WO2023104082A1 - 由用户设备执行的方法以及用户设备 - Google Patents

由用户设备执行的方法以及用户设备 Download PDF

Info

Publication number
WO2023104082A1
WO2023104082A1 PCT/CN2022/137195 CN2022137195W WO2023104082A1 WO 2023104082 A1 WO2023104082 A1 WO 2023104082A1 CN 2022137195 W CN2022137195 W CN 2022137195W WO 2023104082 A1 WO2023104082 A1 WO 2023104082A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
pei
terminal
resource
availability
Prior art date
Application number
PCT/CN2022/137195
Other languages
English (en)
French (fr)
Inventor
马小骏
刘仁茂
Original Assignee
夏普株式会社
马小骏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 马小骏 filed Critical 夏普株式会社
Publication of WO2023104082A1 publication Critical patent/WO2023104082A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the technical field of wireless communication, and in particular to a method executed by user equipment and corresponding user equipment.
  • the present invention provides a method executed by user equipment and the user equipment.
  • the user equipment receives the indication message to obtain the availability of the reference signal configured in the network, including the manner in which the relevant indication signal corresponds to the configured resource parameter, the time period corresponding to the indication signal, and the like.
  • the terminal obtains relevant parameters through the indication signal, and through the reception of the reference signal, the terminal can further obtain accurate measurement or parameter estimation, more sleep time or better signal receiving ability, etc., so that the terminal obtains power consumption reduction ,
  • the advantages of improving the receiving ability have improved the service capability of the network, expanded the compatibility of the network, and greatly reduced the cost of communication network deployment.
  • a method performed by user equipment UE including: the terminal determines a reference frame according to the capacity of the paging advance indication PEI and the terminal identifier; and obtains PEI information according to the reference frame, and determines the indication in the PEI information Information about the availability of CSI-RS resources, and determining the availability of CSI-RS resources.
  • the determination of the information indicating the availability of CSI-RS resources in the PEI information includes: determining an indication period indicating the availability of CSI-RS resources; wherein, the indication period is composed of a starting point and a length; the starting point is composed of the The reference frame and the offset are determined; the length is determined according to the offset, the capacity of the PEI, and the paging parameters.
  • determining the availability of the CSI-RS resources includes: the availability indication information of the CSI-RS resources determined by the terminal during the period takes precedence over the CSI-RS resource availability indication determined by the terminal according to the indication in the paging PDCCH information.
  • determining the information indicating the availability of CSI-RS resources in the PEI information comprises: the terminal determines the bit length and/or mapping method of the information indicating the availability of CSI-RS resources in the PEI information .
  • the terminal determines, according to the size of the PEI-DCI, a bit length and/or a mapping method indicating CSI-RS resource availability information in the PEI information.
  • the terminal determines the bit length and/or mapping method of CSI-RS resource availability information indicated in the PEI information according to the high-level instructions; the high-level instructions are scrambled RNTI used by PEI-DCI and/or for CSI in PEI information - bit indication of RS availability indication mode;
  • the terminal determines the size of the PEI-DCI according to the bit length indicating CSI-RS resource availability information in the determined PEI information.
  • the terminal obtains the PEI information according to the reference frame, including determining the location of the transmission opportunity used by the PEI information; the location is determined by the capacity of the PEI and the sequence number of the terminal's paging PO in the PF.
  • a user equipment including: a processor; and a memory storing instructions, wherein the instructions execute the above method when executed by the processor.
  • the terminal by receiving the reference signal, the terminal can further obtain accurate measurement or parameter estimation, more sleep time or better signal receiving ability, etc., so that the terminal can obtain benefits such as reduced power consumption and improved receiving ability,
  • the service capability of the network is improved, the compatibility of the network is expanded, and the cost of communication network deployment is greatly reduced.
  • Fig. 1 is a flowchart illustrating a method performed by a user equipment according to an embodiment of the present invention.
  • Fig. 2 is a schematic diagram illustrating a method for a user to determine PEI information according to an embodiment of the present invention.
  • Fig. 3 is a schematic diagram showing a PEI-DCI structure according to an embodiment of the present invention.
  • Fig. 4 is a schematic diagram illustrating availability of CSI-RS resources within a determination period according to an embodiment of the present invention.
  • Fig. 5 is a flowchart illustrating a method performed by a user equipment according to an embodiment of the present invention.
  • Fig. 6 is a flowchart illustrating a method performed by a user equipment according to an embodiment of the present invention.
  • Fig. 7 is a flowchart illustrating a method performed by a user equipment according to an embodiment of the present invention.
  • Fig. 8 is a schematic diagram illustrating a user equipment determining a detected PEI opportunity according to an embodiment of the present invention.
  • Fig. 9 is a block diagram schematically showing a user equipment involved in the present invention.
  • the 5G/NR mobile communication system and its subsequent evolution versions are taken as an example application environment, and multiple implementations according to the present invention are described in detail.
  • the present invention is not limited to the following embodiments, but is applicable to more other wireless communication systems, such as communication systems after 5G and 4G mobile communication systems before 5G, 802.11 wireless networks, etc.
  • the terms involved in the present invention are described below, and the terms involved in the present invention are defined here unless otherwise specified.
  • the terms given by the present invention may adopt different naming methods in LTE, LTE-Advanced, LTE-Advanced Pro, NR and subsequent or other communication systems, but the present invention adopts a unified term, and when applied to a specific system When in , it can be replaced by the term used in the corresponding system.
  • 3GPP 3rd Generation Partnership Project
  • the third generation partnership project the third generation partnership project
  • LTE Long Term Evolution, long-term evolution technology
  • UE User Equipment, user equipment
  • gNB NR base station
  • FR1 Frequency range 1 as defined in TS 38.104, frequency period 1 defined by TS38.104
  • FR2 Frequency range 2 as defined in TS 38.104, frequency period 2 defined by TS38.104
  • BWP BandWidth Part, bandwidth fragment/part
  • SFN System frame number, system frame number
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • CP Cyclic Prefix, cyclic prefix
  • SCS sub-carrier spacing, subcarrier spacing
  • RB Resource Block, resource block
  • CRB Common Resource Block, public resource block
  • PRB Physical Resource Block, physical resource block
  • VRB Virtual resource block, virtual resource block
  • EPRE Energy per resource element, energy per resource unit
  • TDD Time Division Duplexing, Time Division Duplex
  • FDD Frequency Division Duplexing, Frequency Division Duplex
  • CSI Channel State Information, channel state information
  • DCI Downlink Control Information, downlink control information
  • MCS Modulation and Coding Scheme
  • SRS Sounding Reference Signal, sounding reference signal
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • CSI-RS Channel State Information Reference Signal, channel state information reference signal
  • TRS Tracking Reference Signal, tracking reference signal
  • CRC Cyclic Redundancy Check, Cyclic Redundancy Check
  • SIB system information block, system information block
  • SIB1 System Information Block Type 1, system information block type 1
  • PSS Primary Synchronization Signal, primary synchronization signal
  • SSS Secondary Synchronization Signal, secondary synchronization signal
  • MIB Master Information Block, master information block
  • SSB Synchronization Signal Block, Synchronization System Information Block
  • CORESET Control resource set, control resource collection
  • RACH random-access channel, random access channel
  • PBCH Physical broadcast channel, physical broadcast channel
  • PUCCH Physical Uplink Control Channel, physical uplink control channel
  • PUSCH Physical Uplink Shared Channel, physical uplink shared channel
  • PRACH Physical random-access channel, physical random access channel
  • PDSCH Physical downlink shared channel, physical downlink shared channel
  • PDCCH Physical downlink control channel, physical downlink control channel
  • UL-SCH Uplink Shared Channel, uplink shared channel
  • DL-SCH Downlink Shared Channel, Uplink Shared Channel
  • NZP-CSI-RS Not-Zero-Power CSI-RS, non-zero power CSI-RS
  • C-RNTI Cell Radio Network Temporary Identifier, cell radio network temporary identifier
  • P-RNTI Paging RNTI, paging wireless network temporary identifier
  • RA-RNTI Random Access RNTI, random access wireless network temporary identifier
  • CS-RNTI Configured Scheduling RNTI, configure scheduling wireless network temporary identifier
  • SI-RNTI System Information RNTI, System Information Wireless Network Temporary Identification
  • TC-RNTI Temporary C-RNTI, temporary cell wireless network temporary identifier
  • PEI Paging Early Indication, Paging Early Indication
  • a network device is a device for communicating with a terminal, including but not limited to a base station device, gNB, eNB, wireless AP, etc., which will not be specifically distinguished and limited in the following.
  • the base station can also be used as a form of network equipment for description, and other network equipment forms can be easily used for replacement during specific implementation.
  • a slot can contain 14 (Normal CP scenario) or 12 (Extended CP scenario) OFDM symbols, and multiple slots can form subframes and radio frames.
  • One radio frame in NR uses a length of 10 milliseconds.
  • a radio frame may consist of several time slots. For example, when the subcarrier interval is 15 kHz, one radio frame consists of 10 time slots.
  • the terminal can determine the position of the time slot according to parameters such as the frame number SFN of the radio frame and the sequence number of the time slot in the radio frame.
  • the terminal can also determine the position of the symbol for signal transmission in the time domain according to the serial number of the symbol in the time slot.
  • Resources in NR can be identified using resource blocks and resource units.
  • the resource block RB can be defined in the frequency domain as consecutive subcarriers, for example, for a subcarrier spacing (SCS) of 15kHz, one RB is 180kHz in the frequency domain.
  • the resource element RE can determine a unit on the time-frequency grid, which represents one subcarrier in the frequency domain and represents one OFDM symbol in the time domain.
  • a typical subcarrier spacing uses 15kHz ⁇ 2 ⁇ , where ⁇ can take an integer value.
  • the CSI-RS reference signal can be configured in the network for the terminal to perform functions such as channel measurement and beam management.
  • CSI-RS signal parameters can be configured to the terminal in the form of CSI-RS resources, and one terminal can be configured with one or more CSI-RS resources.
  • One or more CSI-RS resources can also form a CSI-RS resource set, and one terminal can be configured with one or more resource sets.
  • Several parameters are configured in each CSI-RS resource, such as time domain period and offset configuration, frequency domain position and bandwidth configuration, power configuration, code division parameter configuration, QCL configuration, frequency domain density parameter, subcarrier position, etc. define a CSI-RS signal.
  • the terminal determines relevant parameters for transmitting the CSI-RS signal on the time-frequency resource according to the relevant configuration parameters. For example, the terminal may determine the time slot position for CSI-RS transmission according to the period T CSI-RS of the CSI- RS signal and the offset T offset configuration parameters. The terminal determines that the radio frame and the slot number satisfy radio frame n f and time slot The frame number and slot number sent for the CSI-RS signal. The terminal may also determine the symbol number used by the CSI-RS on the time slot and the starting position and bandwidth of the CSI-RS on the frequency domain according to the configuration parameters.
  • the network can configure the frequency domain density and frequency domain allocation parameters of the CSI-RS, and the terminal can determine which REs the CSI-RS occupies on the RB for transmission according to the configuration. According to different configuration parameters, the CSI-RS can use some REs in the RB in the frequency domain. For example, if the frequency domain density parameter used by CSI-RS is 3, then among the 12 REs determined by one symbol and one RB, 3 REs are used for the transmission of CSI-RS signals, and the remaining REs are not used for the transmission of CSI-RS signals. transmission.
  • the number of REs used by the CSI-RS signal on the RB can be determined by configuration parameters, for example, a 4-bit bitmap is used to determine which of the 4 REs are used for the transmission of the CSI-RS signal. Ordinal numbers can also be used, for example, 0 starts from the first RE, 1 starts from the second RE, and so on.
  • the network can also configure several other parameters, and the terminal can determine the characteristics of the CSI-RS signal according to the relevant configuration, and use it for related reception or measurement.
  • the terminal can determine several time-frequency positions corresponding to a CSI-RS resource according to relevant parameters, and there can be transmission of related CSI-RS signals at these time-frequency positions, which are called several transmission opportunities of the CSI-RS resource .
  • the terminal can receive CSI-RS signals on these transmission opportunities for measurement or signal reception and the like.
  • the CSI-RS can be divided into various types, for example, the NZP-CSI-RS is a CSI-RS with non-zero power, that is, the transmission power of the CSI-RS is not zero.
  • CSI-RS can also be divided into periodic, semi-permanent and non-periodic signal types.
  • the periodic CSI-RS means that after the configuration takes effect, the associated CSI-RS resource appears repeatedly on the time-frequency resource at a certain period.
  • the semi-permanent and aperiodic CSI-RS resources need to be activated through MAC-CE or DCI indication.
  • the terminal can implement different functions according to different CSI-RS resources and related report indications.
  • the CSI-RS signal used for time-frequency tracking (Tracking) may also be called TRS.
  • TRS time-frequency tracking
  • CSI-RS is uniformly used as a synonym for CSI-RS of different types or parameters applicable to the present invention, or other signals that can realize similar functions.
  • the network sends the SSB signal at a certain period, and the SSB can include various synchronization signals, such as SSS and PSS.
  • the network can use spatial filters (also known as beams) for signal transmission and reception.
  • the beams used in the network may be analog beams or digital beams or a mixture of the two.
  • the network can use beams to send SSBs. For example, the network uses 8 beams to send SSBs, then the SSBs in the sending cycle can be numbered as SSB0 to SSB7, which respectively represent the SSBs sent using the corresponding beams.
  • the terminal can select the best beam for signal reception or transmission according to different locations, so as to achieve better communication effect.
  • the QCL parameter is used in the network to characterize the spatial relationship between different signals, that is to say, two signals satisfying the QCL relationship have a certain spatial channel correlation. For example, if the network configures two signals to satisfy a certain QCL type relationship, the terminal can use the same parameter when processing the two signals, or the parameter obtained from one signal can be applied to the receiving or sending of the other signal. For example, if the QCL type of the two signals is QCL-typeA, parameters such as Doppler frequency shift, Doppler spread, average delay, and delay spread obtained from one signal can be applied to the other signal, or these parameters can be shared.
  • the QCL type of two signals is QCL-typeC
  • parameters such as Doppler frequency shift and delay spread parameters of one signal can be obtained from one signal.
  • the QCL type is QCL-typeD
  • the parameter information of a signal beam can be obtained from a signal.
  • QCL types There may be other QCL types, which can be identified by the user according to the relevant parameters when applying. Users can also apply related parameters between more signals that satisfy the QCL relationship, and the specific process will not be described one by one.
  • the CSI-RS signal sent by the network device may be sent using a beam, and a reference signal may be configured for the CSI-RS in the network as a signal satisfying a QCL relationship with it.
  • the network can configure SSB i as a reference signal that satisfies a certain QCL type of a CSI-RS signal, and the terminal can consider that SSB i is the same as certain channel parameters of the CSI-RS, such as spatial signal parameters, Doppler frequency shift parameters etc. If there are other signals and SSB i on the terminal side that meet the QCL, the terminal can also obtain relevant parameters through the reception or measurement of the CSI-RS, and apply them to the reception of the signal.
  • the network can send the DCI message to the terminal through the PDCCH channel.
  • the terminal can determine a series of time-frequency resources and other parameters according to the configuration of the PDCCH, and perform DCI detection on the determined resources. When the terminal correctly detects the DCI message, it can perform related actions according to the content indicated by the DCI.
  • the PDCCH is sent using a beam, and the network can configure the DM-RS port of the PDCCH to meet the reference signal of the QCL relationship, for example, configure a certain SSB as the QCL reference signal of the PDCCH.
  • the terminal may also determine the default QCL reference signal of the PDCCH according to the configuration of the PDCCH, for example, determine a certain SSB as its reference signal according to the position of the time-frequency resource.
  • the configuration parameters of the PDCCH channel include search space set parameters, CORESET parameters, and the like.
  • the terminal can detect the PDCCH candidate set on the related search space set and the resources determined by the CORESET according to the configuration, which is called a PDCCH detection opportunity.
  • the terminal can receive the PDCCH according to the spatial filter parameters of the QCL reference signal of the PDCCH on the PDCCH detection opportunity, and detect whether the related DCI is received correctly.
  • the terminal in the network can be divided into different states, such as connected (connected) state, idle (idle) state and inactive (inactive) state.
  • a user in the connected state establishes a wireless link connection with the network for data transmission or related business processing.
  • the terminal in the idle state or the inactive state also maintains a certain connection with the network. For example, the terminal needs to monitor broadcast messages and paging messages sent by the network according to relevant configurations or parameters, or perform related measurements.
  • the behaviors of idle state and inactive state users are similar in many aspects of the present invention.
  • relevant actions for idle state terminals can also be applied terminal in the inactive state. If there are other user states similar to the idle state in the network, they can also be handled by analogy, and details will not be given one by one.
  • the terminal can be in a sleep state to save power consumption.
  • the terminal can be in different sleep modes. For example, the terminal enters the light sleep mode, which is used for a short sleep when there are new signals to be processed in a short period of time. Another example is that the terminal enters the deep sleep mode, which is used when there is no new signal to be processed for a long period of time, and the power consumption of the terminal can be reduced more than that in the light sleep mode.
  • the terminal in the sleep mode can effectively reduce the power consumption of the terminal, thereby improving user experience.
  • the terminal can adjust the parameters of automatic gain control (AGC), so that the received signal can be adjusted within an appropriate dynamic period to obtain a better receiving effect.
  • AGC automatic gain control
  • the terminal needs to perform time-frequency tracking, and estimate the time offset or frequency offset parameters of the signal according to the reference signal, so that the time-frequency parameters are consistent with the base station or can obtain accurate channel parameters, etc., so that the signal or data to be processed can be processed Corresponding corrections to obtain better reception performance.
  • the terminal may also perform some other processing to optimize data processing, improve user experience, etc., which will not be described here.
  • the network can configure and send reference signals to the terminal for channel measurement, channel parameter estimation, mobility assessment, spatial parameter estimation, etc.
  • the terminal may receive the synchronization reference signal sent by the network, and perform AGC adjustment or time-frequency parameter estimation. Due to various internal or external factors, the number of times or the duration of waking up from the sleep mode is different when the terminal performs these preprocessing. For example, when the channel condition is poor, the reception quality of the related reference signal is poor, or when the processing capability of the terminal is limited, the terminal needs to wake up multiple times and receive multiple reference signals to achieve better reception effect. For another example, the configured reference signal is far away from the signal to be received, and the terminal may also need to receive the reference signal more times or maintain a longer active time to obtain a better receiving effect.
