WO2024061282A1 - 由用户设备执行的方法以及用户设备 - Google Patents

由用户设备执行的方法以及用户设备 Download PDF

Info

Publication number
WO2024061282A1
WO2024061282A1 PCT/CN2023/120103 CN2023120103W WO2024061282A1 WO 2024061282 A1 WO2024061282 A1 WO 2024061282A1 CN 2023120103 W CN2023120103 W CN 2023120103W WO 2024061282 A1 WO2024061282 A1 WO 2024061282A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
msga
configuration
resources
rbs
Prior art date
Application number
PCT/CN2023/120103
Other languages
English (en)
French (fr)
Inventor
马小骏
刘仁茂
罗超
Original Assignee
夏普株式会社
马小骏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 马小骏 filed Critical 夏普株式会社
Publication of WO2024061282A1 publication Critical patent/WO2024061282A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0014Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the source coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present invention relates to the field of wireless communication technology, and specifically to methods executed by user equipment and corresponding user equipment.
  • some new methods can be adopted, such as reducing the peak data rate supported by these devices to about 10Mbps, or further reducing the user equipment bandwidth from a maximum of 20MHz to a maximum of 5MHz. These methods or their combination can further reduce the complexity of equipment and reduce costs at different levels.
  • the coexistence of these devices with other types of NR user equipment in the same community must be considered to maintain ecological integrity, maximize ecological scale, and improve network efficiency.
  • These new business requirements put forward some new requirements for the existing NR network. For example, if the network wants to support the data transmission bandwidth of user equipment not exceeding 5MHz, the network configuration parameters or the resource parameters used by the terminal to transmit data must meet relevant requirements.
  • the related method of the present invention provides a better method for realizing the requirements of these devices in the network, and can ensure coexistence with existing devices in the network when meeting relevant constraints, and obtain better network utilization efficiency.
  • the present invention provides a method executed by user equipment and user equipment, which can meet the requirements of reducing data transmission bandwidth of related equipment in the network and ensure coexistence with existing equipment in the network. requirements to obtain better network utilization efficiency.
  • a method performed by a user equipment UE comprising: determining that the bandwidth of an uplink BWP is not greater than the maximum channel bandwidth of the UE; and determining whether random access RA resources on the BWP can be used for random access of the UE, the maximum channel bandwidth of the UE being determined by an eRedCap characteristic.
  • the UE selects the At least one random access resource is an available random access resource; when no random access resource is configured with an eRedCap indication on the BWP, if there is a random access resource configured with a RedCap indication, the UE selects the RedCap
  • the indicated resources are available random access resources; otherwise, the random resources selected by the UE without using any characteristic identifier are available random access resources.
  • the msgA configuration parameter of the network configuration it is determined whether the random access resource determined by the msgA configuration parameter on the BWP is a resource available for the 2-step random access RA.
  • the resources corresponding to the msgA configuration are random access resources available to the UE.
  • the resources corresponding to the msgA configuration can be used for the UE on the BWP.
  • Available random access resources when the number of RBs in each PUSCH resource block in the msgA configuration is greater than N, the resources corresponding to the msgA configuration are not used for the available random access resources of the UE on the BWP.
  • Input resources the quantity threshold N is predefined by the eRedCap feature.
  • the resources corresponding to the msgA configuration can be used by the UE on the BWP of available random access resources; in the msgA
  • the resources corresponding to the msgA configuration can still be used for the UE's available random access resources on the BWP, and the UE uses part of RB is used for the transmission of the PUSCH; the number threshold N is predefined by the eRedCap characteristics.
  • the number and position of RBs used for the PUSCH transmission are determined according to the second number of RBs in the msgA configuration.
  • the UE when it uses part of the RBs for the transmission of the PUSCH, it includes: receiving the modulation coding scheme MCS configured by the network; and according to the MCS and the RB used for the PUSCH transmission. quantity, determine the modulation order and code rate to determine the TBS size for the PUSCH transmission.
  • the TBS size used for the PUSCH transmission is determined according to the second MCS determined by the indication of the network or determined by the UE according to the size of the part of RBs and the value of the MCS.
  • a user equipment including: a processor; and a memory storing instructions, wherein the instructions execute the above method when executed by the processor.
  • the capacity reduction requirements of relevant equipment in the network can be met, the coexistence requirements with existing equipment in the network can be ensured, and better network utilization efficiency can be obtained.
  • FIG1 is a flowchart of a method executed by a user equipment UE according to embodiment 1 of the present invention.
  • FIG. 2 is a flowchart of a method performed by user equipment UE according to Embodiment 2 of the present invention.
  • Figure 3 is a brief structural block diagram of the user equipment UE involved in the present invention.
  • the following uses the 5G/NR mobile communication system and its subsequent evolved versions as an example application environment to specifically describe multiple embodiments according to the present invention.
  • the present invention is not limited to the following embodiments, but can be applied to more other wireless communication systems, such as communication systems after 5G, 4G and 3G mobile communication systems before 5G, 802.11 wireless networks, etc. .
  • 3GPP 3rd Generation Partnership Project, third generation partner program
  • LTE Long Term Evolution, long-term evolution technology
  • UE User Equipment, user equipment
  • gNB NR base station
  • FR1 Frequency range 1 as defined in TS 38.104, frequency range 1 defined by TS38.104
  • FR2 Frequency range 2 as defined in TS 38.104, frequency range 2 defined by TS38.104
  • BWP BandWidth Part, bandwidth fragment/part
  • SFN System frame number, system frame number
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • CP Cyclic Prefix, cyclic prefix
  • SCS sub-carrier spacing, sub-carrier spacing
  • RB Resource Block, resource block
  • CRB Common Resource Block, common resource block
  • PRB Physical Resource Block, physical resource block
  • VRB Virtual resource block, virtual resource block
  • CCE Control channel element, control channel unit
  • EPRE Energy per resource element, energy per resource unit
  • TDD Time Division Duplexing, time division duplexing
  • FDD Frequency Division Duplexing, frequency division duplexing
  • CSI Channel State Information, channel state information
  • DCI Downlink Control Information, downlink control information
  • MCS Modulation and Coding Scheme, modulation coding scheme
  • CRC Cyclic Redundancy Check, cyclic redundancy check
  • CORESET Control resource set, control resource set
  • MIB Master Information Block, master information block
  • SIB system information block, system information block
  • SIBl System Information Block Type 1, system information block type 1
  • SSB SS/PBCH block, synchronization signal/physical broadcast channel block
  • PSS Primary Synchronization Signal, main synchronization signal
  • SSS Secondary Synchronization Signal, auxiliary synchronization signal
  • SRS Sounding Reference Signal, detection reference signal
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • CSI-RS Channel State Information Reference Signal, channel state information reference signal
  • TRS Tracking Reference Signal, tracking reference signal
  • RACH random-access channel, random access channel
  • PBCH Physical broadcast channel, physical broadcast channel
  • PUCCH Physical Uplink Control Channel, physical uplink control channel
  • PUSCH Physical Uplink Shared Channel, physical uplink shared channel
  • PRACH Physical random-access channel, physical random access channel
  • PDSCH Physical downlink shared channel, physical downlink shared channel
  • PDCCH Physical downlink control channel, physical downlink control channel
  • UL-SCH Uplink Shared Channel, uplink shared channel
  • DL-SCH Downlink Shared Channel, uplink shared channel
  • NZP-CSI-RS Not-Zero-Power CSI-RS, non-zero power CSI-RS
  • C-RNTI Cell Radio Network Temporary Identifier, residential wireless network temporary identifier
  • P-RNTI Paging RNTI, paging wireless network temporary identifier
  • RA-RNTI Random Access RNTI, random access wireless network temporary identifier
  • CS-RNTI Configured Scheduling RNTI, configured scheduling wireless network temporary identifier
  • SI-RNTI System Information RNTI, system information radio network temporary identifier
  • TC-RNTI Temporary C-RNTI, temporary cell wireless network temporary identifier
  • RAR Random access response, random access response
  • RIV resource indication value, resource indication value
  • network equipment is equipment that communicates with user equipment, including but not limited to base station equipment, gNB, eNB, wireless AP, wireless relay, terminals with relay capabilities, etc., and will not be specifically distinguished and limited in the following text.
  • the base station can be used as a form of network equipment implementation in this article. During specific implementation, it can be easily replaced with other network equipment forms.
  • the network node can configure random access (RA) resources for the terminal, which is used for the terminal to perform random access in the cell.
  • RA random access
  • the network configures 4-step random access resources for terminals.
  • the terminal initiates random access, it selects a PRACH opportunity in the 4-step random access resource to send a PRACH preamble, then detects the PDCCH on the relevant search space, and receives the random access response message of the PDSCH transmission scheduled by the PDCCH.
  • the terminal transmits msg3 according to the uplink authorization in the random access response message, and detects and receives the competition completion message sent by the base station after transmitting msg3 to complete the random access process.
  • the network can also be configured with 2-step random access resources.
  • the terminal When the terminal uses 2-step access to initiate the random access process, it sends msgA to the base station.
