WO2022152113A1 - 由用户设备执行的方法以及用户设备 - Google Patents

由用户设备执行的方法以及用户设备 Download PDF

Info

Publication number
WO2022152113A1
WO2022152113A1 PCT/CN2022/071268 CN2022071268W WO2022152113A1 WO 2022152113 A1 WO2022152113 A1 WO 2022152113A1 CN 2022071268 W CN2022071268 W CN 2022071268W WO 2022152113 A1 WO2022152113 A1 WO 2022152113A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
signal
resource
reference signal
indication
Prior art date
Application number
PCT/CN2022/071268
Other languages
English (en)
French (fr)
Inventor
马小骏
罗超
刘仁茂
Original Assignee
夏普株式会社
马小骏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 马小骏 filed Critical 夏普株式会社
Publication of WO2022152113A1 publication Critical patent/WO2022152113A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the technical field of wireless communication, and in particular, to a method performed by a user equipment and a corresponding user equipment.
  • 5G/NR User experience is one of the key factors for the success of 5G/NR, not only the data rate and delay experienced by users, but also the terminal power saving is also an important aspect.
  • Enhanced technical solutions for terminal power saving are one of the elements of 5G/NR success.
  • additional enhanced evolution technology is still one of the key technologies in future development, such as power saving technology for idle or inactive terminals to help terminals In the corresponding state, the device further reduces power consumption or improves the ability to receive signals, or obtains other benefits on the premise of ensuring the communication capability.
  • the present invention provides a method performed by a user equipment and the user equipment, which can enable the terminal to further obtain accurate measurements, more sleep time and better signals through the reception of reference signals Receiving ability, etc., so that the terminal can obtain benefits such as reduced power consumption, improved receiving ability, and improved user experience, thereby improving the service capability of the network, expanding the compatibility of the network, and greatly reducing the cost of communication network deployment.
  • a method performed by a user equipment UE comprising: receiving an indication signal for indicating a channel state information reference signal CSI-RS resource or resource set;
  • the reference signal used by the indication signal is a CSI-RS resource or resource set that satisfies the quasi-co-located QCL relationship.
  • the indication signal it is determined that a part or all of the CSI-RS resources or resource sets indicated in the indication signal use the same QCL reference signal as the indication signal.
  • the QCL reference signal used by the CSI-RS resource or resource set that meets the time requirement is determined.
  • a method performed by a user equipment UE comprising: receiving a configuration parameter and indication information used by a channel state information reference signal CSI-RS resource or resource set; and according to the received configuration parameter and the indication information to determine a quasi-co-located QCL reference signal used by the CSI-RS resource or resource set.
  • the configuration parameter is a transmission configuration indication state TCI-state configuration parameter
  • the indication information indicates a reference signal used by the TCI-state
  • different QCL reference signals used by the CSI-RS resource or resource set are determined according to different TCI-state configuration parameters.
  • the QCL reference signal used by the CSI-RS resource or resource set that meets the time requirement is determined.
  • a method performed by a user equipment UE comprising: in the case of not receiving an indication signal for determining a QCL reference signal used for a channel state information reference signal CSI-RS resource or resource set , detect the configured CSI-RS signal; and when the strength of the detected CSI-RS signal exceeds a predetermined threshold, or the detected CSI-RS signal and the reference signal satisfy the quasi-co-located QCL relationship, confirm that the Availability of the CSI-RS signal in the transmission period of the CSI-RS signal, and the QCL reference signal used by the CSI-RS signal.
  • the temporal validity of the CSI-RS signal is determined according to the detected position of the CSI-RS signal.
  • a user equipment comprising: a processor; and a memory storing instructions, wherein the instructions, when executed by the processor, execute the above-mentioned method.
  • the terminal can further obtain accurate measurement, more sleep time and better signal receiving ability through the receiving of the reference signal, thereby reducing the power consumption of the terminal and improving the receiving ability, thereby improving the
  • the business capability of the network and the expansion of the compatibility of the network greatly reduce the cost of communication network deployment.
  • FIG. 1 is a flowchart illustrating a method performed by a user equipment according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart illustrating a method performed by a user equipment according to Embodiment 2 of the present invention.
  • FIG. 3 is a flowchart illustrating a method performed by a user equipment according to Embodiment 3 of the present invention.
  • FIG. 4 is a block diagram schematically illustrating a user equipment involved in the present invention.
  • the 5G/NR mobile communication system and its subsequent evolved versions are used as an example application environment to specifically describe various embodiments according to the present invention.
  • the present invention is not limited to the following embodiments, but can be applied to more other wireless communication systems, such as communication systems after 5G, 4G mobile communication systems before 5G, 802.11 wireless networks, and the like.
  • LTE Long Term Evolution, long term evolution technology
  • UE User Equipment, user equipment
  • eNB evolved NodeB, evolved base station
  • gNB NR base station
  • TTI Transmission Time Interval, transmission time interval
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • CP-OFDM Cyclic Prefix Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing with Cyclic Prefix
  • C-RNTI Cell Radio Network Temporary Identifier, the temporary identifier of the cell wireless network
  • CSI Channel State Information, channel state information
  • CSI-RS Channel State Information Reference Signal, channel state information reference signal
  • CRS Cell Reference Signal, cell-specific reference signal
  • PBCH Physical broadcast channel, physical broadcast channel
  • PUCCH Physical Uplink Control Channel, physical uplink control channel
  • PUSCH Physical Uplink Shared Channel, physical uplink shared channel
  • PRACH Physical random-access channel, physical random access channel
  • PDSCH Physical downlink shared channel, physical downlink shared channel
  • PDCCH Physical downlink control channel, physical downlink control channel
  • UL-SCH Uplink Shared Channel, uplink shared channel
  • DL-SCH Downlink Shared Channel, uplink shared channel
  • RACH random-access channel, random access channel
  • DCI Downlink Control Information, downlink control information
  • MCS Modulation and Coding Scheme, modulation and coding scheme
  • RB Resource Block, resource block
  • CRB Common Resource Block, common resource block
  • CP Cyclic Prefix, cyclic prefix
  • PRB Physical Resource Block, physical resource block
  • VRB Virtual resource block, virtual resource block
  • FDM Frequency Division Multiplexing, frequency division multiplexing
  • TDD Time Division Duplexing
  • FDD Frequency Division Duplexing, frequency division duplexing
  • RRC Radio Resource Control
  • RSRP Reference Signal Receiving Power
  • SRS Sounding Reference Signal
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • CRC Cyclic Redundancy Check, Cyclic Redundancy Check
  • SIB system information block, system information block
  • SIB1 System Information Block Type 1, system information block type 1
  • PSS Primary Synchronization Signal, the main synchronization signal
  • SSS Secondary Synchronization Signal, secondary synchronization signal
  • SSB Synchronization Signal Block, synchronization system information block
  • CRB Common resource block, common resource block
  • BWP BandWidth Part, Bandwidth Fragment/Part
  • SFN System Frame Number, system (wireless) frame number
  • PCI Physical Cell ID, physical cell identification
  • EN-DC EUTRA-NR Dual Connection, LTE-NR dual connection
  • MCG Master Cell Group, the main cell group
  • SCG Secondary Cell Group, secondary cell group
  • PCell Primary Cell, the main cell
  • SCell Secondary Cell, secondary cell
  • SPS Semi-Persistant Scheduling, semi-static scheduling
  • PT-RS Phase-Tracking Reference Signals, phase tracking reference signal
  • Transport Block transport block
  • TBS Transport Block Size, transport block size
  • CB Code Block, coding block/code block
  • QPSK Quadrature Phase Shift Keying, quadrature phase shift keying
  • 16/64/256 QAM 16/64/256 Quadrature Amplitude Modulation, Quadrature Amplitude Modulation
  • AGC Auto Gain Control, automatic gain control
  • ARFCN Absolute Radio Frequency Channel Number, absolute radio frequency channel number
  • CORESET Control resource set, control resource set
  • CCE Control channel element, control channel element
  • MIB Master Information Block, the main information block
  • UCI Uplink Control Information, uplink control information
  • SCS sub-carrier spacing, sub-carrier spacing
  • RIV Resource indicator value, resource indicator value
  • SS-RSRP Synchronization Signal Reference Signal Received Power, synchronization reference signal received power
  • SS-RSRQ Synchronization Signal Reference Signal Received Quality, synchronization reference signal received quality
  • FR1 Frequency range 1 as defined in TS 38.104, frequency range 1 defined by TS38.104
  • FR2 Frequency range 2 as defined in TS 38.104, frequency range 2 defined by TS38.104
  • TCI Transmission Configuration Indicator, transmission configuration indicator
  • a network device is a device that communicates with a terminal, including but not limited to base station devices, gNBs, eNBs, wireless APs, etc., which will not be specifically distinguished and limited hereinafter.
  • the terminal in the network can be divided into three states, a connected state, an idle state and an inactive state.
  • a user in the connected state establishes a wireless connection with the network for data transmission or related business processing.
  • Users in the idle state and inactive state also maintain a certain connection with the network, for example, they need to monitor broadcast messages and paging messages sent by the network, or perform related measurements.
  • the terminal in an idle or inactive state has no signal to receive or transmit, the terminal can be in a sleep state to save power consumption.
  • the terminal can also be in different sleep modes, such as light sleep mode, which is used for short sleep when there is a new signal to be processed in a short time.
  • Another example is the deep sleep mode, which can further reduce the power consumption of the terminal than the light sleep mode when there is no new signal to be processed by the terminal for a long time.
  • the terminal under the condition that the service function is not affected, making the terminal more in the sleep mode can effectively reduce the power consumption of the terminal, thereby improving the user experience.
  • the processing of idle state and inactive state users is similar in many aspects. In order to avoid redundancy, unless otherwise specified, in the relevant text of the present invention, the relevant actions for the terminal or network in the idle state can also be applied to the inactive state. terminal. Similarly, other terminal states that have similar requirements to the idle state can also be handled analogously, and will not be described in detail.
  • the terminal can adjust the parameters of automatic gain control (AGC), so that the processed data is within its proper dynamic range, so as to obtain a better processing effect.
  • AGC automatic gain control
  • the terminal needs to perform time-frequency tracking, estimate the time offset or frequency offset parameter of the signal according to the reference signal, etc., and make corresponding corrections to the signal or data to be processed to obtain better reception performance.
  • the terminal may also have some other processing to optimize data processing, improve user experience, etc., which will not be described one by one here.
  • the terminal may use the reference signal sent by the network for preprocessing.
  • the network configures and sends a reference signal to the terminal for channel measurement, channel parameter estimation, mobility assessment, spatial parameter estimation, etc. of the terminal, and realizes functions such as radio resource management and auxiliary data signal reception.
  • the terminal may receive a synchronization reference signal sent by the network to perform AGC adjustment or time-frequency parameter estimation.
  • the terminal may receive the CSI-RS signal sent by the network to perform channel measurement or beam management.
  • the network configures and sends CSI-RS reference signals for the terminal to perform channel measurement, beam management and other functions.
  • the CSI-RS may be configured to the UE in the form of CSI-RS resources, and a terminal may be configured with one or more CSI-RS resources.
  • One or more CSI-RSs can also form a CSI-RS resource set, and one terminal can be configured with one or more resource sets.
  • One CSI-RS signal is defined in each CSI-RS resource, which may include multiple configuration parameters, such as one or more of time-frequency resource configuration, power configuration, code division configuration, and QCL configuration.
  • the terminal can determine and receive the CSI-RS signal according to the configured parameters, and use it for functions such as measurement or signal reception.
  • the CSI-RS can be divided into various types, for example, the NZP-CSI-RS is a CSI-RS with non-zero power, that is, the transmission power of the CSI-RS is not zero.
  • CSI-RS can also be classified into periodic, semi-permanent and aperiodic signal types. Periodic CSI-RS, that is, after the configuration takes effect, the associated CSI-RS resources appear repeatedly on the time-frequency resources at a certain period. Semi-permanent and aperiodic CSI-RS resources need to be activated by means of MAC-CE or DCI indication.
  • the terminal can implement different functions according to different CSI-RS resources and related report indications.
  • the CSI-RS signal used for time-frequency tracking (Tracking) may also be called TRS.
  • CSI-RS is uniformly used as a proxy for CSI-RS of different types or parameters applicable to the present invention.
  • the network sends SSB signals at a certain period, and the SSB contains various reference signals, such as SSS and PSS.
  • the network can use beams or spatial filters to transmit and receive signals.
  • the beams used in the network may be analog beams or digital beams or a mixture of the two.
  • the network uses corresponding beams to send SSBs.
  • the network uses 8 beams to send SSBs.
  • the SSBs in the sending period can be numbered as SSB0 to SSB7, which respectively represent SSBs sent using different beams.
  • the terminal can select the best beam for signal reception or transmission according to different positions, so as to achieve better communication.
  • the network can also use different beams and terminals to send and receive signals to achieve good communication effects.
