WO2020151624A1 - 定时提前量ta处理方法及装置、指示信息发送方法及装置 - Google Patents

定时提前量ta处理方法及装置、指示信息发送方法及装置 Download PDF

Info

Publication number
WO2020151624A1
WO2020151624A1 PCT/CN2020/073033 CN2020073033W WO2020151624A1 WO 2020151624 A1 WO2020151624 A1 WO 2020151624A1 CN 2020073033 W CN2020073033 W CN 2020073033W WO 2020151624 A1 WO2020151624 A1 WO 2020151624A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
random access
resource
signal
base station
Prior art date
Application number
PCT/CN2020/073033
Other languages
English (en)
French (fr)
Inventor
刘锟
戴博
杨维维
方惠英
边峦剑
胡有军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to KR1020217026185A priority Critical patent/KR102614440B1/ko
Priority to US17/424,136 priority patent/US20220104158A1/en
Publication of WO2020151624A1 publication Critical patent/WO2020151624A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/005Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by adjustment in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1806Go-back-N protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1816Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of the same, encoded, message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/04Scheduled access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access

Definitions

  • the embodiment of the present invention relates to but is not limited to the field of wireless communication, and specifically relates to a method and device for processing a timing advance TA (Timing Advanced), and a method and device for sending indication information.
  • TA Timing Advance
  • Wireless data content is no longer limited to traditional text or images, and more and more high-definition Multimedia service content such as video and mobile TV has led to an explosive growth in wireless communication network traffic.
  • Mobile Internet and Internet of Things services will become the main driving force for the development of mobile communications.
  • the 3GPP (Third Generation Partnership Program, Third Generation Partnership Program) standards organization has formulated MTC (Machine Type Communication) and NB-IoT (Narrow Band Internet of Things, Narrow Band Internet of Things). Representative communication standard protocol.
  • MTC Machine Type Communication
  • NB-IoT Narrow Band Internet of Things, Narrow Band Internet of Things
  • Representative communication standard protocol For the mobile Internet, the 3GPP standards organization recently formulated the 5G NR (New Radio) communication standard protocol.
  • the terminal enters the RRC idle state (Radio Resource Control IDLE, RRC_IDLE for short, and the Chinese name is the radio resource control idle state) when there is no data to send or receive, thereby saving the power consumption of the terminal.
  • RRC idle state Radio Resource Control IDLE, RRC_IDLE for short, and the Chinese name is the radio resource control idle state
  • the terminal needs to enter the RRC connection state (Radio Resource Control CONNECT, RRC-CONNECT for short) before sending or receiving data before sending or receiving data, and then perform data transfer Send or receive.
  • the terminal entering the RRC connected state from the RRC idle state will consume the power consumption of the terminal and system resources.
  • the embodiment of the present invention provides a method for processing a timing advance TA, which includes
  • the timing advance TA of the terminal is in an invalid state
  • the first condition includes at least one of the following:
  • the TA timer expires and the change in the first measurement value exceeds the first threshold
  • the TA timer expires or the change in the first measurement value exceeds the first threshold or the TA timer expires and the first measurement value The amount of change exceeds the first threshold.
  • the embodiment of the present invention also provides a timing advance TA processing method, including:
  • timing advance TA of the terminal When the timing advance TA of the terminal is in an invalid state, perform one of the following operations:
  • the terminal sends a random access signal on the first type of resource
  • the terminal receives the signaling that triggers the contention-based random access procedure sent by the base station.
  • the embodiment of the present invention also provides a method for sending indication information, including:
  • the terminal sends the first indication information to the base station
  • the first indication information indicates at least one of the following:
  • the timing advance TA of the terminal is in an invalid state
  • the terminal does not receive the HARQ-ACK feedback information of the hybrid automatic repeat request response information sent by the base station;
  • the coverage enhancement level of the terminal is changed
  • the serving cell of the terminal changes;
  • the number of repeated transmissions required for the uplink data sent by the terminal on the first type resource is changed
  • the service mode of the terminal corresponding to the uplink data sent on the first type resource is changed.
  • the embodiment of the present invention also provides a timing advance TA processing device, including:
  • a judging unit configured to: when the first condition is met, the timing advance TA of the terminal is in an invalid state;
  • the first condition includes at least one of the following:
  • the TA timer expires and the change in the first measurement value exceeds the first threshold
  • the TA timer expires or the change in the first measurement value exceeds the first threshold or the TA timer expires and the first measurement value The amount of change exceeds the first threshold.
  • the embodiment of the present invention also provides a timing advance TA processing device, which is applied to a terminal, and includes:
  • the execution unit is used to perform one of the following operations when the timing advance TA of the terminal is in an invalid state:
  • the embodiment of the present invention also provides an indication information sending device, which is applied to a terminal, and includes:
  • An indication unit configured to send first indication information to the base station
  • the first indication information indicates at least one of the following:
  • the timing advance TA of the terminal is in an invalid state
  • the terminal does not receive the HARQ-ACK feedback information of the hybrid automatic repeat request response information sent by the base station;
  • the coverage enhancement level of the terminal is changed
  • the serving cell of the terminal changes;
  • the number of repeated transmissions required for the uplink data sent by the terminal on the first type resource is changed
  • the service mode of the terminal corresponding to the uplink data sent on the first type resource is changed.
  • the embodiment of the present invention also provides a timing advance TA processing device, including a memory, a processor, and a computer program stored on the memory and running on the processor, and the computer program is used by the processor.
  • the method for processing the timing advance TA is realized during execution.
  • the embodiment of the present invention also provides an instruction information sending device, including a memory, a processor, and a computer program stored on the memory and running on the processor.
  • an instruction information sending device including a memory, a processor, and a computer program stored on the memory and running on the processor.
  • the embodiment of the present invention also provides a computer-readable storage medium having an information processing program stored on the computer-readable storage medium, and the steps of the timing advance TA processing method are realized when the information processing program is executed by a processor .
  • the embodiment of the present invention also provides a computer-readable storage medium on which an information processing program is stored, and when the information processing program is executed by a processor, the steps of the instruction information sending method are implemented.
  • the embodiments of the present invention provide a method and device for processing a timing advance TA.
  • One of the methods is to determine whether the timing advance is effective according to the type of the terminal UE, and improve the effectiveness of the timing advance TA being invalid or valid. accuracy.
  • the second method is to enable the terminal in the TA invalid state to quickly recover to the TA valid state to ensure subsequent data transmission or reception in the RRC idle state.
  • the embodiments of the present invention provide a method and device for sending indication information, so that the base station can know the reason for supporting data transmission or receiving failure in the RRC idle state, so that the subsequent RRC idle state supports data transmission Or the probability of successful reception is higher.
  • FIG. 1 is a schematic flowchart of a method for processing a timing advance TA according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a method for processing a timing advance TA according to another embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a method for sending instruction information provided by an embodiment of the present invention
  • FIG. 4 is a schematic flowchart of a method for processing a timing advance TA according to another embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a method for processing a timing advance TA according to another embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a method for processing a timing advance TA according to another embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the configuration of uplink channel resources in an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the configuration of uplink channel resources and search space in an embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of a method for processing a timing advance TA according to another embodiment of the present invention.
  • FIG. 10 is a schematic flowchart of a method for processing a timing advance TA according to another embodiment of the present invention.
  • FIG. 11 is a schematic flowchart of a method for processing a timing advance TA according to another embodiment of the present invention.
  • FIG. 12 is a schematic diagram of the configuration of random access resources of random access signals in an embodiment of the present invention.
  • Figure 13 is a schematic diagram of resource distribution used in uplink channel resources in an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a timing advance TA processing apparatus provided by another embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of a timing advance TA processing device provided by another embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram of an indication information sending device provided by an embodiment of the present invention.
  • the terminal needs to enter the RRC connected state from the RRC idle state before sending or receiving data, and then send or receive data.
  • the terminal entering the RRC connected state from the RRC idle state will consume the power consumption of the terminal and system resources. Therefore, a new data transmission method is needed to support the terminal to support data transmission or reception in the RRC idle state, and reduce the consumption of terminal power consumption and system resources.
  • FIG. 1 is a schematic flowchart of a method for processing a timing advance TA according to an embodiment of the present invention. As shown in FIG. 1, the method includes:
  • Step 101 When the first condition is met, the timing advance TA (Timing Advanced) of the terminal is in an invalid state;
  • the first condition includes at least one of the following:
  • the TA timer expires and the change in the first measurement value exceeds the first threshold
  • the TA timer expires or the change in the first measurement value exceeds the first threshold or the TA timer expires and the first measurement value The amount of change exceeds the first threshold.
  • the first measurement value includes at least one of the following:
  • Reference signal receiving power RSRP Reference Signal Receiving Power
  • reference signal receiving quality RSRQ Reference Signal Receiving Quality
  • SINR Signal to Interference plus Noise Ratio
  • downlink signal to noise ratio SNR Signal to Noise Ratio
  • the first measurement value is obtained based on a first reference signal measurement
  • the first reference signal includes at least one of the following: synchronization signal block SSB (Synchronization Signal Block); channel state information reference signal CSI-RS (Channel State Information reference signals); cell-specific reference signal CRS (Cell-specific Reference Signal) Signal; Demodulation dedicated reference signal DMRS (Demodulation Reference Signal); phase tracking reference signal PTRS (Phase-Tracking Reference Signal).
  • SSB Synchronization Signal Block
  • CSI-RS Channel State Information reference signals
  • CRS Cell-specific Reference Signal
  • DMRS Demodulation dedicated reference signal
  • PTRS Phase tracking reference signal
  • the number corresponding to the first reference signal is the number corresponding to the SSB where the configuration information of the random access channel used by the terminal to send the random access signal is located.
  • the technical solution provided by the foregoing embodiment adopts an independent TA invalid/valid state judgment according to the type of the terminal UE to improve the accuracy of the TA invalid/valid state judgment. Further, it is ensured that the TA of the terminal is always in a valid state, thereby ensuring the success rate of subsequent data transmission or reception in the RRC idle state.
  • FIG. 2 is a schematic flowchart of a method for processing a timing advance TA according to another embodiment of the present invention. As shown in FIG. 2, the method includes:
  • Step 201 When the timing advance TA of the terminal is in an invalid state, perform one of the following operations:
  • the terminal sends a random access signal on the first type of resource
  • the terminal receives the signaling that triggers the contention-based random access procedure sent by the base station.
  • the terminal sends a message on the random access resource Random access signal of competing random access procedure
  • the T2 is equal to the start time of the next first-type resource minus T1
  • the values of the T1, the T2, and the T3 are configured by the base station or adopt default configuration values.
  • the terminal when the second condition is met, the terminal sends a random access signal on the first type of resource;
  • the second condition includes at least one of the following:
  • the frequency domain bandwidth of the first type resource is greater than or equal to a second threshold
  • the time domain length of the first type resource is greater than or equal to the time domain length of the random access signal
  • P1+10*log10(R1/R2) is less than or equal to P2;
  • the P1 is the transmit power of the random access signal of the terminal under the current coverage enhancement level
  • the P2 is the maximum transmit power of the terminal or the power threshold configured by the base station
  • the R1 is the terminal's current The number of repeated transmissions of the random access signal under the current coverage enhancement level, where the R2 is the number of repeated transmissions of the random access signal sent by the terminal on the first-type resource; the T2 is equal to the number of the next first-type resource T1 is subtracted from the starting time, and the values of T1, T2, and T3 are configured by the base station or adopt default configuration values.
  • the time domain position of the random access channel for sending the random access signal is the TA timer reset time plus the random access time after T1 time.
  • the value of T1 is configured by the base station or adopts a default configuration value.
  • the terminal when the third condition is met, the terminal receives the signaling sent by the base station to trigger the non-contention random access process or the terminal receives the signaling sent by the base station to trigger the contention-based random access process;
  • the third condition includes at least one of the following:
  • the fourth condition includes at least one of the following:
  • the frequency domain bandwidth of the first type resource is greater than or equal to a second threshold
  • the time domain length of the first type resource is greater than or equal to the time domain length of the random access signal
  • P1+10*log10(R1/R2) is less than or equal to P2;
  • the P1 is the transmit power of the random access signal of the terminal under the current coverage enhancement level
  • the P2 is the maximum transmit power of the terminal or the power threshold configured by the base station
  • the R1 is the terminal's current The number of repeated transmissions of the random access signal under the current coverage enhancement level, where the R2 is the number of repeated transmissions of the random access signal sent by the terminal on the first-type resource; the T2 is equal to the number of the next first-type resource T1 is subtracted from the starting time, and the values of T1, T2, and T3 are configured by the base station or adopt default configuration values.
  • the TA timer is used to determine whether the timing advance TA is in an invalid state.
  • timing advance TA is in an invalid state by whether the fifth condition is satisfied
  • the fifth condition includes: the amount of change in the first measurement value exceeds a first threshold.
  • the first measurement value includes at least one of the following:
  • the first measurement value is obtained based on a first reference signal measurement
  • the first reference signal includes at least one of the following: synchronization signal block SSB; channel state information reference signal CSI-RS; cell-specific reference signal CRS; demodulation-specific reference signal DMRS; phase tracking reference signal PTRS.
  • the number corresponding to the first reference signal is the number corresponding to the SSB where the configuration information of the random access channel used by the terminal to send the random access signal is located.
  • the technical solutions provided by the above embodiments enable the terminal in the TA invalid state to quickly recover to the TA valid state to ensure subsequent data transmission or reception in the RRC idle state; on the other hand, it enables the UE to quickly enter the RRC connected state. Then continue the data sending or receiving.
  • FIG. 3 is a schematic flowchart of a method for sending indication information provided by an embodiment of the present invention. As shown in FIG. 3, the method includes:
  • Step 301 The terminal sends first indication information to the base station
  • the first indication information indicates at least one of the following:
  • the timing advance TA of the terminal is in an invalid state
  • the terminal does not receive the HARQ-ACK feedback information of the hybrid automatic repeat request response information sent by the base station;
  • the coverage enhancement level of the terminal is changed
  • the serving cell of the terminal changes;
  • the number of repeated transmissions required for the uplink data sent by the terminal on the first type resource is changed
  • the service mode of the terminal corresponding to the uplink data sent on the first type resource is changed.
  • the change in the business model includes at least one of the following:
  • TBS Transport block size
  • the transmission period corresponding to the uplink data sent on the first type of resource changes.
  • the technical solutions provided in the foregoing embodiments enable the base station to know the reasons for the failure to support data transmission or reception in the RRC idle state, so that the success probability of supporting data transmission or reception in the subsequent RRC idle state is higher.
  • the timing advance TA of the terminal before judging whether the timing advance TA of the terminal is in an invalid state based on the first condition, it is necessary to first judge whether the current serving cell (Serving Cell) or the camping cell (Camping Cell) of the terminal occurs. change. If the serving cell or the camping cell is changed, the first condition does not need to be met, and the TA of the terminal is also in an invalid state. If the serving cell or the camping cell does not change, it is determined whether the TA of the terminal is in an invalid state according to the first condition.
  • the serving Cell Serving Cell
  • camping Cell the camping cell
  • the timing advance TA is in an invalid state based on whether a fifth condition is satisfied; the fifth condition includes: the amount of change in the first measurement value exceeds a first threshold. For example, when the fifth condition is satisfied, it is judged that the timing advance TA is in an invalid state; when the fifth condition is not satisfied, it is judged that the timing advance TA is in an effective state.
  • the first measurement value is obtained based on the first reference signal measurement.
  • the first reference signal includes at least one of the following: synchronization signal block SSB; channel state information reference signal CSI-RS; cell-specific reference signal CRS (Cell-specific Reference Signal, CRS); demodulation-specific reference signal DMRS (Demodulation Reference) Signal, DMRS); Phase-Tracking Reference Signal PTRS (Phase-Tracking Reference Signal).
  • the synchronization signal block SSB (SS/PBCH block) is composed of a primary synchronization signal (Primary Synchronization Signal, PSS), a secondary synchronization signal (Secondary Synchronization Signal, SSS), and a physical broadcast channel (Physical Broadcast Channel, PBCH).