  • a user terminal in an idle state or an inactive state can use the synchronization signal in the SSB to implement related AGC or time-frequency parameter estimation.
  • the period and time-frequency position of SSB are often fixed, which may not meet the requirements of different users to receive signals and reduce power consumption. Therefore, the network can provide additional reference signals for terminal reception, so that the terminal can obtain the required parameters faster. or information, thereby reducing the time or frequency of wake-ups to achieve better energy-saving effects.
  • the network can configure the CSI-RS signal to be used as a reference signal for idle or inactive users. For example, the network configures several periodic CSI-RS signals with non-zero power in the system broadcast information, which are used as reference signals for idle or inactive users. In order to save the power consumption of the network, the network may use the CSI-RS signal sent to the users in the connected state to share it with the users in the idle state. If the connected user no longer uses these resources, or the network needs to reduce transmission power consumption, the network can partially or completely turn off these CSI-RS signals according to different situations.
  • a user terminal in an idle state or an inactive state can determine one or more CSI-RS resources and corresponding transmission opportunities according to an instruction of the network. Whether to actually send CSI-RS signals on these CSI-RS transmission opportunities can be controlled by the network.
  • the network device may start or stop part of the signal transmission according to the adjustment of the connected user or the network power saving or other reasons. At this time, it is necessary to notify the idle state user of the state update of the CSI-RS used, so that the idle state user can correctly receive the CSI-RS signal.
  • the network device may send indication information to indicate the availability status of the configured CSI-RS resources in one or several transmission opportunities.
  • the terminal can receive the signal on the transmission opportunity, so as to save power consumption by using the signal.
  • the CSI-RS is configured as a periodic signal
  • the relevant action of indicating the availability of CSI-RS signals on one or several transmission opportunities may also be simply referred to as indicating the availability or unavailability of CSI-RS signals or the availability or unavailability of CSI-RS resources. These descriptions can be understood as indicating whether to transmit CSI-RS signals on one or several transmission opportunities determined by the corresponding CSI-RS resources.
  • a terminal in an idle state or an inactive state needs to periodically receive network information, such as paging information, SIB update messages, and the like.
  • the terminal in the idle state or the inactive state can use the discontinuous reception mode of DRX to receive the paging message of the network, so as to save power consumption. That is, in a paging DRX cycle, the terminal wakes up and receives only part of the time. For example, the terminal determines the position of the paging opportunity in each paging cycle according to the parameters configured by the network, detects the paging PDCCH on the paging PDCCH detection opportunity related to the paging opportunity, and performs paging according to the content indicated in the paging PDCCH. next move.
  • the terminal can determine a paging cycle parameter T and a paging frame (paging frame, PF) parameter N for receiving a paging message according to network configuration.
  • a paging frame is a radio frame and may contain one or more paging occasions (POs) or the start of a PO.
  • POs paging occasions
  • a paging opportunity is composed of several paging PDCCH detection opportunities (monitoring occasion, MO).
  • the terminal determines that there are N paging frames in a paging cycle with a length of T radio frames, and determines that one of them is the paging frame for which the terminal needs to detect paging information.
  • a paging frame includes multiple POs
  • the terminal determines one of them as the terminal's PO according to rules and parameters. Then the terminal can select an MO in the PO to receive the PDCCH, for example, select one or some MOs to detect the paging PDCCH according to the beam information. If the terminal detects a legal paging PDCCH, the terminal performs paging PDSCH reception or other related actions according to the detected DCI.
  • the terminal can obtain the parameter UE_ID for determining the paging opportunity according to the TMSI or IMSI of the user.
  • Terminal TMSI usually uses longer bits.
  • 5G-S-TMSI uses 48 bits.
  • the terminal obtains the frame number SFN of the PF corresponding to the PO that the user needs to detect according to the parameters configured by the network, which is the SFN that satisfies the following conditions
  • PF_offset is the paging frame offset value configured by the network
  • T is the paging cycle period determined by the terminal.
  • N is the number of paging frames in one paging cycle.
  • mod is a modulo operation.
  • the terminal determines the frame number of the paging frame PF, and then determines the PO to be detected.
  • a PF may be associated with multiple POs, and the UE needs to detect one of the POs to detect the related PDCCH to determine whether there is a corresponding paging message, etc.
  • the terminal may determine the PO that the terminal needs to detect according to the sequence number i_s of the PO related to the PF.
  • i_s floor(UE_ID/N) mod Ns
  • Ns is the number of POs corresponding to one PF configured in the network.
  • floor is the lower integer operation.
  • the terminal After the terminal determines the serial number of the PO, it can determine the information of each detection opportunity MO according to the paging search space set parameters configured by the network. For example, starting from the PF radio frame, the terminal can determine the sequence number of the PO associated with the PF and S*X consecutive MOs of the PO according to the search space set configuration and CORESET configuration of the paging PDCCH.
  • S is the number of SSBs actually transmitted in one SSB cycle in the network, for example, it can be determined through the ssb-PositionsInBurst parameter in SIB1.
  • the X value defaults to 1 and can also be configured by higher layers.
  • Each S MO of the PO is related to S different SSB serial numbers, or in other words, the QCL relationship is satisfied according to the sequence of SSB numbers.
  • the terminal can detect the paging PDCCH on the determined MO according to a related method.
  • the DCI in the paging PDCCH contains some information, such as indicating whether the user has a corresponding paging message to receive, and if there is a paging message received, the DCI also indicates the PDSCH resource parameters used to transmit the paging message, including time Domain resources, frequency domain resources, modulation methods and other parameters.
  • the terminal can receive the paging PDSCH according to the indication.
  • a terminal in an idle state usually works in a DRX state, and enters a sleep state when not receiving data.
  • the terminal needs to meet the time-frequency synchronization state with the base station, so as to ensure the correct transmission of data.
  • the terminal When the terminal is running, there may be a time-frequency deviation between the terminal and the base station.
  • the continuous accumulation of small deviations may become a large deviation, resulting in the loss of synchronization between the terminal and the base station.
  • the terminal can perform time-frequency tracking by receiving SSB to obtain accurate synchronization with the base station. Therefore, when performing PO detection, the terminal needs to wake up in advance and receive multiple SSBs to realize time-frequency synchronization between the terminal and the network. If the DCI detected by the terminal in the PO indicates that no paging data is received, the terminal may re-enter sleep mode to save power consumption.
  • the network may send indication information before the terminal detects POs, indicating whether the terminal needs to detect POs in one or more paging cycles.
  • the indication information may be called PEI (paging early indication), or other names may be used, and PEI may be used to refer to related information uniformly in the following.
  • PEI paging early indication
  • the network sends PEI indication information, indicating that the terminal needs to detect the corresponding PO.
  • the terminal wakes up before the PO, performs time-frequency synchronization, and performs paging PDCCH detection and possible PDSCH reception on the determined PO.
  • the terminal does not need to detect PO, the terminal does not need to detect on the corresponding PO, and does not need to wake up and receive SSB before PO for time-frequency synchronization to prepare for possible PDSCH reception. In this way, the terminal can avoid actions such as unnecessary wake-up and synchronization through instructions from the network, thereby saving power consumption of the terminal.
  • the PEI indication information may be sent in the form of DCI by using the PDCCH channel, and may also be recorded as PEI-DCI.
  • the network configures the search space set and CORESET parameters used by the PEI-PDCCH, and the terminal determines the time-frequency resources related to the PEI-PDCCH according to the configuration.
  • the PEI-PDCCH can use a configuration similar to that of the paging PDCCH.
  • the terminal can determine several PEI opportunities (PEI-O) according to the configuration of the PEI-PDCCH, and several PEI-PDCCH detection opportunities related to the PEI opportunities (PEI-MO ).
  • PEI-MO PEI-MO of a PEI opportunity can satisfy QCL with different SSB numbers, so as to cover users in different directions in the cell.
  • the network sends indication information to different terminals in these PEI opportunities.
  • the terminal will not detect the PEI-PDCCH on all PEI opportunities, so the terminal needs to determine which PEI opportunity to perform detection on. That is, the terminal determines the corresponding relationship between the PEI opportunity and the PO detected by the terminal, so that the terminal can correctly receive the PEI-PDCCH, and obtain the PEI indication information whether the UE detects the corresponding PO from the demodulated PEI-DCI .
  • One PEI information can indicate the reception of multiple POs, that is, terminals that detect different POs can detect the same PEI opportunity to obtain PEI-DCI, and the PEI-DCI includes indication information for different POs.
  • the number of POs corresponding to one piece of PEI information can be called the capacity of the PEI. Depending on the purpose of description, it can also be called the capacity of PEI opportunities or the capacity of PEI-DCI.
  • the bits in the PEI-DCI can be used to indicate whether an idle or inactive terminal needs to detect the related PO, and can also indicate the availability of CSI-RS for idle or inactive terminals to receive before PO or during PF. If the terminal is instructed to detect a related PO, it can determine the availability of the CSI-RS signal according to the related indication. The terminal can use these CSI-RS signals to obtain better time-frequency synchronization, or obtain more sleep time, so as to improve the performance of the terminal or save the power consumption of the terminal. The terminal needs to determine the period corresponding to the availability of the CSI-RS signal indicated by the PEI, for example, determine a starting position and duration, then the availability of several CSI-RS during this period is determined by the relevant indication field in the PEI.
  • the terminal can determine which CSI-RS signals on which CSI-RS opportunities can be used by itself, so as to achieve related purposes.
  • the terminal also needs to determine the mapping relationship between the availability bits indicated in the PEI-DCI and the CSI-RS resources, so as to determine the availability of specific CSI-RS resources.
  • Fig. 1 is a flowchart illustrating a method performed by a user equipment according to an embodiment of the present invention.
  • the terminal receives first indication information, and the first indication information indicates the configuration of CSI-RS resources configured in the network for users in idle state or inactive state.
  • step 102 determine the availability period of the CSI-RS resource indicated in the second indication information, including the starting point and the length.
  • step 103 the second indication information is received to determine the availability of at least one CSI-RS resource used by idle state or inactive state users.
  • the terminal in the idle state or the inactive state receives the first indication information broadcast by the system, and can determine that a number of CSI-RS resources configured by the network can be used for assisted reception of paging information. Through these configuration information, the terminal can obtain the period, symbol and frequency position of the CSI-RS resource, etc., and determine the transmission opportunity of the CSI-RS signal in the time domain. The terminal needs to determine the availability of these transmission opportunities according to the instructions of the network.
  • the terminal may receive the second indication information to determine the availability of the transmission opportunity.
  • the second indication information is information used to indicate availability of the CSI-RS in the PEI-DCI information sent by the network. According to the detected PEI-DCI information, the terminal determines the period during which the indication information acts.
  • the terminal can determine the PO to be detected in a paging cycle according to the paging parameters.
  • the terminal determines the position of the PEI opportunity associated with the PO to be detected in a paging cycle. For example, firstly, the position of the first reference frame associated with the PO is determined according to the UE_ID of the terminal.
  • the terminal determines the position of the second reference frame according to the first offset value from the first reference frame, and the starting symbol position of the PEI opportunity with the second offset from the position of the second reference frame.
  • the terminal determines several PEI-PDCCH detection opportunities from the starting position, and detects the PEI-DCI transmitted on the PEI opportunities.
  • the first offset and the second offset value can be configured by a high layer, for example, the first offset value is several radio frames, and the second offset value is several symbols.
  • a reference frame is shown in Figure 2.
  • the terminal can determine the PO to be detected in a paging cycle, and the time-frequency position of the PEI opportunity corresponding to the PO. Further, the terminal may determine the CSI-RS resource availability information indicated in the PEI-DCI transmitted on the PEI opportunity.
  • the CSI-RS availability indication information in the PEI-DCI indicates availability of several POs and CSI-RS signals associated with the PEI opportunity.
  • a PEI opportunity may be associated with multiple different POs, and these POs are respectively detected by different (group) terminals. Different terminals need to determine the relevant PEI opportunity and CSI-RS availability information respectively.
  • a PEI-DCI includes a set of CSI-RS availability indication information, and the terminal detecting the PEI uses the same CSI-RS availability indication information to determine the availability of the CSI-RS.
  • FIG. 3 A specific example is shown in Figure 3, one PEI opportunity corresponds to k different POs, then k*A bits are used in the PEI-DCI to indicate the PEI information of the relevant PO, and each PEI-PO is used to indicate the detection of the PO
  • the PEI information used by the terminal of the PO is represented by A bits.
  • A is the number of groups of different terminals in a PO
  • k is the number of POs associated with a PEI opportunity.
  • the Y bit is used in the PEI-DCI to indicate the availability of the relevant CSI-RS, and is used to detect the terminals of these POs to determine the transmission status of the corresponding CSI-RS.
  • the order of each bit part in the DCI is also not unique, and can be determined according to specific specifications, and will not be described in detail here.
  • the terminal After determining the CSI-RS availability indication information in the PEI-DCI received on the detected PEI opportunity, the terminal also needs to determine the application period of these indication information, that is, the availability of which CSI-RS transmission opportunities these bits correspond to.
  • the terminal determines the starting point of the CSI-RS availability indication period.
  • the starting point for the terminal to determine is the offset of O time units from the first reference frame used by the terminal to determine the PEI.
  • the offset value O can be configured by the upper layer, and when the upper layer does not configure this parameter, O defaults to a value of 0.
  • the unit of O may be a time unit used in the network, for example, a time slot, or a radio frame, or use milliseconds, and so on.
  • the terminal uses the first offset value used to determine the PEI opportunity as the value of 0.
  • the terminal uses a value whose difference between the first offset value and the second offset value used for determining the PEI opportunity is 0.
  • the difference value if the offset value is expressed in different time units, the conversion between different units needs to be considered, which will not be described in detail here.
  • the terminal determines the length of the CSI-RS availability indication period in the PEI-DCI.
  • the terminal can determine the number of PFs corresponding to the PEI opportunity according to the number of POs associated with the PEI opportunity.
  • the terminal determines the length of the CSI-RS availability indication period according to the number of PFs and the offset value 0.
  • the terminal can determine the number D of POs indicated by a PEI opportunity according to the configuration, and the terminal can determine the number Ns of POs corresponding to each paging frame in the network according to the high-level configuration.
  • the terminal determines M*(T/N) consecutive radio frames according to M, where T is the number of radio frames in a paging cycle determined by the terminal, and N is the number of paging frames in a paging cycle determined by the terminal.
  • the terminal determines that the length of the indication period is O+M*(T/N) radio frames.
  • the parameter X to adjust the value of O to use different units, for example, the length is O+M*(T/N)*X.
  • FIG. 4 shows two transmission opportunities of CSI-RS1/2/3 in the time domain.
  • the terminal determines the indication period of the CSI-RS indication information in the PEI-DCI, for example, determines it as the third period according to the starting point and the length.
  • the terminal determines the availability of each CSI-RS transmission opportunity in the third period according to the indication in the PEI-DCI.
  • the indication information in the PEI-DCI uses a bitmap to respectively indicate the availability of each CSI-RS.
  • the terminal determines that CSI-RS1 corresponds to the first bit of the bitmap, CSI-RS2 corresponds to the second bit, and CSI-RS3 corresponds to the third bit.
  • the indication information uses bit 1 to indicate that there is CSI-RS signal transmission on the CSI-RS transmission opportunity, and uses bit 0 to indicate that there is no CSI-RS signal transmission on the CSI-RS transmission opportunity. Then the terminal can determine the transmission status of each CSI-RS resource according to the CSI-RS indication information in the PEI-DCI.
  • the terminal may determine that there are actually transmitted CSI-RS signals on the transmission opportunities of CSI-RS1 and CSI-RS2 in the third period, and there is no signal actually transmitted on the transmission opportunities of CSI-RS3. Therefore, the terminal can determine a corresponding receiving scheme according to the signal transmission situation to achieve a corresponding purpose.
  • the paging PDCCH may also be used in the network to indicate the availability of CSI-RS resources.
  • the terminal receives the indication information in a paging PDCCH and determines a Availability of CSI-RS resources in several default paging cycles starting from SFN. At this time, if the terminal period determined by the CSI-RS availability information in PEI-DCI overlaps with the period determined by the CSI-RS availability information in the paging PDCCH, the terminal needs to confirm which indication is in the overlapped period It is effective.
  • the terminal determines that the CSI-RS is within the period according to the information indicated by the PEI-DCI on effectiveness. That is, during a common period, the indication information in the PEI-DCI has priority over the indication information in the paging PDCCH.
  • the terminal does not expect to receive the CSI-RS availability indication information in the PEI-DCI, and the available CSI-RS transmission opportunity is determined according to the paging PDCCH indication during the determined period, and the indication in the PEI-DCI Indicated as unavailable in the information. Since the indication period of the CSI-RS availability information in the paging PDCCH is generally longer, through this method, the terminal can obtain the transmission status of the CSI-RS reference signal required for the current paging detection faster, so as to better Improve terminal performance.
  • the availability of CSI-RS resources can be indicated through physical layer signaling. For example, it is indicated by some bits in the paging advance indication information PEI.
  • PEI paging advance indication information
  • Several CSI-RS resources or resource sets can be configured in the network for reception by idle or inactive terminals. The terminal needs to determine the mapping method between the bit field indicating the availability of the CSI-RS and the CSI-RS resource, that is, to determine which resource or resource set the availability of which or which resources or resource sets are indicated by a certain availability indication bit in the received PEI-DCI, so that The signal can be received correctly.
  • PEI-DCI of different sizes, different mapping methods may be used.
  • the terminal determines the CSI-RS resource and DCI according to the first method. Indicates the correspondence between bits.
  • the terminal determines the correspondence between CSI-RS resources and indication bits in the DCI according to the second method. The terminal needs to determine the size of the bit field used to indicate the availability of the CSI-RS in the DCI, and determine the corresponding mapping method.
  • Fig. 5 is a flowchart illustrating a method performed by a user equipment according to another embodiment of the present invention.
  • step 201 the terminal determines whether the size of the PEI-DCI is the same as the DCI format 1_0, and determines the corresponding indication method;