  • the QCL parameter is used to characterize the spatial relationship between different signals, that is to say, two signals that satisfy the QCL relationship have a certain spatial channel correlation. For example, if the terminal configures two signals to satisfy a certain QCL type relationship, the terminal can use the same certain parameter when processing the two signals, or the parameters obtained from one signal can be applied to the reception or transmission of the other signal.
  • the QCL type is QCL-typeA
  • parameters such as Doppler frequency shift, Doppler spread, average delay, and delay spread obtained from one signal can be applied to another signal, or these parameters can be shared.
  • the QCL type is QCL-typeC, and a signal can be obtained by a signal Doppler frequency shift, delay spread parameters and other parameters.
  • the QCL type is QCL-typeD
  • one signal beam parameter information can be obtained from one signal.
  • the configuration of the QCL information for a signal can be indicated using the TCI-state parameter group.
  • the TCI-state may contain the type of QCL, another or more signals that satisfy the QCL relationship, and parameters such as cell or BWP information where the signal is located.
  • TCI-state can use TCI-stateID as an identifier.
  • the QCL applied to the SSB that is, if a certain signal and a certain SSB beam satisfy the QCL relationship, then some parameters of the signal and the SSB can be mutually identified.
  • the CSI-RS signal sent by the network can be sent by using a beam, and the network configures the TCI-state parameter of the CSI-RS to indicate the signal of its QCL.
  • the network can configure a CSI-RS resource that satisfies the QCL with a certain SSB i, and the terminal can consider that the SSB i is the same as some channel parameters of the CSI-RS. If there are other signals on the terminal side that satisfy the QCL with SSB i, the terminal can obtain relevant parameters through the reception or measurement of the CSI-RS, and apply them to the reception of the signal.
  • the network configures parameters such as paging cycle and paging frame for the user, and the user receives the PDCCH indicating paging information on a certain time-frequency resource according to the configuration parameters.
  • the terminal may also perform corresponding signal reception or processing according to the indication information in the PDCCH, for example, perform PDSCH reception on the time-frequency resource indicated by the PDCCH. Since the base station cannot determine which is the best receiving beam for the user to be paged, the base station uses all the actually sent SSB beams to send the paging PDCCH to the user within a paging cycle, and the user can receive relevant information according to its own situation the PDCCH information.
  • the terminal may determine the PDCCH time-frequency resource corresponding to a certain SSB beam in the paging period according to the position and sequence of the PDCCH time-frequency resource. Similarly, when receiving a certain paging PDCCH, the terminal can also determine the sequence number of the SSB beam that satisfies the QCL relationship. Other signals in the network may also have a situation similar to that of paging PDCCH. The terminal can determine the QCL relationship between the signal and the SSB beam according to an explicit or implicit indication.
  • the method applied to paging PDCCH in the present invention can also be applied to the signal.
  • a terminal in an idle state or an inactive state needs to periodically receive broadcast or paging information from the network, or perform related measurements. For example, before receiving the paging information, the terminal can receive the reference signal sent by the network according to its own capabilities, channel conditions and other factors, perform AGC, time-frequency tracking and other processing, and receive the corresponding data signal, so as to obtain good results. Due to various internal or external factors, the terminal needs to wake up from the sleep mode in different times or durations when performing these preprocessing. For example, when the channel condition is poor, the receiving quality of the related reference signal is poor, or when the processing capability of the terminal is limited, the terminal needs to wake up multiple times to receive multiple reference signals to achieve a better reception effect. For another example, if the configured reference signal is far from the signal to be received, the terminal may also need to receive the reference signal more times or maintain a longer active time to obtain a better reception effect.
  • a terminal in an idle state or an inactive state can use the SSB to implement related AGC or time-frequency parameter estimation.
  • the period and time-frequency position of SSB are often fixed, which may not be able to meet the requirements of users to receive signals and reduce power consumption. Therefore, the network can provide additional reference signals for the terminal to receive, so that the terminal can obtain the required parameters faster. or information, thereby reducing the time or number of wakeups for better energy savings.
  • the network may configure the CSI-RS signal to be used as a reference signal for idle or inactive users. For example, the network configures a set of non-zero-power CSI-RS signals in the SIB information, which are used as reference signals for idle or inactive users.
  • the network can use the CSI-RS signal sent to the connected state user to be shared with the idle state user.
  • the network may configure one or more CSI-RS resources for users in idle state, and some or all of the resources may also be used as signals for users in connected state at the same time. If the connected users no longer use these resources, the network can partially or completely turn off these CSI-RS signals according to different situations, so as to reduce the power consumption on the network side. Whether or not to transmit these CSI-RS signals depends on the implementation of the network. In the process of sending CSI-RS resources, the network may use different beams to send CSI-RS resources according to the adjustment of connected users or other reasons.
  • the network does not notify the idle state user, and the user can confirm the validity of the CSI-RS in time according to the detection result.
  • the idle state terminal receives the configuration of the network, and determines one or more CSI-RS resources or resource sets and reference signals used by them.
  • the network configures one or more QCL reference signals of the CSI-RS resource, and the terminal determines, according to an indication of the network, a reference signal that satisfies the QCL relationship with the CSI-RS resource or resource set.
  • the terminal determines the CSI-RS resource or resource set that satisfies the QCL relationship with the reference signal according to the indication of the network.
  • the terminal determines the valid time of the CSI-RS resource or resource set according to the indication of the network.
  • the terminal can perform detection based on the configured CSI-RS.
  • Condition such as the detected signal strength exceeds a predetermined threshold, or the detected signal meets a QCL relationship with a certain SSB beam, the terminal can determine the availability of the signal during the transmission period of the signal, and the QCL reference signal used by the signal.
  • FIG. 1 is a flowchart illustrating a method performed by a user equipment according to Embodiment 1 of the present invention.
  • step 101 an indication signal for indicating a CSI-RS resource or resource set is received.
  • step 103 the terminal determines, according to the received indication signal, a CSI-RS resource or resource set that satisfies the QCL relationship with the reference signal used by the indication signal.
  • the terminal determines that the CSI-RS resource or resource set indicated in the indication signal and the indication signal use the same QCL reference signal.
  • the terminal receives the resource ID or resource set ID of the CSI-RS in the indication signal, the terminal determines the indicated CSI-RS, and the terminal determines that the CSI-RS uses the same QCL reference signal as the indication signal.
  • the indication signal is the paging PDCCH, the terminal receives the paging PDCCH, and instructs the terminal to use the CSI-RS resource or resource set whose ID is i.
  • the terminal can determine that the QCL reference signal used by the PDCCH is SSB j, and the terminal can determine that the CSI-RS resource or CSI-RS of resource set i and SSB j satisfy the QCL relationship.
  • one SSB beam may correspond to the time-frequency position of the indication signal on two adjacent time slots, and two different SSB beams may correspond to the same time-frequency position of the indication signal.
  • the terminal may determine the beams with which the QCL relationship is satisfied according to the indication of the indication signal.
  • the indication signal is the paging PDCCH
  • the terminal can determine which SSB beam is used by the received PDCCH according to the indication in the PDCCH, that is, the reference signal for determining that the PDCCH satisfies the QCL relationship.
  • 1 bit is used to identify the SSB beam sequence number corresponding to the PDCCH.
  • the terminal may determine, according to the determined SSB beam sequence number, a reference signal that satisfies the QCL relationship of the CSI-RS resource or resource set indicated by the PDCCH.
  • the terminal determines the QCL reference signal used by the CSI-RS resource that meets the time requirement.
  • k is the time length parameter, an integer greater than 0.
  • % is the modulo operation.
  • the time length parameter can be indicated to the terminal by means of RRC signaling or DCI.
  • the time length parameter can also be indicated to the terminal in a predefined manner.
  • the terminal determines according to the indication signal that the CSI-RS signal does not use the QCL reference signal.
  • the UE determines that CSI-RS i is sent using SSB j as a QCL reference signal according to the configuration or the indication.
  • the UE receives an instruction on the PDCCH that satisfies the QCL relationship with SSB k, indicating that CSI-RS i uses SSB k as the QCL reference signal, and the terminal determines that on the resources that meet the time requirements, CSI-RS i does not use SSB j as the QCL reference signal .
  • the terminal determines that the CSI-RS signal that uses the QCL reference signal with the same indication signal does not use the QCL reference signal.
  • the UE determines that the resource corresponding to CSI-RS i uses SSB j as the QCL reference signal according to the configuration or the instruction.
  • the UE does not receive an indication on the PDCCH of SSB j indicating that the resource corresponding to CSI-RS i uses SSB j as the QCL reference signal for transmission, and the terminal determines that on the resource that meets the time requirement, CSI-RS i does not use SSB j as the QCL reference signal Signal.
  • the terminal determines that the CSI-RS resource or resource set and the indicator signal use the same QCL reference signal.
  • the network may configure several CSI-RS resources or resource sets as candidate signal sets that satisfy the QCL relationship with SSB i.
  • the network may select some or all of the SSB i as the QCL reference signal from the candidate signal set, and instruct the terminal on the indication signal to use the SSB i as the QCL reference signal.
  • the network uses the indicator signal to indicate the information of the used CSI-RS in the candidate signal set.
  • a bitmap is used to indicate, for example, that the network configures SSB i to use k CSI-RS resource sets as candidate signal sets, and they are sorted by their ID size.
  • a field with an effective length of k bits may be used in the indication information received by the terminal, and each bit corresponds to a different candidate CSI-RS resource or resource set.
  • the terminal determines according to the indication message that the CSI-RS uses a corresponding QCL reference signal.
  • the bitmap indication method is used, and the bitmap corresponds to the CSI-RS resources or resource sets sorted from the low order. If the indication state corresponding to the CSI-RS or CSI-RS resource set in the indication signal is 1, the terminal It is determined that the CSI-RS corresponding to the CSI-RS or the CSI-RS resource set uses the same QCL reference signal as the indicator signal.
  • the UE determines that the CSI-RS corresponding to the CSI-RS or the CSI-RS resource set does not use the same QCL reference signal as the indication signal.
  • opposite indication states or indication methods with different arrangement orders may also be used, which will not be described in detail.
  • a quantity indication method is used.
  • the network configures SSB i to use K CSI-RS resource sets as candidate signal sets, and they are sorted by their ID size.
  • a field with an effective length of ceil(log2(K)) bits may be used in the indication information received by the terminal to indicate the number of used CSI-RS resource sets. ceil is a round-up operation, and log2 is a base-2 logarithmic operation. If the number of candidate signals indicated in the indicator signal is 0, none of the CSI-RSs in the candidate signal set uses the reference signal as the QCL reference signal. If the indicated number is k, the first k resources in the reference signal candidate resources use the same QCL reference signal as the indicated signal, and the remaining CSI-RS resources do not use the QCL reference signal.
  • the terminal determines, according to the distance information in the indication signal, a CSI-RS resource or resource set that uses the same QCL reference signal as the indication signal.
  • the network uses the paging PDCCH to indicate the QCL information used by the CSI-RS resources.
  • the terminal determines that the CSI-RS uses the same QCL reference signal as the PDCCH according to the distance between the indicated CSI-RS signal and the time slot or symbol where the paging PDCCH is located.
  • the distance can be the number of time slots, time units or symbols. Wait.
  • the distance may also be the number of time slots, time units, or symbols represented by the sequence numbers in a predefined or configured table.
  • the distance information uses the number of time slots. If the indicator signal and the CSI-RS use the same subcarrier spacing parameter and cyclic prefix length, the two use the same time slot unit. If the subcarrier detection parameters or cyclic prefix lengths used by the two are different, and the time slot units used by the two are different, the terminal may determine to use the time slot unit corresponding to the smaller subcarrier detection parameter as a reference for the distance. Optionally, the terminal determines that the time slot that satisfies the indicated time slot distance from the time slot where the paging PDCCH is located is the time slot where the CSI-RS resource using the same QCL reference signal is located.
  • the terminal determines that the last time slot of the CSI-RS resource in the CSI-RS resource set of the same QCL reference signal is used for the time slot that meets the indicated time slot distance from the time slot where the paging PDCCH is located.
  • the terminal determines that the time slot that meets the indicated time slot distance from the time slot where the paging PDCCH is located is the first time slot where the CSI-RS resource using the same QCL reference signal is located.