  • the msgA sent by the terminal includes not only sending PRACH preamble on the selected PRACH opportunity, but also sending PUSCH on the PUSCH resource that has a mapping relationship with the preamble. Then, the terminal receives the response message msgB message sent by the base station, and determines whether the 2-step random access is successful or falls back to the 4-step access mode based on the content of msgB.
  • 2-step random access resources and 4-step random access resources may be configured on one BWP at the same time, or only one of them may be configured.
  • the terminal can select appropriate 2-step or 4-step resources according to certain rules to perform related processes.
  • the terminal selects the RA type as 2-step RA; otherwise the terminal selects 4-step RA.
  • the terminal selects 2-step RA.
  • the terminal performs the corresponding random access process according to the selected RA type.
  • the terminal also follows a certain method when selecting the RA resource set available for random access on the BWP. For example, if non-contention RA resources are not indicated for this RA process and the RA process is associated with a specific characteristic. If the terminal does not have an RA resource associated with the current characteristic among the resource sets provided by the network, the terminal selects a resource that is not associated with any characteristic as an RA resource for random access by the terminal.
  • the terminal selects the RA resource for the RA process.
  • the terminal selects RA resources that are not associated with any characteristic indication for the RA process.
  • the characteristic indications used by RA resources include multiple types, such as whether it is Msg3 repetition, whether it is RedCap, whether it is small data transmission SDT, and so on.
  • the terminal can select appropriate resources for RA according to the characteristics indicated by the higher layer that apply to the RA process.
  • terminal complexity can be reduced by limiting the bandwidth used by the terminal for data channel transmission.
  • the terminal is restricted to using a terminal channel bandwidth no larger than 5MHz for data transmission, so that the terminal can further reduce the complexity in modules such as receiving data processing and decoding module processing.
  • the number of PRBs available in the terminal channel bandwidth with a bandwidth size of 5MHz is related to the subcarrier spacing parameter SCS used by the bandwidth. For example, when the SCS is 15kHz, the number of available PRBs in the 5MHz bandwidth is 25, and when the SCS is 15kHz, the number of available PRBs in the 5MHz bandwidth is 11.
  • the maximum number of PRBs used using a data transmission bandwidth of no more than 5MHz is related to the SCS, which is 25 or 11.
  • the NR system introduced a terminal type in R17 that can be identified as RedCap.
  • the channel transmission bandwidth used by RedCap terminals on the FR1 frequency band is not greater than 20MHz.
  • eRedCap is used in the present invention as an identifier of a terminal that further limits the transmission bandwidth of the shared data channel to no more than 5 MHz and the transmission bandwidth of other channels to no more than 20 MHz in the FR1 frequency band.
  • Other identifiers may be used in the network to identify this type of terminal, which does not affect the essence of the relevant methods.
  • the bandwidth configured for shared channel data transmission in the network may be greater than the maximum bandwidth supported by the eRedCap terminal.
  • the eRedCap terminal performs data transmission, it needs to ensure that the bandwidth capability of the terminal is not exceeded.
  • the present invention provides an appropriate method so that eRedCap user equipment can coexist with other types of user equipment in the same cell, and can achieve related business requirements.
  • the user equipment or terminal referred to below refers to the eRedCap user equipment that uses limited bandwidth capabilities.
  • control channel can use a maximum UE channel bandwidth of 20MHz
  • shared channel can use a maximum UE channel bandwidth of 5MHz.
  • the user equipment can use a smaller bandwidth and use the shared channel to transmit data to reduce its implementation complexity.
  • the performance of the control channel will not be degraded due to bandwidth limitations, and it can maintain good compatibility with existing network configurations.
  • the number of available RBs related to the channel bandwidth capability of the user equipment can be determined by the bandwidth size and SCS parameters. For example, when the SCS is 15kHz, the number of available RBs in the UE channel bandwidth of 20MHz is 106, and the number of available RBs in the UE channel bandwidth of 5MHz is 25. If the channel bandwidth of the user equipment on the shared channel is restricted to not be greater than 5 MHz, the number of RBs used for transmission on the shared channel shall not be greater than 25. When the SCS used in the bandwidth is 30kHz, the number of available RBs in the 5MHz UE channel bandwidth is 11.
  • the channel bandwidth of the user equipment on the shared channel is restricted to not be greater than 5MHz, the number of RBs used for transmission on the shared channel is not greater than 11.
  • Figure 1 is a flowchart of a method performed by user equipment UE according to Embodiment 1 of the present invention.
  • the terminal when selecting random access (RA) resources, the terminal first determines the BWP used to initiate the random access (RA) process. Specifically, in step S101, the terminal determines that the uplink The bandwidth of the BWP is no greater than the maximum channel bandwidth of the UE, for example, a bandwidth less than 20 MHz. In step S102, the terminal determines whether the RA resources on the BWP can be used for random access of the terminal (and the RA type used). Wherein, the maximum channel bandwidth of the UE is determined by the eRedCap characteristic.
  • the terminal performs a contention-based RA process, and the terminal determines that the RA process is eRedCap feature-related according to higher layer instructions. If at least one RA resource is configured with the eRedCap indication on the BWP selected by the terminal for the RA process, the terminal selects the RA resource as an available RA resource. If there is no RA resource configured with eRedCap indication on the BWP and there is an RA resource configured with RedCap indication, the terminal selects the resource indicated by RedCap as the available RA resource. Otherwise, the terminal selects RA resources that do not use any characteristic identification as available RA resources.
  • the msgA configuration parameter MsgA-ConfigCommon is used to configure 2-step RA resources for the terminal.
  • MsgA-ConfigCommon can contain two parameter groups, recorded as rach-ConfigCommonTwoStepRA and msgA-PUSCH-Config respectively.
  • rach-ConfigCommonTwoStepRA is used to configure PRACH preamble and other parameters used in 2-step access
  • msgA-PUSCH-Config is used to configure PUSCH and other parameters used in 2-step access, including MCS parameters msgA-MCS, time domain and frequency domain
  • MCS parameters msgA-MCS
  • time domain and frequency domain The resource starting position, the number of RBs in each PUSCH resource block nrofPRBs-PerMsgA-PO, etc.
  • the configurable value of nrofPRBs-PerMsgA-PO is an integer M from 1 to 32, that is, when the terminal uses 2-step access resources for random access, it uses M RB resource blocks for PUSCH transmission.
  • the terminal performs the 2-step RA process, it selects a PRACH preamble and the associated PUSCH resource block to transmit msgA.
  • the eRedCap terminal selects RA resources, it needs to ensure that the resource bandwidth used to transmit PUSCH does not exceed the terminal's ability to transmit shared data bandwidth.
  • the terminal in addition to determining the available RA resources according to the characteristic indication of the RA resources, the terminal also determines whether the RA resources determined by the msgA configuration parameter on the BWP are resources available for 2-step RA according to the msgA configuration parameter.
  • the terminal determines whether the resources corresponding to the msgA configuration are RA resources available to the terminal based on the number of RBs in the PUSCH resource block in the msgA configuration parameter and the subcarrier spacing SCS parameter of the UL BWP where the PUSCH is located.
  • the terminal determines the RB number threshold N based on the UL BWP subcarrier spacing SCS parameter.
  • N the number of RBs in the PUSCH resource block in the msgA configuration
  • the RA resources corresponding to the msgA configuration are not used for the terminal's available use on the BWP.
  • RA resources when the number of RBs in the PUSCH resource block is less than or equal to N, the resources corresponding to the msgA configuration can be used for the RA resources available to the terminal on the BWP.
  • the terminal determines the predefined N value based on the subcarrier spacing SCS parameter of the UL BWP where the PUSCH is located. For example, when the SCS is 15kHz, the N value is 25, and when the SCS is 30kHz, the N value is 11. Other N values that meet the 5MHz bandwidth limit may also be defined in the system, which are not limited here.
  • the terminal determines the N value based on high-level configuration parameters.
  • the network uses the enumeration method in the BWP parameters to define N values under different SCS.
  • the terminal can obtain the specific N value through the enumeration value indicated by the BWP parameter.
  • the resources corresponding to the msgA configuration can be used for the terminal's available RA resources on the BWP; the terminal in the msgA configuration
  • the resources corresponding to the msgA configuration can still be used for the terminal's available RA resources on the BWP, and the terminal uses part of the RBs in the PUSCH resource block associated with the selected PRACH preamble for msgA transmission.
  • the terminal uses N consecutive RBs starting from the minimum sequence number of the resource block for the transmission of the msgA message.
  • the terminal can use the RA resource to transmit msgA under the condition that the configured PUSCH resource block bandwidth is greater than the bandwidth limit of the terminal transmission shared data channel, which can achieve compatibility with other types of terminals and reduce system complexity.
  • the base station can use blind detection for detection, for example, using N RBs corresponding to The TB parameters determined by the bandwidth, and the TB parameters determined by the configured bandwidth M RBs are detected. When the PUSCH with correct CRC check is detected, the reception is considered correct.
  • the terminal determines according to the second RB parameter that the resources corresponding to the msgA configuration are the RA resources available to the terminal on the BWP. Specifically, when the terminal determines that the number M of RBs for PUSCH is greater than N, the terminal can determine the number and location of RBs for PUSCH transmission according to the second number of RBs in the msgA configuration message.