  • step 203 the terminal determines the size and/or mapping method of the CSI-RS indication information in the PEI-DCI according to the indication method.
  • the terminal can use a specific RNTI to perform blind detection and descrambling on the received PDCCH signal, and check the correctness of the CRC. If it can be decoded correctly and passes the verification, the terminal can obtain relevant DCI indication information; if it cannot be decoded or the verification fails, the terminal discards the relevant signal. In this way, the terminal can distinguish signaling with the same DCI size but scrambled with different RNTIs.
  • the network uses PEI-DCI to carry the indication information of CSI-RS resource availability, indicating whether there are available CSI-RS signals for user reception during the corresponding period.
  • PEI-DCI information is transmitted using the PDCCH channel, and the network may use different configuration methods to adapt to different requirements. For example, the network configures the PDCCH search space of the PEI to use the same search space as the paging PDCCH, and uses the same DCI size, so as to reduce terminal blind detection overhead. At this time, the network needs to configure an RNTI different from the P-RNTI used by the paging PDCCH, such as PEI-RNTI, so that the terminal can distinguish different DCI information.
  • the maximum number of bits that can be used for CSI-RS availability indication in PEI-DCI can be relatively large, for example, the same as the maximum number of bits that can be used for CSI-RS availability indication in DCI for paging PDCCH.
  • a smaller number of bits of the PEI-DCI is used in order to improve the receiving reliability of the PEI signal or enhance the downlink receiving capability of the PEI signal. At this time, a smaller number of bits can also be used in the PEI-DCI Used to indicate the availability of CSI-RS.
  • the mapping relationship between the relevant indication bits and the CSI-RS resources or resource sets configured in the SIB is different, and the terminal needs to determine the CSI-RS availability indication in PEI-DCI The mapping relationship between the information and the CSI-RS resource set, so as to determine the availability of the indicated CSI-RS resource.
  • the terminal determines, according to the size of the PEI-DCI, the number of bits used for CSI-RS availability indication and/or a mapping manner between these bits and CSI-RS resources. Specifically, when the size of the PEI-DCI is the same as that of the DCI format 1_0, the terminal uses the first method to determine the number of bits of the CSI-RS availability indication in the PEI-DCI and the mapping method with the CSI-RS resource. When the size of the PEI-DCI is smaller than DCI format 1_0, the terminal uses any of the second/third/fourth methods to determine the number of bits of the CSI-RS availability indication in the PEI-DCI and the mapping method with the CSI-RS resource.
  • the network may configure a group number for the CSI-RS resource set configured by idle or inactive users. When there are many CSI-RS resources, different CSI-RS resources or resource sets may use the same group number.
  • the terminal determines to use the first method to determine the number of bits of the CSI-RS availability indication and the mapping method with the CSI-RS resource, the terminal determines the number of bits corresponding to the maximum group number configured for the CSI-RS resource set in the system information. Indicate the number of bits of the CSI-RS availability indication, and determine the corresponding bit of the CSI-RS resource in the CSI-RS resource set in the indication information according to the group number of the CSI-RS resource set.
  • the terminal determines that the number of CSI-RS indication bits is the maximum number of group numbers plus 1, and the terminal determines that the indication bit corresponding to the group number is the nth bit in the availability indication bits, where n is the group Number value plus 1. In this way, the terminal can determine the position of the indication bit according to the group number of the CSI-RS resource, and obtain corresponding indication information of the transmission opportunity of the CSI-RS resource.
  • the terminal determines that the number of bits used to indicate the CSI-RS availability indication in the PEI-DCI is 1
  • the terminal determines the availability of the CSI-RS resource indicated by the availability bit as the CSI-RS resource using the same QCL reference signal as the PDCCH detection opportunity of the received PEI-DCI.
  • the terminal uses the third method to determine the number of bits of the CSI-RS availability indication and the mapping manner with the CSI-RS resource
  • the terminal determines that the number of bits used to indicate the CSI-RS availability indication in the PEI-DCI is N.
  • N is the maximum number of CSI-RS resource sets configured by higher layers for idle state or active state users to receive and use the same QCL reference signal.
  • the terminal corresponds to the CSI-RS indication information bits according to the order of the group IDs of the CSI-RS resource sets of the same QCL reference signal.
  • the terminal determines that the number of bits used to indicate the CSI-RS availability indication in the PEI-DCI is 1.
  • the terminal determines several CSI-RS resource sets using the same group ID according to the group ID of the CSI-RS resource set of the same QCL reference signal, and the terminal determines that the availability indication bit is used to indicate the number of CSI-RS resources in the several CSI-RS resource sets. availability.
  • the network is configured with 3 CSI-RS resource sets, and each resource set includes 4 CSI-RS resources.
  • the configuration group number in CSI-RS resource set 1 is 0, and the CSI-RS resources in it use SSB0 as the QCL reference signal.
  • the configuration group number in the CSI-RS resource set 2 is 1, and the CSI-RS resources in it use SSB1 as the QCL reference signal.
  • the configuration group number in the CSI-RS resource set 3 is 2, and the CSI-RS resources in it use SSB2 as the QCL reference signal.
  • the terminal determines that the number of bits used to indicate the availability of CSI-RS in PEI-DCI is 3, and each bit corresponds to CSI-RS resource set 1/2/3 in turn Availability of resources in .
  • the terminal determines to use the second method to indicate the availability of CSI-RS resources, the number of bits used to indicate the availability of CSI-RS in the PEI-DCI received by the terminal on the PEI-PDCCH that meets the QCL with SSB1 is 1, and the bit indicates Use SSB1 as the CSI-RS resource of the QCL reference signal, that is, the availability of resources in the CSI-RS resource set 2 .
  • the network is configured with 3 CSI-RS resource sets, and each resource set includes 4 CSI-RS resources.
  • the configuration group number in CSI-RS resource set 1 is 0, and the CSI-RS resources in it use SSB0 as the QCL reference signal.
  • the configuration group number in the CSI-RS resource set 2 is 1, and the CSI-RS resources in it use SSB1 as the QCL reference signal.
  • the configuration group number in the CSI-RS resource set 3 is 2, and the CSI-RS resources in it use SSB1 as the QCL reference signal.
  • the terminal determines that the number of bits used to indicate the availability of CSI-RS in the PEI-DCI is N.
  • the indication information in the PEI-DCI received by the terminal on the PEI-PDCCH that satisfies the QCL with SSB1 indicates that SSB1 is used as the QCL reference signal CSI-RS resource, that is, the availability of resources in CSI-RS resource sets 2 and 3.
  • the first bit of the N indication bits indicates the availability of resources in the CSI-RS resource set 2, and the second bit indicates the availability of resources in the CSI-RS resource set 3.
  • the terminal determines CSI-RS availability bits in the PEI-DCI and/or a mapping manner between these bits and CSI-RS resources according to the size of the PEI-DCI.
  • the size of PEI-DCI is smaller than DCI format 1_0
  • the terminal uses the second/third/ One of the four manners determines the bit number of the CSI-RS availability indication and the mapping manner with the CSI-RS resource.
  • the terminal uses the first method to determine the number of bits of the CSI-RS availability indication and the mapping method with the CSI-RS resources.
  • the network configures the size of PEI-DCI to be M, and the terminal can determine the remaining bit size of PEI-DCI according to the size A of each PEI-PO, the PEI capacity D, and the number of bits X determined by other parts.
  • Y M-(A*D+X).
  • the terminal can determine information such as the size of CSI-RS resource availability and the mapping method in the PEI information according to the size of Y.
  • Fig. 6 is a flowchart illustrating a method performed by a user equipment according to another embodiment of the present invention.
  • the terminal determines the size and/or mapping method of CSI-RS indication information in PEI-DCI according to the high layer instruction.
  • step 303 the terminal determines the size of the PEI-DCI.
  • the carried DCI is scrambled using a specific sequence, for example, a 16-bit RNTI is used to scramble the CRC part.
  • the terminal can use a specific RNTI to perform blind detection and descrambling on the received PDCCH signal, and check the correctness of the CRC. If it can be decoded correctly and passes the verification, the terminal can obtain relevant DCI indication information; if it cannot be decoded or the verification fails, the terminal discards the relevant signal. In this way, the terminal can distinguish signaling with the same DCI size but scrambled with different RNTIs.
  • the network uses the PEI-DCI to carry indication information of CSI-RS resource availability, indicating whether there is available CSI-RS for user reception in a corresponding period.
  • PEI-DCI information is transmitted using the PDCCH channel, and the network may use different configuration methods to adapt to different requirements.
  • the PDCCH search space configured with PEI uses the same search space as that of the paging PDCCH, and uses the same DCI size, so as to reduce the blind detection overhead of the terminal.
  • the network needs to configure an RNTI different from the P-RNTI of the paging PDCCH, such as PEI-RNTI, so that the terminal can distinguish different DCI information.
  • the maximum number of bits that can be used for CSI-RS availability indication in PEI-DCI can be relatively large, for example, the same as the maximum number of bits that can be used for CSI-RS availability indication in DCI for paging PDCCH.
  • a smaller number of bits of the PEI-DCI is used in order to improve the receiving reliability of the PEI signal or enhance the downlink receiving capability of the PEI signal. At this time, a smaller number of bits is also used in the PEI DCI for Indicates the availability of CSI-RS.
  • the mapping relationship between the relevant indication bits and the CSI-RS resources or resource sets configured in the SIB is different, and the terminal needs to determine the CSI-RS availability indication in PEI-DCI The mapping relationship between the information and the CSI-RS resources or resource sets, so as to determine the availability of the indicated CSI-RS resources.
  • the terminal may determine the CSI-RS availability indication information in the PEI-DCI and/or the mapping relationship between the indication information and the CSI-RS resource or resource set according to the instruction of the high layer.
  • the terminal determines the mapping manner between the CSI-RS availability indication and the CSI-RS in the PEI-DCI according to the RNTI used by the PEI-DCI.
  • PEI-DCI uses the first method to determine the number of bits indicated by CSI-RS availability and the mapping method with CSI-RS resources.
  • PEI-DCI is scrambled using P-RNTI, one of the second/third/fourth methods is used in PEI-DCI to determine the bit number of CSI-RS availability indication and the mapping method with CSI-RS resources.
  • the terminal may determine the size of the PEI-DCI by determining the number of bits of the CSI-RS availability indication in the PEI-DCI according to the RNTI.
  • the size of PEI-DCI is determined by the size A and PEI capacity k used to indicate each PEI-PO, the number of indicated bits Y indicating the availability of CSI-RS, and the number of bits X determined by other parts.
  • the terminal can determine the PEI -
  • the size of the DCI is A*k+X+Y.
  • the terminal determines the size of the PEI-DCI for receiving PEI information.
  • the terminal determines the mapping manner between the CSI-RS availability indication and the CSI-RS in the PEI-DCI according to an instruction from a high layer.
  • the upper layer uses 1 bit to indicate the CSI-RS availability bits in the PEI-DCI and/or the mapping manner of these bits and CSI-RS resources.
  • the terminal uses one of the second/third/fourth methods to determine the number of bits of the CSI-RS availability indication and the mapping method with CSI-RS resources, otherwise the terminal uses the first method to determine the CSI-RS - The bit number of the RS availability indication and the mapping method with the CSI-RS resource.
  • the size of the PEI-DCI may be further increased.
  • the size of the PEI-DCI is determined by the size A and PEI capacity k used to indicate the PEI-PO, the indicated number of bits Y indicating the availability of the CSI-RS, and the number of bits X determined by other parts.
  • the terminal can determine the PEI-DCI The size is A*k+X+Y.
  • the terminal determines the size of the PEI-DCI for receiving PEI information.
  • Fig. 7 is a flowchart illustrating a method performed by a user equipment according to another embodiment of the present invention.
  • step 401 the terminal determines the position of the first reference point according to the capacity of the PEI and the terminal identifier
  • step 403 the terminal determines the second reference frame according to the capacity of the PEI.
  • the terminal can determine the PO to be detected in a paging cycle according to the paging parameters.
  • the terminal determines the position of the PEI opportunity associated with the PO to be detected in a paging cycle, for example, determines the position of the first reference point associated with the PO according to the UE_ID of the terminal.
  • the terminal determines the position of the second reference point corresponding to the PO according to the first offset value from the first reference point, and the starting position of the PEI opportunity with the second offset from the second reference point position.
  • the first offset and the second offset value can be configured by a high layer, for example, the first offset value is several radio frames, and the second offset value is several symbols.
  • the terminal determines the position of the first reference frame of the terminal in a paging cycle according to the UE_ID and the capacity of the PEI opportunity.
  • the terminal determines that the number of POs corresponding to one PEI opportunity is less than or equal to the corresponding number of POs in one PF.
  • UE_ID 5G-S-TMSI mod 1024.
  • the terminal determines that the number of POs corresponding to one PEI opportunity is greater than the corresponding number of POs in one PF.
  • the terminal can obtain the frame number ref_SFN of the first reference radio frame, which is ref_SFN satisfying the following conditions:
  • PF_offset is the paging frame offset value configured by the network
  • T is the paging cycle period determined by the terminal.
  • N is the number of paging frames in one paging cycle.
  • mod is a modulo operation.
  • the network needs to configure multiple first offset values or second offset values for different terminals to determine different PEI opportunities using the same reference frame.
  • the terminal determines the PEI opportunity to be detected according to the first reference frame, it needs to determine the first offset value and the second offset value used by the PEI opportunity to be detected.
  • the capacity D of the PEI-DCI is 1, that is, one PEI-DCI only indicates whether a terminal detecting a PO wants to detect the PO.
  • the terminal PEI-DCI capacity and UE_ID determine the first reference frame, and the terminals that detect PO0 and PO1 all determine the same first reference frame.
  • the terminal determines the first offset value, the terminal determines the sequence number of the second offset value and the second offset value, and the terminal can determine the starting point of the corresponding PEI opportunity.
  • the terminal determines the sequence number of the first offset value and the first offset value, and the terminal determines the sequence number of the second offset value and/or the second offset value, and the terminal may Identify the starting point for the corresponding PEI opportunity.
  • the related PEI-PDCCH detection opportunity can be determined.
  • the process of determining a PEI-PDCCH detection opportunity is described below.
  • the network can indicate the parameters sent by the SSB through the SIB or RRC message. For example, the network indicates the number and sequence number of the SSB actually sent through the ssb-PositionsInBurst information element in the SIB1. Different SSBs can correspond to different coverage directions, so that terminals in the entire cell can obtain good downlink reception. According to different configuration parameters such as SSB in the network, a PEI opportunity consists of several PEI-PDCCH detection opportunities, and the terminal determines several PEI opportunities and several PEI-PDCCH detection opportunities according to the PEI frame and configuration parameters.
  • the PEI opportunity determined by the terminal includes X*S consecutive PEI-PDCCH detection opportunities, where each of the S PEI-PDCCH detection opportunities corresponds to S different SSB numbers. Then the x*S+s th PDCCH detection opportunity in each PEI opportunity corresponds to the s th actually sent SSB sequence number.
  • S is the number of SSBs actually transmitted, which can be determined according to ssb-PositionsInBurst in SIB1.
  • FIG. 9 is used to illustrate a user equipment as a modified example that can execute the method performed by the user equipment described in detail above in the present invention.
  • FIG. 9 is a block diagram showing a user equipment UE according to the present invention.
  • the user equipment UE60 includes a processor 601 and a memory 602 .
  • the processor 601 may include, for example, a microprocessor, a microcontroller, an embedded processor, and the like.
  • the memory 602 may include, for example, a volatile memory (such as a random access memory RAM), a hard disk drive (HDD), a nonvolatile memory (such as a flash memory), or other memories.
  • Memory 602 has program instructions stored thereon. When the instructions are executed by the processor 601, the above method described in detail in the present invention and executed by the user equipment may be executed.
  • the method and related equipment of the present invention have been described above in conjunction with preferred embodiments. Those skilled in the art can understand that the methods shown above are only exemplary, and the embodiments described above can be combined with each other without conflicts.
  • the method of the present invention is not limited to the steps and sequence shown above.
  • the network node and user equipment shown above may include more modules, for example, may also include modules that can be developed or developed in the future and can be used for the base station, MME, or UE, and the like.
  • the various identifiers shown above are only exemplary rather than restrictive, and the present invention is not limited to specific information elements as examples of these identifiers. Numerous variations and modifications may be made by those skilled in the art in light of the teachings of the illustrated embodiments.
  • various components inside the base station and user equipment in the above embodiments can be realized by various devices, including but not limited to: analog circuit devices, digital circuit devices, digital signal processing (DSP) circuits, programmable processing Devices, Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), Programmable Logic Devices (CPLDs), etc.
  • DSP digital signal processing
  • ASICs Application Specific Integrated Circuits
  • FPGAs Field Programmable Gate Arrays
  • CPLDs Programmable Logic Devices
  • base station may refer to a mobile communication data and control switching center with relatively large transmission power and wide coverage area, including functions such as resource allocation and scheduling, data reception and transmission.
  • User equipment may refer to a user's mobile terminal, including, for example, a mobile phone, a notebook, and other terminal equipment capable of wirelessly communicating with a base station or a micro base station.
  • embodiments of the present invention disclosed herein may be implemented on a computer program product.
  • the computer program product is a product having a computer-readable medium encoded with computer program logic that, when executed on a computing device, provides associated operations to implement Above-mentioned technical scheme of the present invention.
  • the computer program logic When executed on at least one processor of a computing system, the computer program logic causes the processor to execute the operations (methods) described in the embodiments of the present invention.
  • Such arrangements of the invention are typically provided as software, code and/or other data structures arranged or encoded on a computer-readable medium such as an optical medium (e.g., CD-ROM), floppy disk, or hard disk, or as one or more other media of firmware or microcode on a ROM or RAM or PROM chip, or a downloadable software image in one or more modules, a shared database, etc.
  • Software or firmware or such configurations can be installed on the computing device, so that one or more processors in the computing device execute the technical solutions described in the embodiments of the present invention.
  • each functional module or each feature of the base station device and terminal device used in each of the above embodiments may be implemented or executed by a circuit, and the circuit is generally one or more integrated circuits.
  • Circuits designed to perform the various functions described in this specification may include general-purpose processors, digital signal processors (DSPs), application-specific integrated circuits (ASICs) or general-purpose integrated circuits, field-programmable gate arrays (FPGAs), or other possible Program logic devices, discrete gate or transistor logic, or discrete hardware components, or any combination of the above.
  • a general-purpose processor can be a microprocessor, or the processor can be an existing processor, controller, microcontroller, or state machine.
  • the general-purpose processor or each circuit described above may be configured by a digital circuit, or may be configured by a logic circuit.
  • the present invention can also use an integrated circuit obtained by using the advanced technology.

