランジスタM2、ドレイン抵抗Rd2、および、PMOSトランジスタM4のみを示しているが、NMOSトランジスタM1、ドレイン抵抗Rd1、および、PMOSトランジスタM3についても同様の構造とすることができる。
図4に示すMOSトランジスタの構造例では、駆動用MOSトランジスタであるNMOSトランジスタQ11およびPMOSトランジスタQ12を縦型構造としている。縦型構造では、図4に示すように、ドレイン電極がゲート電極およびソース電極と反対側に設けられる。NMOSトランジスタQ11およびPMOSトランジスタQ12は共通のドレインがノードN11(図1参照)に接続されているため、同一の金属(リードフレーム)上に実装することができる。
縦型構造を採用することでNMOSトランジスタQ11およびPMOSトランジスタQ12のオン抵抗を低くすることができる。
縦型構造を採用することでNMOSトランジスタQ11およびPMOSトランジスタQ12のオン抵抗を低くすることができる。
他方、図4に示すMOSトランジスタの構造例では、レベルシフト回路21に含まれるNMOSトランジスタM2およびPMOSトランジスタM4を横型構造としている。後述する実施形態で明らかとなるように、レベルシフト回路を多数設ける場合があるため、レベルシフト回路内のMOSトランジスタを横型構造として1チップ化することにより集積度が上がり、低コスト化を図ることができる。
なお、レベルシフト回路内のMOSトランジスタを縦型構造とし、縦型構造のNMOSトランジスタQ11およびPMOSトランジスタQ12と合わせて駆動回路のすべてのMOSトランジスタを縦型構造のみで構成してもよい。
なお、レベルシフト回路内のMOSトランジスタを縦型構造とし、縦型構造のNMOSトランジスタQ11およびPMOSトランジスタQ12と合わせて駆動回路のすべてのMOSトランジスタを縦型構造のみで構成してもよい。
なお、NMOSトランジスタM2およびPMOSトランジスタM4では、ゲートソース間最大定格電圧VGSSが電源電圧Vcc(+12V)を満足する必要があるが、一般的なIC内部の横型構造のMOSトランジスタの場合、ゲートソース間最大定格VGSSは5V程度である。しかし、図2に示すレベルシフト回路21の各MOSトランジスタでは、大きな駆動能力や低オン抵抗を必要としないため、一般的な横型構造のMOSトランジスタよりもゲート酸化膜を厚くすることでゲートソース間最大定格電圧VGSSを大きくすることができる。すなわち、横型構造のMOSトランジスタであってもゲートソース間最大定格電圧VGSSを12V以上とすることができる。
NMOSトランジスタM2およびPMOSトランジスタM4のp型基板はGND電位であるため、NMOSトランジスタQ11およびPMOSトランジスタQ12のリードフレームとは分離する必要がある。そのため、レベルシフト回路の横型構造のMOSトランジスタ用のチップにボンディングパッド領域を設け、縦型構造の駆動用MOSトランジスタとの結線をワイヤボンディングで行う。
図5に示すMOSトランジスタの構造例では、図4に対して横型構造のMOSトランジスタのpウェルがない構造となっている。かかる構造を横型構造のMOSトランジスタとして適用してもよく、図4の縦型構造のMOSトランジスタと組み合わせることもできる。
(2)第2の実施形態
次に、第2の実施形態のモータ駆動システムについて説明する。本実施形態のモータ駆動システムの全体構成は、図1に示したものと同じであり、駆動回路が図2に示したものと異なる。
図6は、第2の実施形態の駆動回路の回路図である。図6に示す駆動回路が図2に示した駆動回路と異なる点は、レベルシフト回路内の各MOSトランジスタにソース抵抗およびゲート抵抗が設けられる点にある。すなわち、本実施形態の駆動回路のレベルシフト回路21Aでは、以下の抵抗を備える。
・グランド電位GNDのノードNGNDとNMOSトランジスタM1のソースの間のソース抵抗Rs1(第1ソース抵抗の例)
・第1入力端子P1とNMOSトランジスタM1のゲートとの間のゲート抵抗Rg1(第1ゲート抵抗の例)
・グランド電位GNDのノードNGNDとNMOSトランジスタM2のソースとの間のソース抵抗Rs2(第2ソース抵抗の例)
・第2入力端子P2とNMOSトランジスタM2のゲートとの間のゲート抵抗Rg2(第2ゲート抵抗の例)
・電源電位VccのノードNVCCとPMOSトランジスタM3のソースとの間のソース抵抗Rs3(第3ソース抵抗の例)
・PMOSトランジスタM3のゲートとNMOSトランジスタM2のドレインとの間のゲート抵抗Rg3(第3ゲート抵抗の例)
・電源電位VccのノードNVCCとPMOSトランジスタM4のソースとの間のソース抵抗Rs4(第4ソース抵抗の例)
・PMOSトランジスタM4のゲートとNMOSトランジスタM1のドレインとの間のゲート抵抗Rg4(第4ゲート抵抗の例)
なお、図6に示す例では、各MOSトランジスタのソース抵抗Rs1~Rs4およびゲート抵抗Rg1~Rg4をすべて備えるレベルシフト回路21Aを示しているが、その限りではなく、これらの抵抗のうち、少なくともいずれか1つの抵抗を備えていればよい。
本実施形態において、各MOSトランジスタのソース抵抗Rs1~Rs4およびゲート抵抗Rg1~Rg4を設けているのは、貫通電流および各MOSトランジスタのドレイン電流を抑制するためである。
本実施形態において、各MOSトランジスタのソース抵抗Rs1~Rs4およびゲート抵抗Rg1~Rg4を設けているのは、貫通電流および各MOSトランジスタのドレイン電流を抑制するためである。