  • the CSI-RS when the CSI-RS does not use any QCL reference signal, the CSI-RS is not sent.
  • the terminal does not receive the CSI-RS.
  • FIG. 2 is a flowchart illustrating a method performed by a user equipment according to Embodiment 2 of the present invention.
  • step 201 configuration parameters and indication information used by CSI-RS resources or resource sets are received.
  • step 203 the terminal determines the CSI-RS and the QCL reference signal used by the CSI-RS according to the received configuration parameter and the indication information.
  • the network configures the CSI-RS resource, and uses the transmission configuration indication information to identify the transmission configuration indication information parameter indicating the use of the resource. For example, the terminal determines a reference signal used by a TCI-state corresponding to a TCI-state ID, and determines a QCL reference signal used by a CSI-RS resource using the TCI-state configuration parameter.
  • multiple CSI-RS resources may form a CSI-RS resource set. The network can configure the TCI-state ID for the resource set, and the resources in the resource set all use the TCI-state parameter identified by the same TCI-state ID.
  • the terminal may determine, according to the TCI-state configuration parameter, a reference signal that satisfies the QCL relationship used by using the CSI-RS resource or resource set of the TCI-state parameter group.
  • the TCI-state parameter may include parameters such as the used QCL type.
  • the TCI-state parameter may also contain candidate QCL reference signals or no QCL reference signals available.
  • the terminal may determine the reference signal used for transmitting the configuration indication information according to the indication information, and determine the reference signal used by the CSI-RS resource.
  • one TCI-state includes multiple candidate reference signals or reference signal groups. The terminal determines that the TCI-stateID used by a CSI-RS resource is i, and the terminal determines to use the TCI-state configuration whose TCI-stateID is i.
  • the network configures a TCI-state whose TCI-stateID is i to use one or more QCL reference signals.
  • one or more QCL signals may be divided into one or more groups. The terminal selects one or a group of QCL reference signals as reference signals of the CSI-RS resource according to the indication information.
  • the network may configure one or more TCI-states whose TCI-stateID is i to use the same or different QCL reference signals.
  • the network may use different groups or patterns to determine the QCL reference signal used by the TCI-state whose TCI-stateID is i.
  • the TCI-state configuration reference signal SSB k with TCI-stateID i in network configuration group m is used as the QCL reference signal
  • the TCI-state configuration reference signal SSB s with TCI-stateID i in network configuration group n is used as the QCL reference signal.
  • the terminal receives the indication information from the network, indicating that the CSI-RS with TCI-stateID i is to use group m, and the terminal can determine to use the QCL reference signal SSB k of the corresponding TCI-state configuration parameter in group m as the QCL reference signal of the CSI-RS.
  • the terminal determines the reference signal used by the CSI-RS according to the indication message.
  • the terminal determines the reference signal of the TCI-state used by the CSI-RS according to the indicated sequence number.
  • one or more groups of reference signals are used in the TCI-state, and the terminal determines the reference signals used in the TCI-state according to the serial number of the group.
  • different groups of TCI-states use the same or different reference signals, and the terminal determines the reference signals used by the TCI-states according to the serial numbers of the groups.
  • the terminal determines the used QCL reference signal according to the TCI-state used by the CSI-RS.
  • the terminal receives the indication in the paging PDCCH, determines the group used by the configured CSI-RS, and determines the QCL reference signal used by the CSI-RS.
  • the terminal receives the indication in the common PDCCH, determines the group used by the configured CSI-RS, and determines the QCL reference signal used by the CSI-RS.
  • the terminal receives the indication in the common PDSCH, determines the group used by the configured CSI-RS, and determines the QCL reference signal used by the CSI-RS.
  • the TCI-state whose TCI-stateID is i in the network configuration group m does not use the QCL reference signal
  • the terminal receives an instruction from the network to indicate that the CSI-RS with the TCI-stateID is i to use the group m, and the terminal can determine the use of the group m.
  • the CSI-RS of m does not use the QCL reference signal.
  • the terminal determines the scrambling code used by the CSI-RS according to the group indicated by the network.
  • the scrambling code in the network configuration group m is A
  • the scrambling code in the network configuration group n is B.
  • the terminal receives an instruction from the network, indicating that CSI-RS i is used to use group m, and the terminal can determine to use the scrambling code in group m as the scrambling code of the CSI-RS.
  • the terminal determines a QCL reference signal used by the CSI-RS resource that meets the time requirement.
  • the terminal determines the time at which the CSI-RS resource uses the QCL reference signal according to the indication signal and the length of the indication.
  • the indicated CSI-RS uses the associated QCL reference signal.
  • k is an integer greater than 0.
  • the terminal determines according to the indication signal that the CSI-RS signal does not use the QCL reference signal.
  • the terminal determines, according to the indication signal, that the TCI-state in the CSI-RS signal usage group does not use the reference signal, and the CSI-RS determined by the terminal does not use the QCL reference signal.
  • the UE determines, according to the configuration or other instructions, that the CSI-RS i is sent using the SSB j as the QCL reference signal.
  • the UIE receives the instruction, indicating that the resource corresponding to CSI-RS i uses SSB k as the QCL reference signal for transmission, and the terminal determines that on the resource that meets the time requirement, CSI-RS i does not use SSB j as the QCL reference signal.
  • the terminal determines that the CSI-RS signal using the QCL reference signal no longer uses the QCL reference signal. For example, the terminal determines that the resource corresponding to CSI-RS i uses SSB j as the QCL reference signal to send according to the configuration or other instructions. The terminal does not receive an indication signal indicating that the resource corresponding to CSI-RS i uses SSB j as a QCL reference signal for transmission, and the terminal determines that on a resource that meets the time requirement, CSI-RS i does not use SSB j as a QCL reference signal.
  • the CSI-RS when the CSI-RS does not use any QCL reference signal, the CSI-RS is not sent.
  • the terminal does not receive the CSI-RS.
  • FIG. 3 is a flowchart illustrating a method performed by a user equipment according to Embodiment 3 of the present invention.
  • the network equipment configures CSI-RS resources or resource sets.
  • the network equipment may adjust some or all of the CSI-RS beams according to the needs of the network, that is, adjust the QCL reference signal of the CSI-RS, or may not perform some or all of them according to the needs of the network. Transmission of CSI-RS.
  • step 301 when the network does not send a corresponding indication, or the terminal does not receive an indication to determine the QCL reference signal used by the configured CSI-RS, the terminal can test.
  • step 303 when the detected signal strength exceeds a predetermined threshold, or the detected signal meets a QCL relationship with a certain SSB beam, the terminal confirms the availability of the signal during the transmission period of the signal, and the use of the signal. QCL reference signal.
  • the idle state terminal determines the validity of the signal in time according to the measurement of the CSI-RS signal.
  • the terminal receives the CSI-RS resource or resource set parameter configured by the network, and determines the time-frequency position of the CSI-RS.
  • the terminal performs detection or measurement at the time-frequency position. If a CSI-RS signal that meets the conditions is detected, it determines a reference signal that satisfies the QCL with the signal. The terminal determines that it is within the time range, and the CSI-RS uses the QCL reference signal.
  • the network configures CSI-RS resources or resource set parameters, and uses SSB i as the QCL reference signal.
  • the terminal detects the CSI-RS at the time-frequency position that satisfies the configuration.
  • the detected signal received power RSRP exceeds a threshold, and the terminal determines the validity of the CSI-RS in time.
  • the difference between the detected signal received power RSRP and the measured RSRP of SSB i is less than a threshold, and the terminal determines the validity of the CSI-RS in time.
  • the network configures the power offset of the RE of the CSI-RS relative to the RE of the SS to be zero.
  • the terminal determines that the CSI-RS is a valid signal.
  • the terminal determines the validity of the CSI-RS in time, that is, the terminal determines that the CSI-RS uses SSB i as the QCL reference information in the time-frequency resource and the determined time range of the CSI-RS configuration.
  • the optional terminal determines the temporal validity of the CSI-RS according to the detected CSI-RS position.
  • the validity of time can be represented by time length, radio frame number, etc.
  • the terminal determines the frame number SFN i of the CSI-RS on the paging cycle, and the terminal determines the starting point and length of the valid time of the CSI-RS signal.
  • T is the length of the paging cycle
  • k is an integer greater than 0.
  • the terminal determines that the starting frame number of the valid time is the first time slot whose SFN satisfies mod(floor((i+PF_offset)/T)*T-PF_offset, 1024), and the valid length is ceil(k* T/P)*P, where P is the period of the CSI-RS.
  • T is the length of the paging cycle, and k is an integer greater than 0.
  • FIG. 4 is used to illustrate a user equipment that can execute the method performed by the user equipment described in detail above in the present invention as a modification.
  • FIG. 4 is a block diagram showing a user equipment UE according to the present invention.
  • the user equipment UE40 includes a processor 401 and a memory 402 .
  • the processor 401 may include, for example, a microprocessor, a microcontroller, an embedded processor, or the like.
  • the memory 402 may include, for example, volatile memory (eg, random access memory RAM), a hard disk drive (HDD), non-volatile memory (eg, flash memory), or other memory, or the like.
  • Program instructions are stored on the memory 402 . When the instruction is executed by the processor 401, the above method described in detail in the present invention and executed by the user equipment can be executed.
  • the method and related apparatus of the present invention have been described above with reference to the preferred embodiments. Those skilled in the art can understand that the methods shown above are only exemplary, and the various embodiments described above can be combined with each other under the condition that no contradiction occurs.
  • the method of the present invention is not limited to the steps and sequences shown above.
  • the network node and user equipment shown above may include more modules, for example, may also include modules that can be developed or developed in the future and that can be used for base stations, MMEs, or UEs, and the like.
  • the various identifiers shown above are only exemplary and not restrictive, and the present invention is not limited to the specific information elements exemplified by these identifiers. Numerous changes and modifications may occur to those skilled in the art in light of the teachings of the illustrated embodiments.
  • the above-described embodiments of the present invention may be implemented by software, hardware, or a combination of both.
  • the various components inside the base station and the user equipment in the above embodiments may be implemented by various devices, including but not limited to: analog circuit devices, digital circuit devices, digital signal processing (DSP) circuits, programmable processing Controllers, Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), Programmable Logic Devices (CPLDs), etc.
  • DSP digital signal processing
  • ASICs Application Specific Integrated Circuits
  • FPGAs Field Programmable Gate Arrays
  • CPLDs Programmable Logic Devices
  • base station may refer to a mobile communication data and control switching center with larger transmission power and wider coverage area, including functions such as resource allocation and scheduling, data reception and transmission, and the like.
  • User equipment may refer to a user mobile terminal, for example, including a mobile phone, a notebook, and other terminal equipment that can wirelessly communicate with a base station or a micro base station.
  • embodiments of the invention disclosed herein may be implemented on a computer program product.
  • the computer program product is a product having a computer-readable medium on which computer program logic is encoded that, when executed on a computing device, provides relevant operations to achieve The above technical solutions of the present invention.
  • computer program logic When executed on at least one processor of a computing system, computer program logic causes the processor to perform the operations (methods) described in the embodiments of the present invention.
  • Such arrangements of the present invention are typically provided as software, code and/or other data structures arranged or encoded on a computer readable medium such as an optical medium (eg CD-ROM), floppy or hard disk, or such as one or more Firmware or other medium of microcode on a ROM or RAM or PROM chip, or a downloadable software image in one or more modules, a shared database, etc.
  • Software or firmware or such a configuration may be installed on a computing device, so that one or more processors in the computing device execute the technical solutions described in the embodiments of the present invention.
  • each functional module or each feature of the base station device and the terminal device used in each of the above embodiments may be implemented or executed by a circuit, which is usually one or more integrated circuits.
  • Circuits designed to perform the various functions described in this specification may include general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs) or general purpose integrated circuits, field programmable gate arrays (FPGAs) or other Program logic devices, discrete gate or transistor logic, or discrete hardware components, or any combination of the above.
  • a general-purpose processor may be a microprocessor, or the processor may be an existing processor, controller, microcontroller, or state machine.
  • the general-purpose processor or each circuit described above may be configured by digital circuits, or may be configured by logic circuits.
  • the present invention can also use the integrated circuit obtained by using the advanced technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提出了一种由用户设备UE执行的方法,包括:接收用于指示信道状态信息参考信号CSI-RS资源或资源集的指示信号;以及根据接收到的所述指示信号,确定与所述指示信号使用的参考信号满足准共址QCL关系的CSI-RS资源或资源集。