  • the base station will configure one or more SSBs, each SSB corresponds to a different number, and the transmission mode of each SSB is independently configured.
  • the transmission mode of the SSB includes at least one of the following: applying a baseband precoding matrix to the baseband signal to be transmitted by the SSB; applying the radio frequency precoding matrix to the radio frequency signal to be transmitted by the SSB; configuring a transmitting antenna for the transmission signal Port; configure the transmit beam and/or transmit beam direction for the transmit signal; configure the transmit power for the transmit signal.
  • CSI-RS or Channel State Information Reference Signal (Channel State Information Reference Signal), is used to measure channel state information.
  • the base station will configure one or more CSI-RS, each CSI-RS corresponds to a different number, and the transmission mode of each CSI-RS is independently configured.
  • the CSI-RS transmission mode includes at least one of the following: applying a baseband precoding matrix to the baseband signal to be transmitted by the CSI-RS; and applying the radio frequency precoding matrix to the radio frequency signal to be transmitted by the CSI-RS; Configure the transmission antenna port for the transmission signal; configure the transmission beam and/or transmission beam direction for the transmission signal; configure the transmission power for the transmission signal.
  • the number corresponding to the first reference signal is the number corresponding to the SSB where the configuration information of the random access channel used by the terminal to send the random access signal is located.
  • the terminal when the timing advance TA of the terminal is in an invalid state, the terminal sends a random access signal on the first type of resource.
  • the terminal when the second condition is met, sends a random access signal on the first type of resource.
  • the second condition includes at least one of the following: there is no random access resource before the time T2; there is no random access resource in the time period from T2 minus T3 to T2 before the next first type resource;
  • the frequency domain bandwidth of the first type of resource is greater than or equal to the second threshold;
  • the time domain length of the first type of resource is greater than or equal to the time domain length of the random access signal;
  • P1+10*log10(R1/R2) is less than or equal to P2; wherein, the P1 is the transmission power of the preamble of the terminal under the current coverage enhancement level, the P2 is the maximum transmission power of the terminal or the power threshold configured by the base station, and the R1 is the current transmission power of the terminal
  • the number of repeated transmissions of the Preamble under the coverage enhancement level where the R2 is the number of repeated transmissions of the Preamble sent by the terminal on the first-type resource.
  • the first type of resources may be optionally configured by the base station for the terminal and used for the terminal to transmit uplink data in RRC_IDLE.
  • the first type of resources are distributed periodically or discretely in the time domain.
  • the base station also configures a search space for a downlink control channel for the terminal, where one downlink control channel search space corresponds to at least one resource of the first type.
  • the information carried on the downlink control channel includes Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the configuration information of the first type of resource can be understood as sending uplink data when the random access signal is sent, and can also be considered as the resource configuration information corresponding to the random access signal carrying the uplink data in the 5G NR (New Radio) system.
  • the configuration information of the first type of resource also includes: physical random access channel (Physical Random Access Channel, PRACH) configuration information.
  • the physical random access channel configuration information includes at least one of the following: configuration information of time-frequency resources occupied by the physical random access channel; configuration information of random access signals sent on the physical random access channel.
  • the frequency domain bandwidth of the optional first resource is greater than or equal to 3 subcarriers, and the subcarrier interval is 15KHz.
  • the frequency domain bandwidth of the first resource is 3, 6, and 12 subcarriers. If the data sent on the first type resource supports repeated transmission, the time domain length of the first type resource includes the time domain length occupied during repeated transmission.
  • the foregoing hybrid automatic repeat request response information HARQ-ACK includes ACK or NACK.
  • ACK indicates that the corresponding data is received correctly, and NACK indicates that the corresponding data is not received correctly.
  • the above-mentioned first indication information may also be called rollback reason indication information or release reason indication information.
  • the fallback refers to the fallback from the transmission mode of sending data on the first type of resources. For example, you can fall back to the random access procedure, or fall back to the RRC_IDLE state.
  • Release means to release the resources of the first type and/or release the resources of the downlink control channel search space.
  • FIG. 4 is a schematic flowchart of a method for processing a timing advance TA according to another embodiment of the present invention. As shown in FIG. 4, the method includes:
  • Step 401 When the first condition is met, the base station determines that the timing advance TA of the terminal is in an invalid state;
  • the first condition includes at least one of the following:
  • the TA timer expires and the change in the first measurement value exceeds the first threshold
  • the TA timer expires or the change in the first measurement value exceeds the first threshold or the TA timer expires and the first measurement value The amount of change exceeds the first threshold.
  • the first measurement value includes at least one of the following:
  • Reference signal reception quality RSRQ Downlink SINR; Downlink SNR; Uplink SNR; Uplink SNR; Downlink path loss; Uplink path loss.
  • the first measurement value is a measurement value in a beam direction.
  • the method further includes:
  • the base station determines whether the first condition is satisfied.
  • the method further includes:
  • the base station triggers the non-contention random access process; the base station triggers the contention-based random access process.
  • the method further includes:
  • the uplink transmission configuration information includes: uplink channel resource configuration information and downlink control channel search space configuration information; the uplink transmission configuration information is used to support data transmission of the terminal in the radio resource control idle RRC_IDLE state.
  • the uplink transmission configuration information further includes: a non-contention random access channel index or a non-contention random access sequence index configured for the terminal.
  • the method further includes:
  • the base station sends downlink control information DCI to the terminal according to the downlink control channel search space, where the DCI carries TA update information;
  • the base station sends a random access response message to the terminal, and the random access response message carries TA update information.
  • FIG. 5 is a schematic flowchart of a method for processing a timing advance TA according to another embodiment of the present invention. As shown in FIG. 5, the method includes:
  • Step 501 Before the base station determines that the timing advance TA of the terminal is in an invalid state, the terminal receives uplink transmission configuration information sent by the base station;
  • the uplink transmission configuration information includes: uplink channel resource configuration information and downlink control channel search space configuration information; the uplink transmission configuration information is used to support data transmission of the terminal in the radio resource control idle RRC_IDLE state.
  • the uplink transmission configuration information further includes: a non-contention random access channel index or a non-contention random access sequence index configured for the terminal.
  • the method further includes:
  • the terminal receives the downlink control information DCI sent by the base station according to the downlink control channel search space, where the DCI carries TA update information;
  • uplink data is sent on the uplink channel resource according to the random access response message.
  • FIG. 6 is a schematic flowchart of a method for processing a timing advance TA according to another embodiment of the present invention. As shown in FIG. 6, the method includes:
  • Step 601 The base station sends uplink transmission configuration information to the terminal; the uplink transmission configuration information includes: configuration information of uplink channel resources; configuration information of downlink control channel search space.
  • the uplink transmission configuration information is used to support the data transmission of the UE in the RRC_IDLE state.
  • the configuration information of the uplink channel resource indicates the position information of a group of uplink channel resources.
  • the configuration period of the uplink channel resource is 1 hour, and the time domain position of the uplink channel resource is paranoid within the configuration period. The amount is 10 minutes.
  • Figure 7 shows a schematic diagram of the locations of 24 uplink channel resources within 24 hours, with numbers from "uplink channel resource 1" to "uplink channel resource 24".
  • the configuration information of the downlink control channel search space (search space) is a downlink control channel search space dedicated to the terminal, and the search space includes at least one downlink control channel transmission resource set (also called a transmission opportunity).
  • DCI Downlink Control Information
  • Each uplink channel resource corresponds to a downlink control channel search space.
  • the downlink control channel search space corresponding to the uplink channel resource with index 1 is search space 1.
  • the start time of search space 1 is the same as the uplink channel resource. 1
  • the downlink control channel search space corresponding to the uplink channel resource with index 24 is search space 24, and the start time of search space 24 is related to the uplink
  • the base station when the base station sends uplink transmission configuration information to the terminal, it also configures a non-competitive random access channel index or a non-competitive random access sequence index for the terminal.
  • the time when the non-contention random access sequence is sent is the random access channel after the time T0+T1.
  • T0 is the TA timer reset time
  • T1 is configured by the base station to indicate the length of the TA validity period.
  • Step 602 The base station determines whether the timing advance TA of the terminal is in an invalid state.
  • the terminal is in the RRC idle state (Radio Resource Control IDLE, RRC_IDLE for short, and the Chinese name is Radio Resource Control Idle State).
  • RRC idle state Radio Resource Control IDLE, RRC_IDLE for short, and the Chinese name is Radio Resource Control Idle State.
  • the basis for the base station to determine whether the terminal's timing advance TA is in an invalid state includes at least one of the following:
  • the first condition includes at least one of the following:
  • the TA timer expires and the change in the first measurement value exceeds the first threshold
  • the TA timer expires or the change in the first measurement value exceeds the first threshold or the TA timer expires and the first measurement value The amount of change exceeds the first threshold.
  • the TA of the terminal before judging whether the TA of the terminal is in an invalid state based on the first condition, it is first judged whether the current serving cell (Serving Cell) or the camping cell (Camping Cell) of the terminal has changed. If the serving cell or the camping cell is changed, the first condition does not need to be met, and the TA of the terminal is also in an invalid state. If the serving cell or the camping cell does not change, it is determined whether the TA of the terminal is in an invalid state according to the first condition.
  • the serving Cell Serving Cell
  • camping Cell the camping cell
  • the first measurement value includes at least one of the following:
  • Reference signal reception quality RSRQ Downlink SINR; Downlink SNR; Uplink SNR; Uplink SNR; Downlink path loss; Uplink path loss.
  • the first measurement value is a measurement value in a beam direction.
  • Step 603 When the base station determines that the timing advance TA of the terminal is in an invalid state, step 604 or 605 is executed.
  • Step 604 The base station triggers a non-contention random access procedure.
  • the non-contention random access procedure can be triggered through PDCCH Order.
  • the PDCCH order is a transmission format of Downlink Control Information (DCI), which is used to trigger the random access procedure.
  • DCI Downlink Control Information
  • the PDCCH order includes the index information of the random access channel or the index information of the random access signal.
  • Step 605 The base station triggers a contention-based random access procedure.
  • Step 606a The base station sends TA update information to the terminal according to the downlink control channel search space.
  • the base station sends TA update information on the search space 1 shown in FIG. 8, and the TA timer is reset. Therefore, this time is T0.
  • Step 606b The terminal sends uplink data on the uplink channel resource according to the TA update information in the idle RRC_IDLE state of the radio resource control.
  • Step 607a The base station sends downlink control information DCI to the terminal according to the downlink control channel search space, where the DCI carries TA update information.
  • Step 607b The terminal sends uplink data on the uplink channel resource according to the DCI in the idle RRC_IDLE state of radio resource control.
  • Step 608a The base station sends a random access response message to the terminal, and the random access response message carries TA update information.
  • the base station may send a random access response message to the terminal after receiving the random access sequence Preamble sent by the terminal on the random access channel.
  • the terminal in the time period from T0 to T0+T1, if there is no new TA update information, when the time exceeds T0+T1, the terminal needs to send non-contention random access on the random access channel.
  • the incoming sequence is used to allow the base station to measure the TA value and send updated TA information to the terminal through a random access response message.
  • Step 608b The terminal sends uplink data on the uplink channel resource according to the random access response message in the idle RRC_IDLE state of the radio resource control.
  • the above steps 606a, 607a, and 608a are in a parallel relationship.
  • FIG. 9 is a schematic flowchart of a method for processing a timing advance TA according to another embodiment of the present invention. As shown in FIG. 9, the method includes:
  • Step 901 When the first condition is met, the terminal determines that the timing advance TA is in an invalid state;
  • the first condition includes at least one of the following:
  • the TA timer expires and the change in the first measurement value exceeds the first threshold
  • the TA timer expires or the change in the first measurement value exceeds the first threshold or the TA timer expires and the first measurement value The amount of change exceeds the first threshold;
  • the TA timer expires.
  • the first measurement value includes at least one of the following:
  • the first measurement value is a measurement value in a beam direction.
  • the method further includes:
  • the TA of the terminal is in an invalid state
  • the terminal determines whether the first condition is satisfied.
  • the method further includes:
  • the terminal sends a random access signal for a non-contention random access procedure; the terminal sends a random access signal on the first type of resource; the terminal triggers a contention-based random access procedure.
  • the terminal if there is a random access resource before T2 time or there is no random access resource in the time period from T2 minus T3 to T2 before the next first type resource, the terminal triggers contention-based on the random access resource Random access process;
  • the T2 is equal to the start time of the next first-type resource minus T1
  • the values of T1, T2, and T3 are configured by the base station or use default configuration values.
  • the terminal when the second condition is met, the terminal sends a random access signal on the first type of resource;
  • the second condition includes at least one of the following:
  • T2 is equal to the start time of the next first-type resource minus T1, and the values of T1 and T2 are configured by the base station or use default configuration values;
  • T3 is configured by the base station or adopts a default configuration value
  • the frequency domain bandwidth of the first type resource is greater than or equal to a second threshold
  • the time domain length of the first type resource is greater than or equal to the time domain length of the random access preamble
  • P1+10*log10(R1/R2) is less than or equal to P2; wherein, the P1 is the transmission power of the preamble of the terminal under the current coverage enhancement level, and the P2 is the maximum transmission power of the terminal or the base station configuration
  • the R1 is the number of repeated transmissions of the Preamble of the terminal under the current coverage enhancement level
  • the R2 is the number of repeated transmissions of the Preamble sent by the terminal on the first-type resource.
  • the terminal when the third condition is met, the terminal receives the signaling sent by the base station to trigger the non-contention random access process or the terminal receives the signaling sent by the base station to trigger the contention-based random access process;
  • the third condition includes at least one of the following:
  • the fourth condition includes at least one of the following:
  • the frequency domain bandwidth of the first type resource is greater than or equal to a second threshold
  • the time domain length of the first type resource is greater than or equal to the time domain length of the random access signal
  • P1+10*log10(R1/R2) is less than or equal to P2;
  • the P1 is the transmit power of the random access signal of the terminal under the current coverage enhancement level
  • the P2 is the maximum transmit power of the terminal or the power threshold configured by the base station
  • the R1 is the terminal's current The number of repeated transmissions of the random access signal under the current coverage enhancement level, where the R2 is the number of repeated transmissions of the random access signal sent by the terminal on the first-type resource; the T2 is equal to the number of the next first-type resource T1 is subtracted from the starting time, and the values of T1, T2, and T3 are configured by the base station or adopt default configuration values.
  • T2 and T3 are configured by the base station or adopt default configuration values.
  • the time domain position of the random access channel for sending the random access preamble is the TA timer reset time + the random time after T1 time.
  • the value of T1 is configured by the base station or adopts a default configuration value.
  • the first condition includes at least whether the change amount of the first measurement value exceeds a first threshold.
  • one downlink control channel search space corresponds to at least one resource of the first type, and the resource of the first type is configured by the base station for the terminal to be used for the terminal to transmit uplink data in the radio resource control idle RRC_IDLE state.
  • the frequency domain bandwidth of the first resource is greater than or equal to 3 subcarriers, and the subcarrier spacing is 15KHz.
  • the time domain length of the first type resource includes the time domain length occupied during repeated transmission.
  • the method further includes:
  • the uplink transmission configuration information includes: uplink channel resource configuration information and downlink control channel search space configuration information, and the uplink transmission configuration information is used to support data transmission of the terminal in a radio resource control idle RRC_IDLE state.
  • the uplink transmission configuration information further includes: a non-contention random access channel index or a non-contention random access sequence index configured for the terminal.
  • the Methods also include:
  • the terminal sends uplink data on the uplink channel resource according to the TA update information in the radio resource control idle RRC_IDLE state.
  • the terminal sends uplink data on the uplink channel resource according to the DCI in the radio resource control idle RRC_IDLE state.
  • the terminal sends uplink data on the uplink channel resource according to the random access response message in the radio resource control idle RRC_IDLE state.
  • FIG. 10 is a schematic flowchart of a method for processing a timing advance TA according to another embodiment of the present invention. As shown in FIG. 10, the method includes:
  • Step 1001 Before the terminal determines that the timing advance TA is in an invalid state, the base station sends uplink transmission configuration information to the terminal;
  • the uplink transmission configuration information includes: uplink channel resource configuration information and downlink control channel search space configuration information, and the uplink transmission configuration information is used to support data transmission of the terminal in a radio resource control idle RRC_IDLE state.
  • the uplink transmission configuration information further includes: a non-contention random access channel index or a non-contention random access sequence index configured for the terminal.
  • the Methods also include:
  • FIG. 11 is a schematic flowchart of a method for processing a timing advance TA according to another embodiment of the present invention. As shown in FIG. 11, the method includes:
  • Step 1101 The base station sends uplink transmission configuration information to the terminal; the uplink transmission configuration information includes: configuration information of uplink channel resources; configuration information of downlink control channel search space.
  • the uplink transmission configuration information is used to support the data transmission of the UE in the RRC_IDLE state.
  • the configuration information of the uplink channel resource indicates the position information of a group of uplink channel resources. As shown in FIG. 7, the configuration period of the uplink channel resource is 1 hour, and the time domain position of the uplink channel resource is paranoid within the configuration period The amount is 10 minutes.
  • Figure 7 shows a schematic diagram of the locations of 24 uplink channel resources within 24 hours, with numbers from "uplink channel resource 1" to "uplink channel resource 24".
  • the configuration information of the downlink control channel search space (search space) is a downlink control channel search space dedicated to the terminal, and the search space includes at least one downlink control channel transmission resource set (also called a transmission opportunity).
  • DCI Downlink Control Information
  • Each uplink channel resource corresponds to a downlink control channel search space.
  • the downlink control channel search space corresponding to the uplink channel resource with index 1 is search space 1.
  • the start time of search space 1 is the same as the uplink channel resource. 1
  • the downlink control channel search space corresponding to the uplink channel resource with index 24 is search space 24, and the start time of search space 24 is related to the uplink
  • Step 1102 The terminal determines whether the timing advance TA is in an invalid state.
  • the terminal is in the RRC idle state (Radio Resource Control IDLE, RRC_IDLE for short, and the Chinese name is Radio Resource Control Idle State).
  • RRC idle state Radio Resource Control IDLE, RRC_IDLE for short, and the Chinese name is Radio Resource Control Idle State.
  • the basis for the terminal to determine whether the timing advance TA is in an invalid state includes at least one of the following:
  • the first condition includes at least one of the following:
  • the TA timer expires and the change in the first measurement value exceeds the first threshold
  • the TA timer expires or the change in the first measurement value exceeds the first threshold or the TA timer expires and the first measurement value The amount of change exceeds the first threshold;
  • the TA timer expires.
  • the terminal before judging whether the TA of the terminal is in an invalid state based on the first condition, it is first judged whether the current serving cell (Serving Cell) or the camping cell (Camping Cell) of the terminal has changed. If the serving cell or the camping cell changes, the first condition does not need to be met, and the terminal's TA is also in an invalid state. If the serving cell or the camping cell does not change, it is determined whether the TA of the terminal is in an invalid state according to the first condition.
  • the serving Cell Serving Cell
  • camping Cell the camping cell of the terminal has changed. If the serving cell or the camping cell changes, the first condition does not need to be met, and the terminal's TA is also in an invalid state. If the serving cell or the camping cell does not change, it is determined whether the TA of the terminal is in an invalid state according to the first condition.
  • the first condition includes at least whether the amount of change in the first measurement value exceeds a threshold value.
  • the first measurement value includes at least one of the following:
  • the first measurement value is a measurement value in a beam direction.
  • Step 1103 when it is determined that the timing advance TA is in an invalid state, step 1104, or step 1105, or step 1106 is executed.
  • step 1105 is executed, where the second condition includes at least one of the following:
  • T2 is equal to the start time of the next first-type resource minus T1;
  • the frequency domain bandwidth of the first type of resource is greater than or equal to a second threshold; the second threshold is configured by the base station or a default value is adopted;
  • the time domain length of the first type of resource is greater than or equal to the time domain length of the Preamble
  • P1+10*log10(R1/R2) is less than or equal to P2; where P1 is the transmission power of the preamble of the terminal under the current coverage enhancement level, and P2 is the maximum transmission power of the terminal or the power threshold configured by the base station.
  • R1 is the number of repeated transmissions of the Preamble of the terminal under the current coverage enhancement level; R2 is the number of repeated transmissions of the Preamble sent by the terminal on the first type of resource.
  • the terminal when the third condition is met, the terminal receives the signaling sent by the base station to trigger the non-contention random access process or the terminal receives the signaling sent by the base station to trigger the contention-based random access process;
  • the third condition includes at least one of the following:
  • the fourth condition includes at least one of the following:
  • the frequency domain bandwidth of the first type resource is greater than or equal to a second threshold
  • the time domain length of the first type resource is greater than or equal to the time domain length of the random access signal
  • P1+10*log10(R1/R2) is less than or equal to P2;
  • the P1 is the transmit power of the random access signal of the terminal under the current coverage enhancement level
  • the P2 is the maximum transmit power of the terminal or the power threshold configured by the base station
  • the R1 is the terminal's current The number of repeated transmissions of the random access signal under the current coverage enhancement level, where the R2 is the number of repeated transmissions of the random access signal sent by the terminal on the first-type resource; the T2 is equal to the number of the next first-type resource T1 is subtracted from the starting time, and the values of T1, T2, and T3 are configured by the base station or adopt default configuration values.
  • the terminal performs step 1106 on the random access resources.
  • the values of T1 and T2 are configured by the base station or use default configuration values.
  • the time window corresponding to the random access resource is a time period from T2-T3 to T2, where T3 is configured by the base station or adopts a default configuration value.
  • T1 is the time period reserved for the contention-based random access procedure triggered by the terminal; T3 is used to prevent the contention-based random access procedure triggered by the terminal from ending too early and leading to the next The TA of the terminal fails again when the first type of resource starts, and the configured parameters.
  • Step 1104 The terminal sends a random access signal used for the non-contention random access procedure.
  • the configuration information of the random access signal and the configuration information of the first type of resource are sent by the base station to the terminal together.
  • the random access signal is a physical random access channel preamble (Physical Random Access Channel Preamble, PRACH Preamble, also known as Msg1).
  • PRACH Preamble Physical Random Access Channel Preamble, also known as Msg1.
  • the time domain position of the random access channel for sending the preamble is the random access channel after the TA timer reset time + the time T1.
  • the value of T1 is configured by the base station or adopts a default configuration value.
  • Step 1105 The terminal sends a random access signal on the first type of resource.
  • the frequency domain bandwidth of the first resource is greater than or equal to 3 subcarriers, and the subcarrier interval is 15KHz.
  • the frequency domain bandwidth of the first resource is 3, 6, and 12 subcarriers.
  • the time domain length of the first type resource here includes the time domain length occupied during repeated transmission.
  • Step 1106 The terminal triggers a contention-based random access procedure.
  • the terminal when the TA is in an invalid state, the terminal sends the random access signal on the uplink channel resource shown in FIG. 8 for the base station to measure the TA value.
  • the wireless communication system is an NB-IoT system
  • the time domain length of the random access signal is 6.4 ms, which includes 4 symbol groups (symbol groups), and a symbol group consists of a cyclic prefix (cyclic prefix, CP) and 5 symbols, a symbol group occupies one subcarrier in the frequency domain and the subcarrier spacing is 3.75kHz.
  • CH i represents the random access resource position occupied by the 4 symbol groups corresponding to the i-th random access signal.
  • the frequency domain bandwidth of the uplink channel resource is 12 subcarriers, where the subcarrier interval is 15KHz, and the time domain length of the uplink channel resource is 8ms, then the random access signal is in the uplink channel resource
  • the distribution of the resources used in the system is shown in Figure 13.
  • the random access signal occupies the first 6.4ms in the time domain and the frequency domain bandwidth of 45kHz in the frequency domain.
  • a frequency domain bandwidth of 45 kHz occupied by the random access signal in the frequency domain is located at the boundary of the frequency domain resource of the uplink channel resource.
  • Step 1107a The base station sends TA update information to the terminal according to the downlink control channel search space.
  • the base station sends TA update information on the search space 1 shown in FIG. 8, and the TA timer is reset. Therefore, this time is T0.
  • Step 1107b The terminal sends uplink data on the uplink channel resource according to the TA update information in the idle RRC_IDLE state of the radio resource control.
  • Step 1108a The base station sends downlink control information DCI to the terminal according to the downlink control channel search space, where the DCI carries TA update information.
  • Step 1108b the terminal sends uplink data on the uplink channel resource according to the DCI in the idle RRC_IDLE state of radio resource control.
  • Step 1109a The base station sends a random access response message to the terminal, and the random access response message carries TA update information.
  • the base station may send a random access response message to the terminal after receiving the random access sequence Preamble sent by the terminal on the random access channel.
  • the terminal in the time period from T0 to T0+T1, if there is no new TA update information, when the time exceeds T0+T1, the terminal needs to send non-contention random access on the random access channel.
  • the incoming sequence is used to allow the base station to measure the TA value and send updated TA information to the terminal through a random access response message.
  • Step 1109b the terminal sends uplink data on the uplink channel resource according to the random access response message in the idle RRC_IDLE state of the radio resource control.
  • FIG. 14 is a schematic structural diagram of a timing advance TA processing device provided by another embodiment of the present invention. As shown in FIG. 14, the device includes:
  • a judging unit configured to: when the first condition is met, the timing advance TA of the terminal is in an invalid state;
  • the first condition includes at least one of the following:
  • the TA timer expires and the change in the first measurement value exceeds the first threshold
  • the TA timer expires or the change in the first measurement value exceeds the first threshold or the TA timer expires and the first measurement value The amount of change exceeds the first threshold.
  • the first measurement value includes at least one of the following:
  • the first measurement value is obtained based on a first reference signal measurement
  • the first reference signal includes at least one of the following: synchronization signal block SSB; channel state information reference signal CSI-RS; cell-specific reference signal CRS; demodulation-specific reference signal DMRS; phase tracking reference signal PTRS.
  • the number corresponding to the first reference signal is the number corresponding to the SSB where the configuration information of the random access channel used by the terminal to send the random access signal is located.
  • FIG. 15 is a schematic structural diagram of a timing advance TA processing device provided by another embodiment of the present invention. The device is applied to a terminal. As shown in FIG. 15, the device includes:
  • the execution unit is used to perform one of the following operations when the timing advance TA of the terminal is in an invalid state:
  • the execution unit is on the random access resource Sending random access signals for competing random access procedures
  • the T2 is equal to the start time of the next first-type resource minus T1
  • the values of the T1, the T2, and the T3 are configured by the base station or adopt default configuration values.
  • the execution unit when the second condition is met, the execution unit sends a random access signal on the first type of resource;
  • the second condition includes at least one of the following:
  • the frequency domain bandwidth of the first type resource is greater than or equal to a second threshold
  • the time domain length of the first type resource is greater than or equal to the time domain length of the random access signal
  • P1+10*log10(R1/R2) is less than or equal to P2;
  • the P1 is the transmit power of the random access signal of the terminal under the current coverage enhancement level
  • the P2 is the maximum transmit power of the terminal or the power threshold configured by the base station
  • the R1 is the terminal's current The number of repeated transmissions of the random access signal under the current coverage enhancement level, where the R2 is the number of repeated transmissions of the random access signal sent by the terminal on the first-type resource; the T2 is equal to the number of the next first-type resource T1 is subtracted from the starting time, and the values of T1, T2, and T3 are configured by the base station or adopt default configuration values.
  • the time domain position of the random access channel for sending the random access signal is the time after the TA timer reset time plus the T1 time Random access channel;
  • the value of T1 is configured by the base station or adopts a default configuration value.
  • the execution unit when the third condition is met, the execution unit receives the signaling that triggers the non-competition random access process sent by the base station or the execution unit receives the signaling that triggers the contention-based random access process sent by the base station;
  • the third condition includes at least one of the following:
  • the fourth condition includes at least one of the following:
  • the frequency domain bandwidth of the first type resource is greater than or equal to a second threshold
  • the time domain length of the first type resource is greater than or equal to the time domain length of the random access signal
  • P1+10*log10(R1/R2) is less than or equal to P2;
  • the P1 is the transmit power of the random access signal of the terminal under the current coverage enhancement level
  • the P2 is the maximum transmit power of the terminal or the power threshold configured by the base station
  • the R1 is the terminal's current The number of repeated transmissions of the random access signal under the current coverage enhancement level, where the R2 is the number of repeated transmissions of the random access signal sent by the terminal on the first-type resource; the T2 is equal to the number of the next first-type resource T1 is subtracted from the starting time, and the values of T1, T2, and T3 are configured by the base station or adopt default configuration values.
  • the TA timer is used to determine whether the timing advance TA is in an invalid state.
  • timing advance TA is in an invalid state by whether the fifth condition is satisfied
  • the fifth condition includes: the amount of change in the first measurement value exceeds a first threshold.
  • the first measurement value includes at least one of the following:
  • the first measurement value is obtained based on a first reference signal measurement
  • the first reference signal includes at least one of the following: synchronization signal block SSB; channel state information reference signal CSI-RS; cell-specific reference signal CRS; demodulation-specific reference signal DMRS; phase tracking reference signal PTRS.
  • the number corresponding to the first reference signal is the number corresponding to the SSB where the configuration information of the random access channel used by the terminal to send the random access signal is located.
  • FIG. 16 is a schematic structural diagram of a device for sending an indication method according to an embodiment of the present invention.
  • the device is applied to a terminal.
  • the device includes:
  • An indication unit configured to send first indication information to the base station
  • the first indication information indicates at least one of the following:
  • the timing advance TA of the terminal is in an invalid state
  • the terminal does not receive the HARQ-ACK feedback information of the hybrid automatic repeat request response information sent by the base station;
  • the coverage enhancement level of the terminal is changed
  • the serving cell of the terminal changes;
  • the number of repeated transmissions required for the uplink data sent by the terminal on the first type resource is changed
  • the service mode of the terminal corresponding to the uplink data sent on the first type resource is changed.
  • the change in the business model includes at least one of the following:
  • the transmission block size TBS corresponding to the uplink data sent on the first type of resource changes
  • the transmission period corresponding to the uplink data sent on the first type of resource changes.
  • the embodiment of the present invention also provides a timing advance TA processing device, including a memory, a processor, and a computer program stored on the memory and running on the processor, and the computer program is used by the processor.
  • the timing advance TA processing method described in any one of the above items is implemented during execution.
  • the embodiment of the present invention also provides an instruction information sending device, including a memory, a processor, and a computer program stored on the memory and running on the processor.
  • an instruction information sending device including a memory, a processor, and a computer program stored on the memory and running on the processor.
  • the embodiment of the present invention also provides a computer-readable storage medium, the computer-readable storage medium stores an information processing program, and when the information processing program is executed by a processor, the timing advance TA of any one of the above is realized. Processing method steps.
  • the embodiment of the present invention also provides a computer-readable storage medium having an information processing program stored on the computer-readable storage medium, and when the information processing program is executed by a processor, it implements any of the instructions of the method for sending instructions. step.
  • Such software may be distributed on a computer-readable medium, and the computer-readable medium may include a computer storage medium (or a non-transitory medium) and a communication medium (or a transitory medium).
  • the term computer storage medium includes volatile and nonvolatile implementations in any method or technology for storing information (such as computer readable instructions, data structures, program modules, or other data). Flexible, removable and non-removable media.
  • Computer storage media include but are not limited to Random Access Memory (RAM), Read-Only Memory (ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), flash memory Or other memory technologies, CD-ROM, Digital Video Disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tapes, magnetic disk storage or other magnetic storage devices, or can be used to store desired information and can be used by a computer Any other media accessed.
  • communication media usually contain computer readable instructions, data structures, program modules, or other data in a modulated data signal such as carrier waves or other transmission mechanisms, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种定时提前量TA处理方法及装置、指示信息发送方法及装置,其中方法之一包括:满足第一条件时,终端的TA处于无效状态;其中,所述第一条件包括以下至少之一:所述终端为静止类型Stationary的终端时,TA定时器超时以及第一测量值的变化量超过第一阈值;所述终端为非静止类型Non-Stationary的终端时,所述TA定时器超时或者所述第一测量值的变化量超过所述第一阈值或者所述TA定时器超时以及所述第一测量值的变化量超过所述第一阈值。

Description

定时提前量TA处理方法及装置、指示信息发送方法及装置
本申请要求在2019年01月21日提交中国专利局、申请号为201910056607.4的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及但不限于无线通信领域,具体涉及一种定时提前量TA(Timing Advanced)处理方法及装置、指示信息发送方法及装置。
背景技术
随着智能终端的发展以及无线数据应用业务的丰富,无线通信网络中的数据用户数大幅增加,无线数据内容不再仅限于传统的文字或者图像,而且还会出现越来越多的高清晰度视频、手机电视等多媒体业务内容,从而导致无线通信网络流量呈现爆炸式增长。移动互联网和物联网业务将成为移动通信发展的主要驱动力。
针对物联网,3GPP(Third Generation Partnership Program,第三代合作伙伴计划)标准组织制定了MTC(Machine Type Communication,机器类型通信)和NB-IoT(Narrow Band Internet of Things,窄带物联网)两个非常具有代表性的通信标准协议。针对移动互联网,3GPP标准组织最新制定了5G NR(New Radio,新无线电)通信标准协议。针对上述通信标准协议,终端在没有数据需要发送或者接收时都会进入RRC空闲状态(Radio Resource Control IDLE,简称RRC_IDLE,中文名称为无线资源控制空闲状态),进而节省终端的功耗。
按照上述通信标准协议规定,终端在发送或者接收数据之前都需要从RRC空闲状态进入RRC连接状态(Radio Resource Control CONNECT,简称RRC-CONNECT,中文名称为无线资源控制连接状态),然后再进行数据的发送或者接收。但是终端从RRC空闲状态进入RRC连接状态会消耗终端的功耗以及系统资源。
发明内容
本发明实施例提供了一种定时提前量TA处理方法,包括
满足第一条件时,终端的定时提前量TA处于无效状态;
其中,所述第一条件包括以下至少之一:
所述终端为静止类型Stationary的终端时,TA定时器超时以及第一测量值 的变化量超过第一阈值;
所述终端为非静止类型Non-Stationary的终端时,所述TA定时器超时或者所述第一测量值的变化量超过所述第一阈值或者所述TA定时器超时以及所述第一测量值的变化量超过所述第一阈值。
本发明实施例还提供了一种定时提前量TA处理方法,包括:
终端的定时提前量TA处于无效状态时,执行以下操作之一:
所述终端发送用于非竞争随机接入流程的随机接入信号;
所述终端在第一类资源上发送随机接入信号;
所述终端发送用于竞争随机接入流程的随机接入信号;
所述终端接收基站发送的触发非竞争随机接入流程的信令;
所述终端接收基站发送的触发基于竞争的随机接入流程的信令。
本发明实施例还提供了一种指示信息发送方法,包括:
终端发送第一指示信息给基站;
其中,所述第一指示信息指示以下至少之一:
所述终端的定时提前量TA处于无效状态;
针对第一类资源上发送的上行数据,所述终端没有收到所述基站发送的混合自动重传请求应答信息HARQ-ACK反馈信息;
所述终端的覆盖增强等级发生改变;
所述终端的服务小区发生改变;
所述终端在所述第一类资源上发送的上行数据需要的重复发送次数发生改变;
所述第一类资源上发送的上行数据对应的所述终端的业务模式发生改变。
本发明实施例还提供了一种定时提前量TA处理装置,包括:
判断单元,用于满足第一条件时,终端的定时提前量TA处于无效状态;
其中,所述第一条件包括以下至少之一:
所述终端为静止类型Stationary的终端时,TA定时器超时以及第一测量值 的变化量超过第一阈值;
所述终端为非静止类型Non-Stationary的终端时,所述TA定时器超时或者所述第一测量值的变化量超过所述第一阈值或者所述TA定时器超时以及所述第一测量值的变化量超过所述第一阈值。
本发明实施例还提供了一种定时提前量TA处理装置,应用于终端,包括:
执行单元,用于终端的定时提前量TA处于无效状态时,执行以下操作之一:
发送用于非竞争随机接入流程的随机接入信号;
在第一类资源上发送随机接入信号;
所述终端发送用于竞争随机接入流程的随机接入信号;
接收基站发送的触发非竞争随机接入流程的信令;
接收基站发送的触发基于竞争的随机接入流程的信令。
本发明实施例还提供了一种指示信息发送装置,应用于终端,包括:
指示单元,用于发送第一指示信息给基站;
其中,所述第一指示信息指示以下至少之一:
所述终端的定时提前量TA处于无效状态;
针对第一类资源上发送的上行数据,所述终端没有收到所述基站发送的混合自动重传请求应答信息HARQ-ACK反馈信息;
所述终端的覆盖增强等级发生改变;
所述终端的服务小区发生改变;
所述终端在所述第一类资源上发送的上行数据需要的重复发送次数发生改变;
所述第一类资源上发送的上行数据对应的所述终端的业务模式发生改变。
本发明实施例还提供了一种定时提前量TA处理装置,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现所述定时提前量TA处理方法。
本发明实施例还提供了一种指示信息发送装置,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现所述指示信息发送方法。
本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有信息处理程序,所述信息处理程序被处理器执行时实现所述定时提前量TA处理方法的步骤。
本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有信息处理程序,所述信息处理程序被处理器执行时实现所述指示信息发送方法的步骤。
与相关技术相比,本发明实施例提供了一种定时提前量TA处理方法及装置,其中方法之一,根据终端UE类型判断定时提前量是否有效,提高定时提前量TA无效或有效状态判断的准确性。其中方法之二,使得处于TA无效状态的终端可以快速恢复到TA有效状态进而保证后续的RRC空闲状态下的数据发送或者接收。
与相关技术相比,本发明实施例提供了一种指示信息发送方法及装置,使得基站可以清楚RRC空闲状态下支持数据的发送或者接收失败的原因,使得后续的RRC空闲状态下支持数据的发送或者接收的成功概率更高。
附图说明
图1为本发明一实施例提供的定时提前量TA处理方法的流程示意图;
图2为本发明另一实施例提供的定时提前量TA处理方法的流程示意图;
图3为本发明一实施例提供的指示信息发送方法的流程示意图;
图4为本发明另一实施例提供的定时提前量TA处理方法的流程示意图;
图5为本发明另一实施例提供的定时提前量TA处理方法的流程示意图;
图6为本发明另一实施例提供的定时提前量TA处理方法的流程示意图;
图7为本发明实施例中上行信道资源的配置示意图;
图8为本发明实施例中上行信道资源与搜索空间的配置示意图;
图9为本发明另一实施例提供的定时提前量TA处理方法的流程示意图;
图10为本发明另一实施例提供的定时提前量TA处理方法的流程示意图;
图11为本发明另一实施例提供的定时提前量TA处理方法的流程示意图;
图12为本发明实施例中随机接入信号的随机接入资源的配置示意图;
图13为本发明实施例中上行信道资源中使用的资源分布示意图;
图14为本发明另一实施例提供的定时提前量TA处理装置的结构示意图;
图15为本发明另一实施例提供的定时提前量TA处理装置的结构示意图;
图16为本发明一实施例提供的指示信息发送装置的结构示意图。
具体实施方式
下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
按照相关技术中的通信标准协议规定,例如MTC协议和NB-IoT协议等,终端在发送或者接收数据之前都需要从RRC空闲状态进入RRC连接状态,然后再进行数据的发送或者接收。终端从RRC空闲状态进入RRC连接状态会消耗终端的功耗以及系统资源。因此,需要一种新的数据传输方式用来支持终端在RRC空闲状态下即可以支持数据的发送或者接收,减少消耗终端功耗以及系统资源。
图1为本发明一实施例提供的定时提前量TA处理方法的流程示意图,如图1所示,该方法包括:
步骤101,满足第一条件时,终端的定时提前量TA(Timing Advanced)处于无效状态;
其中,所述第一条件包括以下至少之一:
所述终端为静止类型Stationary的终端时,TA定时器超时以及第一测量值的变化量超过第一阈值;
所述终端为非静止类型Non-Stationary的终端时,所述TA定时器超时或者所述第一测量值的变化量超过所述第一阈值或者所述TA定时器超时以及所述 第一测量值的变化量超过所述第一阈值。
其中,所述第一测量值包括以下至少之一:
参考信号接收功率RSRP(Reference Signal Receiving Power);参考信号接收质量RSRQ(Reference Signal Receiving Quality);下行信干噪比SINR(Signal to Interference plus Noise Ratio);下行信噪比SNR(Signal to Noise Ratio);上行信干噪比;上行信噪比;下行路径损耗(Downlink Path Loss);上行路径损耗(Uplink Path Loss)。
其中,所述第一测量值基于第一参考信号测量得到;
其中,所述第一参考信号包括以下至少之一:同步信号块SSB(Synchronization Signal Block);信道状态信息参考信号CSI-RS(Channel State Information reference signals);小区专用参考信号CRS(Cell-specific Reference Signal);解调专用参考信号DMRS(Demodulation Reference Signal);相位追踪参考信号PTRS(Phase-Tracking Reference Signal)。
其中,所述第一参考信号对应的编号为所述终端发送随机接入信号所使用的随机接入信道的配置信息所在的SSB对应的编号。
上述实施例提供的技术方案,根据终端UE的类型采用独立的TA无效/有效状态的判断,提高TA无效/有效状态的判断的准确性。进一步地,保证终端的TA一直处于有效状态,进而保证后续的RRC空闲状态下的数据发送或者接收的成功率。
图2为本发明另一实施例提供的定时提前量TA处理方法的流程示意图,如图2所示,该方法包括:
步骤201,终端的定时提前量TA处于无效状态时,执行以下操作之一:
所述终端发送用于非竞争随机接入流程的随机接入信号;
所述终端在第一类资源上发送随机接入信号;
所述终端发送用于竞争随机接入流程的随机接入信号;
所述终端接收基站发送的触发非竞争随机接入流程的信令;
所述终端接收基站发送的触发基于竞争的随机接入流程的信令。
其中,如果在T2时刻之前存在随机接入资源或者在下一个第一类资源之前从T2减去T3到T2时间段内不存在随机接入资源,则终端在所述随机接入资源上发送用于竞争随机接入流程的随机接入信号;
其中,所述T2等于下一个第一类资源的起始时刻减去T1,所述T1、所述T2、所述T3的取值由基站配置或者采用默认配置值。
其中,满足第二条件时,所述终端在第一类资源上发送随机接入信号;
其中,所述第二条件包括以下至少之一:
在T2时刻之前不存在随机接入资源;
在下一个第一类资源之前从T2减去T3到T2时间段内不存在随机接入资源;
所述第一类资源的频域带宽大于或者等于第二阈值;
所述第一类资源的时域长度大于或者等于随机接入信号的时域长度;
P1+10*log10(R1/R2)小于或等于P2;
其中,所述P1是所述终端在当前覆盖增强等级下的随机接入信号的发送功率,所述P2为所述终端的最大发射功率或者基站配置的功率阈值,所述R1为所述终端在当前覆盖增强等级下的随机接入信号的重复发送次数,所述R2为所述终端在第一类资源上发送的随机接入信号的重复发送次数;所述T2等于下一个第一类资源的起始时刻减去T1,所述T1、所述T2、所述T3的取值由基站配置或者采用默认配置值。
其中,当所述终端发送用于非竞争随机接入流程的随机接入信号时,发送随机接入信号的随机接入信道的时域位置为TA定时器重置时刻加上T1时刻之后的随机接入信道;
其中,所述T1的取值由基站配置或者采用默认配置值。
其中,满足第三条件时,所述终端接收基站发送的触发非竞争随机接入流程的信令或者所述终端接收基站发送的触发基于竞争的随机接入流程的信令;
其中,所述第三条件包括以下至少之一:
在T2时刻之前不存在随机接入资源且不满足第四条件;
在下一个第一类资源之前从T2-T3到T2时间段内不存在随机接入资源且不满足第四条件;
其中,所述第四条件包括以下至少之一:
所述第一类资源的频域带宽大于或者等于第二阈值;
所述第一类资源的时域长度大于或者等于随机接入信号的时域长度;
P1+10*log10(R1/R2)小于或等于P2;
其中,所述P1是所述终端在当前覆盖增强等级下的随机接入信号的发送功率,所述P2为所述终端的最大发射功率或者基站配置的功率阈值,所述R1为所述终端在当前覆盖增强等级下的随机接入信号的重复发送次数,所述R2为所述终端在第一类资源上发送的随机接入信号的重复发送次数;所述T2等于下一个第一类资源的起始时刻减去T1,所述T1、所述T2、所述T3的取值由基站配置或者采用默认配置值。
其中,通过TA定时器判断所述定时提前量TA是否处于无效状态。
其中,通过是否满足第五条件判断所述定时提前量TA是否处于无效状态;
所述第五条件包括:第一测量值的变化量超过第一阈值。
其中,所述第一测量值包括以下至少之一:
参考信号接收功率RSRP;参考信号接收质量RSRQ;下行信干噪比SINR;下行信噪比SNR;上行信干噪比;上行信噪比;下行路径损耗;上行路径损耗。
其中,所述第一测量值基于第一参考信号测量得到;
其中,所述第一参考信号包括以下至少之一:同步信号块SSB;信道状态信息参考信号CSI-RS;小区专用参考信号CRS;解调专用参考信号DMRS;相位追踪参考信号PTRS。
其中,所述第一参考信号对应的编号为所述终端发送随机接入信号所使用的随机接入信道的配置信息所在的SSB对应的编号。
上述实施例提供的技术方案,一方面使得处于TA无效状态的终端可以快速恢复到TA有效状态进而保证后续的RRC空闲状态下的数据发送或者接收;另一方面,使得UE快速进入RRC连接状态,进而继续所述数据发送或者接收。
图3为本发明一实施例提供的指示信息发送方法的流程示意图,如图3所示,该方法包括:
步骤301,终端发送第一指示信息给基站;
其中,所述第一指示信息指示以下至少之一:
所述终端的定时提前量TA处于无效状态;
针对第一类资源上发送的上行数据,所述终端没有收到所述基站发送的混合自动重传请求应答信息HARQ-ACK反馈信息;
所述终端的覆盖增强等级发生改变;
所述终端的服务小区发生改变;
所述终端在所述第一类资源上发送的上行数据需要的重复发送次数发生改变;
所述第一类资源上发送的上行数据对应的所述终端的业务模式发生改变。
其中,所述业务模式发生改变包括以下至少之一:
在第一类资源上发送的上行数据对应的传输块大小TBS(Transport block size)发生改变;
在第一类资源上发送的上行数据对应的传输周期发生改变。
上述实施例提供的技术方案,使得基站可以清楚RRC空闲状态下支持数据的发送或者接收失败的原因,使得后续的RRC空闲状态下支持数据的发送或者接收的成功概率更高。
在本发明的另一实施例中,在基于第一条件判断终端的定时提前量TA是否处于无效状态之前,需要先判断终端当前的服务小区(Serving Cell)或者驻留小区(Camping Cell)是否发生改变。如果服务小区或者驻留小区发生了改变,则无需满足第一条件,终端的TA也处于无效状态。如果服务小区或者驻留小区没有发生改变,则根据第一条件确定终端的TA是否处于无效状态。
在本发明的另一实施例中,基于TA定时器判断终端的定时提前量TA是否处于无效状态。例如,当TA定时器超时,判断TA处于无效状态;当TA定时器没有超时,判断TA处于有效状态。
在本发明的另一实施例中,通过是否满足第五条件判断所述定时提前量TA是否处于无效状态;所述第五条件包括:第一测量值的变化量超过第一阈值。例如,当满足第五条件时,判断所述定时提前量TA处于无效状态;当不满足第五条件时,判断所述定时提前量TA处于有效状态。
在本发明的另一实施例中,第一测量值基于第一参考信号测量得到。所述第一参考信号包括以下至少之一:同步信号块SSB;信道状态信息参考信号CSI-RS;小区专用参考信号CRS(Cell-specific Reference Signal,CRS);解调专用参考信号DMRS(Demodulation Reference Signal,DMRS);相位追踪参考信号PTRS(Phase-Tracking Reference Signal)。同步信号块SSB即(SS/PBCH block),是由主同步信号(Primary Synchronization Signal,PSS)、辅同步信号(Secondary Synchronization Signal,SSS)和物理广播信道(Physical Broadcast  Channel,PBCH)共同构成。基站会配置一个或者多个SSB,每个SSB对应的编号不同,并且每个SSB的发送方式独立配置。其中,所述SSB的发送方式包括以下至少之一:将基带预编码矩阵作用在SSB待发送的基带信号上;将射频预编码矩阵作用在SSB待发送的射频信号上;为发送信号配置发送天线端口;为发送信号配置发送波束和/或发送波束方向;为发送信号配置发射功率。CSI-RS即信道状态信息参考信号(Channel State Information Reference Signal),是用来测量信道的状态信息的。基站会配置一个或者多个CSI-RS,每个CSI-RS对应的编号不同,并且每个CSI-RS的发送方式独立配置。其中,所述CSI-RS的发送方式包括以下至少之一:将基带预编码矩阵作用在CSI-RS待发送的基带信号上;将射频预编码矩阵作用在CSI-RS待发送的射频信号上;为发送信号配置发送天线端口;为发送信号配置发送波束和/或发送波束方向;为发送信号配置发射功率。可选地,所述第一参考信号对应的编号为所述终端发送随机接入信号所使用的随机接入信道的配置信息所在的SSB对应的编号。
在本发明的另一实施例中,终端的定时提前量TA处于无效状态时,所述终端在第一类资源上发送随机接入信号。
在本发明的另一实施例中,满足第二条件时,终端在第一类资源上发送随机接入信号。具体而言,第二条件包括以下至少之一:在T2时刻之前不存在随机接入资源;在下一个第一类资源之前从T2减去T3到T2时间段内不存在随机接入资源;所述第一类资源的频域带宽大于或者等于第二阈值;所述第一类资源的时域长度大于或者等于随机接入信号的时域长度;P1+10*log10(R1/R2)小于或等于P2;其中,所述P1是所述终端在当前覆盖增强等级下的Preamble的发送功率,所述P2为所述终端的最大发射功率或者基站配置的功率阈值,所述R1为所述终端在当前覆盖增强等级下的Preamble的重复发送次数,所述R2为所述终端在第一类资源上发送的Preamble的重复发送次数。
在本发明的另一实施例中,第一类资源可选为:基站为终端配置的,用于终端在RRC_IDLE时传输上行数据。其中,第一类资源在时域上周期分布或者离散分布。另外,基站还会为终端配置下行控制信道的搜索空间,其中,一个所述下行控制信道搜索空间对应至少一个所述第一类资源。其中,下行控制信道上承载的信息包括下行控制信息(Downlink Control Information,DCI)。第一类资源的配置信息可以理解为在随机接入信号发送时发送上行数据,也可以认为是5G NR(New Radio)系统中携带上行数据的随机接入信号对应的资源的配置信息。具体而言,所述第一类资源的配置信息中还包括:物理随机接入信 道(Physical Random Access Channel,PRACH)的配置信息。所述物理随机接入信道配置信息包括以下至少之一:物理随机接入信道占用的时频资源的配置信息;物理随机接入信道上发送的随机接入信号的配置信息。针对NB-IoT系统的上行信道,可选第一资源频域带宽大于或等于3个子载波,其中子载波间隔为15KHz。可选的,第一资源频域带宽为3,6,12个子载波。如果第一类资源上发送的数据支持重复发送,则第一类资源的时域长度包括重复发送时占用的时域长度。
在本实施例的另一实施例中,上述混合自动重传请求应答信息HARQ-ACK(Hybrid Automatic Repeat reQuest),其中包括ACK or NACK。ACK表示对应的数据被正确接收,NACK表示对应的数据没有正确接收。
在本发明的另一实施例中,上述第一指示信息又可以叫做回退原因指示信息或者释放原因指示信息。其中,回退就是指从在第一类资源上发送数据的传输模式回退。例如,可以回退到随机接入流程,或者回退到RRC_IDLE状态。释放即释放所述第一类资源和/或释放所述下行控制信道搜索空间的资源。
图4为本发明另一实施例提供的一种定时提前量TA处理方法的流程示意图,如图4所示,该方法包括:
步骤401,满足第一条件时,基站确定终端的定时提前量TA处于无效状态;
其中,所述第一条件包括以下至少之一:
所述终端为静止类型Stationary的终端时,TA定时器超时以及第一测量值的变化量超过第一阈值;
所述终端为非静止类型Non-Stationary的终端时,所述TA定时器超时或者所述第一测量值的变化量超过所述第一阈值或者所述TA定时器超时以及所述第一测量值的变化量超过所述第一阈值。
其中,所述第一测量值包括以下至少之一:
参考信号接收质量RSRQ;下行信干噪比SINR;下行信噪比SNR;上行信干噪比;上行信噪比;下行路径损耗;上行路径损耗。
其中,所述第一测量值为一个波束方向上的测量值。
其中,在所述基站确定终端的定时提前量TA处于无效状态之前,该方法还包括:
判断终端当前的服务小区Serving Cell或者驻留小区Camping Cell是否发生改变;
如果所述服务小区或者驻留小区发生了改变,确定所述终端的TA处于无效状态;
如果所述服务小区或者驻留小区没有发生改变,则所述基站判断是否满足第一条件。
其中,在所述基站确定终端的定时提前量TA处于无效状态时,该方法还包括:
执行以下操作之一:
基站触发非竞争随机接入流程;基站触发基于竞争的随机接入流程。
其中,在所述基站确定终端的定时提前量TA处于无效状态之前,该方法还包括:
所述基站发送上行传输配置信息给所述终端;
其中,所述上行传输配置信息包括:上行信道资源的配置信息和下行控制信道搜索空间的配置信息;所述上行传输配置信息用于支持所述终端在无线资源控制空闲RRC_IDLE状态下的数据传输。
其中,所述上行传输配置信息还包括:为所述终端配置的非竞争的随机接入信道的索引或者非竞争的随机接入序列索引。
其中,在所述基站触发非竞争随机接入流程或者所述基站触发基于竞争的随机接入流程之后,该方法还包括:
所述基站根据所述下行控制信道搜索空间向所述终端发送TA更新信息;
或者,所述基站根据所述下行控制信道搜索空间向所述终端发送下行控制信息DCI,所述DCI携带TA更新信息;
或者,所述基站向所述终端发送随机接入响应消息,所述随机接入响应消息中携带TA更新信息。
图5为本发明另一实施例提供的定时提前量TA处理方法的流程示意图,如图5所示,该方法包括:
步骤501,在基站确定终端的定时提前量TA处于无效状态之前,所述终端接收所述基站发送的上行传输配置信息;
其中,所述上行传输配置信息包括:上行信道资源的配置信息和下行控制 信道搜索空间的配置信息;所述上行传输配置信息用于支持所述终端在无线资源控制空闲RRC_IDLE状态下的数据传输。
其中,所述上行传输配置信息还包括:为所述终端配置的非竞争的随机接入信道的索引或者非竞争的随机接入序列索引。
其中,在所述基站触发非竞争随机接入流程或者所述基站触发基于竞争的随机接入流程之后,该方法还包括:
所述终端根据所述下行控制信道搜索空间接收所述基站发送的TA更新信息;
在无线资源控制空闲RRC_IDLE状态下根据所述TA更新信息在所述上行信道资源上发送上行数据;
或者,所述终端根据所述下行控制信道搜索空间接收所述基站发送的下行控制信息DCI,所述DCI携带TA更新信息;
在无线资源控制空闲RRC_IDLE状态下根据所述DCI在所述上行信道资源上发送上行数据;
或者,接收所述基站发送的随机接入响应消息,所述随机接入响应消息中携带TA更新信息;
在无线资源控制空闲RRC_IDLE状态下根据所述随机接入响应消息在所述上行信道资源上发送上行数据。
图6为本发明另一实施例提供的定时提前量TA处理方法的流程示意图,如图6所示,该方法包括:
步骤601,基站发送上行传输配置信息给终端;所述上行传输配置信息包括:上行信道资源的配置信息;下行控制信道搜索空间的配置信息。
其中,本实施例中,上行传输配置信息用于支持UE在RRC_IDLE状态下的数据传输。
具体而言,上行信道资源的配置信息指示一组上行信道资源的位置信息,如图7所示,上行信道资源的配置周期为1小时,上行信道资源时域位置在所述配置周期内的偏执量为10分钟。图7中给出了24小时内的24个上行信道资源的位置示意图,编号分别为“上行信道资源1”至“上行信道资源24”。下行控制信道搜索空间(search space)的配置信息为所述终端专用的下行控制信道搜索空间,所述搜索空间中包括至少1个下行控制信道的发送资源集合(又称为发送机会)。下行控制信息(Downlink Control Information,DCI)承载在 下行控制信道上发送。每个上行信道资源都对应一个下行控制信道搜索空间,如图8所示,索引为1的上行信道资源对应的下行控制信道搜索空间为搜索空间1,搜索空间1的起始时刻与上行信道资源1结束时刻之间存在一个时域间隔,定义为时域间隔1;以此类推,索引为24的上行信道资源对应的下行控制信道搜索空间为搜索空间24,搜索空间24的起始时刻与上行信道资源24结束时刻之间存在一个时域间隔,定义为时域间隔24。
其中,基站发送上行传输配置信息给终端的同时,还为终端配置了非竞争的随机接入信道的索引或者非竞争的随机接入序列索引。所述非竞争的随机接入序列发送的时刻为:T0+T1时刻之后的随机接入信道。其中,T0为TA定时器重置时刻;T1为基站配置的,用来指示TA有效期长度的。
步骤602,基站确定终端的定时提前量TA是否处于无效状态。
其中,所述终端处于RRC空闲状态(Radio Resource Control IDLE,简称RRC_IDLE,中文名称为无线资源控制空闲状态)。
其中,基站确定终端的定时提前量TA是否处于无效状态的依据包括以下至少之一:
1,判断终端当前的服务小区Serving Cell或者驻留小区Camping Cell是否发生改变;如果所述服务小区或者驻留小区发生了改变,则确定所述终端的TA处于无效状态;如果所述服务小区或者驻留小区没有发生改变,则所述基站判断是否满足第一条件;
2,判断是否满足第一条件,满足第一条件时,基站确定终端的定时提前量TA处于无效状态,不满足第一条件时,基站确定终端的定时提前量TA处于有效状态;
其中,所述第一条件包括以下至少之一:
所述终端为静止类型Stationary的终端时,TA定时器超时以及第一测量值的变化量超过第一阈值;
所述终端为非静止类型Non-Stationary的终端时,所述TA定时器超时或者所述第一测量值的变化量超过所述第一阈值或者所述TA定时器超时以及所述第一测量值的变化量超过所述第一阈值。
可选地,在基于第一条件判断终端的TA是否处于无效状态之前,先判断终端当前的服务小区(Serving Cell)或者驻留小区(Camping Cell)是否发生改变。如果服务小区或者驻留小区发生了改变,则无需满足第一条件,终端的TA也处于无效状态。如果服务小区或者驻留小区没有发生改变,则根据第一条件确定终端的TA是否处于无效状态。
其中,所述第一测量值包括以下至少之一:
参考信号接收质量RSRQ;下行信干噪比SINR;下行信噪比SNR;上行信干噪比;上行信噪比;下行路径损耗;上行路径损耗。
其中,所述第一测量值为一个波束方向上的测量值。
步骤603,在所述基站确定终端的定时提前量TA处于无效状态时,执行步骤604,或者605。
步骤604,所述基站触发非竞争随机接入流程。
可选地,可以通过PDCCH Order触发非竞争随机接入流程。PDCCH order,即为一种下行控制信息(Downlink Control Information,DCI)的发送格式,用来触发随机接入流程的。在PDCCH order中包括随机接入信道的索引信息或者随机接入信号的索引信息。
步骤605,所述基站触发基于竞争的随机接入流程。
步骤606a,所述基站根据所述下行控制信道搜索空间向所述终端发送TA更新信息。
具体而言,本实施例中,基站在图8所示的搜索空间1上发送TA更新信息,则TA定时器发生重置,因此,这个时刻为T0。
步骤606b,所述终端在无线资源控制空闲RRC_IDLE状态下根据所述TA更新信息在所述上行信道资源上发送上行数据。
步骤607a,所述基站根据所述下行控制信道搜索空间向所述终端发送下行控制信息DCI,所述DCI携带TA更新信息。
步骤607b,所述终端在无线资源控制空闲RRC_IDLE状态下根据所述DCI在所述上行信道资源上发送上行数据。
步骤608a,所述基站向所述终端发送随机接入响应消息,所述随机接入响应消息中携带TA更新信息。
其中,基站可以在接收到终端在随机接入信道上发送的随机接入序列Preamble之后,向所述终端发送随机接入响应消息。
具体而言,本实施例中,在T0到T0+T1时间段内,如果没有新的TA更新信息,则当时间超过T0+T1时,终端需要在随机接入信道上发送非竞争的随机接入序列,用来让基站测量TA值,并通过随机接入响应消息给终端发送更新的TA信息。
步骤608b,所述终端在无线资源控制空闲RRC_IDLE状态下根据所述随机 接入响应消息在所述上行信道资源上发送上行数据。
其中,上述步骤606a、607a、608a为并列关系。
图9为本发明另一实施例提供的定时提前量TA处理方法的流程示意图,如图9所示,该方法包括:
步骤901,满足第一条件时,终端确定定时提前量TA处于无效状态;
其中,所述第一条件包括以下至少之一:
所述终端为静止类型Stationary的终端时,TA定时器超时以及第一测量值的变化量超过第一阈值;
所述终端为非静止类型Non-Stationary的终端时,所述TA定时器超时或者所述第一测量值的变化量超过所述第一阈值或者所述TA定时器超时以及所述第一测量值的变化量超过所述第一阈值;
所述TA定时器超时。
其中,所述第一测量值包括以下至少之一:
参考信号接收功率RSRP;参考信号接收质量RSRQ;下行信干噪比SINR;下行信噪比SNR;上行信干噪比;上行信噪比;下行路径损耗;上行路径损耗。
其中,所述第一测量值为一个波束方向上的测量值。
其中,在所述终端确定定时提前量TA处于无效状态之前,该方法还包括:
判断终端当前的服务小区Serving Cell或者驻留小区Camping Cell是否发生改变;
如果所述服务小区或者驻留小区发生了改变,则不满足第一条件时,所述终端的TA处于无效状态;
如果所述服务小区或者驻留小区没有发生改变,则所述终端判断是否满足第一条件。
其中,在所述终端确定定时提前量TA处于无效状态时,该方法还包括:
执行以下操作之一:
所述终端发送用于非竞争随机接入流程的随机接入信号;所述终端在第一类资源上发送随机接入信号;所述终端触发基于竞争的随机接入流程。
其中,如果在T2时刻之前存在随机接入资源或者在下一个第一类资源之前从T2减去T3到T2时间段内不存在随机接入资源,则终端在所述随机接入资源 上触发基于竞争的随机接入流程;
其中,所述T2等于下一个第一类资源的起始时刻减去T1,所述T1、所述T2、T3的取值由基站配置或者采用默认配置值。
其中,满足第二条件时,所述终端在第一类资源上发送随机接入信号;
其中,所述第二条件包括以下至少之一:
在T2时刻之前不存在随机接入资源,所述T2等于下一个第一类资源的起始时刻减去T1,所述T1、所述T2的取值由基站配置或者采用默认配置值;
在下一个第一类资源之前从T2-T3到T2时间段内不存在随机接入资源,所述T3由基站配置或者采用默认配置值;
所述第一类资源的频域带宽大于或者等于第二阈值;
所述第一类资源的时域长度大于或者等于随机接入前导Preamble的时域长度;
P1+10*log10(R1/R2)小于或等于P2;其中,所述P1是所述终端在当前覆盖增强等级下的Preamble的发送功率,所述P2为所述终端的最大发射功率或者基站配置的功率阈值,所述R1为所述终端在当前覆盖增强等级下的Preamble的重复发送次数,所述R2为所述终端在第一类资源上发送的Preamble的重复发送次数。
其中,满足第三条件时,所述终端接收基站发送的触发非竞争随机接入流程的信令或者所述终端接收基站发送的触发基于竞争的随机接入流程的信令;
其中,所述第三条件包括以下至少之一:
在T2时刻之前不存在随机接入资源且不满足第四条件;
在下一个第一类资源之前从T2-T3到T2时间段内不存在随机接入资源且不满足第四条件;
其中,所述第四条件包括以下至少之一:
所述第一类资源的频域带宽大于或者等于第二阈值;
所述第一类资源的时域长度大于或者等于随机接入信号的时域长度;
P1+10*log10(R1/R2)小于或等于P2;
其中,所述P1是所述终端在当前覆盖增强等级下的随机接入信号的发送功率,所述P2为所述终端的最大发射功率或者基站配置的功率阈值,所述R1为所述终端在当前覆盖增强等级下的随机接入信号的重复发送次数,所述R2为所述终端在第一类资源上发送的随机接入信号的重复发送次数;所述T2等于下一 个第一类资源的起始时刻减去T1,所述T1、所述T2、所述T3的取值由基站配置或者采用默认配置值。
其中,所述T2、所述T3的取值由基站配置或者采用默认配置值。
其中,当所述终端发送用于非竞争随机接入流程的随机接入信号时,发送随机接入前导Preamble的随机接入信道的时域位置为TA定时器重置时刻+T1时刻之后的随机接入信道;
其中,T1的取值由基站配置或者采用默认配置值。
其中,所述第一条件至少包括所述第一测量值的变化量是否超过第一阈值。
其中,一个下行控制信道搜索空间对应至少一个所述第一类资源,所述第一类资源由基站为终端配置用于终端在无线资源控制空闲RRC_IDLE状态时传输上行数据的资源。
其中,第一资源的频域带宽大于或等于3个子载波,其中子载波间隔为15KHz。
其中,如果第一类资源上发送的数据支持重复发送,则所述第一类资源的时域长度包括重复发送时占用的时域长度。
其中,在所述终端确定定时提前量TA处于无效状态之前,该方法还包括:
接收基站发送的上行传输配置信息;
其中,所述上行传输配置信息包括:上行信道资源的配置信息和下行控制信道搜索空间的配置信息,所述上行传输配置信息用于支持所述终端在无线资源控制空闲RRC_IDLE状态下的数据传输。
其中,所述上行传输配置信息还包括:为所述终端配置的非竞争的随机接入信道的索引或者非竞争的随机接入序列索引。
其中,在所述终端发送用于非竞争随机接入流程的随机接入信号或者所述终端在第一类资源上发送随机接入信号或者所述终端触发基于竞争的随机接入流程之后,该方法还包括:
根据所述下行控制信道搜索空间接收所述基站发送的TA更新信息;
所述终端在无线资源控制空闲RRC_IDLE状态下根据所述TA更新信息在所述上行信道资源上发送上行数据。
或者,根据所述下行控制信道搜索空间接收所述基站发送的下行控制信息DCI,所述DCI携带TA更新信息;
所述终端在无线资源控制空闲RRC_IDLE状态下根据所述DCI在所述上行 信道资源上发送上行数据。
或者,接收所述基站发送的随机接入响应消息,所述随机接入响应消息中携带TA更新信息;
所述终端在无线资源控制空闲RRC_IDLE状态下根据所述随机接入响应消息在所述上行信道资源上发送上行数据。
图10为本发明另一实施例提供的定时提前量TA处理方法的流程示意图,如图10所示,该方法包括:
步骤1001,在终端确定定时提前量TA处于无效状态之前,基站向所述终端发送上行传输配置信息;
其中,所述上行传输配置信息包括:上行信道资源的配置信息和下行控制信道搜索空间的配置信息,所述上行传输配置信息用于支持所述终端在无线资源控制空闲RRC_IDLE状态下的数据传输。
其中,所述上行传输配置信息还包括:为所述终端配置的非竞争的随机接入信道的索引或者非竞争的随机接入序列索引。
其中,在所述终端发送用于非竞争随机接入流程的随机接入信号或者所述终端在第一类资源上发送随机接入信号或者所述终端触发基于竞争的随机接入流程之后,该方法还包括:
根据所述下行控制信道搜索空间向所述终端发送TA更新信息;
或者,根据所述下行控制信道搜索空间向所述终端发送下行控制信息DCI,所述DCI携带TA更新信息;
或者,向所述终端发送随机接入响应消息,所述随机接入响应消息中携带TA更新信息。
图11为本发明另一实施例提供的定时提前量TA处理方法的流程示意图,如图11所示,该方法包括:
步骤1101,基站发送上行传输配置信息给终端;所述上行传输配置信息包括:上行信道资源的配置信息;下行控制信道搜索空间的配置信息。
其中,本实施例中,上行传输配置信息用于支持UE在RRC_IDLE状态下的数据传输。
具体而言,上行信道资源的配置信息指示一组上行信道资源的位置信息, 如图7所示,上行信道资源的配置周期为1小时,上行信道资源时域位置在所述配置周期内的偏执量为10分钟。图7中给出了24小时内的24个上行信道资源的位置示意图,编号分别为“上行信道资源1”至“上行信道资源24”。下行控制信道搜索空间(search space)的配置信息为所述终端专用的下行控制信道搜索空间,所述搜索空间中包括至少1个下行控制信道的发送资源集合(又称为发送机会)。下行控制信息(Downlink Control Information,DCI)承载在下行控制信道上发送。每个上行信道资源都对应一个下行控制信道搜索空间,如图8所示,索引为1的上行信道资源对应的下行控制信道搜索空间为搜索空间1,搜索空间1的起始时刻与上行信道资源1结束时刻之间存在一个时域间隔,定义为时域间隔1;以此类推,索引为24的上行信道资源对应的下行控制信道搜索空间为搜索空间24,搜索空间24的起始时刻与上行信道资源24结束时刻之间存在一个时域间隔,定义为时域间隔24。
步骤1102,终端确定定时提前量TA是否处于无效状态。
其中,所述终端处于RRC空闲状态(Radio Resource Control IDLE,简称RRC_IDLE,中文名称为无线资源控制空闲状态)。
其中,终端确定定时提前量TA是否处于无效状态的依据包括以下至少之一:
1,判断终端当前的服务小区Serving Cell或者驻留小区Camping Cell是否发生改变;如果所述服务小区或者驻留小区发生了改变,则确定所述TA处于无效状态;如果所述服务小区或者驻留小区没有发生改变,则判断是否满足第一条件;
2,判断是否满足第一条件,满足第一条件时,确定定时提前量TA处于无效状态;
其中,所述第一条件包括以下至少之一:
所述终端为静止类型Stationary的终端时,TA定时器超时以及第一测量值的变化量超过第一阈值;
所述终端为非静止类型Non-Stationary的终端时,所述TA定时器超时或者所述第一测量值的变化量超过所述第一阈值或者所述TA定时器超时以及所述第一测量值的变化量超过所述第一阈值;
所述TA定时器超时。
可选地,在基于第一条件判断终端的TA是否处于无效状态之前,先判断终端当前的服务小区(Serving Cell)或者驻留小区(Camping Cell)是否发生改变。如果服务小区或者驻留小区发生了改变,则无需满足第一条件,终端的TA也处 于无效状态。如果服务小区或者驻留小区没有发生改变,则根据第一条件确定终端的TA是否处于无效状态。
可选地,所述第一条件至少包括第一测量值的变化量是否超过阈值。
其中,所述第一测量值包括以下至少之一:
参考信号接收功率RSRP;参考信号接收质量RSRQ;下行信干噪比SINR;下行信噪比SNR;上行信干噪比;上行信噪比;下行路径损耗;上行路径损耗。
其中,所述第一测量值为一个波束方向上的测量值。
步骤1103,在确定定时提前量TA处于无效状态时,执行步骤1104,或者步骤1105,或者步骤1106。
可选地,如果满足第二条件,则执行步骤1105,其中,第二条件包括以下至少之一:
1,在T2(T2等于下一个第一类资源的起始时刻减去T1)时刻之前不存在随机接入资源;
2,在下一个第一类资源之前从T2-T3到T2时间段内不存在随机接入资源;
3,第一类资源的频域带宽大于或者等于第二阈值;该第二阈值由基站配置或者采用默认值;
4,第一类资源的时域长度大于或者等于Preamble的时域长度;
5,P1+10*log10(R1/R2)小于或等于P2;其中,P1是终端在当前覆盖增强等级下的Preamble的发送功率,P2为终端的最大发射功率或者基站配置的功率阈值。R1为终端在当前覆盖增强等级下的Preamble的重复发送次数;R2为终端在第一类资源上发送的Preamble的重复发送次数。
其中,满足第三条件时,所述终端接收基站发送的触发非竞争随机接入流程的信令或者所述终端接收基站发送的触发基于竞争的随机接入流程的信令;
其中,所述第三条件包括以下至少之一:
在T2时刻之前不存在随机接入资源且不满足第四条件;
在下一个第一类资源之前从T2-T3到T2时间段内不存在随机接入资源且不满足第四条件;
其中,所述第四条件包括以下至少之一:
所述第一类资源的频域带宽大于或者等于第二阈值;
所述第一类资源的时域长度大于或者等于随机接入信号的时域长度;
P1+10*log10(R1/R2)小于或等于P2;
其中,所述P1是所述终端在当前覆盖增强等级下的随机接入信号的发送功率,所述P2为所述终端的最大发射功率或者基站配置的功率阈值,所述R1为所述终端在当前覆盖增强等级下的随机接入信号的重复发送次数,所述R2为所述终端在第一类资源上发送的随机接入信号的重复发送次数;所述T2等于下一个第一类资源的起始时刻减去T1,所述T1、所述T2、所述T3的取值由基站配置或者采用默认配置值。
可选地,如果在T2(T2等于下一个第一类资源的起始时刻减去T1时刻之前存在随机接入资源或者在下一个第一类资源之前从T2减去T3到T2时间段内不存在随机接入资源,则终端在所述随机接入资源上执行步骤1106。其中,T1,T2的取值由基站配置或者采用默认配置值。
其中,所述随机接入资源对应的时间窗为从T2-T3到T2之间的时间段,其中T3由基站配置或者采用默认配置值。
可选地,T1是考虑终端触发的基于竞争的随机接入流程的时长,进而预留的时间段;T3是为了防止终端触发的基于竞争的随机接入流程结束的时刻过早进而导致在下一个第一类资源开始时刻终端的TA又失效,配置的参数。
步骤1104,终端发送用于非竞争随机接入流程的随机接入信号。
可选地,所述随机接入信号的配置信息同第一类资源的配置信息,一并由基站发送给终端。
其中,所述随机接入信号为物理随机接入信道前导码(Physical Random Access Channel Preamble,PRACH Preamble,又称为Msg1)。
其中,当执行步骤1104时,发送Preamble的随机接入信道的时域位置为TA定时器重置时刻+T1时刻之后的随机接入信道。
其中,T1的取值由基站配置或者采用默认配置值。
步骤1105,终端在第一类资源上发送随机接入信号。
其中,针对NB-IoT系统的上行信道,可选地,第一资源频域带宽大于或等于3个子载波,其中子载波间隔为15KHz。可选地,第一资源频域带宽为3,6,12个子载波。
其中,如果第一类资源上发送的数据支持重复发送,则这里的第一类资源的时域长度包括重复发送时占用的时域长度。
步骤1106,终端触发基于竞争的随机接入流程。
具体而言,本实施例中,当TA处于无效状态时,终端在图8所示的所述上 行信道资源上发送所述随机接入信号,用来让基站测量TA值。本实施例中,所述无线通信系统为NB-IoT系统,随机接入信号的时域长度为6.4ms,其中包括4个符号组(symbol Group),一个符号组由一个循环前缀(cyclic prefix,CP)和5个符号组成,一个符号组在频域上占用一个子载波且子载波间隔为3.75kHz。随机接入信号的结构如图12所示,CH i代表第i个随机接入信号对应的4个符号组占用的随机接入资源位置。i大于或等于0且小于或等于11。本实施例中,所述上行信道资源的频域带宽为12个子载波,其中,子载波间隔为15KHz,所述上行信道资源的时域长度为8ms,则随机接入信号在所述上行信道资源中使用的资源分布如图13所示,随机接入信号在时域上占用前6.4ms,频域上占用45kHz的频域带宽。可选的,使用CH 2,3,8,9来发送随机接入信号。可选的,随机接入信号在频域上占用45kHz的频域带宽位于所述上行信道资源的频域资源的边界。
步骤1107a,所述基站根据所述下行控制信道搜索空间向所述终端发送TA更新信息。
具体而言,本实施例中,基站在图8所示的搜索空间1上发送TA更新信息,则TA定时器发生重置,因此,这个时刻为T0。
步骤1107b,所述终端在无线资源控制空闲RRC_IDLE状态下根据所述TA更新信息在所述上行信道资源上发送上行数据。
步骤1108a,所述基站根据所述下行控制信道搜索空间向所述终端发送下行控制信息DCI,所述DCI携带TA更新信息。
步骤1108b,所述终端在无线资源控制空闲RRC_IDLE状态下根据所述DCI在所述上行信道资源上发送上行数据。
步骤1109a,所述基站向所述终端发送随机接入响应消息,所述随机接入响应消息中携带TA更新信息。
其中,基站可以在接收到终端在随机接入信道上发送的随机接入序列Preamble之后,向所述终端发送随机接入响应消息。
具体而言,本实施例中,在T0到T0+T1时间段内,如果没有新的TA更新信息,则当时间超过T0+T1时,终端需要在随机接入信道上发送非竞争的随机接入序列,用来让基站测量TA值,并通过随机接入响应消息给终端发送更新的TA信息。
步骤1109b,所述终端在无线资源控制空闲RRC_IDLE状态下根据所述随机接入响应消息在所述上行信道资源上发送上行数据。
其中,上述步骤1107a、1108a、1109a为并列关系。
图14为本发明另一实施例提供的定时提前量TA处理装置的结构示意图,如图14所示,该装置包括:
判断单元,用于满足第一条件时,终端的定时提前量TA处于无效状态;
其中,所述第一条件包括以下至少之一:
所述终端为静止类型Stationary的终端时,TA定时器超时以及第一测量值的变化量超过第一阈值;
所述终端为非静止类型Non-Stationary的终端时,所述TA定时器超时或者所述第一测量值的变化量超过所述第一阈值或者所述TA定时器超时以及所述第一测量值的变化量超过所述第一阈值。
其中,所述第一测量值包括以下至少之一:
参考信号接收功率RSRP;参考信号接收质量RSRQ;下行信干噪比SINR;下行信噪比SNR;上行信干噪比;上行信噪比;下行路径损耗;上行路径损耗。
其中,所述第一测量值基于第一参考信号测量得到;
其中,所述第一参考信号包括以下至少之一:同步信号块SSB;信道状态信息参考信号CSI-RS;小区专用参考信号CRS;解调专用参考信号DMRS;相位追踪参考信号PTRS。
其中,所述第一参考信号对应的编号为所述终端发送随机接入信号所使用的随机接入信道的配置信息所在的SSB对应的编号。
图15为本发明另一实施例提供的定时提前量TA处理装置的结构示意图,该装置应用于终端,如图15所示,该装置包括:
执行单元,用于终端的定时提前量TA处于无效状态时,执行以下操作之一:
发送用于非竞争随机接入流程的随机接入信号;
在第一类资源上发送随机接入信号;
所述终端发送用于竞争随机接入流程的随机接入信号;
接收基站发送的触发非竞争随机接入流程的信令;
接收基站发送的触发基于竞争的随机接入流程的信令。
其中,如果在T2时刻之前存在随机接入资源或者在下一个第一类资源之前 从T2减去T3到T2时间段内不存在随机接入资源,则所述执行单元在所述随机接入资源上发送用于竞争随机接入流程的随机接入信号;
其中,所述T2等于下一个第一类资源的起始时刻减去T1,所述T1、所述T2、所述T3的取值由基站配置或者采用默认配置值。
其中,满足第二条件时,所述执行单元在第一类资源上发送随机接入信号;
其中,所述第二条件包括以下至少之一:
在T2时刻之前不存在随机接入资源;
在下一个第一类资源之前从T2减去T3到T2时间段内不存在随机接入资源;
所述第一类资源的频域带宽大于或者等于第二阈值;
所述第一类资源的时域长度大于或者等于随机接入信号的时域长度;
P1+10*log10(R1/R2)小于或等于P2;
其中,所述P1是所述终端在当前覆盖增强等级下的随机接入信号的发送功率,所述P2为所述终端的最大发射功率或者基站配置的功率阈值,所述R1为所述终端在当前覆盖增强等级下的随机接入信号的重复发送次数,所述R2为所述终端在第一类资源上发送的随机接入信号的重复发送次数;所述T2等于下一个第一类资源的起始时刻减去T1,所述T1、所述T2、所述T3的取值由基站配置或者采用默认配置值。
其中,当所述执行单元发送用于非竞争随机接入流程的随机接入信号时,发送随机接入信号的随机接入信道的时域位置为TA定时器重置时刻加上T1时刻之后的随机接入信道;
其中,所述T1的取值由基站配置或者采用默认配置值。
其中,满足第三条件时,所述执行单元接收基站发送的触发非竞争随机接入流程的信令或者所述执行单元接收基站发送的触发基于竞争的随机接入流程的信令;
其中,所述第三条件包括以下至少之一:
在T2时刻之前不存在随机接入资源且不满足第四条件;
在下一个第一类资源之前从T2-T3到T2时间段内不存在随机接入资源且不满足第四条件;
其中,所述第四条件包括以下至少之一:
所述第一类资源的频域带宽大于或者等于第二阈值;
所述第一类资源的时域长度大于或者等于随机接入信号的时域长度;
P1+10*log10(R1/R2)小于或等于P2;
其中,所述P1是所述终端在当前覆盖增强等级下的随机接入信号的发送功率,所述P2为所述终端的最大发射功率或者基站配置的功率阈值,所述R1为所述终端在当前覆盖增强等级下的随机接入信号的重复发送次数,所述R2为所述终端在第一类资源上发送的随机接入信号的重复发送次数;所述T2等于下一个第一类资源的起始时刻减去T1,所述T1、所述T2、所述T3的取值由基站配置或者采用默认配置值。
其中,通过TA定时器判断所述定时提前量TA是否处于无效状态。
其中,通过是否满足第五条件判断所述定时提前量TA是否处于无效状态;
所述第五条件包括:第一测量值的变化量超过第一阈值。
其中,所述第一测量值包括以下至少之一:
参考信号接收功率RSRP;参考信号接收质量RSRQ;下行信干噪比SINR;下行信噪比SNR;上行信干噪比;上行信噪比;下行路径损耗;上行路径损耗。
其中,所述第一测量值基于第一参考信号测量得到;
其中,所述第一参考信号包括以下至少之一:同步信号块SSB;信道状态信息参考信号CSI-RS;小区专用参考信号CRS;解调专用参考信号DMRS;相位追踪参考信号PTRS。
其中,所述第一参考信号对应的编号为所述终端发送随机接入信号所使用的随机接入信道的配置信息所在的SSB对应的编号。
图16为本发明一实施例提供的指示方法发送装置的结构示意图,该装置应用于终端,如图16所示,该装置包括:
指示单元,用于发送第一指示信息给基站;
其中,所述第一指示信息指示以下至少之一:
所述终端的定时提前量TA处于无效状态;
针对第一类资源上发送的上行数据,所述终端没有收到所述基站发送的混合自动重传请求应答信息HARQ-ACK反馈信息;
所述终端的覆盖增强等级发生改变;
所述终端的服务小区发生改变;
所述终端在所述第一类资源上发送的上行数据需要的重复发送次数发生改变;
所述第一类资源上发送的上行数据对应的所述终端的业务模式发生改变。
其中,所述业务模式发生改变包括以下至少之一:
在第一类资源上发送的上行数据对应的传输块大小TBS发生改变;
在第一类资源上发送的上行数据对应的传输周期发生改变。
本发明实施例还提供了一种定时提前量TA处理装置,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述任一项所述定时提前量TA处理方法。
本发明实施例还提供了一种指示信息发送装置,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述任一项所述指示信息发送方法。
本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有信息处理程序,所述信息处理程序被处理器执行时实现上述任一项所述定时提前量TA处理方法的步骤。
本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有信息处理程序,所述信息处理程序被处理器执行时实现上任一项所述指示信息发送方法的步骤。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何 方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、电可擦只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、闪存或其他存储器技术、CD-ROM、数字多功能盘(Digital Video Disk,DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (23)

  1. 一种定时提前量TA处理方法,包括:
    在满足第一条件的情况下,终端的TA处于无效状态;
    其中,所述第一条件包括以下至少之一:
    在所述终端为静止类型Stationary的终端的情况下,TA定时器超时以及第一测量值的变化量超过第一阈值;
    在所述终端为非静止类型Non-Stationary的终端的情况下,所述TA定时器超时、所述第一测量值的变化量超过所述第一阈值、或者所述TA定时器超时且所述第一测量值的变化量超过所述第一阈值。
  2. 根据权利要求1所述的方法,其中,所述第一测量值包括以下至少之一:
    参考信号接收功率RSRP;参考信号接收质量RSRQ;下行信干噪比SINR;下行信噪比SNR;上行信干噪比;上行信噪比;下行路径损耗;上行路径损耗。
  3. 根据权利要求2所述的方法,其中,
    所述第一测量值基于第一参考信号测量得到;
    其中,所述第一参考信号包括以下至少之一:同步信号块SSB;信道状态信息参考信号CSI-RS;小区专用参考信号CRS;解调专用参考信号DMRS;相位追踪参考信号PTRS。
  4. 根据权利要求3所述的方法,其中,
    所述第一参考信号对应的编号为所述终端发送随机接入信号所使用的随机接入信道的配置信息所在的SSB对应的编号。
  5. 一种定时提前量TA处理方法,包括:
    在终端的TA处于无效状态的情况下,执行以下操作之一:
    所述终端发送用于非竞争随机接入流程的随机接入信号;
    所述终端在第一类资源上发送随机接入信号;
    所述终端发送用于竞争随机接入流程的随机接入信号;
    所述终端接收基站发送的触发非竞争随机接入流程的信令;
    所述终端接收基站发送的触发基于竞争的随机接入流程的信令。
  6. 根据权利要求5所述的方法,其中,
    在在T2时刻之前存在随机接入资源或者在所述第一类资源的下一个第一类资源之前从T2减去T3到T2时间段内不存在所述随机接入资源的情况下,所述终端在所述随机接入资源上发送所述用于竞争随机接入流程的随机接入信号;
    其中,所述T2等于所述下一个第一类资源的起始时刻减去T1,所述T1、所述T2以及所述T3的取值由基站配置或者采用默认配置值。
  7. 根据权利要求5所述的方法,其中,
    在满足第二条件的情况下,所述终端在所述第一类资源上发送随机接入信号;
    其中,所述第二条件包括以下至少之一:
    在T2时刻之前不存在随机接入资源;
    在所述第一类资源的下一个第一类资源之前从T2减去T3到T2时间段内不存在随机接入资源;
    所述第一类资源的频域带宽大于或者等于第二阈值;
    所述第一类资源的时域长度大于或者等于所述随机接入信号的时域长度;
    P1+10*log10(R1/R2)小于或等于P2,其中,所述P1是所述终端在当前覆盖增强等级下的随机接入信号的发送功率,所述P2为所述终端的最大发射功率或者基站配置的功率阈值,所述R1为所述终端在当前覆盖增强等级下的随机接入信号的重复发送次数,所述R2为所述终端在第一类资源上发送的随机接入信号的重复发送次数;以及
    其中,所述T2等于所述下一个第一类资源的起始时刻减去T1,所述T1、所述T2以及所述T3的取值由基站配置或者采用默认配置值。
  8. 根据权利要求5所述的方法,其中,
    在所述终端发送用于非竞争随机接入流程的随机接入信号的情况下,发送所述随机接入信号的随机接入信道的时域位置为TA定时器重置时刻加上T1时刻之后的随机接入信道;
    其中,所述T1的取值由基站配置或者采用默认配置值。
  9. 根据权利要求5所述的方法,其中,
    在满足第三条件的情况下,所述终端接收所述基站发送的触发非竞争随机接入流程的信令或者所述终端接收所述基站发送的触发基于竞争的随机接入流程的信令;
    其中,所述第三条件包括以下至少之一:
    在T2时刻之前不存在随机接入资源且不满足第四条件;
    在所述第一类资源的下一个第一类资源之前从T2-T3到T2时间段内不存在随机接入资源且不满足第四条件;
    其中,所述第四条件包括以下至少之一:
    所述第一类资源的频域带宽大于或者等于第二阈值;
    所述第一类资源的时域长度大于或者等于随机接入信号的时域长度;
    P1+10*log10(R1/R2)小于或等于P2,其中,所述P1是所述终端在当前覆盖增强等级下的随机接入信号的发送功率,所述P2为所述终端的最大发射功率或者基站配置的功率阈值,所述R1为所述终端在当前覆盖增强等级下的随机接入信号的重复发送次数,所述R2为所述终端在第一类资源上发送的随机接入信号的重复发送次数;以及
    其中,所述T2等于下一个第一类资源的起始时刻减去T1,所述T1、所述T2以及所述T3的取值由基站配置或者采用默认配置值。
  10. 根据权利要求5-7以及9中任一项所述的方法,其中,
    通过TA定时器判断所述TA是否处于无效状态。
  11. 根据权利要求5-7任一项所述的方法,其中,
    通过是否满足第五条件判断所述TA是否处于无效状态;
    所述第五条件包括:第一测量值的变化量超过第一阈值。
  12. 根据权利要求11所述的方法,其中,
    所述第一测量值包括以下至少之一:
    参考信号接收功率RSRP;参考信号接收质量RSRQ;下行信干噪比SINR;下行信噪比SNR;上行信干噪比;上行信噪比;下行路径损耗;上行路径损耗。
  13. 根据权利要求12所述的方法,其中,
    所述第一测量值基于第一参考信号测量得到;
    其中,所述第一参考信号包括以下至少之一:同步信号块SSB;信道状态信息参考信号CSI-RS;小区专用参考信号CRS;解调专用参考信号DMRS;相位追踪参考信号PTRS。
  14. 根据权利要求13所述的方法,其中,
    所述第一参考信号对应的编号为所述终端发送随机接入信号所使用的随机接入信道的配置信息所在的SSB对应的编号。
  15. 一种指示信息发送方法,包括:
    终端发送第一指示信息给基站;
    其中,所述第一指示信息指示以下至少之一:
    所述终端的定时提前量TA处于无效状态;
    针对第一类资源上发送的上行数据,所述终端没有收到所述基站发送的混合自动重传请求应答信息HARQ-ACK反馈信息;
    所述终端的覆盖增强等级发生改变;
    所述终端的服务小区发生改变;
    所述终端在所述第一类资源上发送的上行数据需要的重复发送次数发生改变;
    所述第一类资源上发送的上行数据对应的所述终端的业务模式发生改变。
  16. 根据权利要求15所述的方法,其中,
    所述业务模式发生改变包括以下至少之一:
    在所述第一类资源上发送的上行数据对应的传输块大小TBS发生改变;
    在所述第一类资源上发送的上行数据对应的传输周期发生改变。
  17. 一种定时提前量TA处理装置,包括:
    判断单元,设置为在满足第一条件的情况下,终端的TA处于无效状态;
    其中,所述第一条件包括以下至少之一:
    在所述终端为静止类型Stationary的终端的情况下,TA定时器超时以及第一测量值的变化量超过第一阈值;
    在所述终端为非静止类型Non-Stationary的终端的情况下,所述TA定时器超时、所述第一测量值的变化量超过所述第一阈值、或者所述TA定时器超时且所述第一测量值的变化量超过所述第一阈值。
  18. 一种定时提前量TA处理装置,应用于终端,包括:
    执行单元,设置为在终端的TA处于无效状态的情况下,执行以下操作之一:
    发送用于非竞争随机接入流程的随机接入信号;
    在第一类资源上发送随机接入信号;
    发送用于竞争随机接入流程的随机接入信号;
    接收基站发送的触发非竞争随机接入流程的信令;
    接收基站发送的触发基于竞争的随机接入流程的信令。
  19. 一种指示信息发送装置,应用于终端,包括:
    指示单元,设置为发送第一指示信息给基站;
    其中,所述第一指示信息指示以下至少之一:
    所述终端的定时提前量TA处于无效状态;
    针对第一类资源上发送的上行数据,所述终端没有收到所述基站发送的混合自动重传请求应答信息HARQ-ACK反馈信息;
    所述终端的覆盖增强等级发生改变;
    所述终端的服务小区发生改变;
    所述终端在所述第一类资源上发送的上行数据需要的重复发送次数发生改变;
    所述第一类资源上发送的上行数据对应的所述终端的业务模式发生改变。
  20. 一种定时提前量TA处理装置,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至14中任一项所述TA处理方法。
  21. 一种指示信息发送装置,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求15至16中任一项所述指示信息发送方法。
  22. 一种计算机可读存储介质,所述计算机可读存储介质上存储有信息处理程序,所述信息处理程序被处理器执行时实现如权利要求1至14中任一项所述定时提前量TA处理方法。
  23. 一种计算机可读存储介质,所述计算机可读存储介质上存储有信息处理程序,所述信息处理程序被处理器执行时实现如权利要求15至16中任一项所述指示信息发送方法。
PCT/CN2020/073033 2019-01-21 2020-01-19 定时提前量ta处理方法及装置、指示信息发送方法及装置 WO2020151624A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217026185A KR102614440B1 (ko) 2019-01-21 2020-01-19 타이밍 어드밴스(ta) 처리방법 및 장치, 지시정보 송신방법 및 장치
US17/424,136 US20220104158A1 (en) 2019-01-21 2020-01-19 Method and device for processing timing advance (ta), and method and device for sending indication information