Abstract

本发明提出了一种由用户设备执行的方法以及用户设备。由用户设备执行的方法包括:所述用户设备根据CSI-RS资源集的组号确定寻呼超前指示PEI-DCI信息中指示CSI-RS资源可用性信息的比特数;以及根据所确定的比特数所对应的PEI-DCI信息中指示CSI-RS资源可用性信息的比特确定CSI-RS资源的可用性;所述用户设备为无线资源控制RRC状态为空闲态或非激活态的用户设备。

Description

由用户设备执行的方法以及用户设备 技术领域
本发明涉及无线通信技术领域,具体涉及由用户设备执行的方法以及相应的用户设备。
背景技术
用户体验是5G/NR成功的关键因素之一,不仅仅是用户感受的数据速率和延迟方面,终端功耗节省也是重要的方面。终端功耗节省的增强技术方案是5G/NR成功的要素之一。虽然现有的一些技术已经用于终端功耗的节省,额外的增强演进技术在未来的发展中仍然是关键技术之一。比如,对空闲态或非激活态终端可以应用功耗节省技术,有助于终端设备在相应的状态下,在保证通信能力的同时,进一步减少功耗,或者提升接收信号的能力,以及获得其他的一些好处。
发明内容
为了解决上述问题中的至少一部分,本发明提供了一种由用户设备执行的方法以及用户设备。通过这种方法,用户设备接收指示消息获得网络中配置的参考信号的可用性,包括相关的指示信号与配置的资源参数对应的方式,指示信号所对应的时间期间等。终端通过指示信号,获得相关的参数,并通过参考信号的接收能够使终端能够进一步获得准确的测量或参数估计,更多的睡眠时间或者更好的信号接收能力等,从而使得终端获得功耗减少,接收能力提升等好处,提升了网络的业务能力,扩大网络的兼容性,使得通信网络部署的成本大大降低。
根据本发明,提出了一种由用户设备UE执行的方法,包括:所述终端根据寻呼超前指示PEI的容量和终端标识确定参考帧;以及,根据参考帧获取PEI信息,确定PEI信息中指示CSI-RS资源可用性的信息,以及确定CSI-RS资源的可用性。
优选的,所述确定PEI信息中指示CSI-RS资源可用性的信息包括: 确定指示CSI-RS资源可用性的指示期间;其中,所述指示期间由起始点和长度构成;所述起始点由所述参考帧和偏移量确定;所述长度根据所述偏移量和PEI的容量,寻呼参数确定。
优选的,确定CSI-RS资源的可用性包括:所述终端在所述期间内确定的CSI-RS资源的可用性指示信息优先于所述终端根据寻呼PDCCH中的指示确定的CSI-RS资源可用性指示信息。
优选的,根据权利要求1所述的方法,其中,确定PEI信息中指示CSI-RS资源可用性的信息包括:所述终端确定PEI信息中指示CSI-RS资源可用性信息的比特长度和/或映射方法。
优选的,所述终端根据PEI-DCI的大小确定确定PEI信息中指示CSI-RS资源可用性信息的比特长度和/或映射方法。
优选的,所述终端根据高层指示确定PEI信息中指示CSI-RS资源可用性信息的比特长度和/或映射方法;所述高层指示为PEI-DCI使用的加扰RNTI和/或针对PEI信息中CSI-RS可用性指示方式的比特指示;
优选的,所述终端根据确定的PEI信息中指示CSI-RS资源可用性信息的比特长度确定PEI-DCI的大小。
优选的,所述终端根据参考帧获取PEI信息,包括,确定PEI信息所使用的传输机会的位置;所述位置由PEI的容量和终端寻呼PO在PF中的序号确定。
此外,根据本发明,提出了一种用户设备,包括:处理器;以及存储器,存储有指令,其中,所述指令在由所述处理器运行时执行上述的方法。
根据本发明,通过参考信号的接收能够使终端能够进一步获得准确的测量或参数估计,更多的睡眠时间或者更好的信号接收能力等,从而使得终端获得功耗减少,接收能力提升等好处,提升了网络的业务能力,扩大网络的兼容性,使得通信网络部署的成本大大降低。
附图说明
通过下文结合附图的详细描述,本发明的上述和其它特征将会变得 更加明显,其中:
图1是示出了根据本发明的一个实施例中由用户设备执行的方法的流程图。
图2是示出了根据本发明的一个实施例中用户确定PEI信息的方法的示意图。
图3是示出了根据本发明的一个实施例中PEI-DCI结构的示意图。
图4是示出了根据本发明的一个实施例中确定期间内CSI-RS资源可用性的示意图。
图5是示出了根据本发明的一个实施例中由用户设备执行的方法的流程图。
图6是示出了根据本发明的一个实施例中由用户设备执行的方法的流程图。
图7是示出了根据本发明的一个实施例中由用户设备执行的方法的流程图。
图8是示出了根据本发明的一个实施例中由用户设备确定所检测PEI机会的示意图。
图9是示意性示出本发明所涉及的用户设备的框图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细阐述。应当注意,本发明不应局限于下文所述的具体实施方式,这些实施方式仅作为示例提供,以便将主题的期间传达给本领域技术人员。另外,为了简便起见,省略了对与本发明没有直接关联的公知技术的详细描述,以防止对本发明的理解造成混淆。
通常,除非在使用该术语的上下文中清楚地给出和/或隐含不同的含义,否则本文中使用的所有术语将根据其在相关技术领域中的普通含义来解释。除非明确说明,否则对一/一个/该元件、设备、组件、部件、步骤等的所有引用应公开地解释为是指该元件、装置、组件、部件、步骤等的至少一个实例。除非必须明确地将一个步骤描述为在另一个步骤 之后或之前和/或隐含地一个步骤必须在另一个步骤之后或之前,否则本文所公开的任何方法的步骤不必以所公开的确切顺序执行。在适当的情况下,本文公开的任何实施例的任何特征可以适用于任何其它实施例。同样,任何实施例的任何优点可以适用于任何其它实施例,反之亦然。
下文以5G/NR移动通信系统及其后续的演进版本作为示例应用环境,具体描述了根据本发明的多个实施方式。然而,需要指出的是,本发明不限于以下实施方式,而是可适用于更多其它的无线通信系统,例如5G之后的通信系统以及5G之前的4G移动通信系统,802.11无线网络等。
下面描述本发明涉及的部分术语,如未特别说明,本发明涉及的术语采用此处定义。本发明给出的术语在LTE、LTE-Advanced、LTE-Advanced Pro、NR以及之后的或其他的通信系统中可能采用不同的命名方式,但本发明中采用统一的术语,在应用到具体的系统中时,可以替换为相应系统中采用的术语。
3GPP:3rd Generation Partnership Project,第三代合作伙伴计划
LTE:Long Term Evolution,长期演进技术
NR:New Radio,新无线、新空口
UE:User Equipment,用户设备
gNB:NR基站
FR1:Frequency range 1 as defined in TS 38.104,由TS38.104定义的频率期间1
FR2:Frequency range 2 as defined in TS 38.104,由TS38.104定义的频率期间2
BWP:BandWidth Part,带宽片段/部分
SFN:System frame number,系统帧号
OFDM:Orthogonal Frequency Division Multiplexing,正交频分复用
CP:Cyclic Prefix,循环前缀
TA:Timing Advance,上行定时提前量
SCS:sub-carrier spacing,子载波间隔
RB:Resource Block,资源块
RE:Resource Element,资源单元
CRB:Common Resource Block,公共资源块
PRB:Physical Resource Block,物理资源块
VRB:Virtual resource block,虚拟资源块
REG:Resource Element Group,资源单元组
EPRE:Energy per resource element,每资源单元能量
TDD:Time Division Duplexing,时分双工
FDD:Frequency Division Duplexing,频分双工
CSI:Channel State Information,信道状态信息
DCI:Downlink Control Information,下行控制信息
MCS:Modulation and Coding Scheme,调制编码方案
SRS:Sounding Reference Signal,探测参考信号
DMRS:Demodul ation Reference Signal,解调参考信号
CSI-RS:Channel State Information Reference Signal,信道状态信息参考信号
TRS:Tracking Reference Signal,跟踪参考信号
CRC:Cyclic Redundancy Check,循环冗余校验
SFI:Slot Format Indication,时隙格式指示
QCL:Quasi co-location,准共址
HARQ:Hybrid Automatic Repeat Request,混合自动重传请求
SIB:system information block,系统信息块
SIB1:System Information Block Type 1,系统信息块类型1
PSS:Primary Synchronization Signal,主同步信号
SSS:Secondary Synchronization Signal,辅同步信号
MIB:Master Information Block,主信息块
SSB:Synchronization Signal Block,同步系统信息块
CORESET:Control resource set,控制资源集合
RACH:random-access channel,随机接入信道
PBCH:Physical broadcast channel,物理广播信道
PUCCH:Physical Uplink Control Channel,物理上行控制信道
PUSCH:Physical Uplink Shared Channel,物理上行共享信道
PRACH:Physical random-access channel,物理随机接入信道
PDSCH:Physical downlink shared channel,物理下行共享信道
PDCCH:Physical downlink control channel,物理下行控制信道
UL-SCH:Uplink Shared Channel,上行共享信道
DL-SCH:Downlink Shared Channel,上行共享信道
NZP-CSI-RS:Not-Zero-Power CSI-RS,非零功率的CSI-RS
C-RNTI:Cell Radio Network Temporary Identifier,小区无线网络临时标识
P-RNTI:Paging RNTI,寻呼无线网络临时标识
RA-RNTI:Random Access RNTI,随机接入无线网络临时标识
CS-RNTI:Configured Scheduling RNTI,配置调度无线网络临时标识
SI-RNTI:System Information RNTI,系统信息无线网络临时标识
TC-RNTI:Temporary C-RNTI,临时小区无线网络临时标识
DRX:Discontinuous Reception,不连续接收
PEI:Paging Early Indication,寻呼超前指示
下文是与本发明方案相关联技术的描述。如无特别说明,具体实施例中与关联技术中相同术语的含义相同。
值得指出的是,本发明说明书中涉及的用户,用户设备,终端,终端设备含义相同,文中也可能用UE表示终端,后文中不做具体区分和限定。类似的,网络设备为与终端进行通信的设备,包括并不限于基站设备、gNB、eNB、无线AP等,后文中不做具体区分和限定。文中也可以用基站作为网络设备实现的一种形式进行说明,具体实现时可以容易的使用其他网络设备形式进行替换。
NR中,一个时隙可包含14个(Normal CP场景)或12个(Extended CP场景)OFDM符号,多个时隙可组成子帧和无线帧。NR中一个无线帧使用10毫秒的长度。根据子载波间隔参数的不同,无线帧可能由若干个时隙构成。比如在子载波间隔为15kHz时,一个无线帧由10个时隙构成。终端可根据无线帧的帧号SFN以及无线帧内的时隙序号等参数确定时隙的位置。终端还可以根据时隙内符号的序号确定时域上信号传输的符号位置。NR中的资源可使用资源块和资源单元进行标识。资源块RB在频域上可以定义为
Figure PCTCN2022137195-appb-000001
个连续的子载波,例如对于15kHz的子载波间隔(SCS),一个RB在频域上为180kHz。资源单元RE可以确定时频网格上的一个单位,在频域上表示1个子载波,在时域上表示1个OFDM符号。典型的子载波间隔使用15kHz×2 μ,μ可以取整数值。
网络中可配置CSI-RS参考信号用于终端进行信道测量、波束管理等功能。CSI-RS信号参数可以以CSI-RS资源的形式配置给终端,一个终端可以配置一个或多个CSI-RS资源。一个或多个CSI-RS资源还可以组成一个CSI-RS资源集,一个终端可以配置一个或多个资源集。每个CSI-RS资源中配置若干参数,比如时域周期和偏移配置,频域位置和带宽配置,功率配置,码分参数配置,QCL配置,频域密度参数,子载波位置等等定义一个CSI-RS信号。
终端根据相关的配置参数,确定CSI-RS信号在时频资源上进行传输的相关参数。例如终端可根据CSI-RS信号的周期T CSI-RS和偏移T offset配置参数确定CSI-RS发送的时隙位置。终端确定无线帧和时隙号满足
Figure PCTCN2022137195-appb-000002
的无线帧n f和时隙
Figure PCTCN2022137195-appb-000003
为CSI-RS信号发送的帧号和时隙号。终端还可以根据配置参数确定CSI-RS在时隙上的使用符号序号以及CSI-RS在频域上起始位置和带宽等。网络可以配置CSI-RS的频域密度和频域分配参数,终端可根据配置确定CSI-RS在RB上占用哪些RE进行传输。根据配置参数的不同,CSI-RS在频域上可以使用RB中的部分RE。例如,CSI-RS使用的频域密度参数为3,那么在一个符号和一个RB确定的12个RE上有3个RE用于CSI-RS信号的传输,其余的RE不用于CSI-RS信号的传输。CSI-RS信 号在RB上使用RE的序号可以由配置参数确定,比如,使用一个4比特的位图,用于确定每4个RE哪些用于该CSI-RS信号的传输。也可以使用序号表示,比如0从第一个RE开始,1从第二个RE开始,等等。网络还可以配置其他若干参数,终端可根据相关配置确定CSI-RS信号的特性,并用于相关的接收或测量等。