  • the second configuration is the number of RBs K, and the terminal uses K consecutive RBs starting from the minimum sequence number of the resource block as resources for PUSCH transmission.
  • the optional second configuration includes the number K of RBs and the starting position within the resource block, for example, expressed using a numerical value of RIV. The terminal determines K consecutive RBs as resources for PUSCH transmission according to the starting position.
  • the terminal can use different RB sequence numbers in the first hop and the second hop.
  • PUSCH transmission For example, the first hop uses N consecutive RBs that start from the minimum sequence number of the resource block, and the second hop uses N consecutive RBs that start from the maximum sequence number of the resource block. In this way, the terminal can obtain better frequency diversity gain.
  • the RedCap terminal may also share the random access channel identified by the eRedCap feature with the eRedCap terminal to achieve multiplexing of system resources.
  • the RedCap terminal performs a contention-based RA process. If the higher layer indicates that the RA process is related to the RedCap feature, and if at least one RA resource is configured with a RedCap indication on the BWP, the terminal selects the at least one RA resource as the RA process. RA resources available to RedCap terminals. If there is no RA resource configured with RedCap indication on the BWP and there is an RA resource configured with eRedCap indication, the terminal selects the resource indicated by eRedCap as an available RA resource. Otherwise, the terminal selects RA resources that do not use any characteristic identification as available RA resources.
  • FIG. 2 is a flowchart of a method performed by user equipment UE according to Embodiment 2 of the present invention.
  • the network includes multiple parameters in the msgA message configuration for the terminal to determine relevant transmission parameters, including MCS, for example.
  • the terminal receives the MCS indicated or configured by the network.
  • the terminal determines the modulation order and code rate used to transmit the PUSCH based on the number of RBs and the MCS used to transmit the PUSCH of msgA.
  • the terminal in the NR network can determine the modulation order, code rate and other parameters used for data channel transmission according to the predetermined MCS table through the MCS sequence number value configured by the network.
  • An example MCS table is shown in Table 1.
  • Table 1 MCS sequence number table for PUSCH applications supporting precoding and 64QAM
  • the network configures an MCS sequence number through DCI instructions or high-level signaling.
  • the terminal can find the modulation order, code rate, spectrum efficiency and other parameters of the TB used to transmit the shared data channel from the MCS table.
  • the terminal can determine the relevant MCS table according to the instructions of the network. For example, when the precoding mode of PUSCH is set to not perform precoding, the terminal uses the first MCS table to determine the code rate and modulation order corresponding to different MCS numbers. When the precoding mode of PUSCH is set to use precoding, the terminal uses the second MCS table to determine the code rate and modulation order corresponding to different MCS numbers.
  • the network configures the MCS sequence number used to transmit PUSCH through the msgA parameter.
  • the terminal can determine the corresponding modulation order and code rate based on the MCS sequence number.
  • the terminal can also determine the number of symbols for PUSCH transmission, the number of symbols and patterns of DMRS, etc. based on other parameters in the msgA configuration.
  • the terminal can obtain the total number of REs available for PUSCH transmission on the resource block based on these parameters and the number of PUSCH resource block RBs.
  • the terminal determines the TB block size TBS for PUSCH transmission based on the number of REs, modulation order and code rate.
  • the eRedCap terminal can use part of the bandwidth to transmit the msgA message, that is, when all RBs of the selected resource block are not used to transmit PUSCH. , if the same other configuration parameters are still used, the TBS size that the terminal can use will be smaller than the TBS determined by the network configuration parameters, resulting in the msgA message size that can be transmitted smaller than the TBS corresponding to the network configuration parameters.
  • the terminal uses the second MCS parameter to determine the size of the TBS.
  • the terminal determines the TBS used for PUSCH transmission of msgA according to the determined number of RBs used for PUSCH transmission and the second MCS value.
  • the terminal determines the second MCS according to instructions from the network.
  • the terminal uses the second MCS in the msgA configuration parameter to determine the modulation method and code rate used for PUSCH transmission to determine the size of the TBS.
  • the terminal uses the second MCS to determine the TBS size, otherwise the terminal determines the TBS size according to the configured MCS and the number of RBs used for PUSCH transmission.
  • the terminal determines the second MCS according to the number of RBs used for PUSCH transmission and the value of the MCS, and determines the modulation mode and code rate used for PUSCH transmission.
  • the terminal determines to use 15 as the second MCS number.
  • the terminal determines the modulation mode and code rate used for PUSCH transmission based on the determined second MCS to determine the size of the TBS.
  • FIG. 3 is used to illustrate a user equipment that can execute the method performed by the user equipment described in detail above as a modified example of the present invention.
  • FIG. 3 is a block diagram showing user equipment UE according to the present invention.
  • the user equipment UE30 includes a processor 301 and a memory 302.
  • the processor 301 may include, for example, a microprocessor, a microcontroller, an embedded processor, etc.
  • the memory 302 may include, for example, a volatile memory (such as a random access memory RAM), a hard disk drive (HDD), a non-volatile memory (such as a flash memory), or other memories, etc.
  • the memory 302 stores program instructions. When the instructions are executed by the processor 301, the above method performed by the user equipment described in detail in the present invention may be executed.
  • the method and related equipment of the present invention have been described above in conjunction with preferred embodiments. Those skilled in the art can understand that the methods shown above are only exemplary, and the embodiments described above can be combined with each other without conflict.
  • the method of the present invention is not limited to the steps and sequence shown above.
  • the network nodes and user equipment shown above may include more modules, for example, may also include modules that may be developed or developed in the future and may be used for base stations, MMEs, or UEs, and so on.
  • the various identifications shown above are only illustrative and not restrictive, and the present invention is not limited to the specific information elements as examples of these identifications. Many changes and modifications may be made by those skilled in the art in light of the teachings of the illustrated embodiments.
  • various components inside the base station and user equipment in the above embodiments can be implemented by a variety of components, including but not limited to: analog circuit components, digital Word circuit devices, digital signal processing (DSP) circuits, programmable processors, application specific integrated circuits (ASIC), field programmable gate arrays (FPGA), programmable logic devices (CPLD), etc.
  • DSP digital signal processing
  • ASIC application specific integrated circuits
  • FPGA field programmable gate arrays
  • CPLD programmable logic devices
  • base station may refer to a mobile communication data and control switching center with larger transmission power and wider coverage area, including functions such as resource allocation and scheduling, data reception and transmission.
  • User equipment may refer to user mobile terminals, including, for example, mobile phones, laptops and other terminal equipment that can conduct wireless communication with base stations or micro base stations.
  • embodiments of the invention disclosed herein may be implemented on a computer program product.
  • the computer program product is a product that has a computer-readable medium with computer program logic encoded on the computer-readable medium, and when executed on a computing device, the computer program logic provides relevant operations to implement The above technical solution of the present invention.
  • the computer program logic When executed on at least one processor of a computing system, the computer program logic causes the processor to perform the operations (methods) described in embodiments of the invention.
  • Such arrangements of the invention are typically provided as software, code and/or other data structures disposed or encoded on a computer readable medium, such as an optical medium (eg, a CD-ROM), a floppy or hard disk, or the like, or as one or more Other media for firmware or microcode on a ROM or RAM or PROM chip, or downloadable software images, shared databases, etc. in one or more modules.
  • Software or firmware or such configuration may be installed on the computing device, so that one or more processors in the computing device execute the technical solutions described in the embodiments of the present invention.
  • each functional module or each feature of the base station equipment and user equipment used in each of the above embodiments may be implemented or executed by a circuit, which is usually one or more integrated circuits.
  • Circuitry designed to perform the various functions described in this specification may include a general-purpose processor, digital signal processor (DSP), application-specific integrated circuit (ASIC) or general-purpose integrated circuit, field-programmable gate array (FPGA) or other Programmed logic devices, discrete gate or transistor logic, or discrete hardware components, or any combination of the above.
  • a general purpose processor may be a microprocessor, or the processor may be an existing processor, controller, microcontroller or state machine.
  • the above-mentioned general processor or each circuit may be configured by a digital circuit, or may be configured by a logic circuit.
  • the present invention can also use an integrated circuit obtained by utilizing the advanced technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种由用户设备UE执行的方法以及用户设备,由用户设备执行的方法包括:确定上行BWP的带宽为不大于UE的最大信道带宽;以及确定所述BWP上的随机接入RA资源是否能够用于所述UE的随机接入,所述UE的最大信道带宽由eRedCap特性确定。