図7~図9はそれぞれ、ソース抵抗Rs1~Rs4およびゲート抵抗Rg1~Rg4を変化させた場合に、NMOSトランジスタQ11およびPMOSトランジスタQ12のオン/オフが切り替わるときの各部の電流波形を示している。具体的には、出力電流IOUT、PMOSトランジスタQ12のドレイン電流IQ12、NMOSトランジスタQ11のドレイン電流IQ11、および、PMOSトランジスタM4のドレイン電流IM4Dの波形を示している。なお、レベルシフト回路21A内のMOSトランジスタのドレイン電流の中で、PMOSトランジスタM4のドレイン電流IM4Dが最も大きいため、図7~図9では、ドレイン電流IM4Dの波形のみを示している。
図7~図9は、すべてドレイン抵抗Rd1,Rd2が共に500Ωの場合である。図7は、ソース抵抗Rs1~Rs4およびゲート抵抗Rg1~Rg4が設定されていない場合を示している。
図8は、ソース抵抗Rs1,Rs2が共に50Ωであり、ソース抵抗Rs3,Rs4が共に100Ωであり、ゲート抵抗Rg1,Rg2が共に500Ωであり、ゲート抵抗Rg3,Rg4が共に100Ωである場合を示している。
図9は、図8の場合に対してドレイン抵抗Rd2を500Ωから2000Ωに変更した場合を示している。
図8は、ソース抵抗Rs1,Rs2が共に50Ωであり、ソース抵抗Rs3,Rs4が共に100Ωであり、ゲート抵抗Rg1,Rg2が共に500Ωであり、ゲート抵抗Rg3,Rg4が共に100Ωである場合を示している。
図9は、図8の場合に対してドレイン抵抗Rd2を500Ωから2000Ωに変更した場合を示している。
図7の場合は実質的に、図2においてドレイン抵抗Rd1,Rd2を500Ωとした場合と同じ条件である。この場合、ドレイン電流IM4Dのピーク電流は800mAと高い値となっている。
それに対して、図8では、ソース抵抗およびゲート抵抗を設定することにより、ドレイン電流IM4Dのピーク電流が80mAとなって図7の場合と比較してドレイン電流IM4Dが10分の1程度となるが、NMOSトランジスタQ11およびPMOSトランジスタQ12の貫通電流が20Aまで増加する。これは、NMOSトランジスタQ11とPMOSトランジスタQ12が同時にオンし、貫通電流が流れているためである。そこで、ドレイン抵抗Rd2を増加させることで、図9に示すように、NMOSトランジスタQ11およびPMOSトランジスタQ12の貫通電流を無くし、ドレイン電流を定常電流の600mAまで低下させつつ、PMOSトランジスタM4のドレイン電流IM4Dを80mAに維持させることができる。
それに対して、図8では、ソース抵抗およびゲート抵抗を設定することにより、ドレイン電流IM4Dのピーク電流が80mAとなって図7の場合と比較してドレイン電流IM4Dが10分の1程度となるが、NMOSトランジスタQ11およびPMOSトランジスタQ12の貫通電流が20Aまで増加する。これは、NMOSトランジスタQ11とPMOSトランジスタQ12が同時にオンし、貫通電流が流れているためである。そこで、ドレイン抵抗Rd2を増加させることで、図9に示すように、NMOSトランジスタQ11およびPMOSトランジスタQ12の貫通電流を無くし、ドレイン電流を定常電流の600mAまで低下させつつ、PMOSトランジスタM4のドレイン電流IM4Dを80mAに維持させることができる。
図7~図9からわかるように、レベルシフト回路21A内の各MOSトランジスタにソース抵抗およびゲート抵抗を適宜設けることで、NMOSトランジスタQ11およびPMOSトランジスタQ12の貫通電流を低下させることができる。同時に、レベルシフト回路21A内の各MOSトランジスタのドレイン電流を低下させることができる。なお、レベルシフト回路21A内の各MOSトランジスタにおいて、ソース抵抗および/またはゲート抵抗の有無、および、ソース抵抗および/またはゲート抵抗を設ける場合の抵抗値は、電源電圧の値や駆動用MOSトランジスタのオン抵抗等に応じて適宜決定することができる。ソース抵抗および/またはゲート抵抗の抵抗値の上限値は、高周波のパルス入力信号に対する応答性の許容レベルに応じて決定することができる。
以上説明したように、本実施形態の駆動回路によれば、第1の実施形態の駆動回路に対して、レベルシフト回路内のMOSトランジスタに対してソース抵抗および/またはゲート抵抗を設けたため、貫通電流およびドレイン電流をさらに抑制することが可能となる。
以上説明したように、本実施形態の駆動回路によれば、第1の実施形態の駆動回路に対して、レベルシフト回路内のMOSトランジスタに対してソース抵抗および/またはゲート抵抗を設けたため、貫通電流およびドレイン電流をさらに抑制することが可能となる。
(3)第3の実施形態
次に、第3の実施形態のモータ駆動システムについて、図10~図12を参照して説明する。本実施形態のモータ駆動システムの全体構成は、図1に示したものと同じであり、ゲート駆動回路が図6に示したものと異なる。
図10は、第3の実施形態の駆動回路の回路図である。図11は、本実施形態の駆動回路に含まれる各可変抵抗の等価回路を示す図である。図12は、本実施形態の駆動回路に含まれるP/N型可変抵抗の構成例を示す図である。
図10に示す駆動回路が図6に示した駆動回路と異なる点は、レベルシフト回路内の各MOSトランジスタにドレイン可変抵抗、ソース可変抵抗、およびゲート可変抵抗が設けられる点にある。すなわち、本実施形態の駆動回路のレベルシフト回路21Bでは、以下の抵抗を備える。
・NMOSトランジスタM1のドレインとPMOSトランジスタM3のドレインとの間のドレイン可変抵抗Rd1_pn(第1ドレイン可変抵抗の例)