因此,终端可根据相关的参数确定一个CSI-RS资源对应的若干个时频位置,在这些时频位置上可以有相关CSI-RS信号的传输,称为该CSI-RS资源的若干个传输机会。终端可在这些传输机会上接收CSI-RS信号,用于测量或信号接收等。
根据不同的配置参数,CSI-RS可分为多种类型,比如NZP-CSI-RS为非零功率的CSI-RS,也就是CSI-RS的发送功率不为零。根据配置参数的不同,CSI-RS还可以分为周期,半永久和非周期的信号类型。周期CSI-RS即,在配置生效后,所关联的CSI-RS资源按一定的周期在时频资源上重复出现。半永久和非周期的CSI-RS资源则需要通过MAC-CE或DCI指示的方式进行激活。终端可根据不同CSI-RS的资源以及相关的报告指示等实现不同的功能。用于时频跟踪(Tracking)的CSI-RS信号又可称为TRS。本发明中统一以CSI-RS作为适用于本发明的不同类型或参数的CSI-RS,或者其他可实现类似功能的信号的代称。
网络按一定的周期发送SSB信号,SSB可包含多种同步信号,比如SSS和PSS等。网络可以使用空间滤波器(也称为波束)进行信号的发送和接收,网络中所使用的波束可能是模拟波束或数字波束或两者的混合。网络可使用波束发送SSB,比如网络使用8个波束发送SSB,那么发送周期中的SSB可以编号为SSB0到SSB7,分别表示使用对应的波束发送的SSB。终端可以根据不同的位置,选择最好的波束进行信号接收或发送,以实现较好的通信效果。
网络中使用QCL参数表征不同信号之间的空间关系,也就是说使用满足QCL关系的两个信号具有一定的空间信道关联性。比如,网络配置了两个信号满足某种QCL类型关系,终端在处理这两个信号时可以使用 相同的某个参数,或者可以由一个信号得到的参数应用到另一个信号的接收或发送。比如,两个信号的QCL类型为QCL-typeA,可由一个信号得到的多普勒频移,多普勒扩展,平均时延,延迟扩展等参数应用于另一个信号,或者说可以共享这些参数。又比如两个信号的QCL类型为QCL-typeC,可由一个信号得到的一个信号多普勒频移,延迟扩展参数等参数。又比如QCL类型为QCL-typeD,可由一个信号得到的一个信号波束参数信息。还可能有其他QCL类型,用户在应用时可根据相关参数进行识别。用户也可以在更多个相互满足QCL关系的信号间进行相关参数的应用,不再一一描述具体的过程。
网络设备发送的CSI-RS信号可以使用波束进行发送,网络中可以为CSI-RS配置参考信号作为与其满足QCL关系的信号。比如,网络可以配置SSB i为一个CSI-RS信号的满足某种QCL类型的参考信号,终端可认为SSB i与该CSI-RS的某些信道参数相同,比如空间的信号参数,多普勒频移参数等。如果终端侧有其他信号与SSB i满足QCL,终端也可以通过该CSI-RS的接收或测量获得相关参数,应用到该信号的接收。
网络可以通过PDCCH信道向终端发送DCI消息。终端可根据PDCCH的配置确定一系列时频资源及其他参数,并在确定的资源上进行DCI的检测。当终端正确检测到DCI消息时,可以根据DCI所指示的内容进行相关动作。PDCCH使用波束进行发送,网络可以配置PDCCH的DM-RS端口满足QCL关系的参考信号,例如配置某个SSB作为该PDCCH的QCL参考信号。终端也可以根据PDCCH的配置确定默认的PDCCH的QCL参考信号,例如根据时频资源的位置确定某个SSB为其参考信号。PDCCH信道的配置参数包括搜索空间集参数、CORESET参数等。终端可以根据配置在相关的搜索空间集及CORESET确定的资源上检测PDCCH候选集,称为PDCCH检测机会。终端可以在PDCCH检测机会上根据PDCCH的QCL参考信号的空间滤波器参数接收PDCCH,并检测相关的DCI是否接收正确。
根据终端与无线网络是否建立连接以及无线连接是否挂起等不同情况,网络中的终端可分为不同的状态,比如连接(connected)态,空闲 (idle)态和非激活(inactive)态等。连接态的用户与网络建立无线链路连接,用于进行数据传输或相关的业务处理。空闲态或非激活态终端与网络也保持一定的连接,比如终端需要根据相关的配置或参数监听网络发送的广播消息和寻呼消息,或进行相关的测量等。空闲态和非激活态用户的行为在本发明中很多方面的处理是类似的,为避免冗余,如不做特别说明,本发明相关实施例中,针对空闲态的终端的相关动作也可以应用于非激活态的终端。如果网络中存在其他与空闲态类似的用户状态也可以类比处理,不做一一详述。
如果空闲或非激活态的终端没有信号需要接收、发送、测量或其他动作时,终端可以处于睡眠状态以节省功耗。根据不同的信道条件或所需要处理的业务等,终端可以处于不同的睡眠模式。比如终端进入浅睡模式,用于较短时间内就会有新的信号要处理时的短暂休眠。再比如终端进入深睡模式,用于在较长时间内都没有新的信号要处理时,并且可以比在浅睡模式下更多地减少终端功耗。一般的,在不影响业务功能的情况下,让终端处于睡眠模式可以有效地减少终端的功耗,从而提升用户的体验。
终端接收数据信号时或之前,往往需要一些预处理。比如终端可进行自动增益控制(AGC)参数的调整,使接收的信号可以调整到合适的动态期间之内,以获得较好的接收效果。或者,终端需要进行时频跟踪,根据参考信号来估计信号的时偏或频偏参数等,使得时频参数与基站一致或者能获得准确的信道参数等,从而可以对要处理的信号或数据进行相应的修正,以获得较好的接收性能。终端还可以有一些其他的处理,以优化数据处理,改善用户体验等,这里不再一一描述。网络可以给终端配置和发送参考信号,用于终端的信道测量,信道参数估计,移动性评估,空间参数估计等等,实现无线资源管理,辅助数据信号接收等功能。例如,终端可接收网络发送的同步参考信号,进行AGC调整或时频参数的估计等。由于各种内部或外部的因素,终端做这些预处理时需要从休眠模式唤醒的次数或持续时间不同。比如,信道条件较差时,相关的参考信号接收质量较差,或者终端的处理能力有限时,终端需要唤 醒多次,接收多个参考信号,以实现较好的接收效果。再比如,所配置的参考信号距离要接收的信号较远,终端也可能需要接收较多次的参考信号或者保持较长的活动时间以获得较好的接收效果。
空闲态或非激活态的用户终端可以利用SSB中的同步信号实现相关的AGC或时频参数估计。SSB的周期和时频位置往往是固定的,可能不能满足不同用户接收信号并且降低功耗的要求,因此网络可以提供额外的参考信号用于终端接收,使得终端能够更快的获得所需要的参数或信息,从而减少唤醒的时间或次数,以实现更好的节能效果。
网络可以配置CSI-RS信号用作空闲或非激活用户的参考信号。比如网络在系统广播信息中配置若干非零功率的周期CSI-RS信号,用作空闲或非激活用户的参考信号。为了节省网络的功率消耗,网络可能是使用给连接态用户发送的CSI-RS信号共享给空闲态用户使用。如果连接态用户不再使用这些资源,或者网络需要减少发射功耗,网络可以根据不同的情况部分或全部关闭这些CSI-RS信号。
空闲态或非激活态的用户终端可根据网络的指示确定一个或多个CSI-RS资源以及相应的传输机会。在这些CSI-RS的传输机会上是否实际发送CSI-RS信号可以由网络进行控制。网络设备可能会根据连接态用户的调整或网络功耗节省或其他原因,开启或停止部分信号发送。这时,需要通知空闲态用户所使用的CSI-RS的状态更新,使得空闲态用户能够正确地接收CSI-RS信号。网络设备可发送指示信息,指示所配置的CSI-RS资源在一个或若干个传输机会的可用性状态。当一个CSI-RS的传输机会被指示为可用时,终端可以在该传输机会上接收该信号,以利用该信号达到节省功耗的目的。CSI-RS配置为周期信号时,在时域上存在若干个传输机会。文中为简化描述,相关的指示CSI-RS信号在一个或若干个传输机会上可用性的动作也可以简称为指示CSI-RS信号的可用或不可用或CSI-RS资源的可用或不可用。这些描述都可以理解为是指示对应的CSI-RS资源所确定的一个或若干个传输机会上是否传输CSI-RS信号。
空闲态或非激活态的终端需要定期接收网络的信息,比如寻呼信息,SIB更新消息等。空闲态或非激活态终端可以使用不连续接收DRX的模式接收网络的寻呼消息,以节省功耗。也就是在一个寻呼DRX周期上,终端只在部分时间唤醒和进行接收。例如,终端根据网络配置的参数在每个寻呼循环周期中确定寻呼机会的位置,并在由寻呼机会相关的寻呼PDCCH检测机会上检测寻呼PDCCH,以及根据寻呼PDCCH中指示的内容进行下一步的动作。例如,终端根据网络配置能够确定用于接收寻呼消息的寻呼循环周期参数T和寻呼帧(paging frame,PF)参数N。一个寻呼帧为一个无线帧,可以包含一个或多个寻呼机会(paging occasion,PO)或一个PO的起始。为简化描述PF与PO的关系,可以称为一个PF对应关联于一个或多个PO,或者一个PF包括一个或多个PO。类似的,也可以称某个PF为一个PO的PF。一个寻呼机会由若干个寻呼PDCCH检测机会(monitoring occasion,MO)构成。在网络中使用多波束传输时,不同的MO可能对应不同的波束,使得不同位置的终端都能获得较好的下行接收。示例的,终端确定在一个长度为T个无线帧的寻呼循环中有N个寻呼帧,并确定其中一个为终端需要检测寻呼信息的寻呼帧。当一个寻呼帧包括多个PO时,终端根据规则和参数确定其中一个为终端的PO。然后终端可选择PO中的MO进行接收PDCCH,例如根据波束信息选择某个或某些MO进行寻呼PDCCH的检测。如果终端检测到合法的寻呼PDCCH,终端根据检测到的DCI来进行寻呼PDSCH接收或其他的相关动作。
一个具体的示例,终端可根据用户的TMSI或IMSI标识获得用于确定寻呼机会的参数UE_ID。终端TMSI通常使用较长的比特,比如5G-S-TMSI使用48比特,可以通过一定的运算使得不同TMSI的终端对应到同样的UE_ID,以简化寻呼的设计。例如,通过终端的5G-S-TMSI确定UE_ID=5G-S-TMSI mod 1024,其中mod为取模运算。
进一步的,终端根据网络配置的参数获得用户需要检测的PO所对应的PF的帧号SFN,为满足下面条件的SFN
(SFN+PF_offset)mod T=(T/N)*(UE_ID mod N)
其中,PF_offset为网络配置的寻呼帧偏移值,T为终端确定的寻呼循环周期。N为一个寻呼循环周期中寻呼帧的数量。mod为取模运算。
终端确定了寻呼帧PF的帧号,然后确定所要检测的PO。根据网络配置的不同,一个PF可能关联多个PO,UE需要确定检测其中某一个PO来检测相关的PDCCH来确定是否有相应的寻呼消息等。例如,终端可根据PF相关的PO的序号i_s来确定终端需要检测的PO。
i_s=floor(UE_ID/N)mod Ns
其中,Ns为网络配置的一个PF所对应的PO的数量。floor为下取整运算。
终端确定了PO的序号后,可根据网络配置的寻呼搜索空间集参数确定各个检测机会MO的信息。例如,终端可从PF无线帧开始,根据寻呼PDCCH的搜索空间集配置和CORESET配置,确定PF关联的PO的序号以及PO的S*X个连续的MO。其中S为网络中一个SSB周期中实际传输的SSB的数量,例如可以通过SIB1中的ssb-PositionsInBurst参数确定。X值默认为1,也可以由高层配置。PO的每S个MO分别与S个不同的SSB序号相关,或者说按SSB编号次序分别满足QCL关系。
终端根据相关的方法,在所确定的MO上可以进行寻呼PDCCH的检测。寻呼PDCCH中的DCI包含了一些信息,例如用于指示用户是否有相应的寻呼消息需要接收,如果有寻呼消息接收,DCI中还指示用于传输寻呼消息的PDSCH资源参数,包括时域资源,频域资源,调制方式等等参数。终端可根据指示接收寻呼PDSCH。
为了节省功耗,空闲状态的终端通常工作在DRX状态,在不接收数据时,终端进入休眠状态。终端在接收数据时需要满足与基站的时频同步状态,以保证数据的正确传输。终端在运行时可能会存在终端与基站之间的时频偏差,特别是在休眠状态时,小偏差的持续积累可能会变成较大的偏差,导致失去终端与基站的同步。终端可通过接收SSB来进行时频跟踪,获得与基站准确的同步。因此,终端在进行PO检测时,需要提前唤醒,并接收多个SSB实现终端与网络的时频同步。如果终端在PO中检测到的DCI指示没有寻呼数据接收,终端可重新进入到休眠模 式以节省功耗。
网络可以在终端检测PO之前发送指示信息,指示终端是否需要对一个或多个寻呼循环内的PO进行检测。指示信息可以称为PEI(paging early indication),也可能使用其他名称,后文可以统一用PEI指代相关信息。比如,当网络中有寻呼信息需要终端接收时,网络发送PEI指示信息,指示终端需要检测对应的PO。终端在PO之前唤醒,进行时频同步,以及在确定的PO上进行寻呼PDCCH的检测和可能的PDSCH接收。如果终端接收的PEI指示信息指示终端不需要检测PO,终端则不需要在对应的PO上进行检测,以及也不需要在PO前唤醒和接收SSB进行时频同步以准备可能的PDSCH接收。这样,终端能够通过网络的指示,避免不需要的唤醒和同步等动作,从而节省了终端的功耗。
PEI指示信息可以使用PDCCH信道以DCI的形式进行发送,也可记为PEI-DCI。网络配置PEI-PDCCH使用的搜索空间集和CORESET参数,终端根据配置确定PEI-PDCCH相关的时频资源。PEI-PDCCH可以使用与寻呼PDCCH类似的配置,例如,终端可根据PEI-PDCCH的配置确定若干个PEI机会(PEI-O),以及PEI机会相关的若干个PEI-PDCCH检测机会(PEI-MO)。一个PEI机会的各个PEI-MO可以与不同的SSB序号满足QCL,以覆盖小区内不同方向上的用户。一个DRX循环期间可能存在若干个PEI机会,网络在这些PEI机会给不同的终端发送指示信息。为减少功耗,终端不会检测所有的PEI机会上的PEI-PDCCH,那么终端就需要确定在哪个PEI机会上进行检测。也就是终端确定PEI机会与该终端所检测的PO的对应关系,使得终端能正确地接收到PEI-PDCCH,以及从解调出的PEI-DCI中获得该UE是否检测对应的PO的PEI指示信息。一个PEI信息可以指示多个PO的接收,也就是检测不同PO的终端可以检测同一个PEI机会获得PEI-DCI,PEI-DCI中包含对不同PO的指示信息。一个PEI信息对应的PO的数量可以称为PEI的容量。根据描述目的的不同,也可称为PEI机会的容量或PEI-DCI的容量等等。
PEI-DCI中的比特除了可以用于指示空闲或非激活态终端是否需要 检测相关的PO,还可以指示PO之前或PF期间的用于空闲或非激活态终端接收的CSI-RS的可用性。如果终端被指示要检测相关的PO,可以根据相关的指示确定CSI-RS信号的可用性。终端可使用这些CSI-RS信号获得更好的时频同步,或者获得更多的睡眠时间,从而提升终端的性能或节省终端的功耗。终端需要确定PEI所指示的CSI-RS信号可用性对应的期间,例如确定一个起始位置以及时长,那么若干CSI-RS在这段时间上的可用性由PEI中相关的指示字段确定。这样终端即可确知哪些CSI-RS机会上的CSI-RS信号可为自己所利用,从而实现相关的目的。另外,终端还需要确定PEI-DCI中所指示的可用性比特与CSI-RS资源的映射关系,从而确定具体的CSI-RS资源的可用性。下文中,结合具体的实施例来阐述本发明所使用的方法和过程。