Description

由用户设备执行的方法以及用户设备 技术领域
本发明涉及无线通信技术领域,具体涉及由用户设备执行的方法以及相应的用户设备。
背景技术
本节介绍可以有助于更好地理解本发明的各个方面。因此,本节的陈述应从这个角度来阅读,并且不应被理解为承认什么是现有技术或什么不是现有技术。
5G系统中定义了几种典型应用,例如,工业无线传感器应用致力于加速产业转型和数字化,以获得工业生产过程的灵活性,提高生产力和效率,还有助于减少维护,提升操作安全性等。视频监控设备应用于智能城市建设,助力实现更好的城市管理和服务。可穿戴设备可用于医疗、生活等多个方面的智能化服务。这些应用的设备都期望较低的复杂度和较少的功率消耗,以降低成本扩大应用范围。R17中将一些设备类型的带宽从100MHz降低到20MHz,从而减小了设备成本。为进一步减少终端设备的复杂度,可以采取一些新的方法,例如,将这些设备支持的峰值数据速率减小到10Mbps左右,或者将用户设备带宽从最大20MHz进一步减小到最大为5MHz。这些方法或其组合都能在不同层面上进一步减小设备的复杂度,降低成本。同时,必须考虑这些设备与其他类型的NR用户设备在同一小区中的共存,以保持生态的完整性,最大化生态规模,提升网络效益。这些新的业务需求对现有的NR网络提出一些新的要求。例如,网络要支持用户设备的数据传输带宽不超过5MHz,就要求网络配置参数或终端传输数据时使用的资源参数满足相关的要求。本发明的相关方法为实现网络中这些设备需求提供了较好的方法,在满足相关约束条件时能保证与现有设备在网络中的共存,获得较好网络的利用效率。
发明内容
为了解决上述问题中的至少一部分,本发明提供了一种由用户设备执行的方法以及用户设备,能够满足网络中相关设备的降低数据传输带宽的需求,并保证与现有设备在网络中的共存需求,获得较好网络的利用效率。
根据本发明,提供了一种由用户设备UE执行的方法,包括:确定上行BWP的带宽为不大于UE的最大信道带宽;以及确定所述BWP上的随机接入RA资源是否能够用于所述UE的随机接入,所述UE的最大信道带宽由eRedCap特性确定。
根据本发明的上述方法,如果由高层指示为该随机接入的过程是eRedCap特性相关,则:在所述BWP上有至少一个随机接入资源配置了eRedCap指示的情况下,所述UE选择该至少一个随机接入资源为可用的随机接入资源;在所述BWP上没有随机接入资源配置了eRedCap指示的情况下,若有随机接入资源配置了RedCap指示,则所述UE选择该RedCap指示的资源为可用的随机接入资源;否则所述UE选择不使用任何特性标识的随机资源为可用的随机接入资源。
根据本发明的上述方法,根据网络配置的msgA配置参数,确定所述BWP上的msgA配置参数所确定的随机接入资源是否为2步随机接入RA可用的资源。
根据本发明的上述方法,根据所述网络配置的msgA配置中的每个PUSCH资源块的RB数量和BWP子载波间隔SCS参数,确定该msgA配置所对应的资源是否为所述UE可用的随机接入资源。
根据本发明的上述方法,在所述msgA配置中的每个PUSCH资源块的RB数量小于或等于数量门限N的情况下,该msgA配置所对应的资源能够用于所述UE在该BWP上的可用随机接入资源;在所述msgA配置中的每个PUSCH资源块的RB数量大于所述N的情况下,该msgA配置所对应的资源不用于所述UE在所述BWP上的可用随机接入资源;所述数量门限N为eRedCap特性所预定义。
根据本发明的上述方法,在所述msgA配置中的每个PUSCH资源块的RB数量小于或等于RB数量门限N的情况下,该msgA配置所对应的资源能够用于所述UE在该BWP上的可用随机接入资源;在所述msgA 配置中的每个PUSCH资源块的RB数量大于所述N的情况下,该msgA配置所对应的资源仍能够用于所述UE在所述BWP上的可用随机接入资源,所述UE使用部分RB用于所述PUSCH的传输;所述数量门限N为eRedCap特性所预定义。
根据本发明的上述方法,在所述msgA配置中的PUSCH的RB数量大于所述N的情况下,根据该msgA配置中的第二RB数量,确定用于所述PUSCH传输的RB数量和位置。
根据本发明的上述方法,在所述UE使用部分RB用于所述PUSCH的传输的情况下,包括:接收所述网络配置的调制编码方案MCS;以及根据所述MCS和用于PUSCH传输的RB数量,确定调制阶数和码率,以确定用于所述PUSCH传输的TBS大小。
根据本发明的上述方法,根据由所述网络的指示确定的、或者由所述UE根据所述部分RB的大小和所述MCS的值确定的第二MCS,确定用于所述PUSCH传输的TBS大小。
此外,根据本发明,提出了一种用户设备,包括:处理器;以及存储器,存储有指令,其中,所述指令在由所述处理器运行时执行上述的方法。
发明效果
根据本发明,能够满足网络中相关设备的降能力需求,保证与现有设备在网络中的共存需求,获得较好网络的利用效率。
附图说明
通过下文结合附图的详细描述,本发明的上述和其它特征将会变得更加明显,其中:
图1是根据本发明的实施例1的由用户设备UE执行的方法的流程图。
图2是根据本发明的实施例2的由用户设备UE执行的方法的流程图。
图3为本发明涉及的用户设备UE的简要结构框图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细阐述。应当注意,本发明不应局限于下文所述的具体实施方式,这些实施方式仅作为示例提供,以便将主题的范围传达给本领域技术人员。另外,为了简便起见,省略了对与本发明没有直接关联的公知技术的详细描述,以防止对本发明的理解造成混淆。
通常,除非在使用该术语的上下文中清楚地给出和/或隐含不同的含义,否则本文中使用的所有术语将根据其在相关技术领域中的普通含义来解释。除非明确说明,否则对一个该元件、设备、组件、部件、步骤等的所有引用应公开地解释为是指该元件、装置、组件、部件、步骤等的至少一个实例。除非必须明确地将一个步骤描述为在另一个步骤之后或之前和/或隐含地一个步骤必须在另一个步骤之后或之前,否则本文所公开的任何方法的步骤不必以所公开的确切顺序执行。在适当的情况下,本文公开的任何实施例的任何特征可以适用于任何其它实施例。同样,任何实施例的任何优点可以适用于任何其它实施例,反之亦然。
下文以5G/NR移动通信系统及其后续的演进版本作为示例应用环境,具体描述了根据本发明的多个实施方式。然而,需要指出的是,本发明不限于以下实施方式,而是可适用于更多其它的无线通信系统,例如5G之后的通信系统以及5G之前的4G、3G移动通信系统,802.11无线网络等等。
下面描述本发明涉及的部分术语。如未特别说明,本发明涉及的术语采用此处定义。本发明给出的术语在LTE、LTE-Advanced、LTE-Advanced Pro、NR以及之后的或其他的通信系统中可能采用不同的命名方式,但本发明中采用统一的术语,在应用到具体的系统中时,可以替换为相应系统中采用的术语。
3GPP:3rd Generation Partnership Project,第三代合作伙伴计划
LTE:Long Term Evolution,长期演进技术
NR:New Radio,新无线、新空口
UE:User Equipment,用户设备
gNB:NR基站
FR1:Frequency range 1 as defined in TS 38.104,由TS38.104定义的频率范围1
FR2:Frequency range 2 as defined in TS 38.104,由TS38.104定义的频率范围2
BWP:BandWidth Part,带宽片段/部分
SFN:System frame number,系统帧号
OFDM:Orthogonal Frequency Division Multiplexing,正交频分复用
