WO2023246778A1 - 由用户设备执行的方法以及用户设备 - Google Patents

由用户设备执行的方法以及用户设备 Download PDF

Info

Publication number
WO2023246778A1
WO2023246778A1 PCT/CN2023/101398 CN2023101398W WO2023246778A1 WO 2023246778 A1 WO2023246778 A1 WO 2023246778A1 CN 2023101398 W CN2023101398 W CN 2023101398W WO 2023246778 A1 WO2023246778 A1 WO 2023246778A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
rnti
pusch
bandwidth
pdsch
Prior art date
Application number
PCT/CN2023/101398
Other languages
English (en)
French (fr)
Inventor
马小骏
刘仁茂
Original Assignee
夏普株式会社
马小骏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 马小骏 filed Critical 夏普株式会社
Publication of WO2023246778A1 publication Critical patent/WO2023246778A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present invention relates to the field of wireless communication technology, and specifically to methods executed by user equipment and corresponding user equipment.
  • the coexistence of these devices with existing downgraded devices and other NR user equipment in the same community must be considered to maintain the integrity of the existing device ecosystem and maximize the ecological scale.
  • These services put some new demands on the existing NR network. For example, if the network wants to support the bandwidth of user equipment being reduced to a maximum of 5MHz, it requires that the network configuration or data transmission process meet relevant requirements. Reducing the peak rate of user equipment also requires some new constraints on network data scheduling, etc.
  • the related method of the present invention provides a better method for realizing the capacity reduction requirements of these devices in the network, and ensures the coexistence requirements with existing devices in the network, and obtains better network utilization efficiency.
  • the present invention provides a method executed by user equipment and user equipment, which can meet the capacity reduction requirements of related equipment in the network, ensure coexistence requirements with existing equipment in the network, and obtain better results.
  • Good network utilization efficiency enables user equipment and the network to gain a consistent understanding and ensures the normal operation of communication services.
  • a method performed by a user equipment determines according to the indication information whether the network supports the access and/or data transmission usage parameters of the user equipment using a smaller data transmission bandwidth, wherein the use
  • the smaller data transmission bandwidth means that the number of bandwidth RBs used for the downlink shared channel PDSCH or the uplink shared channel PUSCH is not greater than a predetermined value.
  • the user equipment determines the parameters used for data transmission: when the indication information is mode 1, the user equipment determines to use SI-RNTI or P-RNTI or TC-RNTI or RA-RNTI.
  • the number of RBs in the bandwidth used by the PDSCH resources scheduled by the DCI of the scrambled CRC does not exceed the value determined by the SCS used by the data channel, and the user equipment expects the scheduled PDSCH to use a non-interleaved mode for mapping of VRBs and PRBs, as described
  • the indication information is Mode 2 the user equipment determines that the number of RBs in the bandwidth used by the PDSCH resources scheduled by DCI using SI-RNTI or P-RNTI or TC-RNTI or RA-RNTI to scramble the CRC does not exceed the number of RBs used by the data channel.
  • the user equipment determines the parameters used for data transmission and further includes: when the indication information is mode 1, the user equipment determines to use the DCI of the TC-RNTI scrambled CRC or by the DCI in the RAR message.
  • the number of RBs in the bandwidth used by the PUSCH resources scheduled by the uplink grant does not exceed the value determined by the SCS used by the data channel, and the user equipment expects that the scheduled PUSCH does not use frequency hopping.
  • the user equipment When the indication information is Mode 2, the user equipment The number of RBs that determine the bandwidth used by the DCI of the TC-RNTI scrambled CRC or the PUSCH resources scheduled by the uplink grant in the RAR message does not exceed the value determined by the SCS used by the data channel.
  • the indication information is information indicated by bits in the DCI format 1_0 of the SI-RNTI scrambled CRC.
  • the user equipment determines the time parameter used by the user equipment according to the bandwidth parameter or indication information.
  • the user equipment only determines the indication information when the system information indication in the DCI is 0.
  • the user equipment can determine the transmission resources of PUSCH according to the time slot position and time parameters indicated by the uplink grant in the RAR message.
  • the user equipment when the interval between the first symbol of the PUSCH scheduled by the uplink grant in the RAR message received by the user equipment and the last symbol of the PDSCH used to transmit the RAR message is less than the minimum value determined by the user equipment
  • the user equipment sends PUSCH on the first available time slot that meets the minimum time interval after the time slot indicated by the time domain resource allocation parameter in the corresponding grant or DCI, or the user equipment sends PUSCH in the corresponding grant or DCI
  • PUSCH is sent on the first available time slot with a predefined offset from the time slot, or the user equipment sends a MAC message, which at least contains the type indication of the user equipment.
  • the user equipment After the user equipment sends the MAC message, it monitors the PDCCH that uses TC-RNTI to scramble the CRC, obtains the new uplink authorization value sent by the network, and sends msg3 on the new scheduling resource.
  • the user equipment when no specific random access resources are configured for the user equipment in the network, when the first symbol of the PUSCH scheduled for the uplink authorization in the RAR message received by the user equipment is the same as When the interval between the last symbols of the PDSCH used to transmit RAR messages is less than the minimum processing interval determined by the user equipment, the user equipment sends PUSCH on the first available time slot after the corresponding authorized resources and satisfying the minimum time interval.
  • the user equipment When no specific random access resources are configured for the user equipment in the network, the interval between the first symbol of the PUSCH scheduled for the uplink grant in the RAR message received by the user equipment and the last symbol of the PDSCH used to transmit the RAR message When it is less than the minimum processing interval determined by the user equipment, the user equipment sends PUSCH on the available time slot with a predefined offset from the corresponding authorized resource location determined according to the RAR message.
  • a user equipment including: a processor; and a memory storing instructions, wherein the instructions execute the above method when executed by the processor.
  • the present invention it is possible to meet the capacity reduction requirements of relevant equipment in the network, ensure the coexistence requirements with existing equipment in the network, obtain better network utilization efficiency, enable user equipment and the network to obtain consistent understanding, and ensure communication services. Work properly.
  • Figure 1 shows a method executed by user equipment related to Embodiment 1 of the present invention.
  • Figure 2 shows a method executed by user equipment related to Embodiment 2 of the present invention.
  • Figure 3 shows a method executed by user equipment related to Embodiment 3 of the present invention.
  • Figure 4 is a brief structural block diagram of the user equipment UE involved in the present invention.
  • the following uses the 5G/NR mobile communication system and its subsequent evolved versions as an example application environment to specifically describe multiple embodiments according to the present invention.
  • the present invention is not limited to the following embodiments, but can be applied to more other wireless communication systems, such as communication systems after 5G, 4G and 3G mobile communication systems before 5G, 802.11 wireless networks, etc. .
  • 3GPP 3rd Generation Partnership Project, third generation partner program
  • LTE Long Term Evolution, long-term evolution technology
  • UE User Equipment, user equipment
  • gNB NR base station
  • FR1 Frequency range 1 as defined in TS 38.104, frequency range 1 defined by TS38.104
  • FR2 Frequency range 2 as defined in TS 38.104, frequency range 2 defined by TS38.104
  • BWP BandWidth Part, bandwidth fragment/part
  • SFN System frame number, system frame number
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • CP Cyclic Prefix, cyclic prefix
  • SCS sub-carrier spacing, sub-carrier spacing
  • RB Resource Block, resource block
  • CRB Common Resource Block, public resource block
  • PRB Physical Resource Block, physical resource block
  • VRB Virtual resource block, virtual resource block
  • CCE Control channel element, control channel unit
  • EPRE Energy per resource element, energy per resource unit
  • TDD Time Division Duplexing, time division duplexing
  • FDD Frequency Division Duplexing, frequency division duplexing
  • CSI Channel State Information, channel state information
  • DCI Downlink Control Information, downlink control information
  • MCS Modulation and Coding Scheme, modulation coding scheme
  • CRC Cyclic Redundancy Check, cyclic redundancy check
  • CORESET Control resource set, control resource set
  • MIB Master Information Block, master information block
  • SIB system information block, system information block
  • SIB1 System Information Block Type 1, system information block type 1
  • SSB SS/PBCH block, synchronization signal/physical broadcast channel block
  • PSS Primary Synchronization Signal, main synchronization signal
  • SSS Secondary Synchronization Signal, auxiliary synchronization signal
  • SRS Sounding Reference Signal, detection reference signal
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • CSI-RS Channel State Information Reference Signal, channel state information reference signal
  • TRS Tracking Reference Signal, tracking reference signal
  • RACH random-access channel, random access channel
  • PBCH Physical broadcast channel, physical broadcast channel
  • PUCCH Physical Uplink Control Channel, physical uplink control channel
  • PUSCH Physical Uplink Shared Channel, physical uplink shared channel
  • PRACH Physical random-access channel, physical random access channel
  • PDSCH Physical downlink shared channel, physical downlink shared channel
  • PDCCH Physical downlink control channel, physical downlink control channel
  • UL-SCH Uplink Shared Channel, uplink shared channel
  • DL-SCH Downlink Shared Channel, uplink shared channel
  • NZP-CSI-RS Not-Zero-Power CSI-RS, non-zero power CSI-RS
  • C-RNTI Cell Radio Network Temporary Identifier, residential wireless network temporary identifier
  • P-RNTI Paging RNTI, paging wireless network temporary identifier
  • RA-RNTI Random Access RNTI, random access wireless network temporary identifier
  • CS-RNTI Configured Scheduling RNTI, configured scheduling wireless network temporary identifier
  • SI-RNTI System Information RNTI, System Information Wireless Network Temporary Identifier
  • TC-RNTI Temporary C-RNTI, temporary cell wireless network temporary identifier
  • RAR Random access response, random access response
  • RIV resource indication value, resource indication value
  • network equipment is equipment that communicates with user equipment, including but not limited to base station equipment, gNB, eNB, wireless AP, wireless relay, terminals with relay capabilities, etc., and will not be specifically distinguished and limited in the following text.
  • the base station can be used as a form of network equipment implementation in this article. During specific implementation, it can be easily replaced with other network equipment forms.
  • SSB includes three signals or channels: PSS, SSS and PBCH, which transmit different system information respectively.
  • PSS public switched telephone network
  • SSS secondary station
  • PBCH public switched telephone network
  • the SSB signal occupies a total of 4 consecutive symbols and 20 RB time-frequency resources.
  • SSB uses 15KHz subcarrier parameters for transmission, the bandwidth occupied by SSB is at least 3.6MHz.
  • SSB uses 30KHz subcarrier parameters for transmission, the bandwidth occupied by SSB is 7.2MHz.
  • the user equipment After receiving a valid SSB signal, the user equipment can obtain the PBCH MIB information to be transmitted. Based on the MIB information, the user equipment can determine parameters such as the bandwidth, number of symbols, and frequency domain position of the CORESET used for scheduling the PDCCH carrying the PDSCH resource carrying SIB1, that is, the type0-PDCCH CSS parameter. For example, the information transmitted by the PBCH channel includes MIB information and other system configuration information. The user equipment can determine the SCS parameters used by SIB 1/PDCCH according to subCarrierSpacingCommon in the MIB message. The user equipment can detect the PDCCH in the type0PDCCH CSS and obtain the DCI information, that is, the scheduling information of the relevant PDSCH.
  • the information transmitted by the PBCH channel includes MIB information and other system configuration information.
  • the user equipment can determine the SCS parameters used by SIB 1/PDCCH according to subCarrierSpacingCommon in the MIB message.
  • the user equipment can detect the PDCCH in the type0
  • Limiting the maximum bandwidth of user equipment to 5MHz or limiting the peak rate of user equipment may be implemented in multiple ways.
  • the maximum bandwidth of the control channel received by the user equipment can be limited to 20MHz, and the maximum bandwidth of the data channel can be limited to 5MHz. This allows the user equipment to receive the control channel information sent with a 20 MHz bandwidth and determine the PDSCH scheduling information based on the DCI indication in the control channel.
  • the user equipment limits the data channel to use a bandwidth of no more than 5 MHz, so that the complexity of the user equipment can be reduced and relevant goals can be achieved.
  • the user equipment limits the number of RBs used by the data channel processed to not be greater than a predetermined value, which can also reduce the complexity of the user equipment's receiving or sending equipment.
  • the network may use one or a combination of the above methods to achieve related purposes.
  • the network schedules PDSCH using a continuous bandwidth of no more than 5 MHz for transmission, and determines relevant parameters based on the SCS parameters used for PDSCH transmission. For example, when PDSCH uses 15 kHz SCS transmission, resources are allocated on the BWP with a bandwidth of no more than 25 RBs, so that the transmission bandwidth of PDSCH does not exceed 5 MHz. Alternatively, frequency hopping is used on a larger bandwidth BWP so that the total bandwidth of resources allocated to user equipment does not exceed 5 MHz on any symbol. For example, PDSCH is transmitted on a BWP with a total bandwidth of 20MHz.
  • the BWP uses an SCS of 15kHz
  • the total number of available RBs within the 20MHz bandwidth is 106.
  • the network uses several symbols to transmit PDSCH on this bandwidth, the first half of the symbols uses 24 RBs for transmission, and the second half of the symbols uses another 24 RBs for transmission.
  • the RBs of these two parts may be distributed on different bandwidths within the total bandwidth. However, the total bandwidth received by the user equipment on any symbol still does not exceed 25 RBs.
  • scheduling restrictions are used on the larger bandwidth BWP so that the total bandwidth of the resources allocated to the user equipment on any symbol does not exceed 5MHz.
  • the SCS is 15kHz
  • no more than 25 RBs can be allocated through downlink scheduling.
  • mapping from VRB to PRB uses non-interleaved mapping method when mapping from VRB to PRB.
  • Other methods can also be used in the network to ensure that data transmission does not exceed the capability limit of the user equipment, which is not limited here. Similarly, these methods can also be applied to the transmission of uplink data channels, which will not be described again here.
  • the network uses appropriate indication methods so that user equipment with such limited capabilities can coexist with other user equipment in the same cell, and relevant data transmission can meet the requirements of the user equipment and realize business needs.
  • the network can also relax restrictions on the processing time of user equipment, allowing user equipment to have more processing time when receiving or sending data, thereby reducing related device complexity.
  • Relevant embodiments of the present invention solve these problems, so that user equipment and the network can obtain a consistent understanding and ensure the normal operation of communication services.
  • the user equipment mentioned below refers to user equipment that uses smaller data transmission bandwidth to reduce complexity.
  • the user equipment determines whether the network supports access and/or parameters used by the user equipment using a smaller data transmission bandwidth according to the indication information, wherein the use
  • the smaller data transmission bandwidth means that the number of bandwidth RBs used for the downlink shared channel PDSCH or the uplink shared channel PUSCH is not greater than a predetermined value.
  • Figure 1 is a flowchart of a method performed by user equipment according to Embodiment 1 of the present invention.
  • step S101 the user equipment receives the synchronization signal/physical broadcast channel block SSB signal and obtains type0-PDCCH CSS related parameters.
  • step S102 the user equipment detects the PDCCH according to the type0PDCCH CSS and obtains the indication information.
  • the user equipment can determine that the network supports access of the user equipment according to the indication information, and/or the user equipment determines parameters used for data transmission according to the indication information.
  • the user equipment detects the PDCCH in the type0-PDCCH CSS and obtains the scheduled DCI information.
  • the user equipment can obtain type0-PDCCH CSS related parameters by receiving the SSB.
  • the user equipment can determine the CORESET configuration information associated with the type0-PDCCH CSS, which is the configuration information of CORESET0.
  • the frequency domain resource of CORESET0 may use one of 24RB, 48RB, or 96RB when the bandwidth SCS is 15kHz, and may use one of 24RB or 48RB when the SCS is 30kHz. In these cases, except for the 24RB/15kHz configuration, the bandwidth of CORESET0 exceeds 5MHz.
  • the channel bandwidth of PDSCH scheduling in some common processes is distributed within the bandwidth range determined by CORESET0, which is determined by the DCI frequency domain indication information field in which the PDSCH is scheduled.
  • CORESET0 the bandwidth range determined by CORESET0
  • the bandwidth used by the scheduled PDSCH may be greater than 5MHz, exceeding the capabilities of some user equipment.
  • PDSCH is scheduled using P-RNTI scrambling CRC DCI during the paging phase
  • PDSCH is scheduled using RA-RNTI scrambling CRC DCI during the random access phase
  • PDSCH is scheduled using SI-RNTI scrambling CRC DCI.
  • the PDSCH scheduled by the DCI of TC-RNTI scrambled CRC, etc. it is possible to use CORESET0 as a reference to determine the relevant scheduling bandwidth.
  • the user equipment may not be able to receive relevant information correctly, and thus cannot perform related network services.
  • the network since the network uses a dynamic scheduling method to schedule PDSCH, the PDSCH scheduled at different times may use different resources for transmission.
  • the bandwidth used may not exceed 5 MHz, and in other cases, the bandwidth used may exceed 5 MHz. 5MHz, which makes the performance of user equipment receiving network information unstable and affects business performance.
  • the user equipment receives a random access response RAR message that contains an uplink authorization, which is used to determine the resources used by the user equipment to send msg3.
  • the bandwidth of this resource is related to the bandwidth of the initial uplink BWP configured in the cell, and may also exceed the capability of the user equipment.
  • the user equipment determines whether the network supports the access of the user equipment according to the indication information received from the network, or the user equipment determines the user equipment access method or parameters supported by the network.
  • a specific example is shown in Table 1.
  • the user equipment determines the different support modes of the network for the user equipment based on the 2-bit indication information. For example, the bit indication received by the user equipment is 00, the user equipment determines that the indication information is a reserved bit, and the network does not use a specific method or configuration to support the access of the user equipment. At this time, if the user equipment receives or sends data in the network, the channel may exceed the bandwidth capability of the user equipment.
  • the network uses specific methods or configurations or parameters to support the data transmission of the user equipment. For example, according to network instructions, the user equipment determines that the PDSCH parameters scheduled by DCI using a specific RNTI scrambled CRC always meet specific assumptions, such as that its bandwidth is always smaller than a predefined value. In this way, the user equipment that meets the relevant receiving capabilities determines based on this information that it can receive the relevant PDSCH data transmission in the network and implement the relevant service functions.
  • the user equipment determines the parameter value of the PDSCH scheduled using the DCI of certain RNTI scrambling CRC according to the indication information.
  • RIV is used in the DCI as frequency domain resource indication information to indicate a segment of continuous frequency domain resources allocated.
  • a RIV value can be calculated according to the following method.
  • the user equipment can obtain the starting position and frequency domain width of the scheduled resources on the BWP bandwidth according to the RIV value in the DCI, and receive PDSCH on the relevant resources.
  • interleaved or non-interleaved methods may also be used in the mapping of VRBs to PRBs, that is, the sequence number of the VRB indicated by the DCI is mapped to the sequence number of the actual physical resource PRB according to certain rules.
  • non-interleaving it is one-to-one mapping.
  • mapping is performed according to the interleaving parameters. After mapping, continuous RBs on the VRB correspond to non-consecutive PRBs, so that the bandwidth occupied by all PRBs becomes larger.
  • the user equipment determines that the number of RBs in the bandwidth used by the PDSCH resources scheduled by DCI using SI-RNTI or P-RNTI or TC-RNTI or RA-RNTI to scramble the CRC does not exceed a specific number.
  • the value is determined by the SCS used by the data channel.
  • User equipment expects the VRB-to-PRB mapping field value in these DCIs to be 0, that is, the scheduled PDSCH uses non-interleaved mode for VRB to PRB mapping.
  • the user equipment determines that the total number of RBs used by the PDSCH resources scheduled by DCI using SI-RNTI or P-RNTI or TC-RNTI or RA-RNTI to scramble the CRC does not exceed a specific value, which is determined by the SCS used by the data channel.
  • the user equipment also determines parameters for the user equipment to receive the PDSCH channel according to the second indication information in the DCI. For example, when the user equipment determines that the indication information is mode 3, the user equipment determines the location and bandwidth of a specific initial downlink BWP or CORESET for data reception based on the second indication information in the DCI.
  • the second indication information includes an offset value relative to RB0 of the CORESET where the current PDCCH is located.
  • the user equipment can determine the starting position of a specific initial downlink BWP or CORESET based on this offset.
  • the user equipment determines the bandwidth of the specific initial downlink BWP or CORESET according to the predetermined value or the bandwidth value in the second indication information.
  • the user equipment can also use the predetermined value or the current PDCCH
  • the same symbol number and symbol position or the symbol number and symbol position in the second indication information are used in the CORESET to determine the symbol number and symbol position used by the user equipment to search for the PDCCH on the specific CORESET.
  • the user equipment can search the PDCCH on a specific CORESET according to the indicated information to obtain relevant scheduling information.
  • the user equipment also determines parameters for the user equipment to receive the PDSCH channel according to the third indication information in the SIB. For example, when the indication information is Mode 1, the user equipment determines that the number of RBs of the bandwidth used by the PDSCH resource scheduled by the DCI using the SI-RNTI scrambling CRC does not exceed a specific value, which is determined by the SCS used by the data channel. User equipment expects the VRB-to-PRB mapping field in these DCIs to be 0, that is, the scheduled PDSCH uses non-interleaved mode for VRB to PRB mapping. At this time, the user equipment can receive the SIB information on the PDSCH scheduled according to the DCI format 1_0 of the SI-RNTI scrambled CRC.
  • the SIB information contains configuration information of a specific initial downlink BWP, which is used by the user equipment to receive the PDSCH scheduled by the DCI of the TC-RNTI or RA-RNTI scrambled CRC.
  • the specific value used for the bandwidth RB determined by the SCS of the data channel can be implemented in a predefined manner. For example, when the SCS is 15kHz, the determined number of RBs is 25, and when the SCS is 30kHz, the determined number of RBs is 11. . Or when the SCS is 15kHz, the number of RBs determined is 24, and when the SCS is 30kHz, the number of RBs determined is 12.
  • the user equipment determines the parameters of the PUSCH scheduled using the DCI of the TC-RNTI scrambled CRC or the PUSCH scheduled by the uplink grant in the RAR message according to the indication information.
  • the user equipment determines that the DCI using TC-RNTI scrambling CRC or the bandwidth used by the PUSCH resources scheduled by the uplink grant in the RAR message does not exceed the number of RBs used by the data channel. The value determined by SCS. And the user equipment expects that the frequency domain frequency hopping indication value in the relevant DCI or uplink grant is 0, that is, the scheduled PUSCH does not use frequency hopping.
  • the user equipment determines that the DCI using TC-RNTI scrambling CRC or the bandwidth used by the PUSCH resources scheduled by the uplink grant in the RAR message does not exceed the number of RBs used by the data channel. The value determined by SCS.
  • the user equipment also determines parameters for the user equipment to send the PUSCH channel according to the fourth indication information in the SIB. For example, when the indication information is mode 1, the user equipment determines The number of RBs in the bandwidth used by PDSCH resources scheduled by DCI using SI-RNTI scrambling CRC does not exceed a specific value, which is determined by the SCS used by the data channel. User equipment expects the VRB-to-PRB mapping field in these DCIs to be 0, that is, the scheduled PDSCH uses non-interleaved mode for VRB to PRB mapping. At this time, the user equipment can receive the SIB information on the PDSCH scheduled according to the DCI format 1_0 of the SI-RNTI scrambled CRC.
  • the SIB information contains the configuration information of the specific initial uplink BWP, which is used by the user equipment to send the PUSCH scheduled by the uplink grant in the DCI or RAR message of the TC-RNTI scrambled CRC.
  • the network may also use more or fewer bits to carry indication information. For example, 1 bit is used to indicate related information. When the user equipment determines that the bit indication is 1, it uses the method defined in Mode 1 above to determine the relevant data channel transmission parameters. When the bit indication is 0, it is reserved information.
  • the related methods in the above examples can still be used in combination and will not be described one by one here.
  • User equipment needs to obtain relevant instruction information as early as possible to determine network support and reduce unnecessary processing. For example, the user equipment can obtain relevant information by receiving the SSB, and the user equipment can also obtain the PDCCH in the type0-PDCCH CSS determined by the information in the SSB. In both cases, the bandwidth of the associated control channel is less than 20MHz.
  • the user equipment determines the indication information according to the bit indication in the DCI format 1_0 of the SI-RNTI scrambled CRC.
  • there are some reserved bits in the DCI of the SI-RNTI scrambled CRC sent by the base station which are not used to indicate valid information.
  • the indication information uses 2-bit indication
  • the user equipment determines the relevant indication information based on the first 2 bits of the reserved bits.
  • the user equipment only determines the indication in the DCI when the System information indicator field System information indicator in the DCI format 1_0 of the SI-RNTI scrambling CRC is 0, that is, when the PDSCH scheduled by DCI carries the SIB1 message. information.
  • Lmax is the maximum sequence number of the SSB in the system, which can be determined according to the frequency band where the SSB is located. For example, in the cell where the user equipment detects the SSB on the FR1 frequency band, the Lmax value is 4 or 8. In the cell where the user equipment detects the SSB on the FR2 frequency band, the Lmax value is 64.
  • the user equipment determines the indication information according to the bit indication in the PBCH.
  • FRI cells use as a bit indication
  • the user equipment determines relevant parameter assumptions based on the indication information.
  • Networks may also be defined using Or the spare field in the MIB is used as a bit indication, or it may be combined with other bits. There are no further limitations here.
  • Figure 2 is a flowchart of a method performed by user equipment according to Embodiment 2 of the present invention.
  • step S201 the user equipment receives the synchronization signal/physical broadcast channel block SSB signal and obtains type0-PDCCH CSS related parameters.
  • step S202 the user equipment detects the PDCCH according to the type0PDCCH CSS and obtains the indication information.
  • step S203 the user equipment determines the time parameter used by the user equipment according to the bandwidth parameter or indication information.
  • the processing time limit of the user equipment can be relaxed, so that the user equipment can have more processing time when receiving or sending data, thereby reducing the related equipment complexity.
  • the user equipment determines the minimum processing time required for the data transmission process.
  • N1 is defined in the network to determine the parameter of the minimum time interval between the last symbol of the PDSCH scheduled by the user equipment to receive the PDCCH and the first symbol of the related channel carrying HARQ-ACK
  • N2 is defined to determine that the user equipment receives the PDCCH. Parameter of the minimum time interval between the first symbol of the scheduled PUSCH and the last symbol of the related PDCCH.
  • the user equipment determines the time parameter based on the bandwidth parameter.
  • the user equipment determines the time parameters used for the public channel according to the bandwidth of CORESET0.
  • the user equipment determines the adjustment coefficient of N1 based on the bandwidth of CORESET0. Specific examples are shown in Table 2.
  • the user equipment determines N1 used by the user equipment according to the coefficient value and the predetermined symbol value.
  • the N1 used by the user equipment when receiving the PDSCH scheduled by the DCI of SI-RNTI or P-RNTI or TC-RNTI or RA-RNTI scrambled CRC is the determined N1 coefficient and the predefined PDSCH processing capability 1 and the PDSCH used The product of the number of PDSCH processing time symbols determined by the SCS.
  • the user equipment may determine the N1 value used when receiving the PDSCH scheduled by the DCI of the SI-RNTI or P-RNTI or TC-RNTI or RA-RNTI scrambled CRC according to a predetermined table. Specific examples are shown in Table 3.
  • the user equipment determines the time parameters used for the public channel according to the bandwidth of the uplink initial BWP. For example, the user equipment determines the coefficient of N2 based on the bandwidth of the uplink initial BWP. Specific examples are shown in Table 4.
  • the N2 used is the determined N2 coefficient and the predefined PUSCH processing capability 1 and the PUSCH used The product of the number of PUSCH processing time symbols determined by the SCS.
  • the user equipment can determine the N2 used when PUSCH is scheduled by the uplink grant in the RAR message or PUSCH is scheduled by the DCI of the TC-RNTI scrambled CRC according to a predetermined table.
  • a predetermined table An example is shown in Table 5.
  • the user equipment indication information determines the reception or transmission time coefficient of the PDSCH scheduled by the DCI of the PUSCH or TC-RNTI scrambled CRC scheduled by the uplink grant or the DCI of the RA-RNTI scrambled CRC.
  • the user equipment determines the time parameter to be used based on the indication information in the DCI of the RA-RNTI or msgB-RNTI scrambled CRC. For example, 1 bit is used to indicate the associated N1 coefficient or the number of symbols of N1.
  • Table 6 shows an example of determining the relevant N1 and N2 coefficients.
  • Tables 7 and 8 provide examples of determining N1 and N2 values according to instructions.
  • the indication information is an indication in DCI or an indication in a MAC layer message.
  • the user equipment determines the indication information only when the system information indication in the DCI is 0.
  • the user equipment can determine the time parameters used by the user equipment in the relevant network process according to the indication information in the DCI.
  • the user equipment may determine the mode parameters according to the first indication information in the DCI format 1_0 of the SI-RNTI scrambling CRC, and the user equipment may also determine the indication information of the time parameter based on the bit indication in the DCI format 1_0 of the SI-RNTI scrambling CRC.
  • the relevant N1 and N2 are determined according to the 1-bit indication in the DCI indication combined with the method in the previous example.
  • the user equipment determines the indication information according to the bit indication in the MAC layer message.
  • the user equipment can determine the time parameter according to the bit indication in the RAR message. For example, in the RAR message, there is a reserved bit before the Time Advance Command information.
  • the user equipment can determine the relevant N1 and N2 parameters based on the value of this bit, which are used as time parameters in the random access process.
  • FIG. 3 is a flowchart for explaining a method performed by user equipment according to Embodiment 3 of the present invention.
  • step S301 the user equipment receives the synchronization signal/physical broadcast channel block SSB signal and obtains type0-PDCCH CSS related parameters;
  • step S302 the user equipment determines the time parameter
  • step S303 the user equipment can determine the transmission resources of the PUSCH according to the time slot position and time parameters indicated by the uplink grant in the RAR message.
  • N1 is defined in the network to determine the parameter of the minimum interval from the last symbol of the PDSCH scheduled by the PDCCH to the related HARQ-ACK when the user equipment receives it
  • N2 is defined in the network to determine the parameter of the minimum interval between the user equipment receiving the PUSCH scheduled by the PDCCH and the related PDCCH. parameter for the minimum interval of the last symbol.
  • the network sends a random access response RAR message in response to a random access request sent by the user equipment.
  • the RAR message contains uplink scheduling information and is used to instruct the user equipment to send Msg3 through the scheduled uplink resources.
  • the minimum interval needs to be met between the scheduled uplink PUSCH resource and the PDSCH for sending the RAR message.
  • the minimum interval between the last symbol of PDSCH and the first symbol of PUSCH is N T1 + N T2 + 0.5 milliseconds, where N T1 is the time determined by N1 symbols, and N T2 is the time determined by N2 time determined by symbols.
  • the uplink scheduling information contained in the RAR message includes a timing information K2, which is used to indicate the time domain location of the PUSCH resource usage.
  • K2 is the number of time slots determined from the predetermined table or the parameter list configured by the higher layer according to the time domain resource allocation information in the authorization information
  • is the predefined value determined according to the PUSCH subcarrier SCS parameters.
  • the user equipment can determine the row sequence number based on the time domain resource allocation information in the DCI information, and obtain the number of symbols corresponding to K2 and ⁇ used in PUSCH scheduling based on the row sequence number and the corresponding values in the table of the used SCS parameters.
  • Table 9 Default PUSCH time domain resource allocation table A
  • User devices can gain lower complexity and other benefits by relaxing processing times.
  • the user equipment extends the time of N1 and N2 to twice the value used by other types of user equipment.
  • the user equipment can be allowed to use less complex equipment when receiving PDSCH or sending PUSCH, and use more processing time to implement related service functions.
  • some problems may arise. For example, when the network sends the RAR grant, the scheduling offset value used may not meet the requirements of the user equipment after the processing time is relaxed, causing the scheduling to fail and affecting the availability of the system.
  • the minimum time interval between the relevant PDSCH and PUSCH determined by the user equipment will also be expanded.
  • the time value obtained according to some scheduling parameters may be smaller than the minimum time interval.
  • the user equipment determines N1 as 28 symbols and N2 as 20 symbols, both of which are twice the values used by other types of user equipment.
  • the SCS used for both uplink and downlink data channels is 15kHz, and ⁇ PUSCH corresponds to value 0.
  • the user equipment determines the relevant scheduling timing according to the second row in Table 9, and can determine that the PUSCH should be in the time slot n+K2+ ⁇ PUSCH is sent on the Internet.
  • K2 is 1 time slot, which is the time corresponding to 14 symbols.
  • is 2 time slots, which is the time corresponding to 28 symbols.
  • the time interval indicated by K2+ ⁇ is 42 symbols.
  • the corresponding time is less than the minimum interval value determined according to the time parameter N T1 + N T2 + 0.5 milliseconds, that is, the time corresponding to 48 symbols + 0.5 milliseconds.
  • the behavior of the user equipment and network needs to be appropriately adjusted so that the business can proceed normally.
  • the user equipment does not expect that the interval between the actually sent PUSCH and the PDSCH used to transmit the RAR message is smaller than the minimum processing interval determined by the user equipment.
  • the user equipment scrambles the CRC according to the uplink grant or TC-RNTI in the RAR message.
  • the time slot position and time parameters indicated by DCI format 0_1 determine the transmission resources of PUSCH.
  • the user equipment PUSCH is sent on the first available time slot that meets the minimum time interval after the time slot indicated by the time domain resource allocation parameter in the corresponding grant.
  • the available time slots are symbols determined according to the time domain resource allocation information, and are indicated as uplink symbols by higher layer information on this time slot.
  • K2+ ⁇ determined by the terminal based on the time domain resource allocation information in the uplink authorization information is 42 symbols, or 3 time slots, and the terminal determines it on the time slot n after the PDSCH time slot number that transmits the authorization information.
  • the time slot number indicated by the authorization is n+3. If the minimum time interval required by the terminal equipment is N T1 + N T2 + 0.5, which is approximately 4 time slots, then the terminal determines that the symbol on the first available time slot n + 5 after n + 4 time slots is uplink, and the terminal Use these symbols for PUSCH transmission scheduled for this uplink grant.
  • the available time slot is a symbol determined according to the time domain resource allocation information.
  • the time slot is occupied by a downlink symbol indicated by high-layer information or an actually transmitted SSB symbol.
  • the user equipment After the time slot indicated by the time domain resource allocation parameter in the corresponding grant or DCI, PUSCH is sent on the first available time slot with a predefined offset from the time slot.
  • the user equipment when the network does not configure specific random access resources for the user equipment, when the user equipment receives the RAR message between the first symbol of the PUSCH scheduled for the uplink grant and the last symbol of the PDSCH used to transmit the RAR message.
  • the user equipment When the interval is less than the minimum processing interval determined by the user equipment, the user equipment sends PUSCH on the first available time slot after the corresponding authorized resources and satisfying the minimum time interval.
  • the user equipment when the network does not configure specific random access resources for the user equipment, when the user equipment receives the RAR message between the first symbol of the PUSCH scheduled for the uplink grant and the last symbol of the PDSCH used to transmit the RAR message.
  • the user equipment sends PUSCH on the available time slot with a predefined offset from the corresponding authorized resource location determined based on the RAR.
  • the user equipment when the interval between the first symbol of the PUSCH scheduled for the uplink grant and the last symbol of the PDSCH used to transmit the RAR message in the RAR message received by the user equipment is less than the minimum processing interval determined by the user equipment, the user equipment sends MAC message.
  • the MAC message at least contains the type indication and TC-RNTI of the user equipment. After the user equipment sends the MAC message, it monitors the PDCCH that uses TC-RNTI to scramble the CRC, obtains the new uplink authorization value sent by the network, and sends msg3 on the new scheduling resource.
  • the time slot interval between PDCCH carrying DCI and PUSCH is K2.
  • the scheduled K2 is smaller than the time parameter N2 required by the terminal.
  • the actual PUSCH transmission resources can also be determined on the available time slots after the time slot indicated by the time domain resource allocation indication information of the DCI through a similar method as above.
  • FIG. 4 will be used to explain how the present invention can be executed in detail as a modified example.
  • the user device describes a method that the user device performs.
  • FIG. 4 is a block diagram showing user equipment UE according to the present invention.
  • the user equipment UE40 includes a processor 401 and a memory 402.
  • the processor 401 may include, for example, a microprocessor, a microcontroller, an embedded processor, or the like.
  • the memory 402 may include, for example, volatile memory (such as random access memory RAM), hard disk drive (HDD), non-volatile memory (such as flash memory), or other memory.
  • Memory 402 stores program instructions. When this instruction is executed by the processor 401, it can execute the above method executed by the user equipment as described in detail in the present invention.
  • the method and related equipment of the present invention have been described above in conjunction with preferred embodiments. Those skilled in the art can understand that the methods shown above are only exemplary, and the embodiments described above can be combined with each other without conflict.
  • the method of the present invention is not limited to the steps and sequence shown above.
  • the network nodes and user equipment shown above may include more modules, for example, may also include modules that may be developed or developed in the future and may be used for base stations, MMEs, or UEs, and so on.
  • the various identifications shown above are only illustrative and not restrictive, and the present invention is not limited to the specific information elements as examples of these identifications. Many changes and modifications may be made by those skilled in the art in light of the teachings of the illustrated embodiments.
  • various components inside the base station and user equipment in the above embodiments can be implemented by a variety of devices, including but not limited to: analog circuit devices, digital circuit devices, digital signal processing (DSP) circuits, programmable processing processor, application specific integrated circuit (ASIC), field programmable gate array (FPGA), programmable logic device (CPLD), etc.
  • DSP digital signal processing
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD programmable logic device
  • base station may refer to a mobile communication data and control switching center with larger transmission power and wider coverage area, including functions such as resource allocation and scheduling, data reception and transmission.
  • User equipment may refer to user mobile terminals, including, for example, mobile phones, laptops and other terminal equipment that can conduct wireless communication with base stations or micro base stations.
  • embodiments of the invention disclosed herein may be implemented on a computer program product.
  • the computer program product is a product that has a computer-readable medium
  • Computer program logic is encoded on the computer-readable medium.
  • the computer program logic When executed on a computing device, the computer program logic provides relevant operations to implement the above technical solutions of the present invention.
  • the computer program logic When executed on at least one processor of a computing system, the computer program logic causes the processor to perform the operations (methods) described in embodiments of the invention.
  • Such arrangements of the invention are typically provided as software, code and/or other data structures disposed or encoded on a computer readable medium, such as an optical medium (eg, a CD-ROM), a floppy or hard disk, or the like, or as one or more Other media for firmware or microcode on a ROM or RAM or PROM chip, or downloadable software images, shared databases, etc. in one or more modules.
  • Software or firmware or such configuration may be installed on the computing device, so that one or more processors in the computing device execute the technical solutions described in the embodiments of the present invention.
  • each functional module or each feature of the base station equipment and user equipment used in each of the above embodiments may be implemented or executed by a circuit, which is usually one or more integrated circuits.
  • Circuitry designed to perform the various functions described in this specification may include a general-purpose processor, digital signal processor (DSP), application-specific integrated circuit (ASIC) or general-purpose integrated circuit, field-programmable gate array (FPGA) or other Programmed logic devices, discrete gate or transistor logic, or discrete hardware components, or any combination of the above.
  • a general purpose processor may be a microprocessor, or the processor may be an existing processor, controller, microcontroller or state machine.
  • the above-mentioned general processor or each circuit may be configured by a digital circuit, or may be configured by a logic circuit.
  • the present invention can also use an integrated circuit obtained by utilizing the advanced technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种由用户设备执行的方法以及用户设备,用户设备根据指示信息确定网络是否支持使用较小数据传输带宽的用户设备的接入和/或数据传输使用的参数,其中,所述使用较小数据传输带宽为用于下行共享信道PDSCH或上行共享信道PUSCH的带宽RB数不大于预定的值。

Description

由用户设备执行的方法以及用户设备 技术领域
本发明涉及无线通信技术领域,具体涉及由用户设备执行的方法以及相应的用户设备。
背景技术
本节介绍可以有助于更好地理解本公开的各个方面。因此,本节的陈述应从这个角度来阅读,并且不应被理解为承认什么是现有技术或什么不是现有技术。
5G系统中定义了几种典型应用,例如工业无线传感器应用致力于加速工业传输和数字化,以获得灵活性,生产性和高效率,还有助于减少维护,提升操作安全性等。视频监控设备应用于智能城市建设,实现更好的城市管理和服务。可穿戴设备可用于医疗、生活等多个方面的智能化服务。这些应用的用户设备都期望较低的复杂度和较少的功率消耗。为了更好的实现这些应用,扩展相关设备的市场,需要考虑进一步的减小其复杂度。例如,将这些设备的峰值数据速率减小到最大10Mbps,将用户设备带宽限制5MHz,并可能对数据信道的处理时间约束进行一些放宽。同时必须考虑这些设备与现有降能力设备以及其他NR用户设备在同一小区中的共存,以保持现有设备生态的完整性,最大化生态规模。这些业务对现有的NR网络提出一些新的需求。例如网络要支持用户设备的带宽降低到最大5MHz,就要求对网络配置或数据传输过程满足相关的要求。要降低用户设备的峰值速率也需要网络的数据调度等有一些新的约束条件,等等。本发明的相关方法为实现网络中这些设备的降能力需求提供了较好的方法,并且保证与现有设备在网络中的共存需求,获得较好网络的利用效率。
发明内容
为了解决上述问题中的至少一部分,本发明提供了一种由用户设备执行的方法以及用户设备,能够满足网络中相关设备的降能力需求,保证与现有设备在网络中的共存需求,获得较好网络的利用效率,使得用户设备和网络能获得一致的理解,保证通信业务的正常进行。
根据本发明,提供了一种由用户设备执行的方法,用户设备根据指示信息确定网络是否支持使用较小数据传输带宽的用户设备的接入和/或数据传输使用的参数,其中,所述使用较小数据传输带宽为用于下行共享信道PDSCH或上行共享信道PUSCH的带宽RB数不大于预定的值。
根据上述的由用户设备执行的方法,所述用户设备确定数据传输使用的参数包括:所述指示信息为模式1时,用户设备确定使用SI-RNTI或P-RNTI或TC-RNTI或RA-RNTI加扰CRC的DCI所调度的PDSCH资源使用的带宽的RB数不超过由数据信道所使用的SCS确定的值,并且用户设备期望所调度的PDSCH使用非交织模式进行VRB与PRB的映射,所述指示信息为模式2时,用户设备确定使用SI-RNTI或P-RNTI或TC-RNTI或RA-RNTI加扰CRC的DCI所调度的PDSCH资源使用的带宽的RB数不超过由数据信道所使用的SCS确定的值。
根据上述的由用户设备执行的方法,所述用户设备确定数据传输使用的参数还包括:所述指示信息为模式1时,用户设备确定使用TC-RNTI加扰CRC的DCI或由RAR消息中的上行授权所调度的PUSCH资源使用的带宽的RB数不超过由数据信道所使用的SCS确定的值,并且用户设备期望所调度的PUSCH不使用跳频,所述指示信息为模式2时,用户设备确定使用TC-RNTI加扰CRC的DCI或由RAR消息中的上行授权所调度的PUSCH资源使用的带宽的RB数不超过由数据信道所使用的SCS确定的值。
根据上述的由用户设备执行的方法,所述指示信息为SI-RNTI加扰CRC的DCI格式1_0中的比特指示的信息。
根据上述的由用户设备执行的方法,用户设备根据带宽参数或指示信息来确定用户设备使用的时间参数。
根据上述的由用户设备执行的方法,用户设备仅在DCI中的系统信息指示为0时确定指示信息。
本发明的另一种由用户设备执行的方法,用户设备能够根据RAR消息中的上行授权所指示的时隙位置以及时间参数确定PUSCH的传输资源。
根据上述的由用户设备执行的方法,当用户设备接收到的RAR消息中上行授权所调度的PUSCH第一个符号与用于传输RAR消息的PDSCH最后一个符号间的间隔小于用户设备所确定的最小处理间隔时,用户设备在相应的授权或DCI中时域资源分配参数指示的时隙后,并满足最小时间间隔的第一个可用时隙上发送PUSCH,或者用户设备在相应的授权或DCI中时域资源分配参数指示的时隙后,在与该时隙存在预定义的偏移的第一个可用时隙上发送PUSCH,或者用户设备发送MAC消息,MAC消息中至少包含用户设备的类型指示和TC-RNTI,当用户设备发送了该MAC消息后,监听使用TC-RNTI加扰CRC的PDCCH,获得网络发送的新的上行授权值,并在新的调度资源上进行msg3的发送。
根据上述的由用户设备执行的方法,其特征在于,当网络中没有为用户设备配置特定的随机接入资源时,当用户设备接收到的RAR消息中上行授权所调度的PUSCH第一个符号与用于传输RAR消息的PDSCH最后一个符号间的间隔小于用户设备所确定的最小处理间隔时,用户设备在相应的授权资源后,并满足最小时间间隔的第一个可用时隙上发送PUSCH,当网络中没有为所述用户设备配置特定的随机接入资源时,当用户设备接收到的RAR消息中上行授权所调度的PUSCH第一个符号与用于传输RAR消息的PDSCH最后一个符号间的间隔小于用户设备所确定的最小处理间隔时,用户设备在相应的根据RAR消息确定的授权资源位置后,在与该位置存在预定义的偏移的可用时隙上发送PUSCH。
此外,根据本发明,提出了一种用户设备,包括:处理器;以及存储器,存储有指令,其中,所述指令在由所述处理器运行时执行上述的方法。
根据本发明,能够满足网络中相关设备的降能力需求,保证与现有设备在网络中的共存需求,获得较好网络的利用效率,使得用户设备和网络能获得一致的理解,保证通信业务的正常进行。
附图说明
通过下文结合附图的详细描述,本发明的上述和其它特征将会变得更加明显,其中:
图1为表示本发明的实施例1相关的由用户设备执行的方法。
图2为表示本发明的实施例2相关的由用户设备执行的方法。
图3为表示本发明的实施例3相关的由用户设备执行的方法。
图4为本发明涉及的用户设备UE的简要结构框图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细阐述。应当注意,本发明不应局限于下文所述的具体实施方式,这些实施方式仅作为示例提供,以便将主题的范围传达给本领域技术人员。另外,为了简便起见,省略了对与本发明没有直接关联的公知技术的详细描述,以防止对本发明的理解造成混淆。
通常,除非在使用该术语的上下文中清楚地给出和/或隐含不同的含义,否则本文中使用的所有术语将根据其在相关技术领域中的普通含义来解释。除非明确说明,否则对一个该元件、设备、组件、部件、步骤等的所有引用应公开地解释为是指该元件、装置、组件、部件、步骤等的至少一个实例。除非必须明确地将一个步骤描述为在另一个步骤之后或之前和/或隐含地一个步骤必须在另一个步骤之后或之前,否则本文所公开的任何方法的步骤不必以所公开的确切顺序执行。在适当的情况下,本文公开的任何实施例的任何特征可以适用于任何其它实施例。同样,任何实施例的任何优点可以适用于任何其它实施例,反之亦然。
下文以5G/NR移动通信系统及其后续的演进版本作为示例应用环境,具体描述了根据本发明的多个实施方式。然而,需要指出的是,本发明不限于以下实施方式,而是可适用于更多其它的无线通信系统,例如5G之后的通信系统以及5G之前的4G、3G移动通信系统,802.11无线网络等等。
下面描述本发明涉及的部分术语。如未特别说明,本发明涉及的术语采用此处定义。本发明给出的术语在LTE、LTE-Advanced、LTE-Advanced Pro、NR以及之后的或其他的通信系统中可能采用不同的命名方式,但本发明中采用统一的术语,在应用到具体的系统中时,可以替换为相应系统中采用的术语。
3GPP:3rd Generation Partnership Project,第三代合作伙伴计划
LTE:Long Term Evolution,长期演进技术
NR:New Radio,新无线、新空口
UE:User Equipment,用户设备
gNB:NR基站
FR1:Frequency range 1 as defined in TS 38.104,由TS38.104定义的频率范围1
FR2:Frequency range 2 as defined in TS 38.104,由TS38.104定义的频率范围2
BWP:BandWidth Part,带宽片段/部分
SFN:System frame number,系统帧号
OFDM:Orthogonal Frequency Division Multiplexing,正交频分复用
CP:Cyclic Prefix,循环前缀
TA:Timing Advance,上行定时提前量
SCS:sub-carrier spacing,子载波间隔
RB:Resource Block,资源块
RE:Resource Element,资源单元
CRB:Common Resource Block,公共资源块
PRB:Physical Resource Block,物理资源块
VRB:Virtual resource block,虚拟资源块
REG:Resource Element Group,资源单元组
CCE:Control channel element,控制信道单元
EPRE:Energy per resource element,每资源单元能量
TDD:Time Division Duplexing,时分双工
FDD:Frequency Division Duplexing,频分双工
CSI:Channel State Information,信道状态信息
DCI:Downlink Control Information,下行控制信息
MCS:Modulation and Coding Scheme,调制编码方案
CRC:Cyclic Redundancy Check,循环冗余校验
SFI:Slot Format Indication,时隙格式指示
QCL:Quasi co-location,准共址
HARQ:Hybrid Automatic Repeat Request,混合自动重传请求
CORESET:Control resource set,控制资源集合
MIB:Master Information Block,主信息块
SIB:system information block,系统信息块
SIB1:System Information Block Type 1,系统信息块类型1
SSB:SS/PBCH block,同步信号/物理广播信道块
PSS:Primary Synchronization Signal,主同步信号
SSS:Secondary Synchronization Signal,辅同步信号
SRS:Sounding Reference Signal,探测参考信号
DMRS:Demodulation Reference Signal,解调参考信号
CSI-RS:Channel State Information Reference Signal,信道状态信息参考信号
TRS:Tracking Reference Signal,跟踪参考信号
RACH:random-access channel,随机接入信道
PBCH:Physical broadcast channel,物理广播信道
PUCCH:Physical Uplink Control Channel,物理上行控制信道
PUSCH:Physical Uplink Shared Channel,物理上行共享信道
PRACH:Physical random-access channel,物理随机接入信道
PDSCH:Physical downlink shared channel,物理下行共享信道
PDCCH:Physical downlink control channel,物理下行控制信道
UL-SCH:Uplink Shared Channel,上行共享信道
DL-SCH:Downlink Shared Channel,上行共享信道
NZP-CSI-RS:Not-Zero-Power CSI-RS,非零功率的CSI-RS
C-RNTI:Cell Radio Network Temporary Identifier,小区无线网络临时标识
P-RNTI:Paging RNTI,寻呼无线网络临时标识
RA-RNTI:Random Access RNTI,随机接入无线网络临时标识
CS-RNTI:Configured Scheduling RNTI,配置调度无线网络临时标识
SI-RNTI:System Information RNTI,系统信息无线网络临时标识
TC-RNTI:Temporary C-RNTI,临时小区无线网络临时标识
RAR:Random access response,随机接入响应
CSS:Common search space,公共搜索空间
RIV:resource indication value,资源指示数值
下文是与本发明方案相关联技术的描述。如无特别说明,具体实施例中与关联技术中相同术语的含义相同。
值得指出的是,本发明说明书中涉及的用户,用户设备与终端设备含义相同,文中也可以用UE表示用户设备,后文中不做具体区分和限定。类似的,网络设备为与用户设备进行通信的设备,包括并不限于基站设备、gNB、eNB、无线AP、无线中继、具备中继能力的终端等,后文中不做具体区分和限定。文中可以用基站作为网络设备实现的一种形式进行说明,具体实现时可以容易地使用其他网络设备形式进行替换。
用户设备在NR网络中进行通信业务时,需要接收网络发送的系统消息。例如,用户设备在频带上搜索和接收SSB信号,并根据其中的配置信息接收系统广播信息。SSB包括PSS,SSS和PBCH等三种信号或信道,分别传输不同的系统信息。NR系统中,SSB信号一共占用连续4个符号和20个RB的时频资源。当SSB使用15KHz子载波参数传输时,SSB占用的带宽至少为3.6MHz。当SSB使用30KHz子载波参数传输时,SSB占用的带宽为7.2MHz。
当接收到有效SSB信号后,用户设备可根据SSB信号获得由PBCH 等传输的MIB信息。用户设备根据MIB信息可确定用于调度承载SIB1的PDSCH资源的PDCCH所使用CORESET的带宽、符号数和与频域位置等参数,也就是type0-PDCCH CSS参数。例如,PBCH信道传输的信息包括MIB信息和其他一些系统配置信息。用户设备可根据MIB消息中的subCarrierSpacingCommon确定SIB 1/PDCCH所使用的SCS参数。用户设备可在type0PDCCH CSS中检测PDCCH,获得的DCI信息,即相关PDSCH的调度信息。
将用户设备最大带宽限制为5MHz或限制用户设备峰值速率可能有多种实现方法。例如,可以将用户设备接收的控制信道最大带宽限制为20MHz,将数据信道的最大带宽限制为5MHz。这样可以使得用户设备可以接收20MHz带宽发送的控制信道信息,并且根据控制信道中DCI指示确定PDSCH的调度信息。同时用户设备限制数据信道使用不大于5MHz的带宽,使得用户设备的复杂度能够降低,实现相关目标。或者,用户设备限制处理的数据信道使用的RB数不大于预定的值,这样也能降低用户设备接收或发送设备的复杂度。或者还有其他一些方法,例如限制用户设备处理数据的最大传输块大小,放宽最大MIMO层数与调制阶数和缩放因子的乘积的最小限定值,放宽用户设备处理各业务信道或信号的时间要求等等。网络中可能使用上述的一种或多种方法的组合来实现相关目的。
具体的举例,网络为保证传输数据信道PDSCH/PUSCH时不超过用户设备的能力,网络所调度的PDSCH使用不超过5MHz的连续带宽进行传输,并根据PDSCH传输所使用的SCS参数来确定相关参数。例如,在PDSCH使用15kHz的SCS传输时,在带宽不大于25个RB的BWP上分配资源,这样使得PDSCH的传输带宽不超过5MHz。或者,在较大带宽的BWP上的使用跳频的方式使得分配给用户设备的资源在任一符号上的总带宽不超过5MHz。例如在总带宽为20MHz的BWP上传输PDSCH,当该BWP使用SCS为15kHz时,20MHz带宽内的总可用RB数为106。网络使用若干个符号在该带宽上进行PDSCH传输时,前一半符号使用24个RB进行传输,后一半符号使用另外24个RB进行传输。 这两部分的RB可能分布在总带宽内的不同带宽上。但用户设备在任一符号上接收的总带宽仍然不超过25个RB。又或者,在较大带宽的BWP上的使用调度限制的方式使得分配给用户设备的资源在任一符号上的总带宽不超过5MHz,在SCS为15kHz时,可以通过下行调度分配不大于25个RB的资源,并且从VRB映射到PRB时使用非交织映射的方法实现。网络中还可以使用其他一些方法使得数据传输不超过用户设备的能力限制,这里不做限定。类似的,这些方法也可应用于上行数据信道的传输,这里不再赘叙。
本发明中,网络使用适当的指示方法,使得这种限制能力的用户设备能与其他用户设备共存于同一小区,并且相关的数据传输都能满足用户设备的要求,实现业务需求。
网络还可以对用户设备的处理时间的限制进行放宽,使得用户设备在接收或发送数据时能有更多的处理时间,从而减小相关的设备复杂度。当这种类型的用户设备与其他类型用户设备在网络中共存时,可能存在一些问题。例如,网络调度的时间参数不满足用户设备的要求,本发明相关的实施例对这些问题进行了解决,使得用户设备和网络能获得一致的理解,保证通信业务的正常进行。
以下对本发明的实施方式进行具体的说明。下文中如非明确说明,所说的用户设备都是指这种使用较小数据传输带宽以降低复杂度的用户设备。
【实施例1】
本发明的实施例1的由用户设备执行的方法中,用户设备根据指示信息确定网络是否支持使用较小数据传输带宽的用户设备的接入和/或数据传输使用的参数,其中,所述使用较小数据传输带宽为用于下行共享信道PDSCH或上行共享信道PUSCH的带宽RB数不大于预定的值。
图1是根据本发明的实施例1的由用户设备执行的方法的流程图。
如图1所示,在步骤S101,用户设备接收同步信号/物理广播信道块SSB信号,并获得type0-PDCCH CSS相关参数。
在步骤S102,用户设备根据type0PDCCH CSS检测PDCCH,获得指示信息。
在步骤S103,用户设备能够根据指示信息来确定网络支持用户设备的接入,和/或用户设备根据指示信息确定数据传输使用的参数。
下面对相关的过程进行了详细描述。
NR系统中,用户设备在type0-PDCCH CSS中检测PDCCH,获得调度DCI信息。用户设备接收SSB可获得type0-PDCCH CSS相关参数,例如用户设备可确定type0-PDCCH CSS所关联的CORESET的配置信息,也就是CORESET0的配置信息。典型的,CORESET0的频域资源,在带宽的SCS为15kHz时可能使用24RB或48RB或96RB中的一种,在SCS为30kHz时可能使用24RB或48RB的一种。这几种情况下除了使用24RB/15kHz的配置之外,CORESET0的带宽都超过5MHz。NR网络中,在用户设备获得特定的无线链路配置信息之前,一些公共过程中的PDSCH调度的信道带宽分布在CORESET0所确定的带宽范围内,由调度该PDSCH的DCI中频域指示信息域确定。这时,如果CORESET0的带宽大于5MHz,那么所调度的PDSCH使用的带宽可能大于5MHz,超过某些用户设备的能力。例如,寻呼阶段使用P-RNTI加扰CRC的DCI所调度的PDSCH,随机接入阶段的RA-RNTI加扰CRC的DCI所调度的PDSCH,或者SI-RNTI加扰CRC的DCI所调度的PDSCH,或者TC-RNTI加扰CRC的DCI所调度的PDSCH等,都可能使用CORESET0为参考确定相关的调度带宽。这时用户设备就可能无法正确接收到相关的信息,从而无法进行相关的网络业务。另一方面,由于网络中使用动态调度的方法调度PDSCH,在不同的时间上所调度的PDSCH可能使用不同的资源进行传输,一些时候可能所使用的带宽不超过5MHz,另一些时候使用的带宽超过5MHz,从而使得用户设备接收网络信息的性能不稳定,影响业务性能。另外,在随机接入过程中,用户设备接收随机接入响应RAR消息中包含上行授权,用于确定用户设备发送msg3所使用的资源。该资源的带宽与小区配置的初始上行BWP的带宽关联,也可能超出用户设备的能力范围。
可选的实施例,用户设备根据接收网络的指示信息来确定该网络是否支持用户设备的接入,或用户设备确定网络支持的用户设备接入方法或参数。一个具体的实例如表1所示,用户设备根据2比特的指示信息来确定网络对用户设备的不同支持模式。例如,用户设备接收到的比特指示为00,用户设备确定指示信息为保留位,网络没有使用特定的方法或配置支持该用户设备的接入。这时,如果用户设备在网络中接收或发送数据信道可能超过用户设备的带宽能力。用户设备接收到的比特指示为非00时,网络中使用特定的方法或配置或参数支持该用户设备的数据传输。例如,根据网络指示,用户设备确定使用特定RNTI加扰CRC的DCI所调度的PDSCH参数总是满足特定的假设,比如其带宽总是小于预定义的值。这样,满足相关接收能力的用户设备根据该信息确定能够在该网络中接收相关的PDSCH数据传输,实现相关的业务功能。
表1
可选的,用户设备根据指示信息确定使用某些RNTI加扰CRC的DCI所调度的PDSCH的参数值。
例如,网络使用下行资源分配类型1为用户设备分配PDSCH资源时,DCI中使用RIV作为频域资源指示信息指示所分配的一段频域连续的资源。具体的,根据所分配的资源在频域上的起始位置RBstart和分配的带宽使用的RB数量LRBs可以根据下面的方法计算一个RIV值。
ifthen
else
用户设备可以根据DCI中的RIV值获得所调度资源在BWP带宽上的起始位置和频域宽度,在相关资源上进行的PDSCH接收。
网络中在PDSCH数据传输时还可能在VRB到PRB的映射时使用交织或非交织的方式,也就是根据一定的规则将DCI所指示的VRB的序号映射到实际物理资源PRB的序号。当使用非交织时为一一映射,当使用交织时,根据交织参数进行映射,映射后VRB上连续的RB对应到非连续的PRB上,使得全部PRB占用的带宽变大。
可选的,当指示信息为模式1时,用户设备确定使用SI-RNTI或P-RNTI或TC-RNTI或RA-RNTI加扰CRC的DCI所调度的PDSCH资源使用的带宽的RB数不超过特定的值,该值由数据信道所使用的SCS确定。用户设备期望这些DCI中的VRB-to-PRB mapping域值为0,也就是所调度的PDSCH使用非交织模式进行VRB到PRB的映射。
可选的,当指示信息为模式2时,用户设备确定使用SI-RNTI或P-RNTI或TC-RNTI或RA-RNTI加扰CRC的DCI所调度的PDSCH资源使用的总RB数不超过特定的值,该值由数据信道所使用的SCS确定。
可选的,用户设备还根据DCI中的第二指示信息确定用于用户设备接收PDSCH信道的参数。例如,用户设备确定指示信息为模式3时,用户设备根据DCI中的第二指示信息,确定用户设备进行数据接收的特定初始下行BWP或CORESET的位置和带宽。例如,第二指示信息中包含一个相对当前PDCCH所在CORESET的RB0的偏移值。用户设备可根据该偏移确定特定初始下行BWP或CORESET的起始位置。用户设备根据预定的值或第二指示信息中的带宽值确定特定初始下行BWP或CORESET的带宽。用户设备还可以根据预定值或与当前PDCCH所 在CORESET使用相同的符号数、符号位置或第二指示信息中的符号数、符号位置确定用户设备在特定CORESET上搜索PDCCH所用的符号数、符号位置。用户设备可根据所指示的信息在特定CORESET上搜索PDCCH,获得相关调度信息。
可选的,用户设备还根据SIB中的第三指示信息确定用于用户设备接收PDSCH信道的参数。例如,当指示信息为模式1时,用户设备确定使用SI-RNTI加扰CRC的DCI所调度的PDSCH资源使用的带宽的RB数不超过特定的值,该值由数据信道所使用的SCS确定。用户设备期望这些DCI中的VRB-to-PRB mapping域为0,也就是所调度的PDSCH使用非交织模式进行VRB到PRB的映射。这时用户设备可以根据SI-RNTI加扰CRC的DCI格式1_0所调度的PDSCH上接收到SIB信息。SIB信息中包含特定初始下行BWP的配置信息,用于用户设备接收TC-RNTI或RA-RNTI加扰CRC的DCI所调度的PDSCH。
可选的,由数据信道的SCS确定的带宽RB所使用的特定值可通过预定义的方式实现,例如,SCS为15kHz时确定的RB数为25,SCS为30kHz时,确定的RB数为11。或者SCS为15kHz时确定的RB数为24,SCS为30kHz时,确定的RB数为12。
可选的,用户设备根据指示信息确定使用TC-RNTI加扰CRC的DCI所调度的PUSCH或由RAR消息中的上行授权所调度的PUSCH的参数。
可选的,当指示信息为模式1时,用户设备确定使用TC-RNTI加扰CRC的DCI或由RAR消息中的上行授权所调度的PUSCH资源使用的带宽的RB数不超过由数据信道所使用的SCS确定的值。并且用户设备期望相关DCI或上行授权中的频域跳频指示值为0,也就是所调度的PUSCH不使用跳频。
可选的,当指示信息为模式2时,用户设备确定使用TC-RNTI加扰CRC的DCI或由RAR消息中的上行授权所调度的PUSCH资源使用的带宽的RB数不超过由数据信道所使用的SCS确定的值。
可选的,用户设备还根据SIB中的第四指示信息确定用于用户设备发送PUSCH信道的参数。例如当指示信息为模式1时,用户设备确定 使用SI-RNTI加扰CRC的DCI所调度的PDSCH资源使用的带宽的RB数不超过特定的值,该值由数据信道所使用的SCS确定。用户设备期望这些DCI中的VRB-to-PRB mapping域为0,也就是所调度的PDSCH使用非交织模式进行VRB到PRB的映射。这时用户设备可以根据SI-RNTI加扰CRC的DCI格式1_0所调度的PDSCH上接收到SIB信息。SIB信息中包含特定初始上行BWP的配置信息,用于用户设备发送TC-RNTI加扰CRC的DCI或RAR消息中上行授权所调度的PUSCH。
网络中也可能使用更多或更少的比特来承载指示信息。例如使用1比特来指示相关信息。用户设备确定比特指示为1时,使用上述的模式1所定义的方法来确定相关的数据信道传输参数,比特指示为0时,为保留信息。以上示例中的相关方法仍然可以组合利用,这里不再一一描述。
用户设备需要尽可能早的获得相关的指示信息,确定网络的支持情况,减少不必要的处理。例如用户设备可通过接收SSB获得相关信息,用户设备也可通过接收由SSB中信息所确定的type0-PDCCH CSS中的PDCCH获得。这两种情况下,相关控制信道的带宽都小于20MHz。
可选的,用户设备根据SI-RNTI加扰CRC的DCI格式1_0中的比特指示确定指示信息。在版本17及之前的网络中,基站发送的SI-RNTI加扰CRC的DCI中有若干保留比特,不用于指示有效信息。比如,对于非共享频谱小区,该DCI中有15个保留比特。示例的,当指示信息使用2比特指示时,用户设备根据保留比特中的前2个比特确定相关的指示信息。
可选的,用户设备仅在SI-RNTI加扰CRC的DCI格式1_0中系统信息指示域System information indicator指示为0时,也就是DCI所调度的PDSCH承载SIB1消息时,用户设备确定DCI中的指示信息。
网络发送的PBCH信道所传输的数据中,也有若干保留比特,不用于版本Release 17及之前版本系统消息或网络配置的指示。例如,由PBCH所传输的MIB消息中,spare字段使用1比特作为MIB消息的填充比特,不表示有效信息。PBCH中还有若干用于网络时间相关信息的 传输比特,通常记为当系统中的Lmax不是10或20或64时,为保留比特,不用于传输有效信息。这里,Lmax为系统中SSB的最大序号,可根据SSB所在频带确定。示例的,用户设备在FR1的频带上检测到的SSB所在的小区中,Lmax取值为4或8,用户设备在FR2的频带上检测到SSB所在的小区中,Lmax取值为64。
可选的,用户设备根据PBCH中的比特指示确定指示信息。例如,FRI小区中使用作为比特指示,用户设备根据指示信息确定相关的参数假设。网络也可能定义使用或MIB中的spare字段作为比特指示,也可能使用与其他比特位组合的方式,这里不做更多的限定。
【实施例2】
图2是根据本发明的实施例2的由用户设备执行的方法的流程图。
如图2所示,在步骤S201,用户设备接收同步信号/物理广播信道块SSB信号,并获得type0-PDCCH CSS相关参数。
在步骤S202,用户设备根据type0PDCCH CSS检测PDCCH,获得指示信息。
在步骤S203,用户设备根据带宽参数或指示信息来确定用户设备使用的时间参数。
下面对相关的过程进行了详细描述。
NR网络中,可以对用户设备的处理时间的限制进行放宽,使得用户设备在接收或发送数据时能有更多的处理时间,从而减小相关的设备复杂度。例如,现有网络中,用户设备确定数据传输过程所需最小的处理时间。例如,网络中定义N1用于确定用户设备接收PDCCH所调度的PDSCH的最后一个符号到相关承载HARQ-ACK的信道的第一符号间的最小时间间隔的参数,定义N2用于确定用户设备接收PDCCH所调度的PUSCH的第一符号与相关PDCCH的最后一个符号的最小时间间隔的参数。用户设备在进行相关的业务调度时,其时序需要满足根据这些参数所确定的最小间隔。当网络支持更宽时间限制的用户设备时,特 别是对公共数据信道的接收或发送的处理时间放宽时,用户设备需要获取适当的指示使得网络与用户设备对时间关系的理解一致,从而保证通信业务的正常进行。
可选的,用户设备根据带宽参数确定时间参数。可选的,用户设备根据CORESET0的带宽确定用于公共信道的时间参数。例如,用户设备根据CORESET0的带宽确定N1的调整系数,具体的示例如表2所示。用户设备根据系数值与预定的符号值确定用户设备使用的N1。
表2根据CORESET0带宽参数确定的N1系数
用户设备在接收SI-RNTI或P-RNTI或TC-RNTI或RA-RNTI加扰CRC的DCI所调度的PDSCH时使用的N1为所确定的N1系数与预定义的PDSCH处理能力1以及PDSCH使用的SCS所确定的PDSCH处理时间符号数的乘积。
又例如,用户设备可以根据预定的表格确定接收SI-RNTI或P-RNTI或TC-RNTI或RA-RNTI加扰CRC的DCI所调度的PDSCH时使用的N1值。具体的示例如表3所示。
表3根据CORESET0带宽参数确定的N1时间参数
可选的,用户设备根据上行初始BWP的带宽确定用于公共信道的时间参数。例如,用户设备根据上行初始BWP的带宽确定N2的系数,具体的示例如表4所示。
表4根据初始上行BWP带宽参数确定的N2系数
用户设备在发送RAR消息中的上行授权所调度的PUSCH或TC-RNTI加扰CRC的DCI所调度的PUSCH时,使用的N2为所确定的N2系数与预定义的PUSCH处理能力1以及PUSCH使用的SCS所确定的PUSCH处理时间符号数的乘积。
可选的,用户设备可以根据预定的表格确定由RAR消息中的上行授权所调度的PUSCH或TC-RNTI加扰CRC的DCI所调度的PUSCH时使用的N2。一个示例如表5所示。
表5根据初始上行BWP带宽参数确定的N2时间参数
可选的,用户设备指示信息确定用于上行授权所调度的PUSCH或TC-RNTI加扰CRC的DCI所调度的PUSCH或RA-RNTI加扰CRC的DCI调度的PDSCH的接收或发送时间系数。具体的实例,用户设备根据RA-RNTI或msgB-RNTI加扰CRC的DCI中的指示信息确定所使用的时间参数。例如使用1比特指示相关的N1系数或N1的符号数。表6为确定相关N1和N2系数的示例。表7和表8为根据指示确定N1和N2数值的示例。
表6由比特指示的N1/N2系数
表7由比特指示的N1符号数
表8由比特指示的N2符号数
可选的,所述指示信息为DCI中的指示或MAC层消息中的指示。
可选的,用户设备仅在DCI中的系统信息指示为0时确定指示信息。
可选的,用户设备可根据DCI中的指示信息确定用户设备在相关网络过程中使用的时间参数。用户设备可根据SI-RNTI加扰CRC的DCI格式1_0中第一指示信息确定模式参数,用户设备还可以根据在SI-RNTI加扰CRC的DCI格式1_0中的比特指示确定时间参数的指示信息。例如,根据DCI指示中的1比特指示结合前述示例中的方法确定相关的N1和N2。
可选的,用户设备根据MAC层消息中的比特指示确定指示信息。网络在使用MAC层的RAR消息响应用户设备的随机接入请求时,用户设备可根据的RAR消息中比特指示确定时间参数。例如,RAR消息中,在Time Advance Command信息之前有一位保留比特。用户设备可根据该比特的值确定相关的N1和N2参数,用于随机接入过程中的时间参数。
【实施例3】
图3是用于说明根据本发明的实施例3的由用户设备执行的方法的流程图。
如图3所示,在步骤S301,用户设备接收同步信号/物理广播信道块SSB信号,并获得type0-PDCCH CSS相关参数;
在步骤S302,用户设备确定时间参数;
在步骤S303,用户设备能够根据RAR消息中的上行授权所指示的时隙位置以及时间参数确定PUSCH的传输资源。
下述的实施例对相关的过程进行了详细描述。
NR网络中,用户设备期望数据传输过程中调度或处理数据的时间间隔不小于特定的值。这些过程中,可以通过放宽用户设备处理业务的时间限制,使得用户设备有更多的时间处理数据,以减小用户设备的复杂度。例如,网络中定义N1用于确定用户设备接收PDCCH所调度的PDSCH的最后一个符号到相关的HARQ-ACK的最小间隔的参数,定义N2用于确定用户设备接收PDCCH所调度的PUSCH的与相关PDCCH的最后一个符号的最小间隔的参数。用户设备在进行相关的业务时,其时序需要满足根据这些参数所确定的最小间隔。例如,网络发送随机接入响应RAR消息用于响应用户设备发送的随机接入请求。RAR消息中包含上行调度信息,用于指示用户设备通过所调度的上行资源进行Msg3的发送。这时,所调度的上行PUSCH资源与发送RAR消息的PDSCH之间需要满足最小间隔。在NR系统中,PDSCH的最后一个符号与PUSCH的第一个符号之间的最小间隔为NT1+NT2+0.5毫秒,其中NT1为由N1个符号所确定的时间,NT2为由N2个符号所确定的时间。同时RAR消息中的包含的上行调度信息中,包含了一个定时信息K2,用于指示PUSCH资源使用的时域位置。例如,用户设备根据指示确定应当在时隙n+K2+Δ上发送PUSCH,其中n为RAR消息所在PDSCH所在的最后一个时隙的时隙号。K2为根据授权信息中的时域资源分配信息从预定表格或高层配置的参数列表所确定的时隙数量,Δ为根据PUSCH子载波SCS参数所确定的预定义值。一个具体的示例如表9,10,11所示。用户设备可根据DCI信息中的时域资源分配信息确定行序号,并根据行序号和使用的SCS参数在表格中的对应数值获得PUSCH调度所使用的K2和Δ对应的符号数。
表9:默认的PUSCH时域资源分配表A
表10:j的定义值
表11:Δ的定义值
用户设备可通过放宽处理时间来获得较低的复杂度和其他好处。例如用户设备将N1、N2的时间扩展为其他类型用户设备使用值的两倍。这样,用户设备在接收PDSCH或发送PUSCH时,可允许使用较低复杂度的设备,并利用更多的处理时间来实现相关的业务功能。当这种用户设备与不使用时间扩展的用户设备在同一个网络中,可能会带来一些问题。例如,网络在发送RAR授权时,所使用的调度偏移值可能不满足这种用户设备在进行处理时间放宽后的要求,导致调度不能成功,影响系统的可用性。又例如,用户设备使用放宽后的时间为原先的两倍,这 时用户设备确定的相关PDSCH和PUSCH的最小时间间隔也将扩大。这时根据某些调度参数得到的时间值就可能小于该最小时间间隔。具体的实例,在SCS为15kHz的带宽上进行数据传输时,用户设备确定的N1为28符号,N2为20个符号,都为其他类型用户设备使用值的两倍。上下行数据信道使用的SCS都为15kHz,这时μPUSCH对应值0。如果,用户设备接收到的上行授权中的时域资源分配信息指示的数值为1,用户设备根据表9中的第二行确定相关的调度时序,可以确定PUSCH应当在时隙n+K2+Δ上发送PUSCH,这里K2为1个时隙也就是14个符号对应的时间,Δ为2个时隙,也就是28个符号对应的时间,这时K2+Δ所指示的时间间隔为42个符号对应的时间,小于根据时间参数NT1+NT2+0.5毫秒所确定的最小间隔值,即48符号+0.5毫秒所对应的时间。这时就需要用户设备和网络的行为需要进行适当的调整,使得业务能够正常进行。
可选的,用户设备不期望实际发送的PUSCH与用于传输RAR消息的PDSCH间的间隔小于用户设备所确定的最小处理间隔,用户设备根据RAR消息中的上行授权或TC-RNTI加扰CRC的DCI格式0_1所指示的时隙位置以及时间参数确定PUSCH的传输资源。
可选的,当用户设备接收到的RAR消息中上行授权所调度的PUSCH第一个符号与用于传输RAR消息的PDSCH最后一个符号间的间隔小于用户设备所确定的最小处理间隔时,用户设备在相应的授权中时域资源分配参数指示的时隙后,并满足最小时间间隔的第一个可用时隙上发送PUSCH。
可选的,可用时隙即为根据时域资源分配信息确定的符号在该时隙上由高层信息指示为上行符号。具体的实例,例如,终端根据上行授权信息中的时域资源分配信息确定的K2+Δ为42个符号,或者3个时隙,终端在传输授权信息的PDSCH时隙号n后时隙上确定授权指示的时隙号为n+3。如果终端设备要求的时间间隔最小为NT1+NT2+0.5约为4个时隙,那么终端确定n+4个时隙后的第一个可用时隙n+5上的符号为上行,终端使用这些符号用于本次上行授权所调度的PUSCH传输。
可选的,可用时隙即为根据时域资源分配信息确定的符号在该时隙上有被由高层信息指示为下行符号或者为实际发送的SSB符号占用。
可选的,当用户设备接收到的RAR消息中上行授权调度的PUSCH第一个符号与用于传输RAR消息的PDSCH最后一个符号间的间隔小于用户设备所确定的最小时间间隔时,用户设备在相应的授权或DCI中时域资源分配参数指示的时隙后,在与该时隙存在预定义的偏移的第一个可用时隙上发送PUSCH。
可选的,当网络中没有为用户设备配置特定的随机接入资源时,当用户设备接收到的RAR消息中上行授权调度的PUSCH第一个符号与用于传输RAR消息的PDSCH最后一个符号间的间隔小于用户设备所确定的最小处理间隔时,用户设备在相应的授权资源后,并满足最小时间间隔的第一个可用时隙上发送PUSCH。
可选的,当网络中没有为用户设备配置特定的随机接入资源时,当用户设备接收到的RAR消息中上行授权调度的PUSCH第一个符号与用于传输RAR消息的PDSCH最后一个符号间的间隔小于用户设备所确定的最小处理间隔时,用户设备在相应的根据RAR确定的授权资源位置后,在与该位置存在预定义的偏移的可用时隙上发送PUSCH。
可选的,当用户设备接收到的RAR消息中上行授权调度的PUSCH第一个符号与用于传输RAR消息的PDSCH最后一个符号间的间隔小于用户设备所确定的最小处理间隔时,用户设备发送MAC消息,MAC消息中至少包含用户设备的类型指示和TC-RNTI。当用户设备发送了该MAC消息后,监听使用TC-RNTI加扰CRC的PDCCH,获得网络发送的新的上行授权值,并在新的调度资源上进行msg3的发送。
可选的,当使用TC-RNTI加扰CRC的DCI调度PUSCH传输时,承载DCI的PDCCH与PUSCH的时隙间隔为K2,这时有可能所调度使用的K2小于终端需要的时间参数N2,这时也可以通过上面类似的方法在DCI的时域资源分配指示信息所指示时隙后的可用时隙上确定实际的PUSCH传输资源。
下面,利用图4来说明作为一种变形例的可执行本发明上面所详细 描述的用户设备执行的方法的用户设备。
图4是表示本发明所涉及的用户设备UE的框图。
如图4所示,该用户设备UE40包括处理器401和存储器402。处理器401例如可以包括微处理器、微控制器、嵌入式处理器等。存储器402例如可以包括易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器等。存储器402上存储有程序指令。该指令在由处理器401运行时,可以执行本发明详细描述的由用户设备执行的上述方法。
上文已经结合优选实施例对本发明的方法和涉及的设备进行了描述。本领域技术人员可以理解,上面示出的方法仅是示例性的,而且以上说明的各实施例在不发生矛盾的情况下能够相互组合。本发明的方法并不局限于上面示出的步骤和顺序。上面示出的网络节点和用户设备可以包括更多的模块,例如还可以包括可以开发的或者将来开发的可用于基站、MME、或UE的模块等等。上文中示出的各种标识仅是示例性的而不是限制性的,本发明并不局限于作为这些标识的示例的具体信元。本领域技术人员根据所示实施例的教导可以进行许多变化和修改。
应该理解,本发明的上述实施例可以通过软件、硬件或者软件和硬件两者的结合来实现。例如,上述实施例中的基站和用户设备内部的各种组件可以通过多种器件来实现,这些器件包括但不限于:模拟电路器件、数字电路器件、数字信号处理(DSP)电路、可编程处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程逻辑器件(CPLD),等等。
在本申请中,“基站”可以指具有较大发射功率和较广覆盖面积的移动通信数据和控制交换中心,包括资源分配调度、数据接收发送等功能。“用户设备”可以指用户移动终端,例如包括移动电话、笔记本等可以与基站或者微基站进行无线通信的终端设备。
此外,这里所公开的本发明的实施例可以在计算机程序产品上实现。更具体地,该计算机程序产品是如下的一种产品:具有计算机可读介质, 计算机可读介质上编码有计算机程序逻辑,当在计算设备上执行时,该计算机程序逻辑提供相关的操作以实现本发明的上述技术方案。当在计算系统的至少一个处理器上执行时,计算机程序逻辑使得处理器执行本发明实施例所述的操作(方法)。本发明的这种设置典型地提供为设置或编码在例如光介质(例如CD-ROM)、软盘或硬盘等的计算机可读介质上的软件、代码和/或其他数据结构、或者诸如一个或多个ROM或RAM或PROM芯片上的固件或微代码的其他介质、或一个或多个模块中的可下载的软件图像、共享数据库等。软件或固件或这种配置可安装在计算设备上,以使得计算设备中的一个或多个处理器执行本发明实施例所描述的技术方案。
此外,上述每个实施例中所使用的基站设备和用户设备的每个功能模块或各个特征可以由电路实现或执行,所述电路通常为一个或多个集成电路。设计用于执行本说明书中所描述的各个功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)或通用集成电路、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立的门或晶体管逻辑、或分立的硬件组件、或以上器件的任意组合。通用处理器可以是微处理器,或者所述处理器可以是现有的处理器、控制器、微控制器或状态机。上述通用处理器或每个电路可以由数字电路配置,或者可以由逻辑电路配置。此外,当由于半导体技术的进步,出现了能够替代目前的集成电路的先进技术时,本发明也可以使用利用该先进技术得到的集成电路。
尽管以上已经结合本发明的优选实施例示出了本发明,但是本领域的技术人员将会理解,在不脱离本发明的精神和范围的情况下,可以对本发明进行各种修改、替换和改变。因此,本发明不应由上述实施例来限定,而应由所附权利要求及其等价物来限定。

Claims (10)

  1. 一种由用户设备执行的方法,
    用户设备根据指示信息确定网络是否支持使用较小数据传输带宽的用户设备的接入和/或数据传输使用的参数,
    其中,所述使用较小数据传输带宽为用于下行共享信道PDSCH或上行共享信道PUSCH的带宽RB数不大于预定的值。
  2. 根据权利要求1所述的方法,其特征在于,
    所述用户设备确定数据传输使用的参数包括:
    所述指示信息为模式1时,所述用户设备确定使用SI-RNTI或P-RNTI或TC-RNTI或RA-RNTI加扰CRC的DCI所调度的PDSCH资源使用的带宽的RB数不超过由数据信道所使用的SCS确定的值,并且所述用户设备期望所调度的PDSCH使用非交织模式进行VRB与PRB的映射,
    所述指示信息为模式2时,所述用户设备确定使用SI-RNTI或P-RNTI或TC-RNTI或RA-RNTI加扰CRC的DCI所调度的PDSCH资源使用的带宽的RB数不超过由数据信道所使用的SCS确定的值。
  3. 根据权利要求2所述的方法,其特征在于,
    所述用户设备确定数据传输使用的参数还包括:
    所述指示信息为模式1时,所述用户设备确定使用TC-RNTI加扰CRC的DCI或由RAR消息中的上行授权所调度的PUSCH资源使用的带宽的RB数不超过由数据信道所使用的SCS确定的值,并且所述用户设备期望所调度的PUSCH不使用跳频,
    所述指示信息为模式2时,所述用户设备确定使用TC-RNTI加扰CRC的DCI或由RAR消息中的上行授权所调度的PUSCH资源使用的带宽的RB数不超过由数据信道所使用的SCS确定的值。
  4. 根据权利要求1所述的方法,其特征在于,
    所述指示信息为SI-RNTI加扰CRC的DCI格式1_0中的比特指示的信息。
  5. 根据权利要求1所述的方法,其特征在于,
    所述用户设备根据带宽参数或所述指示信息来确定用户设备使用的时间参数。
  6. 根据权利要求4所述的方法,其特征在于,
    所述用户设备仅在DCI中的系统信息指示为0时确定所述指示信息。
  7. 一种由用户设备执行的方法,
    用户设备能够根据RAR消息中的上行授权所指示的时隙位置以及时间参数确定PUSCH的传输资源。
  8. 根据权利要求7所述的方法,其特征在于,
    当所述用户设备接收到的RAR消息中上行授权所调度的PUSCH第一个符号与用于传输RAR消息的PDSCH最后一个符号间的间隔小于所述用户设备所确定的最小处理间隔时,
    所述用户设备在相应的授权或DCI中时域资源分配参数指示的时隙后,并满足最小时间间隔的第一个可用时隙上发送PUSCH,或者
    所述用户设备在相应的授权或DCI中时域资源分配参数指示的时隙后,在与该时隙存在预定义的偏移的第一个可用时隙上发送PUSCH,或者
    所述用户设备发送MAC消息,MAC消息中至少包含用户设备的类型指示和TC-RNTI,当所述用户设备发送了该MAC消息后,监听使用TC-RNTI加扰CRC的PDCCH,获得网络发送的新的上行授权值,并在新的调度资源上进行msg3的发送。
  9. 根据权利要求7所述的方法,其特征在于,
    当网络中没有为所述用户设备配置特定的随机接入资源时,当所述用户设备接收到的RAR消息中上行授权所调度的PUSCH第一个符号与用于传输RAR消息的PDSCH最后一个符号间的间隔小于所述用户设备所确定的最小处理间隔时,所述用户设备在相应的授权资源后,并满足最小时间间隔的第一个可用时隙上发送PUSCH,
    当网络中没有为所述用户设备配置特定的随机接入资源时,当所述用户设备接收到的RAR消息中上行授权所调度的PUSCH第一个符号与用于传输RAR消息的PDSCH最后一个符号间的间隔小于所述用户设备所确定的最小处理间隔时,所述用户设备在相应的根据RAR消息确定的授权资源位置后,在与该位置存在预定义的偏移的可用时隙上发送 PUSCH。
  10. 一种用户设备,包括:
    处理器;以及
    存储器,存储有指令,
    其中,所述指令在由所述处理器运行时执行根据权利要求1至9中的任一项所述的方法。
PCT/CN2023/101398 2022-06-24 2023-06-20 由用户设备执行的方法以及用户设备 WO2023246778A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210732728.8 2022-06-24
CN202210732728.8A CN117336865A (zh) 2022-06-24 2022-06-24 由用户设备执行的方法以及用户设备

Publications (1)

Publication Number Publication Date
WO2023246778A1 true WO2023246778A1 (zh) 2023-12-28

Family

ID=89276008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101398 WO2023246778A1 (zh) 2022-06-24 2023-06-20 由用户设备执行的方法以及用户设备

Country Status (2)

Country Link
CN (1) CN117336865A (zh)
WO (1) WO2023246778A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111869268A (zh) * 2020-06-04 2020-10-30 北京小米移动软件有限公司 信息配置方法、装置、设备及可读存储介质
WO2021161485A1 (ja) * 2020-02-13 2021-08-19 株式会社Nttドコモ 端末及び基地局
US20210385854A1 (en) * 2019-03-26 2021-12-09 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Random access method, terminal device and network device
CN114258133A (zh) * 2020-09-22 2022-03-29 夏普株式会社 由用户设备执行的方法以及用户设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210385854A1 (en) * 2019-03-26 2021-12-09 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Random access method, terminal device and network device
WO2021161485A1 (ja) * 2020-02-13 2021-08-19 株式会社Nttドコモ 端末及び基地局
CN111869268A (zh) * 2020-06-04 2020-10-30 北京小米移动软件有限公司 信息配置方法、装置、设备及可读存储介质
CN114258133A (zh) * 2020-09-22 2022-03-29 夏普株式会社 由用户设备执行的方法以及用户设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Potential UE complexity reduction features for RedCap", 3GPP TSG-RAN WG1 MEETING #103-E, R1-2007529, 17 October 2020 (2020-10-17), XP051939779 *
ERICSSON: "Potential UE complexity reduction features for RedCap", 3GPP TSG-RAN WG1 MEETING #103-E, R1-2008837, 21 October 2020 (2020-10-21), XP051940912 *
MODERATOR (ERICSSON): "FL summary #1 on reduced maximum UE bandwidth for RedCap", 3GPP TSG-RAN WG1 MEETING #104BIS-E, TDOC R1-2103823, 12 April 2021 (2021-04-12), XP051995157 *

Also Published As

Publication number Publication date
CN117336865A (zh) 2024-01-02

Similar Documents

Publication Publication Date Title
US20200252830A1 (en) Radio station, radio terminal apparatus, and method for these
AU2017391807B2 (en) Transmission of control information
JP6943946B2 (ja) 方法、スケジューラおよびユーザ端末
JP6779279B2 (ja) 部分サブフレームにおける(e)pdcchの改良されたブラインド復号
EP3267747B1 (en) Reduced latency from the transmission of a scheduling request to the completion of ul data transmission
WO2020026988A1 (ja) 基地局装置、端末装置、および、通信方法
TWI740855B (zh) 多中繼通訊系統中的傳輸量排程
JP2021534643A (ja) 無線通信システムの物理チャネル及び信号送受信方法及びそれを利用する装置
WO2019187989A1 (ja) 端末装置、基地局装置、および、通信方法
WO2022028413A1 (zh) 由用户设备执行的方法以及用户设备
KR20170094934A (ko) 이동통신 시스템에서 단말의 제어 정보 수신 방법 및 장치
EP4021128A1 (en) Cross slot scheduling method and device in wireless communication system
EP3811699B1 (en) User equipments, base stations and methods for time-domain resource allocation
EP4050962A1 (en) Method for transmitting/receiving channel by using guard band in one carrier in wireless communication system, and device therefor
WO2021066154A1 (ja) 端末装置、基地局装置、および、通信方法
TW202329742A (zh) 使用者設備及用於使用者設備之方法
KR20180108342A (ko) 무선 통신시스템의 제어채널의 전송 및 수신방법, 장치 및 시스템
EP3886507A1 (en) Method and apparatus for reducing terminal power consumption in wireless communication system
JP2022025801A (ja) 端末装置、基地局装置、および、通信方法
JP2022011324A (ja) 端末装置、基地局装置、および、通信方法
WO2020059419A1 (ja) 端末装置、基地局装置、および、通信方法
US20240251334A1 (en) Terminal apparatus, base station apparatus, and communication method
WO2022194243A1 (zh) 由用户设备执行的方法以及用户设备
WO2023246778A1 (zh) 由用户设备执行的方法以及用户设备
WO2024012399A1 (zh) 由用户设备执行的方法以及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826425

Country of ref document: EP

Kind code of ref document: A1