・NMOSトランジスタM2のドレインとPMOSトランジスタM4のドレインとの間にドレイン可変抵抗Rd2_pn(第2ドレイン可変抵抗の例)
・グランド電位GNDのノードNGNDとNMOSトランジスタM1のソースの間のソース可変抵抗Rs1_n(第1ソース可変抵抗の例)
・第1入力端子P1とNMOSトランジスタM1のゲートとの間のゲート可変抵抗Rg1_n(第1ゲート可変抵抗の例)
・グランド電位GNDのノードNGNDとNMOSトランジスタM2のソースとの間のソース可変抵抗Rs2_n(第2ソース可変抵抗の例)
・第2入力端子P2とNMOSトランジスタM2のゲートとの間のゲート可変抵抗Rg2_n(第2ゲート可変抵抗の例)
・電源電位VccのノードNVCCとPMOSトランジスタM3のソースとの間のソース可変抵抗Rs3_p(第3ソース可変抵抗の例)
・PMOSトランジスタM3のゲートとNMOSトランジスタM2のドレインとの間のゲート可変抵抗Rg3_pn(第3ゲート可変抵抗の例)
・電源電位VccのノードNVCCとPMOSトランジスタM4のソースとの間のソース可変抵抗Rs4_p(第4ソース可変抵抗の例)
・PMOSトランジスタM4のゲートとNMOSトランジスタM1のドレインとの間のゲート可変抵抗Rg4_pn(第4ゲート可変抵抗の例)
ソース可変抵抗Rs1_n,Rs2_n、および、ゲート可変抵抗Rg1_n,Rg2_nは、図11(a)に等価回路を例示するN型可変抵抗である。図11(a)の例では、可変抵抗の両端T1,T2(端子T2は高圧側の端子、端子T1は低圧側の端子)の間に、抵抗Ra,Rbが並列に設けられ、一方の抵抗Rbに直列にスイッチ素子SWが設けられる。スイッチ素子SWは、例えばNMOSトランジスタによって構成できる。N型可変抵抗において低圧側にスイッチ素子SWを設けているのは、スイッチ素子SWがオン時のゲートソース間電圧VGSを大きくとれるようにするためである。
ソース可変抵抗Rs3_p,Rs4_pは、図11(b)に等価回路を例示するP型可変抵抗である。図11(b)の例では、可変抵抗の両端T1,T2(端子T2は高圧側の端子、端子T1は低圧側の端子)の間に、抵抗Ra,Rbが並列に設けられ、一方の抵抗Rbに直列にスイッチ素子SWが設けられる。スイッチ素子SWは、例えばPMOSトランジスタによって構成できる。P型可変抵抗において高圧側にスイッチ素子SWを設けているのは、スイッチ素子SWがオン時のゲートソース間電圧VGSを大きくとれるようにするためである。
ドレイン可変抵抗Rd1_pn,Rd2_pnおよび、ゲート可変抵抗Rg3_pn,Rg4_pnは、図11(c)に等価回路を例示するP/N型可変抵抗である。図11(c)の例では、可変抵抗の両端T1,T2(端子T2は高圧側の端子、端子T1は低圧側の端子)の間に、抵抗Ra,Rbが並列に設けられ、一方の抵抗Rbに直列にスイッチ素子SW1,SW2が設けられる。スイッチ素子SW1,SW2は、それぞれNMOSトランジスタ、PMOSトランジスタによって構成できる。ドレイン可変抵抗およびゲート可変抵抗においてスイッチ素子SW1,SW2を設けているのは、ドレイン可変抵抗およびゲート可変抵抗が設定されるノードが低圧側と高圧側のいずれもとりうるためである。
図11に例示する可変抵抗では、スイッチ素子SWまたは、スイッチ素子SW1,SW2の導通状態がCPU5からの制御信号によって個別に制御されることによって、その合成抵抗値がRaまたはRa・Rb/(Ra+Rb)となる。各可変抵抗において、抵抗Ra,Rbの値を独立に設定してよいが、スイッチ素子と直列に接続されていない抵抗Raは比較的大きな値とすることが好ましい。
図11に例示する可変抵抗では、2個の抵抗を並列に設け、いずれかの抵抗に直列にスイッチ素子を設けた例を示したが、その限りではない。3個以上の抵抗を並列に設け、2個以上のスイッチ素子を設けることで、可変抵抗値(合成抵抗値)が採りうる抵抗値の数の任意の値に設定することもできる。
図11に例示する可変抵抗では、スイッチ素子の状態に関わらず両端T1,T2の間が開放状態にならないが、スイッチ素子の状態によって両端T1,T2の間が開放状態となるように構成してもよい。例えば、図11に示すように、互いに並列な2個の抵抗によって構成する場合には、各抵抗に直列にスイッチ素子を設ける。互いに並列な3個以上の抵抗によって構成する場合も同様に、各抵抗に直列にスイッチ素子を設ける。第5の実施形態において後述するが、特にP/N型可変抵抗において開放状態となることが可能となるように構成することで、出力端子をフローティング状態とすることが可能となる。
図12に示す具体的なP/N型可変抵抗では、スイッチ素子SW1としてNMOSトランジスタm5が設けられ、スイッチ素子SW2としてPMOSトランジスタm6が設けられる。図12のP/N型可変抵抗においてレベルシフト回路8は、CPU5からのスイッチ制御信号sw_off,sw_on(例えばGNDレベルまたは3.3Vの信号)をGNDレベルまたは電源電圧Vcc(+12V)となる信号にレベル変換してNMOSトランジスタm5、PMOSトランジスタm6のゲートに入力する。レベルシフト回路8の回路構成は、図2のレベルシフト回路21と同じである。
スイッチ制御信号sw_offがHレベル(3.3V)であり、かつスイッチ制御信号sw_onがLレベル(GNDレベル)である場合には、NMOSトランジスタm5、PMOSトランジスタm6が共にオフとなり、P/N型可変抵抗の端子T1,T2間の抵抗がRaとなる。スイッチ制御信号sw_offがLレベル(GNDレベル)であり、かつスイッチ制御信号sw_onがHレベル(3.3V)である場合には、NMOSトランジスタm5、PMOSトランジスタm6が共にオンとなり、P/N型可変抵抗の端子T1,T2間の抵抗がRa・Rb/(Ra+Rb)となる。