CP:Cyclic Prefix,循环前缀
TA:Timing Advance,上行定时提前量
SCS:sub-carrier spacing,子载波间隔
RB:Resource Block,资源块
RE:Resource Element,资源单元
CRB:Common Resource Block,公共资源块
PRB:Physical Resource Block,物理资源块
VRB:Virtual resource block,虚拟资源块
REG:Resource Element Group,资源单元组
CCE:Control channel element,控制信道单元
EPRE:Energy per resource element,每资源单元能量
TDD:Time Division Duplexing,时分双工
FDD:Frequency Division Duplexing,频分双工
CSI:Channel State Information,信道状态信息
DCI:Downlink Control Information,下行控制信息
MCS:Modulation and Coding Scheme,调制编码方案
CRC:Cyclic Redundancy Check,循环冗余校验
SFI:Slot Format Indication,时隙格式指示
QCL:Quasi co-location,准共址
HARQ:Hybrid Automatic Repeat Request,混合自动重传请求
CORESET:Control resource set,控制资源集合
MIB:Master Information Block,主信息块
SIB:system information block,系统信息块
SIBl:System Information Block Type 1,系统信息块类型1
SSB:SS/PBCH block,同步信号/物理广播信道块
PSS:Primary Synchronization Signal,主同步信号
SSS:Secondary Synchronization Signal,辅同步信号
SRS:Sounding Reference Signal,探测参考信号
DMRS:Demodulation Reference Signal,解调参考信号
CSI-RS:Channel State Information Reference Signal,信道状态信息参考信号
TRS:Tracking Reference Signal,跟踪参考信号
RACH:random-access channel,随机接入信道
PBCH:Physical broadcast channel,物理广播信道
PUCCH:Physical Uplink Control Channel,物理上行控制信道
PUSCH:Physical Uplink Shared Channel,物理上行共享信道
PRACH:Physical random-access channel,物理随机接入信道
PDSCH:Physical downlink shared channel,物理下行共享信道
PDCCH:Physical downlink control channel,物理下行控制信道
UL-SCH:Uplink Shared Channel,上行共享信道
DL-SCH:Downlink Shared Channel,上行共享信道
NZP-CSI-RS:Not-Zero-Power CSI-RS,非零功率的CSI-RS
C-RNTI:Cell Radio Network Temporary Identifier,小区无线网络临时标识
P-RNTI:Paging RNTI,寻呼无线网络临时标识
RA-RNTI:Random Access RNTI,随机接入无线网络临时标识
CS-RNTI:Configured Scheduling RNTI,配置调度无线网络临时标识
SI-RNTI:System Information RNTI,系统信息无线网络临时标识
TC-RNTI:Temporary C-RNTI,临时小区无线网络临时标识
RAR:Random access response,随机接入响应
CSS:Common search space,公共搜索空间
RIV:resource indication value,资源指示数值
下文是与本发明方案相关联技术的描述。如无特别说明,具体实施例中与关联技术中相同术语的含义相同。
值得指出的是,本发明说明书中涉及的用户,用户设备与终端设备含义相同,文中也可以用UE表示用户设备,后文中不做具体区分和限定。类似的,网络设备为与用户设备进行通信的设备,包括并不限于基站设备、gNB、eNB、无线AP、无线中继、具备中继能力的终端等,后文中不做具体区分和限定。文中可以用基站作为网络设备实现的一种形式进行说明,具体实现时可以容易地使用其他网络设备形式进行替换。
网络节点可以给终端配置随机接入(RA)资源,用于终端在小区中进行随机接入。比如,网络为终端配置4步随机接入资源。终端在发起随机接入时,选择4步随机接入资源中的一个PRACH机会发送一个PRACH preamble,然后在相关的搜索空间上检测PDCCH,以及接收PDCCH调度的PDSCH传输的随机接入响应消息。终端根据随机接入响应消息中的上行授权传输msg3,以及在传输msg3后检测和接收基站发送的竞争完成消息,完成随机接入过程。网络还可以配置2步随机接入资源。终端在使用2步接入发起随机接入过程时,向基站发送msgA。终端发送的msgA不仅包括在选择的PRACH机会上发送PRACH preamble,还在与该preamble存在映射关系的PUSCH资源上发送PUSCH。然后,终端接收基站发送的响应消息msgB消息,根据msgB的内容确定2步随机接入成功或回退到4步接入模式。
网络中可能在一个BWP上同时配置若干2步随机接入资源和4步随机接入资源,或者只配置了其中一种。终端在该BWP上进行随机接入时可以根据一定的规则选择合适的2步或4步资源进行相关的过程。
例如,如果终端用于RA过程的BWP上可用的RA资源集中,同时有可用的2步和4步的RA资源,当下行链路的RSRP高于配置的门限值时,终端选择RA类型为2步RA;否则终端选择4步RA。另一种情况 下,终端选择用于RA过程的BWP上的可用RA资源上只有2步RA,终端选择2步RA。终端根据选择的RA类型进行相应的随机接入过程。
终端在BWP上选择可用于随机接入的RA资源集时也遵循一定的方法。例如,如果非竞争RA资源没有被指示用于本次RA过程,并且该RA过程关联于特定的特性。如果终端在网络所提供的这些资源集合中没有关联到当前特性的RA资源,终端选择一个不关联于任何特性的资源作为终端进行随机接入的RA资源。
如果该RA过程为非竞争的RA,并且对当前的RA过程是高层指示的RedCap应用,并且存在仅配置了RedCap特性指示的RA资源时,终端选择该RA资源用于该RA过程。
对于其他情况,终端选择没有关联到任何特性指示的RA资源,用于该RA过程。
RA资源使用的特性指示包括多种类型,例如是否为Msg3重复,是否为RedCap,是否为小数据传输SDT,等等。终端在进行RA时可根据高层指示的应用于该RA过程的特性,用于终端在选择RA合适的资源。
网络中,可通过限制终端用于数据信道传输的带宽,来降低终端复杂度。例如终端限制仅能使用不大于5MHz的终端信道带宽进行数据传输,这样终端可在接收数据处理,译码模块处理等模块中进一步降低复杂度。NR中,带宽大小为5MHz的终端信道带宽中可用的PRB数量与带宽使用的子载波间隔参数SCS有关。例如当SCS为15kHz时,5MHz带宽内的可用PRB数量为25,当SCS为15kHz时,5MHz带宽内的可用PRB数量为11。这时,使用不大于5MHz的数据传输带宽使用的最大PRB数与SCS相关,即为25或11。