【实施例1】
图1是示出了根据本发明的一个实施例中由用户设备执行的方法的流程图。
如图1所示,在步骤101,终端接收第一指示信息,第一指示信息表示网络中所配置的用于空闲态或非激活态用户使用的CSI-RS资源配置。
然后,在步骤102,确定第二指示信息中所指示的CSI-RS资源可用性的期间,包括起点和长度。
在步骤103,接收第二指示信息,确定用于空闲态或非激活态用户使用的至少一个CSI-RS资源的可用性。
下面分别对相关的过程进行具体举例说明。
空闲态或非激活态终端接收系统广播中的第一指示信息,可以确定网络配置若干CSI-RS资源可用于寻呼信息的辅助接收。通过这些配置信息,终端可以获得CSI-RS资源的周期,符号和频率位置等等,确定CSI-RS信号在时域上的传输机会。终端需要根据网络的指示确定这些传输机会的可用性。
终端可接收第二指示信息来确定传输机会的可用性。第二指示信息为网络所发送的PEI-DCI信息中用于指示CSI-RS可用性的信息。终端 根据所检测的PEI-DCI信息,确定指示信息作用的期间。
终端可根据寻呼参数确定一个寻呼循环中要检测的PO。当终端能接收PEI-DCI信息确定寻呼接收指示时,终端确定一个寻呼循环中需要检测的PO所关联的PEI机会的位置。例如,首先根据终端的UE_ID确定关联到该PO的第一参考帧位置。终端根据与第一参考帧的第一偏移值确定第二参考帧位置,以及与第二参考帧位置存在第二偏移的PEI机会的起始符号位置。终端从该起始位置确定若干个PEI-PDCCH检测机会,检测该PEI机会上所传输的PEI-DCI。第一偏移和第二偏移值可由高层配置,例如,第一偏移值为若干个无线帧,第二偏移值为若干个符号。一个参考帧如图2所示。
这样终端可确定在一个寻呼循环中所需要检测的PO,以及该PO所对应的PEI机会的时频位置。进一步的,终端可确定PEI机会上所传输的PEI-DCI中指示的CSI-RS资源可用性信息。
可选的实施例,PEI-DCI中的CSI-RS可用性指示信息指示与该PEI机会相关联的若干的PO以及CSI-RS信号的可用性。一个PEI机会可能关联到多个不同的PO,这些PO分别由不同(组)的终端检测。不同的终端需要各自确定相关的PEI机会和CSI-RS的可用性信息。
可选的,一个PEI-DCI中包含一组CSI-RS可用性指示信息,检测该PEI的终端使用相同的CSI-RS可用性指示信息确定CSI-RS的可用性。
一个具体的示例如图3所示,一个PEI机会对应到k个不同的PO,那么在PEI-DCI中使用k*A个比特指示相关PO的PEI信息,其中每个PEI-PO为指示检测该PO的终端所使用的PEI信息,使用A比特表示。A为一个PO中不同终端的分组数量,k为一个PEI机会所关联的PO的数量。PEI-DCI中使用Y比特指示相关的CSI-RS的可用性,用于检测这些PO的终端来确定相应的CSI-RS的传输情况。PEI-DCI中还可以存在若干公共比特或保留比特,用于指示其他内容。DCI中各个比特部分的顺序也非唯一,可以根据具体的规范进行确定,这里不做详述。
终端确定了所检测的PEI机会上接收到的PEI-DCI中的CSI-RS可用性指示信息,还需要确定这些指示信息的应用期间,也就是这些比特对 应哪些CSI-RS传输机会的可用性。
可选的,终端确定CSI-RS可用性指示期间的起始点。终端确定起始点为终端确定PEI所使用的第一参考帧偏移O个时间单位。可选的,偏移值O可以由高层配置,高层不配置该参数时O默认为0值。O的单位可以为网络中使用的一种时间单位,例如为时隙,或者为无线帧,或者使用毫秒等等。
可选的,终端使用确定PEI机会使用的第一偏移值做为O的值。可选的,终端使用确定PEI机会使用的第一偏移值与第二偏移值的差值为O的值。使用差值时,如果偏移值使用不同的时间单位表示,需要考虑不同单位间的转换,这里不做详述。
可选的,终端确定PEI-DCI中CSI-RS可用性指示期间的长度。终端根据PEI机会所关联的PO数量,可确定PEI机会所对应的PF数量。终端根据PF数量以及偏移值O确定CSI-RS可用性指示期间的长度。终端可根据配置确定一个PEI机会所指示的PO的数量D,终端根据高层配置可确定网络中每个寻呼帧所对应的PO的数量Ns。终端即可确定PEI机会所对应的PF的数量M,当D大于等于Ns时,M=D/Ns。当D小于Ns时,M=1。终端根据M确定M*(T/N)个连续的无线帧,其中T为终端所确定的寻呼循环的无线帧数,N为终端所确定的一个寻呼循环中寻呼帧的数量。终端根据CSI-RS可用性指示期间的偏移值O确定指示期间的长度为O+M*(T/N)个无线帧。可选的,使用参数X调整O值使用不同的单位,例如,长度为O+M*(T/N)*X。其中X为用于统一O和无线帧长度单位的参数。当O使用无线帧数量表示时,X=1,所得的长度也使用无线帧数量为单位。当O使用时隙数量表示时,X由PEI所指示的PF所在下行BWP上的子载波参数确定,所得的长度也使用时隙数为单位。例如,当BWP使用15kHz子载波参数时,一个无线帧对应10个时隙,这时X=10。系统中使用其他单位表示时,也可用类似的方式获得X的值。
一个具体的示例如图4所示。网络配置了3个CSI-RS资源用于空闲态终端接收,终端可确定根据每个资源的参数如周期,偏移参数等确定 CSI-RS资源在时隙上的各个传输机会。例如,图4中示意了CSI-RS1/2/3在时域上的两个传输机会。终端确定PEI-DCI中CSI-RS指示信息的指示期间,例如根据起始点和长度确定为第三期间。终端根据PEI-DCI中的指示确定第三期间各个CSI-RS传输机会的可用性。例如,PEI-DCI中的指示信息使用比特位图分别指示各个CSI-RS的可用性。终端根据配置确定CSI-RS1对应比特位图的第一比特,CSI-RS2对应第二比特,CSI-RS3对应第三比特。指示信息使用比特1指示CSI-RS传输机会上有CSI-RS信号传输,使用比特0指示CSI-RS传输机会上没有CSI-RS信号传输。那么终端即可根据PEI-DCI中的CSI-RS指示信息确定各个CSI-RS资源的传输情况。例如,比特位图指示为110,终端可以确定第三期间内CSI-RS1和CSI-RS2的传输机会上存在实际传输的CSI-RS信号,CSI-RS3的传输机会上没有实际传输的信号。因此终端可根据信号传输情况确定相应的接收方案,实现相应的目的。
可选的实施例,网络中还可能使用寻呼PDCCH指示CSI-RS资源的可用性,例如,终端接收到一个寻呼PDCCH中的指示信息,确定从接收到该寻呼信息所在位置所确定的一个SFN开始的若干个默认寻呼循环中的CSI-RS资源的可用性。这时,如果终端由PEI-DCI中CSI-RS可用性信息所确定的期间与由寻呼PDCCH中CSI-RS可用性信息所确定的期间有重叠时,终端需要确认在所重叠的期间上哪一个指示是有效的。
可选的,当在共同的指示期间上,终端由PEI-DCI确定的CSI-RS可用性信息与根据寻呼PDCCH确定的信息不一致时,终端根据PEI-DCI指示的信息确定CSI-RS在该期间上的有效性。也就是,在共同的期间上,PEI-DCI中的指示信息优先于寻呼PDCCH中的指示信息。可选的,终端不期望接收到PEI-DCI中的CSI-RS可用性指示信息,在所确定的期间上根据寻呼PDCCH指示确定为可用的CSI-RS传输机会,在该PEI-DCI中的指示信息中指示为不可用。由于通常在寻呼PDCCH中CSI-RS可用性信息的指示周期较长,通过这种方法,终端可以更快地获取到当前寻呼检测所需要的CSI-RS参考信号的传输状态,从而更好地提升终端性能。
【实施例2】
网络中可通过物理层信令指示CSI-RS资源的可用性。比如,通过寻呼超前指示信息PEI中的一些比特来指示。网络中可配置若干个CSI-RS资源或资源集用于空闲或非激活态终端的接收。终端需要确定指示CSI-RS可用性的比特域与CSI-RS资源的映射方法,也就是确定接收到的PEI-DCI中的某个可用性指示比特指示的是哪个或哪些资源或资源集的可用性,从而能够正确地接收信号。网络使用不同大小的PEI-DCI时,可能使用不同的映射方法,例如,PEI-DCI中可用于CSI-RS资源可用性指示的比特数较多时,终端根据第一方法确定CSI-RS资源与DCI中指示比特的对应关系,可用于CSI-RS资源可用性指示的比特数较少时,终端根据第二方法确定CSI-RS资源与DCI中指示比特的对应关系。终端就需要确定DCI中用于指示CSI-RS可用性的比特域大小,以及确定相应的映射方法。
图5是示出了根据本发明的另一个实施例中由用户设备执行的方法的流程图。
如图5所示,在步骤201,终端确定PEI-DCI的大小是否与DCI格式1_0相同,并确定相应的指示方法;
在步骤203中,终端根据指示方法确定PEI-DCI中CSI-RS指示信息的大小和/或映射方法。
下面对本实施例中的步骤进行具体的说明。
NR中,PDCCH的生成过程中需要对所承载的DCI使用特定的序列进行加扰,比如使用16比特的RNTI对CRC部分进行加扰。终端可以对接收到的PDCCH信号使用特定的RNTI进行盲检解扰,并校验CRC的正确性。如果能够正确解出并通过校验,终端可以获得相关的DCI指示信息,如果不能解出或校验不通过,终端则丢弃相关的信号。通过这种方式,终端可以分辨出具有相同DCI大小但是使用不同RNTI加扰的信令。
网络使用PEI-DCI携带CSI-RS资源可用性的指示信息,指示相应的 期间上是否有可用的CSI-RS信号用于用户接收。PEI-DCI信息使用PDCCH信道进行传输,网络可能使用不同的配置方式来适配不同的需求。例如,网络配置PEI的PDCCH搜索空间使用和寻呼PDCCH相同的搜索空间,并使用相同的DCI大小,以减小终端盲检开销。这时,网络需要配置不同于寻呼PDCCH使用的P-RNTI的一个RNTI,例如为PEI-RNTI,使得终端能区分不同的DCI信息。这时PEI-DCI中可用于CSI-RS可用性指示的最大比特数可以比较多,例如和寻呼PDCCH的DCI用于CSI-RS可用性指示的最大比特数一样多。另一种情况下,为提高PEI信号的接收可靠性或者增强PEI信号的下行接收能力等,使用较小的PEI-DCI的比特数,这时,PEI-DCI中也可以使用较小的比特数用于指示CSI-RS的可用性。当PEI-DCI使用不同的方案指示CSI-RS的可用性时,相关的指示比特到SIB中所配置的CSI-RS资源或资源集的映射关系不同,终端需要确定PEI-DCI中CSI-RS可用性指示信息与CSI-RS资源资源集的映射关系,从而确定所指示的CSI-RS资源的可用性。
可选的,终端根据PEI-DCI的大小确定用于CSI-RS可用性指示的比特数和/或这些比特与CSI-RS资源的映射方式。具体的,当PEI-DCI的大小与DCI格式1_0大小相同时,终端使用第一方式确定PEI-DCI中CSI-RS可用性指示的比特数以及与CSI-RS资源的映射方式。当PEI-DCI的大小小于DCI格式1_0时,终端使用第二/三/四的任一种方式确定PEI-DCI中CSI-RS可用性指示的比特数以及与CSI-RS资源的映射方式。
为减少指示开销,网络可以为空闲或非激活态用户配置的CSI-RS资源集配置一个组号。当CSI-RS资源较多时,可能有不同的CSI-RS资源或资源集使用相同的组号。当终端确定使用第一方式确定CSI-RS可用性指示的比特数以及与CSI-RS资源的映射方式时,终端根据系统信息中为CSI-RS资源集配置的最大组号对应的比特数确定用于指示CSI-RS可用性指示的比特数,并根据CSI-RS资源集的组号确定该CSI-RS资源集中CSI-RS资源在指示信息中对应的比特。示例的,当组号从0开始计数时,终端确定CSI-RS指示比特数为最大组号数加1,终端确定组号 对应的指示比特为在可用性指示比特的第n个比特,n为组号值加1。这样,终端根据CSI-RS资源的组号可以确定指示比特的位置,获得相应的对该CSI-RS资源的传输机会的指示信息。
可选的,当终端确定使用第二方式确定CSI-RS可用性指示的比特数以及与CSI-RS资源的映射方式时,终端确定PEI-DCI中用于指示CSI-RS可用性指示的比特数为1,终端确定可用性比特指示的为与接收到的PEI-DCI的PDCCH检测机会使用相同QCL参考信号的CSI-RS资源的可用性。
可选的,当终端使用第三方式确定CSI-RS可用性指示的比特数以及与CSI-RS资源的映射方式时,终端确定PEI-DCI中用于指示CSI-RS可用性指示的比特数为N。N为高层配置的,用于空闲态或激活态用户接收并使用相同QCL参考信号的CSI-RS资源集的最大数量。终端根据相同QCL参考信号的CSI-RS资源集的组ID的顺序对应到CSI-RS指示信息比特。
可选的,当终端使用第四方式确定CSI-RS可用性指示的比特数以及与CSI-RS资源的映射方式时,终端确定PEI-DCI中用于指示CSI-RS可用性指示的比特数为1。终端根据相同QCL参考信号的CSI-RS资源集的组ID确定使用相同组ID的若干个CSI-RS资源集,终端确定可用性指示比特用于指示这若干个CSI-RS资源集中CSI-RS资源的可用性。
一个具体的示例,网络配置了3个CSI-RS资源集,每个资源集包含4个CSI-RS资源。CSI-RS资源集1中配置组号为0,其中的CSI-RS资源使用SSB0作为QCL参考信号。CSI-RS资源集2中配置组号为1,其中的CSI-RS资源使用SSB1作为QCL参考信号。CSI-RS资源集3中配置组号为2,其中的CSI-RS资源使用SSB2作为QCL参考信号。当终端确定使用第一方法指示CSI-RS资源的可用性时,终端确定PEI-DCI中用于指示CSI-RS可用性的比特数为3,每个比特依次对应CSI-RS资源集1/2/3中的资源的可用性。当终端确定使用第二方法指示CSI-RS资源的可用性时,终端在与SSB1满足QCL的PEI-PDCCH上收到的PEI-DCI中用于指示CSI-RS可用性的比特数为1,该比特指示使用SSB1 作为QCL参考信号的CSI-RS资源,也就是CSI-RS资源集2中的资源的可用性。
