WO2020029347A1 - 一种zvs控制策略的全桥电源转换器 - Google Patents

一种zvs控制策略的全桥电源转换器 Download PDF

Info

Publication number
WO2020029347A1
WO2020029347A1 PCT/CN2018/103252 CN2018103252W WO2020029347A1 WO 2020029347 A1 WO2020029347 A1 WO 2020029347A1 CN 2018103252 W CN2018103252 W CN 2018103252W WO 2020029347 A1 WO2020029347 A1 WO 2020029347A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching device
side switching
low
voltage
voltage end
Prior art date
Application number
PCT/CN2018/103252
Other languages
English (en)
French (fr)
Inventor
张斌斌
Original Assignee
深圳市金威源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市金威源科技股份有限公司 filed Critical 深圳市金威源科技股份有限公司
Publication of WO2020029347A1 publication Critical patent/WO2020029347A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/083Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33515Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a full-bridge power converter with a zvs control strategy.
  • Figure 1 shows a typical full-bridge power converter. It includes a PWM controller 410, four gate drivers 414, and four switching devices are MOS transistors 401, 402, 404, and 403, an isolation transformer 410, a rectifier circuit, and a low-pass filter.
  • the rectifier circuit is a full-bridge rectifier circuit composed of diode 407 and diode 408, and the low-pass filter is an LC filter composed of inductor 409 and capacitor 406.
  • the PWM controller generates 4 signals to 4 gate drivers to control 4 The switching action of the switching device. When a pair of diagonal switches are turned on (during energy transmission), such as when 401 and 404 are turned on at the same time or 402 and 403 are turned on at the same time, the energy of the input voltage source will be transferred to the secondary storage capacitor.
  • ZVS Zero Voltage Switching
  • the primary-side current Ip flows through one high-side switching device and the body diode of another high-side switching device during non-energy transmission. Since the body diode of the high-side switch device mentioned later is forward-biased, this high-side switch device will conduct under ZVS conditions.
  • the present invention provides a full-bridge power conversion of a ZVS control strategy for a full-bridge power converter with a current ZVS control strategy, in which a primary current flows through a body diode of a high-voltage-side switching device, resulting in insufficient power loss. Device.
  • the technical solution for realizing the technical purpose of the present invention is: a full-bridge power converter with a ZVS control strategy, including a first high-voltage side switching device, a second high-voltage side switching device, a first low-voltage side switching device, and a second low-voltage side Terminal switching device; an isolation transformer, a rectifier circuit and a low-pass filter; the positive pole of the power supply passes through the first high-side switch device, the first low-side switch device, the second high-side switch device, and the second low-side switch device, respectively Connect the negative terminal of the power supply; the common terminal of the first high-voltage switch device, the first low-voltage switch device, and the common terminals of the second high-voltage switch device, and the second low-voltage switch device are respectively connected to both ends of the primary winding of the isolation transformer;
  • the stage coil is respectively connected to the rectifier diode and the anode of the rectifier diode, and the cathode of the rectifier diode and the rectifier
  • the predetermined dead time will force all 4 switching devices to be turned on under the ZVS condition, and the primary current flows through the two high-side switching devices during the non-energy transfer period, so that the The power loss of the body diode is minimized.
  • control device includes:
  • a sawtooth wave generator a control level generator, a comparator
  • the output terminals of the sawtooth wave generator and the control level generator are respectively connected to the input terminals of a comparator, and the output of the comparator generates a PWM signal.
