WO2020030126A1 - 数据的发送、资源的获取方法及装置 - Google Patents

数据的发送、资源的获取方法及装置 Download PDF

Info

Publication number
WO2020030126A1
WO2020030126A1 PCT/CN2019/100024 CN2019100024W WO2020030126A1 WO 2020030126 A1 WO2020030126 A1 WO 2020030126A1 CN 2019100024 W CN2019100024 W CN 2019100024W WO 2020030126 A1 WO2020030126 A1 WO 2020030126A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink channel
channel resource
signal
resource
uplink
Prior art date
Application number
PCT/CN2019/100024
Other languages
English (en)
French (fr)
Inventor
刘锟
戴博
沙秀斌
方惠英
杨维维
边峦剑
胡有军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US17/267,122 priority Critical patent/US20210314926A1/en
Priority to CN201980052698.2A priority patent/CN112740815B/zh
Priority to EP19847270.6A priority patent/EP3836723A4/en
Publication of WO2020030126A1 publication Critical patent/WO2020030126A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/04Scheduled access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communications, for example, to a method and an apparatus for transmitting data and acquiring resources.
  • MTC Machine Type Communication
  • NB-IoT Near Band Internet of Things
  • MTC and NB-IoT communication standard protocol Release 15 introduces early data output (Early Data Transmission (EDT) technology, that is, to allow the UE to use Message 3 (Msg3) to transmit data to the base station in the process of random access (Random Access), so that the UE does not need to enter the RRC connection state RRC-CONNECT for short, Chinese name for Radio Resource Control connection state), directly transmits data to the base station in the RRC idle state (Radio Resource Control IDLE, abbreviated as RRC-IDLE, Chinese name for Radio Resource Control Idle state), saving UE power At the same time, the uplink spectrum efficiency of the system can also be improved.
  • EDT Early Data Transmission
  • Msg3 Message 3
  • RRC-CONNECT Random Access
  • RRC idle state Radio Resource Control IDLE, abbreviated as RRC-IDLE, Chinese name for Radio Resource Control Idle state
  • EDT can only support the UE to send a data packet to the base station.
  • the EDT function cannot support it. Therefore, a new data packet transmission method is needed to support the UE in RRC. -In the IDLE state, data packets are transmitted at this interval.
  • the UE needs to send a random access channel preamble (Physical Random Access Channel Preamble, PRACH Preamble, also known as Msg1) and a Random Access Response message (also called Msg2) sent by the receiving base station.
  • Msg3 Physical Random Access Channel Preamble
  • Msg2 Random Access Response message
  • the embodiments of the present disclosure provide a method and a device for sending data and acquiring resources to solve at least the problem of excessive power consumption of the UE in the data transmission process in the non-RRC-CONNECT state in the related art.
  • a data transmission method including: a user equipment UE sends a signal on a first uplink channel resource; wherein the signal includes one of the following: a single subcarrier signal, and multiple subcarriers Signals and random access signals.
  • the UE obtains the location of the first uplink channel resource by receiving configuration information of the first uplink channel sent by the base station.
  • a location of the first uplink channel resource is located in a second uplink channel resource
  • the second uplink channel resource includes at least one of the following: a first type of second uplink channel resource, which is passed by the base station through the first configuration information A configured resource for instructing the UE to perform uplink data transmission; a second type of second uplink channel resource, a time domain-frequency domain resource configured by the base station for the UE to perform a non-competitive random access channel;
  • Three types of second uplink channel resources are time-frequency domain resources of the random access channel configured by the base station.
  • the location of the first uplink channel resource is located in the second uplink channel resource, including: the UE selecting M second uplink channel resources from the N second uplink channel resources as the first Uplink channel resources, where N and M are positive integers.
  • the location of the first uplink channel resource is located in the second uplink channel resource, and further includes: within a time domain interval, the UE selects the Q second uplink channels from the second uplink channel resource set.
  • the resource is the first uplink channel resource, wherein the second uplink channel resource set is composed of the second uplink channel resource in the time interval, and Q is a positive integer.
  • the start position of the time domain interval is indicated by signaling or determined according to a default configuration.
  • the length of the time domain interval includes one of the following: a transmission period of the signal; and a configuration period of the first type of the second uplink channel resource.
  • the Q second uplink channel resources include one of the following: within the time domain interval, the first Q second uplink channel resources in the second uplink channel resource set; Within the time domain interval, the last Q second uplink channel resources in the second uplink channel resource set; within the time domain interval, the second uplink channel resource set is selected in a preset order Q said second uplink channel resources.
  • the first configuration cycle of the first uplink channel resource is L times the second configuration cycle of the second type of second uplink channel resource or the second type of second uplink channel resource, where L Is a positive integer.
  • the configuration information of the signal is configured by the base station to the UE through second configuration information, where the second configuration information includes one of the following: the The index of the random access sequence corresponding to the signal; the number of repeated transmissions of the signal; the index of the subcarrier occupied by the first symbol group when the signal is transmitted.
  • the random access sequence index corresponding to the signal includes the random access sequence index set configured in the non-contention random access process and / or the subcarrier index occupied by the first symbol group when the signal is sent includes In the random access sequence index set configured in the non-contention random access process.
  • the UE when it is required to meet at least one of the following conditions, sends the signal on the first type of second uplink channel resource: the size of the first type of second uplink channel resource is not less than the sending A size of a resource required for the signal; the UE receives indication information sent by the base station, and the indication information instructs the UE to send the signal on the first type of second uplink channel resource.
  • the single subcarrier signal includes P symbol groups, where P is a positive integer.
  • the symbol group includes: at least one cyclic prefix CP and at least one symbol; or, at least one CP, at least one symbol, and a guard time; wherein one of the symbol groups occupies the same subcarrier in the frequency domain Index or occupy the same frequency resources.
  • a sequence of length K is sent on K symbols in the symbol group, where the sequence includes one of the following: a ZC sequence of length K; an orthogonal sequence of length K; and a length of K Gold random sequence of length K; Gold sequence of length I; ZC sequence of length I and cyclic shift to form a sequence of length K; Orthogonal sequence of length I and cyclic shift to form sequence of length K ; A pseudo-random sequence of length I and a sequence of length K are formed by cyclic shifting; a Gold sequence of length I and a sequence of length K are formed by cyclic shifting; where K, I are positive integers, and K is greater than I.
  • the single subcarrier signal supporting frequency domain frequency hopping includes: configuring 0 frequency domain frequency hopping levels in the P symbol groups; wherein each frequency domain frequency hopping level corresponds to a frequency hopping interval and Corresponding to one or more frequency hopping opportunities, and / or, in the frequency domain frequency hopping opportunities corresponding to the frequency domain frequency hopping level o, the number of positive frequency hopping opportunities and the number of negative frequency hopping opportunities are equal.
  • the frequency domain frequency hopping level o is included in O kinds of frequency domain frequency hopping levels.
  • the method further includes: sending one or more of the multi-subcarrier signals on the first uplink channel resource; wherein the multi-subcarrier signal The occupied frequency domain bandwidth is not greater than the frequency domain bandwidth corresponding to the first uplink channel resource.
  • the sum of the time domain lengths of the one or more of the multi-subcarrier signals is equal to the time domain length of the first uplink channel resource.
  • the information carried in the signal is predetermined information.
  • the predetermined information includes at least one of the following: a demodulation-specific reference signal; a reference signal; and predetermined bit information.
  • the timer for the timing advance update expires; the update timing of the timing advance arrives; The update time arrives, and T is not less than a preset threshold, where T is an interval between the update cycle time of the timing advance and the time when the update information of the timing advance sent by the base station was last received;
  • the saved timing advance is invalid;
  • the UE receives instruction information that triggers the signal transmission in Msg2 during the random access process;
  • the UE receives the trigger signal transmission in Msg4 during the random access process
  • the UE receives instruction information that triggers the signal transmission in downlink control information, wherein the downlink control The control information is carried in a downlink control channel,
  • the timer of the timing advance update is reset.
  • the UE uses the first type of second uplink channel resource Among the F1 uplink data transmissions performed above, after the retransmission, the number of times that the corresponding uplink data transmission succeeds is not less than G1, where F1 and G1 are positive integers and F1 is greater than G1; the UE is in the first type Among the consecutive F2 uplink data transmissions performed on the second uplink channel resource, the number of times that the uplink data transmission succeeds after retransmission is not less than G2, where F2 and G2 are positive integers and F2 is greater than G2; the UE In one uplink data transmission performed on the first type of second uplink channel resource, the number of retransmissions is not less than G3, where G3 is a positive integer.
  • the UE for the UE to send the signal on the first uplink channel resource, one of the following conditions needs to be met: after the UE performs uplink data transmission on the first type of second uplink channel resource, No indication information of the uplink data transmission success sent by the base station is not detected; after the UE performs uplink data transmission on the first type of second uplink channel resource, the uplink data sent by the base station is not detected Retransmission resource scheduling information for data transmission; after the UE performs uplink data transmission on the first type of second uplink channel resource, the UE detects a downlink control channel in a search space of a corresponding downlink control channel.
  • the downlink control information carried in the downlink control channel includes one of the following: indication information of timing advance failure; timing Instruction information for advance amount update; instruction information for sending the signal.
  • the first uplink channel resource for sending a signal includes: the first uplink channel resource after the time when the time domain position satisfies the condition to be satisfied in the data transmission method according to the claim.
  • a method for determining a resource including: the base station sending configuration information of a first uplink channel to a user equipment UE for acquiring a location of a first uplink channel resource, wherein the The first uplink channel resource is used for the UE to send a signal, and the signal includes one of the following: a single subcarrier signal, a multi-subcarrier signal, and a random access signal.
  • a location of the first uplink channel resource is located in a second uplink channel resource
  • the second uplink channel resource includes at least one of the following: a first type of second uplink channel resource, which is passed by the base station through the first configuration information A configured resource for instructing the UE to perform uplink data transmission; a second type of second uplink channel resource, a time domain-frequency domain resource configured by the base station for the UE to perform a non-competitive random access channel;
  • Three types of second uplink channel resources are time-frequency domain resources of the random access channel configured by the base station.
  • a data sending apparatus which is located in user equipment UE and includes: a sending module configured to send a signal on a first uplink channel resource; wherein the signal includes the following: One: single subcarrier signal, multiple subcarrier signal and random access signal.
  • an apparatus for determining a resource which is located in a base station and includes: a determining module configured to send a first uplink channel to a user equipment UE for acquiring a location of a first uplink channel resource
  • the configuration information of the first uplink channel resource is used for the UE to send a signal, and the signal includes one of the following: a single subcarrier signal, a multiple subcarrier signal, and a random access signal.
  • a storage medium stores a computer program, wherein the computer program is configured to execute the steps in any one of the foregoing method embodiments when running.
  • an electronic device including a memory and a processor, the memory stores a computer program, and the processor is configured to run the computer program to execute any one of the above. Steps in a method embodiment.
  • a signal of one of a single subcarrier signal, a multi-subcarrier signal, and a random access signal is transmitted on an uplink channel resource. Therefore, it is possible to solve the existence of a data transmission process in a non-RRC-CONNECT state in the related art.
  • the problem of excessive power consumption of the UE achieves the effect of reducing the transmission power consumption of the UE during data transmission.
  • FIG. 1 is a hardware structural block diagram of a mobile UE in a data transmission method according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a data sending method according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a configuration of an uplink channel resource according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of another uplink channel resource configuration according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of another uplink channel resource configuration according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a symbol group structure according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of another symbol group structure according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of another symbol group structure according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of another symbol group structure according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a signal structure of a single subcarrier according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a signal structure of another single subcarrier according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of transmitting resources of uplink data according to an embodiment of the present disclosure.
  • FIG. 13 is a flowchart of a method for determining a resource according to an embodiment of the present disclosure
  • FIG. 14 is a structural diagram of a data transmitting apparatus according to an embodiment of the present disclosure.
  • FIG. 15 is a structural diagram of a resource determination device according to an embodiment of the present disclosure.
  • FIG. 1 is a block diagram of a hardware structure of a mobile UE of a data sending method according to an embodiment of the present disclosure.
  • the mobile UE 10 may include one or more (only one is shown in FIG.
  • a processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA
  • the above-mentioned mobile UE may further include a transmission device 106 and an input-output device 108 for communication functions.
  • the structure shown in FIG. 1 is only schematic, and it does not limit the structure of the above mobile UE.
  • the mobile UE 10 may further include more or fewer components than those shown in FIG. 1, or have a different configuration from that shown in FIG. 1.
  • the memory 104 may be used to store a computer program, for example, a software program and module of application software, such as a computer program corresponding to a data transmission method in the embodiment of the present disclosure.
  • the processor 102 executes the computer program stored in the memory 104 to execute the computer program.
  • the memory 104 may include a high-speed random access memory, and may further include a non-volatile memory, such as one or more magnetic storage devices, a flash memory, or other non-volatile solid-state memory.