スイッチ制御信号sw_offがHレベル(3.3V)であり、かつスイッチ制御信号sw_onがLレベル(GNDレベル)である場合には、NMOSトランジスタm5、PMOSトランジスタm6が共にオフとなり、P/N型可変抵抗の端子T1,T2間の抵抗がRaとなる。スイッチ制御信号sw_offがLレベル(GNDレベル)であり、かつスイッチ制御信号sw_onがHレベル(3.3V)である場合には、NMOSトランジスタm5、PMOSトランジスタm6が共にオンとなり、P/N型可変抵抗の端子T1,T2間の抵抗がRa・Rb/(Ra+Rb)となる。
スイッチ制御信号sw_off,sw_onは通常、所望の抵抗値となるように初期に設定した固定の信号レベルとなるため、レベルシフト回路8の動作は遅くてもよい。そのため、レベルシフト回路8のドレイン抵抗rd1,rd2を大きな値とすることができ、レベルシフト回路8内の貫通電流を抑制することができる。
図10に示す例では、各MOSトランジスタのソース可変抵抗Rs1_n,Rs2_n,Rs3_p,Rs4_p、ゲート可変抵抗Rg1_n,Rg2_n,Rg3_pn,Rg4_pn、および、ドレイン可変抵抗Rd1_pn,Rd2_pnをすべて備えるレベルシフト回路21Bを示しているが、その限りではなく、これらの抵抗のうち、少なくともいずれか1つの可変抵抗を備えていればよい。
上述したように、本実施形態の駆動回路によれば、レベルシフト回路21Bの各MOSトランジスタのソース、ゲート、および、ドレインに可変抵抗を設けることで、負荷(3相交流モータM)に応じて最適な抵抗値(つまり、貫通電流およびドレイン電流を抑制し、かつ応答性が悪化しない抵抗値)とすることができる。
上述したように、本実施形態の駆動回路によれば、レベルシフト回路21Bの各MOSトランジスタのソース、ゲート、および、ドレインに可変抵抗を設けることで、負荷(3相交流モータM)に応じて最適な抵抗値(つまり、貫通電流およびドレイン電流を抑制し、かつ応答性が悪化しない抵抗値)とすることができる。
(4)第4の実施形態
次に、第4の実施形態のモータ駆動システムについて、図13を参照して説明する。本実施形態のモータ駆動システムの全体構成は、図1に示したものと同じであり、ゲート駆動回路が図2に示したものと異なる。図13は、第4の実施形態の駆動回路の回路図である。
図3に示したように、図2の駆動回路では、PMOSトランジスタQ12がオンからオフになりNMOSトランジスタQ11がオフからオンになるときのデッドタイムDTと、NMOSトランジスタQ11がオンからオフになりPMOSトランジスタQ12がオフからオンになるときのデッドタイムDTとは同じである。しかし、負荷によってはデッドタイムを大きくとりたい場合もあり、いずれか一方のデッドタイムをより大きくとりたい場合もある。
そこで、図13に示す本実施形態の駆動回路は、NMOSトランジスタQ11とPMOSトランジスタQ12に対してそれぞれ独立にレベルシフト回路を設けている。
すなわち、本実施形態のレベルシフト回路21Cは、NMOSトランジスタQ11に対応する第1レベルシフト回路211と、PMOSトランジスタQ12に対応する第2レベルシフト回路212とを備える。
そこで、図13に示す本実施形態の駆動回路は、NMOSトランジスタQ11とPMOSトランジスタQ12に対してそれぞれ独立にレベルシフト回路を設けている。
すなわち、本実施形態のレベルシフト回路21Cは、NMOSトランジスタQ11に対応する第1レベルシフト回路211と、PMOSトランジスタQ12に対応する第2レベルシフト回路212とを備える。
第1レベルシフト回路211は、グランド電位GNDと3.3Vとの間で変動する第1入力端子P11および第2入力端子P12の電位に基づいて、NMOSトランジスタQ11のゲートの電位が、グランド電位GNDと電源電位VCCとの間で変動するように信号処理する。第1レベルシフト回路211は、NMOSトランジスタM11,M21、PMOSトランジスタM31,M41およびドレイン抵抗Rd11,Rd21を備える。
第2レベルシフト回路212は、グランド電位GNDと3.3Vとの間で変動する第3入力端子P13および第4入力端子P14の電位に基づいて、PMOSトランジスタQ12のゲートの電位が、グランド電位GNDと電源電位VCCとの間で変動するように信号処理する。第2レベルシフト回路212は、NMOSトランジスタM12,M22、PMOSトランジスタM32,M42およびドレイン抵抗Rd12,Rd22を備える。
第1レベルシフト回路211および第2レベルシフト回路212のそれぞれの動作は、図2のレベルシフト回路21と同様である。
第1レベルシフト回路211では、第1入力端子P11および第2入力端子P12に対して相補的に入力されるパルス信号に基づいて、NMOSトランジスタQ11のオフからオンになるタイミング、および、オンからオフになるタイミングが決定される。すなわち、第1入力端子P11がHレベルであり、第2入力端子P12がLレベルである場合、NMOSトランジスタM11がオン、NMOSトランジスタM21がオフ、PMOSトランジスタM31がオフ、PMOSトランジスタM41がオンとなるため、NMOSトランジスタQ11がオンとなる。他方、第1入力端子P11がLレベルであり、第2入力端子P12がHレベルである場合、NMOSトランジスタM11がオフ、NMOSトランジスタM21がオン、PMOSトランジスタM31がオン、PMOSトランジスタM41がオフとなるため、NMOSトランジスタQ11がオフとなる。