另一个具体的示例,网络配置了3个CSI-RS资源集,每个资源集包含4个CSI-RS资源。CSI-RS资源集1中配置组号为0,其中的CSI-RS资源使用SSB0作为QCL参考信号。CSI-RS资源集2中配置组号为1,其中的CSI-RS资源使用SSB1作为QCL参考信号。CSI-RS资源集3中配置组号为2,其中的CSI-RS资源使用SSB1作为QCL参考信号。当终端确定使用第三方法指示CSI-RS资源的可用性,并且高层配置的N大于1时,终端确定PEI-DCI中用于指示CSI-RS可用性的比特数为N。终端在与SSB1满足QCL的PEI-PDCCH上收到的PEI-DCI中的指示信息指示使用SSB1作为QCL参考信号CSI-RS资源,也就是CSI-RS资源集2和3中的资源的可用性。N个指示比特中的第一比特指示CSI-RS资源集2中资源的可用性,第二比特指示CSI-RS资源集3中资源的可用性。
可选的,终端根据PEI-DCI的大小确定PEI-DCI中CSI-RS可用性比特和/或这些比特与CSI-RS资源的映射方式。当PEI-DCI的大小小于DCI格式1_0时,如果PEI-DCI中除去PEI-PO指示信息和公共信息的剩余比特大小小于网络配置的CSI-RS资源集组数量时,终端使用第二/三/四方式中的一种确定CSI-RS可用性指示的比特数以及与CSI-RS资源的映射方式。当剩余比特数大于网络配置的CSI-RS资源集组数量时,终端使用第一方式确定CSI-RS可用性指示的比特数以及与CSI-RS资源的映射方式。一个具体的示例,网络配置PEI-DCI的大小为M,终端根据每个PEI-PO的大小A和PEI容量D,以及其他部分确定的比特数X,终端可确定PEI-DCI的剩余比特大小为Y=M-(A*D+X)。终端可根据Y的大小确定PEI信息中CSI-RS资源可用性的大小和映射方式等信息。
【实施例3】
图6是示出了根据本发明的另一个实施例中由用户设备执行的方法的流程图。
如图6所示,在步骤301,终端根据高层指示确定PEI-DCI中CSI-RS指示信息的大小和/或映射方法。
在步骤303中,终端确定PEI-DCI的大小。
NR中,PDCCH的生成过程中对所承载的DCI使用特定的序列进行加扰,比如使用16比特的RNTI对CRC部分进行加扰。终端可以对接收到的PDCCH信号使用特定的RNTI进行盲检解扰,并校验CRC的正确性。如果能够正确解出并通过校验,终端可以获得相关的DCI指示信息,如果不能解出或校验不通过,终端则丢弃相关的信号。通过这种方式,终端可以分辨出具有相同DCI大小但是使用不同RNTI加扰的信令。
网络使用PEI-DCI携带CSI-RS资源可用性的指示信息,指示相应的期间上是否有可用的CSI-RS用于用户接收。PEI-DCI信息使用PDCCH信道进行传输,网络可能使用不同的配置方式来适配不同的需求。例如,配置PEI的PDCCH搜索空间使用和寻呼PDCCH相同的搜索空间,并使用相同的DCI大小,以减小终端的盲检开销。这时,网络需要配置不同于寻呼PDCCH的P-RNTI的一个RNTI,例如为PEI-RNTI,使得终端能区分不同的DCI信息。这时PEI-DCI中可用于CSI-RS可用性指示的最大比特数可以比较多,例如和寻呼PDCCH的DCI用于CSI-RS可用性指示的最大比特数一样多。另一种情况下,为提高PEI信号的接收可靠性或者增强PEI信号的下行接收能力等,使用较小的PEI-DCI的比特数,这时,PEI DCI中也使用较小的比特数用于指示CSI-RS的可用性。当PEI-DCI使用不同的方案指示CSI-RS的可用性时,相关的指示比特到SIB中所配置的CSI-RS资源或资源集的映射关系不同,终端需要确定PEI-DCI中CSI-RS可用性指示信息与CSI-RS资源或资源集的映射关系,从而确定所指示的CSI-RS资源的可用性。
终端可根据高层的指示确定PEI-DCI中CSI-RS可用性指示信息和/或指示信息与CSI-RS资源或资源集的映射关系。
可选的实施例,终端根据PEI-DCI所使用的RNTI确定PEI-DCI中CSI-RS可用性指示与CSI-RS的映射方式。当PEI-DCI使用不同于P-RNTI的RNTI加扰时,PEI-DCI中使用第一方式确定CSI-RS可用性 指示的比特数以及与CSI-RS资源的映射方式。当PEI-DCI的使用P-RNTI加扰时,PEI-DCI中使用第二/第三/第四方式中的一种确定CSI-RS可用性指示的比特数以及与CSI-RS资源的映射方式。
可选的,终端根据RNTI确定PEI-DCI中CSI-RS可用性指示的比特数,可以确定PEI-DCI的大小。具体的示例,PEI-DCI的大小由用于指示每个PEI-PO的大小A和PEI容量k,指示CSI-RS可用性的指示比特数Y,以及其他部分确定的比特数X,终端可确定PEI-DCI的大小为A*k+X+Y。可选的,PEI-DCI的大小存在最小值Z,例如Z=12,那么终端可确定PEI-DCI的大小为max(A*k+X+Y,Z)。max运算为取两值中的较大值。终端确定PEI-DCI的大小用于PEI信息的接收。
可选的实施例,终端根据高层的指示确定PEI-DCI中CSI-RS可用性指示与CSI-RS的映射方式。例如,高层使用1比特指示PEI-DCI中CSI-RS可用性比特和/或这些比特与CSI-RS资源的映射方式。例如,高层指示为1时,终端使用第二/第三/第四方式中的一种确定CSI-RS可用性指示的比特数以及与CSI-RS资源的映射方式,否则终端使用第一方式确定CSI-RS可用性指示的比特数以及与CSI-RS资源的映射方式。
可选的,终端根据高层指示确定PEI-DCI中CSI-RS可用性指示的比特数后,还可以进一步PEI-DCI的大小。具体的,PEI-DCI的大小由用于指示PEI-PO的大小A和PEI容量k,指示CSI-RS可用性的指示比特数Y,以及其他部分确定的比特数X,终端可确定PEI-DCI的大小为A*k+X+Y。可选的,PEI-DCI的大小存在最小值Z,例如Z=12。那么终端可确定PEI-DCI的大小为max(A*k+X+Y,Z)。max运算为取两值中的较大值。终端确定PEI-DCI的大小用于PEI信息的接收。
【实施例4】
图7是示出了根据本发明的另一个实施例中由用户设备执行的方法的流程图。
如图7所示,在步骤401中,终端根据PEI的容量和终端标识确定第一参考点位置;
在步骤403中,终端根据PEI的容量确定第二参考帧。
下面对本实施例中的步骤进行具体的说明。
终端可根据寻呼参数确定一个寻呼循环中要检测的PO。当使用PEI进行寻呼接收指示时,终端确定一个寻呼循环中需要检测的PO所关联的PEI机会的位置,例如根据终端的UE_ID确定关联到该PO的第一参考点位置。终端根据与第一参考点的第一偏移值确定该PO对应的第二参考点位置,以及与第二参考点位置存在第二偏移的PEI机会的起始位置。第一偏移和第二偏移值可由高层配置,例如,第一偏移值为若干个无线帧,第二偏移值为若干个符号。
终端根据UE_ID和PEI机会的容量确定一个寻呼循环中该终端的第一参考帧位置。可选的,当PEI机会的容量D小于或等于Ns时,终端确定一个PEI机会对应的PO数量小于或等于一个PF中对应的PO数量。终端可根据用户的TMSI标识获得用于确定寻呼机会的参数UE_ID,例如UE_ID=5G-S-TMSI mod 1024。终端还没获取到相关用户标识时,可以使用UE_ID=0。终端根据UE_ID获得参考ID值ref_ID=(UE_ID mod N),然后终端获得第一参考无线帧的帧号ref_SFN,为满足下式条件的ref_SFN:
(ref_SFN+PF_offset)mod T=(T/N)*ref_ID
可选的,当PEI的容量D大于Ns时,终端确定一个PEI机会对应的PO数量多于一个PF中对应的PO数量。终端可根据用户的TMSI标识获得用于确定寻呼机会的参数UE_ID,根据UE_ID获得ref_ID值ref_ID=F*floor((UE_ID mod N)/F),其中,F=D/Ns,即为一个PEI机会所对应的PF的数量。终端可以获得第一参考无线帧的帧号ref_SFN,为满足下式条件的ref_SFN:
(ref_SFN+PF_offset)mod T=(T/N)*ref_ID
其中,PF_offset为网络配置的寻呼帧偏移值,T为终端确定的寻呼循环周期。N为一个寻呼循环周期中寻呼帧的数量。mod为取模运算。
可选的实施例,当PEI机会的容量D小于Ns时,根据上面的方法, 一个PF上不同PO将对应到相同的第一参考帧,也就是会有多个对应到不同PO的不同的PEI机会使用相同的第一参考帧。网络需要配置多个第一偏移值或第二偏移值,用于不同终端确定使用相同参考帧的不同的PEI机会。终端根据第一参考帧确定所要检测的PEI机会时,需要确定待检测的PEI机会使用的第一偏移值和第二偏移值。
可选的,一个PF上不同的PO使用相同的第一偏移值,终端根据PEI机会的容量D确定第二偏移值。具体的,当PEI机会的容量D小于或等于Ns,终端确定PEI机会的第二偏移值的序号i_s_pei=i_s/floor(Ns/D)。当D能整除Ns时,可以简化为i_s_pei=i_s*D/Ns。当PEI的容量D大于Ns,终端确定PEI机会的第二偏移值的序号i_s_pei=0。其中i_s为终端检测的PO在PF序号。
可选的,一个PF上不同的PO使用不同的第一偏移值,终端根据PEI机会的容量D确定第一偏移值。具体的,当PEI机会的容量D小于或等于Ns,终端确定PEI机会的第一偏移值的序号i_s_pei=i_s/floor(Ns/D)。当D能整除Ns时,可以简化为i_s_pei=i_s*D/Ns。当PEI的容量D大于Ns,终端确定PEI机会的第一偏移值的序号i_s_pei=0。
一个具体的示例如图8所示,图中一个PF关联两个PO,Ns=2。同时PEI-DCI的容量D为1,也就是一个PEI-DCI仅指示检测一个PO的终端是否要检测该PO。终端PEI-DCI容量和UE_ID确定第一参考帧,检测PO0和PO1的终端都确定到相同的第一参考帧。一种方法,如图8(a)所示,终端确定第一偏移值,终端确定第二偏移值的序号和第二偏移值,终端可以确定相应的PEI机会的起始点。另一种方法,如图8(b)所示,终端确定第一偏移值的序号和第一偏移值,终端确定第二偏移值的序号和/或第二偏移值,终端可以确定相应的PEI机会的起始点。
在确定出PEI机会之后,可以确定出相关的PEI-PDCCH检测机会。以下对确定PEI-PDCCH检测机会的过程进行说明。
网络可通过SIB或RRC消息指示SSB发送的参数,例如,网络通过SIB1中的ssb-PositionsInBurst信元指示实际发送的SSB的数量和序号等信息。不同的SSB可对应不同的覆盖方向,从而使整个小区中的终端都 能获得良好的下行接收。根据网络中SSB等配置参数的不同,一个PEI机会由若干个PEI-PDCCH检测机会构成,终端根据PEI帧以及配置参数确定若干个PEI机会以及若干PEI-PDCCH检测机会。
例如,终端确定PEI机会包括X*S个连续的PEI-PDCCH检测机会,其中每S个PEI-PDCCH检测机会分别对应S个不同的SSB序号。那么每个PEI机会中的第x*S+s个PDCCH检测机会对应第s个实际发送的SSB序号。X为高层配置值。其中x=01,...,X-1,s=1,2,...,S。可选的,高层不配置X值,终端使用X=1确定相应的PEI-PDCCH检测机会序号。S为实际传输的SSB的数量,可根据SIB1中的ssb-PositionsInBurst确定。
下面,利用图9来说明作为一种变形例的可执行本发明上面所详细描述的用户设备执行的方法的用户设备。
图9是表示本发明所涉及的用户设备UE的框图。
如图9所示,该用户设备UE60包括处理器601和存储器602。处理器601例如可以包括微处理器、微控制器、嵌入式处理器等。存储器602例如可以包括易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器等。存储器602上存储有程序指令。该指令在由处理器601运行时,可以执行本发明详细描述的由用户设备执行的上述方法。
上文已经结合优选实施例对本发明的方法和涉及的设备进行了描述。本领域技术人员可以理解,上面示出的方法仅是示例性的,而且以上说明的各实施例在不发生矛盾的情况下能够相互组合。本发明的方法并不局限于上面示出的步骤和顺序。上面示出的网络节点和用户设备可以包括更多的模块,例如还可以包括可以开发的或者将来开发的可用于基站、MME、或UE的模块等等。上文中示出的各种标识仅是示例性的而不是限制性的,本发明并不局限于作为这些标识的示例的具体信元。本领域技术人员根据所示实施例的教导可以进行许多变化和修改。
应该理解,本发明的上述实施例可以通过软件、硬件或者软件和硬 件两者的结合来实现。例如,上述实施例中的基站和用户设备内部的各种组件可以通过多种器件来实现,这些器件包括但不限于:模拟电路器件、数字电路器件、数字信号处理(DSP)电路、可编程处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程逻辑器件(CPLD),等等。
在本申请中,“基站”可以指具有较大发射功率和较广覆盖面积的移动通信数据和控制交换中心,包括资源分配调度、数据接收发送等功能。“用户设备”可以指用户移动终端,例如包括移动电话、笔记本等可以与基站或者微基站进行无线通信的终端设备。
此外,这里所公开的本发明的实施例可以在计算机程序产品上实现。更具体地,该计算机程序产品是如下的一种产品:具有计算机可读介质,计算机可读介质上编码有计算机程序逻辑,当在计算设备上执行时,该计算机程序逻辑提供相关的操作以实现本发明的上述技术方案。当在计算系统的至少一个处理器上执行时,计算机程序逻辑使得处理器执行本发明实施例所述的操作(方法)。本发明的这种设置典型地提供为设置或编码在例如光介质(例如CD-ROM)、软盘或硬盘等的计算机可读介质上的软件、代码和/或其他数据结构、或者诸如一个或多个ROM或RAM或PROM芯片上的固件或微代码的其他介质、或一个或多个模块中的可下载的软件图像、共享数据库等。软件或固件或这种配置可安装在计算设备上,以使得计算设备中的一个或多个处理器执行本发明实施例所描述的技术方案。
此外,上述每个实施例中所使用的基站设备和终端设备的每个功能模块或各个特征可以由电路实现或执行,所述电路通常为一个或多个集成电路。设计用于执行本说明书中所描述的各个功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)或通用集成电路、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立的门或晶体管逻辑、或分立的硬件组件、或以上器件的任意组合。通用处理器可以是微处理器,或者所述处理器可以是现有的处理器、控制器、微控制器或状态机。上述通用处理器或每个电路可以由数字电路配置, 或者可以由逻辑电路配置。此外,当由于半导体技术的进步,出现了能够替代目前的集成电路的先进技术时,本发明也可以使用利用该先进技术得到的集成电路。
尽管以上已经结合本发明的优选实施例示出了本发明,但是本领域的技术人员将会理解,在不脱离本发明的精神和期间的情况下,可以对本发明进行各种修改、替换和改变。因此,本发明不应由上述实施例来限定,而应由所附权利要求及其等价物来限定。