  • the memory 104 may further include memories remotely set with respect to the processor 102, and these remote memories may be connected to the mobile UE 10 through a network. Examples of the above network include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the transmission device 106 is used for receiving or transmitting data via a network.
  • the above specific examples of the network may include a wireless network provided by a communication provider of the mobile UE 10.
  • the transmission device 106 includes a network adapter (Network Interface Controller, NIC for short), which can be connected to other network equipment through a base station so as to communicate with the Internet.
  • the transmission device 106 may be a radio frequency (RF) module, which is used to communicate with the Internet in a wireless manner.
  • RF radio frequency
  • FIG. 2 is a flowchart of a method for transmitting data according to an embodiment of the present disclosure. As shown in FIG. 2, the process includes the following steps. .
  • Step S202 The user equipment UE sends a signal on the first uplink channel resource.
  • the signal includes one of the following: a single subcarrier signal, a multi-subcarrier signal, and a random access signal.
  • the UE may be a single UE or a group of UEs including multiple UEs.
  • the base station estimates a timing advance (TA) by using a detection signal.
  • TA timing advance
  • the UE obtains the location of the first uplink channel resource by receiving configuration information of the first uplink channel sent by the base station.
  • the location of the first uplink channel resource includes a frequency domain location and a time domain location.
  • the first uplink channel resource is an uplink channel resource dedicated to the signal for the UE or a second uplink channel resource.
  • the following first uplink channel resource is a further explanation for the latter case.
  • a location of the first uplink channel resource is located in a second uplink channel resource
  • the second uplink channel resource includes at least one of the following: a first type of second uplink channel resource, which is passed by the base station through the first configuration information A configured resource for instructing the UE to perform uplink data transmission; a second type of second uplink channel resource, a time domain-frequency domain resource configured by the base station for the UE to perform a non-competitive random access channel;
  • the three types of second uplink channel resources are time-frequency domain resources of the random access channel configured by the base station; the fourth type of second uplink channel resources are resources configured by the base station and dedicated to the signal transmission.
  • the first uplink channel resource is used for transmitting signals, it also has other functions. Therefore, even if the second uplink channel resource uses only one or several types of second uplink channel resources, For sending the first signal, in order not to prevent the first uplink channel resource from performing other functions, while carrying the second uplink channel resource of the type corresponding to the signal, it may also carry other second uplink channel resources that do not perform the signal sending function. . For example, when the UE sends a signal by using the first type of the second uplink channel resource, the second type of the second uplink channel resource may be sent along with the first type of the second uplink channel resource.
  • the first type of the second uplink channel resource may be used for uploading data transmission in a non-RRC-CONNECT state.
  • the non-RRC-CONNECT state includes at least an RRC-IDLE state.
  • the first configuration information includes at least one of the following: location information of a second uplink channel resource; configuration information of a downlink control channel search space; wherein the information carried on the downlink control channel includes downlink control information (Downlink Control Information) DCI).
  • location information of a second uplink channel resource includes configuration information of a downlink control channel search space; wherein the information carried on the downlink control channel includes downlink control information (Downlink Control Information) DCI).
  • DCI Downlink Control Information
  • the first configuration information is carried in System Information (System Information) (SI) in.
  • SI System Information
  • the first configuration information is carried in an RRC (Radio Resource Control) message.
  • RRC Radio Resource Control
  • the location of the first uplink channel resource is located in the second uplink channel resource, including: the UE selecting M second uplink channel resources from the N second uplink channel resources as the first Uplink channel resources, where N and M are positive integers.
  • N 0, it means that N of the second uplink channel resources are not configured in the first uplink channel resource.
  • the value of the number M of the selected second uplink channel resources may be the same, or the corresponding number M of the second uplink channel resources may be independently configured for different N second uplink channel resources.
  • the second uplink channel resource is used as the first uplink channel resource.
  • the UE is instructed to select M second uplink channel resources from the N second uplink channel resources as the first uplink channel resources in at least one of the following manners: the UE according to the base station pass information The first indication information sent by the command; the second indication information determined by the UE according to a default configuration.
  • the first indication information includes: a bitmap Bitmap.
  • a bit configured as "1" in the Bitmap indicates that the second uplink channel resource corresponding to the position is used as the first uplink channel resource, and a bit configured as "0" in the Bitmap indicates the second uplink corresponding to the position The channel resource is not used as the first uplink channel resource;
  • the length of the bitmap is N, that is, the position of the second uplink channel resource selected as the first uplink channel resource in the second uplink channel resource is indicated by one Bitmap.
  • the length of the Bitmap may also be N / B, that is, B Bitmaps are required to indicate the position of the second uplink channel resource selected as the first uplink channel resource among the N second uplink channel resources.
  • B is a positive integer.
  • the second indication information includes: a position where the M second uplink channel resources are selected as the first uplink channel resources among the N second uplink channel resources.
  • the position includes one of the following: positions corresponding to the first M second uplink channel resources among the N second uplink channel resources; and the last M locations among the N second uplink channel resources.
  • the following specific description is also provided for configuring the first uplink channel resource in the second uplink channel resource.
  • the UE After receiving the first indication information sent by the base station through signaling, the UE determines that the Bitmap in the first indication information is "1000000010000000" through analysis, and the UE determines the second uplink channel resource 1 and the second uplink resource 9 As a first uplink channel resource, a signal is transmitted.
  • the UE determines that the default configuration carried by the first 9 of the 16 second uplink channel resources is the first uplink channel resource, and then the UE determines The second uplink channel resources of the second uplink channel resource 1 to the second uplink channel resource 9 in FIG. 3 are used as the first uplink channel resources, and signals are transmitted.
  • the UE determines that the default configuration carried by the UE is the second uplink channel resource 1, the second uplink channel resource 3, and the second uplink channel resource 15 among the 16 second uplink channel resources.
  • the channel resource is used as a first uplink channel resource, and a signal is transmitted.
  • the UE uses the Q second uplink channel resources in the second uplink channel resource set as the first uplink channel resources, where the second uplink channel resource set It is composed of the second uplink channel resource in the time interval, and Q is a positive integer.
  • the start position of the time domain interval is indicated by signaling or determined according to a default configuration.
  • the default reference time is the start time of Frame 0 (the first frame, numbered Frame 0), and the base station indicates the offset of the time domain interval start position from the default reference time by signaling, and then obtains the first reference time.
  • the start position of the second time domain interval is obtained by the length of the time domain interval, and so on.
  • the start position of the time domain interval adopts a default configuration
  • the start position of the first time domain interval is configured by default as the start time of Frame 0 (first frame, numbered Frame 0).
  • the start position of the second time domain interval is obtained by the length of the time domain interval, and so on.
  • the length of the time domain interval includes one of the following: a transmission period of the signal; and a configuration period of the first type of the second uplink channel resource.
  • the length of the time domain interval is indicated by the base station through signaling, or the length of the time domain interval is determined by a standard default configuration.
  • the Q second uplink channel resources include one of the following: within the time domain interval, the first Q second uplink channel resources in the second uplink channel resource set; Within the time domain interval, the last Q second uplink channel resources in the second uplink channel resource set; within the time domain interval, the second uplink channel resource set is selected in a preset order Q said second uplink channel resources.
  • the following specific description is also provided for configuring the first uplink channel resource in the second uplink channel resource.
  • FIG. 4 is a schematic diagram of another uplink channel resource configuration according to an embodiment of the present disclosure. As shown in FIG. 4, FIG. 4 schematically configures that there are only 5 periods among 8 configuration periods of the second uplink channel resource.
  • the second uplink channel resource 1 to the second uplink channel resource 5 in FIG. 4 are respectively numbered.
  • the length of the time domain interval is the transmission period of the signal. It can be seen from FIG. 4 that there are two complete time domain intervals in the configuration period of the eight second uplink channel resources, which are respectively defined as a first time domain interval and a second time domain interval.
  • a selection rule of the first uplink channel resource is: the first second uplink channel resource among the second uplink channel resources included in the time domain interval is used as the first uplink channel resource. Therefore, in this case, in the first time domain interval, the first uplink channel resource is the second uplink channel resource 1; in the second time domain interval, the first uplink channel resource is the second uplink channel resource 3.
  • the second uplink channel resources 2 and 5 are selected as the first uplink channel resources.
  • the second uplink channel resource with an odd resource number that is, the second uplink channel resource 1, 3, and 5 is selected as the first uplink channel resource.
  • FIG. 5 is a schematic diagram of another uplink channel resource configuration according to an embodiment of the present disclosure. As shown in FIG. 5, FIG. 5 schematically configures that there are only 8 cycles in the configuration period of 8 second uplink channel resources. The second uplink channel resource. Respectively numbered from the second uplink channel resource 8 to the second uplink channel resource 5 in FIG. 5
  • the length of the time domain interval is the transmission period of the signal, and in FIG. 5, there are two complete time domain intervals in the configuration period of the eight second uplink channel resources, which are respectively defined as the first time domain interval. And the second time domain interval.
  • a selection rule of the first uplink channel resource is: the first one of the second uplink channel resources among the second uplink channel resources included in the time domain interval is used as the first uplink channel resource. Therefore, in this case, in the first time domain interval, the first uplink channel resource is the second uplink channel resource 1; in the second time domain interval, the first uplink channel resource is the second uplink channel resource 3.
  • the second uplink channel resources 4 and 8 are selected as the first uplink channel resources.
  • a second uplink channel resource with an even resource number that is, the second uplink channel resource 2, 4, 6, 8 is selected as the first uplink channel resource.
  • the first configuration cycle of the first uplink channel resource is L times the second configuration cycle of the second type of second uplink channel resource or the second type of second uplink channel resource, where L Is a positive integer.
  • the configuration information of the signal is configured by the base station to the UE through second configuration information, where the second configuration information includes one of the following: the Index of the random access sequence corresponding to the signal; the number of repeated transmissions of the signal; the index of the subcarrier occupied by the first symbol group when the signal is transmitted
  • the random access sequence index corresponding to the signal includes the random access sequence index set configured in the non-contention random access process and / or the subcarrier index occupied by the first symbol group when the signal is sent includes In the random access sequence index set configured in the non-contention random access process.
  • the UE when it is required to meet at least one of the following conditions, sends the signal on the first type of second uplink channel resource: the size of the first type of second uplink channel resource is not less than the sending A size of a resource required for the signal; the UE receives indication information sent by the base station, and the indication information instructs the UE to send the signal on the first type of second uplink channel resource.
  • the single subcarrier signal includes P symbol groups, where P is a positive integer.
  • the symbol group includes: at least one cyclic prefix CP and at least one symbol; or, at least one CP, at least one symbol, and a guard time; wherein one of the symbol groups occupies the same subcarrier in the frequency domain Index or occupy the same frequency resources.
  • a symbol group structure is also provided in this embodiment. According to the following FIGS. 6 to 9, the symbol group structure in this embodiment can be reflected.
  • FIG. 6 is a schematic diagram of a symbol group structure according to an embodiment of the present disclosure. As shown in FIG. 6: the symbol group is composed of one CP and K OFDM symbols. Where K is a positive integer.
  • FIG. 7 is a schematic diagram of another symbol group structure according to an embodiment of the present disclosure. As shown in FIG. 7, the symbol group is composed of one CP, K OFDM symbols, and one guard time.
  • FIG. 8 is a schematic diagram of another symbol group structure according to an embodiment of the present disclosure. As shown in FIG. 8, the symbol group is composed of K CPs and K OFDM symbols.
  • FIG. 9 is a schematic diagram of another symbol group structure according to an embodiment of the present disclosure. As shown in FIG. 9, the symbol group is composed of K CPs, K OFDM symbols, and 1 guard time.
  • FIG. 6 to FIG. 9 exemplarily illustrate the types of the symbol group structure, but are not exhaustive.
  • other symbol group structures based on the ideas in FIG. 6 to FIG. 9 are also within the protection scope of this embodiment.
  • a sequence of length K is sent on K symbols in the symbol group, where the sequence includes one of the following: a ZC sequence of length K; an orthogonal sequence of length K; and a length of K Gold random sequence of length K; Gold sequence of length I; ZC sequence of length I and cyclic shift to form a sequence of length K; Orthogonal sequence of length I and cyclic shift to form sequence of length K ; A pseudo-random sequence of length I and a sequence of length K are formed by cyclic shifting; a Gold sequence of length I and a sequence of length K are formed by cyclic shifting; where K, I are positive integers, and K is greater than I.
  • a 3-long cyclic shift can be implemented in the following manner:
  • the 16-length sequence after a 3-length cyclic shift is [a0, a1, a2, a3, a3, a5, a6, a7, a8, a9, a10, a11, a12, a0, a1, a2, and a2].
  • the 16-length sequence after the 3-length cyclic shift is [a10, a11, a12, a0, a1, a2, a3, a3, a5, a6, a7, a8, a9, a10, a11, a11, a12, a11, a11, a11, a11, a11, a11, a11, a11, a11, a11, a11, a11, a11, a10, a11, a11, a11, a11, a11, a11, a11, a11, a11, a1, a2, a2, a3, a3, a5, a6, a7, a8, a8, a9, a10, a11, a11, a12, a11, a12, a, a, a, a, a, a, a, a, a,