また、第2レベルシフト回路212では、第3入力端子P13および第4入力端子P14に対して相補的に入力されるパルス信号に基づいて、PMOSトランジスタQ12のオフからオンになるタイミング、および、オンからオフになるタイミングが決定される。すなわち、第3入力端子P13がHレベルであり、第4入力端子P14がLレベルである場合、NMOSトランジスタM12がオン、NMOSトランジスタM22がオフ、PMOSトランジスタM32がオフ、PMOSトランジスタM42がオンとなるため、PMOSトランジスタQ12がオフとなる。他方、第3入力端子P13がLレベルであり、第4入力端子P14がHレベルである場合、NMOSトランジスタM12がオフ、NMOSトランジスタM22がオン、PMOSトランジスタM32がオン、PMOSトランジスタM42がオフとなるため、PMOSトランジスタQ12がオンとなる。
第1レベルシフト回路211では、第1入力端子P11および第2入力端子P12に対して相補的に入力されるパルス信号に基づいて、NMOSトランジスタQ11のオフからオンになるタイミング、および、オンからオフになるタイミングが決定される。すなわち、第1入力端子P11がHレベルであり、第2入力端子P12がLレベルである場合、NMOSトランジスタM11がオン、NMOSトランジスタM21がオフ、PMOSトランジスタM31がオフ、PMOSトランジスタM41がオンとなるため、NMOSトランジスタQ11がオンとなる。他方、第1入力端子P11がLレベルであり、第2入力端子P12がHレベルである場合、NMOSトランジスタM11がオフ、NMOSトランジスタM21がオン、PMOSトランジスタM31がオン、PMOSトランジスタM41がオフとなるため、NMOSトランジスタQ11がオフとなる。
また、第2レベルシフト回路212では、第3入力端子P13および第4入力端子P14に対して相補的に入力されるパルス信号に基づいて、PMOSトランジスタQ12のオフからオンになるタイミング、および、オンからオフになるタイミングが決定される。すなわち、第3入力端子P13がHレベルであり、第4入力端子P14がLレベルである場合、NMOSトランジスタM12がオン、NMOSトランジスタM22がオフ、PMOSトランジスタM32がオフ、PMOSトランジスタM42がオンとなるため、PMOSトランジスタQ12がオフとなる。他方、第3入力端子P13がLレベルであり、第4入力端子P14がHレベルである場合、NMOSトランジスタM12がオフ、NMOSトランジスタM22がオン、PMOSトランジスタM32がオン、PMOSトランジスタM42がオフとなるため、PMOSトランジスタQ12がオンとなる。
したがって、本実施形態の駆動回路では、第1入力端子P11および第2入力端子P12の各信号のレベル変化のタイミングと、第3入力端子P13および第4入力端子P14の各信号のレベル変化のタイミングとを個別に設定することで、NMOSトランジスタQ11およびPMOSトランジスタQ12のデッドタイムを所望の値に独立に設定することが可能となる。
(5)第5の実施形態
次に、第5の実施形態のモータ駆動システムについて、図14を参照して説明する。本実施形態のモータ駆動システムの全体構成は、図1に示したものと同じであり、ゲート駆動回路が図2に示したものと異なる。図14は、第5の実施形態の駆動回路の回路図である。
3相交流モータMの始動時に出力端子(図1のノードN11)がフローティング状態とする場合があるが、図2に示した駆動回路では出力端子をフローティング状態とすることができない。例えば、図2の駆動回路において、第1入力端子P1と第2入力端子P2のいずれもLレベル(GNDレベル)としてもNMOSトランジスタQ11およびPMOSトランジスタQ12のゲート電位は電源電位Vccの中間電位となるため、いずれのMOSトランジスタもオンとなって出力端子はフローティング状態とならない。
そこで、図14に示す本実施形態の駆動回路は、3相交流モータMの始動時に出力端子(図1のノードN11)がフローティング状態とするように構成されている。図14に示す駆動回路は、図2に示した駆動回路に対して、NMOSトランジスタM2のドレインとPMOSトランジスタM3のゲートの間に、NMOSトランジスタm5およびPMOSトランジスタm6からなるスイッチ素子を備えたレベルシフト回路21Dを含む。このスイッチ素子によって、NMOSトランジスタM2のドレインとPMOSトランジスタM3のゲートの間の導通状態が制御される。
NMOSトランジスタm5およびPMOSトランジスタm6の各ゲートには、図12に示したP/N型可変抵抗に適用されているレベルシフト回路8が接続される。すなわち、CPU5からのスイッチ制御信号sw_off,sw_on(例えばGNDレベルまたは3.3Vの信号)をGNDレベルまたは電源電圧Vcc(+12V)となる信号までレベル変換してNMOSトランジスタm5、PMOSトランジスタm6のゲートに入力する。
NMOSトランジスタm5およびPMOSトランジスタm6の各ゲートには、図12に示したP/N型可変抵抗に適用されているレベルシフト回路8が接続される。すなわち、CPU5からのスイッチ制御信号sw_off,sw_on(例えばGNDレベルまたは3.3Vの信号)をGNDレベルまたは電源電圧Vcc(+12V)となる信号までレベル変換してNMOSトランジスタm5、PMOSトランジスタm6のゲートに入力する。