Claims (5)

  1. 一种由用户设备UE执行的方法,包括:
    所述用户设备根据CSI-RS资源集的组号确定寻呼超前指示PEI-DCI信息中指示CSI-RS资源可用性信息的比特数;以及
    根据所确定的比特数所对应的PEI-DCI信息中指示CSI-RS资源可用性信息的比特确定CSI-RS资源的可用性;
    所述用户设备为无线资源控制RRC状态为空闲态或非激活态的用户设备。
  2. 根据权利要求1所述的方法,所述CSI-RS资源集的组号为高层信令配置的一个或多个CSI-RS资源集的组号中的最大值;以及
    所述确定PEI-DCI信息中指示CSI-RS资源可用性信息的比特数为所述组号最大值加1。
  3. 根据权利要求2所述的方法,所述高层信令配置的一个或多个CSI-RS资源集为系统信息广播SIB消息中为空闲态或非激活态用户配置的一个或多个CSI-RS资源集。
  4. 根据权利要求1所述的方法,用户设备根据所确定的指示CSI-RS资源集可用性信息的比特数所对应的寻呼超前指示PEI信息中指示CSI-RS资源可用性信息的比特确定CSI-RS资源的可用性包括:
    终端根据CSI-RS资源集组号对应的比特确定该CSI-RS资源集中CSI-RS资源的可用性。
  5. 一种用户设备,包括:
    处理器;以及
    存储器,存储有指令,
    其中,所述指令在由所述处理器运行时执行根据权利要求1至4中的任一项所述的方法。
PCT/CN2022/137195 2021-12-10 2022-12-07 由用户设备执行的方法以及用户设备 WO2023104082A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111513925.2 2021-12-10
CN202111513925.2A CN116260561A (zh) 2021-12-10 2021-12-10 由用户设备执行的方法以及用户设备

Publications (1)

Publication Number Publication Date
WO2023104082A1 true WO2023104082A1 (zh) 2023-06-15

Family

ID=86686775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137195 WO2023104082A1 (zh) 2021-12-10 2022-12-07 由用户设备执行的方法以及用户设备

Country Status (2)

Country Link
CN (1) CN116260561A (zh)
WO (1) WO2023104082A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113037444A (zh) * 2019-12-25 2021-06-25 维沃移动通信有限公司 Csi-rs指示的方法及设备
CN113366798A (zh) * 2021-05-08 2021-09-07 北京小米移动软件有限公司 信号接收、发送方法、装置、用户设备、基站及存储介质
US20210288773A1 (en) * 2020-03-10 2021-09-16 Samsung Electronics Co., Ltd. Method and apparatus for csi-rs in rrc_idle/inactive state

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113037444A (zh) * 2019-12-25 2021-06-25 维沃移动通信有限公司 Csi-rs指示的方法及设备
US20210288773A1 (en) * 2020-03-10 2021-09-16 Samsung Electronics Co., Ltd. Method and apparatus for csi-rs in rrc_idle/inactive state
CN113366798A (zh) * 2021-05-08 2021-09-07 北京小米移动软件有限公司 信号接收、发送方法、装置、用户设备、基站及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CMCC: "Discussion on TRS/CSI-RS occasion(s) for IDLE/INACTIVE-mode UEs", 3GPP DRAFT; R1-2111618, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20211111 - 20211119, 5 November 2021 (2021-11-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052074981 *
OPPO: "Further discussion on RS occasion for idle/inactive UEs", 3GPP DRAFT; R1-2100169, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 18 January 2021 (2021-01-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051970287 *

Also Published As

Publication number Publication date
CN116260561A (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
EP3788822B1 (en) Power saving mechanism
US11374723B2 (en) Cross-carrier scheduling activation for a dormant cell
US20230069898A1 (en) Beam Failure Recovery In A Power Saving Operation
US20210203468A1 (en) Power-Saving Active BWP
CN116095795B (zh) 用于在省电模式中的上行链路发射的方法和装置
EP4054100A1 (en) Transmission and reception of power saving command
US11963189B2 (en) Power saving for time-domain scheduling of downlink data
US20220264345A1 (en) Synchronization Detection Based on Radio Link Monitoring in Power Saving Mode
CN114930756B (zh) 新无线电未许可频带中的下行链路控制信道监测
US10091763B2 (en) Paging in coverage extension mode
CN112640536A (zh) 处于休眠状态的波束故障复原程序
CN115380603B (zh) 资源检索程序
WO2023051677A1 (zh) 由用户设备执行的方法以及用户设备
WO2022152113A1 (zh) 由用户设备执行的方法以及用户设备
WO2023104082A1 (zh) 由用户设备执行的方法以及用户设备
WO2023051453A1 (zh) 由用户设备执行的确定pei机会的方法以及用户设备
WO2023078394A1 (zh) 由用户设备执行的方法以及用户设备
WO2023284717A1 (zh) 由用户设备执行的方法以及用户设备
WO2022237613A1 (zh) 由用户设备执行的接收下行信号的方法以及用户设备
WO2022267993A1 (zh) 由用户设备执行的方法以及用户设备
WO2024012399A1 (zh) 由用户设备执行的方法以及用户设备
WO2024061282A1 (zh) 由用户设备执行的方法以及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903504

Country of ref document: EP

Kind code of ref document: A1