  • the single subcarrier signal supporting frequency domain frequency hopping includes: configuring 0 frequency domain frequency hopping levels in the P symbol groups; wherein each frequency domain frequency hopping level corresponds to a frequency hopping interval and Corresponding to one or more frequency hopping opportunities, and / or, in the frequency domain frequency hopping opportunities corresponding to the frequency domain frequency hopping level o, the number of positive frequency hopping opportunities and the number of negative frequency hopping opportunities are equal.
  • the frequency domain frequency hopping level o is included in O kinds of frequency domain frequency hopping levels.
  • the number of positive frequency hopping opportunities and the number of negative frequency hopping opportunities in the frequency domain frequency hopping opportunities corresponding to each frequency domain frequency hopping level in the O kinds of frequency domain frequency hopping levels are equal.
  • only part of the frequency-domain frequency hopping opportunities corresponding to the frequency-domain frequency hopping level may have the same number of positive frequency-hopping opportunities and the number of negative frequency-hopping opportunities. That is to say, among at least one frequency domain frequency hopping level in the O frequency domain frequency hopping levels, the number of positive frequency hopping opportunities and the number of negative frequency hopping opportunities are equal.
  • the following specific description is also provided for configuring the first uplink channel resource in the second uplink channel resource.
  • FIG. 10 is a schematic diagram of a signal structure of a single subcarrier according to an embodiment of the present disclosure.
  • the signal includes two frequency domain frequency hopping levels, which are frequency domain frequency hopping level 1 and frequency domain frequency hopping level 2 respectively.
  • frequency domain frequency hopping level 1 and frequency domain frequency hopping level 2 the corresponding frequency domain frequency hopping interval between the two is different.
  • the index of the subcarrier occupied in symbol group 1 is 20, and the frequency hopping interval corresponding to frequency domain frequency hopping level 1 is 6 subcarriers, 2 frequency hopping opportunities are configured at the same time.
  • the frequency hopping interval corresponding to frequency domain frequency hopping level 2 is 12 subcarriers, and 2 frequency hopping opportunities are configured at the same time.
  • the index of the subcarrier occupied by symbol group 1 is 20, and a ZC sequence of length X is transmitted on X symbols; the index of the subcarrier occupied by symbol group 2 is 14, and a length of X symbols is also transmitted.
  • ZC sequence of X is also transmitted.
  • the ZC sequences transmitted on the symbol group 1 and the symbol group 2 may be the same or different.
  • the frequency domain frequency hopping interval between symbol group 1 and symbol group 2 is 6 subcarrier intervals.
  • the method further includes: sending one or more of the multi-subcarrier signals on the first uplink channel resource; wherein the multi-subcarrier signal The occupied frequency domain bandwidth is not greater than the frequency domain bandwidth corresponding to the first uplink channel resource.
  • the multi-subcarrier signal occupies one or more time domain symbols.
  • the time domain symbols include at least: OFDM symbols.
  • the OFDM symbol may include a cyclic prefix CP and is located at the beginning of the OFDM symbol.
  • the multiple multi-subcarrier signals may be the same or different.
  • the multiple multi-subcarrier signals it is specifically embodied in the following aspects: the number of OFDM symbols occupied by the multiple sub-carrier signals is different, or the generated multiple sub-carrier signals are different.
  • the configuration information of the multi-subcarrier signal is configured in the first configuration information configuration.
  • the sum of the time domain lengths of the one or more of the multi-subcarrier signals is equal to the time domain length of the first uplink channel resource.
  • the information carried in the signal is predetermined information.
  • the predetermined information includes at least one of the following: a demodulation-specific reference signal; a reference signal; and predetermined bit information.
  • the signal carrying the predetermined information may be sent on a first type of second uplink channel resource.
  • the predetermined information carried in the signal is a DMRS or a reference signal, it includes at least one of the following: the predetermined information carried in the signal is based on the size of the frequency domain resource and / or the time domain resource in the first type of the second uplink channel resource.
  • the position of the predetermined information carried in the signal in the first type of the second uplink channel resource is determined according to the size of the frequency domain resource and / or the size of the time domain resource in the first type of second uplink channel resource;
  • the predetermined information carried in the signal is predetermined bit information, it includes at least one of the following: the number of the predetermined bit information is greater than or equal to one. For example, the number of the bit information is determined according to the size of the frequency domain resource and / or the size of the time domain resource in the first type of the second uplink channel resource.
  • the timer for the timing advance update expires; the update timing of the timing advance arrives; The update time arrives, and T is not less than a preset threshold, where T is an interval between the update cycle time of the timing advance and the time when the update information of the timing advance sent by the base station was last received;
  • the saved timing advance is invalid;
  • the UE receives instruction information that triggers the signal transmission in Msg2 during the random access process;
  • the UE receives the trigger signal transmission in Msg4 during the random access process
  • the UE receives instruction information that triggers the signal transmission in downlink control information, wherein the downlink System information carried in the downlink control channel and the downlink control
  • the update timing of the timing advance is configured periodically.
  • the cycle length is configured by the base station or by default.
  • the reference time of the update timing of the first timing advance is configured by the base station or configured by default.
  • the default configuration of the reference time of the first timing advance update time is the time when the UE transitions from the RRC-CONNECT state to the RRC-IDLE state.
  • the timer for updating the timing advance is reset.
  • the UE uses the first type of second uplink channel resource Among the F1 uplink data transmissions performed above, after the retransmission, the number of times that the corresponding uplink data transmission succeeds is not less than G1, where F1 and G1 are positive integers and F1 is greater than G1; the UE is in the first type Among the consecutive F2 uplink data transmissions performed on the second uplink channel resource, the number of times that the uplink data transmission succeeds after retransmission is not less than G2, where F2 and G2 are positive integers and F2 is greater than G2; the UE In one uplink data transmission performed on the first type of second uplink channel resource, the number of retransmissions is not less than G3, where G3 is a positive integer.
  • the number of times corresponding to successful uplink data transmission after retransmission refers to the number of times corresponding to successful uplink data transmission after retransmission.
  • the UE for the UE to send the signal on the first uplink channel resource, one of the following conditions needs to be met: after the UE performs uplink data transmission on the first type of second uplink channel resource, No indication information of the uplink data transmission success sent by the base station is not detected; after the UE performs uplink data transmission on the first type of second uplink channel resource, the UE does not detect the uplink data transmission sent by the base station Retransmission resource scheduling information for uplink data transmission; after the UE performs uplink data transmission on the first type of second uplink channel resource, the UE detects a downlink control channel in a search space of a corresponding downlink control channel.
  • the downlink control information carried in the downlink control channel includes one of the following: indication information of timing advance failure; timing Instruction information for advance amount update; instruction information for sending the signal.
  • the first uplink channel resource used for sending a signal includes: a first uplink channel resource after a time at which a condition to be met is satisfied in a time domain position.
  • FIG. 12 is a schematic diagram of a resource transmission of uplink data according to an embodiment of the present disclosure.
  • the base station configures the resources used by the UE1 to transmit uplink data through the first configuration information, which includes multiple uplink data resources, which are respectively numbered as uplink data resource 1, uplink data resource 2, and uplink data resource 3. Uplink data resource 4 and so on.
  • the uplink data resource is used by the UE1 to send data in the RRC-IDLE state.
  • the base station configures the location of the random access channel resources in the system information, which includes multiple random access channel resources, which are respectively numbered as random access channel resource 1, random access channel resource 2, and random access channel resource 3. Random access channel resource 4, random access channel resource 5, random access channel resource 6, random access channel resource 7, and so on.
  • the UE needs to send a non-contention random access signal on a dedicated random access resource to allow the base station to detect the timing advance.
  • the start time of the timer for timing advance update is the time when the UE transitions from the RRC-CONNECT state to the RRC-IDLE state, that is, the "starting time” in FIG. 12.
  • the UE1 needs to send a non-contention random access signal on the next dedicated random access resource.
  • the next dedicated random access resource is the third dedicated random access resource, that is, the random access channel resource 5 in FIG. 12.
  • the base station After the base station completes the detection of the row timing advance, it sends the update result of the timing advance to the UE. At this time, the timer for the timing advance update is reset.
  • the related art solves the problem of excessive power consumption of the UE in the data transmission process in a non-RRC-CONNECT state, and achieves the effect of reducing the transmission power consumption of the UE in the data transmission process.
  • a device for determining resources is also provided in this embodiment, and the device is configured to implement the foregoing embodiments and example implementations, and the descriptions will not be repeated.
  • FIG. 13 is a flowchart of a method for determining a resource according to an embodiment of the present disclosure. As shown in FIG. 13, the process includes the following steps.
  • Step S1302 the base station sends configuration information of the first uplink channel to the user equipment UE for obtaining a location of the first uplink channel resource, where the first uplink channel resource is used for the UE to send a signal, and the signal includes the following One of them: single subcarrier signal, multiple subcarrier signal and random access signal.
  • a location of the first uplink channel resource is located in a second uplink channel resource
  • the second uplink channel resource includes at least one of the following: a first type of second uplink channel resource, which is passed by the base station through the first configuration information A configured resource for instructing the UE to perform uplink data transmission; a second type of second uplink channel resource, a time domain-frequency domain resource configured by the base station for the UE to perform a non-competitive random access channel;
  • Three types of second uplink channel resources are time-frequency domain resources of the random access channel configured by the base station.
  • a device for sending data is also provided.
  • the device is used to implement the foregoing embodiments and example implementations, and the descriptions will not be repeated.
  • the term "module” may implement a combination of software and / or hardware for a predetermined function.
  • the devices described in the following embodiments may be implemented in software, hardware, or a combination of software and hardware, is also possible and conceived.
  • FIG. 14 is a structural diagram of a data sending apparatus according to an embodiment of the present disclosure.
  • the apparatus includes: a sending module 1402 configured to send a signal on a first uplink channel resource, where the signal It includes one of the following: single subcarrier signals, multiple subcarrier signals, and random access signals.
  • a device for determining resources is also provided in this embodiment, and the device is configured to implement the foregoing embodiments and example implementations, and the descriptions will not be repeated.
  • the term "module” may implement a combination of software and / or hardware for a predetermined function.
  • the devices described in the following embodiments may be implemented in software, hardware, or a combination of software and hardware, is also possible and conceived.
  • FIG. 15 is a structural diagram of an apparatus for determining a resource according to an embodiment of the present disclosure.
  • the apparatus includes: a determining module 1502 configured to send a location for acquiring a first uplink channel resource to a user equipment UE The configuration information of the first uplink channel, wherein the first uplink channel resource is used for the UE to send a signal, and the signal includes one of the following: a single subcarrier signal, a multi-subcarrier signal, and a random access signal.
  • An embodiment of the present disclosure further provides a storage medium that stores a computer program therein, wherein the computer program is configured to execute the steps in any one of the foregoing method embodiments when running.
  • the foregoing storage medium may be configured to store a computer program for performing the following steps: S1; the user equipment UE sends a signal on the first uplink channel resource; wherein the signal includes the following: One: single subcarrier signal, multiple subcarrier signal and random access signal.
  • the foregoing storage medium may be further configured to store a computer program for performing the following steps: S2; the base station sends a first uplink to the user equipment UE for obtaining a location of the first uplink channel resource Channel configuration information, where the first uplink channel resource is used by the UE to send a signal, and the signal includes one of the following: a single subcarrier signal, a multi-subcarrier signal, and a random access signal.
  • the foregoing storage medium may include, but is not limited to, a U disk, a read-only memory (ROM), a random access memory (Random Access Memory, RAM), A variety of media that can store computer programs, such as mobile hard disks, magnetic disks, or optical disks.
  • ROM read-only memory
  • RAM Random Access Memory
  • An embodiment of the present disclosure further provides an electronic device including a memory and a processor.
  • the memory stores a computer program
  • the processor is configured to run the computer program to perform the steps in any one of the method embodiments described above.
  • the electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the processor, and the input-output device is connected to the processor.
  • the processor may be configured to perform the following steps through a computer program: S1; the user equipment UE sends a signal on a first uplink channel resource; wherein the location of the first uplink channel resource The signal is located in the second uplink channel resource, and the signal includes one of the following: a single subcarrier signal, a multiple subcarrier signal, and a random access signal.
  • the foregoing processor may be further configured to execute the following steps by a computer program: S2; the base station sends the configuration of the first uplink channel to the user equipment UE for obtaining the location of the first uplink channel resource.
  • Information wherein the first uplink channel resource is used for the UE to send a signal, and the signal includes one of the following: a single subcarrier signal, a multi-subcarrier signal, and a random access signal.
  • modules or steps of the present disclosure may be implemented by a general-purpose computing device, and they may be centralized on a single computing device or distributed on a network composed of multiple computing devices. Above, optionally, they may be implemented with program code executable by a computing device, so that they may be stored in a storage device and executed by the computing device, and in some cases, may be in a different order than here
  • the steps shown or described are performed either by making them into individual integrated circuit modules or by making multiple modules or steps into a single integrated circuit module. As such, the present disclosure is not limited to any particular combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种数据的发送、资源的获取方法及装置。其中,该方法包括:用户设备UE在第一上行信道资源上发送信号;其中,所述信号包括以下其中之一:单子载波信号,多子载波信号以及随机接入信号。