図14の駆動回路において、3相交流モータMの始動時には、CPU5は、スイッチ制御信号sw_off,sw_onをそれぞれHレベル(3.3V)、Lレベル(GNDレベル)とする。すると、NMOSトランジスタm5のゲートはGNDレベルとなり、PMOSトランジスタm6のゲートは電源電位ccとなるため、NMOSトランジスタm5およびPMOSトランジスタm6は共にオフとなる。そのため、NMOSトランジスタM2のドレインとPMOSトランジスタM3のゲートの間が非導通状態となる。このとき、CPU5から入力端子P1,P2に与えられる信号レベルを共にHレベル(3.3V;第1電位の例)とすることで、出力端子であるノードN11はフローティング状態となる。
図14の駆動回路を備えたモータ駆動システムの動作は以下のとおりである。
3相交流モータMの始動時には、スイッチ制御信号sw_off,sw_onをそれぞれHレベル、Lレベルとする。それによって、NMOSトランジスタM2のドレインとPMOSトランジスタM3のゲートの間が非導通状態となる。この状態で、第1入力端子P1,第2入力端子P2の入力信号を共にHレベルとする。すると、NMOSトランジスタM1がオンとなり、PMOSトランジスタM4のゲートがGNDレベルとなって、PMOSトランジスタM4がオンとなる。そのため、PMOSトランジスタQ12がオフとなる。このとき、PMOSトランジスタM3のゲートが電源電位ccとなるため、PMOSトランジスタM3はオフとなる。
他方、第2入力端子P2の入力信号がHレベルであるため、NMOSトランジスタM2がオンし、NMOSトランジスタQ11のゲート電位がGNDレベルとなって、NMOSトランジスタQ11がオフとなる。このとき、NMOSトランジスタM2のドレインはGNDレベルとなるが、NMOSトランジスタM2のドレインとPMOSトランジスタM3のゲートが非導通状態となっているため、PMOSトランジスタM3のオフ状態が維持される。
以上の動作説明のとおり、3相交流モータMの始動時には、NMOSトランジスタQ11とPMOSトランジスタQ12が共にオフとなり、出力端子であるノードN11はフローティング状態となる。
3相交流モータMの始動時には、スイッチ制御信号sw_off,sw_onをそれぞれHレベル、Lレベルとする。それによって、NMOSトランジスタM2のドレインとPMOSトランジスタM3のゲートの間が非導通状態となる。この状態で、第1入力端子P1,第2入力端子P2の入力信号を共にHレベルとする。すると、NMOSトランジスタM1がオンとなり、PMOSトランジスタM4のゲートがGNDレベルとなって、PMOSトランジスタM4がオンとなる。そのため、PMOSトランジスタQ12がオフとなる。このとき、PMOSトランジスタM3のゲートが電源電位ccとなるため、PMOSトランジスタM3はオフとなる。
他方、第2入力端子P2の入力信号がHレベルであるため、NMOSトランジスタM2がオンし、NMOSトランジスタQ11のゲート電位がGNDレベルとなって、NMOSトランジスタQ11がオフとなる。このとき、NMOSトランジスタM2のドレインはGNDレベルとなるが、NMOSトランジスタM2のドレインとPMOSトランジスタM3のゲートが非導通状態となっているため、PMOSトランジスタM3のオフ状態が維持される。
以上の動作説明のとおり、3相交流モータMの始動時には、NMOSトランジスタQ11とPMOSトランジスタQ12が共にオフとなり、出力端子であるノードN11はフローティング状態となる。
次いで、スイッチ制御信号sw_off,sw_onをそれぞれLレベル、Hレベルとすることで、NMOSトランジスタm5のゲートは電源電圧Vccとなり、PMOSトランジスタm6のゲートはGNDレベルとなるため、NMOSトランジスタm5およびPMOSトランジスタm6は共にオンとなる。そのため、NMOSトランジスタM2のドレインとPMOSトランジスタM3のゲートの間が導通状態となり、図2の駆動回路と同一の動作となる。
以上説明したように、図14に示した本実施形態の駆動回路によれば、3相交流モータMの始動時に出力端子をフローティング状態とすることができる。
なお、3相交流モータMの始動時に出力端子をフローティング状態とすることができる駆動回路は図14に限られず、図13に示した駆動回路によっても実現することができる。図13の駆動回路において、3相交流モータMの始動時に、CPU5によって、第1入力端子P11をLレベル(グランド電位GND)に設定し、第2入力端子P12をHレベル(3.3V)に設定し、第3入力端子P13をHレベル(3.3V)に設定し、第4入力端子P14をLレベル(グランド電位GND)設定する。その場合、前述したように、NMOSトランジスタQ11がオフとPMOSトランジスタQ12が共にオフとなる。そのため、出力端子がフローティング状態となる。
以上、本発明のモータ駆動システムの実施形態について詳細に説明したが、本発明の範囲は上記の実施形態に限定されない。また、上記の実施形態は、本発明の主旨を逸脱しない範囲において、種々の改良や変更が可能である。
例えば、上述した実施形態では、3相電圧生成部10の各駆動用MOSトランジスタのオン・オフ制御が、ホールセンサの位置情報に基づく120度通電によって行われる場合について説明したが、その限りではない。各駆動用MOSトランジスタのオン・オフ制御方法は、180度通電等の他の通電制御方法を適用してもよい。
Claims (5)
-
共通のドレインが負荷に接続された駆動用NMOSトランジスタおよび駆動用PMOSトランジスタと、