  • the ZVS control strategy of the full-bridge power converter further includes a frequency divider that divides the PWM signal, a phase shifter that shifts the phase of the PWM signal, and inverts the PWM signal. Inverter
  • FIG. 1 is a schematic diagram of a typical full-bridge power converter.
  • FIG. 2 is a structural diagram of a switching device.
  • 3 is a PWM timing configuration of a ZVS control scheme according to an embodiment of the present invention.
  • FIG. 4 is a current path during a non-energy transfer period according to Embodiment 1 of the present invention.
  • FIG. 5 is a PWM timing configuration of a 2ZVS control scheme according to an embodiment of the present invention.
  • FIG. 6 is a current path during a non-energy transfer period according to Embodiment 2 of the present invention.
  • FIG. 8 is a schematic diagram of a PWM signal circuit formed by dividing a basic PWM signal through frequency division in the present invention.
  • Embodiment 1 is a full-bridge power converter of a ZVS control strategy, including a first high-voltage side switching device 401, a second high-voltage side switching device 402, A low-side switching device 403 and a second low-side switching device 404; an isolation transformer 410, a rectifier circuit and a low-pass filter; the rectifier circuit is a full-wave rectifier circuit composed of a diode 407 and a diode 408, and the filter is An LC filter composed of an inductor 409 and a capacitor 406.
  • the anode of the power source 411 is connected through the first high-side switch device 401, the first low-side switch device 403, the second high-side switch device 402, and the second low-side switch device 404, respectively.
  • the negative terminal of the power source 411; the common terminal of the first high-voltage switch device 401, the first low-voltage switch device 403, and the common terminals of the second high-voltage switch device 402, and the second low-voltage switch device 404 are connected respectively.
  • the switching device in this embodiment may generally be a MOS tube, or may be replaced by other switching devices. As shown in FIG. 2, it has two poles 105 and 104, which are implemented by 101 to implement two poles 105 and 105. 104 is connected or disconnected.
  • the control signal 106 is added to 101.
  • the control signal 106 is high level when it is valid, and low level when it is invalid. Of course, the opposite can also be selected. According to practice, a suitable device is selected.
  • the control signal is a PWM signal. Different duty cycles control the on-off time of the switching device. When the switching device is turned off, the body capacitor 103 and the body diode 102 on it control the unidirectional conduction.
  • the alternating coil of the isolation transformer 410 is connected to the anode of the rectifier diode 407 and the rectifier diode 408, respectively, and the cathode of the rectifier diode 407 and the rectifier diode 408 is connected to a low-pass filter to form a rectifier circuit;
  • PWM4 controlling the first high-voltage-side switching device 401
  • PWM4 controlling the first high-voltage-side switching device 401
  • PWM6 and PWM4 are inverting
  • PWM7 and PWM5 are inverting.
  • the duty ratios of PWM4 and PWM5 are the same, the trend is the same, and the phase difference is less than 180 degrees. The ratio is better than 90%; the time of energy transmission is only 10%.
  • curves 8 and 9 represent energy transfer.
  • the low-side switching device is alternately controlled by a PWM signal pulse.
  • the high-side switching device is alternately controlled by inverting PWM signal pulses. In this configuration, the predetermined dead time will force all 4 switching devices to turn on under the ZVS condition, and the primary current flows through the two high-side switching devices during the non-energy transfer period, as shown in Figure 3, so that the high voltage Power loss of body diodes
  • FIG. 5 and FIG. 6 are a PWM timing configuration and a current path of a non-energy transfer period in Embodiment 2.
  • the high-side switching devices are alternately controlled by PWM signal pulses.
  • the low-side switching device is controlled alternately by an inverted PWM signal pulse (dead time is reserved, not shown in Figure 5). For this configuration, the primary current flows through two low-side switching devices during the non-energy transfer period, as shown in Figure 6.
  • the full-bridge power converter using the ZVS control scheme of the present invention can achieve higher Efficiency and easier thermal management.
  • the full-bridge power converter with the ZVS control scheme of the present invention has another advantage, namely Lower power loss at zero load. This is because the switching device controlled by the PWM signal may be completely turned off under zero load conditions.
  • any switching power supply has a clock signal to control the switching frequency.
  • the clock signal is generated by a timer; in the analog PWM controller, the clock signal is generated by a triangle or sawtooth generator.
  • Figure 5 is a group of sawtooth waves 1. When the PWM controller is working, this sawtooth wave will not change.
  • the control level 2 it is determined by the voltage and current of the load. For example, when no-load or light-load, this control level is very low, and the corresponding duty cycle is very low, which is equivalent to telling the full-bridge converter that it does not need to work hard.
  • the two signals sawtooth wave and control level are applied to the input of a comparator, the sawtooth wave is applied to the negative input terminal, and the control level is applied to the negative terminal.
  • the output of this comparator is the PWM3 signal.
  • the control device of this embodiment includes a comparator, a sawtooth wave generator, a control level generator, and the sawtooth wave 1 and the control level 2 input from the sawtooth wave generator and the control level generator are connected.
  • the two signals are compared to output the PWM3 signal.
  • the duty ratio of the PWM3 signal is controlled by the control level. The higher the control level, the smaller the duty ratio.
  • FIG. 9 and FIG. 10 there are two types of schematic diagrams of generating a PWM signal. In short, the PWM3 signal here is a basic PWM signal.
  • the signals are divided, phase-shifted, and inverted to form various PWM signals that control various switching devices.
  • the control signal PWM4 of the first high-voltage-side switching device 401 is obtained by outputting one pulse by the PWM3 output by the comparator through a two-frequency interval.
  • the control signal PWM5 of the second high-voltage-side switching device 402 can also be obtained by outputting a pulse from PWM3 output by another comparator through a two-frequency interval and a pulse.
  • PWM4 can be phase-shifted 180 degrees through a phase shifter.
  • control signals PWM6 and PWM7 of the first low-side switching device 403 and the second low-side switching device 404 are generated by PWM4 and PWM5 using inverters, respectively, as shown in FIG. 8.
  • a PWM signal with a larger or smaller duty cycle is generated, which is easily implemented in a DSP or MCU with two clocks separated by half a cycle. Even with hardware, it's easy: As shown in Figure 8, a DQ flip-flop can easily implement this alternate output pulse.
  • the DQ trigger is used to output two signals with opposite phases. When these two signals are combined with the signal PWM3 (equal to the phase AND), the interleaved PWM signals 4 and 5 can be obtained.
  • PWM4 and PWM5 are then inverted, and then PWM6 and PWM7 can be obtained.
  • This is a very basic digital circuit and need not be written into the present invention. Referring to FIG. 8 and FIG. 10, it can be seen that, because the switches in the two high-side switching devices are closed, the current no longer flows through the body diode with a certain voltage drop (such as IV). No current flows, which means there is no loss in the body diode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明提供一种ZVS控制策略的全桥电源转换器,包括第一高压端开关器件、第二高压端开关器件,第一低压端开关器件和第二低压端开关器件;一个隔离变压器,一个整流电路和一个低通滤波器;控制第一高压端开关器件的PWM1、控制第二高压端开关器件的PWM2,控制第一低压端开关器件的PWM3、控制第二低压端开关器件的PWM4;所述的PWM1和PWM2的占空比大小相同、变化趋势相同、相位相差小于180度;所述的PWM3与PWM1反相、所述的PWM4与PWM2反相。本发明中,预定的死区时间将迫使所有4个开关器件在ZVS条件下导通,并且在非能量传送时段原边电流流经两个高压端开关器件,使得高压端开关器件的体二极管的功率损耗最小化。

Description

一种 zvs控制策略的全桥电源转换器
技术领域
[0001] 本发明涉及 zvs控制策略的全桥电源转换器。
背景技术
[0002] 与反激式和正激式转换器相比, 全桥转换器可实现更高的功率, 更好的变压器 利用率, 所需的开关器件的额定电压相对较低。 图 1显示了一个典型的全桥电源 转换器。 它包括一个 PWM控制器 410, 4个栅极驱动器 414, 4个开关器件分别是 MOS管 401、 402、 404、 403, 一个隔离变压器 410, 一个整流电路和一个低通滤 波器。 整流电路由二极管 407和二极管 408组成的全桥整流电路, 低通滤波器则 是由电感 409和电容 406组成的 LC滤波器; PWM控制器产生 4个信号给 4个栅极驱 动器来控制 4个开关器件的开关动作。 当一对斜对角开关器件导通 (能量传输期 间) 时, 如 401和 404同时导通或者 402和 403同时导通, 输入电压源的能量将被 传送到次级的储能电容。
[0003] 在这种常规的 PWM控制方案中, 所有 4个控制信号都是交替的 PWM信号, 对 角线上的两个开关闭合。 业内众所周知, 所有四个开关器件都在硬开关条件下 工作, 因此, 总的开关损耗是显著的, 这将导致较低的功率转换效率。
[0004] 业内众所周知, 如果当开关器件两端的电压为零时, 才使开关器件导通, 可以 实现高效率。 这种技术通常被称为零电压开关 (ZVS) 。 只有 2个低压端开关器 件的控制信号是 PWM信号;高压端开关器件的控制信号是 50%占空比的固定方波
[0005] 在这种方案中, 原边电流 Ip在非能量传输期间流过一个高压端开关器件和另一 个高压端开关器件的体二极管。 由于后面提到那个高压端开关器件的体二极管 是正向偏置的, 所以这个高压端开关器件将在 ZVS条件下导通。
[0006] 电流流过一个低压端开关器件的体二极管, 因此, 这个低压端开关器件也将在 ZVS条件下导通。 由于全桥的对称性, 很容易理解所有 4个开关器件在 ZVS条件 下导通。 [0007] 原边电流流过高压端开关器件的体二极管, 产生额外的功率损耗。 这种额外的 功率损耗将导致效率下降, 并且低压端和高压端开关器件温升相差很显著。 发明概述
技术问题
[0008] 本发明针对目前 ZVS控制策略的全桥电源转换器中, 原边电流流过高压端开关 器件的体二极管, 产生额外的功率损耗的不足, 提供一种 ZVS控制策略的全桥电 源转换器。
问题的解决方案
技术解决方案
[0009] 本发明实现其技术目的技术方案是: 一种 ZVS控制策略的全桥电源转换器, 包 括第一高压端开关器件、 第二高压端开关器件, 第一低压端开关器件和第二低 压端开关器件; 一个隔离变压器, 一个整流电路和一个低通滤波器; 电源的正 极分别通过第一高压端开关器件、 第一低压端开关器件和第二高压端开关器件 、 第二低压端开关器件接电源负极; 第一高压端开关器件、 第一低压端开关器 件的公共端和第二高压端开关器件、 第二低压端开关器件的公共端分别接隔离 变压器初级线圈两端; 隔离变压器的交级线圈分别接整流二极管和整流二极管 的阳极, 整流二极管和整流二极管的阴极接低通滤波器形成所述的整流电路; 控制第一高压端开关器件的 PWM1、 控制第二高压端开关器件的 PWM2, 控制第 一低压端开关器件的 PWM3、 控制第二低压端开关器件的 PWM4; 所述的 PWM1 和 PWM2的占空比大小相同、 变化趋势相同、 相位相差小于 180度; 所述的 PWM 3与 PWM1反相、 所述的 PWM4与 PWM2反相。
[0010] 本发明中, 预定的死区时间将迫使所有 4个开关器件在 ZVS条件下导通, 并且 在非能量传送时段原边电流流经两个高压端开关器件, 使得高压端开关器件的 体二极管的功率损耗最小化。
[0011] 进一步的, 上述的 ZVS控制策略的全桥电源转换器中: 所述的控制装置包括:
[0012] 锯齿波产生器, 控制电平产生器, 比较器;
[0013] 所述的锯齿波产生器和控制电平产生器的输出端分别接比较器的输入端, 所述 的比较器的输出生成 PWM信号。 [0014] 进一步的, 上述的 ZVS控制策略的全桥电源转换器中: 还包括对所述的 PWM 信号分频的分频器和对 PWM信号移相的移相器、 对 PWM信号进行反相的反相器
[0015] 以下将结合附图和实施例, 对本发明进行较为详细的说明。
发明的有益效果
对附图的简要说明
附图说明
[0016] 图 1为典型的全桥电源转换器原理图。
[0017] 图 2是一种开关器件的结构图。
[0018] 图 3是本发明实施例 1ZVS控制方案的 PWM时序配置。
[0019] 图 4是本发明实施例 1非能量传送时段的电流路径。
[0020] 图 5是本发明实施例 2ZVS控制方案的 PWM时序配置。
[0021] 图 6是本发明实施例 2非能量传送时段的电流路径。
[0022] 图 7是本发明实施例中 PWM信号产生电路。
[0023] 图 8是本发明中由基本 PWM信号经过分频形成 PWM信号电路原理图。
[0024] 图 9是发明实施例中 PWM信号产生电路 (二) 。
[0025] 图 10是发明实施例中 PWM信号产生电路 (三) 。
发明实施例
本发明的实施方式
[0026] 实施例 1, 如图 3和图 4所示, 本实施例是一种 ZVS控制策略的全桥电源转换器 , 包括第一高压端开关器件 401、 第二高压端开关器件 402, 第一低压端开关器 件 403和第二低压端开关器件 404; —个隔离变压器 410, 一个整流电路和一个低 通滤波器; 整流电路是由二极管 407和二极管 408组成的全波整流电路, 滤波器 是由电感 409和电容 406组成的 LC滤波器, 电源 411的正极分别通过第一高压端开 关器件 401、 第一低压端开关器件 403和第二高压端开关器件 402、 第二低压端开 关器件 404接电源 411负极; 第一高压端开关器件 401、 第一低压端开关器件 403 的公共端和第二高压端开关器件 402、 第二低压端开关器件 404的公共端分别接 隔离变压器 410初级线圈两端; 处于对角线上的第一高压端开关器件 401和第二 低压端开关器件 404组成一组成一对能量转移开关器件, 第二高压端开关器件 40 2和第一低压端开关器件 403组成一组成一对能量转移开关器件, 只有这对角线 的两个开关器件闭合能量才成电源 411转移到电解电容 406上。
[0027] 本实施例中的开关器件一般可以采用 MOS管, 也可以用其它开关器件代替, 如 图 2所示, 它有具有两个极 105和 104, 它们由 101来实现两个极 105和 104连接或 者断开。 控制信号 106加到 101上面来, 控制信号 106有效时是高电平, 无效时是 低电平, 当然也可以相反, 根据实践选择合适的器件, 本实施例中, 控制信号 采用 PWM信号, 通过不同的占空比控制开关器件的开一关时间, 在开关器件断 开时, 上面有体电容 103和体二极管 102控制单向导通。
[0028] 隔离变压器 410的交级线圈分别接整流二极管 407和整流二极管 408的阳极, 整 流二极管 407和整流二极管 408的阴极接低通滤波器形成整流电路; 控制第一高 压端开关器件 401的 PWM4、 控制第二高压端开关器件 402的 PWM5, 控制第一低 压端开关器件 403的 PWM6、 控制第二低压端开关器件 404的 PWM7 ;
PWM6与 PWM4反相、 PWM7与 PWM5反相, PWM4和 PWM5的占空比大小相同 、 变化趋势相同、 相位相差小于 180度, 这两个 PWM信号的占空比都大于 50%, 实践上占空比大于 90%较果更好; 能量传输的时间只占 10%。 如图 3所示, 8和 9 号曲线表示能量传输。 低压端开关器件由 PWM信号脉冲交替控制。 高压端开关 器件由反相 PWM信号脉冲交替地控制。 在此配置中, 预定的死区时间将迫使所 有 4个开关器件在 ZVS条件下导通, 并且在非能量传送时段原边电流流经两个高 压端开关器件, 如图 3所示, 使得高压端开关器件的体二极管的功率损耗最小化
[0029] 如图 5和图 6为实施例 2的 PWM时序配置和非能量传送时段的电流路径。 高压端 开关器件由 PWM信号脉冲交替控制。 低压端开关器件则由反相 PWM信号脉冲交 替地控制 (预留有死区时间, 图 5中未示出) 。 对于这种配置, 原边电流在非能 量传送时段流过两个低压端开关器件, 如图 6所示。
[0030] 由于所有 4个开关器件都在 ZVS条件下导通, 并且开关器件的体二极管的功率 损耗被最小化, 所以采用本发明的 ZVS控制方案的全桥功率转换器可以实现更高 的效率并且更易于散热管理。 与那些在所有负载条件下四个开关装置总是以 50 %占空比操作的移相全桥功率转换器相比, 具有本发明的 ZVS控制方案的全桥功 率转换器具有另一个优点, 即在零负载下有更低的功率损耗。 这是因为 PWM信 号控制的开关器件在零负载条件下可能会完全关断。
[0031] 如图 5和图 6所示, 任何开关电源都有一个时钟信号来控制开关频率。 在数字 P WM控制器中, 时钟信号是由定时器产生的; 而在模拟 PWM控制器中, 时钟信 号使有一个三角波或锯齿波发生器产生的。 图 5中就是一组锯齿波 1, PWM控制 器工作时, 此锯齿波是不会变化的。 至于控制电平 2, 是由负载端的电压电流决 定的。 比如说, 当空载或轻载时, 此控制电平很低, 对应的占空比就很低, 相 当于告诉全桥转换器不需要卖力地工作就可以了; 当重载时, 控制电平就会比 较高, 对应的占空比就高, 相当于告诉全桥转换器需要很卖力地工作才能达到 所需的电流电压 (功率) 。 这两个信号锯齿波和控制电平会加到一个比较器的 输入端, 锯齿波加到输入负端, 控制电平加到负端。 该比较器的输出就是 PWM3 信号了。
[0032] 图中 3和图 5中有虚线, 可以看到, 由于控制电平的高低变化, 与固定的锯齿波 比较时就会产生宽度不同的 PWM信号。 上面已描述, 窄宽度的脉冲 (占空比低 ) 代表输出端不需要很高的功率; 宽度大的脉冲 (占空比高) 代表输出端需要 较高的功率。 脉冲宽度的调整就是对应不同的输出功率的 (通过控制电平来调 整宽度) 。 他们只是交错而已: 比如, 第 1,3, 5, 7 (奇数) 的脉冲为栅极驱动器一 2的脉冲, 那第 2, 4, 6, 8 (偶数) 的脉冲为栅极驱动器一 4的脉冲。 如图 7所示, 本 实施例的控制装置中包括有比较器、 锯齿波发生器、 控制电平产生器, 锯齿波 发生器和控制电平产生器输入的锯齿波 1和控制电平 2接到比较器的输入端, 如 图 3和图 5所示, 两个信号比较输出 PWM3信号, PWM3信号的占空比由控制电 平的高低控制, 控制电平越高, 占空比越小。 另外, 本实施例中产生 PWM信号 的方式还有很多, 如图 9和图 10所示, 是两种生成 PWM信号的原理图, 总之, 这 里的 PWM3信号是一个基本的 PWM信号, 对该 PWM3信号进行分频、 移相、 反 相等就可以形成各种控制各开关器件的 PWM信号。 第一高压端开关器件 401的控 制信号 PWM4是由比较器输出的 PWM3通过二分频隔一个脉冲输出一个脉冲所得 , 第二高压端开关器件 402的控制信号 PWM5是也可以由另外一个比较器输出的 P WM3通过二分频隔一个脉冲输出一个脉冲所得, 同时也可以利用 PWM4经过一 个移相器相移 180度以后获得, 而第一低压端开关器件 403和第二低压端开关器 件 404的控制信号 PWM6和 PWM7分别由 PWM4和 PWM5利用反相器反相生成, 如图 8所示。 另外, 产生占空比较大或者较小的 PWM信号, 这在 DSP或 MCU中 用两个相隔半个周期的时钟是很容易实现的。 即使用硬件, 也很容易: 如图 8所 示, 用一个 DQ触发器可以很容易实现这种交替输出的脉冲。 DQ触发器用来输出 两个相位相反的信号, 这两个信号与信号 PWM3结合 (等于相与) , 即可得到交 错的 PWM信号 4和 5。 PWM4和 PWM5再反相, 即可得到 PWM6和 PWM7.这是很 基本的数字电路, 可以不必写入本发明中。 参考图 8和图 10, 可以看到由于两个 高压端开关器件中的开关闭合了, 电流不再流过有一定压降 (比如 IV) 的体二 极管。 没有电流流过, 就意味着体二极管没有损耗。

Claims

权利要求书
[权利要求 1] 一种 ZVS控制策略的全桥电源转换器, 包括第一高压端开关器件 (40
1) 、 第二高压端开关器件 (402) , 第一低压端开关器件 (403) 和 第二低压端开关器件 (404) ; —个隔离变压器 (410) , 一个整流电 路和一个低通滤波器; 电源的正极分别通过第一高压端开关器件 (40 1) 、 第一低压端开关器件 (403) 和第二高压端开关器件 (402) 、 第二低压端开关器件 (404) 接电源负极; 第一高压端开关器件 (401 ) 、 第一低压端开关器件 (403) 的公共端和第二高压端开关器件 (4 02) 、 第二低压端开关器件 (404) 的公共端分别接隔离变压器 (410 ) 初级线圈两端; 隔离变压器 (410) 的次级线圈分别接第一整流二 极管 (407) 和第二整流二极管 (408) 的阳极, 第一整流二极管 (40 7) 和第二整流二极管 (408) 的阴极接低通滤波器形成所述的整流电 路; 还包括控制第一高压端开关器件 (401) 、 第二高压端开关器件 (402) , 第一低压端开关器件 (403) 和第二低压端开关器件 (404 ) 开闭的控制装置; 所述的控制装置产生适当的占空比的 PWM信号 控制开关开闭; 其特征在于: 控制第一高压端开关器件 (401) 的 PW Ml ⑷ 、 控制第二高压端开关器件 (402) 的 PWM2 (5) , 控制第 一低压端开关器件 (403) 的 PWM3 (6) 、 控制第二低压端开关器件 (404) 的 PWM47) ; 所述的 PWM1 (4) 和 PWM2 (5) 的占空比 大小相同、 变化趋势相同、 相位相差小于 180度; 所述的 PWM3 (6) 与 PWM1 (4) 反相、 所述的 PWM4 (7) 与 PWM2 (5) 反相。
[权利要求 2] 根据权利要求 1所述的 ZVS控制策略的全桥电源转换器, 其特征在于
: 所述的控制装置包括:
锯齿波产生器, 控制电平产生器, 比较器;
所述的锯齿波产生器和控制电平产生器的输出端分别接比较器的输入 端, 所述的比较器的输出生成 PWM信号。
[权利要求 3] 根据权利要求 2所述的 ZVS控制策略的全桥电源转换器, 其特征在于
: 还包括对所述的 PWM信号分频的分频器和对 PWM信号移相的移相 器、 对 PWM信号进行反相的反相器。
PCT/CN2018/103252 2018-08-10 2018-08-30 一种zvs控制策略的全桥电源转换器 WO2020029347A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810908040.4A CN108988650A (zh) 2018-08-10 2018-08-10 一种zvs控制策略的全桥电源转换器
CN201810908040.4 2018-08-10

Publications (1)

Publication Number Publication Date
WO2020029347A1 true WO2020029347A1 (zh) 2020-02-13

Family

ID=64556129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103252 WO2020029347A1 (zh) 2018-08-10 2018-08-30 一种zvs控制策略的全桥电源转换器

Country Status (2)

Country Link
CN (1) CN108988650A (zh)
WO (1) WO2020029347A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109600048A (zh) * 2019-01-21 2019-04-09 深圳市鹏源电子有限公司 交错并联llc电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1941589A (zh) * 2005-09-29 2007-04-04 富士电机电子设备技术株式会社 电功率转换器电路
CN103457477A (zh) * 2013-09-23 2013-12-18 武汉中原电子集团有限公司 一种移相软开关变换器的控制方法
CN104779805A (zh) * 2015-04-16 2015-07-15 陕西科技大学 一种宽负载范围的移相全桥zvs变换器
CN106208783A (zh) * 2016-07-20 2016-12-07 广东双核电气有限公司 新型软开关整流系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6411534B1 (en) * 2001-06-05 2002-06-25 Delphi Technologies, Inc. Control methods for power converter circuit
US7196914B2 (en) * 2004-11-19 2007-03-27 Virginia Tech Intellectual Properties, Inc. Power converters having capacitor resonant with transformer leakage inductance
CN101145736B (zh) * 2007-08-28 2010-10-27 奇瑞汽车有限公司 一种混合动力车dc/dc变换器
CN103138588A (zh) * 2013-03-25 2013-06-05 苏州朗旭电子科技有限公司 使用数字控制的dc/dc转换器及其效率优化方法
US9958509B2 (en) * 2015-05-29 2018-05-01 Foundation Of Soongsil University-Industry Cooperation Charger having battery diagnosis function and method of driving the same
CN105871215A (zh) * 2016-05-17 2016-08-17 华南理工大学 用于双向clllc谐振变换器的整流控制电路
CN106685231B (zh) * 2016-11-23 2019-02-15 南京航空航天大学 一种原边钳位型软开关全桥变换器及其不对称控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1941589A (zh) * 2005-09-29 2007-04-04 富士电机电子设备技术株式会社 电功率转换器电路
CN103457477A (zh) * 2013-09-23 2013-12-18 武汉中原电子集团有限公司 一种移相软开关变换器的控制方法
CN104779805A (zh) * 2015-04-16 2015-07-15 陕西科技大学 一种宽负载范围的移相全桥zvs变换器
CN106208783A (zh) * 2016-07-20 2016-12-07 广东双核电气有限公司 新型软开关整流系统

Also Published As

Publication number Publication date
CN108988650A (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
WO2021077757A1 (zh) 一种变拓扑llc谐振变换器的宽增益控制方法
US9263960B2 (en) Power converters for wide input or output voltage range and control methods thereof
CN107276418B (zh) 一种宽范围软开关直流变换电路及其控制方法
JP5321758B2 (ja) スイッチング電源装置
EP3683945B1 (en) Dc/dc converter and control method thereof
WO2015106701A1 (zh) 一种交流-直流变换电路及其控制方法
TWI380567B (en) Power converter
CN110719030B (zh) 一种隔离双向全桥dc-dc变换器的双重移相调制方法
JPWO2010119761A1 (ja) スイッチング電源装置
CN111934567B (zh) 一种左右交替辅助换流的无桥双Boost功率因数校正整流器
Wu et al. Interleaved phase-shift full-bridge converter with transformer winding series–parallel autoregulated (SPAR) current doubler rectifier
CN115347797B (zh) 一种双向串联谐振型dc-dc变换器的pwm调制方法
Yang et al. A wide output voltage LLC series resonant converter with hybrid mode control method
JP2017085808A (ja) スイッチング電源装置
JP2021048700A (ja) 電力変換装置
Wu et al. A wide load range ZVS push–pull DC/DC converter with active clamped
CN111030464B (zh) 一种功率变换器双向llc电路的控制方法
CN109302078B (zh) 基于同步整流模式的dc-dc开关电源
Zhao et al. A high-efficiency hybrid series resonant DC-DC converter with boost converter as secondary for photovoltaic applications
Vu et al. A novel hybrid soft switching full-bridge PWM and full-bridge LLC converter for on-board battery charger applications
WO2020029347A1 (zh) 一种zvs控制策略的全桥电源转换器
Bal et al. Comprehensive study and analysis of naturally commutated Current-Fed Dual Active Bridge PWM DC/DC converter
CN116191893A (zh) 一种llc谐振变换器
Lin et al. Analysis and implementation of a novel soft-switching pulse-width modulation converter
Rathore et al. A current-fed high gain multilevel DC-DC converter for BESS grid integration applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929525

Country of ref document: EP

Kind code of ref document: A1