Description

数据的发送、资源的获取方法及装置
本申请要求在2018年08月09日提交中国专利局、申请号为201810905138.4的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及通信领域,例如涉及一种数据的发送、资源的获取方法及装置。
背景技术
随着智能UE的发展以及无线数据应用业务的丰富,无线通信网络中的数据用户数大幅增加,无线数据内容不再仅限于传统的文字或者图像,而且还会越来越多的出现高清晰度视频、手机电视等多媒体业务内容,从而导致无线通信网络流量呈现爆炸式增长。移动互联网和物联网业务将成为移动通信发展的主要驱动力。
针对物联网,3GPP标准组织制定了MTC(Machine Type Communication,机器类型通信)和NB-IoT(Narrow Band Internet of Things,窄带物联网)两个非常具有代表性的通信标准协议。
考虑到传输数据包较小且间隔发送是MTC和NB-IoT的UE(User Equipment)的一种典型的业务,MTC和NB-IoT的通信标准协议Release15版本中引入了提前数据输出(Early Data Transmission,EDT)技术,即允许UE在进行随机接入(Random Access)的相关流程中使用消息3(Message 3,Msg3)向基站传输数据,这样的话UE可以无需进入RRC连接状态(Radio Resource Control CONNECT,简称RRC-CONNECT,中文名称为无线资源控制连接状态),直接在RRC空闲状态(Radio Resource Control IDLE,简称RRC-IDLE,中文名称为无线资源控制空闲状态)向基站传输数据,节省了UE的功率,同时也可以提升系统的上行频谱效率。但由于EDT只能支持UE向基站发送一个数据包,当UE存在多个间隔发送的数据包时,EDT功能也不能够支持,因此需要一种新的数据包的传输方式用来支持UE在RRC-IDLE状态下传输这种间隔发送数据包业务。同时,由于EDT需要在随机接入过程中Msg3中发送数据,考虑到随机接入过程中Msg3消息之前UE还需要向基站发送随机接入信道前导信号(Physical Random Access Channel Preamble,PRACH Preamble,又称为Msg1)和接收基站发送的随机接入响应消息(Random Access Response,又称为Msg2)。每次EDT发送数据包时,UE都需要发送Msg1和接收Msg2消息,这样同样会消耗掉UE的功率。因此,相关技术中在非RRC-CONNECT状态下的数据传输过程当中,存在UE功率消耗过高的问题。
发明内容
本公开实施例提供了一种数据的发送、资源的获取方法及装置,以至少解决相关技术中在非RRC-CONNECT状态下的数据传输过程当中,存在UE功率 消耗过高的问题。
根据本公开的一个实施例,提供了一种数据的发送方法,包括:用户设备UE在第一上行信道资源上发送信号;其中,所述信号包括以下其中之一:单子载波信号,多子载波信号以及随机接入信号。
可选地,所述UE通过接收基站发送的第一上行信道的配置信息获知所述第一上行信道资源的位置。
可选地,所述第一上行信道资源的位置位于第二上行信道资源中,所述第二上行信道资源包括以下至少之一:第一类第二上行信道资源,由基站通过第一配置信息配置的用于指示所述UE进行上行数据传输的资源;第二类第二上行信道资源,由基站配置给所述UE的用于进行非竞争随机接入信道的时域-频域资源;第三类第二上行信道资源,由基站配置的随机接入信道的时域-频域资源。
可选地,所述第一上行信道资源的位置位于第二上行信道资源中,包括:所述UE从N个所述第二上行信道资源中选择M个第二上行信道资源作为所述第一上行信道资源,其中,N,M为正整数。
可选地,所述第一上行信道资源的位置位于第二上行信道资源中,还包括:在时域间隔内,所述UE从第二上行信道资源集合中的Q个所述第二上行信道资源作为所述第一上行信道资源,其中;所述第二上行信道资源集合由所述时间间隔内的所述第二上行信道资源组成,Q为正整数。
可选地,所述时域间隔的起始位置通过信令指示或者根据默认配置确定。
可选地,所述时域间隔的长度包括以下其中之一:所述信号的发送周期;所述第一类第二上行信道资源的配置周期。
可选地,Q个所述第二上行信道资源包括以下其中之一:在所述时域间隔内,所述第二上行信道资源集合中的前Q个所述第二上行信道资源;在所述时域间隔内,所述第二上行信道资源集合中的后Q个所述第二上行信道资源;在所述时域间隔内,所述第二上行信道资源集合中按照预设顺序选择的Q个所述第二上行信道资源。
可选地,所述第一上行信道资源的第一配置周期是所述第二类第二上行信道资源或所述第二类第二上行信道资源的第二配置周期的L倍,其中,L为正整数。
可选地,当所述信号为随机接入信号时,所述信号的配置信息由基站通过第二配置信息配置给所述UE,其中,所述第二配置信息包括以下其中之一:所述信号对应的随机接入序列索引;所述信号的重复发送次数;所述信号发送时第一个符号组占用的子载波索引。
可选地,所述信号对应的随机接入序列索引包括在非竞争随机接入过程配置的随机接入序列索引集合中和/或所述信号发送时第一个符号组占用的子载波索引包括在非竞争随机接入过程配置的随机接入序列索引集合中。
可选地,当需要满足以下至少之一的条件时,所述UE在所述第一类第二上行信道资源上发送所述信号:所述第一类第二上行信道资源的大小不小于发送所述信号时所需的资源大小;所述UE接收到所述基站发送的指示信息,所述指 示信息指示所述UE在所述第一类第二上行信道资源上发送所述信号。
可选地,在所述信号为所述单子载波信号时,所述单子载波信号包括P个符号组;其中,P为正整数。
可选地,所述符号组包括:至少一个循环前缀CP以及至少一个符号;或,至少一个CP,至少一个符号和保护时间;其中,一个所述符号组在频域上占用相同的一个子载波索引或占用相同的频率资源。
可选地,在所述符号组中K个符号上发送长度为K的序列,其中,所述序列包括以下其中之一:长度为K的ZC序列;长度为K的正交序列;长度为K的伪随机序列;长度为K的Gold序列;长度为I的ZC序列,并且通过循环移位组成长度为K的序列;长度为I的正交序列,并且通过循环移位组成长度为K的序列;长度为I的伪随机序列,并且通过循环移位组成长度为K的序列;长度为I的Gold序列,并且通过循环移位组成长度为K的序列;其中,K,I为正整数,且K大于I。
可选地,所述单子载波信号支持频域跳频,包括:在所述P个符号组中,配置O种频域跳频等级;其中,每个频域跳频等级对应一个跳频间隔以及对应一次或者多次跳频机会,和/或,在频域跳频等级o对应的频域跳频机会中,正向跳频机会的数目和负向跳频机会的数目相等。其中,所述频域跳频等级o包括在O种所述频域跳频等级中。
可选地,在所述信号为多子载波信号时,所述方法还包括:一个或者多个所述多子载波信号在所述第一上行信道资源上发送;其中,所述多子载波信号占用的频域带宽不大于所述第一上行信道资源对应的频域带宽。
可选地,所述一个或者多个所述多子载波信号的时域长度之和等于所述第一上行信道资源的时域长度。
可选地,所述信号中承载的信息为预定信息。
可选地,所述预定信息包括以下至少之一:解调专用参考信号;参考信号;预定的比特信息。
可选地,所述UE在所述第一上行信道资源上发送所述信号,需要满足以下之一的条件:定时提前量更新的定时器超时;定时提前量的更新时刻到达;定时提前量的更新时刻到达,且T不小于预设阈值,其中,T为所述定时提前量的更新周期时刻与最近一次接收到所述基站发送的所述定时提前量的更新信息的时刻之间的间隔;已经保存的定时提前量失效;所述UE在随机接入过程中的Msg2中接收到触发所述信号发送的指示信息;所述UE在随机接入过程中的Msg4中接收到触发所述信号发送的指示信息;所述UE在下行控制信息中接收到触发所述信号发送的指示信息,其中,所述下行控制信息承载在下行控制信道中,并且所述下行控制信道在所述UE专用的下行控制信道的搜索空间中发送;所述UE在下行控制信息中接收到触发所述信号发送的指示信息,其中,所述下行控制信息承载在下行控制信道中,并且所述下行控制信道在为所述UE配置的下行控制信道的搜索空间中发送。
可选地,当所述UE接收到所述基站发送的所述定时提前量的更新信息后, 所述定时提前量更新的定时器重置。
可选地,所述UE在所述第一上行信道资源上发所述送信号,需要满足以下之一的条件:在一个时间段内,所述UE在所述第一类第二上行信道资源上进行的F1次上行数据传输中,经过重传后所述上行数据传输成功对应的次数不小于G1,其中,F1,G1为正整数,且F1大于G1;所述UE在所述第一类第二上行信道资源上进行的连续F2次上行数据传输中,经过重传后所述上行数据传输成功对应的次数不小于G2,其中,F2,G2为正整数,且F2大于G2;所述UE在所述第一类第二上行信道资源上进行的一次上行数据传输中,重传的次数不小于G3,其中,G3为正整数。
可选地,所述UE在所述第一上行信道资源上发送所述信号,需要满足以下之一的条件:所述UE在所述第一类第二上行信道资源上进行上行数据传输之后,未检测到所述基站发送的所述上行数据传输成功的指示信息;所述UE在所述第一类第二上行信道资源上进行上行数据传输之后,未检测到所述基站发送的所述上行数据传输的重传的资源调度信息;所述UE在所述第一类第二上行信道资源上进行上行数据传输之后,在对应的下行控制信道的搜索空间中检测到下行控制信道。
可选地,所述UE在所述下行控制信道的搜索空间中检测到下行控制信道时,所述下行控制信道中携带的下行控制信息中包括以下之一:定时提前量失效的指示信息;定时提前量更新的指示信息;用于发送所述信号的指示信息。
可选地,用于发送信号的第一上行信道资源包括:在时域位置上满足根据权利要求上述数据的发送方法当中需要满足的条件的时刻之后的第一上行信道资源。
根据本公开的又一个实施例,还提供了一种资源的确定方法,包括:基站向用户设备UE发送用于获取第一上行信道资源的位置的第一上行信道的配置信息,其中,所述第一上行信道资源用于所述UE发送信号,所述信号包括以下其中之一:单子载波信号,多子载波信号以及随机接入信号。
可选地,所述第一上行信道资源的位置位于第二上行信道资源中,所述第二上行信道资源包括以下至少之一:第一类第二上行信道资源,由基站通过第一配置信息配置的用于指示所述UE进行上行数据传输的资源;第二类第二上行信道资源,由基站配置给所述UE的用于进行非竞争随机接入信道的时域-频域资源;第三类第二上行信道资源,由基站配置的随机接入信道的时域-频域资源。
根据本公开的再一个实施例,还提供了一种数据的发送装置,位于用户设备UE中,包括:发送模块,用于在第一上行信道资源上发送信号;其中,所述信号包括以下其中之一:单子载波信号,多子载波信号以及随机接入信号。
根据本公开的再一个实施例,还提供了一种资源的确定装置,位于基站中,包括:确定模块,用于向用户设备UE发送用于获取第一上行信道资源的位置的第一上行信道的配置信息,其中,所述第一上行信道资源用于所述UE发送信号,所述信号包括以下其中之一:单子载波信号,多子载波信号以及随机接入信号。
根据本公开的又一个实施例,还提供了一种存储介质,所述存储介质中存 储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本公开的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实施例中的步骤。
通过本公开,通过在上行信道资源上发送单子载波信号,多子载波信号以及随机接入信号之一的信号,因此,可以解决相关技术中在非RRC-CONNECT状态下的数据传输过程当中,存在UE功率消耗过高的问题,达到在数据传输过程中,降低UE的传输功率消耗的效果。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是本公开实施例的一种数据的发送方法的移动UE的硬件结构框图;
图2是根据本公开实施例的一种数据的发送方法的流程图;
图3是根据本公开实施例的一种上行信道资源的配置的示意图;
图4是根据本公开实施例的另一种上行信道资源的配置的示意图;
图5是根据本公开实施例的再一种上行信道资源的配置的示意图;
图6是根据本公开实施例的一种符号组结构的示意图;
图7是根据本公开实施例的另一种符号组结构的示意图;
图8是根据本公开实施例的再一种符号组结构的示意图;
图9是根据本公开实施例的还一种符号组结构的示意图;
图10是根据本公开实施例的一种单子载波的信号结构的示意图;
图11是根据本公开实施例的另一种单子载波的信号结构的示意图;
图12是根据本公开实施例的一种上行数据的资源的传输示意图;
图13是根据本公开实施例的一种资源的确定方法的流程图;
图14是根据本公开实施例的一种数据的发送装置的结构图;
图15是根据本公开实施例的一种资源的确定装置的结构图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