基準電位と前記基準電位よりも高い第1電位との間で変動する第1入力端子および第2入力端子の電位に基づいて、前記駆動用NMOSトランジスタのゲートの電位が、前記基準電位と前記第1電位よりも高い第2電位との間で変動するように信号処理する第1レベルシフト回路と、
前記基準電位と前記第1電位との間で変動する第3入力端子および第4入力端子の電位に基づいて、前記駆動用PMOSトランジスタのゲートの電位が、前記基準電位と前記第2電位との間で変動するように信号処理する第2レベルシフト回路と、
を備え、
前記駆動用NMOSトランジスタのソースが前記基準電位側に設けられ、前記駆動用PMOSトランジスタのソースが前記第2電位に設定され、
各レベルシフト回路は、
前記基準電位に設定される第1ソースと、第1ゲートと、第1ドレインと、を有するNMOSトランジスタである第1トランジスタと、
前記基準電位に設定される第2ソースと、第2ゲートと、第2ドレインと、を有するNMOSトランジスタである第2トランジスタと、
前記第2電位に設定される第3ソースと、第3ゲートと、前記第1ドレインに接続される第3ドレインと、を有するPMOSトランジスタである第3トランジスタと、
前記第2電位に設定される第4ソースと、第4ゲートと、前記第2ドレインに接続される第4ドレインと、を有するPMOSトランジスタである第4トランジスタと、
を有し、前記第1ドレインと前記第4ゲートとが接続され、前記第2ドレインと前記第3ゲートとが接続され、
前記第1レベルシフト回路の前記第1ゲートが前記第1入力端子に接続され、前記第1レベルシフト回路の前記第2ゲートが前記第2入力端子に接続され、
前記第2レベルシフト回路の前記第1ゲートが前記第3入力端子に接続され、前記第2レベルシフト回路の前記第2ゲートが前記第4入力端子に接続され、
前記第1レベルシフト回路の前記第2ドレインが前記駆動用NMOSトランジスタのゲートに接続され、前記第2レベルシフト回路の前記第4ドレインが前記駆動用PMOSトランジスタのゲートに接続される、
駆動回路。 -
駆動開始時に、前記第1入力端子が前記基準電位に設定され、前記第2入力端子が前記第1電位に設定され、前記第3入力端子が前記第1電位に設定され、前記第4入力端子が前記基準電位に設定される、
請求項1に記載された駆動回路。 -
共通のドレインが負荷に接続された駆動用NMOSトランジスタおよび駆動用PMOSトランジスタと、
基準電位と前記基準電位よりも高い第1電位との間で変動する第1入力端子および第2入力端子の電位に基づいて、前記駆動用NMOSトランジスタおよび前記駆動用PMOSトランジスタのゲートの電位が、前記基準電位と前記第1電位よりも高い第2電位との間で変動するように信号処理するレベルシフト回路と、
を備え、
前記駆動用NMOSトランジスタのソースが前記基準電位側に設けられ、前記駆動用PMOSトランジスタのソースが前記第2電位に設定され、
前記レベルシフト回路は、
前記基準電位に設定される第1ソースと、前記第1入力端子に接続される第1ゲートと、第1ドレインと、を有するNMOSトランジスタである第1トランジスタと、
前記基準電位に設定される第2ソースと、前記第2入力端子に接続される第2ゲートと、前記駆動用NMOSトランジスタのゲートに接続される第2ドレインと、を有するNMOSトランジスタである第2トランジスタと、
前記第2電位に設定される第3ソースと、第3ゲートと、前記第1ドレインに接続される第3ドレインと、を有するPMOSトランジスタである第3トランジスタと、
前記第2電位に設定される第4ソースと、第4ゲートと、前記第2ドレインおよび前記駆動用PMOSトランジスタのゲートに接続される第4ドレインと、を有するPMOSトランジスタである第4トランジスタと、
を有し、前記第1ドレインと前記第4ゲートとが接続され、前記第2ドレインと前記第3ゲートとがスイッチ素子を介して接続され、
前記スイッチ素子によって、前記第2ドレインと前記第3ゲートの間の導通状態が制御される、
駆動回路。 -
駆動開始時に、前記スイッチ素子により前記第2ドレインと前記第3ゲートを非導通とし、前記第1入力端子が前記第1電位に設定され、前記第2入力端子が前記第1電位に設定される、
請求項3に記載された駆動回路。 -
請求項1から4のいずれか1項に記載された駆動回路と、
マイクロコントローラと、を備え、
前記マイクロコントローラによって前記第1入力端子および前記第2入力端子の電位が設定される、駆動システム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-151225 | 2018-08-10 | ||
JP2018151225 | 2018-08-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020031537A1 true WO2020031537A1 (ja) | 2020-02-13 |
Family
ID=69414694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/025518 WO2020031537A1 (ja) | 2018-08-10 | 2019-06-27 | 駆動回路、駆動システム |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020031537A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05300001A (ja) * | 1992-04-23 | 1993-11-12 | Oki Electric Ind Co Ltd | レベルシフト回路 |
