WO2022063025A1 - 由用户设备执行的方法以及用户设备 - Google Patents

由用户设备执行的方法以及用户设备 Download PDF

Info

Publication number
WO2022063025A1
WO2022063025A1 PCT/CN2021/118750 CN2021118750W WO2022063025A1 WO 2022063025 A1 WO2022063025 A1 WO 2022063025A1 CN 2021118750 W CN2021118750 W CN 2021118750W WO 2022063025 A1 WO2022063025 A1 WO 2022063025A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdsch
time slot
time
downlink
symbol
Prior art date
Application number
PCT/CN2021/118750
Other languages
English (en)
French (fr)
Inventor
马小骏
刘仁茂
Original Assignee
夏普株式会社
马小骏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 马小骏 filed Critical 夏普株式会社
Publication of WO2022063025A1 publication Critical patent/WO2022063025A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present invention relates to the technical field of wireless communication, and in particular, to a method performed by a user equipment and a corresponding user equipment.
  • enhanced mobile broadband eMBB
  • massive machine-type communication mMTC
  • ultra-reliable and low Delay service Ultra-Reliable and Low Latency communication, URLLC
  • TSC time-sensitive communication
  • 5G connectivity can serve as a catalyst for the next wave of industrial transformation and digitization, enhancing flexibility, increasing productivity and efficiency, reducing maintenance costs, improving operational safety, and more.
  • Devices in this environment include pressure sensors, humidity sensors, thermometers, motion sensors, accelerometers, actuators, and the like. These sensors and actuators need to be connected to the 5G radio access network and core network.
  • Large-scale industrial wireless sensor network (IWSN) use cases and requirements are described in documents such as TR 22.804, which include, in addition to URLLC services with very high demand, relatively low-end services that require smaller size, and/or wireless Years of battery life in state. The requirements for these services are higher than LPWA (Low Power Wide Area Network), but lower than URLCC and eMBB.
  • LPWA Low Power Wide Area Network
  • 5G connectivity can be a catalyst for the next wave of smart city innovation.
  • TSR 22.804 describes smart city use cases and requirements. Smart cities vertically cover data collection and processing, which can more effectively monitor and control urban resources and provide services to urban residents. In particular, the deployment of surveillance cameras is an important part of smart cities, as well as factories and industries.
  • wearable devices include smart watches/rings, eHealth related devices, medical monitoring devices, etc.
  • a feature of this scenario is the compact size of the device required.
  • Device complexity The primary motivation for the new device type is to reduce device cost and complexity compared to eMBB and URLLC devices. This is especially the case with industrial sensors.
  • ⁇ Deployment scenario The system should support all FR1/FR2 bands for FDD and TDD.
  • ⁇ Industrial Wireless Sensors Reference use cases and requirements are described in TR 22.832 and TS 22.104: Communication service availability is 99.99% and end-to-end latency is less than 100ms.
  • the reference bit rate is less than 2Mbps (possibly asymmetric, such as upstream heavy load), and is stable for all use cases and devices.
  • the battery should last at least a few years. For safety-related sensors, latency requirements are lower, 5-10ms (TR22.804)
  • ⁇ Video surveillance In TSR 22.804, the reference economic video bit rate is 2-4Mbps, the delay is less than 500ms, and the reliability is 99%-99.9%. High-end video, such as agriculture requires 7.5-25Mbps. The business model may be UL transmission dominated.
  • the reference bit rate for smart wearable applications can be 5-50 Mbps, and in DL, a minimum of 2-5 Mbps. Devices have higher peak bit rates, say up to 150Mbps downlink, up to 50Mbps uplink. The device's battery should last 1-2 weeks.
  • New demand scenarios put forward more requirements for network transmission, especially when terminal devices need to obtain business matching under the constraints of smaller size, lower processing complexity, fewer antennas, and smaller bandwidth Therefore, it is necessary to improve the existing air interface resource allocation method and channel transmission method.
  • the present invention provides a method performed by a user equipment and the user equipment, which can effectively determine the time-frequency resource position of the PDSCH in one or more time slots.
  • a method performed by a user equipment UE comprising: receiving indication information for determining the position of a time-frequency resource for transmitting a physical downlink shared channel PDSCH; and determining, according to the indication information, that the PDSCH is in a time-frequency resources in one or more time slots, the indication information includes: a parameter used to determine the position of a symbol used to transmit the PDSCH in one or more time slots; and a parameter of the transport block carried by the PDSCH zoom factor.
  • the method further comprises: using an arithmetic operation of the parameter and the scaling factor to determine the number of consecutive time slots for transmitting the PDSCH.
  • the arithmetic operation is a combination of one or more of product operation, taking a maximum value or taking a minimum value.
  • the parameter is determined according to a physical random access channel PRACH sequence.
  • the method further includes: when the time slot corresponding to the symbol position determined by the parameter is a part of the downlink time slot, determining whether the time slot is used to transmit the PDSCH according to the symbol configuration of the time slot.
  • the method further includes: if the determined symbol positions are not all configured as downlink symbols based on the symbol configuration of the time slot, the PDSCH is not transmitted using the time slot.
  • the method further includes: when the time slot corresponding to the symbol position determined by the parameter is a part of the downlink time slot, according to the available resource rate on the time slot or the downlink symbol on the time slot, the transport block size is borne The corresponding code rate is used to determine whether the time slot is used to transmit the PDSCH.
  • the method further comprises: not performing the mapping of the data of the PDSCH at the symbol positions in the time slot that are not configured as downlink symbols.
  • the method further comprises: determining the transmission of the physical uplink shared channel PUSCH according to the determined last symbol of the first or last PDSCH time slot.
  • a user equipment which includes: a processor; and a memory storing instructions; wherein the instructions execute the above method when executed by the processor.
  • the time-frequency resource position of the PDSCH in one or more time slots can be effectively determined.
  • FIG. 1 is a flow chart illustrating a method performed by a user equipment of the present invention.
  • FIG. 2 is a flowchart illustrating a method performed by a user equipment according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram of a first example of performing PDSCH resource mapping on symbols indicated by slots.
  • FIG. 4 is a schematic diagram of a second example of performing PDSCH resource mapping on symbols indicated by slots.
  • FIG. 5 is a block diagram showing a user equipment UE according to the present invention. .
  • the following uses the 5G/NR mobile communication system and its subsequent evolution versions as an example application environment to specifically describe various embodiments according to the present invention.
  • the present invention is not limited to the following embodiments, but can be applied to more other wireless communication systems, such as communication systems after 5G, 4G mobile communication systems before 5G, 802.11 wireless networks, and the like.
  • LTE Long Term Evolution, long term evolution technology
  • UE User Equipment, user equipment
  • eNB evolved NodeB, evolved base station
  • gNB NR base station
  • TTI Transmission Time Interval, transmission time interval
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • CP-OFDM Cyclic Prefix Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing with Cyclic Prefix
  • C-RNTI Cell Radio Network Temporary Identifier, the temporary identifier of the cell wireless network
  • CSI Channel State Information, channel state information
  • CSI-RS Channel State Information Reference Signal, channel state information reference signal
  • CRS Cell Reference Signal, cell-specific reference signal
  • PUCCH Physical Uplink Control Channel, physical uplink control channel
  • PUSCH Physical Uplink Shared Channel, physical uplink shared channel
  • PRACH Physical random-access channel, physical random access channel
  • PDSCH Physical downlink shared channel, physical downlink shared channel
  • PDCCH Physical downlink control channel, physical downlink control channel
  • UL-SCH Uplink Shared Channel, uplink shared channel
  • DL-SCH Downlink Shared Channel, uplink shared channel
  • RACH random-access channel, random access channel
  • DCI Downlink Control Information, downlink control information
  • MCS Modulation and Coding Scheme, modulation and coding scheme
  • RB Resource Block, resource block
  • CRB Common Resource Block, common resource block
  • CP Cyclic Prefix, cyclic prefix
  • PRB Physical Resource Block, physical resource block
  • VRB Virtual resource block, virtual resource block
  • FDM Frequency Division Multiplexing, frequency division multiplexing
  • TDD Time Division Duplexing
  • FDD Frequency Division Duplexing, frequency division duplexing
  • RRC Radio Resource Control
  • RSRP Reference Signal Receiving Power, reference signal receiving power
  • SRS Sounding Reference Signal, sounding reference signal
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • CSI-RS Channel state information reference signal
  • CRC Cyclic Redundancy Check, Cyclic Redundancy Check
  • SIB system information block, system information block
  • SIB1 System Information Block Type 1, system information block type 1
  • PSS Primary Synchronization Signal, the main synchronization signal
  • SSS Secondary Synchronization Signal, secondary synchronization signal
  • SSB Synchronization Signal Block, synchronization system information block
  • BWP BandWidth Part, Bandwidth Fragment/Part
  • SFN System Frame Number, system (wireless) frame number
  • PCI Physical Cell ID, physical cell identification
  • EN-DC EUTRA-NR Dual Connection, LTE-NR dual connection
  • MCG Master Cell Group, the main cell group
  • SCG Secondary Cell Group, secondary cell group
  • PCell Primary Cell, the main cell
  • SCell Secondary Cell, secondary cell
  • SPS Semi-Persistant Scheduling, semi-static scheduling
  • PT-RS Phase-Tracking Reference Signals, phase tracking reference signal
  • Transport Block transport block
  • TBS Transport Block Size, transport block size
  • CB Code Block, coding block/code block
  • QPSK Quadrature Phase Shift Keying, quadrature phase shift keying
  • 16/64/256 QAM 16/64/256 Quadrature Amplitude Modulation, Quadrature Amplitude Modulation
  • AGC Auto Gain Control, automatic gain control
  • ARFCN Absolute Radio Frequency Channel Number, absolute radio frequency channel number
  • CORESET Control resource set, control resource set
  • CCE Control channel element, control channel element
  • MIB Master Information Block, the main information block
  • UCI Uplink Control Information, uplink control information
  • SCS sub-carrier spacing, sub-carrier spacing
  • RIV Resource indicator value, resource indicator value
  • SS-RSRP Synchronization Signal Reference Signal Received Power, synchronization reference signal received power
  • SS-RSRQ Synchronization Signal Reference Signal Received Quality, synchronization reference signal received quality
  • a network device is a device that communicates with a terminal, including but not limited to base station devices, gNBs, eNBs, wireless APs, etc., which are not specifically distinguished and limited in the following.
  • the network device determines the allocation of uplink and downlink resources on the bandwidth through a certain time slot structure.
  • the network configuration uses two bandwidths for the transmission of uplink and downlink services for paired spectrum frequency bands respectively, and uses one bandwidth for transmission of uplink and downlink services for unpaired spectrum frequency bands.
  • the uplink and downlink occupy different transmission periods, and the network
  • the uplink and downlink service transmission is indicated by configuring the time slot structure.
  • a unit of time-frequency resources in NR is a time slot, and a time slot contains 14 (Normal CP scenario) or 12 (Extended CP scenario) OFDM symbols. Depending on the subcarrier spacing, several time slots can be framed.
  • the base station can configure uplink, downlink or flexible transmission status for each time slot or symbol in units of half, one or more frames. For example, the base station can determine the transmission status of each symbol on the time slot by configuring parameters such as tdd-UL-DL-ConfigurationCommon or tdd-UL-DL-ConfigurationDedicated or SFI.
  • the terminal determines, according to the configuration, that the symbols in a time slot are used for uplink transmission, or downlink transmission, or flexible transmission, or some symbols of the time slot are in one of the above states.
  • the resources within a time slot can be further divided into resource blocks and resource units.
  • the resource block RB can be defined in the frequency domain as consecutive sub-carriers, eg for a sub-carrier spacing (SCS) of 15 kHz, the RB is 180 kHz in the frequency domain.
  • SCS sub-carrier spacing
  • the resource element RE represents 1 subcarrier in the frequency domain and 1 OFDM symbol in the time domain.
  • can take an integer value from 0 to 4 under different configurations.
  • the network device indicates the behavior of the terminal by sending DCI information to the terminal.
  • the network device can use the DCI format 0_0/0_1/0_2 for uplink data transmission scheduling, and can also use the DCI format 1_0/1_1/1_2 and other formats for downlink data transmission.
  • the DCI message includes but is not limited to the specific types mentioned above, and may be extended or changed, but does not affect the implementation of the method involved in the present invention.
  • DCI information is transmitted using the PDCCH channel.
  • the terminal decodes the corresponding DCI by receiving the PDCCH, and performs data transmission according to the indication of the DCI.
  • the DCI in the PDCCH can use some scrambling methods to enable a specific terminal to correctly decode the DCI.
  • the DCI used to indicate service transmission usually contains an indication that the transmitted data service uses the time-frequency resources of the PDSCH, which may specifically include the symbol length occupied by the data transmission, the frequency domain position occupied by the data transmission, and the location of the data transmission and the current DC. time slot interval, etc.
  • the terminal device accesses the network by sending the RACH signal to the base station.
  • the terminal can send the RACH signal on a specific time-frequency resource, and after receiving the RACH signal, the base station sends the PDCCH signal and the PDSCH signal to the terminal within a certain time window.
  • the PDCCH signal indicates the transmission parameters of the PDSCH signal
  • the PDSCH signal indicates the parameters for the terminal to perform uplink transmission.
  • the performance of downlink received signals may be degraded, and the terminal cannot normally access the network for data communication.
  • the method proposed in the present invention can be used for the terminal to determine the transmission resources of at least one PDSCH signal and the corresponding PUSCH transmission resources, so as to achieve better reception performance or meet the coverage requirements of the cell under the capability requirements of the terminal, etc. communication needs of the network.
  • FIG. 1 is a schematic block diagram illustrating the method performed by the user equipment of the present invention.
  • step 101 the UE performs signal reception of PDCCH and PDSCH according to certain rules using parameters configured by the network side.
  • the terminal receives the PDSCH signal according to the content indicated by the DCI carried in the PDCCH.
  • the frequency domain resource assignment (Frequency domain resource assignment) is used to determine the frequency domain location of the resources used for PDSCH transmission
  • the time domain resource assignment (Time domain resource assignment) is used to determine the time slot and symbol location of the PDSCH transmission resources, etc. parameter.
  • VRB-to-PRB mapping (VRB-to-PRB mapping) is used to determine the resource mapping mode of PDSCH.
  • the modulation and coding scheme is used to determine parameters such as modulation and coding of the information carried on the PDSCH, and TB scaling is used to calculate the TBS parameters carried on the configured time-frequency resources.
  • the lower bits of the SFN (LSBs of SFN) are used for part of the SFN field when the shared spectrum channel is accessed. Reserved bits are reserved fields.
  • the information indicated in the time domain resource configuration includes parameters such as time slot information and symbol information used for PDSCH transmission.
  • the time slot information takes the time slot where the PDCCH is located as a reference point, and the terminal device determines the time slot number where the PDSCH resource is located according to the time slot delay indicated in the time domain resource configuration.
  • the time domain resource configuration also indicates the symbol positions used by PDSCH in one slot.
  • TB scaling is used to calculate the transport block size carried by PDSCH.
  • TB scaling supports multiple values, corresponding to different scaling factors S.
  • the TB scaling configuration is 00
  • the corresponding scaling factor S is 1
  • the TB scaling configuration is 01
  • the corresponding scaling factor S is 0.5
  • the TB scaling configuration is 10, and the corresponding scaling factor S is 0.25.
  • the scaling factor is used to determine the transport block size that a certain time-frequency resource block can carry. Generally, under the same time-frequency resource, the smaller the scaling factor used, the smaller the transport block TB that can be carried. Similarly, if a certain TB block needs to be transmitted, the smaller the scaling factor used, the more time-frequency resources need to be used for transmission.
  • the terminal determines the resource parameters of the PDSCH to be received according to the parameters indicated in the DCI and other indication information configured by the system, and receives the PDSCH information.
  • the PDSCH information includes an indication of the PUSCH resource.
  • the PDSCH includes the following information
  • the frequency hopping flag indicates the frequency hopping information of the PUSCH
  • the PUSCH frequency resource allocation indicates the frequency domain resource allocation information of the PUSCH
  • the PUSCH time resource allocation indicates the PUSCH Time slot and symbol parameters
  • MCS is used to determine the modulation and coding parameters of the content carried by PUSCH, etc.
  • the TPC command for PUSCH (TPC command for PUSCH) is used to adjust the transmit power of PUSCH.
  • CSI request (CSI request) is a reserved field.
  • ChannelAccess-CPext is used to indicate the presence of shared spectrum channel access.
  • the information indicated in the time resource allocation includes slot information and symbol information for PUSCH transmission.
  • the time slot information takes the time slot position of the PDSCH as a reference point, and determines the PUSCH according to the time slot delay indicated in the time resource allocation and other information, such as the subcarrier spacing parameter of PUSCH, the subcarrier spacing parameter of PDSCH, and additional delay parameters, etc.
  • FIG. 2 is a flowchart illustrating a method performed by a user equipment according to Embodiment 1 of the present invention.
  • the steps performed by the user equipment include step 201 and step 203 .
  • the UE receives, from the network device, indication information for determining the location of the time-frequency resource for transmitting the PDSCH.
  • the indication information is used to determine the time-frequency resource position of the PDSCH on one or more time slots.
  • the indication information determines the parameter M, and determines to perform PDSCH transmission on one or more time slots according to the symbol positions in the time slots indicated by the DCI.
  • the indication information is carried in the SIB information and is read by users in the cell.
  • the indication information is carried in the DCI information, and is read by a user who can decode the DCI information.
  • the value of M is a value in the set ⁇ 1, 2, 4, 8, 16, 32, 64 ⁇
  • the indication information is the enumeration sequence number of M.
  • M can also take other values, and the indication information can also use other methods to determine its value, and this embodiment does not limit its value range and indication method.
  • step 203 the UE determines the time-frequency resources of the PDSCH in one or more time slots according to the indication information.
  • the terminal device determines the time-frequency position of the PDSCH resource according to the indication information and the DCI information.
  • the terminal device determines the time-frequency position of the PDSCH resource according to the parameter M determined by the indication information and the scaling factor S indicated in the DCI.
  • the terminal uses the product N of M and S to determine the time-frequency position of the PDSCH resource.
  • N takes the value of 1. It is also possible to use other methods to obtain the value of N, such as determining the minimum or maximum value of N, and different operation combinations, etc.
  • the present invention does not limit the method used.
  • the terminal determines the PDSCH transmission resource symbols and frequency domain resource blocks on N consecutive available time slots starting from the PDSCH time slot indicated by the time-frequency resource information in the DCI.
  • the terminal device determines the time-frequency position of the PDSCH resource according to the received DCI type, indication information and DCI information.
  • the terminal device determines the time-frequency position of the PDSCH resource indicated by the DCI scrambled by the RA-RNTI according to the parameter M determined by the indication information and the scaling factor S indicated in the DCI.
  • the terminal uses the product N of M and S to determine the time-frequency position of the PDSCH resource.
  • N takes the value of 1.
  • the terminal determines the PDSCH transmission resource symbols and frequency domain resource blocks on N consecutive available time slots starting from the PDSCH time slot indicated by the time-frequency resource information in the DCI.
  • the base station can dynamically determine PDSCH resources according to current resources and information to be sent. For example, the current PDSCH resource is relatively idle, the base station can use a smaller S value, and accordingly use one or less time slots to transmit the PDSCH resource, thereby achieving a faster response. If the current PDSCH resource is used, the base station can use a larger S value, occupy less resources, and perform PDSCH resource transmission on multiple time slots, thereby achieving better performance.
  • the base station can send the PDSCH to multiple users.
  • users with different performances can use an S value to enable users with better performance to receive signals quickly when they occupy less time slot resources, and users with lower performance can also achieve expectations by receiving on multiple time slots. reception performance.
  • the base station may configure multiple M values for the terminal device, and the terminal device selects different M values according to the rules.
  • the terminal device determines different M values according to different PRACH sequences.
  • the base station indicates different PRACH packets, and corresponds to different M values.
  • the terminal selects different sequence groups, so that different M values can be determined.
  • the SS-RSRP measured by the terminal is greater than -80dBm
  • the RPACH sequence in the first group is used when random access is initiated, and the corresponding M value is determined.
  • SS-RSRP ⁇ -80dBm use the RPACH sequence in the second group when initiating random access, and determine the corresponding M value.
  • the terminal may also determine the use of the PRACH sequence according to other measurement values, such as SS-RSRQ, path loss value, and other quantities that can characterize downlink reception conditions.
  • the base station and terminal can determine the value of M to use based on the received or transmitted sequence.
  • the terminal device may determine the corresponding M value according to the terminal type, different PRACH formats or time-frequency positions or cyclic shifts.
  • the network can use unpaired spectrum for data transmission, and uplink and downlink transmissions use time division for multiplexing.
  • the network can configure some time slots as uplink time slots, and all symbols are used for uplink transmission; some time slots are configured as downlink time slots, and all symbols are used for downlink transmission. Some time slots are configured as part of downlink time slots, some symbols on the time slots are used for downlink transmission, and other symbols are not used for downlink transmission.
  • the terminal determines PDSCH resources on multiple time slots, and determines whether the time slots are available for PDSCH transmission.
  • the terminal determines whether the time slot is used for PDSCH transmission according to the time-frequency resource allocation indicated in the DCI.
  • the terminal determines that some downlink time slots are not used for PDSCH transmission.
  • the terminal determines whether the time slot is used for PDSCH transmission according to the symbol configuration of the time slot.
  • the symbol from the start symbol S to the length L is a downlink symbol, and the UE determines that the time slot can be used for PDSCH transmission.
  • the symbols from the start symbol S to the length L are not all downlink symbols, and the UE determines that the time slot is not used for PDSCH transmission.
  • each time slot contains 14 symbols, of which downlink symbols may occupy several symbols.
  • the starting symbol of the PDSCH indicated by the DCI is 2, and the symbol length is 10, that is, the DCI indicates that the PDSCH is transmitted on symbols 2-12.
  • the network configures downlink time slots, 14 symbols in the time slots are all downlink symbols, the terminal determines that 2-12 symbols can be used for downlink transmission, and the terminal determines that the time slot is used for PDSCH transmission.
  • the network configures an uplink time slot, 0 symbols in the time slot are downlink symbols, the terminal determines that 2-12 symbols are used for downlink transmission, and the terminal determines that the time slot is not used for PDSCH transmission.
  • the network configures some downlink time slots, and symbols 0-12 are downlink symbols.
  • the 2-12 symbols indicated by the DCI are used for downlink transmission, and the terminal determines part of the downlink time slots for PDSCH transmission.
  • the terminal determines that some downlink time slots are not used for PDSCH transmission.
  • the terminal determines the time slot for PDSCH transmission according to the available resource rate on the time slot.
  • the UE determines that not all symbols from the start symbol S to the length L in the time slot are downlink symbols, and determines that all the symbols from the start symbol S to the length K are downlink symbols.
  • the terminal determines that the effective resource in the K symbol is higher than the threshold T, and the UE determines that the time slot is used for PDSCH transmission.
  • Efficient resource usage in optional K symbols said, of which is the number of subcarriers in one RB. is the number of PDSCH symbols. It is the number of REs of DMRS on one RB whose data is not code-divided during scheduling.
  • the PDSCH configuration indicated in the DCI uses in is the number of subcarriers in one RB. is the number of PDSCH symbols. It is the number of REs of DMRS on one RB whose data is not code-divided during scheduling.
  • Other overhead parameters configured by the high layer, if not configured, the default is 0. If available resource rate The UE determines that the time slot is used for PDSCH transmission, otherwise the time slot is not used for PDSCH transmission.
  • the terminal determines the time slot for PDSCH transmission according to the code rate corresponding to the TBS carried by the uplink and downlink symbols in the time slot.
  • N info N RE ⁇ R ⁇ Q m ⁇ v ⁇ S, where Q m is the modulation order used for PDSCH transmission, and v is the number of layers used for PDSCH transmission.
  • N info is the TBS size
  • N RE min(156, N' RE ) ⁇ n PRB is the number of available resources corresponding to n PRBs on the time slot.
  • S is the scaling factor used by PDSCH, if not configured, the default is 1.
  • the R required for TBS transmission on the slot can be calculated.
  • the terminal determines the time slot for PDSCH transmission, otherwise the time slot does not carry out PDSCH transmission.
  • the terminal can obtain the closest MCS sequence number I according to the R and MCS table. If I is less than the threshold R I , the terminal determines the time slot to perform PDSCH transmission, otherwise the time slot does not perform PDSCH transmission.
  • the terminal determines N consecutive PDSCH time slots, excluding the determined unavailable time slots.
  • the terminal determines N consecutive PDSCH time slots, including the determined unavailable time slots, and does not perform PDSCH transmission on the unavailable time slots.
  • the terminal determines the coded version of the PDSCH transmitted on at least one time slot.
  • the same or different coding versions are used in a predetermined order on the time slots.
  • the terminal performs PDSCH transmission in the determined time slot, and determines the mapping of PDSCH resources on the time slot.
  • the DCI indicates the PDSCH starting symbol position, symbol length, RB position and size and other configurations, and the terminal determines the PDSCH mapping on the time slot according to the configuration parameters.
  • the UE determines that the symbols from the start symbol S to the symbol length L on the time slot for PDSCH transmission are downlink symbols, and the terminal performs PDSCH resource mapping on the symbols.
  • the terminal determines that the symbols from the start symbol to the symbol length on the time slot for PDSCH transmission are not all downlink symbols, and the terminal performs PDSCH resource mapping on some of the symbols.
  • the encoded PDSCH data is mapped on the downlink symbol resources first in the frequency domain and then in the time domain according to a predetermined rule.
  • the terminal determines the position of the DMRS and/or other reference signals according to the length of the PDSCH of the time slot and the configuration parameters, and performs PDSCH data mapping in the order of the frequency domain first and then the time domain at the non-DMRS or other reference signal positions. If the mapped symbols are not downlink symbols, no mapping of the encoded data is performed.
  • the terminal performs PDSCH resource mapping on some of the symbols. For example, the start symbol 2 to the symbol 9 on the determined time slot are downlink symbols, and the remaining symbols are not downlink symbols. Specifically as shown in Figure 4.
  • the terminal determines the location of the DMRS and/or other reference signals according to the downlink symbol length of the time slot and other parameters, such as DMRS type, etc.
  • the terminal performs PDSCH data mapping in a non-DMRS or other reference signal position in the order of frequency domain first and then time domain. If the mapped symbols are not downlink symbols, no mapping of the encoded data is performed.
  • the terminal determines the transmission resource of the uplink PUSCH according to the position of the PDSCH.
  • the terminal determines the location of the PUSCH resource according to the determined location of the last symbol of the first PDSCH time slot.
  • the terminal determines the time slot number of the PUSCH resource according to the time domain resource information indicated by the PDSCH and the determined time slot number where the last symbol of the first PDSCH time slot is located.
  • the time domain resource information determines a time slot offset, which is a unit of the time slot length determined by the SCS of the PUSCH.
  • the terminal determines the position of the last symbol of the first PDSCH time slot, determines the time slot number at this position of the time slot length unit corresponding to the SCS used by the PUSCH, and the time slot offset determined by the time domain resource information to determine The slot number of the PUSCH.
  • the terminal determines the position of the PUSCH resource according to the determined time slot number where the last symbol of the last PDSCH is located.
  • the terminal determines the time slot number of the PUSCH resource according to the time domain resource information indicated by the PDSCH and the determined time slot number where the last symbol of the last PDSCH time slot is located.
  • the time domain resource information determines a time slot offset, which is a unit of the time slot length determined by the SCS of the PUSCH.
  • the terminal determines the position of the last symbol of the last PDSCH, determines the slot number of the slot length unit corresponding to the SCS used by the PUSCH at this position, and the slot offset determined by the time domain resource information to determine the PUSCH time slot number.
  • FIG. 5 is used to illustrate a user equipment that can execute the method performed by the user equipment described in detail above in the present invention as a modification.
  • FIG. 5 is a block diagram showing a user equipment UE according to the present invention.
  • the user equipment UE50 includes a processor 501 and a memory 502 .
  • the processor 501 may include, for example, a microprocessor, a microcontroller, an embedded processor, or the like.
  • the memory 502 may include, for example, volatile memory (eg, random access memory RAM), a hard disk drive (HDD), non-volatile memory (eg, flash memory), or other memory, or the like.
  • the memory 502 has program instructions stored thereon. When the instructions are executed by the processor 501, the above-mentioned method described in detail in the present invention and executed by the user equipment can be executed.
  • the method and related apparatus of the present invention have been described above with reference to the preferred embodiments. Those skilled in the art can understand that the methods shown above are only exemplary, and the various embodiments described above can be combined with each other under the condition that no contradiction occurs.
  • the method of the present invention is not limited to the steps and sequences shown above.
  • the network node and user equipment shown above may include more modules, for example, may also include modules that can be developed or developed in the future and can be used for base stations, MMEs, or UEs, and so on.
  • the various identifiers shown above are only exemplary and not restrictive, and the present invention is not limited to the specific information elements exemplified by these identifiers. Numerous changes and modifications may occur to those skilled in the art in light of the teachings of the illustrated embodiments.
  • the above-described embodiments of the present invention may be implemented by software, hardware, or a combination of both.
  • the various components inside the base station and the user equipment in the above embodiments may be implemented by various devices, including but not limited to: analog circuit devices, digital circuit devices, digital signal processing (DSP) circuits, programmable processing Controllers, Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), Programmable Logic Devices (CPLDs), etc.
  • DSP digital signal processing
  • ASICs Application Specific Integrated Circuits
  • FPGAs Field Programmable Gate Arrays
  • CPLDs Programmable Logic Devices
  • base station may refer to a mobile communication data and control switching center with larger transmit power and wider coverage area, including functions such as resource allocation and scheduling, data reception and transmission, etc.
  • User equipment may refer to a user mobile terminal, for example, including a mobile phone, a notebook, and other terminal equipment that can wirelessly communicate with a base station or a micro base station.
  • embodiments of the invention disclosed herein may be implemented on a computer program product.
  • the computer program product is a product having a computer-readable medium on which computer program logic is encoded that, when executed on a computing device, provides relevant operations to achieve The above technical solutions of the present invention.
  • computer program logic When executed on at least one processor of a computing system, computer program logic causes the processor to perform the operations (methods) described in the embodiments of the present invention.
  • Such arrangements of the present invention are typically provided as software, code and/or other data structures arranged or encoded on a computer readable medium such as an optical medium (eg CD-ROM), floppy or hard disk, or such as one or more Firmware or other medium of microcode on a ROM or RAM or PROM chip, or a downloadable software image in one or more modules, a shared database, etc.
  • Software or firmware or such a configuration may be installed on a computing device, so that one or more processors in the computing device execute the technical solutions described in the embodiments of the present invention.
  • each functional module or each feature of the base station device and the terminal device used in each of the above embodiments may be implemented or executed by a circuit, which is usually one or more integrated circuits.
  • Circuits designed to perform the various functions described in this specification may include general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs) or general purpose integrated circuits, field programmable gate arrays (FPGAs) or other Program logic devices, discrete gate or transistor logic, or discrete hardware components, or any combination of the above.
  • a general-purpose processor may be a microprocessor, or the processor may be an existing processor, controller, microcontroller, or state machine.
  • the general-purpose processor or each circuit described above may be configured by digital circuits, or may be configured by logic circuits.
  • the present invention can also use the integrated circuit obtained by using the advanced technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提出了一种由用户设备UE执行的方法,包括:接收用于确定传输物理下行共享信道PDSCH的时频资源的位置的指示信息;以及根据所述指示信息确定所述PDSCH在一个或多个时隙中的时频资源,所述指示信息包括:用于确定一个或多个时隙中的用于传输所述PDSCH的符号位置的参数;以及所述PDSCH所承载的传输块的缩放因子。图2