Description

由用户设备执行的方法以及用户设备 技术领域
本发明涉及无线通信技术领域,具体涉及由用户设备执行的方法以及相应的用户设备。
背景技术
用户体验是5G/NR成功的关键因素之一,不仅仅是用户感受的数据速率和延迟方面,终端功耗节省也是重要的方面。终端功耗节省的增强技术方案是5G/NR成功的要素之一。虽然现有的一些技术已经用于终端功耗的节省,额外的增强演进技术在未来的发展中仍然是关键技术之一,比如对空闲态或非激活态终端的功耗节省技术有助于终端设备在相应的状态下,在保证通信能力的前提下进一步减少功耗或者提升接收信号的能力,或者获得其他的好处。
发明内容
为了解决上述问题中的至少一部分,本发明提供了一种由用户设备执行的方法以及用户设备,通过参考信号的接收能够使终端能够进一步获得准确的测量,更多的睡眠时间以及更好的信号接收能力等,从而使得终端获得功耗减少,接收能力提升,用户体验改善等好处,从而提升了网络的业务能力,扩大网络的兼容性,使得通信网络部署的成本大大降低。
根据本发明,提出了一种由用户设备UE执行的方法,包括:接收用于指示信道状态信息参考信号CSI-RS资源或资源集的指示信号;以及根据接收到的所述指示信号,确定与所述指示信号使用的参考信号满足准共址QCL关系的CSI-RS资源或资源集。
优选地,根据所述指示信号,确定指示信号中指示的所述CSI-RS资源或资源集的一部分或全部使用与所述指示信号相同的QCL参考信号。
优选地,根据所述指示信号,确定满足时间要求的CSI-RS资源或资源集使用的QCL参考信号。
此外,根据本发明,提出了一种由用户设备UE执行的方法,包括:接收信道状态信息参考信号CSI-RS资源或资源集使用的配置参数和指示信息;以及根据接收到的所述配置参数和所述指示信息,确定所述CSI-RS资源或资源集使用的准共址QCL参考信号。
优选地,所述配置参数是传输配置指示状态TCI-state配置参数,所述指示信息指示TCI-state所使用的参考信号,根据所述TCI-state配置参数和所述指示信息,确定使用该TCI-state配置参数的所述CSI-RS资源或资源集使用的QCL参考信号。
优选地,根据不同的TCI-state配置参数确定所述CSI-RS资源或资源集使用的不同的QCL参考信号。
优选地,根据所述配置参数,确定满足时间要求的CSI-RS资源或资源集使用的QCL参考信号。
另外,根据本发明,提出了一种由用户设备UE执行的方法,包括:在没有接收到用于确定信道状态信息参考信号CSI-RS资源或资源集使用的QCL参考信号的指示信号的情况下,对所配置的CSI-RS信号进行检测;以及在检测的CSI-RS信号的强度超过预定的门限,或者检测的CSI-RS信号与参考信号满足准共址QCL关系的情况下,确认在该CSI-RS信号的传输周期内该CSI-RS信号的可用性、以及该CSI-RS信号使用的QCL参考信号。
优选地,根据检测的所述CSI-RS信号的位置,确定所述CSI-RS信号在时间上的有效性。
此外,根据本发明,提出了一种用户设备,包括:处理器;以及存储器,存储有指令,其中,所述指令在由所述处理器运行时执行上述的方法。
根据本发明,通过参考信号的接收能够使终端能够进一步获得准确的测量,更多的睡眠时间以及更好的信号接收能力等,从而使得终端的功耗减少,接收能力提升等好处,从而提升了网络的业务能力,扩大网络的兼容性,使得通信网络部署的成本大大降低。
附图说明
通过下文结合附图的详细描述,本发明的上述和其它特征将会变得更加明显,其中:
图1是示出了根据本发明的实施例1的由用户设备执行的方法的流程图。
图2是示出了根据本发明的实施例2的由用户设备执行的方法的流程图。
图3是示出了根据本发明的实施例3的由用户设备执行的方法的流程图。
图4是示意性示出本发明所涉及的用户设备的框图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细阐述。应当注意,本发明不应局限于下文所述的具体实施方式,这些实施方式仅作为示例提供,以将主题的范围传达给本领域技术人员。另外,为了简便起见,省略了对与本发明没有直接关联的公知技术的详细描述,以防止对本发明的理解造成混淆。
通常,除非在使用该术语的上下文中清楚地给出和/或隐含不同的含义,否则本文中使用的所有术语将根据其在相关技术领域中的普通含义来解释。除非明确说明,否则对一/一个/该元件、设备、组件、部件、步骤等的所有引用应公开地解释为是指该元件、装置、组件、部件、步骤等的至少一个实例。除非必须明确地将一个步骤描述为在另一个步骤之后或之前和/或隐含地一个步骤必须在另一个步骤之后或之前,否则本文所公开的任何方法的步骤不必以所公开的确切顺序执行。在适当的情 况下,本文公开的任何实施例的任何特征可以适用于任何其它实施例。同样,任何实施例的任何优点可以适用于任何其它实施例,反之亦然。
下文以5G/NR移动通信系统及其后续的演进版本作为示例应用环境,具体描述了根据本发明的多个实施方式。然而,需要指出的是,本发明不限于以下实施方式,而是可适用于更多其它的无线通信系统,例如5G之后的通信系统以及5G之前的4G移动通信系统,802.11无线网络等。
下面描述本发明涉及的部分术语,如未特别说明,本发明涉及的术语采用此处定义。本发明给出的术语在LTE、LTE-Advanced、LTE-Advanced Pro、NR以及之后的或其他的通信系统中可能采用不同的命名方式,但本发明中采用统一的术语,在应用到具体的系统中时,可以替换为相应系统中采用的术语。
3GPP:3rd Generation Partnership Project,第三代合作伙伴计划
LTE:Long Term Evolution,长期演进技术
NR:New Radio,新无线、新空口
UE:User Equipment,用户设备
eNB:evolved NodeB,演进型基站
gNB:NR基站
TTI:Transmission Time Interval,传输时间间隔
OFDM:Orthogonal Frequency Division Multiplexing,正交频分复用
CP-OFDM:Cyclic Prefix Orthogonal Frequency Division Multiplexing,带有循环前缀的正交频分复用
C-RNTI:Cell Radio Network Temporary Identifier,小区无线网络临时标识
CSI:Channel State Information,信道状态信息
HARQ:Hybrid Automatic Repeat Request,混合自动重传请求
CSI-RS:Channel State Information Reference Signal,信道状态信息参考信号
CRS:Cell Reference Signal,小区特定参考信号
PBCH:Physical broadcast channel,物理广播信道
PUCCH:Physical Uplink Control Channel,物理上行控制信道
PUSCH:Physical Uplink Shared Channel,物理上行共享信道
PRACH:Physical random-access channel,物理随机接入信道
PDSCH:Physical downlink shared channel,物理下行共享信道
PDCCH:Physical downlink control channel,物理下行控制信道
UL-SCH:Uplink Shared Channel,上行共享信道
DL-SCH:Downlink Shared Channel,上行共享信道
RACH:random-access channel,随机接入信道
DCI:Downlink Control Information,下行控制信息
CG:Configured Grant,配置调度许可
MCS:Modulation and Coding Scheme,调制编码方案
RB:Resource Block,资源块
RE:Resource Element,资源单元
CRB:Common Resource Block,公共资源块
CP:Cyclic Prefix,循环前缀
PRB:Physical Resource Block,物理资源块
VRB:Virtual resource block,虚拟资源块
FDM:Frequency Division Multiplexing,频分复用
TDD:Time Division Duplexing,时分双工
FDD:Frequency Division Duplexing,频分双工
RRC:Radio Resource Control,无线资源控制
RSRP:Reference Signal Receiving Power,参考信号接收功率SRS:Sounding Reference Signal,探测参考信号
DMRS:Demodulation Reference Signal,解调参考信号
CRC:Cyclic Redundancy Check,循环冗余校验
SFI:Slot Format Indication,时隙格式指示
SIB:system information block,系统信息块
SIB1:System Information Block Type 1,系统信息块类型1
PSS:Primary Synchronization Signal,主同步信号
SSS:Secondary Synchronization Signal,辅同步信号
SSB:Synchronization Signal Block,同步系统信息块
CRB:Common resource block,公共资源块
BWP:BandWidth Part,带宽片段/部分
SFN:System Frame Number,系统(无线)帧号
PCI:Physical Cell ID,物理小区标识
IE:Information Element,信息元素
EN-DC:EUTRA-NR Dual Connection,LTE-NR双连接
MCG:Master Cell Group,主小区组
SCG:Secondary Cell Group,辅小区组
PCell:Primary Cell,主小区
SCell:Secondary Cell,辅小区
SPS:Semi-Persistant Scheduling,半静态调度
TA:Timing Advance,上行定时提前量
PT-RS:Phase-Tracking Reference Signals,相位跟踪参考信号
TB:Transport Block,传输块
TBS:Transport Block Size,传输块大小
CB:Code Block,编码块/码块
QPSK:Quadrature Phase Shift Keying,正交相移键控
16/64/256 QAM:16/64/256 Quadrature Amplitude Modulation,正交幅度调制
AGC:Auto Gain Control,自动增益控制
TDRA(field):Time Domain Resource Assignment,时域资源分配指示(域)
FDRA(field):Frequency Domain Resource Assignment,频域资源分配指示(域)
ARFCN:Absolute Radio Frequency Channel Number,绝对无线频率信道编号
RedCap Device:Reduced Capability Device,降能力设备
CORESET:Control resource set,控制资源集合
CORESET0:Control resource set 0,控制资源集合序号0
CCE:Control channel element,控制信道单元
REG:Resource Element Group,资源单元组
MIB:Master Information Block,主信息块
DRX:Discontinuous Reception,不连续接收
AL:Aggregation Level,汇聚级别
UCI:Uplink Control Information,上行控制信息
CSS:Common search space,公共搜索空间
USS:UE-specific search space,用户搜索空间
SCS:sub-carrier spacing,子载波间隔
SLIV:Start and length indicator value,起始和长度指示值
RIV:Resource indicator value,资源指示值
SS-RSRP:Synchronization Signal Reference Signal Received Power,同步参考信号接收功率
SS-RSRQ:Synchronization Signal Reference Signal Received Quality,同步参考信号接收质量
FR1:Frequency range 1 as defined in TS 38.104,由TS38.104定义的频率范围1
FR2:Frequency range 2 as defined in TS 38.104,由TS38.104定义的频率范围2
TCI:Transmission Configuration Indicator,传输配置指示
QCL:Quasi co-location,准共址
下文是与本发明方案相关联现有技术的描述。如无特别说明,具体实施例中与现有技术中相同术语的含义相同。
值得指出的是,本发明说明书中涉及的用户设备与终端设备含义相同,文中的UE也可以表示终端,后文中不做具体区分和限定。类似的,网络设备为与终端进行通信的设备,包括并不限于基站设备,gNB,eNB, 无线AP等,后文中不做具体区分和限定。
根据与网络的连接等情况不同,网络中的终端可分为三种状态,连接(connected)态,空闲(idle)态和非激活(inactive)态。连接态的用户与网络建立有无线连接,用于进行数据传输或相关的业务处理。空闲态和非激活态的用户与网络也保持一定的连接,比如需要监听网络发送的广播消息和寻呼消息,或进行相关的测量等。如果空闲或非激活态的终端没有信号需要接收或发送时,终端可以处于睡眠状态以节省功耗。根据不同的信道条件或所需要处理的业务等,终端还可以处于不同的睡眠模式,比如浅睡模式,用于较短时间内就会有新的信号要处理时的短暂休眠。再比如深睡模式,用于终端在较长时间内都没有新的信号要处理时,可以比浅睡模式进一步的减少终端功耗。一般的,在不影响业务功能的情况下,让终端更多的处于休眠模式可以有效地减少终端的功耗,从而提升用户的体验。空闲态和非激活态用户在很多方面的处理是类似的,为避免冗余,如不做特别说明,本发明相关文字中,针对空闲态的终端或网络的相关动作也可以应用于非激活态的终端。类似的,其他与空闲态有类似需求的终端状态也可以类比处理,不做一一详述。
终端接收数据信号时或之前,往往需要一些预处理。比如终端可进行自动增益控制(AGC)参数的调整,使得处理的数据在其合适的动态范围之内,以获得较好的处理效果。或者,终端需要进行时频跟踪,根据参考信号估计信号的时偏或频偏参数等,对要处理的信号或数据进行相应的修正,以获得较好的接收性能。终端还可以有一些其他的处理,以优化数据处理,改善用户体验等,这里不再一一描述。终端可利用网络发送的参考信号进行预处理。
网络给终端配置和发送参考信号,用于终端的信道测量,信道参数估计,移动性评估,空间参数估计等等,实现无线资源管理,辅助数据信号接收等功能。例如,终端可接收网络发送的同步参考信号进行AGC调整或时频参数的估计等。或者,终端可接收网络发送的CSI-RS信号进行信道测量或波束管理等。
网络配置和发送CSI-RS参考信号用于终端进行信道测量,波束管理 等功能。CSI-RS可以以CSI-RS资源的形式配置给UE,一个终端可以配置一个或多个CSI-RS资源。一个或多个CSI-RS还可以组成一个CSI-RS资源集,一个终端可以配置一个或多个资源集。每个CSI-RS资源中定义一个CSI-RS信号,可以包含多个配置参数,比如时频资源配置,功率配置,码分配置,QCL配置等的一项或多项。终端可根据配置的参数确定和接收CSI-RS信号,并用于测量或信号接收等功能。
根据一些配置参数,CSI-RS可分为多种类型,比如NZP-CSI-RS为非零功率的CSI-RS,也就是CSI-RS的发送功率不为零。根据配置周期不同,CSI-RS还可以分为周期,半永久和非周期的信号类型。周期CSI-RS即,在配置生效后,所关联的CSI-RS资源按一定的周期在时频资源上重复出现。半永久和非周期的CSI-RS资源则需要通过MAC-CE或DCI指示的方式进行激活。终端可根据不同CSI-RS的资源以及相关的报告指示等实现不同的功能。用于时频跟踪(Tracking)的CSI-RS信号又可称为TRS。本发明中统一以CSI-RS作为适用于本发明的不同类型或参数的CSI-RS的代称。
网络按一定的周期发送SSB信号,SSB包含多种参考信号,比如SSS和PSS等。网络可以使用波束或称空间滤波器进行信号的发送和接收,网络中所使用的波束可能是模拟波束或数字波束或两者的混合。网络使用相应的波束发送SSB,比如网络使用8个波束发送SSB,那么发送周期中的SSB可以编号为SSB0到SSB7,分别表示使用不同波束发送的SSB。终端可以根据不同的位置,选择最好的波束进行信号接收或发送,以实现较好的通信。网络也可以使用不同的波束和终端进行信号的收发以实现良好的通信效果。
NR中使用QCL参数表征不同信号之间的空间关系,也就是说使用满足QCL关系的两个信号具有一定的空间信道关联性。比如,终端配置了两个信号满足某种QCL类型关系,终端在处理这两个信号时可以使用相同的某个参数,或者可以由一个信号得到的参数应用到另一个信号的接收或发送。比如,QCL类型为QCL-typeA,可由一个信号得到的多普勒频移,多普勒扩展,平均时延,延迟扩展等参数应用于另一个信号, 或者说共享这些参数。又比如QCL类型为QCL-typeC,可由一个信号得到的一个信号多普勒频移,延迟扩展参数等参数。又比如QCL类型为QCL-typeD,可由一个信号得到的一个信号波束参数信息。其他还有若干QCL类型,用户在应用时可根据相关参数进行识别。用户也可以在更多个相互满足QCL关系的信号间进行相关参数的应用,不再一一描述具体的类型。某个信号的QCL信息的配置可以使用TCI-state参数组进行指示。TCI-state里面可以包含QCL的类型,满足QCL关系的另一个或多个信号,以及信号所在的小区或BWP信息等参数。TCI-state可使用TCI-stateID作为标识。具体的,应用到SSB的QCL,也就是如果某个信号和某个SSB波束满足QCL关系,则该信号和SSB的一些参数可以互相识别。
网络发送的CSI-RS信号可以使用波束进行发送,网络配置CSI-RS的TCI-state参数指示与其QCL的信号。比如,网络可以配置一个CSI-RS资源与某个SSB i满足QCL,终端可认为SSB i与该CSI-RS的某些信道参数相同。如果终端侧有其他信号与SSB i满足QCL,终端可以通过该CSI-RS的接收或测量获得相关参数,应用到该信号的接收。
网络中的用户需要按一定的规则检测网络发送的寻呼信息。网络给用户配置寻呼周期和寻呼帧等参数,用户根据配置参数在一定的时频资源上接收指示寻呼信息的PDCCH。终端还可以根据PDCCH中的指示信息进行相应的信号接收或处理,比如在PDCCH指示的时频资源上进行PDSCH的接收。由于基站不能确定所寻呼的用户的最佳接收波束是哪一个,因此基站在一个寻呼周期内,使用所有实际发送的SSB波束发送寻呼PDCCH给该用户,用户可根据自身的情况接收相关的PDCCH信息。例如,终端可根据PDCCH时频资源的位置和顺序等,确定寻呼周期内的某个SSB波束对应的PDCCH时频资源。类似的,终端在接收某个寻呼PDCCH时,也能够确定与其满足QCL关系的SSB波束的序号。网络中的其他信号也可能存在与寻呼PDCCH类似的情况,终端可根据显式或隐式的指示确定该信号与SSB波束的QCL关系,本发明中应用到寻呼PDCCH的方法也可以应用到该信号。
空闲态或非激活态的终端需要定期接收网络的广播或寻呼信息,或进行相关的测量。比如,在接收寻呼信息之前,终端可以根据自身的能力,信道条件等因素接收网络发送的参考信号,进行AGC,时频跟踪等处理,并接收相应的数据信号,从而获得良好的效果。由于各种内部或外部的因素,终端做这些预处理时需要从休眠模式唤醒的次数或持续时间不同。比如,信道条件较差时,相关的参考信号接收质量较差,或者终端的处理能力有限时,终端需要唤醒多次接收多个参考信号,以实现较好的接收效果。再比如,所配置的参考信号距离要接收的信号较远,终端也可能需要较多次的参考信号接收或者保持较长的活动时间以获得较好的接收效果。
空闲态或非激活态的终端可以利用SSB实现相关的AGC或时频参数估计。SSB的周期和时频位置往往是固定的,可能不能够满足用户接收信号并且降低功耗的要求,因此网络可以提供额外的参考信号用于终端接收,使得终端能够更快的获得所需要的参数或信息,从而减少唤醒的时间或次数,以实现更好的节能效果。网络可以配置CSI-RS信号用作空闲或非激活用户的参考信号。比如网络在SIB信息中配置一组非零功率的CSI-RS信号,用作空闲或非激活用户的参考信号。为了节省网络的功率消耗,网络可以使用给连接态用户发送的CSI-RS信号共享给空闲态用户使用。网络可以配置一个或多个CSI-RS资源给空闲态用户,其中的部分或全部资源同时可能也是给连接态用户使用的信号。如果连接态用户不再使用这些资源,网络可以根据不同的情况部分或全部关闭这些CSI-RS信号,以减少网络侧的功率消耗。是否发送或不发送这些CSI-RS信号取决于网络的实现。网络在发送CSI-RS资源的过程中,可能会根据连接态用户的调整或其他原因,使用不同的波束发送CSI-RS资源,这时,需要通知空闲态用户进行波束参数的调整或配置,使得空闲态用户能够正确的接收信号。也可能网络不通知空闲态用户,用户可以根据检测结果确实时间上CSI-RS的有效性。
空闲态终端接收网络的配置,确定一个或多个CSI-RS资源或资源集和其使用的参考信号。可选的,网络配置CSI-RS资源的一个或多个QCL 参考信号,终端根据网络的指示确定与CSI-RS资源或资源集满足QCL关系的参考信号。可选的,终端根据网络的指示确定与参考信号满足QCL关系的CSI-RS资源或资源集。可选的,终端根据网络的指示确定CSI-RS资源或资源集的有效时间。
另一方面,如果网络没有发送相应的指示,或者终端没有接收到指示来确定配置的CSI-RS使用的QCL参考信号,终端可以根据所配置的CSI-RS进行检测,如果检测到相关信号并满足条件,比如检测的信号强度超过预定的门限,或者检测的信号与某个SSB波束满足QCL关系,终端可确定在该信号的传输周期内该信号的可用性,以及该信号使用的QCL参考信号。
【实施例1】
图1是示出了根据本发明的实施例1的由用户设备执行的方法的流程图。
如图1所示,在步骤101,接收用于指示CSI-RS资源或资源集的指示信号。
然后,在步骤103,终端根据接收到的所述指示信号,确定与指示信号使用的参考信号满足QCL关系的CSI-RS资源或资源集。
可选的,终端确定指示信号中指示的CSI-RS资源或资源集与指示信号使用相同的QCL参考信号。可选的,终端接收指示信号中的CSI-RS的资源ID或资源集ID,终端确定所指示的CSI-RS,终端确定这些CSI-RS使用与指示信号相同的QCL参考信号。具体的示例,指示信号为寻呼PDCCH,终端接收寻呼PDCCH,指示终端使用ID为i的CSI-RS资源或资源集。终端根据PDCCH的参数可确定该PDCCH所使用的QCL参考信号为SSB j,终端可以确定CSI-RS资源或资源集i的CSI-RS与SSB j满足QCL关系。
可选的,当使用搜索空间0传输指示信号时,一个SSB波束可能对应两个相邻时隙上的指示信号时频位置,两个不同的SSB波束可能会对应到同一个指示信号时频位置。终端可根据指示信号的指示确定与其满足QCL关系的波束。示例的,指示信号为寻呼PDCCH,终端可根据 PDCCH中的指示确定所接收的PDCCH使用的哪一个SSB波束,也就是确定该PDCCH满足QCL关系的参考信号。示例的,使用1比特标识PDCCH所对应的SSB波束序号。比如使用0表示PDCCH与满足配置参数要求的第一个SSB波束满足QCL关系,使用1表示PDCCH与满足配置参数要求的第二个SSB波束满足QCL关系。终端可根据确定的SSB波束序号确定PDCCH所指示的CSI-RS资源或资源集的满足QCL关系的参考信号。
可选的,终端确定满足时间要求的CSI-RS资源使用的QCL参考信号。可选的,终端根据指示信号确定CSI-RS资源使用的QCL参考信号的时间要求。示例的,终端根据接收到指示信号所在的帧号P确定时间。终端确定时间为帧号P后第一个使用帧号SFN并满足(SFN+PF_offset)%T=0的时隙。T为寻呼循环的周期。PF_offset为寻呼帧偏移参数。终端从该时隙起,确定所指示的CSI-RS资源使用的相关的QCL参考信号。可选的,终端根据指示信号和时间长度确定CSI-RS资源使用QCL参考信号的时间。示例的,终端确定网络指示的长度为kT,终端根据接收到指示信号所在的帧号P,确定满足P后第一个满足(SFN+PF_offset)%kT=0的具有帧号SFN的时隙起,所指示的CSI-RS使用相关的QCL参考信号。k为时间长度参数,大于0的整数。%为取模运算。时间长度参数可以通过RRC信令或DCI的方式指示给终端。时间长度参数还可以通过预定义的方式指示给终端。
可选的,终端根据指示信号确定CSI-RS信号不使用QCL参考信号。示例的,UE根据配置或指示确定CSI-RS i使用SSB j作为QCL参考信号进行发送。UE在与SSB k满足QCL关系的PDCCH上收到指示,指示CSI-RS i使用SSB k作为QCL参考信号,终端确定在满足时间要求的资源上,CSI-RS i不使用SSB j作为QCL参考信号。
可选的,终端确定使用指示信号相同的QCL参考信号的CSI-RS信号不使用该QCL参考信号。示例的,UE根据配置或指示确定CSI-RS i对应的资源使用SSB j作为QCL参考信号。UE在SSB j的PDCCH上没有收到指示指示CSI-RS i对应的资源使用SSB j作为QCL参考信号进 行发送,终端确定在满足时间要求的资源上,CSI-RS i不使用SSB j作为QCL参考信号。
可选的,终端确定CSI-RS资源或资源集与指示信号使用相同的QCL参考信号。可选的,网络可配置若干个CSI-RS资源或资源集作为与SSB i满足QCL关系的候选信号集。网络可以从候选信号集中选择部分或全部使用SSB i作为QCL参考信号,并在使用SSB i做为QCL参考信号的指示信号上指示终端。网络使用指示信号指示使用的CSI-RS在候选信号集中的信息。可选的,使用位图指示,示例的,网络配置SSB i使用k个CSI-RS资源集作为候选信号集,并按其ID大小排序。终端接收的指示信息中可以使用一个有效长度为k比特的域,每个比特分别对应不同的候选CSI-RS资源或资源集。
可选的,终端根据指示消息确定CSI-RS使用相应的QCL参考信号。可选的,使用位图指示方法,比特位图从低位起分别对应排序的CSI-RS资源或资源集,如果指示信号中的CSI-RS或CSI-RS资源集对应的指示状态为1,终端确定该CSI-RS或CSI-RS资源集对应的CSI-RS使用与指示信号相同的QCL参考信号。如果,指示信号中的CSI-RS或CSI-RS资源集对应的指示状态为0,UE确定该CSI-RS或CSI-RS资源集对应的CSI-RS不使用与指示信号相同的QCL参考信号。类似的,也可以使用相反指示状态或排列次序不同的指示方法,不一一详述。
可选的,使用数量指示方法,示例的,网络配置SSB i使用K个CSI-RS资源集作为候选信号集,并按其ID大小排序。终端接收的指示信息中可以使用一个有效长度为ceil(log2(K))比特的域,指示所使用的CSI-RS资源集数量。ceil为向上取整运算,log2为以2为底的对数运算。如果指示信号中指示的候选信号数量为0,候选信号集中CSI-RS都不使用该参考信号作为QCL参考信号。如果指示的数量为k,参考信号候选资源中前k个资源使用与指示信号相同的QCL参考信号,其余CSI-RS资源不使用该QCL参考信号。
可选的,终端根据指示信号中的距离信息确定与指示信号使用相同QCL参考信号的CSI-RS资源或资源集。示例的,网络使用寻呼PDCCH 指示CSI-RS资源所使用的QCL信息。终端根据所指示的CSI-RS信号与寻呼PDCCH所在时隙或符号的距离确定该CSI-RS使用与PDCCH使用相同的QCL参考信号,所述的距离可以是时隙数,时间单位或符号数等。所述的距离也可以是通过预定义的或配置的表中的序号所代表的时隙数,时间单位或符号数等。
示例的,距离信息使用时隙数,如果指示信号与CSI-RS使用相同的子载波间隔参数和循环前缀长度,则两者使用的时隙单位相同。如果两者使用的子载波检测参数或循环前缀长度不同,两者使用的时隙单位不同,终端可确定使用较小的子载波检测参数对应的时隙单位作为距离的参考。可选的,终端确定与寻呼PDCCH所在时隙满足指示的时隙距离的时隙为使用相同QCL参考信号的CSI-RS资源所在时隙。可选的,终端确定与寻呼PDCCH所在时隙满足指示的时隙距离的时隙使用相同QCL参考信号的CSI-RS资源集中CSI-RS资源的最后一个时隙。可选的,终端确定与寻呼PDCCH所在时隙满足指示的时隙距离的时隙为使用相同QCL参考信号的CSI-RS资源所在的第一个时隙。
可选的,当CSI-RS不使用任何QCL参考信号时,CSI-RS不发送。
可选的,当CSI-RS不使用任何QCL参考信号时,终端不接收该CSI-RS。
【实施例2】
图2是示出了根据本发明的实施例2的由用户设备执行的方法的流程图。
如图2所示,在步骤201,接收CSI-RS资源或资源集使用的配置参数和指示信息。
然后,在步骤203,终端根据接收到的所述配置参数和所述指示信息确定CSI-RS以及CSI-RS使用的QCL参考信号。
可选的,网络配置CSI-RS资源,使用传输配置指示信息标识指示该资源使用的传输配置指示信息参数。示例的,终端确定一个TCI-state ID所对应的TCI-state所使用的参考信号,确定使用该TCI-state配置参数的CSI-RS资源使用的QCL参考信号。可选的,多个CSI-RS资源可 以组成一个CSI-RS资源集。网络可以为资源集配置TCI-state ID,资源集中的资源都使用相同的TCI-state ID所标识的TCI-state参数。终端可根据TCI-state配置参数确定使用该TCI-state参数组的CSI-RS资源或资源集所使用的满足QCL关系的参考信号。示例的,TCI-state参数可包含所使用的QCL类型等参数。TCI-state参数还可包含候选的QCL参考信号或者没有可用的QCL参考信号。
可选的,终端可根据指示信息确定传输配置指示信息所使用的参考信号,确定CSI-RS资源使用的参考信号。示例的,一个TCI-state中包含多个候选参考信号或参考信号组。终端确定一个CSI-RS资源使用的TCI-stateID为i,终端确定使用TCI-stateID为i的TCI-state配置。网络配置一个TCI-stateID为i的TCI-state使用一个或多个QCL参考信号。可选的,一个或多个QCL信号可分为一组或多组。终端根据指示信息选择一个或一组QCL参考信号作为CSI-RS资源的参考信号。可选的,网络可配置一个或多个TCI-stateID为i的TCI-state使用相同或不同的QCL参考信号。网络可以使用不同的组或样式确定TCI-stateID为i的TCI-state所使用的QCL参考信号。比如,网络配置组m中TCI-stateID为i的TCI-state配置参考信号SSB k作为QCL参考信号,网络配置组n中TCI-stateID为i的TCI-state配置参考信号SSB s作为QCL参考信号。终端接收网络的指示信息,指示使用TCI-stateID为i的CSI-RS使用组m,终端可以确定使用组m中相应TCI-state配置参数的QCL参考信号SSB k作为CSI-RS的QCL参考信号。
可选的,终端根据指示消息确定CSI-RS所使用的参考信号。可选的,终端根据指示的序号确定CSI-RS所使用的TCI-state的参考信号。示例的,TCI-state中使用一组或多组参考信号,终端根据组的序号确定TCI-state所使用的参考信号。示例的,不同组的TCI-state使用相同或不同的参考信号,终端根据组的序号确定TCI-state所使用的参考信号。终端根据CSI-RS所使用的TCI-state确定所使用的QCL参考信号。可选的,终端接收寻呼PDCCH中的指示,确定配置的CSI-RS使用的组,以及确定CSI-RS使用的QCL参考信号。可选的,终端接收公共PDCCH中的 指示,确定配置的CSI-RS使用的组,以及确定CSI-RS使用的QCL参考信号。可选的,终端接收公共PDSCH中的指示,确定配置的CSI-RS使用的组,以及确定CSI-RS使用的QCL参考信号。
可选的,网络配置组m中TCI-stateID为i的TCI-state不使用QCL参考信号,终端接收网络的指示,指示使用TCI-stateID为i的CSI-RS使用组m,终端可以确定使用组m的CSI-RS不使用QCL参考信号。
可选的,终端根据网络指示的组确定CSI-RS所使用的扰码。示例的,网络配置组m中扰码为A,网络配置组n中扰码为B。终端接收网络的指示,指示使用CSI-RS i使用组m,终端可以确定使用组m中的扰码作为该CSI-RS的扰码。
可选的,终端确定满足时间要求的CSI-RS资源使用的QCL参考信号。可选的,终端根据指示信号确定CSI-RS资源使用的QCL参考信号的时间要求。示例的,终端根据接收到指示信号所在的帧号P确定时间。终端确定时间为帧号P后第一个使用帧号SFN并满足(SFN+PF_offset)%T=0的时隙。T为寻呼循环的周期。PF_offset为寻呼帧偏移参数。%为取模。终端从该时隙起,确定所指示的CSI-RS资源使用的相关的QCL参考信号。可选的,终端根据指示信号和指示的长度确定CSI-RS资源使用QCL参考信号的时间。示例的,终端确定网络指示的长度为kT,终端根据接收到指示信号所在的帧号P,确定满足P后第一个满足(SFN+PF_offset)%kT=0的具有帧号SFN的时隙起,所指示的CSI-RS使用相关的QCL参考信号。k为大于0的整数。
可选的,终端根据指示信号确定CSI-RS信号不使用QCL参考信号。示例的,终端根据指示信号确定CSI-RS信号使用组中的TCI-state不使用参考信号,终端确定的CSI-RS不使用QCL参考信号。示例的,UE根据配置或其他指示确定CSI-RS i使用SSB j作为QCL参考信号进行发送。UIE收到指示,指示CSI-RS i对应的资源使用SSB k作为QCL参考信号进行发送,终端确定在满足时间要求的资源上,CSI-RS i不使用SSB j作为QCL参考信号。
可选的,终端确定使用QCL参考信号的CSI-RS信号不再使用该 QCL参考信号。例如终端根据配置或其他指示确定CSI-RS i对应的资源使用SSB j作为QCL参考信号进行发送。终端在没有收到指示信号指示CSI-RS i对应的资源使用SSB j作为QCL参考信号进行发送,终端确定在满足时间要求的资源上,CSI-RS i不使用SSB j作为QCL参考信号。
可选的,当CSI-RS不使用任何QCL参考信号时,CSI-RS不发送。
可选的,当CSI-RS不使用任何QCL参考信号时,终端不接收该CSI-RS。
【实施例3】
图3是示出了根据本发明的实施例3的由用户设备执行的方法的流程图。
网络设备配置CSI-RS资源或资源集,网络设备可能根据网络的需求调整部分或全部CSI-RS的波束,也就是调整CSI-RS的QCL参考信号,也可能根据网络的需求部分或全部不进行CSI-RS的发送。
如图3所示,在步骤301,在网络没有发送相应的指示,或者终端没有接收到指示来确定配置的CSI-RS使用的QCL参考信号的情况下,终端可以根据所配置的CSI-RS信号进行检测。
在步骤303,在检测到的信号强度超过预定的门限,或者检测的信号与某个SSB波束满足QCL关系的情况下,终端确认在该信号的传输周期内该信号的可用性,以及该信号使用的QCL参考信号。
可选的,空闲态终端根据CSI-RS信号的测量确定信号在时间上的有效性。终端接收网络配置的CSI-RS资源或资源集参数,确定CSI-RS的时频位置。终端在时频位置上进行检测或测量,如果检测到满足条件的CSI-RS信号,确定与信号满足QCL的参考信号,终端确定在时间范围内,该CSI-RS使用QCL参考信号。
示例的,网络配置CSI-RS资源或资源集参数,使用SSB i为QCL参考信号。终端在满足配置的时频位置上检测CSI-RS。可选的,检测到的信号接收功率RSRP超过门限,终端确定CSI-RS在时间上的有效性。可选的,检测到的信号接收功率RSRP与SSB i的RSRP测量得到的差异小于门限,终端确定CSI-RS在时间上的有效性。比如网络配置CSI-RS 的RE相对SS的RE的功率偏置为O。如果终端检测到RSRP CSI-RS-RSRP SS-O的小于门限k,终端确定CSI-RS为有效信号。终端确定CSI-RS在时间上的有效性,就是满足CSI-RS配置的时频资源和确定的时间范围上,终端确定CSI-RS使用SSB i作为QCL参考信息。
可选的终端根据检测的CSI-RS位置确定CSI-RS在时间上的有效性。时间的有效性可通过时间长度,无线帧号等表示。示例的方法,终端确定CSI-RS在寻呼周期上的帧号SFN i,终端确定CSI-RS信号的有效时间的起点和长度。终端确定有效时间的起始为帧号SFN满足(SFN+PF_offset)%kT=0,有效长度为kT。其中T为寻呼周期长度,k为大于0的整数。再一种方法,终端确定有效时间的起始帧号为SFN满足mod(floor((i+PF_offset)/T)*T-PF_offset,1024)的第一个时隙,有效长度为ceil(k*T/P)*P,P为CSI-RS的周期。T为寻呼周期长度,k为大于0的整数。
[变形例]
下面,利用图4来说明作为一种变形例的可执行本发明上面所详细描述的用户设备执行的方法的用户设备。
图4是表示本发明所涉及的用户设备UE的框图。
如图4所示,该用户设备UE40包括处理器401和存储器402。处理器401例如可以包括微处理器、微控制器、嵌入式处理器等。存储器402例如可以包括易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器等。存储器402上存储有程序指令。该指令在由处理器401运行时,可以执行本发明详细描述的由用户设备执行的上述方法。
上文已经结合优选实施例对本发明的方法和涉及的设备进行了描述。本领域技术人员可以理解,上面示出的方法仅是示例性的,而且以上说明的各实施例在不发生矛盾的情况下能够相互组合。本发明的方法并不局限于上面示出的步骤和顺序。上面示出的网络节点和用户设备可以包 括更多的模块,例如还可以包括可以开发的或者将来开发的可用于基站、MME、或UE的模块等等。上文中示出的各种标识仅是示例性的而不是限制性的,本发明并不局限于作为这些标识的示例的具体信元。本领域技术人员根据所示实施例的教导可以进行许多变化和修改。
应该理解,本发明的上述实施例可以通过软件、硬件或者软件和硬件两者的结合来实现。例如,上述实施例中的基站和用户设备内部的各种组件可以通过多种器件来实现,这些器件包括但不限于:模拟电路器件、数字电路器件、数字信号处理(DSP)电路、可编程处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程逻辑器件(CPLD),等等。
在本申请中,“基站”可以指具有较大发射功率和较广覆盖面积的移动通信数据和控制交换中心,包括资源分配调度、数据接收发送等功能。“用户设备”可以指用户移动终端,例如包括移动电话、笔记本等可以与基站或者微基站进行无线通信的终端设备。
此外,这里所公开的本发明的实施例可以在计算机程序产品上实现。更具体地,该计算机程序产品是如下的一种产品:具有计算机可读介质,计算机可读介质上编码有计算机程序逻辑,当在计算设备上执行时,该计算机程序逻辑提供相关的操作以实现本发明的上述技术方案。当在计算系统的至少一个处理器上执行时,计算机程序逻辑使得处理器执行本发明实施例所述的操作(方法)。本发明的这种设置典型地提供为设置或编码在例如光介质(例如CD-ROM)、软盘或硬盘等的计算机可读介质上的软件、代码和/或其他数据结构、或者诸如一个或多个ROM或RAM或PROM芯片上的固件或微代码的其他介质、或一个或多个模块中的可下载的软件图像、共享数据库等。软件或固件或这种配置可安装在计算设备上,以使得计算设备中的一个或多个处理器执行本发明实施例所描述的技术方案。
此外,上述每个实施例中所使用的基站设备和终端设备的每个功能模块或各个特征可以由电路实现或执行,所述电路通常为一个或多个集成电路。设计用于执行本说明书中所描述的各个功能的电路可以包括通 用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)或通用集成电路、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立的门或晶体管逻辑、或分立的硬件组件、或以上器件的任意组合。通用处理器可以是微处理器,或者所述处理器可以是现有的处理器、控制器、微控制器或状态机。上述通用处理器或每个电路可以由数字电路配置,或者可以由逻辑电路配置。此外,当由于半导体技术的进步,出现了能够替代目前的集成电路的先进技术时,本发明也可以使用利用该先进技术得到的集成电路。
尽管以上已经结合本发明的优选实施例示出了本发明,但是本领域的技术人员将会理解,在不脱离本发明的精神和范围的情况下,可以对本发明进行各种修改、替换和改变。因此,本发明不应由上述实施例来限定,而应由所附权利要求及其等价物来限定。