JPH1084274A (ja) * | 1996-09-09 | 1998-03-31 | Matsushita Electric Ind Co Ltd | 半導体論理回路および回路レイアウト構造 |
JP2002153050A (ja) * | 2000-11-13 | 2002-05-24 | Sharp Corp | 電圧変換回路及びこれを備えた半導体集積回路装置 |
JP2013131964A (ja) * | 2011-12-22 | 2013-07-04 | Renesas Electronics Corp | レベルシフト回路及び表示装置の駆動回路 |
JP2013165498A (ja) * | 2010-07-29 | 2013-08-22 | Denso Corp | 駆動制御装置 |
JP2016208134A (ja) * | 2015-04-17 | 2016-12-08 | 富士電機株式会社 | スイッチ駆動回路 |
-
2019
- 2019-06-27 WO PCT/JP2019/025518 patent/WO2020031537A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05300001A (ja) * | 1992-04-23 | 1993-11-12 | Oki Electric Ind Co Ltd | レベルシフト回路 |
JPH1084274A (ja) * | 1996-09-09 | 1998-03-31 | Matsushita Electric Ind Co Ltd | 半導体論理回路および回路レイアウト構造 |
JP2002153050A (ja) * | 2000-11-13 | 2002-05-24 | Sharp Corp | 電圧変換回路及びこれを備えた半導体集積回路装置 |
JP2013165498A (ja) * | 2010-07-29 | 2013-08-22 | Denso Corp | 駆動制御装置 |
JP2013131964A (ja) * | 2011-12-22 | 2013-07-04 | Renesas Electronics Corp | レベルシフト回路及び表示装置の駆動回路 |
JP2016208134A (ja) * | 2015-04-17 | 2016-12-08 | 富士電機株式会社 | スイッチ駆動回路 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4456569B2 (ja) | パワースイッチング素子の駆動回路 | |
JP2006314154A (ja) | 電力変換器 | |
US8390222B2 (en) | Brushless motor driving circuit | |
US8994437B2 (en) | Semiconductor device and circuit for controlling potential of gate of insulated gate type switching device | |
JP2007201595A (ja) | ドライブ装置 | |
CN110868049B (zh) | 一种带硬件保护的n-mos和p-mos永磁同步电机驱动电路 | |
JP5810973B2 (ja) | スイッチング素子の駆動回路 | |
WO2020031537A1 (ja) | 駆動回路、駆動システム | |
WO2020031536A1 (ja) | 駆動回路、駆動システム | |
WO2020031538A1 (ja) | 駆動回路、駆動システム | |
WO2013161201A1 (ja) | 駆動装置 | |
JP2020195213A (ja) | スイッチングトランジスタの駆動回路 | |
JP6155179B2 (ja) | 整流装置、オルタネータおよび電力変換装置 | |
JP2014003541A (ja) | 半導体集積回路、および、スイッチ装置 | |
JP2013162646A (ja) | モータ制御回路及びモータ駆動装置 | |
JP7294084B2 (ja) | 短絡判定装置 | |
KR20190034805A (ko) | 모터 구동 제어 장치 및 방법 | |
JP2022135911A (ja) | バイポーラパルス電圧ゲートドライバ | |
JP5918512B2 (ja) | H型ブリッジ回路およびモータ駆動装置 | |
US20220173734A1 (en) | Drive circuit and drive system | |
JP5801217B2 (ja) | アクチュエータ駆動半導体ディバイス | |
JP2010263375A (ja) | ドライバ回路 | |
JP2019088078A (ja) | ドライバ回路および電力変換装置 | |
JP6642074B2 (ja) | スイッチング素子の駆動装置 | |
JP2024135299A (ja) | ブリッジ回路のドライバ回路、それを用いたモータ駆動装置、電子機器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19847907 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19847907 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |