WO2019101201A1 - 随机接入方法、用户设备和存储介质 - Google Patents

随机接入方法、用户设备和存储介质 Download PDF

Info

Publication number
WO2019101201A1
WO2019101201A1 PCT/CN2018/117521 CN2018117521W WO2019101201A1 WO 2019101201 A1 WO2019101201 A1 WO 2019101201A1 CN 2018117521 W CN2018117521 W CN 2018117521W WO 2019101201 A1 WO2019101201 A1 WO 2019101201A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
value
preamble code
preamble
prach
Prior art date
Application number
PCT/CN2018/117521
Other languages
English (en)
French (fr)
Inventor
杨玲
赵亚军
李新彩
徐汉青
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP18881856.1A priority Critical patent/EP3716719A4/en
Priority to US16/766,806 priority patent/US11310840B2/en
Publication of WO2019101201A1 publication Critical patent/WO2019101201A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • H04W74/0875Non-scheduled access, e.g. ALOHA using a dedicated channel for access with assigned priorities based access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/085Random access procedures, e.g. with 4-step access with collision treatment collision avoidance

Definitions

  • the present invention relates to the field of communications, and in particular, to a random access method, a user equipment, and a storage medium.
  • one cell is configured to configure two uplink carriers, wherein one carrier is an NR non-supplemental uplink (Non-SUL) carrier, and the other carrier is a supplementary uplink.
  • SUL Serving Uplink carrier
  • RA-RNTI Random Access-Radio Network Temporary Identity
  • the mode is the same as that in the traditional LTE (Long Term Evolution), and the base station cannot identify which UE is transmitting the Preamble code, because the RA-RNTI corresponding to the user equipment (UE, User Equipment) is the same.
  • the adopted RA-RNTI is the same, so that the UE mistakenly believes that the Preamble code is successfully transmitted, and the Msg3 message is sent, and finally the physical random access channel (PRACH, Physical Random Access Channel) The case of access failure.
  • PRACH Physical Random Access Channel
  • BWP Bandwidth Partial
  • BWP Bandwidth Partial
  • the embodiment of the invention provides a random access method, a user equipment and a storage medium.
  • a random access method including: the transmission device performs random access on one of the L uplink carriers configured in the cell; wherein L is greater than or equal to 1.
  • the uplink carrier includes at least one of the following: a Non-SUL carrier, a SUL carrier.
  • a user equipment including: a communication module, configured to perform random access on one of L uplink carriers configured in a cell; wherein L is greater than or equal to A positive integer of 1, the uplink carrier includes at least one of the following: a Non-SUL carrier, a SUL carrier.
  • a storage medium storing a computer program, wherein the computer program is executed by a processor to perform the method described above in the embodiments of the present invention.
  • a processor for running a computer program, wherein the computer program is operative to perform the method described above in the embodiments of the present invention.
  • a user equipment comprising: a processor and a memory for storing a computer program executable on the processor, wherein the processor is configured to run the computer program The method described in the embodiments of the present invention is executed.
  • the technical problem that the access failure is easily caused when the multi-carrier cell is accessed in the related art is solved, and the access success rate is improved, and a A scheme for performing random access on a SUL carrier.
  • FIG. 1 is a flow chart of a random access method according to an embodiment of the present invention.
  • FIG. 2 is a structural block diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a BWP unified label on a Non-SUL carrier and a SUL carrier according to the embodiment
  • FIG. 4 is a schematic diagram of an active BWP on a Non-SUL carrier and a SUL carrier according to the embodiment
  • FIG. 5 is a schematic diagram of PRACH frequency domain resource marking on a SUL carrier and a Non-SUL carrier according to an embodiment of the present invention.
  • the network architecture of the embodiment of the present application includes: a UE (for example, a terminal) and a base station, where the UE and the base station can perform information interaction through the network.
  • a UE for example, a terminal
  • a base station where the UE and the base station can perform information interaction through the network.
  • FIG. 1 is a flowchart of a random access method according to an embodiment of the present invention. As shown in FIG. 1, the process includes the following steps:
  • Step S102 The transmission device performs random access on one of the L uplink carriers configured in the cell, where L is a positive integer greater than or equal to 1, and the uplink carrier includes at least one of the following: a Non-SUL carrier. SUL carrier.
  • Rate provides a scheme for random access on a SUL carrier.
  • the execution entity transmission device of the foregoing step may be a terminal or the like, but is not limited thereto.
  • the scheme of this embodiment is applicable to all signals transmitted on the uplink carrier or the BWP, in addition to the PRACH access procedure.
  • the uplink carrier used for performing the PRACH access process is determined by using at least one of the following manners:
  • the transmitting device determines an uplink carrier for performing a PRACH access procedure based on the measured Reference Signal Receiving Power (RSRP) value and/or the first RSRP threshold value; wherein the RSRP value and/or The first RSRP threshold is obtained by measuring a specific measurement signal transmitted on the downlink resource; optionally, the specific measurement signal includes at least one of the following: a synchronization information block (SSB), and a channel state information reference signal (CSI- RS, Channel State Information-Reference Signal, Primary Synchronization Signal (PSS), Secondary Synchronization Signal (SSS), Physical Broadcast Channel (PBCH, Physical Broadcast Channel);
  • SSB synchronization information block
  • CSI- RS Channel State Information-Reference Signal
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the transmitting device determines, according to the carrier information indicated by the signaling, an uplink carrier used for performing a PRACH access procedure
  • the transmitting device determines an uplink carrier for performing the PRACH access procedure based on default or predefined information.
  • the determining, according to the measured RSRP value and/or the first RSRP threshold, an uplink carrier used for performing a PRACH access procedure including at least one of the following:
  • the Non-SUL carrier or the SUL carrier is selected.
  • This embodiment includes two combinations. When the measured RSRP value is less than or equal to the first RSRP threshold, the SUL carrier is selected, otherwise the Non-SUL carrier is selected; when the measured RSRP value is less than or equal to the first RSRP threshold, the current selection is performed. Non-SUL carrier, otherwise select SUL carrier.
  • the first RSRP threshold is determined by determining at least one of the following: determining a first RSRP threshold based on a second threshold and an offset of the cell selection; based on predefined, notified, or indicated information Determine or obtain the first RSRP threshold.
  • the notification or the indication information includes at least one of the following: a radio resource control (RRC) signaling, a downlink control information (DCI) signaling, and a physical layer media access control.
  • RRC radio resource control
  • DCI downlink control information
  • MAC Media Access Control
  • RMSI Remaining Minimum System Information
  • SI System Information
  • OSI system messages
  • the second threshold and the offset based on the cell selection determine a first RSRP threshold, including one of the following: a second threshold based on the cell selection plus a bias The shift determines a first RSRP threshold; the first RSRP threshold is determined based on a second threshold of the cell selection minus an offset.
  • the transmitting device determines or acquires at least one of the following parameters: a first RSRP threshold, an offset, a second threshold, and parameters required for cell selection, by at least One way:
  • the first set of parameters are shared for cell selection and carrier selection in the cell, wherein the first set of parameters configures an independent offset parameter when performing carrier selection in the cell.
  • At least one of the first set of parameters, and/or the second set of parameters is obtained by one of the following at least one of the following modes: high layer RRC signaling, MAC layer signaling, physical layer DCI signaling, Preset configuration, RMSI, OSI, SI.
  • the transmitting device performs random access on the uplink carrier, including: when the number of failures of transmitting a preamble code on the uplink carrier reaches a certain number of transmissions, the transmission device determines the uplink according to a specific rule.
  • the PRACH access or the Preamble code is transmitted on the carrier.
  • the method further includes: when the number of failures of transmitting the Preamble code on the uplink carrier reaches a specific number of transmissions, the Preamble counter processes according to at least one of the following methods: retaining the value of the current Preamble counter; and setting the Preamble counter Is the initial value.
  • the method further comprises: before the transmitting device performs PRACH access or transmission of the Preamble code on the uplink carrier determined according to the specific rule, the Preamble counter processes according to at least one of the following methods: the reserved Preamble counter The value is used as the initial value of the Preamble counter on the switched carrier; the initial value of the Preamble counter on the switched carrier is the default initial value; the initial value of the Preamble counter on the switched carrier is the value of the reserved Preamble counter minus or plus The resulting value of the first backoff value (Back Off).
  • the method further includes: when the number of failures of transmitting the Preamble code on the configured or selected uplink carrier reaches a specific number of transmissions, the power of transmitting the Preamble code is processed according to at least one of the following methods: retaining the current sending Preamble The power of the code; the transmit power of the Preamble code is set to an initial value;
  • the method further includes: before the transmitting device performs PRACH access or transmission of the Preamble code on the uplink carrier determined according to the specific rule, the power of sending the Preamble code is processed according to at least one of the following methods: The transmit power of the Preamble code is used as the initial transmit power of the Preamble code transmitted on the carrier after the handover; the initial transmit power of the transmitted Preamble code on the carrier after the handover is the default initial value; and the power of the Preamble code transmitted on the carrier after the handover is the reserved transmission. The power of the Preamble code is added or subtracted from the second backoff value.
  • the method further includes: when the number of failures of transmitting the Preamble code on the uplink carrier reaches a specific number of transmissions, the power adjustment step on the carrier after the handover is processed according to at least one of the following methods: power adjustment step size The value configured on the current carrier; the power adjustment step is a power adjustment step on the carrier before switching plus or minus an adjustment amount; the power adjustment step is a value configured on the current carrier plus or minus an adjustment amount;
  • the power adjustment step size is the power adjustment step size on the carrier before switching.
  • the method further includes: when the number of failures of transmitting the Preamble code on the uplink carrier reaches a specific number of transmissions, the number of Preamble code transmissions on the switched carrier is at least one of the following: the number of Preamble code transmissions is currently The value configured on the carrier; the number of Preamble code transmissions is a specific number of transmissions; the number of Preamble code transmissions is the maximum number of transmissions of the Preamble code; the number of Preamble code transmissions is the maximum number of transmissions of the Preamble code and the number of preamble code retransmissions on the carrier before the handover. Reduced value;
  • the number of Preamble code transmissions on the carrier before the handover is less than the maximum number of transmissions of the Preamble code
  • the number of Preamble code transmissions is one of the following: the number of Preamble code transmissions is the number of transmissions of the Preamble code transmission on the carrier before the handover plus or The third back-off value is subtracted; the Preamble code transmission number is the value configured on the current carrier plus or minus the third back-off value; the Preamble code transmission times is the maximum transmission number of the Preamble code plus or minus the third back-off value.
  • the specific rule includes at least one of: determining an uplink carrier for performing a PRACH access procedure according to the measured RSRP value and/or the first RSRP threshold value on the downlink resource; and switching to the cell On another uplink carrier configured; switch to an uplink carrier configured to transmit a physical uplink control channel (PUCCH, Physical Uplink Control Channel) and/or a physical uplink shared channel (PUSCH); switch to default or priority
  • PUCCH Physical Uplink Control Channel
  • PUSCH physical uplink shared channel
  • the specific number of transmissions includes one of the following: the specific number of transmissions is greater than the maximum number of transmissions of the Preamble code, and the specific number of transmissions is equal to the value of the maximum number of transmissions of the Preamble code, and the specific number of transmissions is less than the maximum number of transmissions of the Preamble code. Value.
  • the RA-RNTI is processed in at least one of the following manners: when different transmission devices send Preamble codes on the same PRACH resource on different uplink carriers, at least One of the processes: by carrying the carrier index in the RA-RNTI; by carrying the PRACH occasion index in the RA-RNTI; by fetching the PRACH frequency domain resources on different carriers in a unified numbering manner, the f_id used for calculating the RA-RNTI on different carriers is taken Value or range of values is different;
  • one or more partial bandwidths are configured on one carrier, it is processed by at least one of: by carrying a partial bandwidth index in the RA-RNTI; by carrying a carrier index in the RA-RNTI; by using the RA-RNTI
  • the value of the f_id used in calculating the RA-RNTI on different BWPs is different, and the value range of the f_id used in calculating the RA-RNTI on different BWPs is different.
  • the BWP When one or more BWPs are configured on each carrier, the BWP is uniformly numbered in different carriers and carries the carrier index in the RA-RNTI; - Carrying a partial bandwidth index in the RNTI; carrying the carrier index in the RA-RNTI; carrying the PRACH occasion index in the RA-RNTI; calculating the PRACH frequency domain resources on the BWP on different carriers, and calculating on different BWPs
  • the f_id used by the RA-RNTI has a different value or a range of values.
  • the SUL carrier is configured in the cell, at least one of the following is included:
  • At least one of the following communication parameters is configured:
  • Preamble code counter power adjustment step size, power of Preamble code transmission, Preamble code transmission number, Preamble code format, subcarrier spacing SCS, BWP, PRACH time domain resource, PRACH occasion, PRACH frequency domain resource starting point, PRACH frequency domain resource number , PRACH frequency domain Offset, first backoff value, second backoff value, and third backoff value;
  • a common parameter is configured or initialized, and the common parameter may be at least one of the following: a Preamble code counter, a power adjustment step size, a power for transmitting the Preamble code, a Preamble code transmission number, a Preamble code format, an SCS, BWP, PRACH time domain resource, PRACH occasion, PRACH frequency domain resource starting point, PRACH frequency domain resource number, PRACH frequency domain Offset, first backoff value, second backoff value, third backoff value, among them, public parameters Unconfigured parameters are configured independently.
  • the communication parameters are configured by at least one of the following: high layer RRC signaling, SI, RMSI, OSI, physical layer DCI signaling, predefined manner, MAC layer signaling.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • a user equipment is also provided in this embodiment, and the device is used to implement the foregoing embodiments and preferred embodiments, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • the user equipment includes: a communication module 20 configured to perform random connection on one of the L uplink carriers configured in the cell. And wherein L is a positive integer greater than or equal to 1, and the uplink carrier comprises at least one of: a Non-SUL carrier, a SUL carrier.
  • the user equipment further includes a processing module, where at least one of the L uplink carriers configured to be configured by the cell has a SUL carrier, and at least one of the following manners is used to determine a PRACH access procedure for performing a physical random access channel.
  • Uplink carrier determining the uplink carrier used for the PRACH access procedure based on the measured reference signal received power RSRP value and/or the first RSRP threshold; the RSRP value and/or the first RSRP threshold Obtaining, according to the specific measurement signal transmitted on the downlink resource, determining, according to the carrier information indicated by the signaling, the uplink carrier used for performing the PRACH access procedure; determining, according to default or predefined information, the performing the PRACH The uplink carrier of the access procedure.
  • the processing module is configured to compare the measured RSRP value with a first RSRP threshold; and the measured RSRP value is less than or equal to the first RSRP threshold. And selecting a SUL carrier or a Non-SUL carrier; when the measured RSRP value is greater than or equal to the first RSRP threshold, selecting a Non-SUL carrier or a SUL carrier.
  • the processing module is configured to determine a first RSRP threshold by using at least one of the following manners: determining the first RSRP threshold based on a second threshold and an offset of the cell selection Determining or obtaining the first RSRP threshold based on pre-defined, notification or indication information.
  • the processing module is configured to determine the first RSRP threshold based on a second threshold and an offset of the cell selection, including one of: a second threshold based on cell selection An offset is added to determine the first RSRP threshold; and the first RSRP threshold is determined based on a second threshold of cell selection minus an offset.
  • the processing module is configured to determine or acquire at least one of the following parameters: a first RSRP threshold, an offset, a second threshold, and parameters required for cell selection, Passing at least one of the following methods: determining a second threshold of cell selection according to the first set of parameters, and determining, according to the second set of parameters, a first RSRP threshold for performing carrier selection in the cell, where, relative to the first set of parameters, the second The set of parameters includes an offset parameter; the first set of parameters are shared for performing cell selection and performing carrier selection in the cell, wherein the first set of parameters configures an independent offset parameter when performing carrier selection in the cell .
  • the processing module is configured to be at least one of the first set of parameters and/or the second set of parameters, and is obtained by one of the following at least one of the following methods: high-level RRC signaling, MAC layer signaling , physical layer DCI signaling, preset configuration, RMSI, OSI, SI.
  • the communication module 20 is configured to perform PRACH access or Preamble code transmission on an uplink carrier determined according to a specific rule when the number of failures of transmitting the preamble Preamble code on the uplink carrier reaches a certain number of transmissions.
  • the processing module is configured to: when the number of failures of transmitting the Preamble code on the configured or selected uplink carrier reaches a specific number of transmissions, the Preamble counter processes according to at least one of the following methods: retaining the value of the current Preamble counter ; Set the Preamble counter to its initial value.
  • the processing module is configured to: before the transmitting device performs PRACH access or Preamble code transmission on an uplink carrier determined according to a specific rule, the Preamble counter is processed according to at least one of the following methods: The Preamble counter value is used as the initial value of the Preamble counter on the switched carrier; the initial value of the Preamble counter on the switched carrier is the default initial value; the initial value of the Preamble counter on the switched carrier is the reserved Preamble counter value. Subtract or add the resulting value of the first backoff value.
  • the processing module is configured to: when the number of failures of transmitting the Preamble code on the configured or selected uplink carrier reaches a specific number of transmissions, the power of sending the Preamble is processed according to at least one of the following methods: retaining the current sending Preamble Power; set the transmit power of the Preamble code to the initial value.
  • the processing module is configured to: before the transmitting device performs PRACH access or Preamble code transmission on an uplink carrier determined according to a specific rule, the power of sending the Preamble code is processed according to at least one of the following methods: The transmission power of the reserved Preamble code is used as the initial transmission power of the preamble transmitted on the switched carrier; the initial transmission power of the transmitted Preamble code on the switched carrier is the default initial value; and the power of the Preamble code transmitted on the carrier after the handover is reserved. The power of the Preamble code is added plus or minus the second backoff value.
  • the processing module is configured to process the power adjustment step on the carrier after the handover according to at least one of the following methods: the power adjustment step is a value configured on the current carrier; and the power adjustment step is Adding or subtracting an adjustment amount for the power adjustment step on the pre-switching; the power adjustment step is a value configured on the current carrier plus or minus an adjustment amount; the power adjustment step is a carrier before handover The power adjustment step size.
  • the processing module is configured to: the number of Preamble code transmissions on the switched carrier is at least one of the following: the Preamble code transmission times are values configured on the current carrier; and the Preamble code transmission times are specific.
  • the number of Preamble code transmissions on the carrier before the handover is less than the maximum number of transmissions of the Preamble code, and the number of transmissions of the Preamble code is one of the following: the number of transmissions of the Preamble code is the transmission of the Preamble code transmission on the carrier before the handover.
  • the number of times the Preamble code is transmitted is the value configured on the current carrier plus or minus the third back-off value; the number of times the Preamble code is transmitted is the maximum number of transmissions of the Preamble code plus Or subtract the third back value.
  • the communication module 20 is configured to perform PRACH access or Preamble code transmission on an uplink carrier determined according to a specific rule, where the specific rule includes at least one of the following: according to the measurement on the downlink resource.
  • the RSRP value and/or the first RSRP threshold value determine the uplink carrier used for the PRACH access procedure; switch to another uplink carrier configured in the cell; switch to the configuration transmission physical uplink control channel PUCCH and / Or on the uplink carrier of the physical uplink shared channel PUSCH; switch to the default or priority uplink carrier that meets the preset requirement.
  • the processing module is configured to perform the PRACH access procedure on the uplink carrier.
  • the processing is performed by using at least one of the following methods: the different transmission devices are the same on different uplink carriers.
  • the process is performed by at least one of the following: by carrying the carrier index in the RA-RNTI; by carrying the PRACH occasion index in the RA-RNTI; by uniformly numbering the PRACH frequency domain resources on different carriers, The value of the f_id used to calculate the RA-RNTI on different carriers is different.
  • one or more partial bandwidth BWPs are configured on one carrier, it is processed in at least one of the following ways: by carrying a partial bandwidth index in the RA-RNTI.
  • the BWP on the wave is uniformly numbered and carries the carrier index in the RA-RNTI; carries a partial bandwidth index in the RA-RNTI; carries the carrier index in the RA-RNTI; and carries the PRACH occasion index in the RA-RNTI
  • the value of the f_id used in calculating the RA-RNTI on different BWPs is different by using the numbering of
  • the processing module is configured to configure at least one of the following communication parameters for the Non-SUL carrier and the SUL carrier:
  • Preamble code counter power adjustment step size, power of Preamble code transmission, Preamble code transmission number, Preamble code format, subcarrier spacing SCS, BWP, PRACH time domain resource, PRACH occasion, PRACH frequency domain resource starting point, PRACH frequency domain resource number , PRACH frequency domain offset, first backoff value, second backoff value, and third backoff value;
  • a common parameter is configured or initialized, and the common parameter may be at least one of: a Preamble code counter, a power adjustment step size, a power of transmitting a Preamble code, a Preamble code transmission number, a Preamble code format, SCS, BWP, PRACH time domain resource, PRACH occasion, PRACH frequency domain resource start point, PRACH frequency domain resource number, PRACH frequency domain offset, first backoff value, second backoff value, and third backoff value, wherein The unconfigured parameters in the common parameters are independently configured.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • the user equipment provided by the foregoing embodiment performs random access, only the division of each of the foregoing program modules is illustrated. In actual applications, the foregoing processing may be performed by different program modules according to requirements. The internal structure of the user equipment is divided into different program modules to complete all or part of the processing described above.
  • the user equipment provided by the foregoing embodiment is in the same concept as the embodiment of the random access method, and the specific implementation process is described in the method embodiment, and details are not described herein again.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the RA-RNTI is a function of the time domain resource index and the frequency domain resource index.
  • the two carriers one is a Non-SUL carrier and the other is a SUL carrier. If one UE selects one Preamble to transmit on the PRACH resource on the Non-SUL carrier, at the same time, the other UE transmits the Preamble code on the same PRACH resource on the SUL carrier. Based on this, the RA-RNTI values determined according to the time domain resource index of the PRACH resource and the frequency domain resource index are the same on the two carriers. This causes two UEs to obtain the same uplink grant (UL grant) in receiving a random access response (RAR), thereby transmitting Msg3 messages on the same uplink resource, which will cause a collision, thereby making PRACH access failed.
  • UL grant uplink grant
  • RAR random access response
  • RA-RNTI 1+t_id+10*f_id.
  • t_id in the RA-RNTI formula may represent one of the following indexes: subframe, slot, symbol, symbol unit, PRACH occasion, PRACH slot.
  • the symbol unit is composed of N symbols.
  • the maximum value of the range that f_id can represent can be a positive integer greater than 6.
  • the maximum value of the specific f_id depends on the number of PRACH frequency domain resources.
  • the number of the frequency domain PRACH resources may be determined by at least one of the following: predefined, high layer RRC signaling configuration, MAC layer configuration, physical layer DCI signaling.
  • W 10 in the RA-RNTI may be represented by W, and W may be a positive integer greater than or equal to 1, for example, W may be one of the following: 1, 2, 3, 4, 5, 6, 7, 8, 9 , 10,11,12,13,14,16,17,18,19,20, and so on.
  • Method 1 Introducing a carrier index in the formula for calculating the RA-RNTI.
  • the carrier index is 0, indicating a Non-SUL carrier.
  • the Carrier index is 1, indicating the SUL carrier.
  • the method described in this embodiment is also applicable to the case where there are multiple uplink carriers.
  • Method 2 Introduce a BWP identifier in the formula for calculating the RA-RNTI.
  • One or more BWPs may exist in one carrier. Wherein, the initialized and/or activated BWPs may be one or more.
  • Method 2-1 The BWP on a carrier is treated as a special BWP. Its particularity is relative to the BWP on another carrier.
  • FIG. 3 is a schematic diagram of a BWP unified label on a Non-SUL carrier and a SUL carrier in the embodiment. It is assumed that n BWPs are configured on the SUL carrier, and the BWP labels are sequentially labeled as BWP#1, BWP#2, BWP#3, ..., BWP#n, or, BWP#0, BWP#1, BWP#2. , BWP#3,...,BWP#n-1.
  • m BWPs are configured on the Non-SUL carrier, and the BWP labels are sequentially labeled as: BWP#P+1, BWP#P+2, BWP#P+3,..., BWP#P+m, where m, n is a positive integer greater than or equal to 1.
  • the relationship between m and n can be one of the following: greater than, less than, equal to. If the BWPs in the Non-SUL carrier and the SUL carrier are uniformly numbered, that is, the BWP in the SUL carrier is used as a special BWP. Among them, the BWP number on the SUL is dependent on the number of BWPs on the Non-SUL carrier.
  • the BWP on a given SUL carrier in Figure 3 begins with P+1, where P can be a positive integer greater than or equal to n.
  • the RA-RNTI obtained on the same PRACH resource on the SUL and Non-SUL carriers can be distinguished by the difference in BWP index.
  • Method 2-2 For each carrier, the BWPs on the carrier can be independently tagged or numbered. For this method, if the BWP index with the same label is activated or selected on different carriers, the problem described in the present embodiment cannot be solved by the BWP index.
  • FIG. 4 is a schematic diagram of an active BWP on a Non-SUL carrier and a SUL carrier in the present embodiment. It is assumed that n BWPs are configured on the Non-SUL carrier, and the BWP labels are sequentially labeled as BWP#1, BWP#2, BWP#3, ..., BWP#n, or, BWP#0, BWP#1. , BWP#2, BWP#3,...,BWP#n-1.
  • m BWPs are arranged on the SUL carrier, and the BWP labels are sequentially labeled as: BWP#1, BWP#2, BWP#3, ..., BWP#m, or, BWP#0, BWP#1, BWP#2, BWP#3,...,BWP#m-1.
  • m and n are positive integers greater than or equal to 1.
  • the relationship between m and n can be one of the following: greater than, less than, equal to.
  • a carrier index can also be introduced to solve the problem described in Method 2-2.
  • a BWP index, and/or a carrier index can also be introduced in the RA-RNTI.
  • RA-RNTI 1+t_id+W*f_id+BWP index
  • RA-RNTI 1+t_id+W*f_id+Carrier index
  • RA-RNTI 1+t_id+W*f_id+Carrier index+BWP index.
  • Method 4 Solving the problem described in the embodiment by using the value of the PR_frequency domain resource occasion index f_id on the Non-SUL carrier and the SUL carrier, or a value range.
  • the PRACH frequency domain resource on the SUL carrier can be regarded as a special PRACH frequency domain resource.
  • the special PRACH resource is relative to the PRACH frequency domain resource on the Non-SUL carrier.
  • N1 is greater than or equal to 6 positive integers.
  • n1 may be a positive integer greater than or equal to one.
  • FIG. 5 is a schematic diagram of PRACH frequency domain resource marking on a SUL carrier and a Non-SUL carrier according to the embodiment.
  • the value range of f_id is [0, 6).
  • the f_id value ranges from [6, 12), and W is 10.
  • the PRACH frequency domain resource selected by UE1 on the Non-SUL carrier is index#2.
  • At least one of the carrier index, the BWP index, the PRACH frequency domain resource number, and the PRACH frequency domain resource value range may be configured or obtained by using at least one of the following methods: high-level RRC signaling, SI, RMSI, OSI, physical layer DCI signaling, RAR message.
  • the method can be processed by at least one of the following:
  • RA-RNTI The same problem of RA-RNTI is solved by differently numbering the frequency of the PRACH frequency domain on different carriers, so that the value of the f_id used in calculating the RA-RNTI on different carriers is different.
  • RA-RNTI is solved by differently numbering the frequency of the PRACH frequency domain on different BWPs, so that the value of the f_id used in calculating the RA-RNTI on different BWPs is different.
  • the carrier can be processed in at least one of the following ways:
  • RA-RNTI The same problem of RA-RNTI is solved by introducing a carrier index method in the RA-RNTI formula by uniformly numbering the BWPs on different carriers.
  • RA-RNTI The same problem of RA-RNTI is solved by differently numbering the frequency of the PRACH frequency domain on the BWPs on different BWPs to calculate the value of the f_id used in the calculation of the RA-RNTI on different BWPs.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • This embodiment provides a processing method for PRACH access failure. Specifically, when the PRACH access fails on the current carrier, which carrier continues to transmit the Preamble code, or how to perform PRACH access. And, when the PRACH access fails on the current carrier, before the PRACH access procedure is performed on the reselected carrier, or after the PRACH fails on the current carrier, the Preamble counter, the power ramping step, How to set the power of the Preamble code and at least one of the Preamble transmission times, etc., and provide a related solution.
  • the UE performs a PRACH access procedure in one of two uplink carriers in the cell. Wherein one of the two carriers is a Non-SUL carrier and the other SUL carrier.
  • the carrier that continues to send the Preamble code or initiates the PRACH procedure may be selected according to one of the following manners:
  • Method 1 According to the RSRP value measured on the downlink (DL) resource on the NR Non-SUL carrier, it is determined that one of the two carriers is selected as the carrier that continues to transmit the Preamble code or initiates the PRACH procedure.
  • the measurement signal may be one of the following: SSB, CSI-RS, PSS, PBCH.
  • the UE compares with the specific first RSRP threshold based on the measured RSRP, thereby determining whether to select the Non-SUL carrier or the SUL carrier. If the measured RSRP value is less than or equal to the first RSRP threshold, the SUL carrier is selected. If the measured RSRP value is greater than or equal to the first RSRP threshold, the Non-SUL carrier is selected.
  • Method 2 It is assumed that the UE determines a new uplink carrier according to a default rule, and the carrier is used for PRACH access.
  • the default rule here is another carrier that is different from the current carrier. For example, if the currently selected carrier is a Non-SUL carrier, or a SUL carrier, if the PRACH access is performed on the currently selected carrier, or the Preamble code fails to be transmitted, the SUL carrier is directly switched, or the Non-SUL carrier is used. Perform PRACH access, or send Preamble code.
  • Method 3 Determine a carrier that continues to transmit the Preamble code according to the configured PUCCH, and/or the carrier transmitted by the PUSCH.
  • the Preamble counter When the access to the PRACH fails on the current carrier, before the PRACH access procedure is performed after the handover or on the new carrier, or after the access to the PRACH fails on the current carrier, the Preamble counter, the Power ramping step, the power of the Preamble code,
  • the processing of at least one parameter in the number of Preamble code transmissions may be in at least one of the following ways:
  • the Preamble counter When the number of Preamble code transmissions reaches the preset number of transmissions, or the maximum number of transmissions, the Preamble counter is not cleared, or is not set to the initial value, or the value of the current Preamble counter is retained, or the Preamble counter is initially set.
  • the value of the Preamble counter can be used as the initial value of the Preamble counter for Preamble code transmission on the new carrier.
  • the initial value of the Preamble counter for performing Preamble code transmission on the new carrier is subtracted from the Preamble counter value, or a first Back Off value is added. Normally, the Preamble counter is initialized to 1.
  • the Preamble code transmission power may be processed in one of the following ways: retaining the current transmitted Preamble code power; not setting the initial transmission power; setting the initial Transmit power.
  • the transmit power of the Preamble code may be used as the power for transmitting the Preamble code on the new carrier, or the power of the Preamble code on the new carrier may be added to the power of the Preamble code, or a second Back Off value may be subtracted.
  • the Power ramping step may be the same as, or different from, the Power ramping step on the carrier before the handover.
  • the Power ramping step on the new carrier is greater than or equal to, or less than or equal to the Power ramping step on the carrier before the handover.
  • the number of Preamble code transmissions may be one of the following: the maximum number of Preamble code transmissions, the number of specific transmissions, the number of transmissions on the carrier before switching, or , minus, a third Back Off value.
  • the number of Preamble code transmissions on the switched carrier may also be one of the following: the maximum number of Preamble code transmissions, and the number of specific transmissions.
  • At least one of the following parameters may be independently configured or initialized: Preamble counter, Power ramping step, power of transmitting Preamble code, number of Preamble code transmissions, Preamble format, SCS, BWP, PRACH The domain resource, the PRACH occassion, the PRACH frequency domain resource starting point, the PRACH frequency domain resource number, the PRACH frequency domain Offset, the first Back Off value, the second Back Off value, and the third Back Off value. or,
  • a common parameter may be configured or initialized, and the common parameter may be at least one of: a Preamble counter, a Power ramping step, a power to transmit a Preamble code, a Preamble code transmission number, and a Preamble format.
  • Parameters that are not configured in the public parameters can be configured independently.
  • the foregoing parameters may be configured in at least one of the following manners: high layer RRC signaling, SI, RMSI, OSI, physical layer DCI signaling, predefined mode, and MAC layer signaling.
  • the Preamble counter can consider one of the following ways:
  • Solution 1 The Preamble counter is not cleared, or is not set to the initial value, or the value of the current Preamble counter is reserved, or the Preamble counter is set to the initial value; the Preamble counter value can be used as a Preamble code transmission on the reselected carrier.
  • the initial value of the Preamble counter is subtracted from the Preamble counter value, or a first Back Off value is added.
  • the number of Preamble code transmissions can be considered in at least one of the following ways:
  • Option 1 The number of Preamble code transmissions is the maximum number of transmissions of the Preamble code.
  • Option 2 The number of Preamble code transmissions is less than or equal to the preset number of transmissions.
  • the UE when the number of times the UE transmits the Preamble code on the selected uplink carrier reaches the preset Preamble value, the UE performs carrier selection again, or switches to another carrier to continue the Preamble code transmission.
  • Option 1 The Power ramping step does not change, or the Power ramping step value specified on the network side. This marks the Power ramping step as A.
  • Method 2 A smaller or larger Power ramping step value. Or, the Power ramping step is added, or, minus a Back Off value.
  • the adjusted Power ramping step is marked as B here.
  • A is less than B, or A is less than or equal to B.
  • the switched carrier is determined based on the measured RSRP value. If the selected switched carrier is the pre-switching carrier based on the RSRP measurement, then:
  • the initial value of the Preamble counter is 1; the initial value of the Preamble counter is the value recorded by the Preamble counter when the Preamble code is last transmitted on the carrier before the handover; the initial value of the Preamble counter is the carrier before the handover.
  • the value recorded by the Preamble counter when the last time the Preamble code is sent is added, or subtracted, a first Back Off value.
  • the Preamble code transmission times are the maximum Preamble code transmission times; the preset Preamble code transmission times; the pre-carrier Preamble code transmission times plus or minus a second Back Off value. ; special value.
  • the preset Preamble code transmission times may be less than or equal to the maximum Preamble code transmission times.
  • the special value is the value obtained by subtracting the preset Preamble code transmission times from the maximum Preamble code transmission times.
  • Option 1 The Power ramping step does not change, or the Power ramping step value specified on the network side. This marks the Power ramping step as A.
  • Method 2 A smaller or larger Power ramping step value. Or, the Power ramping step is added, or, minus a Back Off value.
  • the adjusted Power ramping step is marked as B here.
  • A is less than B, or A is less than or equal to B.
  • the switched carrier is determined based on the measured RSRP value. If the selected switched carrier is not the pre-switching carrier or another carrier based on the RSRP measurement, at least one of the following may be considered:
  • Case 1 The Preamble counter is shared between the Non-SUL carrier and the SUL carrier.
  • the Preamble code transmission power on the switched carrier is the power of the last transmitted Preamble code on the carrier before the handover. Switch the Power ramping step on the carrier to the initially set value.
  • the current Preamble counter value is not cleared, or is reserved. And/or, the transmit power of the Preamble code is not set to the initial value, but the current value is retained.
  • the above values are used on the switched carrier.
  • the power of transmitting the Preamble code is a value between the initial transmit power and the transmit power of the Preamble code transmitted before the reselected carrier.
  • Case 3 On the reselected uplink carrier, the power of the Preamble code is transmitted by adding a power offset to the initial transmission power.
  • Case 4 Two uplink carriers before and after reselection share a Preamble counter, and/or the power of the Preamble code transmitted on the reselected uplink carrier is based on the power of the last transmitted Preamble code of the pre-selected carrier.
  • the Power ramping step used in the power boosting may be a Power ramping step value in the existing LTE, or the reselected uplink carrier.
  • the Power ramping step value used is greater than, or less than, the Power ramping step value in LTE.
  • the Power ramping step used in the power boosting may be a Power ramping step value in the existing LTE, or the reselected uplink carrier.
  • the Power ramping step value used is greater than, or less than, the Power ramping step value in LTE.
  • Case 6 Two uplink carriers before and after reselection share a Preamble counter, and/or the power of the Preamble code transmitted on the reselected uplink carrier is increased by a power offset value for the initial transmission power.
  • the Power ramping step used in the power boosting may be a Power ramping step value in the existing LTE, or the reselected uplink carrier.
  • the Power ramping step value used is greater than, or less than, the Power ramping step value in LTE.
  • the initial value of the Preamble counter is not 0, and the value of the initial Preamble counter may be at least one of the following:
  • Manner 1 The value of the initial Preamble counter is added to the final value of the Preamble counter on the carrier before the reselection carrier, or subtracted from the value of a Back Off backoff value; for example, when the carrier is reselected on the carrier, when the UE sends When the number of times or the counter of the Preamble code is m, it is considered that the UE cannot perform PRACH access on the carrier. Note: Here, the Preamble counter does not perform a clear operation, or the value of this counter is reserved. Based on this, the UE performs carrier reselection according to a certain rule.
  • the initial value of the Preamble counter is not 0, but the Preamble on the carrier before the reselection of the carrier. The number of times the code is sent or the counter m.
  • the initial value of the Preamble counter is the value of the original Preamble counter initialization value 0 plus a Back Off backoff value.
  • the power of the Preamble code transmitted on the reselected uplink carrier may be at least one of the following:
  • Manner 1 The power of sending the Preamble code is the initial Preamble transmission power
  • Manner 2 The power of the Preamble code is increased by a power offset for the initial transmit power.
  • the power of the Preamble code is the power of the last transmitted Preamble code of the carrier before reselection minus the value of a power offset.
  • the Power ramping step used in the power boosting may be the Power ramping step value in the existing LTE, or the Power ramping step value used on the reselected uplink carrier. Greater than, or, less than the Power ramping step value in LTE.
  • the initial value of the Preamble counter is 0, and/or the power of the Preamble transmitted on the reselected uplink carrier may be at least one of the following:
  • Manner 1 The power of sending the Preamble code is the initial Preamble code transmission power
  • Manner 2 The power of the Preamble code is increased by a power offset for the initial transmit power.
  • the power of the Preamble code is the power of the last transmitted Preamble code of the carrier before reselection minus the value of a power offset.
  • the Power ramping step used in the power boosting may be the Power ramping step value in the existing LTE, or the Power ramping step value used on the reselected uplink carrier. Greater than, or, less than the Power ramping step value in LTE.
  • the Preamble counter On the reselected uplink carrier, the Preamble counter is initialized, that is, 0, and/or, the power of the Preamble code is transmitted as an initial value.
  • the Power ramping step may be a Power ramping step value in the existing LTE, or the Power ramping step value used on the reselected uplink carrier is greater than, or smaller than, the Power ramping step value in the LTE.
  • the UE determines a new uplink carrier according to a default rule, and the carrier is used for PRACH access.
  • the default rule here is another carrier different from the current carrier. For example, if the currently selected carrier is a Non-SUL carrier, or a SUL carrier, if the PRACH access is performed on the currently selected carrier, or the Preamble code fails to be transmitted, the SUL carrier is directly switched, or the Non-SUL carrier is used. Perform PRACH access, or Preamble code transmission.
  • the power of the Preamble counter, and/or the power of transmitting the Preamble code, and/or the processing of the Power Ramping step are the same as described in the first category after the handover or the new uplink carrier.
  • the reselected uplink carrier may be determined according to the configured PUCCH, and/or the carrier transmitted by the PUSCH. Specifically, one of the following methods is included:
  • Method 1 The reselected uplink carrier is the same as the configured PUCCH transmission carrier. among them,
  • the PUCCH may be configured on at least one of a SUL carrier, and a Non-SUL carrier. If the PUCCH can be transmitted on the SUL carrier, and the Non-SUL carrier, the reselected uplink carrier may randomly select one of the two carriers configured in the PUCCH, or select different carriers before reselection, or select and weight Select the same carrier before.
  • Method 2 The reselected uplink carrier is the same as the configured PUSCH transmission carrier. among them,
  • the PUSCH may be configured or scheduled as at least one of a SUL carrier, and a Non-SUL carrier. If the PUSCH can be transmitted on the SUL carrier, and the Non-SUL carrier, the reselected uplink carrier may randomly select one of the two carriers configured or scheduled in the PUSCH, or select a different carrier before reselection, or select The same carrier as before reselection.
  • the reselected uplink carrier is the same as the carrier transmitted by PUCCH and PUSCH. That is to say, the reselected uplink carrier is a carrier in which PUCCH transmission is configured on the carrier, and the PUSCH is also scheduled.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the embodiment provides a method for determining an RSRP threshold, where the RSRP threshold is used for carrier selection.
  • the uplink carrier is configured in the cell, and the plurality of uplink carriers include: one or more Non-SUL carriers, and at least one of the SUL carriers.
  • the UE performs PRACH access on one of the two carriers described above. Further, specifically adopting or using one of the two carriers to perform PRACH access requires an RSRP value measured based on the UE, and the RSRP value is obtained by detecting a measurement signal on the NR DL carrier.
  • the measurement signal may be SSB, PSS (and/or SSS), PBCH, DMRS or CSI-RS.
  • the method of determining whether to select the Non-SUL carrier or the SUL carrier is based on comparing the measured RSRP value with a specific first RSRP threshold value. If the measured RSRP value is less than or equal to the first RSRP threshold, the SUL carrier is selected. If the measured RSRP value is greater than or equal to the first RSRP threshold, the Non-SUL carrier is selected.
  • the determining of the first RSRP threshold may be performed by at least one of the following:
  • the first RSRP threshold is determined based on a first threshold of cell selection, plus or minus a specific offset (offset).
  • the parameter for determining the first RSRP threshold may be in at least one of the following manners:
  • Method 1 Related parameters for performing cell selection, and related parameters for performing carrier selection in a cell are independently configured. For example, a parameter for performing cell selection is recorded as a first parameter or a parameter set; a parameter used for carrier selection is recorded as a second parameter or a parameter set. The second parameter or parameter set is different from the first parameter or parameter set in that an offset is introduced.
  • Method 2 The offset parameters are independently configured, and other parameters are shared with parameters or parameter sets used for cell selection. That is, the parameter determining the first RSRP threshold may be determined by: the same or shared parameter or parameter (denoted as the first parameter or parameter set) selected by the cell, and the independently configured offset parameter.
  • the first parameter or parameter set, and/or the offset parameter, and/or the second parameter or parameter set may be determined by at least one of the following: high layer RRC signaling, physical layer DCI signaling, RMSI broadcast, Predefined way.
  • the second RSRP threshold used for cell selection is (A, B). If the measured RSRP value is greater than or equal to the second RSRP threshold, the cell is the serving cell or the candidate cell. For the case where there are multiple carriers in the selected cell, for example, there are two uplink carriers, one is a Non-SUL carrier, and the other carrier is a SUL carrier, the UE may according to the RSRP value measured on the downlink carrier and the first The RSRP threshold determines which uplink carrier is selected.
  • the first RSRP threshold value the second RSRP threshold value (A, B)+offset. Its first RSRP threshold is one of the calculated value or a set of values obtained.
  • the offset may be a positive integer between 0 and C.
  • the unit of A, B, and C is dbm. Preferably, C may be 20, or, 30, or 40.
  • a and B are negative positive integers.
  • the first RSRP threshold is an integer between (-175, -110).
  • Manner 2 The first RSRP threshold is notified to the UE in a specific manner.
  • the specific manner includes at least one of the following: high layer RRC signaling, physical layer DCI signaling, RMSI broadcast, OSI, SI, predefined manner.
  • the parameters required for the cell selection may be configured in at least one of the upper layer RRC signaling, the MAC layer signaling, the physical layer DCI signaling, and the preset method. Further, the parameter may be obtained by at least one of RMSI, OSI, and SI in the foregoing signaling.
  • the parameters include at least one of: a minimum access level (Qrxlevmin) (ie, a minimum received value required), a specified minimum access level offset (Qrxlevminoffset), a temporary minimum access level offset (Qoffsettemp), the amount of compensation (Pcompensation), the maximum RF output power (PPowerClass) according to the power level (which may include PEMAX1 and PEMAX2).
  • the parameters are recorded as the first set of parameters.
  • the first RSRP threshold acquisition manner (for carrier selection) may be one of the following:
  • the first RSRP threshold (for carrier selection) may be determined by at least one of the following parameters: Qrxlevmin, Qrxlevminoffset, Qoffsettemp, Pcompensation, PPowerClass (Can include PEMAX1 and PEMAX2), a specific Offset.
  • the above parameters can be marked as a second set of parameters.
  • the parameters of the first RSRP threshold (for carrier selection) may be configured independently of the parameters used for cell selection. It can be configured or obtained by at least one of the following: high-layer RRC signaling, MAC layer signaling, physical layer DCI signaling, and preset method configuration. Further, the parameter may be obtained by at least one of RMSI, OSI, and SI in the foregoing signaling.
  • the offset parameter is introduced in the second set of parameters relative to the first set of parameters;
  • the specific Offset parameter required for the first RSRP threshold for determining (for carrier selection) may be independently configured, and the specific Offset may pass high layer RRC signaling, MAC layer signaling, physical layer DCI Obtained in at least one of signaling and preset method configuration.
  • Other parameters required for determining the first RSRP threshold (for carrier selection) are the same as those required for cell selection, or determining that the first RSRP threshold (for carrier selection) is shared with the cell selection as follows: One of the parameters: Qrxlevmin, Qrxlevminoffset, Qoffsettemp, Pcompensation, PPowerClass (which may include PEMAX1 and PEMAX2).
  • the sharing parameter may be obtained by using at least one of a high layer RRC signaling, a MAC layer signaling, a physical layer DCI signaling, and a preset method configuration. That is to say, the first set of parameters are shared for cell selection, and the carrier selection in the cell is performed. For performing carrier selection in the cell, an offset parameter is additionally configured independently;
  • the first RSRP threshold (for carrier selection) is configured by at least one of the following: high layer RRC signaling, MAC layer signaling, physical layer DCI signaling, and preset method configuration. Further, the parameter may be obtained by at least one of RMSI, OSI, and SI broadcast in the foregoing signaling. That is to say, the threshold value for cell selection and the threshold value for carrier selection in the cell are separately configured.
  • Embodiments of the present invention also provide a user equipment comprising: a processor and a memory for storing a computer program executable on a processor, wherein the processor is configured to execute the present invention when the computer program is executed The method of any of the embodiments.
  • Embodiments of the present invention also provide a storage medium storing a computer program, wherein the computer program is executed by a processor to perform the method of any one of the embodiments of the present invention.
  • the foregoing storage medium may be configured to store program code for performing random access on one of the L uplink carriers configured in the cell; wherein, L For a positive integer greater than or equal to 1, the uplink carrier includes at least one of the following: a Non-SUL carrier, a SUL carrier.
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • Embodiments of the present invention also provide a processor for operating a computer program, wherein the computer program is operative to perform the steps of any of the above methods.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种随机接入方法、用户设备和存储介质,其中,该方法包括:传输设备在小区中配置的L个上行载波中其中一个上行载波上进行随机接入;其中,L为大于或等于1的正整数,所述上行载波包括以下至少之一:非补充的上行链路(Non-SUL)载波,补充的上行链路(SUL)载波。

Description

随机接入方法、用户设备和存储介质
相关申请的交叉引用
本申请基于申请号为201711213789.9、申请日为2017年11月24日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本发明涉及通信领域,具体涉及一种随机接入方法、用户设备和存储介质。
背景技术
在相关技术中的新无线(NR)系统中,现阶段支持一个小区配置两个上行载波情况,其中,一个载波为NR非补充的上行链路(Non-SUL)载波,另一个载波为补充上行链路(SUL,Supplement Uplink carrier)载波。对于这种情况,如果不同UE在不同载波上的相同时频域资源上进行前导(Preamble)码发送,且随机接入无线网络临时标识(RA-RNTI,Random Access-Radio Network Temporary Identity)的计算方式与传统长期演进(LTE,Long Term Evolution)中的方式相同,则会出现基站无法识别是哪个UE发送的Preamble码,因为不同用户设备(UE,User Equipment)对应的RA-RNTI相同。相应的基站在进行随机接入响应(RAR)发送时,采用的RA-RNTI相同,从而使得UE误认为Preamble码发送成功,而进行Msg3消息的发送,而最终出现物理随机接入信道(PRACH,Physical Random Access Channel)接入失败的情况。所述对于Non-SUL载波中的部分带宽(BWP,Bandwidth Partial),以及,SUL载波上的BWP情况,同样也会遇到上述的问题。基 于此,需要解决UE在不同载波上,或,不同载波中BWP上相同时频资源上同时发送Preamble码导致PRACH接入的问题。
针对相关技术中存在的上述问题,目前尚未发现有效的解决方案。
发明内容
本发明实施例提供了一种随机接入方法、用户设备和存储介质。
根据本发明的一个实施例,提供了一种随机接入方法,包括:传输设备在小区中配置的L个上行载波中其中一个上行载波上进行随机接入;其中,L为大于或等于1的正整数,所述上行载波包括以下至少之一:Non-SUL载波、SUL载波。
根据本发明的另一个实施例,提供了一种用户设备,包括:通信模块,配置为在小区中配置的L个上行载波中其中一个上行载波上进行随机接入;其中,L为大于或等于1的正整数,所述上行载波包括以下至少之一:Non-SUL载波、SUL载波。
根据本发明的又一个实施例,还提供了一种存储介质,所述存储介质存储有计算机程序,其中,所述计算机程序被处理器运行时执行本发明实施例上述所述的方法。
根据本发明的又一个实施例,还提供了一种处理器,所述处理器用于运行计算机程序,其中,所述计算机程序运行时执行本发明实施例上述所述的方法。
根据本发明的再一个实施例,还提供了一种用户设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行本发明实施例所述的方法。
通过本发明实施例,通过在上行载波中选择一个进行随机接入,解决了相关技术中在存多载波小区接入时容易导致接入失败的技术问题,提高了接入成功率,提供了一种在SUL载波上进行随机接入的方案。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的随机接入方法的流程图;
图2是根据本发明实施例的用户设备的结构框图;
图3为本实施例Non-SUL载波和SUL载波上的BWP统一标号的示意图;
图4为本实施例Non-SUL载波和SUL载波上的激活BWP的示意图;
图5为本实施例SUL载波和Non-SUL载波上的PRACH频域资源标记示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
本申请实施例的网络架构包括:UE(例如终端)和基站,其中,UE和基站可通过网络进行信息交互。
在本实施例中提供了一种随机接入方法,图1是根据本发明实施例的随机接入方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,传输设备在小区中配置的L个上行载波中其中一个上行载波上进行随机接入;其中,L为大于或等于1的正整数,上行载波包括以下至少之一:Non-SUL载波,SUL载波。
通过本发明实施例的技术方案,通过在上行载波中选择一个上行载波进行随机接入,解决了相关技术中在存多载波小区接入时容易导致接入失败的技术问题,提高了接入成功率,提供了一种在SUL载波上进行随机接入的方案。
可选地,上述步骤的执行主体传输设备可以为终端等,但不限于此。
本实施例的方案除了适用于PRACH接入过程外,还同样适用所有在上行载波上或BWP传输的信号。
在一实施例中,小区配置的L个上行载波中有SUL载波时,采用以下方式至少之一确定用于进行PRACH接入过程的上行载波:
传输设备基于测量到的参考信号接收功率(RSRP,Reference Signal Receiving Power)值和/或第一RSRP门限值,确定用于进行PRACH接入过程的上行载波;其中,所述RSRP值和/或第一RSRP门限值基于测量下行资源上传输的特定测量信号得到;可选地,特定测量信号包括以下至少之一:同步信息块(SSB,Synchronization Signal Block)、信道状态信息参考信号(CSI-RS,Channel State Information-Reference Signal)、主同步信号(PSS,Primary Synchronization Signal)、辅同步信号(SSS,Secondary Synchronization Signal)、物理广播信道(PBCH,Physical Broadcast Channel);
传输设备基于信令指示的载波信息,确定用于进行PRACH接入过程的上行载波;
传输设备基于默认的或预定义的信息,确定用于进行PRACH接入过程的上行载波。
在一实施例中,所述基于测量到的RSRP值和/或第一RSRP门限值,确定用于进行PRACH接入过程的上行载波,包括以下至少之一:
将测量到的RSRP值与第一RSRP门限值比较;在测量到的RSRP值小于或等于第一RSRP门限值时,选择SUL载波或Non-SUL载波;在测量到 的RSRP值大于或等于第一RSRP门限值时,选择Non-SUL载波或SUL载波。本实施例包括两种组合,测量到的RSRP值小于或等于第一RSRP门限值时选择SUL载波,否则选择Non-SUL载波;测量到的RSRP值小于或等于第一RSRP门限值时选择Non-SUL载波,否则选择SUL载波。
在一实施例中,第一RSRP门限值通过以下方式的至少之一确定:基于小区选择的第二门限值和偏移量确定第一RSRP门限值;基于预定义、通知或指示信息确定或获得第一RSRP门限值。
在一实施例中,通知或指示信息包括以下至少之一:高层无线资源控制(RRC,Radio Resource Control)信令、物理层下行控制信息(DCI,Downlink Control Information)信令、物理层媒体访问控制(MAC,Media Access Control)信令、剩余系统信息(RMSI,Remaining Minimum System Information)、系统消息(SI,System Information)、其他系统消息(OSI)。
在一实施例中,所述基于小区选择的第二门限值和偏移量(offset)确定第一RSRP门限值,包括以下之一:基于小区选择的第二门限值加上一个偏移量确定第一RSRP门限值;基于小区选择的第二门限值减去一个偏移量确定第一RSRP门限值。
在一实施例中,所述传输设备确定或获取以下参数的至少之一:第一RSRP门限值、偏移量、第二门限值、用于进行小区选择所需的参数,通过以下至少之一方式:
根据第一套参数确定小区选择的第二门限,根据第二套参数确定小区中用于进行载波选择的第一RSRP门限,其中,相对于第一套参数,第二套参数中包括偏移量参数;
第一套参数被共享用于进行小区选择和进行小区中载波选择,其中,第一套参数在进行小区中的载波选择时,配置独立偏移量参数。
本实施例中的,第一套参数,和/或,第二套参数中的至少之一参数, 通过以下至少方式之一获取:高层RRC信令、MAC层信令、物理层DCI信令、预设配置、RMSI、OSI、SI。
在一实施例中,所述传输设备在上行载波上进行随机接入,包括:当在上行载波上传输前导(Preamble)码的失败次数达到特定传输次数时,传输设备在按照特定规则确定的上行载波上进行PRACH接入或Preamble码的传输。
在一实施例中,所述方法还包括:当在上行载波上传输Preamble码的失败次数达到特定传输次数时,Preamble计数器按照以下至少之一方法处理:保留当前Preamble计数器的值;将Preamble计数器置为初始值。
在一实施例中,所述方法还包括:在传输设备在按照特定规则确定的上行载波上进行PRACH接入或Preamble码的传输之前,Preamble计数器按照以下至少之一方法处理:将保留的Preamble计数器值作为切换后载波上的Preamble计数器的初始值;切换后载波上的Preamble计数器的初始值为默认的初始值;切换后载波上的Preamble计数器的初始值为保留的Preamble计数器值减去或加上第一回退值(Back Off)的所得值。
在一实施例中,所述方法还包括:当在配置或选择的上行载波上传输Preamble码的失败次数达到特定传输次数时,发送Preamble码的功率按照以下至少之一方法处理:保留当前发送Preamble码的功率;将Preamble码的发送功率置为初始值;
在一实施例中,所述方法还包括:在传输设备在按照特定规则确定的上行载波上进行PRACH接入或Preamble码的传输之前,发送Preamble码的功率按照以下至少之一方法处理:将保留的Preamble码的发送功率作为切换后载波上发送Preamble码的初始发送功率;切换后载波上的发送Preamble码的初始发送功率为默认的初始值;切换后载波上发送Preamble码的功率为保留的发送Preamble码的功率加上或减去第二回退值。
在一实施例中,所述方法还包括:当在上行载波上传输Preamble码的失败次数达到特定传输次数时,切换后载波上的功率调整步长按照以下至少之一方法处理:功率调整步长为当前载波上配置的值;功率调整步长为切换前载波上功率调整步长加上或减去一个调整量;功率调整步长为当前载波上配置的值加上或减去一个调整量;功率调整步长为切换前载波上的功率调整步长。
在一实施例中,所述方法还包括:当在上行载波上传输Preamble码的失败次数达到特定传输次数时,切换后载波上的Preamble码传输次数为以下至少之一:Preamble码传输次数为当前载波上配置的值;Preamble码传输次数为特定传输次数;Preamble码传输次数为Preamble码最大传输次数;Preamble码传输次数为Preamble码最大传输次数与切换前载波上的配置的Preamble码重传次数相减的所得值;
其中,在切换前载波上的配置的Preamble码重传次数小于Preamble码最大传输次数时,Preamble码传输次数为以下之一:Preamble码传输次数为切换前载波上Preamble码传输的传输次数加上或减去第三回退值;Preamble码传输次数为当前载波上配置的值加上或减去第三回退值;Preamble码传输次数为Preamble码最大传输次数加上或减去第三回退值。
在一实施例中,特定规则包括以下至少之一:根据在下行资源上测量得到的RSRP值和/或第一RSRP门限值,确定用于进行PRACH接入过程的上行载波;切换到小区中配置的另一个上行载波上;切换到配置传输物理上行控制信道(PUCCH,Physical Uplink Control Channel)和/或物理上行共享信道(PUSCH,Physical Uplink Shared Channel)的上行载波上;切换到默认的或优先级满足预设要求的上行载波上;其中,优先级满足预设要求可以为优先级高于预设阈值,也即优先级高的上行载波。
在一实施例中,特定传输次数包括以下之一:特定传输次数为大于 Preamble码最大传输次数的值,特定传输次数为等于Preamble码最大传输次数的值,特定传输次数为小于Preamble码最大传输次数的值。
在一实施例中,在上行载波上进行PRACH接入过程中,RA-RNTI通过以下至少之一方式处理:在不同传输设备在不同上行载波上相同的PRACH资源上发送Preamble码时,通过以下至少之一处理:通过在RA-RNTI中携带载波索引;通过在RA-RNTI中携带PRACH occasion索引;通过将不同载波上PRACH频域资源进行统一编号方式,不同载波上计算RA-RNTI所用的f_id取值或取值范围不同;
在一个载波上配置一个或多个部分带宽(BWP)时,通过以下至少之一方式处理:通过在RA-RNTI中携带部分带宽索引;通过在RA-RNTI中携带载波索引;通过在RA-RNTI中携带PRACH occasion索引;通过将不同BWP上PRACH频域资源进行统一编号方式,不同BWP上计算RA-RNTI所用的f_id取值或取值范围不同;
在不同载波间,每个载波上配置一个或多个BWP时,通过以下至少之一方式处理:通过将不同载波上的BWP进行统一编号方式,并在RA-RNTI中携带载波索引;通过在RA-RNTI中携带部分带宽索引;通过在RA-RNTI中携带载波索引;通过在RA-RNTI中携带PRACH occasion索引;通过将不同载波上的BWP上PRACH频域资源进行统一编号方式,不同BWP上计算RA-RNTI所用的f_id取值或取值范围不同。
在一实施例中,对于小区中配置有SUL载波情况,包括以下至少之一:
对于Non-SUL载波和SUL载波,分别配置以下至少之一通信参数:
Preamble码计数器、功率调整步长、发送Preamble码的功率、Preamble码传输次数、Preamble码格式、子载波间隔SCS、BWP、PRACH时域资源、PRACH occasion、PRACH频域资源起点、PRACH频域资源数、PRACH频域Offset、第一回退值、第二回退值、第三回退值;
对于Non-SUL载波和SUL载波,配置或初始化公共参数,公共参数可以为以下至少之一:Preamble码计数器、功率调整步长、发送Preamble码的功率、Preamble码传输次数、Preamble码格式、SCS、BWP、PRACH时域资源、PRACH occasion、PRACH频域资源起点、PRACH频域资源数、PRACH频域Offset、第一回退值、第二回退值、第三回退值,其中,公共参数中未配置的参数独立配置。
在一实施例中,通信参数通过以下方式中至少之一配置:高层RRC信令、SI、RMSI、OSI、物理层DCI信令、预定义方式、MAC层信令。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
实施例2
在本实施例中还提供了一种用户设备,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图2是根据本发明实施例的用户设备的结构框图,如图2所示,该用户设备包括:通信模块20,配置为在小区中配置的L个上行载波中其中一个上行载波上进行随机接入;其中,L为大于或等于1的正整数,所述上行 载波包括以下至少之一:Non-SUL载波,SUL载波。
在一实施例中,所述用户设备还包括处理模块,配置为小区配置的L个上行载波中有SUL载波时,采用以下方式至少之一确定用于进行物理随机接入信道PRACH接入过程的上行载波:基于测量到的参考信号接收功率RSRP值和/或第一RSRP门限值,确定所述用于进行PRACH接入过程的上行载波;所述RSRP值和/或第一RSRP门限值基于测量下行资源上传输的特定测量信号得到;基于信令指示的载波信息,确定所述用于进行PRACH接入过程的上行载波;基于默认的或预定义的信息,确定所述用于进行PRACH接入过程的上行载波。
在一实施例中,所述处理模块,配置为将所述测量到的RSRP值与第一RSRP门限值进行比较;在所述测量到的RSRP值小于或等于所述第一RSRP门限值时,选择SUL载波或Non-SUL载波;在所述测量到的RSRP值大于或等于所述第一RSRP门限值时,选择Non-SUL载波或SUL载波。
在一实施例中,所述处理模块,配置为通过以下方式的至少之一确定第一RSRP门限值:基于小区选择的第二门限值和偏移量确定所述第一RSRP门限值;基于预定义、通知或指示信息确定或获得所述第一RSRP门限值。
在一实施例中,所述处理模块,配置为基于小区选择的第二门限值和偏移量确定所述第一RSRP门限值,包括以下之一:基于小区选择的第二门限值加上一个偏移量确定所述第一RSRP门限值;基于小区选择的第二门限值减去一个偏移量确定所述第一RSRP门限值。
在一实施例中,所述处理模块,配置为确定或获取以下参数的至少之一:第一RSRP门限值、偏移量、第二门限值、用于进行小区选择所需的参数,通过以下至少之一方式:根据第一套参数确定小区选择的第二门限,根据第二套参数确定小区中用于进行载波选择的第一RSRP门限,其中, 相对于第一套参数,第二套参数中包括偏移量参数;第一套参数被共享用于进行小区选择和进行小区中载波选择,其中,所述第一套参数在进行小区中的载波选择时,配置独立偏移量参数。
在一实施例中,所述处理模块,配置为所述第一套参数和/或第二套参数中的至少之一参数,通过以下至少方式之一获取:高层RRC信令、MAC层信令、物理层DCI信令、预设配置、RMSI、OSI、SI。
在一实施例中,通信模块20,配置为当在上行载波上传输前导Preamble码的失败次数达到特定传输次数时,在按照特定规则确定的上行载波上进行PRACH接入或Preamble码的传输。
在一实施例中,所述处理模块,配置为当在配置或选择的上行载波上传输Preamble码的失败次数达到特定传输次数时,Preamble计数器按照以下至少之一方法处理:保留当前Preamble计数器的值;将Preamble计数器置为初始值。
在一实施例中,所述处理模块,配置为在所述传输设备在按照特定规则确定的上行载波上进行PRACH接入或Preamble码的传输之前,Preamble计数器按照以下至少之一方法处理:将保留的Preamble计数器值作为切换后载波上的Preamble计数器的初始值;切换后载波上的Preamble计数器的初始值为默认的初始值;切换后载波上的Preamble计数器的初始值为所述保留的Preamble计数器值减去或加上第一回退值的所得值。
在一实施例中,所述处理模块,配置为当在配置或选择的上行载波上传输Preamble码的失败次数达到特定传输次数时,发送Preamble的功率按照以下至少之一方法处理:保留当前发送Preamble的功率;将Preamble码的发送功率置为初始值。
在一实施例中,所述处理模块,配置为在所述传输设备在按照特定规则确定的上行载波上进行PRACH接入或Preamble码的传输之前,发送 Preamble码的功率按照以下至少之一方法处理:将保留的Preamble码的发送功率作为切换后载波上发送Preamble的初始发送功率;切换后载波上的发送Preamble码的初始发送功率为默认的初始值;切换后载波上发送Preamble码的功率为保留的发送Preamble码的功率加上或减去第二回退值。
在一实施例中,所述处理模块,配置为切换后载波上的功率调整步长按照以下至少之一方法处理:所述功率调整步长为当前载波上配置的值;所述功率调整步长为切换前载波上功率调整步长加上或减去一个调整量;所述功率调整步长为当前载波上配置的值加上或减去一个调整量;所述功率调整步长为切换前载波上的功率调整步长。
在一实施例中,所述处理模块,配置为切换后载波上的Preamble码传输次数为以下至少之一:所述Preamble码传输次数为当前载波上配置的值;所述Preamble码传输次数为特定传输次数;所述Preamble码传输次数为Preamble码最大传输次数;所述Preamble码传输次数为Preamble码最大传输次数与切换前载波上的配置的Preamble码重传次数相减的所得值;
其中,在切换前载波上的配置的Preamble码重传次数小于Preamble码最大传输次数时,所述Preamble码传输次数为以下之一:所述Preamble码传输次数为切换前载波上Preamble码传输的传输次数加上或减去第三回退值;所述Preamble码传输次数为当前载波上配置的值加上或减去第三回退值;所述Preamble码传输次数为Preamble码最大传输次数加上或减去第三回退值。
在一实施例中,所述通信模块20,配置为在按照特定规则确定的上行载波上进行PRACH接入或Preamble码的传输,所述特定规则包括以下至少之一:根据在下行资源上测量得到的RSRP值和/或第一RSRP门限值,确定所述用于进行PRACH接入过程的上行载波;切换到小区中配置的另一 个上行载波上;切换到配置传输物理上行控制信道PUCCH和/或物理上行共享信道PUSCH的上行载波上;切换到默认的或优先级满足预设要求的上行载波上。
在一实施例中,所述处理模块,配置为在上行载波上进行PRACH接入过程中,在RA-RNTI相同时,通过以下至少之一方式处理:在不同传输设备在不同上行载波上相同的PRACH资源上发送Preamble码时,通过以下至少之一处理:通过在RA-RNTI中携带载波索引;通过在RA-RNTI中携带PRACH occasion索引;通过将不同载波上PRACH频域资源进行统一编号方式,不同载波上计算RA-RNTI所用的f_id取值或取值范围不同;在一个载波上配置一个或多个部分带宽BWP时,通过以下至少之一方式处理:通过在RA-RNTI中携带部分带宽索引;通过在RA-RNTI中携带载波索引;通过在RA-RNTI中携带PRACH occasion索引;通过将不同BWP上PRACH频域资源进行统一编号方式,不同BWP上计算RA-RNTI所用的f_id取值或取值范围不同;在不同载波间,每个载波上配置一个或多个BWP时,通过以下至少之一方式处理:通过将不同载波上的BWP进行统一编号方式,并在RA-RNTI中携带载波索引;通过在RA-RNTI中携带部分带宽索引;通过在RA-RNTI中携带载波索引;通过在RA-RNTI中携带PRACH occasion索引;通过将不同载波上的BWP上PRACH频域资源进行统一编号方式,不同BWP上计算RA-RNTI所用的f_id取值或取值范围不同。
在一实施例中,所述处理模块,配置为对于Non-SUL载波和SUL载波,分别配置以下至少之一通信参数:
Preamble码计数器、功率调整步长、发送Preamble码的功率、Preamble码传输次数、Preamble码格式、子载波间隔SCS、BWP、PRACH时域资源、PRACH occasion、PRACH频域资源起点、PRACH频域资源数、PRACH频域偏移量、第一回退值、第二回退值、第三回退值;
对于Non-SUL载波和SUL载波,配置或初始化公共参数,所述公共参数可以为以下至少之一:Preamble码计数器、功率调整步长、发送Preamble码的功率、Preamble码传输次数、Preamble码格式、SCS、BWP、PRACH时域资源、PRACH occasion、PRACH频域资源起点、PRACH频域资源数、PRACH频域偏移量、第一回退值、第二回退值、第三回退值,其中,所述公共参数中未配置的参数独立配置。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
需要说明的是:上述实施例提供的用户设备在进行随机接入时,仅以上述各程序模块的划分进行举例说明,实际应用中,可以根据需要而将上述处理分配由不同的程序模块完成,即将用户设备的内部结构划分成不同的程序模块,以完成以上描述的全部或者部分处理。另外,上述实施例提供的用户设备与随机接入方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述
下面结合具体的实施例对本发明实施例的随机接入方法进行详细说明。
实施方式一:
在LTE中,RA-RNTI是一个关于时域资源索引(index)和频域资源index的函数。对于一个小区配置两个上行载波的情况,所述两个载波:一个是Non-SUL载波,另一个为SUL载波。如果一个UE选择一个Preamble在Non-SUL载波上的PRACH资源上进行传输,与此同时,另一个UE在SUL载波上的相同的PRACH资源上传输Preamble码。基于此,在两个载波上,根据PRACH资源的时域资源index,和,频域资源index确定的RA-RNTI值相同。这使得两个UE在接收随机接入响应(RAR,Random Access  Response)中,获得相同的上行链路授权(UL grant),从而在相同的上行资源上传输Msg3消息,这将导致冲突,进而使得PRACH接入失败。
LTE中,RA-RNTI的计算公式为:RA-RNTI=1+t_id+10*f_id。其中,t_id表示时域子帧索引,它的值0<=t_id<9;f_id表示频域子帧索引,它的值0<=f_id<6。
对于NR中,RA-RNTI公式中的t_id可表示如下其中之一索引:子帧、时隙、符号、符号单元、PRACH occasion、PRACH slot。所述符号单元是有N个符号组成。f_id可以表示的范围的最大值可以为大于6的正整数。具体f_id的最大取值依赖于PRACH频域资源的数目。所述频域PRACH资源数目可以通过以下至少之一方式确定:预定义、高层RRC信令配置、MAC层配置、物理层DCI信令。所述RA-RNTI中的10可以用W表示,W可以使大于或等于1的正整数,例如,W可以为以下之一:1,2,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,等等。
为了解决上述问题,本实施方式给出的解决方法具体如下:
方法1:在计算RA-RNTI的公式中引入载波标识(carrier index)。
例如,为了解决上述问题,RA-RNTI公式可以表示为:RA-RNTI=1+t_id+W*f_id+Carrier index.其中,Carrier index为0,表示Non-SUL载波。Carrier index为1,表示SUL载波。对于存在多个上行载波的情况,本实施方式所述的方法同样适用。
方法2:在计算RA-RNTI的公式中引入BWP标识。
一个载波中可以存在一个或多个BWP。其中,初始化和/或激活的BWP可以为一个或多个。
对于方法2,存在以下至少之一具体方案:
方法2-1:一个载波上的BWP被视为一个特殊的BWP。其特殊性是相对于另一个载波上的BWP而言。
这里,假定SUL载波上的BWP可以被视为一个特殊的BWP。其中,Non-SUL载波中的BWP,和,SUL载波上的BWP可以统一进行标识/编号。如图3所示,图3为本实施例Non-SUL载波和SUL载波上的BWP统一标号的示意图。假定在SUL载波上配置n个BWP,其BWP的标号依次标记为BWP#1,BWP#2,BWP#3,...,BWP#n,或者,BWP#0,BWP#1,BWP#2,BWP#3,...,BWP#n-1。Non-SUL载波上配置m个BWP,其BWP的标号依次标记为:BWP#P+1,BWP#P+2,BWP#P+3,...,BWP#P+m,其中,m、n为大于或等于1的正整数。m与n之间的关系可以为以下其中之一:大于、小于、等于。如果Non-SUL载波和SUL载波中的BWP统一编号,即SUL载波中的BWP作为特殊的BWP。其中,SUL上的BWP编号是依赖于Non-SUL载波上的BWP数目。图3中给定的SUL载波上的BWP是从P+1开始,这里P可以为大于或等于n的正整数。
对于方法2-1,SUL和Non-SUL载波上相同PRACH资源上获得的RA-RNTI可以通过BWP index的不同而进行区分。例如,RA-RNTI的公式可以为:RA-RNTI=1+t_id+W*f_id+BWP index。
方法2-2:对于每个载波,载波上的BWP可以独立的被标记或编号。对于这种方法,如果不同载波上,标号相同的BWP index被激活,或,被选择,则通过BWP index将不能解决本实施方式所述的问题。
因此,一些限制条件需要被给出,例如,不同载波上激活的BWP的编号不同。如图4所示。图4为本实施例Non-SUL载波和SUL载波上的激活BWP的示意图。其中,假定在Non-SUL载波上配置n个BWP,其BWP的标号依次标记为BWP#1,BWP#2,BWP#3,...,BWP#n,或者,BWP#0,BWP#1,BWP#2,BWP#3,...,BWP#n-1。SUL载波上配置m个BWP,其BWP的标号依次标记为:BWP#1,BWP#2,BWP#3,...,BWP#m,或者,BWP#0,BWP#1,BWP#2,BWP#3,...,BWP#m-1。其中,m、n为大于或等于1 的正整数。m与n之间的关系可以为以下其中之一:大于、小于、等于。
此外,载波索引(Carrier index)也可以被引入,用于解决方法2-2中所述问题。基于此,RA-RNTI中也可以引入BWP index,和/或,Carrier index。例如,RA-RNTI=1+t_id+W*f_id+BWP index;RA-RNTI=1+t_id+W*f_id+Carrier index;RA-RNTI=1+t_id+W*f_id+Carrier index+BWP index.
方法3:在计算RA-RNTI的公式中引入BWP标识(索引)和载波标识carrier index。例如,RA-RNTI=1+t_id+W*f_id+Carrier index+BWP index。
方法4:通过Non-SUL载波和SUL载波上PRACH频域资源occasion索引f_id的取值,或,取值范围,解决实施方式所述的问题。
这里,SUL载波上的PRACH频域资源可以被视为一个特殊的PRACH频域资源。所述特殊的PRACH资源是相对Non-SUL载波上的PRACH频域资源而言。例如,Non-SUL载波上存在n1个PRACH频域资源,其PRACH频域资源编号从0开始,依次至n1-1,或者,从1开始,依次至n1。n1为大于或等于6个正整数。或者,n1可以为大于或等于1的正整数。对于SUL载波上,假定频域上有m1个PRACH资源,其PRACH频域资源编号可以为PRACH index#q+1,PRACH index#q+2,...,PRACH index#q+m,or PRACH index#q+0,PRACH index#q+1,...,PRACH index#q+m-1。其中,q可以为大于或等于n1的正整数。如图5所示,图5为本实施例SUL载波和Non-SUL载波上的PRACH频域资源标记示意图。
例如,假定Non-SUL载波上频域上有6个PRACH资源,f_id的取值范围为[0,6)。对于SUL载波,频域上有6个PRACH资源,则其f_id的取值范围为[6,12),W为10,UE1在Non-SUL载波上选择的PRACH频域资源为index#2,而另一个UE在SUL在上选择相同的PRACH资源,则利用方法4,Non-SUL载波上,RA-RNTI=1+t_id+10*f_id=1+2+10*2=23,而 对于SUL载波,RA-RNTI=1+t_id+10*f_id=1+2+10*8=83。基于此,UE1和UE2在接收RAR中,其可以通过各自的RA-RNTI去解码,从而获得各自UL grant,从而规避冲突问题。一定程度上降低了PRACH接入失败概率。
对于上述各方法,所述Carrier index、BWP index、PRACH频域资源数目、PRACH频域资源取值范围中至少之一可以通过以下至少之一方式配置或获得:高层RRC信令、SI、RMSI、OSI、物理层DCI信令、RAR消息。
对于相同RA-RNTI情况,可以通过以下至少之一方式处理:
对于不同UE在不同载波上相同的PRACH资源上发送Preamble码情况,可以通过以下至少之一处理:
通过在RA-RNTI公式中引入载波索引;
通过在RA-RNTI公式中引入PRACH occasion index;
通过将不同载波上PRACH频域资源进行统一编号方式,使其不同载波上计算RA-RNTI所用的f_id取值或取值范围不同解决RA-RNTI相同问题;
对于一个载波上配置一个或多个BWP情况,可以通过以下至少之一方式处理:
通过在RA-RNTI公式中引入部分带宽索引;
通过在RA-RNTI公式中引入载波索引;
通过在RA-RNTI公式中引入PRACH occasion index;
通过将不同BWP上PRACH频域资源进行统一编号方式,使其不同BWP上计算RA-RNTI所用的f_id取值或取值范围不同解决RA-RNTI相同问题;
对于不同载波间,每个载波上配置一个或多个BWP情况,可以通过以下至少之一方式处理:
通过将不同载波上的BWP进行统一编号方式,在结合在RA-RNTI公式中引入载波索引方式来解决RA-RNTI相同问题;
通过在RA-RNTI公式中引入部分带宽索引;
通过在RA-RNTI公式中引入载波索引;
通过在RA-RNTI公式中引入PRACH occasion index;
通过将不同载波上的BWP上PRACH频域资源进行统一编号方式,使其不同BWP上计算RA-RNTI所用的f_id取值或取值范围不同解决RA-RNTI相同问题。
实施方式二:
本实施方式给出一种PRACH接入失败的处理方法。具体给出当在当前载波上PRACH接入失败,在哪个载波上继续发送Preamble码,或,如何进行PRACH接入。以及,当在当前载波上接入PRACH失败时,在重选的载波上进行PRACH接入过程之前,或,当前载波上接入PRACH失败之后,Preamble计数器、功率调整步长(Power ramping step)、发送Preamble码的功率、Preamble传输次数中的至少一种参数如何设置等,给出相关解决方法。这里,假定UE在小区中两个上行载波中之一进行PRACH接入过程。其中,两个载波中的一个是Non-SUL载波,另一个SUL载波。
如果UE在选择的上行载波上进行PRACH接入失败,则可以按照以下之一方式选择继续发送Preamble码或发起PRACH过程的载波:
方法1:按照在NR Non-SUL载波上的下行链路(DL)资源上测量的RSRP值,判定选择两个载波中其中一个载波作为继续发送Preamble码或发起PRACH过程的载波。
其中,所述测量信号可以为以下其中之一:SSB、CSI-RS、PSS、PBCH。
UE基于测量的RSRP,与特定的第一RSRP门限值比较,从而判定选择Non-SUL载波或SUL载波。如果测量的RSRP值小于或等于所述第一RSRP门限值,则选择SUL载波。如果测量的RSRP值大于或等于所述第一RSRP门限值,则选择Non-SUL载波。
方法2:假定UE按照默认的规则,确定新的上行载波,该载波用于进行PRACH接入。这里的默认规则为不同于当前载波的另一个载波。例如,假如当前选择的载波为Non-SUL载波,或者,SUL载波,如果在当前选择的载波上执行PRACH接入,或,Preamble码发送失败,则直接切换到SUL载波,或者,Non-SUL载波上进行PRACH接入,或者,发送Preamble码。
方法3:根据配置的PUCCH,和/或,PUSCH传输的载波,确定继续传输Preamble码的载波。
当在当前载波上接入PRACH失败时,在切换后或新的载波上进行PRACH接入过程之前,或,当前载波上接入PRACH失败之后,Preamble计数器、Power ramping step、发送Preamble码的功率、Preamble码传输次数中至少一种参数的处理,可以按照以下至少之一方式:
当Preamble码传输次数达到预设传输次数,或,最大传输次数的情况,Preamble计数器不清零,或,不设置为初始值,或,保留当前Preamble计数器的值,或者,将Preamble计数器置为初始值;上述Preamble计数器值可以作为新载波上进行Preamble码发送的Preamble计数器初始值。或者,新载波上的进行Preamble码发送的Preamble计数器的初始值为上述Preamble计数器值减去,或,加上一个第一Back Off值。通常情况下,Preamble计数器初始化值为1。
当Preamble码传输次数达到预设传输次数,或,最大传输次数的情况,Preamble码发送功率可以按照以下之一方式处理:保留当前发送Preamble码功率;不设置为初始的发送功率;置为初始的发送功率。上述Preamble码的发送功率,可作为新载波上发送Preamble码的功率,或者,新载波上的发送Preamble码的功率为上述发送Preamble码的功率加上,或,减去一个第二Back Off值。
在新载波上,所述Power ramping step可以与切换之前载波上的Power  ramping step相同,或者,不同。优选地,新载波上的Power ramping step大于或等于,或者,小于或等于切换之前载波上的Power ramping step。
当Preamble码传输次数达到预设传输次数,或,最大传输次数的情况,Preamble码传输次数可以为以下之一:Preamble码传输的最大次数,特定传输次数,切换前载波上传输次数加上,或,减去,一个第三Back Off值。切换后的载波上的Preamble码传输次数,也可以为以下其中之一:Preamble码传输的最大次数、特定传输次数。
对于Non-SUL载波,和,SUL载波,可以独立配置或初始化下述至少一种参数:Preamble计数器、Power ramping step、发送Preamble码的功率、Preamble码传输次数、Preamble格式、SCS、BWP、PRACH时域资源、PRACH occassion、PRACH频域资源起点、PRACH频域资源数、PRACH频域Offset、第一Back Off值、第二Back Off值、第三Back Off值。或者,
对于Non-SUL载波,和,SUL载波,可以配置或初始化公共的参数,所述公共参数可以为以下至少之一:Preamble计数器、Power ramping step、发送Preamble码的功率、Preamble码传输次数、Preamble格式、SCS、BWP、PRACH时域资源、PRACH occassion、PRACH频域资源起点、PRACH频域资源数、PRACH频域Offset、第一Back Off值、第二Back Off值、第三Back Off值。公共参数中未配置的参数可以独立配置。
上述参数可以通过以下方式中至少之一配置:高层RRC信令、SI、RMSI、OSI、物理层DCI信令、预定义方式、MAC层信令。
下面将进一步结合上述方法,介绍具体的处理方法:
当重选的载波为切换之前的载波,Preamble计数器可以考虑以下之一方式:
方案1:Preamble计数器不清零,或,不设置为初始值,或,保留当前Preamble计数器的值,或者,将Preamble计数器置为初始值;上述Preamble 计数器值可以作为重选载波上进行Preamble码发送的Preamble计数器初始值。或者,重选载波上的进行Preamble码发送的Preamble计数器的初始值为上述Preamble计数器值减去,或,加上一个第一Back Off值。
Preamble码传输次数,可以考虑以下至少之一方式:
方案1:Preamble码传输次数为Preamble码最大传输次数。
方案2:Preamble码传输次数小于或等于预设传输次数。
也就是说,当UE在选择的上行载波上传输Preamble码的次数达到预设Preamble值,则UE重新进行载波选择,或,切换到另一个载波上进行继续进行Preamble码传输。
Power ramping step,可以考虑以下至少之一方式:
方案1:Power ramping step不改变,或者,网络侧指定的Power ramping step值。这里将Power ramping step标记为A。
方法2:更小或更大的Power ramping step值。或者说,Power ramping step进行加上,或,减去一个Back Off值。这里调整后的Power ramping step标记为B。这里A小于B,或A小于等于B。
基于测量的RSRP值确定切换后的载波。如果基于RSRP测量,选择的切换后的载波为切换前载波,则:
Preamble计数器,可以考虑以下至少之一方法:Preamble计数器初始值为1;Preamble计数器初始值为切换前载波上的最后一次发送Preamble码时Preamble计数器记录的值;Preamble计数器初始值为切换前载波上的最后一次发送Preamble码时Preamble计数器记录的值加上,或,减去,一个第一Back Off值。
Preamble码传输次数,可以考虑以下至少之一方法:Preamble码传输次数为最大Preamble码传输次数;预设的Preamble码传输次数;切换载波前Preamble码传输次数加上或减去一个第二Back Off值;特殊值。这里, 预设的Preamble码传输次数可以小于或等于最大Preamble码传输次数。所述特殊值为最大Preamble码传输次数减去预设的Preamble码传输次数所得值。
Power ramping step,可以考虑以下至少之一方式:
方案1:Power ramping step不改变,或者,网络侧指定的Power ramping step值。这里将Power ramping step标记为A。
方法2:更小或更大的Power ramping step值。或者说,Power ramping step进行加上,或,减去一个Back Off值。这里调整后的Power ramping step标记为B。这里A小于B,或A小于等于B。
基于测量的RSRP值确定切换后的载波。如果基于RSRP测量,选择的切换后的载波为不是切换前载波,或是,另一个载波,则可以考虑以下至少之一情况:
情况1:Preamble计数器对于Non-SUL载波和SUL载波之间是共享的。其中,切换后载波上的Preamble码发送功率为切换前载波上的最后一次发送Preamble码的功率。切换载波上的Power ramping step为初始设置的值。
也就是说,当UE载波Non-SUL载波上发送Preamble码的次数达到预设的次数,当前Preamble计数器值不清零,或,保留。和/或,Preamble码的发送功率也不置为初始值,而是保留当前值。上述值被用于切换后的载波上。
情况2:在重选的上行载波上,发送Preamble码的功率为介于初始发射功率与重选载波之前发送Preamble码发送功率之间的值。
情况3:在重选的上行载波上,发送Preamble码的功率为初始发送功率增加一个功率偏移(power offset)的值。
情况4:重选前后的两个上行载波,共享一个Preamble计数器,和/或,重选的上行载波上发送Preamble码的功率是基于重选前载波的最后一次发 送Preamble码的功率。
作为一种实施方式,如果在重选的上行载波上发送Preamble码失败,其功率提升中采用的Power ramping step可以为现有LTE中的Power ramping step值,或者,所述重选的上行载波上采用的Power ramping step值大于,或者,小于LTE中的Power ramping step值。
情况5:重选前后的两个上行载波,共享一个Preamble计数器,和/或,重选的上行载波上发送Preamble码的功率为重选前载波的最后一次发送Preamble码的功率减去一个power offset的值。
作为一种实施方式,如果在重选的上行载波上发送Preamble码失败,其功率提升中采用的Power ramping step可以为现有LTE中的Power ramping step值,或者,所述重选的上行载波上采用的Power ramping step值大于,或者,小于LTE中的Power ramping step值。
情况6:重选前后的两个上行载波,共享一个Preamble计数器,和/或,重选的上行载波上发送Preamble码的功率为初始发送功率增加一个power offset的值。
作为一种实施方式,如果在重选的上行载波上发送Preamble码失败,其功率提升中采用的Power ramping step可以为现有LTE中的Power ramping step值,或者,所述重选的上行载波上采用的Power ramping step值大于,或者,小于LTE中的Power ramping step值。
情况7:在重选的上行载波上,Preamble计数器初始值不是0,其初始Preamble计数器的值可以为以下至少之一:
方式一:初始Preamble计数器的值为进行重选载波之前的载波上的Preamble计数器最终值加上,或,减去一个Back Off回退值所得值;例如,重选载波之前载波上,当UE发送Preamble码的次数或计数器为m时,则认为UE无法在该载波上进行PRACH接入。注意:这里,Preamble计数器 不进行清零操作,或者,该计数器的值被保留。基于此,UE按照一定规则,进行载波重选,在重选的上行载波上,UE进行第一次Preamble码发送时,其Preamble计数器的初始值不是为0,而是重选载波之前载波上Preamble码的发送次数或计数器m。
方式二:Preamble计数器的初始值为原Preamble计数器初始化值0加上一个Back Off回退值所得值。
和/或,
重选的上行载波上发送Preamble码的功率可以为以下至少之一:
方式一:发送Preamble码的功率为初始Preamble发送功率;
方式二:发送Preamble码的功率为初始发送功率增加一个power offset的值;
方式三:发送Preamble码的功率为重选前载波的最后一次发送Preamble码的功率减去一个power offset的值。
如果在重选的上行载波上发送Preamble码失败,其功率提升中采用的Power ramping step可以为现有LTE中的Power ramping step值,或者,所述重选的上行载波上采用的Power ramping step值大于,或者,小于LTE中的Power ramping step值。
情况8:在重选的上行载波上,Preamble计数器初始值为0,和/或,重选的上行载波上发送Preamble的功率可以为以下至少之一:
方式一:发送Preamble码的功率为初始Preamble码发送功率;
方式二:发送Preamble码的功率为初始发送功率增加一个power offset的值;
方式三:发送Preamble码的功率为重选前载波的最后一次发送Preamble码的功率减去一个power offset的值。
如果在重选的上行载波上发送Preamble码失败,其功率提升中采用的 Power ramping step可以为现有LTE中的Power ramping step值,或者,所述重选的上行载波上采用的Power ramping step值大于,或者,小于LTE中的Power ramping step值。
情况9:在重选的上行载波上,Preamble计数器为初始化的值,即为0,和/或,发送Preamble码的功率为初始值。Power ramping step可以为现有LTE中的Power ramping step值,或者,所述重选的上行载波上采用的Power ramping step值大于,或者,小于LTE中的Power ramping step值。
假定UE按照默认的规则,确定新的上行载波,该载波用于进行PRACH接入。这里的默认规则为不同于当前载波的,另一个载波。例如,假如当前选择的载波为Non-SUL载波,或者,SUL载波,如果在当前选择的载波上执行PRACH接入,或,Preamble码发送失败,则直接切换到SUL载波,或者,Non-SUL载波上进行PRACH接入,或者,Preamble码发送。
其中,对于在切换后或新的上行载波上,所述Preamble计数器,和/或,发送Preamble码的功率,和/或,Power Ramping step的处理方式同第一类中所述。
重新选择的上行载波,可以根据配置的PUCCH,和/或,PUSCH发送的载波确定。具体包括以下之一方法:
方法一:重选的上行载波与配置的PUCCH传输载波相同。其中,
PUCCH可以被配置在SUL载波,和,Non-SUL载波中至少之一。如果PUCCH可以在SUL载波,和,Non-SUL载波上传输,则重选的上行载波可以在PUCCH配置的两个载波中随机选择一个,或者,选择与重选之前不同载波,或者,选择与重选之前相同的载波。
方法二:重选的上行载波与配置的PUSCH传输载波相同。其中,
PUSCH可以被配置或调度为SUL载波,和,Non-SUL载波中至少之一。如果PUSCH可以在SUL载波,和,Non-SUL载波上传输,则重选的 上行载波可以在PUSCH配置或调度的两个载波中随机选择一个,或者,选择与重选之前不同载波,或者,选择与重选之前相同的载波。
方式三:重选的上行载波与PUCCH和PUSCH传输的载波相同。也就是说,重选的上行载波为在该载波上配置了PUCCH传输,还调度了PUSCH的载波。
实施方式三:
本实施方式提供一种确定RSRP门限的方法,所述RSRP门限用于进行载波选择。其中,该小区中配置了若个上行载波,所述若干个上行载波中包括:一个或多个Non-SUL载波,和,SUL载波中至少之一。
假定一个小区中配置两个上行载波,一个为SUL载波,另一个为Non-SUL载波。UE进行PRACH接入,在上述两个载波中之一上进行。进一步地,具体采用或使用上述两个载波中哪个载波上进行PRACH接入,需要基于UE测量的RSRP值,所述RSRP值是基于检测NR DL载波上的测量信号所得。所述测量信号可以为SSB、PSS(和/或SSS)、PBCH、DMRS或CSI-RS。
对于小区中,判定选择Non-SUL载波还是SUL载波的方法为:基于测量的RSRP值与特定的第一RSRP门限值比较获知。如果测量的RSRP值小于或等于所述第一RSRP门限值,则选择SUL载波。如果测量的RSRP值大于或等于所述第一RSRP门限值,则选择Non-SUL载波。
所述第一RSRP门限值的确定,可以通过以下至少之一方式:
方式一:所述第一RSRP门限值,基于小区选择的第一个门限值,加上或,减去一个特定的偏移量(offset)确定。
所述用于确定第一RSRP门限值的参数,可以通过以下至少之一方式:
方法1:用于进行小区选择的相关参数,与,用于进行小区中载波选择的相关参数各自独立配置。例如,用于进行小区选择的参数,记为第一参 数或参数集;用于进行载波选择的参数,记为第二参数或参数集。其中,第二参数或参数集与第一参数或参数集不同之处在于,引入了offset。
方法2:所述offset参数独立配置,其他参数与进行小区选择所用的参数或参数集共享。即确定所述第一RSRP门限值的参数可以通过:与小区选择的相同或共享的参数或参数(记为第一参数或参数集),和,独立配置的offset参数确定。
所述第一参数或参数集,和/或,offset参数,和/或,第二参数或参数集,可以通过以下至少之一方式确定:高层RRC信令、物理层DCI信令、RMSI广播、预定义方式。
例如,用于进行小区选择的第二RSRP门限值为(A,B),如果测量的RSRP值大于或等于第二RSRP门限,则该小区为所属服务小区,或者,候选的小区。对于选择的小区中存在多个载波的情况,例如,存在两个上行载波,一个为Non-SUL载波,另一个载波为SUL载波,则UE可以根据在下行载波测量的RSRP值与所述第一RSRP门限确定选择哪个上行载波。其中,所述第一RSRP门限值=第二RSRP门限值(A,B)+offset。其第一RSRP门限值为所述计算所得值或所得值集合中的一个值。所述offset可以为0到C之间的正整数。A,B,C的单位为dbm。优选地,C可以为20,或,30,或,40。A和B为负正整数。作为一种示例,第一RSRP门限值为(-175,-110)之间的整数。
方式二:所述第一RSRP门限值,是通过特定方式通知给UE。
所述特定方式,包括以下至少之一:高层RRC信令、物理层DCI信令、RMSI广播、OSI、SI、预定义方式。
对于进行小区选择所需的参数,可以通过高层RRC信令、MAC层信令、物理层DCI信令、预设方法中的至少一种方式配置。进一步地,所述参数可以通过上述信令中的RMSI、OSI、SI中的至少一种方式所得。所述 参数包括以下至少之一:最低接入电平(Qrxlevmin)(即需要的最小接收值)、指定的最低接入电平偏移量(Qrxlevminoffset)、临时的最低接入电平偏移量(Qoffsettemp)、补偿量(Pcompensation)、根据功率等级对应的最大射频输出功率(PPowerClass)(可包括PEMAX1和PEMAX2)。所述参数记为第一套参数。
在选定的小区中,根据所述第一RSRP门限确定选择小区中两个载波中之一用于进行PRACH接入。所述(用于载波选择的)第一RSRP门限值获取方式可以为以下之一:
方式一:独立于小区选择配置的参数(例如,第一套参数),对于所述(用于载波选择的)第一RSRP门限可以以下至少之一参数确定:Qrxlevmin、Qrxlevminoffset、Qoffsettemp、Pcompensation、PPowerClass(可包括PEMAX1和PEMAX2)、特定的Offset。上述参数可标记为第二套参数。所述(用于载波选择的)第一RSRP门限的参数可以独立于小区选择所用的参数进行配置。可以通过以下至少之一方式配置或获取:高层RRC信令、MAC层信令、物理层DCI信令、预设方法配置。进一步地,所述参数可以通过上述信令中的RMSI、OSI、SI中的至少一种方式获得。其中,相对于第一套参数,第二套参数中引入了offset参数;
方式二:对于所述确定(用于载波选择的)第一RSRP门限所需的特定的Offset参数可以被独立配置,所述特定的Offset可以通过高层RRC信令、MAC层信令、物理层DCI信令、预设方法配置中的至少一种方式获得。其他用于确定(用于载波选择的)第一RSRP门限所需的参数与进行小区选择所需的参数相同,或者,确定(用于载波选择的)第一RSRP门限与进行小区选择共享如下至少之一参数:Qrxlevmin、Qrxlevminoffset、Qoffsettemp、Pcompensation、PPowerClass(可包括PEMAX1和PEMAX2)。所述共享参数可以通过高层RRC信令、MAC层信令、物理层DCI信令、 预设方法配置中的至少一种方式获得。也就是说,第一套参数被共享用于进行小区选择,和,进行小区中载波选择。对于进行小区中的载波选择,额外独立配置一个offset参数;
方式三:所述(用于载波选择的)第一RSRP门限通过以下至少之一方式配置:高层RRC信令、MAC层信令、物理层DCI信令、预设方法配置。进一步地,所述参数可以通过上述信令中的RMSI、OSI、SI广播中的至少一种方式获得。也就是说,进行小区选择的门限值,与,进行小区中载波选择的门限值,分别进行独立配置。
通过本实施例,解决了UE在SUL载波上进行随机接入过程所涉及的一系列相关问题。
本发明的实施例还提供了一种用户设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行本发明实施例任一项所述的方法。
本发明的实施例还提供了一种存储介质,该存储介质存储有计算机程序,其中,上述计算机程序被处理器运行时执行本发明实施例任一项所述的方法。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:在小区中配置的L个上行载波中其中一个上行载波上进行随机接入;其中,L为大于或等于1的正整数,所述上行载波包括以下至少之一:Non-SUL载波、SUL载波。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本发明的实施例还提供了一种处理器,该处理器用于运行计算机程序, 其中,该计算机程序运行时执行上述任一项方法中的步骤。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (25)

  1. 一种随机接入方法,包括:
    传输设备在小区中配置的L个上行载波中其中一个上行载波上进行随机接入;
    其中,L为大于或等于1的正整数,所述上行载波包括以下至少之一:非补充的上行链路Non-SUL载波、补充的上行链路SUL载波。
  2. 根据权利要求1所述的方法,其中,所述小区配置的L个上行载波中有SUL载波时,采用以下方式至少之一确定用于进行物理随机接入信道PRACH接入过程的上行载波:
    所述传输设备基于测量到的参考信号接收功率RSRP值和/或第一RSRP门限值,确定所述用于进行PRACH接入过程的上行载波;所述RSRP值和/或第一RSRP门限值基于测量下行资源上传输的特定测量信号得到;
    所述传输设备基于信令指示的载波信息,确定所述用于进行PRACH接入过程的上行载波;
    所述传输设备基于默认的或预定义的信息,确定所述用于进行PRACH接入过程的上行载波。
  3. 根据权利要求2所述的方法,其中,所述特定测量信号包括以下至少之一:同步信息块SSB、信道状态信息参考信号CSI-RS、主同步信号PSS、辅同步信号SSS、物理广播信道PBCH。
  4. 根据权利要求2所述的方法,其中,所述基于测量到的RSRP值和/或第一RSRP门限值,确定所述用于进行PRACH接入过程的上行载波,包括以下至少之一:
    将所述测量到的RSRP值与第一RSRP门限值进行比较;
    在所述测量到的RSRP值小于或等于所述第一RSRP门限值时,选择SUL载波或Non-SUL载波;
    在所述测量到的RSRP值大于或等于所述第一RSRP门限值时,选择Non-SUL载波或SUL载波。
  5. 根据权利要求2或4所述的方法,其中,所述第一RSRP门限值通过以下方式的至少之一确定:
    基于小区选择的第二门限值和偏移量确定所述第一RSRP门限值;
    基于预定义、通知或指示信息确定或获得所述第一RSRP门限值。
  6. 根据权利要求5所述的方法,其中,所述通知或指示信息包括以下至少之一:高层无线资源控制RRC信令、物理层下行控制信息DCI信令、物理层MAC信令、剩余最小系统信息RMSI、系统消息SI、其他系统消息OSI。
  7. 根据权利要求5所述的方法,其中,所述基于小区选择的第二门限值和偏移量确定所述第一RSRP门限值,包括以下之一:
    基于小区选择的第二门限值加上一个偏移量确定所述第一RSRP门限值;
    基于小区选择的第二门限值减去一个偏移量确定所述第一RSRP门限值。
  8. 根据权利要求5或7所述的方法,其中,所述传输设备确定或获取以下参数的至少之一:第一RSRP门限值、偏移量、第二门限值、用于进行小区选择所需的参数,通过以下至少之一方式:
    根据第一套参数确定小区选择的第二门限,根据第二套参数确定小区中用于进行载波选择的第一RSRP门限,其中,相对于第一套参数,第二套参数中包括偏移量参数;
    第一套参数被共享用于进行小区选择和进行小区中载波选择,其中,所述第一套参数在进行小区中的载波选择时,配置独立偏移量参数。
  9. 根据权利要求8所述的方法,其中,所述第一套参数和/或第二套参 数中的至少之一参数,通过以下至少方式之一获取:
    高层RRC信令、MAC层信令、物理层DCI信令、预设配置、RMSI、其他系统消息OSI、系统消息SI。
  10. 根据权利要求1至9中任一项所述的方法,其中,所述传输设备在上行载波上进行随机接入,包括:
    当在上行载波上传输前导Preamble码的失败次数达到特定传输次数时,所述传输设备在按照特定规则确定的上行载波上进行PRACH接入或Preamble码的传输。
  11. 根据权利要求10所述的方法,其中,所述方法还包括:
    当在配置或选择的上行载波上传输Preamble码的失败次数达到特定传输次数时,Preamble计数器按照以下至少之一方法处理:
    保留当前Preamble计数器的值;
    将Preamble计数器置为初始值。
  12. 根据权利要求10或11所述的方法,其中,所述方法还包括:在所述传输设备在按照特定规则确定的上行载波上进行PRACH接入或Preamble码的传输之前,Preamble计数器按照以下至少之一方法处理:
    将保留的Preamble计数器值作为切换后载波上的Preamble计数器的初始值;
    切换后载波上的Preamble计数器的初始值为默认的初始值;
    切换后载波上的Preamble计数器的初始值为所述保留的Preamble计数器值减去或加上第一回退值的所得值。
  13. 根据权利要求10至12任一项所述的方法,其中,所述方法还包括:
    当在配置或选择的上行载波上传输Preamble码的失败次数达到特定传输次数时,发送Preamble的功率按照以下至少之一方法处理:
    保留当前发送Preamble的功率;
    将Preamble码的发送功率置为初始值。
  14. 根据权利要求10或13所述的方法,其中,所述方法还包括:
    在所述传输设备在按照特定规则确定的上行载波上进行PRACH接入或Preamble码的传输之前,发送Preamble码的功率按照以下至少之一方法处理:
    将保留的Preamble码的发送功率作为切换后载波上发送Preamble的初始发送功率;
    切换后载波上的发送Preamble码的初始发送功率为默认的初始值;
    切换后载波上发送Preamble码的功率为保留的发送Preamble码的功率加上或减去第二回退值。
  15. 根据权利要求10所述的方法,其中,所述方法还包括:
    切换后载波上的功率调整步长按照以下至少之一方法处理:
    所述功率调整步长为当前载波上配置的值;
    所述功率调整步长为切换前载波上功率调整步长加上或减去一个调整量;
    所述功率调整步长为当前载波上配置的值加上或减去一个调整量;
    所述功率调整步长为切换前载波上的功率调整步长。
  16. 根据权利要求10所述的方法,其中,所述方法还包括:
    切换后载波上的Preamble码传输次数为以下至少之一:
    所述Preamble码传输次数为当前载波上配置的值;
    所述Preamble码传输次数为特定传输次数;
    所述Preamble码传输次数为Preamble码最大传输次数;
    所述Preamble码传输次数为Preamble码最大传输次数与切换前载波上的配置的Preamble码重传次数相减的所得值;
    其中,在切换前载波上的配置的Preamble码重传次数小于Preamble码 最大传输次数时,所述Preamble码传输次数为以下之一:
    所述Preamble码传输次数为切换前载波上Preamble码传输的传输次数加上或减去第三回退值;
    所述Preamble码传输次数为当前载波上配置的值加上或减去第三回退值;
    所述Preamble码传输次数为Preamble码最大传输次数加上或减去第三回退值。
  17. 根据权利要求10所述的方法,其中,所述特定规则包括以下至少之一:
    根据在下行资源上测量得到的RSRP值和/或第一RSRP门限值,确定所述用于进行PRACH接入过程的上行载波;
    切换到小区中配置的另一个上行载波上;
    切换到配置传输物理上行控制信道PUCCH和/或物理上行共享信道PUSCH的上行载波上;
    切换到默认的或优先级满足预设要求的上行载波上。
  18. 根据权利要求11或13所述的方法,其中,所述特定传输次数包括以下之一:
    所述特定传输次数为大于Preamble码最大传输次数的值,所述特定传输次数为等于Preamble码最大传输次数的值,所述特定传输次数为小于Preamble码最大传输次数的值。
  19. 根据权利要求1所述的方法,其中,在上行载波上进行PRACH接入过程中,在随机接入无线网络临时标识RA-RNTI相同时,通过以下至少之一方式处理:
    在不同传输设备在不同上行载波上相同的PRACH资源上发送Preamble码时,通过以下至少之一处理:
    通过在RA-RNTI中携带载波索引;
    通过在RA-RNTI中携带PRACH occasion索引;
    通过将不同载波上PRACH频域资源进行统一编号方式,不同载波上计算RA-RNTI所用的f_id取值或取值范围不同;
    在一个载波上配置一个或多个部分带宽BWP时,通过以下至少之一方式处理:
    通过在RA-RNTI中携带部分带宽索引;
    通过在RA-RNTI中携带载波索引;
    通过在RA-RNTI中携带PRACH occasion索引;
    通过将不同BWP上PRACH频域资源进行统一编号方式,不同BWP上计算RA-RNTI所用的f_id取值或取值范围不同;
    在不同载波间,每个载波上配置一个或多个BWP时,通过以下至少之一方式处理:
    通过将不同载波上的BWP进行统一编号方式,并在RA-RNTI中携带载波索引;
    通过在RA-RNTI中携带部分带宽索引;
    通过在RA-RNTI中携带载波索引;
    通过在RA-RNTI中携带PRACH occasion索引;
    通过将不同载波上的BWP上PRACH频域资源进行统一编号方式,不同BWP上计算RA-RNTI所用的f_id取值或取值范围不同。
  20. 根据权利要求1至19中任一项所述的方法,其中,若小区中配置有SUL载波,包括以下至少之一:
    对于Non-SUL载波和SUL载波,分别配置以下至少之一通信参数:
    Preamble码计数器、功率调整步长、发送Preamble码的功率、Preamble码传输次数、Preamble码格式、子载波间隔SCS、BWP、PRACH时域资源、 PRACH occasion、PRACH频域资源起点、PRACH频域资源数、PRACH频域偏移量、第一回退值、第二回退值、第三回退值;
    对于Non-SUL载波和SUL载波,配置或初始化公共参数,所述公共参数可以为以下至少之一:Preamble码计数器、功率调整步长、发送Preamble码的功率、Preamble码传输次数、Preamble码格式、SCS、BWP、PRACH时域资源、PRACH occasion、PRACH频域资源起点、PRACH频域资源数、PRACH频域偏移量、第一回退值、第二回退值、第三回退值,其中,所述公共参数中未配置的参数独立配置。
  21. 根据权利要求20所述的方法,其中,所述通信参数通过以下方式中至少之一配置:高层RRC信令、系统消息SI、剩余系统消息RMSI、其他系统消息OSI、物理层DCI信令、预定义方式、MAC层信令。
  22. 一种用户设备,包括:
    通信模块,配置为在小区中配置的L个上行载波中其中一个上行载波上进行随机接入;
    其中,L为大于或等于1的正整数,所述上行载波包括以下至少之一:非补充的上行链路Non-SUL载波,补充的上行链路SUL载波。
  23. 一种存储介质,所述存储介质存储有计算机程序,其中,所述计算机程序被处理器运行时执行权利要求1至21中任一项所述的方法。
  24. 一种处理器,所述处理器用于运行计算机程序,其中,所述计算机程序运行时执行权利要求1至21中任一项所述的方法。
  25. 一种用户设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行权利要求1至21中任一项所述的方法。
PCT/CN2018/117521 2017-11-24 2018-11-26 随机接入方法、用户设备和存储介质 WO2019101201A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18881856.1A EP3716719A4 (en) 2017-11-24 2018-11-26 DIRECT ACCESS METHOD, USER DEVICE AND STORAGE MEDIUM
US16/766,806 US11310840B2 (en) 2017-11-24 2018-11-26 Random access method, user equipment, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711213789.9A CN109842953A (zh) 2017-11-24 2017-11-24 随机接入方法及用户设备
CN201711213789.9 2017-11-24

Publications (1)

Publication Number Publication Date
WO2019101201A1 true WO2019101201A1 (zh) 2019-05-31

Family

ID=66631372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117521 WO2019101201A1 (zh) 2017-11-24 2018-11-26 随机接入方法、用户设备和存储介质

Country Status (4)

Country Link
US (1) US11310840B2 (zh)
EP (1) EP3716719A4 (zh)
CN (1) CN109842953A (zh)
WO (1) WO2019101201A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112203288A (zh) * 2019-07-08 2021-01-08 中国移动通信集团浙江有限公司 Sul网络规划方法、装置、设备和存储介质
GB2592061A (en) * 2020-02-14 2021-08-18 Nec Corp Communication system
WO2021170110A1 (zh) * 2020-02-28 2021-09-02 华为技术有限公司 一种通信方法及装置
EP4008145A4 (en) * 2019-08-02 2023-03-15 QUALCOMM Incorporated CARRIER SWITCHING TECHNIQUES FOR TWO-STAGE RANDOM ACCESS
US11910213B2 (en) * 2017-08-10 2024-02-20 Samsung Electronics Co., Ltd. Method and apparatus for uplink transmission in wireless communication system

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3923510B1 (en) * 2017-09-08 2023-08-09 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method, network device, and terminal device
WO2019126953A1 (zh) * 2017-12-25 2019-07-04 北京小米移动软件有限公司 功率余量报告传输方法和装置
EP3698595A4 (en) 2018-01-11 2020-12-16 Samsung Electronics Co., Ltd. FREQUENCY DOMAIN OFFSET PARAMETER DETERMINATION PROCESS, USER EQUIPMENT (EU), RANDOM ACCESS PROCEDURE, RANDOM ACCESS INFORMATION CONFIGURATION, CORRESPONDING DEVICE, AND COMPUTER READABLE SUPPORT
EP3758426B1 (en) * 2018-02-20 2023-06-28 Ntt Docomo, Inc. Terminal and base station apparatus
CN111278142A (zh) * 2019-01-25 2020-06-12 维沃移动通信有限公司 一种随机接入方法及终端
US11368907B2 (en) * 2019-01-29 2022-06-21 Google Llc Adaptive connection management for marginal network conditions
CN110337152B (zh) * 2019-06-11 2022-09-23 华为技术有限公司 一种配置sul的方法及通信装置
CN112118626B (zh) * 2019-06-19 2022-08-30 中国电信股份有限公司 上行载波配置方法、装置和系统
WO2021017016A1 (zh) * 2019-08-01 2021-02-04 Oppo广东移动通信有限公司 随机接入方法及相关设备
CN114342496A (zh) * 2019-11-20 2022-04-12 Oppo广东移动通信有限公司 一种上行接入方法、电子设备及存储介质
CN112839380A (zh) * 2019-11-22 2021-05-25 北京三星通信技术研究有限公司 发送上行链路信号的方法和设备
US11109299B2 (en) 2019-12-12 2021-08-31 Google Llc Adaptive public land mobile network management for varying network conditions
CN114124323A (zh) * 2020-08-28 2022-03-01 中兴通讯股份有限公司 一种随机接入方法、装置及系统、存储介质、电子装置
WO2023211086A1 (ko) * 2022-04-27 2023-11-02 엘지전자 주식회사 방송 채널 및 임의 접속 채널을 송수신하는 방법 및 이를 위한 장치
WO2023221029A1 (en) * 2022-05-19 2023-11-23 Huawei Technologies Co.,Ltd. Systems and methods for a multi-link serving cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102014497A (zh) * 2009-11-19 2011-04-13 大唐移动通信设备有限公司 上下行成员载波对应关系的配置方法、系统和设备
CN103037441A (zh) * 2009-05-07 2013-04-10 电信科学技术研究院 一种确定上行载波资源的方法和系统
WO2016175631A1 (en) * 2015-04-30 2016-11-03 Lg Electronics Inc. Method and apparatus for configuring random access channel in short tti or contention based uplink transmission in wireless communication system
CN106686727A (zh) * 2015-11-05 2017-05-17 中兴通讯股份有限公司 多载波的竞争接入方法、装置及系统
CN106993335A (zh) * 2016-01-21 2017-07-28 中兴通讯股份有限公司 前导码发送、接收方法、装置、用户设备及基站

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102238750A (zh) * 2010-04-23 2011-11-09 中兴通讯股份有限公司 无线资源控制连接重建触发方法及装置
CN102325382B (zh) * 2011-06-30 2016-01-20 电信科学技术研究院 随机接入方法和设备
CN103327520A (zh) * 2012-03-19 2013-09-25 北京三星通信技术研究有限公司 测量小区参考信号的接收质量的方法及设备
JP5864691B1 (ja) * 2014-09-25 2016-02-17 株式会社Nttドコモ ユーザ端末、無線通信方法及び無線通信システム
WO2018171194A1 (zh) * 2017-10-30 2018-09-27 北京小米移动软件有限公司 随机接入方法及装置
EP3711427A1 (en) * 2017-11-18 2020-09-23 Lenovo (Singapore) Pte. Ltd. Random access configuration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103037441A (zh) * 2009-05-07 2013-04-10 电信科学技术研究院 一种确定上行载波资源的方法和系统
CN102014497A (zh) * 2009-11-19 2011-04-13 大唐移动通信设备有限公司 上下行成员载波对应关系的配置方法、系统和设备
WO2016175631A1 (en) * 2015-04-30 2016-11-03 Lg Electronics Inc. Method and apparatus for configuring random access channel in short tti or contention based uplink transmission in wireless communication system
CN106686727A (zh) * 2015-11-05 2017-05-17 中兴通讯股份有限公司 多载波的竞争接入方法、装置及系统
CN106993335A (zh) * 2016-01-21 2017-07-28 中兴通讯股份有限公司 前导码发送、接收方法、装置、用户设备及基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3716719A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11910213B2 (en) * 2017-08-10 2024-02-20 Samsung Electronics Co., Ltd. Method and apparatus for uplink transmission in wireless communication system
CN112203288A (zh) * 2019-07-08 2021-01-08 中国移动通信集团浙江有限公司 Sul网络规划方法、装置、设备和存储介质
CN112203288B (zh) * 2019-07-08 2022-09-06 中国移动通信集团浙江有限公司 Sul网络规划方法、装置、设备和存储介质
EP4008145A4 (en) * 2019-08-02 2023-03-15 QUALCOMM Incorporated CARRIER SWITCHING TECHNIQUES FOR TWO-STAGE RANDOM ACCESS
GB2592061A (en) * 2020-02-14 2021-08-18 Nec Corp Communication system
WO2021170110A1 (zh) * 2020-02-28 2021-09-02 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
US11310840B2 (en) 2022-04-19
EP3716719A4 (en) 2020-12-02
US20210022176A1 (en) 2021-01-21
EP3716719A1 (en) 2020-09-30
CN109842953A (zh) 2019-06-04

Similar Documents

Publication Publication Date Title
WO2019101201A1 (zh) 随机接入方法、用户设备和存储介质
US11330503B2 (en) Wireless communications over unlicensed radio frequency spectrum
US11601982B2 (en) Random access method and apparatus
US11683208B2 (en) Different numerology for signal transmission
CN108781431B (zh) 用于针对发现信号传输调度寻呼消息的网络节点、方法和计算机程序产品
US11309989B2 (en) Terminal apparatus and method
RU2687033C1 (ru) Передача ответного сообщения произвольного доступа
RU2663220C1 (ru) Беспроводное устройство, первый сетевой узел и способы в них
US9281931B2 (en) Apparatus and method for receiving a control channel in a multi-component carrier system
US11206693B2 (en) Method and apparatus for transmitting and receiving a signal in a wireless communication system
US20240205904A1 (en) Data and control channels in synchronization bursts for millimeter wave new radio
US20180220465A1 (en) Method for reporting transmission mode and ue
US11641669B2 (en) Apparatus and methods for LBT in a BWP
JP2019537896A (ja) ピーク対平均電力比低減のための同期信号送信技法
CN108370536B (zh) 网络节点、无线装置、方法和计算机程序
WO2019242461A1 (zh) 信息传输的方法及装置
US10659912B2 (en) Method, device and communication system for processing common search area
US20210045042A1 (en) Terminal apparatus, base station apparatus, and communication method
CN110944341A (zh) 由用户设备执行的方法以及用户设备
EP3372040A1 (en) System and method for listen before talk-based random access with partial subframes
US12010721B2 (en) Initial signal detection method and apparatus
JP2020031353A (ja) 端末装置、基地局装置、および、通信方法
US20230239091A1 (en) Method of configuring and indicating beam information for m-trp communication in wireless communication system
WO2017118177A1 (zh) 确定随机接入无线网络临时标识的方法、用户设备和基站
KR20210063411A (ko) 리소스 정보 결정 방법 및 장치, 저장 매체, 및 사용자 기기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018881856

Country of ref document: EP

Effective date: 20200624