本申请实施例一所提供的方法实施例可以在移动UE、计算机UE或者类似的运算装置中执行。以运行在移动UE上为例,图1是本公开实施例的一种数据的发送方法的移动UE的硬件结构框图。如图1所示,移动UE10可以包括一个 或多个(图1中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和用于存储数据的存储器104,可选地,上述移动UE还可以包括用于通信功能的传输设备106以及输入输出设备108。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述移动UE的结构造成限定。例如,移动UE10还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可用于存储计算机程序,例如,应用软件的软件程序以及模块,如本公开实施例中的数据的发送方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动UE10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106用于经由一个网络接收或者发送数据。上述的网络具体实例可包括移动UE10的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,简称为RF)模块,其用于通过无线方式与互联网进行通讯。
在本实施例中提供了一种运行于上述移动UE的数据的发送方法,图2是根据本公开实施例的一种数据的发送方法的流程图,如图2所示,该流程包括如下步骤。
步骤S202,用户设备UE在第一上行信道资源上发送信号;其中,所述信号包括以下其中之一:单子载波信号,多子载波信号以及随机接入信号。
需要说明的是,在本实施中,UE可以为一个单独的UE,也可以是包括了多个UE的一组UE。
具体地,基站通过检测信号进行定时提前量(Timing Advanced,简称TA)的估计。
可选地,所述UE通过接收基站发送的第一上行信道的配置信息获取所述第一上行信道资源的位置。
具体地,第一上行信道资源的位置包括:频域位置和时域位置。
具体地,第一上行信道资源为所述UE专用的用于所述信号发送的上行信道资源或者为第二上行信道资源。以下第一上行信道资源是针对后一种情况的进一步说明。
可选地,所述第一上行信道资源的位置位于第二上行信道资源中,所述第二上行信道资源包括以下至少之一:第一类第二上行信道资源,由基站通过第一配置信息配置的用于指示所述UE进行上行数据传输的资源;第二类第二上行信道资源,由基站配置给所述UE的用于进行非竞争随机接入信道的时域-频域 资源;第三类第二上行信道资源,由基站配置的随机接入信道的时域-频域资源;第四类第二上行信道资源,由基站配置的专用于所述信号发送的资源。
需要说明的是,第一上行信道资源当中虽然用于发送信号,但是同时还具备其他的功能,因此,即使第二上行信道资源中只是用一种或者某几种类型的第二上行信道资源用于发送第一信号,为了不妨碍第一上行信道资源执行其他功能,在携带用于发送信号对应的类型的第二上行信道资源同时,还可以携带其他不执行发送信号功能的第二上行信道资源。例如,当UE使用第一类第二上行信道资源发送信号时,第二类第二上行信道资源同时可以伴随着第一类第二上行信道资源发送信号。
具体地,第一类第二上行信道资源可以用于在非RRC-CONNECT状态下进行上传数据传输。其中,该非RRC-CONNECT状态中至少包括RRC-IDLE状态。
具体地,第一配置信息包括以下至少之一:第二上行信道资源的位置信息;下行控制信道搜索空间的配置信息;其中,下行控制信道上承载的信息包括下行控制信息(Downlink Control Information,简称DCI)。
具体地,对于一组UE而言,当第二上行信道资源为用于一组UE中的多个UE发送上行数据共用资源时,第一配置信息则承载在系统信息(System Information,简称SI)中。
具体地,当第二上行信道资源为所述UE的专用资源时,第一配置信息则会承载在RRC(Radio Resource Control,无线资源控制)消息中。
可选地,所述第一上行信道资源的位置位于第二上行信道资源中,包括:所述UE从N个所述第二上行信道资源中选择M个第二上行信道资源作为所述第一上行信道资源,其中,N,M为正整数。
具体地,如果在M=0的情况下,表示在N个所述第二上行信道资源中没有配置在第一上行信道资源中。
具体地,对于不同的N个第二上行信道资源,选择的第二上行信道资源的数量M的取值既可以相同也可以针对不同的N个第二上行信道资源分别独立配置对应的数量M的第二上行信道资源作为第一上行信道资源。
具体地,通过如下至少之一的方式,指示所述UE从N个所述第二上行信道资源中选择M个第二上行信道资源作为所述第一上行信道资源:所述UE根据基站通过信令发送的第一指示信息;所述UE根据默认配置确定的第二指示信息。
具体地,第一指示信息包括:位图Bitmap。
具体而言,Bitmap中配置为“1”的bit表示该位置对应的第二上行信道资源用作第一上行信道资源,Bitmap中配置为“0”的bit表示该位置对应的所述第二上行信道资源不用作第一上行信道资源;
具体而言,Bitmap的长度为N,即所述第二上行信道资源中被选作所述第一上行信道资源的第二上行信道资源的位置通过1个Bitmap指示。
另一方面,Bitmap的长度还可以为N/B,即需要B个Bitmap指示N个所述第二上行信道资源中被选作所述第一上行信道资源的所述第二上行信道资源 的位置。其中B为正整数。
具体地,第二指示信息包括:N个第二上行信道资源中选择M个第二上行信道资源作为所述第一上行信道资源的位置。
具体而言,该位置包括以下其中之一:N个所述第二上行信道资源中前M个所述第二上行信道资源对应的位置;N个所述第二上行信道资源中后M个所述第二上行信道资源对应的位置;N个所述第二上行信道资源中默认的M个所述第二上行信道资源对应的位置。
具体地,为了理解实施例中上述记载的内容,在本实施例中对将第一上行信道资源配置在第二上行信道资源中还提供了如下的具体说明。
图3是根据本公开实施例的一种上行信道资源的配置的示意图,如图3所示,图3中示意性地配置了N=16的第二上行信道资源。
(1)UE在接收到基站通过信令发送的第一指示信息后,通过解析,确定第一指示信息中的Bitmap为“1000000010000000”时,UE确定第二上行信道资源1和第二上行资源9作为第一上行信道资源,并对信号进行发送。
(2)UE根据自身所具有的默认配置,确定携带的默认配置为16个第二上行信道资源中前9个所述第二上行信道资源作为第一上行信道资源的情况下,那么UE会确定图3中的第二上行信道资源1至第二上行信道资源9的第二上行信道资源作为第一上行信道资源,并对信号进行发送。
(3)UE根据自身所具有的默认配置,确定携带的默认配置为16个第二上行信道资源中第二上行信道资源1,第二上行信道资源3以及第二上行信道资源15的第二上行信道资源作为第一上行信道资源,并对信号进行发送。
可选地,在时域间隔内,所述UE从第二上行信道资源集合中的Q个所述第二上行信道资源作为所述第一上行信道资源,其中,所述第二上行信道资源集合由所述时间间隔内的所述第二上行信道资源组成,Q为正整数。
可选地,所述时域间隔的起始位置通过信令指示或者根据默认配置确定。
例如,默认参考时刻为Frame 0(第一个帧,编号为Frame 0)的起始时刻,基站通过信令指示所述时域间隔起始位置相对默认参考时刻的偏置量,进而获取到第一个所述时域间隔的起始位置。此外,通过时域间隔的长度获知第二个所述时域间隔的起始位置,以此类推。
当所述时域间隔的起始位置采用默认配置时,例如,第一个所述时域间隔的起始位置默认配置为Frame 0(第一个帧,编号为Frame 0)的起始时刻。此外,通过所述时域间隔的长度获知第二个所述时域间隔的起始位置,以此类推。
可选地,所述时域间隔的长度包括以下其中之一:所述信号的发送周期;所述第一类第二上行信道资源的配置周期。
具体地,时域间隔的长度由基站通过信令指示,或,时域间隔的长度由标准默认配置确定。
可选地,Q个所述第二上行信道资源包括以下其中之一:在所述时域间隔内,所述第二上行信道资源集合中的前Q个所述第二上行信道资源;在所述时域间隔内,所述第二上行信道资源集合中的后Q个所述第二上行信道资源;在 所述时域间隔内,所述第二上行信道资源集合中按照预设顺序选择的Q个所述第二上行信道资源。
具体地,为了理解实施例中上述记载的内容,在本实施例中对将第一上行信道资源配置在第二上行信道资源中还提供了如下的具体说明。
图4是根据本公开实施例的另一种上行信道资源的配置的示意图,如图4所示,图4中示意性地配置了在8个第二上行信道资源的配置周期中只有5个周期的第二上行信道资源。分别为图4中编号为第二上行信道资源1至第二上行信道资源5。
时域间隔的长度为所述信号的发送周期。根据图4可以看出的是,所述8个第二上行信道资源的配置周期中存在2个完整的所述时域间隔,分别定义为第一时域间隔和第二时域间隔。
在图4中,第一上行信道资源的一种选择规则为:时域间隔内包括的第二上行信道资源中前1个第二上行信道资源作为第一上行信道资源。因此,在该情况下,在第一时域间隔内,第一上行信道资源是第二上行信道资源1;在第二时域间隔内,第一上行信道资源是第二上行信道资源3。
需要说明的是其他的选择规则也在图4的保护范围之内,例如,选择第二上行信道资源2,5作为第一上行信道资源。或者选择资源编号为奇数的第二上行信道资源,即,第二上行信道资源1,3,5作为第一上行信道资源。
图5是根据本公开实施例的再一种上行信道资源的配置的示意图,如图5所示,图5中示意性地配置了在8个第二上行信道资源的配置周期中只有8个周期的第二上行信道资源。分别为图5中编号为第二上行信道资源8至第二上行信道资源5
时域间隔的长度为所述信号的发送周期,并且图5中,所述8个第二上行信道资源的配置周期中存在2个完整的所述时域间隔,分别定义为第一时域间隔和第二时域间隔。
在图5中,第一上行信道资源的一种选择规则为:时域间隔内包括的第二上行信道资源中前1个第二上行信道资源作为第一上行信道资源。因此,在该情况下,在第一时域间隔内,第一上行信道资源是第二上行信道资源1;在第二时域间隔内,第一上行信道资源是第二上行信道资源3。
需要说明的是其他的选择规则也在图5的保护范围之内,例如,选择第二上行信道资源4,8作为第一上行信道资源。或者选择资源编号为偶数的第二上行信道资源,即,第二上行信道资源2,4,6,8作为第一上行信道资源。
可选地,所述第一上行信道资源的第一配置周期是所述第二类第二上行信道资源或所述第二类第二上行信道资源的第二配置周期的L倍,其中,L为正整数。
例如,当所述第二上行信道资源的编号为0,1,2,3,...时,如果L取值为10,则所述第一上行信道资源对应的所述第二上行信道资源的编号为0,10(即0+10=10),20(即0+10*2=20);
具体地,当存在偏置量时,例如所述偏置量为2,则所述第一上行信道资源 对应的所述第二上行信道资源的编号为2(即0+2=2),12(即0+2+10=12),22(即0+2+10*2=22)。
可选地,当所述信号为随机接入信号时,所述信号的配置信息由基站通过第二配置信息配置给所述UE,其中,所述第二配置信息包括以下其中之一:所述信号对应的随机接入序列索引;所述信号的重复发送次数;所述信号发送时第一个符号组占用的子载波索引
可选地,所述信号对应的随机接入序列索引包括在非竞争随机接入过程配置的随机接入序列索引集合中和/或所述信号发送时第一个符号组占用的子载波索引包括在非竞争随机接入过程配置的随机接入序列索引集合中。
可选地,当需要满足以下至少之一的条件时,所述UE在所述第一类第二上行信道资源上发送所述信号:所述第一类第二上行信道资源的大小不小于发送所述信号时所需的资源大小;所述UE接收到所述基站发送的指示信息,所述指示信息指示所述UE在所述第一类第二上行信道资源上发送所述信号。
可选地,在所述信号为所述单子载波信号时,所述单子载波信号包括P个符号组;其中,P为正整数。
可选地,所述符号组包括:至少一个循环前缀CP以及至少一个符号;或,至少一个CP,至少一个符号和保护时间;其中,一个所述符号组在频域上占用相同的一个子载波索引或占用相同的频率资源。
具体而言,在本实施例中还提供了一种符号组结构。根据下述图6至图9,可以反映出本实施例中的符号组结构。
图6是根据本公开实施例的一种符号组结构的示意图,如图6所示:符号组由一个CP、K个OFDM符号组成。其中K为正整数。
图7是根据本公开实施例的另一种符号组结构的示意图,如图7所示,符号组由一个CP、K个OFDM符号、1个保护时间组成。
图8是根据本公开实施例的再一种符号组结构的示意图,如图8所示,符号组由K个CP、K个OFDM符号组成。
图9是根据本公开实施例的还一种符号组结构的示意图,如图9所示,符号组由K个CP、K个OFDM符号、1个保护时间组成。
需要说明的是,图6至图9当中指示示例性地举出了符号组结构的类型,而并非穷举。当然,其他基于图6至图9中的思路的符号组结构也在本实施例的保护范围之内。
可选地,在所述符号组中K个符号上发送长度为K的序列,其中,所述序列包括以下其中之一:长度为K的ZC序列;长度为K的正交序列;长度为K的伪随机序列;长度为K的Gold序列;长度为I的ZC序列,并且通过循环移位组成长度为K的序列;长度为I的正交序列,并且通过循环移位组成长度为K的序列;长度为I的伪随机序列,并且通过循环移位组成长度为K的序列;长度为I的Gold序列,并且通过循环移位组成长度为K的序列;其中,K,I为正整数,且K大于I。
具体地,为了方便理解如何通过循环移位组成长度为K的序列,本实施例 中还列举了如下的方式实现:配置的符号组中包括K=16个符号,则需要发送一条长度为16的序列。选择的是长度K1=13的ZC序列,序列的表达式为[a0 a1 a2 a3 a3 a5 a6 a7 a8 a9 a10 a11 a12],其中的每个变量为ZC序列中的一个元素。由于K-K1=3,则需要做3长的循环移位。
具体而言,3长的循环移位可以通过如下的方式实现:
(1)3长的循环移位后的16长的序列为[a0 a1 a2 a3 a3 a5 a6 a7 a8 a9 a10 a11 a12 a0 a1 a2]。
(2)3长的循环移位后的16长的序列为[a10 a11 a12 a0 a1 a2 a3 a3 a5 a6 a7 a8 a9 a10 a11 a12]。
可选地,所述单子载波信号支持频域跳频,包括:在所述P个符号组中,配置O种频域跳频等级;其中,每个频域跳频等级对应一个跳频间隔以及对应一次或者多次跳频机会,和/或,在频域跳频等级o对应的频域跳频机会中,正向跳频机会的数目和负向跳频机会的数目相等。其中,所述频域跳频等级o包括在O种所述频域跳频等级中。
具体地,O种频域跳频等级中每一种频域跳频等级对应的频域跳频机会中,正向跳频机会的数目和负向跳频机会的数目相等。当然,也可以只有部分的频域跳频等级对应的频域跳频机会中,正向跳频机会的数目和负向跳频机会的数目相等。也就是说,O种频域跳频等级中存在至少一种频域跳频等级对应的频域跳频机会中,正向跳频机会的数目和负向跳频机会的数目相等。
具体地,为了理解实施例中上述记载的内容,在本实施例中对将第一上行信道资源配置在第二上行信道资源中还提供了如下的具体说明。
图10是根据本公开实施例的一种单子载波的信号结构的示意图。如图10所示,在图10中包括了P=5的符号组,分别为符号组1至符号组5。同时在信号中包括2种频域跳频等级,分别为频域跳频等级1和频域跳频等级2。对于频域跳频等级1和频域跳频等级2而言,二者之间对应的频域跳频间隔是不同的。
例如,如果在符号组1占用的子载波索引为20,并且频域跳频等级1对应的跳频间隔为6个子载波,同时配置有2个跳频机会。
符号组1到符号组2是第1个跳频机会,且跳频方向为负向,即符号组2占用的子载波索引为20-6=14;符号组2到符号组3是第2个跳频机会,且跳频方向为正向,即符号组3占用的子载波索引为14+6=20;频域跳频等级1中正向跳频的跳频机会的数量(数量为1)和负向跳频的跳频机会的数量(数量为1)相等。
同时,频域跳频等级2对应的跳频间隔为12个子载波,同时配置有2个跳频机会。
符号组3到符号组4是第1个跳频机会,且跳频方向为负向,即符号组4占用的子载波索引为20-12=8;符号组4到符号组5是第2个跳频机会,且跳频方向为正向,即符号组5占用的子载波索引为8+12=20;频域跳频等级2中正向跳频的跳频机会的数量(数量为1)和负向跳频的跳频机会的数量(数量为1)相等。
图11是根据本公开实施例的另一种单子载波的信号结构的示意图。如图11所示,在图11中包括了P=2的符号组,分别为符号组2至符号组2。
例如,符号组1占用的子载波索引为20,且在X个符号上发送一条长度为X的ZC序列;符号组2占用的子载波索引为14,且同样在X个符号上发送一条长度为X的ZC序列。此时,符号组1和符号组2上发送的ZC序列可以相同或不同。符号组1和符号组2之间的频域跳频间隔为6个子载波间隔。
可选地,在所述信号为多子载波信号时,所述方法还包括:一个或者多个所述多子载波信号在所述第一上行信道资源上发送;其中,所述多子载波信号占用的频域带宽不大于所述第一上行信道资源对应的频域带宽。
具体地,多子载波信号占用一个或者多个时域符号。需要说明的是,该时域符号至少包括:OFDM符号。OFDM符号中可以包括循环前缀CP,且位于OFDM符号的起始位置。
具体地,多个多子载波信号之间可以相同或不同。在多个多子载波信号之间不同时,具体体现在如下方面:多子载波信号占用的OFDM符号数量不同,或,生成的多子载波信号不同。
具体地,多子载波信号的配置信息在第一配置信息配置中配置。
可选地,所述一个或者多个所述多子载波信号的时域长度之和等于所述第一上行信道资源的时域长度。
可选地,所述信号中承载的信息为预定信息。
可选地,所述预定信息包括以下至少之一:解调专用参考信号;参考信号;预定的比特信息。
具体地,承载所述预定信息的所述信号可以在第一类第二上行信道资源上发送。当所述信号中承载的预定信息为DMRS或参考信号时,包括以下至少之一:所述信号中承载的预定信息根据第一类第二上行信道资源中频域资源的大小和/或时域资源的大小确定;所述信号中承载的预定信息在所述第一类第二上行信道资源中的位置根据第一类第二上行信道资源中频域资源的大小和/或时域资源的大小确定;当所述信号中承载的预定信息为预定的比特信息时,包括以下至少之一:所述预定的比特信息的数量大于等于1。例如,所述比特信息的数量根据第一类第二上行信道资源中频域资源的大小和/或时域资源的大小确定。
可选地,所述UE在所述第一上行信道资源上发送所述信号,需要满足以下之一的条件:定时提前量更新的定时器超时;定时提前量的更新时刻到达;定时提前量的更新时刻到达,且T不小于预设阈值,其中,T为所述定时提前量的更新周期时刻与最近一次接收到所述基站发送的所述定时提前量的更新信息的时刻之间的间隔;已经保存的定时提前量失效;所述UE在随机接入过程中的Msg2中接收到触发所述信号发送的指示信息;所述UE在随机接入过程中的Msg4中接收到触发所述信号发送的指示信息;所述UE在下行控制信息中接收到触发所述信号发送的指示信息,其中,所述下行控制信息承载在下行控制信道中,并且所述下行控制信道在所述UE专用的下行控制信道的搜索空间中发送;所述UE在下行控制信息中接收到触发所述信号发送的指示信息,其中,所述下 行控制信息承载在下行控制信道中,并且所述下行控制信道在为所述UE配置的下行控制信道的搜索空间中发送。
具体地,定时提前量的更新时刻为周期配置的。周期长度由基站配置或者默认配置。
具体地,第一个定时提前量的更新时刻的参考时刻由基站配置或者默认配置。此外第一个定时提前量更新时刻的参考时刻的默认配置为所述UE从RRC-CONNECT状态转换到RRC-IDLE状态的时刻。
可选地,当所述UE接收到所述基站发送的所述定时提前量的更新信息后,所述定时提前量更新的定时器重置。
可选地,所述UE在所述第一上行信道资源上发所述送信号,需要满足以下之一的条件:在一个时间段内,所述UE在所述第一类第二上行信道资源上进行的F1次上行数据传输中,经过重传后所述上行数据传输成功对应的次数不小于G1,其中,F1,G1为正整数,且F1大于G1;所述UE在所述第一类第二上行信道资源上进行的连续F2次上行数据传输中,经过重传后所述上行数据传输成功对应的次数不小于G2,其中,F2,G2为正整数,且F2大于G2;所述UE在所述第一类第二上行信道资源上进行的一次上行数据传输中,重传的次数不小于G3,其中,G3为正整数。
具体地,经过重传后所述上行数据传输成功对应的次数是指经过重传后,才能够实现上行数据传输成功对应的次数。
可选地,所述UE在所述第一上行信道资源上发送所述信号,需要满足以下之一的条件:所述UE在所述第一类第二上行信道资源上进行上行数据传输之后,未检测到所述基站发送的所述上行数据传输成功的指示信息,;所述UE在所述第一类第二上行信道资源上进行上行数据传输之后,未检测到所述基站发送的所述上行数据传输的重传的资源调度信息;所述UE在所述第一类第二上行信道资源上进行上行数据传输之后,在对应的下行控制信道的搜索空间中检测到下行控制信道。
可选地,所述UE在所述下行控制信道的搜索空间中检测到下行控制信道时,所述下行控制信道中携带的下行控制信息中包括以下之一:定时提前量失效的指示信息;定时提前量更新的指示信息;用于发送所述信号的指示信息。
可选地,用于发送信号的第一上行信道资源包括:在时域位置上满足需要满足的条件的时刻之后的第一上行信道资源。
图12是根据本公开实施例的一种上行数据的资源的传输示意图。如图12所示,基站通过第一配置信息配置给UE1用来传输上行数据的资源,其中包括了多个上行数据资源,分别编号为上行数据资源1,上行数据资源2,上行数据资源3,上行数据资源4等等。所述上行数据资源时给UE1在RRC-IDLE状态下发送数据使用的。
基站在系统信息中配置了随机接入信道资源的位置,其中包括了多个随机接入信道资源,分别编号为随机接入信道资源1,随机接入信道资源2,随机接 入信道资源3,随机接入信道资源4,随机接入信道资源5,随机接入信道资源6,随机接入信道资源7等等。
本实施例中,当定时提前量更新的定时器超时后,UE需要在专用的随机接入资源上发送非竞争随机接入信号,用来让基站进行定时提前量的检测。定时提前量更新的定时器的起始时刻为UE从RRC-CONNECT状态转换到RRC-IDLE状态的时刻,即图12中的“起始时刻”。当定时提前量更新的定时器超时(图12中的“超时时刻”),则UE1需要在下一个专用的随机接入资源上发送非竞争随机接入信号。本实施例中,下一个专用的随机接入资源为第3个专用的随机接入资源,也就是图12中的随机接入信道资源5。
具体地,基站完成行定时提前量的检测后,会将定时提前量的更新结果发送给UE,此时,定时提前量更新的定时器重置。
通过上述步骤,解决相关技术中在非RRC-CONNECT状态下的数据传输过程当中,存在UE功率消耗过高的问题,达到在数据传输过程中,降低UE的传输功率消耗的效果。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下采用前者的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台UE设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
实施例2
在本实施例中还提供了一种资源的确定装置,该装置用于实现上述实施例及示例实施方式,已经进行过说明的不再赘述。
图13是根据本公开实施例的一种资源的确定方法的流程图,如图13所示,该流程包括如下步骤。
步骤S1302,基站向用户设备UE发送用于获取第一上行信道资源的位置的第一上行信道的配置信息,其中,所述第一上行信道资源用于所述UE发送信号,所述信号包括以下其中之一:单子载波信号,多子载波信号以及随机接入信号。
可选地,所述第一上行信道资源的位置位于第二上行信道资源中,所述第二上行信道资源包括以下至少之一:第一类第二上行信道资源,由基站通过第一配置信息配置的用于指示所述UE进行上行数据传输的资源;第二类第二上行信道资源,由基站配置给所述UE的用于进行非竞争随机接入信道的时域-频域资源;第三类第二上行信道资源,由基站配置的随机接入信道的时域-频域资源。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下采用前者的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中, 包括若干指令用以使得一台UE设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
实施例3
在本实施例中还提供了一种数据的发送装置,该装置用于实现上述实施例及示例实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置可以以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图14是根据本公开实施例的一种数据的发送装置的结构图,如图14所示,该装置包括:发送模块1402,用于在第一上行信道资源上发送信号;其中,所述信号包括以下其中之一:单子载波信号,多子载波信号以及随机接入信号。
实施例4
在本实施例中还提供了一种资源的确定装置,该装置用于实现上述实施例及示例实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置可以以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图15是根据本公开实施例的一种资源的确定装置的结构图,如图15所示,该装置包括:确定模块1502,用于向用户设备UE发送用于获取第一上行信道资源的位置的第一上行信道的配置信息,其中,所述第一上行信道资源用于所述UE发送信号,所述信号包括以下其中之一:单子载波信号,多子载波信号以及随机接入信号。
实施例5
本公开的实施例还提供了一种存储介质,该存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的计算机程序:S1;用户设备UE在第一上行信道资源上发送信号;其中,所述信号包括以下其中之一:单子载波信号,多子载波信号以及随机接入信号。
可选地,在本实施例中,上述存储介质还可以被设置为存储用于执行以下步骤的计算机程序:S2;基站向用户设备UE发送用于获取第一上行信道资源的位置的第一上行信道的配置信息,其中,所述第一上行信道资源用于所述UE发送信号,所述信号包括以下其中之一:单子载波信号,多子载波信号以及随机接入信号。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
实施例6
本公开的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方 法实施例中的步骤。
可选地,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
可选地,在本实施例中,上述处理器可以被设置为通过计算机程序执行以下步骤:S1;用户设备UE在第一上行信道资源上发送信号;其中,所述第一上行信道资源的位置位于第二上行信道资源中,所述信号包括以下其中之一:单子载波信号,多子载波信号以及随机接入信号。
可选地,在本实施例中,上述处理器还可以被设置为通过计算机程序执行以下步骤:S2;基站向用户设备UE发送用于获取第一上行信道资源的位置的第一上行信道的配置信息,其中,所述第一上行信道资源用于所述UE发送信号,所述信号包括以下其中之一:单子载波信号,多子载波信号以及随机接入信号。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的示例实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (34)

  1. 一种数据的发送方法,包括:
    用户设备UE在第一上行信道资源上发送信号;
    其中,所述信号包括以下之一:单子载波信号,多子载波信号,以及随机接入信号。
  2. 根据权利要求1所述的方法,其中,所述UE通过接收基站发送的第一上行信道的配置信息获取所述第一上行信道资源的位置。
  3. 根据权利要求2所述的方法,其中,所述第一上行信道资源的位置位于第二上行信道资源中,所述第二上行信道资源包括以下至少之一:
    第一类第二上行信道资源,所述第一类第二上行信道资源是由基站通过第一配置信息配置的用于指示所述UE进行上行数据传输的资源;
    第二类第二上行信道资源,所述第二类第二上行信道资源是由基站配置给所述UE的用于进行非竞争随机接入信道的时域-频域资源;
    第三类第二上行信道资源,所述第三类第二上行信道资源是由基站配置的随机接入信道的时域-频域资源。
  4. 根据权利要求3所述的方法,其中,所述第一上行信道资源的位置位于第二上行信道资源中,包括:
    N个所述第二上行信道资源中的M个第二上行信道资源作为所述第一上行信道资源,其中,N,M为正整数。
  5. 根据权利要求3所述的方法,所述第一上行信道资源的位置位于第二上行信道资源中,还包括:
    在时域间隔内,第二上行信道资源集合中的Q个所述第二上行信道资源作为所述第一上行信道资源,其中,所述第二上行信道资源集合由所述时间间隔内的所述第二上行信道资源组成,Q为正整数。
  6. 根据权利要求5所述的方法,其中,包括:
    所述时域间隔的起始位置通过信令指示或者根据默认配置确定。
  7. 根据权利要求5或6所述的方法,其中,所述时域间隔的长度包括以下其中之一:
    所述信号的发送周期;
    所述第一类第二上行信道资源的配置周期。
  8. 根据权利要求5或6所述的方法,其中,Q个所述第二上行信道资源包括以下之一:
    在所述时域间隔内,所述第二上行信道资源集合中的前Q个所述第二上行信道资源;
    在所述时域间隔内,所述第二上行信道资源集合中的后Q个所述第二上行信道资源;
    在所述时域间隔内,所述第二上行信道资源集合中按照预设顺序选择的Q个所述第二上行信道资源。
  9. 根据权利要求3所述的方法,其中,所述第一上行信道资源的第一配置周期是所述第二类第二上行信道资源的L倍,或所述第一上行信道资源的第一 配置周期是所述第二类第二上行信道资源的第二配置周期的L倍,其中,L为正整数。
  10. 根据权利要求3所述的方法,还包括:
    在所述信号为随机接入信号的情况下,所述信号的配置信息由基站通过第二配置信息配置给所述UE,其中,所述第二配置信息包括以下之一:
    所述信号对应的随机接入序列索引;
    所述信号的重复发送次数;
    所述信号发送时第一个符号组占用的子载波索引。
  11. 根据权利要求10所述的方法,其中,满足以下至少之一的条件:所述信号对应的随机接入序列索引包括在非竞争随机接入过程配置的随机接入序列索引集合中;所述信号发送时第一个符号组占用的子载波索引包括在非竞争随机接入过程配置的随机接入序列索引集合中。
  12. 根据权利要求10所述的方法,其中,在满足以下至少之一的条件的情况下,所述UE在所述第一类第二上行信道资源上发送所述信号:
    所述第一类第二上行信道资源的大小大于或等于发送所述信号时所需的资源大小;
    所述UE接收到所述基站发送的指示信息,所述指示信息指示所述UE在所述第一类第二上行信道资源上发送所述信号;
  13. 根据权利要求1所述的方法,其中,在所述信号为所述单子载波信号的情况下,所述单子载波信号包括P个符号组;其中,P为正整数。
  14. 根据权利要求13所述的方法,其中,所述符号组包括:
    至少一个循环前缀CP,至少一个符号;
    或,至少一个CP,至少一个符号,和保护时间;
    其中,一个所述符号组在频域上占用相同的一个子载波索引或占用相同的频率资源。
  15. 根据权利要求14所述的方法,其中,在所述符号组中K个符号上发送长度为K的序列,其中,所述序列包括以下之一:
    长度为K的ZC序列;
    长度为K的正交序列;
    长度为K的伪随机序列;
    长度为K的Gold序列;
    长度为I的ZC序列,并且通过循环移位组成长度为K的序列;
    长度为I的正交序列,并且通过循环移位组成长度为K的序列;
    长度为I的伪随机序列,并且通过循环移位组成长度为K的序列;
    长度为I的Gold序列,并且通过循环移位组成长度为K的序列;
    其中,K,I为正整数,且K大于I。
  16. 根据权利要求13所述的方法,其中,所述单子载波信号支持频域跳频,包括:
    在所述P个符号组中,配置O种频域跳频等级;
    其中,满足以下至少之一的条件:每个频域跳频等级对应一个跳频间隔以及对应至少一次跳频机会;以及在频域跳频等级o对应的频域跳频机会中,正向跳频机会的数目和负向跳频机会的数目相等;其中,所述频域跳频等级o包括在O种所述频域跳频等级中。
  17. 根据权利要求1所述的方法,在所述信号为多子载波信号的情况下,还包括:
    至少一个所述多子载波信号在所述第一上行信道资源上发送;
    其中,所述多子载波信号占用的频域带宽小于或等于所述第一上行信道资源对应的频域带宽。
  18. 根据权利要求17所述的方法,其中,所述至少一个所述多子载波信号的时域长度之和等于所述第一上行信道资源的时域长度。
  19. 根据权利要求17所述的方法,其中,所述信号中承载的信息为预定信息;
  20. 根据权利要求19所述的方法,其中,所述预定信息包括以下至少之一:解调专用参考信号;参考信号;预定的比特信息。
  21. 根据权利要求1所述的方法,其中,所述UE在所述第一上行信道资源上发送所述信号,需要满足以下之一的条件:
    定时提前量更新的定时器超时;
    定时提前量的更新时刻到达;
    定时提前量的更新时刻到达,且T大于或等于预设阈值,其中,T为所述定时提前量的更新周期时刻与最近一次接收到所述基站发送的所述定时提前量的更新信息的时刻之间的间隔;
    已经保存的定时提前量失效;
    所述UE在随机接入过程中的Msg2中接收到触发所述信号发送的指示信息;
    所述UE在随机接入过程中的Msg4中接收到触发所述信号发送的指示信息;
    所述UE在下行控制信息中接收到触发所述信号发送的指示信息,其中,所述下行控制信息承载在下行控制信道中,并且所述下行控制信道在所述UE专用的下行控制信道的搜索空间中发送;
    所述UE在下行控制信息中接收到触发所述信号发送的指示信息,其中,所述下行控制信息承载在下行控制信道中,并且所述下行控制信道在为所述UE配置的下行控制信道的搜索空间中发送。
  22. 根据权利要求21所述的方法,其中,在所述UE接收到所述基站发送的所述定时提前量的更新信息后,所述定时提前量更新的定时器重置。
  23. 根据权利要求2所述的方法,其中,所述UE在所述第一上行信道资源上发所述送信号,需要满足以下之一的条件:
    在一个时间段内,所述UE在所述第一类第二上行信道资源上进行的F1次上行数据传输中,经过重传后所述上行数据传输成功对应的次数大于或等于G1,其中,F1,G1为正整数,且F1大于G1;
    所述UE在所述第一类第二上行信道资源上进行的连续F2次上行数据传输 中,经过重传后所述上行数据传输成功对应的次数大于或等于G2,其中,F2,G2为正整数,且F2大于G2;
    所述UE在所述第一类第二上行信道资源上进行的一次上行数据传输中,重传的次数大于或等于G3,其中,G3为正整数。
  24. 根据权利要求2所述的方法,其中,所述UE在所述第一上行信道资源上发送所述信号,需要满足以下之一的条件:
    所述UE在所述第一类第二上行信道资源上进行上行数据传输之后,未检测到所述基站发送的所述上行数据传输成功的指示信息;
    所述UE在所述第一类第二上行信道资源上进行上行数据传输之后,未检测到所述基站发送的所述上行数据传输的重传的资源调度信息;
    所述UE在所述第一类第二上行信道资源上进行上行数据传输之后,在对应的下行控制信道的搜索空间中检测到下行控制信道。
  25. 根据权利要求24所述的方法,其中,所述UE在所述下行控制信道的搜索空间中检测到下行控制信道情况下,所述下行控制信道中携带的下行控制信息中包括以下之一:定时提前量失效的指示信息;定时提前量更新的指示信息;用于发送所述信号的指示信息。
  26. 根据权利要求21-25任一项所述的方法,其中,用于发送信号的第一上行信道资源包括:在时域位置上满足需要满足的条件的时刻之后的第一上行信道资源。
  27. 一种资源的确定方法,包括:
    基站向用户设备UE发送用于获取第一上行信道资源的位置的第一上行信道的配置信息,其中,所述第一上行信道资源用于所述UE发送信号,所述信号包括以下其中之一:单子载波信号,多子载波信号,以及随机接入信号。
  28. 根据权利要求27所述的方法,其中,所述第一上行信道资源的位置位于第二上行信道资源中,所述第二上行信道资源包括以下至少之一:
    第一类第二上行信道资源,由基站通过第一配置信息配置的用于指示所述UE进行上行数据传输的资源;
    第二类第二上行信道资源,由基站配置给所述UE的用于进行非竞争随机接入信道的时域-频域资源;
    第三类第二上行信道资源,由基站配置的随机接入信道的时域-频域资源。
  29. 一种数据的发送装置,位于用户设备UE中,包括:
    发送模块,设置为在第一上行信道资源上发送信号;其中,所述信号包括以下其中之一:单子载波信号,多子载波信号以及随机接入信号。
  30. 一种资源的确定装置,位于基站中,包括:
    确定模块,设置为向用户设备UE发送用于获取第一上行信道资源的位置的第一上行信道的配置信息,其中,所述第一上行信道资源用于所述UE发送信号,所述信号包括以下其中之一:单子载波信号,多子载波信号以及随机接入信号。
  31. 一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至26任一项中所述的方法。
  32. 一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求27或28所述的方法
  33. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至26任一项中所述的方法。
  34. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求27或28所述的方法。
PCT/CN2019/100024 2018-08-09 2019-08-09 数据的发送、资源的获取方法及装置 WO2020030126A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/267,122 US20210314926A1 (en) 2018-08-09 2019-08-09 Data Transmission Method and Device and Resource Determination Method and Device
CN201980052698.2A CN112740815B (zh) 2018-08-09 2019-08-09 数据的发送、资源的获取方法及装置
EP19847270.6A EP3836723A4 (en) 2018-08-09 2019-08-09 METHOD AND DEVICE FOR DATA TRANSMISSION AND RESOURCE ACQUISITION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810905138.4A CN110831238B (zh) 2018-08-09 2018-08-09 数据的发送、资源的获取方法及装置
CN201810905138.4 2018-08-09