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910056607.4A CN110536470B (zh) 2019-01-21 2019-01-21 定时提前量ta处理、指示信息发送方法及装置
CN201910056607.4 2019-01-21

Publications (1)

Publication Number Publication Date
WO2020151624A1 true WO2020151624A1 (zh) 2020-07-30

Family

ID=68659300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073033 WO2020151624A1 (zh) 2019-01-21 2020-01-19 定时提前量ta处理方法及装置、指示信息发送方法及装置

Country Status (4)

Country Link
US (1) US20220104158A1 (zh)
KR (1) KR102614440B1 (zh)
CN (1) CN110536470B (zh)
WO (1) WO2020151624A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536470B (zh) * 2019-01-21 2024-05-07 中兴通讯股份有限公司 定时提前量ta处理、指示信息发送方法及装置
CN113677031B (zh) * 2020-05-13 2024-02-27 中国移动通信集团重庆有限公司 终端上行资源调度方法、装置、计算设备及计算机存储介质
CN115868243A (zh) * 2020-07-21 2023-03-28 联想(北京)有限公司 用于释放经配置授权资源的方法及设备
CN114390545A (zh) * 2020-10-16 2022-04-22 展讯通信(上海)有限公司 数据传输处理方法及相关装置
US11647408B2 (en) * 2020-12-16 2023-05-09 Qualcomm Incorporated Techniques for dynamically updating a search space of a sidelink control channel
CN115175207A (zh) * 2021-04-01 2022-10-11 中兴通讯股份有限公司 信道传输方法、装置、终端、基站和存储介质
CN117119576A (zh) * 2023-03-29 2023-11-24 荣耀终端有限公司 针对时间提前量ta的处理方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106851813A (zh) * 2010-03-12 2017-06-13 黑莓有限公司 用于蜂窝通信的定时提前增强
CN109565774A (zh) * 2018-11-02 2019-04-02 北京小米移动软件有限公司 数据传输方法及装置
CN110536470A (zh) * 2019-01-21 2019-12-03 中兴通讯股份有限公司 定时提前量ta处理、指示信息发送方法及装置
CN110536385A (zh) * 2019-07-31 2019-12-03 中兴通讯股份有限公司 数据发送、接收方法、装置、第一节点及第二节点
CN110536471A (zh) * 2019-03-28 2019-12-03 中兴通讯股份有限公司 传输控制方法、装置、终端、基站、通信系统及存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101646234A (zh) * 2009-09-01 2010-02-10 中兴通讯股份有限公司 一种定时提前量的获取方法
CN102281626B (zh) * 2011-07-06 2013-10-02 电信科学技术研究院 一种上行定时提前量的确定方法及装置
US20140161117A1 (en) * 2011-07-26 2014-06-12 Nokia Siemens Networks Oy eNB Enforced TAT Expiry/TA Validity
US20150305065A1 (en) * 2012-10-19 2015-10-22 Broadcom Corporation Random access procedure and related apparatus
KR101994235B1 (ko) * 2015-07-01 2019-06-28 한국전자통신연구원 상향링크 시간 동기 수행 방법 및 장치
EP3636030A4 (en) * 2017-06-09 2020-05-13 Nec Corporation METHOD AND DEVICES FOR TRANSMITTING AND RECEIVING A PHYSICAL DIRECT ACCESS CHANNEL

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106851813A (zh) * 2010-03-12 2017-06-13 黑莓有限公司 用于蜂窝通信的定时提前增强
CN109565774A (zh) * 2018-11-02 2019-04-02 北京小米移动软件有限公司 数据传输方法及装置
CN110536470A (zh) * 2019-01-21 2019-12-03 中兴通讯股份有限公司 定时提前量ta处理、指示信息发送方法及装置
CN110536471A (zh) * 2019-03-28 2019-12-03 中兴通讯股份有限公司 传输控制方法、装置、终端、基站、通信系统及存储介质
CN110536385A (zh) * 2019-07-31 2019-12-03 中兴通讯股份有限公司 数据发送、接收方法、装置、第一节点及第二节点

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Feature Lead Summary of Support for Transmission in Preconfigured UL Resources", 3GPP TSG RAN WG1 MEETING #95 R1-1813717, 13 November 2018 (2018-11-13), XP051480053, DOI: 20200304184311X *

Also Published As

Publication number Publication date
US20220104158A1 (en) 2022-03-31
KR20210116585A (ko) 2021-09-27
KR102614440B1 (ko) 2023-12-15
CN110536470A (zh) 2019-12-03
CN110536470B (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
WO2020151624A1 (zh) 定时提前量ta处理方法及装置、指示信息发送方法及装置
US11291052B2 (en) Method and apparatus for improving Msg3 transmission of random access procedure in a wireless communication system
CN107534895B (zh) 终端装置、基站装置、通信方法以及集成电路
JP6653394B2 (ja) アップリンク送信タイミング制御
US10904873B2 (en) Terminal apparatus, communication method, and integrated circuit
US11082161B2 (en) Terminal apparatus, base station apparatus, communication method, and integrated circuit
US11381944B2 (en) Signal transmission method for V2X communication in wireless communication system and device therefor
CN107637138B (zh) 终端装置、通信方法以及集成电路
CN107710834B (zh) 终端装置、通信方法以及集成电路
CN107637139B (zh) 终端装置、通信方法以及集成电路
TW201513596A (zh) 通訊裝置及方法
US9386579B2 (en) Method and apparatus of controlling cell activation in a wireless communication system
US20190363860A1 (en) Method for allocating ack/nack resource in wireless communication system and apparatus therefor
US11039462B2 (en) Terminal apparatus, base station apparatus, communication method, and integrated circuit
JP2019012868A (ja) 端末装置、通信方法、および、集積回路
EP3334233B1 (en) Terminal device, communication method, and integrated circuit
EP3300442B1 (en) Communication between terminal device and base station device for periodic channel status information (csi) reporting for a secondary cell
WO2020199000A1 (zh) 随机接入方法以及装置
US20200044814A1 (en) Method for allocating resource for multiple signals in wireless communication system and apparatus therefor
WO2022152113A1 (zh) 由用户设备执行的方法以及用户设备
US10299308B2 (en) Terminal device, communication method, and integrated circuit
CN115884442A (zh) 由用户设备执行的确定pei机会的方法以及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20745750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217026185

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20745750

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/01/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20745750

Country of ref document: EP

Kind code of ref document: A1