Description

由用户设备执行的方法以及用户设备 技术领域
本发明涉及无线通信技术领域,具体涉及由用户设备执行的方法以及相应的用户设备。
背景技术
现有的5G/NR网络中,定义了三种典型的业务模型,增强移动宽带业务(enhanced mobile broadband,eMBB),海量机器类型通信业务(massive machine-type communication,mMTC)以及超可靠性及低时延业务(Ultra-Reliable and Low Latency communication,URLLC)。除了这几种还有时间敏感业务(time sensitive communication,TSC)等。
5G的一个重要目标是实现互联产业。5G互联可以作为下一波产业变革和数字化的催化剂,可以增强灵活性,提高生产率和效率,降低维护成本,提高运行安全性等。在这种环境中的装置包括压力传感器、湿度传感器、温度计、运动传感器、加速度计、执行器等。需要将这些传感器和执行器连接到5G无线接入网络和核心网络。TR 22.804等文献中描述了大规模的工业无线传感器网络(IWSN)用例和需求,除了包含具有非常高的需求URLLC业务之外,也包含需求较小尺寸的相对低端的服务,和/或无线状态下数年的电池寿命。对这些服务的要求高于LPWA(Low Power Wide Area Network),但低于URLCC和eMBB。
与互联网行业相似,5G互联互通可以成为下一波智能城市创新的催化剂。作为一个例子,TSR 22.804描述了智能城市用例和需求。智能城市垂直覆盖数据收集和处理,可以更有效地监测和控制城市资源,并为城市居民提供服务。特别是监控摄像头的部署是智能城市的重要组成部分,也是工厂和行业的重要组成部分。
最后,可穿戴设备的实例包括智能手表/环、eHealth相关设备、医疗 监测设备等。这种场景的一个特点是要求设备大小紧凑。
作为基线,这三个用例的需求是:
一般要求:
●设备复杂性:新设备类型的主要动机是相比eMBB和URLLC设备降低设备成本和复杂性。尤其是工业传感器的情况。
●设备尺寸:大多数用例的要求设备设计紧凑。
●部署场景:系统应该支持FDD和TDD的所有FR1/FR2波段。
用例具体要求:
●工业无线传感器:在TR 22.832和TS 22.104中描述引用用例和要求:通信服务可用性是99.99%,端到端延迟小于100毫秒。参考比特率小于2Mbps(可能不对称,比如上行重载),对于所有用例和设备是平稳的。电池应该持续至少几年。对于安全相关的传感器,延迟要求较低,5-10ms(TR22.804)
●视频监控:在TSR 22.804中,参考经济视频比特速率为2-4Mbps,延迟小于500ms,可靠性99%-99.9%。高端视频,例如农业需要7.5-25Mbps。业务模式可能是UL传输为主的。
●可佩戴设备:智能可佩戴应用的参考比特率可以是5-50Mbps,在DL中,最小2-5Mbps。设备的峰值比特率更高,比如高达150Mbps的下行链路,高达50Mbps的上行链路。该设备的电池应持续1-2周。
新需求场景对网络传输提出了更多的要求,尤其是在终端设备需要在更小的体积,更低的处理复杂度,更少的天线数和更小的带宽等约束条件下获得和业务匹配的接收能力,这些都需要对现有的空口的资源配置方法以及信道传输的方法进行改进。
发明内容
为了解决上述问题中的至少一部分,本发明提供了一种由用户设备执行的方法以及用户设备,能够有效确定PDSCH在一个或多个时隙中的时频资源位置。
根据本发明,提出了一种由用户设备UE执行的方法,包括:接收用于确定传输物理下行共享信道PDSCH的时频资源的位置的指示信息;以及根据所述指示信息确定所述PDSCH在一个或多个时隙中的时频资源,所述指示信息包括:用于确定一个或多个时隙中的用于传输所述PDSCH的符号位置的参数;以及所述PDSCH所承载的传输块的缩放因子。
优选地,所述方法还包括:使用所述参数和所述缩放因子的算术运算来确定用于传输所述PDSCH的连续时隙的个数。
优选地,所述算术运算为乘积运算、取最大值或取最小值中的一种或多种的组合。
优选地,所述参数根据物理随机接入信道PRACH序列来确定。
优选地,所述方法还包括:当所述参数确定的符号位置所对应的时隙为部分下行时隙时,根据该时隙的符号配置确定该时隙是否用于传输所述PDSCH。
优选地,所述方法还包括:若基于该时隙的符号配置,所确定的符号位置并未全配置为下行符号,不使用该时隙来传输所述PDSCH。
优选地,所述方法还包括:当所述参数确定的符号位置所对应的时隙为部分下行时隙时,根据该时隙上的可用资源率或者该时隙上的下行符号承载传输块大小所对应的码率来确定该时隙是否用于传输所述PDSCH。
优选地,所述方法还包括:在时隙中未配置为下行符号的符号位置上不进行所述PDSCH的数据的映射。
优选地,所述方法还包括:根据所确定的第一个或最后一个PDSCH时隙的最后一个符号确定物理上行共享信道PUSCH的传输。
另外,根据本发明,还提出了一种用户设备,包括:处理器;以及存储器,存储有指令;其中,所述指令在由所述处理器运行时执行上述的方法。
根据本发明,能够有效确定PDSCH在一个或多个时隙中的时频资源位置。
附图说明
通过下文结合附图的详细描述,本发明的上述和其它特征将会变得更加明显,其中:
图1是示出了本发明的由用户设备执行的方法的流程图。
图2是示出了根据本发明的实施例1的由用户设备执行的方法的流程图。
图3是在时隙所指示的符号上进行PDSCH资源的映射的第1示例的示意图。
图4是在时隙所指示的符号上进行PDSCH资源的映射的第2示例的示意图。
图5是表示本发明所涉及的用户设备UE的框图。。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细阐述。应当注意,本发明不应局限于下文所述的具体实施方式,这些实施方式仅作为示例提供,以将主题的范围传达给本领域技术人员。另外,为了简便起见,省略了对与本发明没有直接关联的公知技术的详细描述,以防止对本发明的理解造成混淆。
通常,除非在使用该术语的上下文中清楚地给出和/或隐含不同的含义,否则本文中使用的所有术语将根据其在相关技术领域中的普通含义来解释。除非明确说明,否则对一/一个/该元件、设备、组件、部件、步骤等的所有引用应公开地解释为是指该元件、装置、组件、部件、步骤等的至少一个实例。除非必须明确地将一个步骤描述为在另一个步骤之后或之前和/或隐含地一个步骤必须在另一个步骤之后或之前,否则本文所公开的任何方法的步骤不必以所公开的确切顺序执行。在适当的情况下,本文公开的任何实施例的任何特征可以适用于任何其它实施例。同样,任何实施例的任何优点可以适用于任何其它实施例,反之亦然。
下文以5G/NR移动通信系统及其后续的演进版本作为示例应用环 境,具体描述了根据本发明的多个实施方式。然而,需要指出的是,本发明不限于以下实施方式,而是可适用于更多其它的无线通信系统,例如5G之后的通信系统以及5G之前的4G移动通信系统,802.11无线网络等。
下面描述本发明涉及的部分术语,如未特别说明,本发明涉及的术语采用此处定义。本发明给出的术语在LTE、LTE-Advanced、LTE-Advanced Pro、NR以及之后的或其他的通信系统中可能采用不同的命名方式,但本发明中采用统一的术语,在应用到具体的系统中时,可以替换为相应系统中采用的术语。
3GPP:3rd Generation Partnership Project,第三代合作伙伴计划
LTE:Long Term Evolution,长期演进技术
NR:New Radio,新无线、新空口
UE:User Equipment,用户设备
eNB:evolved NodeB,演进型基站
gNB:NR基站
TTI:Transmission Time Interval,传输时间间隔
OFDM:Orthogonal Frequency Division Multiplexing,正交频分复用
CP-OFDM:Cyclic Prefix Orthogonal Frequency Division Multiplexing,带有循环前缀的正交频分复用
C-RNTI:Cell Radio Network Temporary Identifier,小区无线网络临时标识
CSI:Channel State Information,信道状态信息
HARQ:Hybrid Automatic Repeat Request,混合自动重传请求
CSI-RS:Channel State Information Reference Signal,信道状态信息参考信号
CRS:Cell Reference Signal,小区特定参考信号
PUCCH:Physical Uplink Control Channel,物理上行控制信道
PUSCH:Physical Uplink Shared Channel,物理上行共享信道
PRACH:Physical random-access channel,物理随机接入信道
PDSCH:Physical downlink shared channel,物理下行共享信道
PDCCH:Physical downlink control channel,物理下行控制信道
UL-SCH:Uplink Shared Channel,上行共享信道
DL-SCH:Downlink Shared Channel,上行共享信道
RACH:random-access channel,随机接入信道
DCI:Downlink Control Information,下行控制信息
CG:Configured Grant,配置调度许可
MCS:Modulation and Coding Scheme,调制编码方案
RB:Resource Block,资源块
RE:Resource Element,资源单元
CRB:Common Resource Block,公共资源块
CP:Cyclic Prefix,循环前缀
PRB:Physical Resource Block,物理资源块
VRB:Virtual resource block,虚拟资源块
FDM:Frequency Division Multiplexing,频分复用
TDD:Time Division Duplexing,时分双工
FDD:Frequency Division Duplexing,频分双工
RRC:Radio Resource Control,无线资源控制
RSRP:Reference Signal Receiving Power,参考信号接收功率
SRS:Sounding Reference Signal,探测参考信号
DMRS:Demodulation Reference Signal,解调参考信号
CSI-RS:Channel state information reference signal
CRC:Cyclic Redundancy Check,循环冗余校验
SFI:Slot Format Indication,时隙格式指示
SIB:system information block,系统信息块
SIB1:System Information Block Type 1,系统信息块类型1
PSS:Primary Synchronization Signal,主同步信号
SSS:Secondary Synchronization Signal,辅同步信号
SSB:Synchronization Signal Block,同步系统信息块
BWP:BandWidth Part,带宽片段/部分
SFN:System Frame Number,系统(无线)帧号
PCI:Physical Cell ID,物理小区标识
IE:Information Element,信息元素
EN-DC:EUTRA-NR Dual Connection,LTE-NR双连接
MCG:Master Cell Group,主小区组
SCG:Secondary Cell Group,辅小区组
PCell:Primary Cell,主小区
SCell:Secondary Cell,辅小区
SPS:Semi-Persistant Scheduling,半静态调度
TA:Timing Advance,上行定时提前量
PT-RS:Phase-Tracking Reference Signals,相位跟踪参考信号
TB:Transport Block,传输块
TBS:Transport Block Size,传输块大小
CB:Code Block,编码块/码块
QPSK:Quadrature Phase Shift Keying,正交相移键控
16/64/256 QAM:16/64/256 Quadrature Amplitude Modulation,正交幅度调制
AGC:Auto Gain Control,自动增益控制
TDRA(field):Time Domain Resource Assignment,时域资源分配指示(域)
FDRA(field):Frequency Domain Resource Assignment,频域资源分配指示(域)
ARFCN:Absolute Radio Frequency Channel Number,绝对无线频率信道编号
RedCap Device:Reduced Capability Device,降能力设备
CORESET:Control resource set,控制资源集合
CCE:Control channel element,控制信道单元
REG:Resource Element Group,资源单元组
MIB:Master Information Block,主信息块
DRX:Discontinuous Reception,不连续接收
AL:Aggregation Level,汇聚级别
UCI:Uplink Control Information,上行控制信息
CSS:Common search space,公共搜索空间
USS:UE-specific search space,用户搜索空间
SCS:sub-carrier spacing,子载波间隔
SLIV:Start and length indicator value,起始和长度指示值
RIV:Resource indicator value,资源指示值
SS-RSRP:Synchronization Signal Reference Signal Received Power,同步参考信号接收功率
SS-RSRQ:Synchronization Signal Reference Signal Received Quality,同步参考信号接收质量
下文是与本发明方案相关联现有技术的描述。如无特别说明,具体实施例中与现有技术中相同术语的含义相同。
值得指出的是,本发明说明书中涉及的用户设备与终端设备含义相同,文中的UE也可以表示终端,后文中不做具体区分和限定。类似的,网络设备为与终端进行通信的设备,包括并不限于基站设备,gNB,eNB,无线AP等,后文中不做具体区分和限定。
网络设备通过一定的时隙结构确定带宽上的上下行资源的分配。作为示例,网络配置对于成对频谱频段,分别使用两个带宽进行上下行业务的传输,对于非成对频谱频段,使用一个带宽进行上下行业务的传输,上行和下行占用不同的传输时段,网络通过对时隙结构的配置来指示上下行的业务传输。
NR中时频资源的一种单位为时隙,一个时隙包含14个(Normal CP场景)或12个(Extended CP场景)OFDM符号。根据子载波间隔的不同,若干个时隙可以组成帧。基站可以以半个,一个或多个帧为单位为各个时隙或符号配置上行,下行或灵活的传输状态。例如基站可通过配 置tdd-UL-DL-ConfigurationCommon或tdd-UL-DL-ConfigurationDedicated或SFI等参数确定时隙上各个符号的传输状态。终端根据配置确定一个时隙中的符号用于上行传输,或下行传输,或灵活传输,或者时隙的部分符号为上述状态之一。
时隙内的资源进一步可分为资源块和资源单元。资源块RB在频域上可以定义为
Figure PCTCN2021118750-appb-000001
个连续的子载波,例如对于15kHz的子载波间隔(SCS),RB在频域上为180kHz。对于子载波间隔15kHz×2μ,资源单元RE在频域上表示1个子载波,在时域上表示1个OFDM符号。不同配置下μ可以取值为0-4的整数值。
网络设备通过向终端发送DCI信息来指示终端的行为,比如网络设备可以使用DCI format 0_0/0_1/0_2等进行上行数据传输的调度,也可以使用DCI format 1_0/1_1/1_2等格式进行下行数据传输的调度,还可以使用DCI format2_0/2_1/.../2_6等以及DCI format3_0/3_1等进行其他数据传输或控制消息的指示。DCI消息包括并不限于上面提到的具体种类,可能进行扩展或变更,但都不影响本发明所涉及的方法的实施。DCI信息使用PDCCH信道进行传输。终端通过接收PDCCH,解码出相应的DCI,并根据DCI的指示进行数据传输。PDCCH中的DCI可使用一些加扰的方式使得特定的终端能够正确解码出DCI。
用于指示业务传输的DCI中通常包含所传输数据业务使用PDSCH的时频资源的指示,具体的可以包括数据传输所占用的符号长度,数据传输所占用的频域位置以及数据传输与当前DC所在时隙的时间间隔等。
终端设备通过向基站发送RACH信号来接入网络。终端可在特定的时频资源上发送RACH信号,基站接收到该RACH信号后,在一定的时间窗内给终端发送PDCCH信号和PDSCH信号。PDCCH信号指示PDSCH信号的传输参数,PDSCH信号指示终端进行上行传输的参数。
对于某些场景下,比如由于带宽减小,终端接收天线减少等原因,可能造成下行接收信号性能下降,终端不能正常地接入网络进行数据通信。本发明提出的方法可用于终端确定至少一个PDSCH信号的传输资源,以及确定相应的PUSCH的传输资源,从而实现更好的接收性能或 在终端的能力要求下满足小区的覆盖需求等,实现终端与网络的通信需求。
图1是示出了本发明的由用户设备执行的方法的概略框图。
如图1所示,在步骤101,UE使用网络侧配置的参数根据一定的规则进行PDCCH和PDSCH的信号接收。在步骤102,如果检测到有效的PDCCH,终端根据PDCCH中承载的DCI指示的内容进行PDSCH信号的接收。
作为示例,DCI中指示的内容包括
-频域资源配置(Frequency domain resource assignment)
-时域资源配置(Time domain resource assignment)
-VRB到PRB映射(VRB-to-PRB mapping)
-调制和编码方案(Modulation and coding scheme)
-传输块缩放(TB scaling)
-SFN的低位(LSBs of SFN)
-保留内容(Reserved bits)
其中频域资源配置(Frequency domain resource assignment)用于确定用于传输PDSCH的资源的频域位置,时域资源配置(Time domain resource assignment)用于确定传输PDSCH的资源所在的时隙和符号位置等参数。VRB到PRB映射(VRB-to-PRB mapping)用于确定PDSCH的资源映射方式。调制和编码方案(Modulation and coding scheme)用于确定PDSCH上所承载信息的调制和编码方式等参数,TB缩放(TB scaling)用于计算所配置的时频资源上承载的TBS参数。SFN的低位(LSBs of SFN)用于共享频谱信道接入时的部分SFN字段。保留内容(Reserved bits)为保留字段。
时域资源配置中指示的信息包括用于PDSCH传输的时隙信息以及符号信息等参数。时隙信息以PDCCH所在时隙为参考点,终端设备根据时域资源配置中指示的时隙延迟确定出PDSCH资源所在的时隙号。时域资源配置还指示在一个时隙中PDSCH所使用的符号位置。
TB缩放用于计算PDSCH所承载的传输块大小。TB缩放支持多种取 值,分别对应不同的缩放因子S。比如TB缩放配置为00,对应的缩放因子S取值为1,TB缩放配置为01,对应的缩放因子S取值为0.5,TB缩放配置为10,对应的缩放因子S取值为0.25。缩放因子用于确定某个时频资源块所能承载的传输块大小。一般的,相同的时频资源下,使用的缩放因子越小,所能承载的传输块TB就越小。类似的,如果需要传输某个TB块,使用的缩放因子越小,则需要使用更多的时频资源进行传输。
终端根据DCI中指示的参数以及系统配置的其他指示信息,确定待接收的PDSCH的资源参数,并进行PDSCH信息的接收。
可选的,PDSCH信息中包含对PUSCH资源的指示,作为示例,PDSCH中包含下面的信息
Figure PCTCN2021118750-appb-000002
其中,跳频标记(Frequency hopping flag)指示PUSCH的跳频信息,PUSCH频域资源分配(PUSCH frequency resource allocation)指示PUSCH的频域资源配置信息,PUSCH时间资源分配(PUSCH time resource allocation)指示PUSCH的时隙和符号参数,MCS用于确定PUSCH所承载内容的调制和编码参数等,针对PUSCH的TPC命令(TPC command for PUSCH)用于调整PUSCH的发射功率。CSI请求(CSI request)为保留字段。ChannelAccess-CPext用于存在共享频谱信道接入时的指示信息。
时间资源分配中指示的信息包括PUSCH传输的时隙信息以及符号信息。时隙信息以PDSCH的时隙位置为参考点,根据时间资源分配中指示的时隙延迟以及其他信息,比如PUSCH的子载波间隔参数,PDSCH的子载波间隔参数,以及附加的延迟参数等确定PUSCH所使用的时频 资源的位置。
图2是示出了根据本发明的实施例1的由用户设备执行的方法的流程图。
如图2所示,在本发明的实施例1中,用户设备执行的步骤包括步骤201和步骤203。
在步骤201,UE从网络设备接收用于确定传输PDSCH的时频资源的位置的指示信息。可选的,指示信息用于确定PDSCH在一个或多个时隙上的时频资源位置。可选的,指示信息确定参数M,并确定在一个或多个时隙上根据DCI所指示时隙中符号位置进行PDSCH传输。可选的,指示信息承载在SIB信息中,由小区内用户进行读取。可选的,指示信息承载在DCI信息中,由可解码该DCI信息的用户进行读取。作为示例,M的取值为集合{1,2,4,8,16,32,64}中的一个值,指示信息为M的枚举序号。M也可以取其他值,指示信息也可以使用其他方式确定其取值,本实施例并不限制其取值范围和指示方式。
在步骤203,UE根据所述指示信息确定所述PDSCH在一个或多个时隙中的时频资源。
例如,终端设备根据指示信息和DCI信息确定PDSCH资源的时频位置。终端设备根据指示信息确定的参数M和DCI中所指示的缩放因子S来确定PDSCH资源的时频位置。可选的,终端使用M与S的乘积N确定PDSCH资源的时频位置。可选的,当M与S的乘积值小于1时,N取值为1。还可能使用其他方法获得N的值,比如确定N的最小或最大取值,以及不同的运算组合等,本发明不限制使用的方法。终端根据DCI中时频资源的指示,从DCI中时频资源信息指示的PDSCH时隙开始,在N个连续的可用时隙上确定PDSCH的传输资源符号和频域资源块。
可选的,终端设备根据接收的DCI类型,指示信息和DCI信息来确定PDSCH资源的时频位置。终端检测到由RA-RNTI加扰的DCI,终端设备根据指示信息确定的参数M和DCI中所指示的缩放因子S来确定RA-RNTI加扰的DCI所指示的PDSCH资源的时频位置。可选的,终端使用M与S的乘积N确定PDSCH资源的时频位置。可选的,当M与 S的乘积值小于1时,N取值为1。终端根据DCI中时频资源的指示,从DCI中时频资源信息指示的PDSCH时隙开始,在N个连续的可用时隙上确定PDSCH的传输资源符号和频域资源块。
基站可根据当前的资源和需要发送的信息来动态确定PDSCH的资源。比如当前的PDSCH资源比较空闲,基站可以使用较小的S值,相应的使用1个或较少的时隙来传输PDSCH资源,从而实现更快速的响应。如果当前的PDSCH资源,基站可以使用较大的S值,占用较少的资源,并在多个时隙上进行PDSCH资源的传输,从而达到较好的性能。
基站可以将PDSCH发送给多个用户。比如用户的性能不同,可以使用一个S值在占用较少的时隙资源时,使得性能较好的用户能快速的接收信号,性能较低的用户通过在多个时隙上接收也能实现预期的接收性能。
作为示例的实施例,基站可以为终端设备配置多个M值,终端设备根据规则选用不同的M值。可选的,终端设备根据不同的PRACH序列确定不同的M值。作为示例,基站指示不同的PRACH分组,以及对应不同的M值。终端在发送PRACH信号时,选取不同的序列组别,从而可以确定不同的M值。作为示例,当终端测量的SS-RSRP>-80dBm时,在发起随机接入时使用第一组中RPACH序列,并确定相应的M值。当SS-RSRP<-80dBm时,在发起随机接入时使用第二组中RPACH序列,并确定相应的M值。终端也可能根据其他测量值确定PRACH序列的使用,比如SS-RSRQ,路损值等等能表征下行接收情况的量。基站和终端可根据接收或发送的序列确定所使用的M值。可选的,终端设备可以根据终端类别,不同PRACH格式或时频位置或循环移位确定相应的M值。
网络可以使用非成对频谱进行数据传输,上下行传输使用时分的方式进行复用。网络可以将某些时隙配置为上行时隙,全部符号用于上行传输;某些时隙配置为下行时隙,全部符号用于下行传输。某些时隙配置为部分下行时隙,时隙上的部分符号用于下行传输,其他符号不用于下行传输。终端在多个时隙上确定PDSCH资源,确定时隙是否可用于PDSCH传输。
作为示例的实施例,终端根据DCI中指示的时频资源分配,确定时隙是否用于传输PDSCH。可选的,当DCI指示的PDSCH符号位置在时隙上不全为下行时隙,终端确定部分下行时隙不用于PDSCH传输。
作为示例的实施例,终端根据时隙的符号配置确定该时隙是否用于传输PDSCH。当UE在待确定的时隙上,从起始符号S到长度L的符号为下行符号,UE确定该时隙可用于PDSCH传输。从起始符号S到长度为L的符号不全为下行符号,UE确定该时隙不用于PDSCH传输。
以通常CP(normal CP)配置为例,每个时隙包含14个符号,其中下行符号可能占用其中的若干个符号。例如,DCI指示的PDSCH起始符号为2,符号长度为10,也就是DCI指示PDSCH在符号2-12上进行传输。
例如,网络配置下行时隙,时隙中14个符号都为下行符号,终端确定2-12符号可用于下行传输,终端确定时隙用于PDSCH的传输。
例如,网络配置上行时隙,时隙中0个符号为下行符号,终端确定2-12符号用于下行传输,终端确定时隙不用于PDSCH的传输。
例如,网络配置部分下行时隙,0-12符号为下行符号。DCI指示的2-12符号用于下行传输,终端确定部分下行时隙用于PDSCH传输。当网络配置部分下行时隙0-10符号为下行符号,终端确定部分下行时隙不用于PDSCH传输。
可选的,终端根据时隙上的可用资源率确定时隙用于PDSCH传输。根据网络配置,UE确定时隙上从起始符号S到长度为L的符号不全为下行符号,确定从起始符号S到长度为K的符号全为下行符号。终端确定K符号中的有效资源高于门限T,UE确定该时隙用于PDSCH传输。可选的K符号中的有效资源使用
Figure PCTCN2021118750-appb-000003
表示,其中
Figure PCTCN2021118750-appb-000004
为一个RB的子载波数量。
Figure PCTCN2021118750-appb-000005
为PDSCH符号数量。
Figure PCTCN2021118750-appb-000006
为一个RB上在调度期间以数据不进行码分的DMRS的RE数。
Figure PCTCN2021118750-appb-000007
高层配置的其他开销参数,如果未配置默认为0。DCI中指示的PDSCH配置使用
Figure PCTCN2021118750-appb-000008
其中
Figure PCTCN2021118750-appb-000009
为一个RB的子载波数量。
Figure PCTCN2021118750-appb-000010
为PDSCH符号数量。
Figure PCTCN2021118750-appb-000011
为一个RB上在调度期间以数据不进行码分的DMRS的RE数。
Figure PCTCN2021118750-appb-000012
高层配置的其他开销参数,如果未配置默认为0。如果可用资源率
Figure PCTCN2021118750-appb-000013
UE确定该时隙用于PDSCH传输,否则该时隙不用于PDSCH传输。
可选的,终端根据时隙上下行符号承载TBS所对应的码率确定时隙用于PDSCH传输。N info=N RE·R·Q m·v·S,其中Q m为PDSCH传输所使用的调制阶数,v为PDSCH传输所使用的层数。使用N info为TBS大小,N RE=min(156,N′ RE)·n PRB为时隙上n PRB对应的可用资源数。S为PDSCH所使用的缩放因子,如果未配置,默认为1。可以计算出TBS在时隙上传输需要的R。如果R小于门限R T,终端确定时隙进行PDSCH传输,否则时隙不进行PDSCH传输。可选的,终端可以根据R和MCS表格获得最接近的MCS序号I,如果I小于门限R I,终端确定时隙进行PDSCH传输,否则时隙不进行PDSCH传输。
可选的,终端确定N个连续PDSCH的时隙,不包含所确定的不可用时隙。
可选的,终端确定N个连续PDSCH的时隙,包含所确定的不可用时隙,在不可用时隙上不进行PDSCH传输。
终端确定至少一个时隙上传输的PDSCH的编码版本。可选的,在所有时隙上使用相同的编码版本。可选的,在时隙上按预定的顺序使用相同或不同的编码版本。
终端在确定的时隙进行PDSCH传输,确定时隙上PDSCH资源的映射。DCI中指示了PDSCH的起始符号位置,符号长度,RB的位置和大小等配置,终端根据配置参数确定时隙上的PDSCH的映射。可选的,UE确定传输PDSCH的时隙上从起始符号S到符号长度L的符号为下行符号,终端在符号上进行PDSCH资源的映射。可选的,终端确定传输PDSCH的时隙上从起始符号到符号长度的符号不全为下行符号,终端在部分符号上进行PDSCH资源的映射。
经过编码的PDSCH数据在下行符号资源上按预定的规则先频域后 时域进行映射。终端根据时隙PDSCH的长度以及配置参数确定DMRS和/或其他参考信号的位置,在非DMRS或其他参考信号位置,按先频域后时域的顺序进行PDSCH数据映射。如果映射的符号不是下行符号,则不进行编码数据的映射。
作为示例,以一个RB为例,DCI中使用S=2,L=12的PDSCH数据传输。如果所传输的时隙从起始符号2到符号长度12的符号全为下行符号,终端在时隙所指示的符号上进行PDSCH资源的映射。具体如图3所示。
如果待传输的时隙从起始符号S到符号长度L的符号不全为下行符号,终端在部分符号上进行PDSCH资源的映射。例如,所确定的时隙上从起始符号2到符号9为下行符号,其余符号不是下行符号。具体如图4所示。
终端根据时隙下行符号长度和其他参数,比如DMRS type等,确定DMRS和/或其他参考信号位置。终端在非DMRS或其他参考信号位置,按先频域后时域的顺序进行PDSCH数据映射。如果映射的符号不是下行符号,则不进行编码数据的映射。
终端根据PDSCH的位置,进行确定上行PUSCH的发射资源。可选的,终端根据确定的第一个PDSCH时隙最后一个符号所在的位置确定PUSCH资源的位置。终端根据PDSCH指示的时域资源信息以及确定的第一个PDSCH时隙最后一个符号所在的时隙号,确定PUSCH资源的时隙号。时域资源信息确定一个时隙偏移,以PUSCH的SCS所确定的时隙长度为单位。终端确定第一个PDSCH时隙最后一个符号的位置,确定由PUSCH所使用的SCS对应的时隙长度单位在该位置上的时隙号,以及时域资源信息确定的时隙偏移,来确定所述PUSCH的时隙号。可选的,终端根据确定的最后一个PDSCH最后一个符号所在的时隙号确定PUSCH资源的位置。终端根据PDSCH指示的时域资源信息以及确定的最后一个PDSCH时隙最后一个符号所在的时隙号,确定PUSCH资源 的时隙号。时域资源信息确定一个时隙偏移,以PUSCH的SCS所确定的时隙长度为单位。终端确定最后一个PDSCH最后一个符号的位置,确定由PUSCH所使用的SCS对应的时隙长度单位在该位置上的时隙号,以及时域资源信息确定的时隙偏移,来确定所述PUSCH的时隙号。
[变形例]
下面,利用图5来说明作为一种变形例的可执行本发明上面所详细描述的用户设备执行的方法的用户设备。
图5是表示本发明所涉及的用户设备UE的框图。
如图5所示,该用户设备UE50包括处理器501和存储器502。处理器501例如可以包括微处理器、微控制器、嵌入式处理器等。存储器502例如可以包括易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器等。存储器502上存储有程序指令。该指令在由处理器501运行时,可以执行本发明详细描述的由用户设备执行的上述方法。
上文已经结合优选实施例对本发明的方法和涉及的设备进行了描述。本领域技术人员可以理解,上面示出的方法仅是示例性的,而且以上说明的各实施例在不发生矛盾的情况下能够相互组合。本发明的方法并不局限于上面示出的步骤和顺序。上面示出的网络节点和用户设备可以包括更多的模块,例如还可以包括可以开发的或者将来开发的可用于基站、MME、或UE的模块等等。上文中示出的各种标识仅是示例性的而不是限制性的,本发明并不局限于作为这些标识的示例的具体信元。本领域技术人员根据所示实施例的教导可以进行许多变化和修改。
应该理解,本发明的上述实施例可以通过软件、硬件或者软件和硬件两者的结合来实现。例如,上述实施例中的基站和用户设备内部的各种组件可以通过多种器件来实现,这些器件包括但不限于:模拟电路器件、数字电路器件、数字信号处理(DSP)电路、可编程处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程逻辑器件(CPLD),等等。
在本申请中,“基站”可以指具有较大发射功率和较广覆盖面积的 移动通信数据和控制交换中心,包括资源分配调度、数据接收发送等功能。“用户设备”可以指用户移动终端,例如包括移动电话、笔记本等可以与基站或者微基站进行无线通信的终端设备。
此外,这里所公开的本发明的实施例可以在计算机程序产品上实现。更具体地,该计算机程序产品是如下的一种产品:具有计算机可读介质,计算机可读介质上编码有计算机程序逻辑,当在计算设备上执行时,该计算机程序逻辑提供相关的操作以实现本发明的上述技术方案。当在计算系统的至少一个处理器上执行时,计算机程序逻辑使得处理器执行本发明实施例所述的操作(方法)。本发明的这种设置典型地提供为设置或编码在例如光介质(例如CD-ROM)、软盘或硬盘等的计算机可读介质上的软件、代码和/或其他数据结构、或者诸如一个或多个ROM或RAM或PROM芯片上的固件或微代码的其他介质、或一个或多个模块中的可下载的软件图像、共享数据库等。软件或固件或这种配置可安装在计算设备上,以使得计算设备中的一个或多个处理器执行本发明实施例所描述的技术方案。
此外,上述每个实施例中所使用的基站设备和终端设备的每个功能模块或各个特征可以由电路实现或执行,所述电路通常为一个或多个集成电路。设计用于执行本说明书中所描述的各个功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)或通用集成电路、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立的门或晶体管逻辑、或分立的硬件组件、或以上器件的任意组合。通用处理器可以是微处理器,或者所述处理器可以是现有的处理器、控制器、微控制器或状态机。上述通用处理器或每个电路可以由数字电路配置,或者可以由逻辑电路配置。此外,当由于半导体技术的进步,出现了能够替代目前的集成电路的先进技术时,本发明也可以使用利用该先进技术得到的集成电路。
尽管以上已经结合本发明的优选实施例示出了本发明,但是本领域的技术人员将会理解,在不脱离本发明的精神和范围的情况下,可以对本发明进行各种修改、替换和改变。因此,本发明不应由上述实施例来 限定,而应由所附权利要求及其等价物来限定。

Claims (10)

  1. 一种由用户设备UE执行的方法,包括:
    接收用于确定传输物理下行共享信道PDSCH的时频资源的位置的指示信息;以及
    根据所述指示信息确定所述PDSCH在一个或多个时隙中的时频资源,
    所述指示信息包括:用于确定一个或多个时隙中的用于传输所述PDSCH的符号位置的参数;以及所述PDSCH所承载的传输块的缩放因子。
  2. 根据权利要求1所述的方法,还包括:
    使用所述参数和所述缩放因子的算术运算来确定用于传输所述PDSCH的连续时隙的个数。
  3. 根据权利要求2所述的方法,其中,
    所述算术运算为乘积运算、取最大值或取最小值中的一种或多种的组合。
  4. 根据权利要求1所述的方法,其中,
    所述参数根据物理随机接入信道PRACH序列来确定。
  5. 根据权利要求1所述的方法,还包括:
    当所述参数确定的符号位置所对应的时隙为部分下行时隙时,根据该时隙的符号配置确定该时隙是否用于传输所述PDSCH。
  6. 根据权利要求5所述的方法,还包括:
    若基于该时隙的符号配置,所确定的符号位置并未全配置为下行符号,不使用该时隙来传输所述PDSCH。
  7. 根据权利要求1所述的方法,还包括:
    当所述参数确定的符号位置所对应的时隙为部分下行时隙时,根据该时隙上的可用资源率或者该时隙上的下行符号承载传输块大小所对应的码率来确定该时隙是否用于传输所述PDSCH。
  8. 根据权利要求1所述的方法,还包括:
    在时隙中未配置为下行符号的符号位置上不进行所述PDSCH的数据的映射。
  9. 根据权利要求1所述的方法,还包括:
    根据所确定的第一个或最后一个PDSCH时隙的最后一个符号确定物理上行共享信道PUSCH的传输。
  10. 一种用户设备,包括:
    处理器;以及
    存储器,存储有指令;
    其中,所述指令在由所述处理器运行时执行根据权利要求1至9中的任一项所述的方法。
PCT/CN2021/118750 2020-09-22 2021-09-16 由用户设备执行的方法以及用户设备 WO2022063025A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011005456.9A CN114258133A (zh) 2020-09-22 2020-09-22 由用户设备执行的方法以及用户设备
CN202011005456.9 2020-09-22

Publications (1)

Publication Number Publication Date
WO2022063025A1 true WO2022063025A1 (zh) 2022-03-31

Family

ID=80788528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118750 WO2022063025A1 (zh) 2020-09-22 2021-09-16 由用户设备执行的方法以及用户设备

Country Status (2)

Country Link
CN (1) CN114258133A (zh)
WO (1) WO2022063025A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024036627A1 (zh) * 2022-08-19 2024-02-22 Oppo广东移动通信有限公司 通信方法、装置、设备、存储介质、芯片、产品及程序

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117336865A (zh) * 2022-06-24 2024-01-02 夏普株式会社 由用户设备执行的方法以及用户设备
CN118234039A (zh) * 2022-12-19 2024-06-21 夏普株式会社 确定下行频域资源的方法以及用户设备
CN116528368B (zh) * 2023-05-16 2024-02-23 上海山源电子科技股份有限公司 5g轻量级终端的信息处理方法、系统、设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107113144A (zh) * 2014-12-23 2017-08-29 高通股份有限公司 用于确定共享射频频谱中的传输的起始符号的符号周期的技术
US20190253229A1 (en) * 2018-02-15 2019-08-15 Qualcomm Incorporated Transport block size for channels with shortened transmission time interval
CN110475340A (zh) * 2018-05-10 2019-11-19 维沃移动通信有限公司 Dci传输方法、终端和基站
CN110972240A (zh) * 2018-09-28 2020-04-07 华为技术有限公司 通信方法及装置
CN111294973A (zh) * 2019-01-25 2020-06-16 北京展讯高科通信技术有限公司 随机接入方法及装置、存储介质、用户终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107113144A (zh) * 2014-12-23 2017-08-29 高通股份有限公司 用于确定共享射频频谱中的传输的起始符号的符号周期的技术
US20190253229A1 (en) * 2018-02-15 2019-08-15 Qualcomm Incorporated Transport block size for channels with shortened transmission time interval
CN110475340A (zh) * 2018-05-10 2019-11-19 维沃移动通信有限公司 Dci传输方法、终端和基站
CN110972240A (zh) * 2018-09-28 2020-04-07 华为技术有限公司 通信方法及装置
CN111294973A (zh) * 2019-01-25 2020-06-16 北京展讯高科通信技术有限公司 随机接入方法及装置、存储介质、用户终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Introduction of two-step RACH", 3GPP DRAFT; R1-1913692, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 7 December 2019 (2019-12-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051838446 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024036627A1 (zh) * 2022-08-19 2024-02-22 Oppo广东移动通信有限公司 通信方法、装置、设备、存储介质、芯片、产品及程序

Also Published As

Publication number Publication date
CN114258133A (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
WO2022063025A1 (zh) 由用户设备执行的方法以及用户设备
US8780833B2 (en) Control channel monitoring apparatus in multi-carrier system and method thereof
TWI637603B (zh) 增強機器類型通訊(mtc)裝置涵蓋的方法和裝置
JP6162244B2 (ja) 端末装置、基地局装置、および通信方法
US10925084B2 (en) Apparatus and a method for MAC PDU BSR configuration
WO2020225031A1 (en) Discovery of and recovery from missed wake-up signal (wus) reception
US20120039180A1 (en) Apparatus and method for monitoring control channel in multi-carrier system
WO2018083957A1 (ja) 端末装置、基地局装置および通信方法
WO2021029440A1 (en) Terminal apparatus, base station apparatus, and communication method
KR101573943B1 (ko) 다중 반송파 시스템에서 제어채널을 모니터링하는 장치 및 방법
CN114175558B (zh) 用户装备、基站和方法
CN108432314B (zh) 终端装置、基站装置、通信方法以及集成电路
WO2022127732A1 (zh) 由用户设备执行的方法以及用户设备
WO2021148356A1 (en) Master information block (mib) type determination
EP3457806B1 (en) Efficient communications using a short tti
WO2022080392A1 (en) User equipments, base stations and signaling for reduced data buffers
WO2022068685A1 (zh) 由用户设备执行的方法以及用户设备
WO2021190521A1 (zh) 由用户设备执行的方法以及用户设备
WO2022078377A1 (zh) 由用户设备执行的方法以及用户设备
WO2021066199A1 (en) Terminal apparatus, base station apparatus, and communication method
WO2021025174A1 (en) User equipment, base station apparatus, and method
WO2022152113A1 (zh) 由用户设备执行的方法以及用户设备
WO2021241285A1 (en) Methods and apparatus for reduced capability signaling in a 5g nr system
WO2021228138A1 (zh) 由用户设备执行的方法以及用户设备
JP2015070342A (ja) 基地局、端末、および通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21871396

Country of ref document: EP

Kind code of ref document: A1