Publications (1)

Publication Number Publication Date
WO2020030126A1 true WO2020030126A1 (zh) 2020-02-13

Family

ID=69414037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100024 WO2020030126A1 (zh) 2018-08-09 2019-08-09 数据的发送、资源的获取方法及装置

Country Status (4)

Country Link
US (1) US20210314926A1 (zh)
EP (1) EP3836723A4 (zh)
CN (2) CN110831238B (zh)
WO (1) WO2020030126A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115606311A (zh) * 2020-11-12 2023-01-13 北京小米移动软件有限公司(Cn) 通信方法和通信设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008131692A1 (fr) * 2007-04-29 2008-11-06 Huawei Technologies Co., Ltd. Procédé de distribution de ressource et système de réseau sans fil dans un système de communication
EP2117243A1 (en) * 2007-02-02 2009-11-11 Mitsubishi Electric Corporation Communication method, base station, communication system, mobile terminal
CN101835174A (zh) * 2009-03-12 2010-09-15 中国移动通信集团公司 信号传送方法及其相关设备
CN101883398A (zh) * 2009-05-07 2010-11-10 大唐移动通信设备有限公司 一种确定上行载波资源的方法、装置和系统
CN107046728A (zh) * 2016-02-06 2017-08-15 中兴通讯股份有限公司 信息的上报方法及装置、非连续传输的方法
CN108282298A (zh) * 2017-01-06 2018-07-13 中兴通讯股份有限公司 一种参考信号传输方法及装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103051437B (zh) * 2008-08-01 2015-08-12 中兴通讯股份有限公司 一种时分双工系统上行信道测量参考信号的发送方法
US20100113051A1 (en) * 2008-11-03 2010-05-06 Nokia Siemens Networks Oy Random Access Preamble Transmission Design With Multiple Available Random Access Channel Resources
US9204411B2 (en) * 2011-09-12 2015-12-01 Qualcomm Incorporated Support of multiple timing advance groups for user equipment in carrier aggregation in LTE
WO2012163041A1 (zh) * 2011-11-04 2012-12-06 华为技术有限公司 基于正交频分复用的多址系统、方法和装置
CN104105138B (zh) * 2013-04-03 2019-04-05 中兴通讯股份有限公司 数据信道的传输、接收处理方法及装置
CN104349476B (zh) * 2013-08-09 2019-09-24 中兴通讯股份有限公司 随机接入信道资源配置方法和系统
WO2015190959A1 (en) * 2014-06-10 2015-12-17 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatus for random access
WO2016004634A1 (en) * 2014-07-11 2016-01-14 Mediatek Singapore Pte. Ltd. Method for enb, ue uplink transmission and reception
CN105992347B (zh) * 2015-01-29 2021-11-12 北京三星通信技术研究有限公司 一种上行信号的发送方法、用户设备和基站
CN107197524B (zh) * 2016-03-15 2021-06-22 株式会社Kt 用于发送窄带物联网用户设备上行数据的方法及装置
CN107734677A (zh) * 2016-08-12 2018-02-23 中国移动通信有限公司研究院 随机接入信号配置方法、装置、相关设备和系统
WO2018078639A1 (en) * 2016-10-28 2018-05-03 Wisig Networks Private Limited Physical random-access channel for narrow band internet of things time division duplex mode
CA3039934C (en) * 2016-11-04 2021-06-01 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Communication method, terminal, and network device
KR20180053497A (ko) * 2016-11-11 2018-05-23 한국전자통신연구원 랜덤 접속 채널의 최적화를 위한 방법 및 장치
US11546929B2 (en) * 2017-01-09 2023-01-03 Huawei Technologies Co., Ltd. Systems and methods for signaling for semi-static configuration in grant-free uplink transmissions
EP4307599A3 (en) * 2017-08-08 2024-05-01 Samsung Electronics Co., Ltd. Methods and apparatus for transmitting and receiving uplink control information and for requesting random access in wireless communication system
JP6900472B2 (ja) * 2017-11-15 2021-07-07 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるランダムアクセス手続きで速いデータ転送を遂行するための方法及びそのための装置
BR112020009594A2 (pt) * 2017-11-17 2020-10-13 Huawei Technologies Co., Ltd. método e aparelho de comunicação
CN108366033B (zh) * 2018-02-08 2021-01-08 上海无线通信研究中心 通信信号的检测方法/系统、计算机可读存储介质及设备
US11903022B2 (en) * 2018-04-05 2024-02-13 Qualcomm Incorporated Signaling to indicate locations of dedicated random access channel region in time domain

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2117243A1 (en) * 2007-02-02 2009-11-11 Mitsubishi Electric Corporation Communication method, base station, communication system, mobile terminal
WO2008131692A1 (fr) * 2007-04-29 2008-11-06 Huawei Technologies Co., Ltd. Procédé de distribution de ressource et système de réseau sans fil dans un système de communication
CN101835174A (zh) * 2009-03-12 2010-09-15 中国移动通信集团公司 信号传送方法及其相关设备
CN101883398A (zh) * 2009-05-07 2010-11-10 大唐移动通信设备有限公司 一种确定上行载波资源的方法、装置和系统
CN107046728A (zh) * 2016-02-06 2017-08-15 中兴通讯股份有限公司 信息的上报方法及装置、非连续传输的方法
CN108282298A (zh) * 2017-01-06 2018-07-13 中兴通讯股份有限公司 一种参考信号传输方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Introduction of EDT for eMTC and NB-IoT in Rel-15 TS 36.32 1", 3GPP TSG RAN WG2 MEETING #102 R2-1808865, 25 May 2018 (2018-05-25), XP051520234 *
See also references of EP3836723A4

Also Published As

Publication number Publication date
CN110831238A (zh) 2020-02-21
EP3836723A4 (en) 2021-11-03
EP3836723A1 (en) 2021-06-16
CN112740815B (zh) 2023-05-02
CN112740815A (zh) 2021-04-30
CN110831238B (zh) 2022-12-30
US20210314926A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
EP3528547B1 (en) Method for transmitting data, terminal device and network device
KR102287734B1 (ko) 자원 할당 방법, 사용자 장비 및 네트워크 기기
JP2023139111A (ja) 情報送受信方法および装置
CN113260077B (zh) 随机接入的方法、用户设备及网络设备
CN107371184B (zh) 资源配置方法、装置及基站
WO2014048177A1 (zh) 物理随机接入信道的资源确定方法及装置
TW201611652A (zh) 供無線通信系統中裝置對裝置使用者設備的資料傳輸的裝置及方法
WO2014107994A1 (zh) 控制信息的发送、控制信息的接收方法和装置
JP2018528677A (ja) 複数種類の伝送時間間隔をサポートするランダムアクセス方法、装置及び通信システム
WO2020151624A1 (zh) 定时提前量ta处理方法及装置、指示信息发送方法及装置
WO2016119502A1 (zh) 通信处理方法、装置及用户设备
WO2018028689A1 (zh) 一种系统信息发送方法及装置
RU2649956C2 (ru) Способ передачи информации, базовая станция и абонентское оборудование
US20230171799A1 (en) Method and apparatus for sensing measurement and report for sidelink
JP7228046B2 (ja) 端末デバイス、ネットワークデバイスおよびその方法
CN105379133A (zh) 用于在无线通信系统中发送信号的方法和设备
JP2021514585A (ja) 通信デバイス、インフラストラクチャ装置、ワイヤレス通信システムおよびその方法
WO2020258048A1 (zh) 下行传输的检测方法、装置、设备及存储介质
CN114928872A (zh) 增强型随机接入过程的系统和方法
WO2020030126A1 (zh) 数据的发送、资源的获取方法及装置
WO2020151662A1 (zh) 接入控制信令的发送、处理方法及装置
US11089630B2 (en) Method for a contention-based random access procedure in a wireless communication network
CN109391433B (zh) 信息传输方法及装置
WO2018126726A1 (zh) 一种寻呼方法、装置及传输节点
JP6958590B2 (ja) 複数種類の伝送時間間隔をサポートするランダムアクセス方法、装置及び通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19847270

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019847270

Country of ref document: EP

Effective date: 20210309