NR系统在R17中引入了一种终端类型,可以标识为RedCap。RedCap终端在FR1频段上使用的信道传输带宽不大于20MHz。为便于下文中的相关说明,本发明中使用eRedCap作为在FR1频段上进一步限制共享数据信道传输带宽为不大于5MHz,其他信道传输带宽不大于20MHz的终端的标识。网络中可能使用其他的标识符来标识该类型终端,不影响相关方法的实质。
为保证与现有网络中设备的共存,网络中配置用于共享信道数据传输的带宽可能大于eRedCap终端所支持的最大带宽。这时eRedCap终端进行数据传输时,需要保证不能超过终端的带宽能力。本发明提供了适当的方法,使得eRedCap用户设备能与其他类型用户设备共存于同一小区,并能实现相关的业务需求。
以下对本发明的实施方式进行具体的说明。下文中如非明确说明,所说的用户设备或终端如非特别指明,都是指这种使用限制带宽能力的eRedCap用户设备。
【实施例1】
下面对相关的过程进行了详细描述。
NR系统中,通过限制eRedCap用户设备的带宽以降低终端复杂度时,对共享信道和控制信道可能使用不同的带宽限制方法。例如,控制信道可以使用最大20MHz的UE信道带宽,共享信道可以使用最大5MHz的UE信道带宽。这样用户设备能够使用较小的带宽利用共享信道传输数据以减小其实现复杂度,同时控制信道的性能不会由于带宽的限制导致性能下降,并能与现有网络配置保持良好的兼容性。
用户设备的信道带宽能力所相关的可用RB数可由带宽大小和SCS参数确定。例如SCS为15kHz时,20MHz的UE信道带宽内的可用RB数为106,5MHz的UE信道带宽内可用的RB数为25。如果限制用户设备在共享信道上的信道带宽不大于5MHz,则其在共享信道传输使用的RB数不大于25。带宽上使用的SCS为30kHz时,5MHz的UE信道带宽内可用的RB数为11,如果限制用户设备在共享信道上的信道带宽不大于5MHz,则在共享信道传输使用的RB数不大于11。这些参数为各种情况下的典型数值,当系统中使用不同的定义值时不影响本发明的实质。
图1是根据本发明的实施例1的由用户设备UE执行的方法的流程图。
如图1所示,终端在选择随机接入(RA)资源时,先确定用于发起随机接入(RA)过程的BWP。具体而言,在步骤S101,终端确定上行 BWP的带宽为不大于UE的最大信道带宽,例如小于20MHz的带宽,在步骤S102,终端确定该BWP上的RA资源是否可用于终端的随机接入(以及使用的RA类型)。其中,所述UE的最大信道带宽由eRedCap特性确定。
可选的,终端进行的为基于竞争的RA过程,并且终端根据高层指示确定该RA过程为eRedCap特性相关。如果终端选择的用于RA过程的BWP上有至少一个RA资源配置了eRedCap指示,终端选择该RA资源为可用的RA资源。如果BWP上没有RA资源配置了eRedCap指示,有RA资源配置了RedCap指示,终端选择RedCap指示的资源为可用的RA资源。否则终端选择不使用任何特性标识的RA资源为可用的RA资源。
NR网络中使用msgA配置参数MsgA-ConfigCommon为终端配置2步RA资源。MsgA-ConfigCommon可包含两个参数组,分别记为rach-ConfigCommonTwoStepRA和msgA-PUSCH-Config。其中rach-ConfigCommonTwoStepRA用于配置2步接入时使用的PRACH preamble等参数,msgA-PUSCH-Config用于配置2步接入时使用的PUSCH等参数,包括MCS参数msgA-MCS,时域和频域的资源起始位置,每个PUSCH资源块的RB的数量nrofPRBs-PerMsgA-PO等等。其中,nrofPRBs-PerMsgA-PO的可配置数值为1-32的一个整数M,也就是终端使用2步接入资源进行随机接入时,使用M个RB的资源块进行PUSCH传输。终端在进行2步RA过程时,选择一个PRACH preamble,以及关联的PUSCH资源块,进行msgA的传输。
eRedCap终端在选择RA资源时,需要使得用于传输PUSCH的资源带宽不超过终端用于传输共享数据带宽的能力。
可选的,终端除了根据RA资源的特性指示确定可用的RA资源,还根据msgA配置参数确定BWP上的msgA配置参数确定的RA资源是否为2步RA可用的资源。
可选的,终端根据msgA配置参数中的PUSCH资源块的RB数量和PUSCH所在UL BWP的子载波间隔SCS参数确定该msgA配置所对应的资源是否为终端可用的RA资源。
具体的,终端根据UL BWP子载波间隔SCS参数确定RB数量门限N,当msgA配置中的PUSCH资源块的RB数量大于N时,该msgA配置所对应的RA资源不用于终端在该BWP上的可用RA资源,当PUSCH资源块的RB数量小于或等于N时,该msgA配置所对应的资源可用于该终端在该BWP上的可用RA资源。
可选的,终端根据PUSCH所在UL BWP的子载波间隔SCS参数确定预定义的N值,例如,当SCS为15kHz时,N值为25,当SCS为30kHz时,N值为11。系统中也可能定义其他满足5MHz带宽限制的N值,这里不做限定。
可选的,终端根据高层配置参数确定N值。例如,网络在BWP参数中使用枚举的方法定义不同SCS下的N值,具体的,定义枚举值SCS15k_25,SCS30_12,SCS30_11等,分别对应BWP的SCS使用15kHz时N=25,BWP的SCS使用30kHz时N=12,BWP的SCS使用30kHz时N=11等。终端通过BWP的参数指示的枚举值可以得到具体的N值。
可选的,终端确定在msgA配置中的PUSCH资源块的RB数量M小于或等于N时,该msgA配置所对应的资源可用于该终端在该BWP上的可用RA资源;终端在msgA配置中的PUSCH资源块的RB数量M大于N时,该msgA配置所对应的资源仍可用于该终端在该BWP上的可用RA资源,终端使用选择的PRACH preamble关联的PUSCH资源块中的部分RB用于msgA的传输。例如,终端使用从资源块的最小序号开始的连续N个RB用于msgA消息的传输。这样,终端可以在配置的PUSCH资源块带宽大于终端传输共享数据信道的带宽限制的条件下,使用该RA资源传输msgA,可以实现与其他类型终端的兼容性,减小系统复杂度。相应的,基站可用使用盲检的方式进行检测,例如使用N个RB所对应 的带宽所确定的TB参数,以及根据所配置的带宽M个RB所确定的TB参数进行检测。当检测到正确CRC校验的PUSCH,即认为接收正确。
可选的,终端在msgA配置中的PUSCH资源块的RB数量M大于N时,终端根据第二RB参数确定用于msgA配置所对应的资源为该终端在该BWP上的可用RA资源。具体的,当终端确定PUSCH的RB数量M大于N时,终端可根据该msgA配置消息中的第二RB数量,确定用于PUSCH传输的RB数量和位置。可选的,第二配置为RB的数量K,终端使用从资源块的最小序号开始的K个连续RB作为PUSCH传输的资源。可选的第二配置包括RB的数量K和资源块内的起始位置,例如使用RIV的数值表示。终端根据起始位置确定连续K个RB作为PUSCH传输的资源。
可选的,终端在msgA配置中的PUSCH资源块的RB数量M大于N时,并且msgA配置中指示了使用跳频传输PUSCH时,终端在第一跳和第二跳可以使用不同的RB序号进行PUSCH传输。例如第一跳中使用从资源块的最小序号开始的依次递增的N个连续RB,第二跳使用从资源块的最大序号开始依次递减的N个连续RB。这样,终端可以获得更好的频率分集增益。