Claims (10)

  1. 一种由用户设备UE执行的方法,包括:
    接收用于指示信道状态信息参考信号CSI-RS资源或资源集的指示信号;以及
    根据接收到的所述指示信号,确定与所述指示信号使用的参考信号满足准共址QCL关系的CSI-RS资源或资源集。
  2. 根据权利要求1所述的方法,其中,
    根据所述指示信号,确定指示信号中指示的所述CSI-RS资源或资源集的一部分或全部使用与所述指示信号相同的QCL参考信号。
  3. 根据权利要求1所述的方法,其中,
    根据所述指示信号,确定满足时间要求的CSI-RS资源或资源集使用的QCL参考信号。
  4. 一种由用户设备UE执行的方法,包括:
    接收信道状态信息参考信号CSI-RS资源或资源集使用的配置参数和指示信息;以及
    根据接收到的所述配置参数和所述指示信息,确定所述CSI-RS资源或资源集使用的准共址QCL参考信号。
  5. 根据权利要求4所述的方法,其中,
    所述配置参数是传输配置指示状态TCI-state配置参数,所述指示信息指示TCI-state所使用的参考信号,
    根据所述TCI-state配置参数和所述指示信息,确定使用该TCI-state配置参数的所述CSI-RS资源或资源集使用的QCL参考信号。
  6. 根据权利要求5所述的方法,其中,
    根据不同的TCI-state配置参数确定所述CSI-RS资源或资源集使用的不同的QCL参考信号。
  7. 根据权利要求4所述的方法,其中,
    根据所述配置参数,确定满足时间要求的CSI-RS资源或资源集使用的QCL参考信号。
  8. 一种由用户设备UE执行的方法,包括:
    在没有接收到用于确定信道状态信息参考信号CSI-RS资源或资源集使用的QCL参考信号的指示信号的情况下,对所配置的CSI-RS信号进行检测;以及
    在检测的CSI-RS信号的强度超过预定的门限,或者检测的CSI-RS信号与参考信号满足准共址QCL关系的情况下,确认在该CSI-RS信号的传输周期内该CSI-RS信号的可用性、以及该CSI-RS信号使用的QCL参考信号。
  9. 根据权利要求8所述的方法,其中,
    根据检测的所述CSI-RS信号的位置,确定所述CSI-RS信号在时间上的有效性。
  10. 一种用户设备,包括:
    处理器;以及
    存储器,存储有指令,
    其中,所述指令在由所述处理器运行时执行根据权利要求1至9中的任一项所述的方法。
PCT/CN2022/071268 2021-01-14 2022-01-11 由用户设备执行的方法以及用户设备 WO2022152113A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110051534.7A CN114765496A (zh) 2021-01-14 2021-01-14 由用户设备执行的方法以及用户设备
CN202110051534.7 2021-01-14

Publications (1)

Publication Number Publication Date
WO2022152113A1 true WO2022152113A1 (zh) 2022-07-21

Family

ID=82363920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071268 WO2022152113A1 (zh) 2021-01-14 2022-01-11 由用户设备执行的方法以及用户设备

Country Status (2)

Country Link
CN (1) CN114765496A (zh)
WO (1) WO2022152113A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024016367A1 (zh) * 2022-07-22 2024-01-25 北京小米移动软件有限公司 信息处理方法、装置、通信设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110830222A (zh) * 2018-08-08 2020-02-21 宏碁股份有限公司 下行链路接收方法和使用所述方法的用户设备
CN111010890A (zh) * 2018-08-06 2020-04-14 Lg电子株式会社 在无线通信系统的coreset中接收信号的方法和使用该方法的设备
CN111096023A (zh) * 2017-09-11 2020-05-01 苹果公司 用于参考信号的配置的方法和装置
US20200145983A1 (en) * 2018-11-02 2020-05-07 Qualcomm Incorporated Implicit radio link monitoring resource configuration

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111096023A (zh) * 2017-09-11 2020-05-01 苹果公司 用于参考信号的配置的方法和装置
CN111010890A (zh) * 2018-08-06 2020-04-14 Lg电子株式会社 在无线通信系统的coreset中接收信号的方法和使用该方法的设备
CN110830222A (zh) * 2018-08-08 2020-02-21 宏碁股份有限公司 下行链路接收方法和使用所述方法的用户设备
US20200145983A1 (en) * 2018-11-02 2020-05-07 Qualcomm Incorporated Implicit radio link monitoring resource configuration

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Issues on QCL", 3GPP DRAFT; R1-1800440 ISSUES ON QCL, vol. RAN WG1, 12 January 2018 (2018-01-12), Vancouver, Canada, pages 1 - 2, XP051384335 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024016367A1 (zh) * 2022-07-22 2024-01-25 北京小米移动软件有限公司 信息处理方法、装置、通信设备及存储介质

Also Published As

Publication number Publication date
CN114765496A (zh) 2022-07-19

Similar Documents

Publication Publication Date Title
US11968739B2 (en) Transitioning cell to dormant state
US20200260304A1 (en) Radio Link Monitoring in Power Saving Mode
JP6785664B2 (ja) 端末装置、基地局装置および方法
CN110192426B (zh) 终端装置、基站装置、通信方法以及集成电路
US9847863B2 (en) Paging procedures using an enhanced control channel
EP3439380B1 (en) Terminal device, base station device, communication method, and control method
JP6666910B2 (ja) 端末装置、通信方法、および、集積回路
US20120163305A1 (en) Energy-saving base station and method
WO2019093419A1 (ja) 端末装置および方法
CN107615857B (zh) 终端装置、集成电路以及通信方法
CN111937458A (zh) 终端装置、基站装置以及通信方法
WO2022063025A1 (zh) 由用户设备执行的方法以及用户设备
CN116762303A (zh) 寻呼早期指示技术
WO2022127732A1 (zh) 由用户设备执行的方法以及用户设备
WO2022152113A1 (zh) 由用户设备执行的方法以及用户设备
WO2023051677A1 (zh) 由用户设备执行的方法以及用户设备
WO2023078394A1 (zh) 由用户设备执行的方法以及用户设备
WO2022267993A1 (zh) 由用户设备执行的方法以及用户设备
WO2023104082A1 (zh) 由用户设备执行的方法以及用户设备
WO2023051453A1 (zh) 由用户设备执行的确定pei机会的方法以及用户设备
WO2023284717A1 (zh) 由用户设备执行的方法以及用户设备
WO2022237613A1 (zh) 由用户设备执行的接收下行信号的方法以及用户设备
US11997517B2 (en) Synchronization detection based on radio link monitoring in power saving mode
US11785597B2 (en) Terminal apparatus, base station apparatus, and communication method
CN117676788A (zh) 由用户设备执行的方法以及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22738992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22738992

Country of ref document: EP

Kind code of ref document: A1