RedCap终端在进行随机接入时也可能与eRedCap终端共享eRedCap特性标识的随机接入信道,实现系统资源的复用。
可选的,RedCap终端进行的为基于竞争的RA过程,如果由高层指示为该RA过程为RedCap特性相关,如果BWP上有至少一个RA资源配置了RedCap指示,终端选择该至少一个RA资源为该RedCap终端可用的RA资源。如果BWP上没有RA资源配置了RedCap指示,有RA资源配置了eRedCap指示,终端选择eRedCap指示的资源为可用的RA资源。否则终端选择不使用任何特性标识的RA资源为可用的RA资源。
【实施例2】
图2是根据本发明的实施例2的由用户设备UE执行的方法的流程图。
如图2所示,网络在msgA消息配置中包含了多个参数用于终端确定相关传输参数,例如包括MCS。在步骤S201,终端接收网络指示或配置的MCS,在步骤S201,终端根据用于传输msgA的PUSCH的RB数量以及MCS确定用于传输PUSCH的调制阶数和码率。
NR网络中的终端可通过网络配置的MCS序号值根据预定的MCS表格确定用于数据信道传输的调制阶数和码率等参数。一个示例MCS表如表1所示。
表1:用于支持预编码和64QAM的PUSCH应用的MCS序号表
网络通过DCI指示或高层信令配置一个MCS序号,终端可从MCS表格中找到用于传输共享数据信道的TB的调制阶数,码率和频谱效率等参数。
终端可根据网络的指示确定相关的MCS表。例如,当PUSCH的预编码模式设置为不进行预编码时,终端使用第一MCS表格来确定不同MCS序号所对应的码率和调制阶数。当PUSCH的预编码模式设置为使用预编码时,终端使用第二MCS表格来确定不同MCS序号所对应的码率和调制阶数。
在配置2步RA资源时,网络通过msgA参数配置用于传输PUSCH的MCS序号。终端可根据MCS序号确定相应的调制阶数和码率。终端还可以根据msgA配置中的其他参数确定PUSCH传输的符号数,DMRS的符号数及图样等。终端可根据这些参数和PUSCH资源块RB数量得到资源块上可用于PUSCH传输的总RE数量。终端根据RE数量,调制阶数和码率等确定用于PUSCH传输的TB块大小TBS。
当终端在msgA配置中的PUSCH资源块的RB数量M大于终端的共享信道传输带宽的RB数量N时,eRedCap终端可使用部分带宽传输msgA消息,即不使用选定资源块的全部RB传输PUSCH时,如果仍使用相同的其他配置参数,终端所能使用的TBS大小将比网络配置的参数所确定TBS要小,从而导致能传输的msgA的消息大小要小于网络所配置参数对应的TBS。
可选的,当终端确定使用部分带宽传输PUSCH时,终端使用第二MCS参数确定TBS的大小。终端根据确定的用于PUSCH传输的RB数量和第二MCS值确定用于msgA的PUSCH传输的TBS。
可选的,终端根据网络的指示确定第二MCS。终端使用msgA配置参数中的第二MCS确定PUSCH传输使用的调制方式和码率,以确定TBS的大小。
可选的,终端确定在msgA配置参数中存在第二MCS时,终端使用第二MCS确定TBS大小,否则终端根据配置MCS和用于PUSCH传输的RB数量确定TBS大小。
可选的,终端在msgA配置参数中不存在第二MCS时根据用于PUSCH传输的RB数量和MCS的值确定第二MCS,并确定PUSCH传输使用的调制方式和码率。
示例的,终端根据配置的RB数和用于部分传输的RB数以及配置的MCS序号所对应的频谱效率值SE确定一个值Y,Y=SE*N/X,终端从所确定的MCS表中按MCS序号从小到大的顺序选择第一个MCS序号作为第二MCS,使得该MCS序号对应的SE值大于等于Y值。可选的,当确定的该第二MCS序号大于15时,终端确定使用15作为第二MCS序号。终端根据确定的第二MCS来确定PUSCH传输使用的调制方式和码率,以确定TBS的大小。
下面,利用图3来说明作为一种变形例的可执行本发明上面所详细描述的用户设备执行的方法的用户设备。
图3是表示本发明所涉及的用户设备UE的框图。
如图3所示,该用户设备UE30包括处理器301和存储器302。处理器301例如可以包括微处理器、微控制器、嵌入式处理器等。存储器302例如可以包括易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器等。存储器302上存储有程序指令。该指令在由处理器301运行时,可以执行本发明详细描述的由用户设备执行的上述方法。
上文已经结合优选实施例对本发明的方法和涉及的设备进行了描述。本领域技术人员可以理解,上面示出的方法仅是示例性的,而且以上说明的各实施例在不发生矛盾的情况下能够相互组合。本发明的方法并不局限于上面示出的步骤和顺序。上面示出的网络节点和用户设备可以包括更多的模块,例如还可以包括可以开发的或者将来开发的可用于基站、MME、或UE的模块等等。上文中示出的各种标识仅是示例性的而不是限制性的,本发明并不局限于作为这些标识的示例的具体信元。本领域技术人员根据所示实施例的教导可以进行许多变化和修改。
应该理解,本发明的上述实施例可以通过软件、硬件或者软件和硬件两者的结合来实现。例如,上述实施例中的基站和用户设备内部的各种组件可以通过多种器件来实现,这些器件包括但不限于:模拟电路器件、数 字电路器件、数字信号处理(DSP)电路、可编程处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程逻辑器件(CPLD),等等。
在本申请中,“基站”可以指具有较大发射功率和较广覆盖面积的移动通信数据和控制交换中心,包括资源分配调度、数据接收发送等功能。“用户设备”可以指用户移动终端,例如包括移动电话、笔记本等可以与基站或者微基站进行无线通信的终端设备。
此外,这里所公开的本发明的实施例可以在计算机程序产品上实现。更具体地,该计算机程序产品是如下的一种产品:具有计算机可读介质,计算机可读介质上编码有计算机程序逻辑,当在计算设备上执行时,该计算机程序逻辑提供相关的操作以实现本发明的上述技术方案。当在计算系统的至少一个处理器上执行时,计算机程序逻辑使得处理器执行本发明实施例所述的操作(方法)。本发明的这种设置典型地提供为设置或编码在例如光介质(例如CD-ROM)、软盘或硬盘等的计算机可读介质上的软件、代码和/或其他数据结构、或者诸如一个或多个ROM或RAM或PROM芯片上的固件或微代码的其他介质、或一个或多个模块中的可下载的软件图像、共享数据库等。软件或固件或这种配置可安装在计算设备上,以使得计算设备中的一个或多个处理器执行本发明实施例所描述的技术方案。
此外,上述每个实施例中所使用的基站设备和用户设备的每个功能模块或各个特征可以由电路实现或执行,所述电路通常为一个或多个集成电路。设计用于执行本说明书中所描述的各个功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)或通用集成电路、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立的门或晶体管逻辑、或分立的硬件组件、或以上器件的任意组合。通用处理器可以是微处理器,或者所述处理器可以是现有的处理器、控制器、微控制器或状态机。上述通用处理器或每个电路可以由数字电路配置,或者可以由逻辑电路配置。此外,当由于半导体技术的进步,出现了能够替代目前的集成电路的先进技术时,本发明也可以使用利用该先进技术得到的集成电路。
尽管以上已经结合本发明的优选实施例示出了本发明,但是本领域的 技术人员将会理解,在不脱离本发明的精神和范围的情况下,可以对本发明进行各种修改、替换和改变。因此,本发明不应由上述实施例来限定,而应由所附权利要求及其等价物来限定。

Claims (9)

  1. 一种由用户设备UE执行的方法,包括:
    确定BWP上的随机接入RA资源是否能够用于所述UE的随机接入,
    如果由高层指示为该随机接入的过程是eRedCap特性相关,则:
    在所述BWP上有至少一个随机接入资源配置了eRedCap指示的情况下,所述UE选择该至少一个随机接入资源为可用的随机接入资源;
    在所述BWP上没有随机接入资源配置了eRedCap指示的情况下,
    若有随机接入资源配置了RedCap指示,则所述UE选择该RedCap指示的资源为可用的随机接入资源;
    否则所述UE选择不使用任何特性标识的随机资源为可用的随机接入资源。
  2. 根据权利要求1所述的方法,其特征在于,
    所述UE还根据网络配置的msgA配置参数,确定所述BWP上的由RedCap指示所确定的随机接入资源是否为所述UE进行2步随机接入RA可用的资源。
  3. 根据权利要求2所述的方法,其特征在于,
    所述UE根据所述网络配置的msgA配置中的每个PUSCH资源块的RB数量和BWP子载波间隔SCS参数,确定该msgA配置所对应的资源是否为所述UE可用的随机接入资源。
  4. 根据权利要求3所述的方法,其特征在于,
    在所述msgA配置中的每个PUSCH资源块的RB数量小于或等于数量门限N的情况下,该msgA配置所对应的资源能够用于所述UE在该BWP上的可用随机接入资源;
    在所述msgA配置中的每个PUSCH资源块的RB数量大于所述N的情况下,该msgA配置所对应的资源不用于所述UE在所述BWP上的可用随机接入资源;
    所述数量门限N为eRedCap特性所预定义。
  5. 根据权利要求3所述的方法,其特征在于,
    在所述msgA配置中的每个PUSCH资源块的RB数量小于或等于RB数量门限N的情况下,该msgA配置所对应的资源能够用于所述UE在该BWP上的可用随机接入资源;
    在所述msgA配置中的每个PUSCH资源块的RB数量大于所述N的情况下,该msgA配置所对应的资源仍能够用于所述UE在所述BWP上的可用随机接入资源,所述UE使用部分RB用于所述PUSCH的传输;
    所述数量门限N为eRedCap特性所预定义。
  6. 根据权利要求5所述的方法,其特征在于,
    在所述msgA配置中的PUSCH的RB数量大于所述N的情况下,
    根据该msgA配置中的第二RB数量,确定用于所述PUSCH传输的RB数量和位置。
  7. 根据权利要求5所述的方法,其特征在于,
    在所述UE使用部分RB用于所述PUSCH的传输的情况下,
    包括:
    接收所述网络配置的调制编码方案MCS;以及
    根据所述MCS和用于PUSCH传输的RB数量,确定调制阶数和码率,以确定用于所述PUSCH传输的TBS大小。
  8. 根据权利要求7所述的方法,其特征在于,
    根据由所述网络的指示确定的、或者由所述UE根据所述部分RB的大小和所述MCS的值确定的第二MCS,确定用于所述PUSCH传输的TBS大小。
  9. 一种用户设备,包括:
    处理器;以及
    存储器,存储有指令,
    其中,所述指令在由所述处理器运行时执行根据权利要求1至8中的任一项所述的方法。
PCT/CN2023/120103 2022-09-23 2023-09-20 由用户设备执行的方法以及用户设备 WO2024061282A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211169367.7A CN117812751A (zh) 2022-09-23 2022-09-23 由用户设备执行的方法以及用户设备
CN202211169367.7 2022-09-23

Publications (1)

Publication Number Publication Date
WO2024061282A1 true WO2024061282A1 (zh) 2024-03-28

Family

ID=90418666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/120103 WO2024061282A1 (zh) 2022-09-23 2023-09-20 由用户设备执行的方法以及用户设备

Country Status (2)

Country Link
CN (1) CN117812751A (zh)
WO (1) WO2024061282A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107872884A (zh) * 2016-09-26 2018-04-03 电信科学技术研究院 一种随机接入资源分配和随机接入方法、设备
WO2022030867A1 (ko) * 2020-08-06 2022-02-10 엘지전자 주식회사 임의 접속 채널을 송수신하는 방법 및 이를 위한 장치
CN115004617A (zh) * 2022-04-26 2022-09-02 北京小米移动软件有限公司 一种终端设备调度方法及其装置
WO2022183383A1 (zh) * 2021-03-02 2022-09-09 Oppo广东移动通信有限公司 一种随机接入资源确定方法、电子设备及存储介质
CN115039437A (zh) * 2020-02-04 2022-09-09 高通股份有限公司 用于新无线电redcap设备的能力配置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107872884A (zh) * 2016-09-26 2018-04-03 电信科学技术研究院 一种随机接入资源分配和随机接入方法、设备
CN115039437A (zh) * 2020-02-04 2022-09-09 高通股份有限公司 用于新无线电redcap设备的能力配置
WO2022030867A1 (ko) * 2020-08-06 2022-02-10 엘지전자 주식회사 임의 접속 채널을 송수신하는 방법 및 이를 위한 장치
WO2022183383A1 (zh) * 2021-03-02 2022-09-09 Oppo广东移动通信有限公司 一种随机接入资源确定方法、电子设备及存储介质
CN115004617A (zh) * 2022-04-26 2022-09-02 北京小米移动软件有限公司 一种终端设备调度方法及其装置

Also Published As

Publication number Publication date
CN117812751A (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
WO2019101201A1 (zh) 随机接入方法、用户设备和存储介质
CN114642039B (zh) 用于节省无线通信系统中用户设备的功率的方法及装置
US10893470B2 (en) Control information utilization method and apparatus of terminal in mobile communication system
WO2019029323A1 (zh) 发送和接收随机接入前导码的方法和装置
CN115088377A (zh) 用于无线通信系统中的随机接入过程的方法和装置
WO2019187989A1 (ja) 端末装置、基地局装置、および、通信方法
KR20160013912A (ko) 가변 대역폭을 지원하는 통신 방법 및 무선기기
WO2021032021A1 (zh) 一种通信方法及装置
CN116134947A (zh) 无线通信中针对小数据传输的随机接入过程的方法和装置
CN113615223B (zh) 用于在无线通信系统中降低终端功耗的方法和装置
CN113615264A (zh) 无线通信系统中用于降低终端功耗的方法和装置
WO2022127732A1 (zh) 由用户设备执行的方法以及用户设备
WO2023202482A1 (zh) 由用户设备执行的方法以及用户设备
WO2023051677A1 (zh) 由用户设备执行的方法以及用户设备
WO2020059419A1 (ja) 端末装置、基地局装置、および、通信方法
WO2023011459A1 (zh) 由用户设备执行的方法以及用户设备
WO2022152113A1 (zh) 由用户设备执行的方法以及用户设备
WO2024061282A1 (zh) 由用户设备执行的方法以及用户设备
CN116998207A (zh) 用于femimo的pusch的默认波束行为的方法和装置
WO2024012399A1 (zh) 由用户设备执行的方法以及用户设备
WO2024199080A1 (zh) 由用户执行的方法以及用户设备
WO2024131702A1 (zh) 确定下行频域资源的方法以及用户设备
WO2023246778A1 (zh) 由用户设备执行的方法以及用户设备
WO2022267993A1 (zh) 由用户设备执行的方法以及用户设备
WO2023051453A1 (zh) 由用户设备执行的确定pei机会的方法以及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867568

Country of ref document: EP

Kind code of ref document: A1