WO2020029179A1 - Anticorps anti-facteur xi - Google Patents
Anticorps anti-facteur xi Download PDFInfo
- Publication number
- WO2020029179A1 WO2020029179A1 PCT/CN2018/099638 CN2018099638W WO2020029179A1 WO 2020029179 A1 WO2020029179 A1 WO 2020029179A1 CN 2018099638 W CN2018099638 W CN 2018099638W WO 2020029179 A1 WO2020029179 A1 WO 2020029179A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seq
- antibody
- fxi
- antibodies
- thrombosis
- Prior art date
Links
- 208000007536 Thrombosis Diseases 0.000 claims abstract description 90
- 238000000034 method Methods 0.000 claims abstract description 53
- 239000012634 fragment Substances 0.000 claims abstract description 25
- 239000008194 pharmaceutical composition Substances 0.000 claims description 27
- 210000004027 cell Anatomy 0.000 claims description 18
- 230000002401 inhibitory effect Effects 0.000 claims description 17
- 101001062768 Homo sapiens Coagulation factor XI Proteins 0.000 claims description 15
- 230000023597 hemostasis Effects 0.000 claims description 15
- 150000007523 nucleic acids Chemical class 0.000 claims description 14
- 230000015572 biosynthetic process Effects 0.000 claims description 13
- 108020004707 nucleic acids Proteins 0.000 claims description 13
- 102000039446 nucleic acids Human genes 0.000 claims description 13
- 239000013598 vector Substances 0.000 claims description 11
- 206010040047 Sepsis Diseases 0.000 claims description 5
- 239000013604 expression vector Substances 0.000 claims description 5
- 210000004978 chinese hamster ovary cell Anatomy 0.000 claims description 3
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 claims 2
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 claims 2
- 102000013463 Immunoglobulin Light Chains Human genes 0.000 claims 2
- 108010065825 Immunoglobulin Light Chains Proteins 0.000 claims 2
- 108010080805 Factor XIa Proteins 0.000 abstract description 83
- 239000000203 mixture Substances 0.000 abstract description 19
- 230000015271 coagulation Effects 0.000 abstract description 9
- 238000005345 coagulation Methods 0.000 abstract description 9
- 102100030563 Coagulation factor XI Human genes 0.000 abstract description 5
- 108010074864 Factor XI Proteins 0.000 abstract description 5
- 230000000694 effects Effects 0.000 description 54
- 208000032843 Hemorrhage Diseases 0.000 description 53
- 208000034158 bleeding Diseases 0.000 description 53
- 230000000740 bleeding effect Effects 0.000 description 52
- 238000012360 testing method Methods 0.000 description 32
- 241000282693 Cercopithecidae Species 0.000 description 28
- 241001465754 Metazoa Species 0.000 description 27
- 241000282567 Macaca fascicularis Species 0.000 description 18
- 238000003556 assay Methods 0.000 description 18
- 238000011282 treatment Methods 0.000 description 18
- 230000035602 clotting Effects 0.000 description 17
- 238000002474 experimental method Methods 0.000 description 17
- 230000017531 blood circulation Effects 0.000 description 16
- 230000002785 anti-thrombosis Effects 0.000 description 15
- 239000003146 anticoagulant agent Substances 0.000 description 15
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 15
- 239000003981 vehicle Substances 0.000 description 15
- 206010053567 Coagulopathies Diseases 0.000 description 13
- 230000004913 activation Effects 0.000 description 13
- 230000002950 deficient Effects 0.000 description 13
- 230000006623 intrinsic pathway Effects 0.000 description 13
- 206010059054 Shunt thrombosis Diseases 0.000 description 11
- 210000004369 blood Anatomy 0.000 description 11
- 239000008280 blood Substances 0.000 description 11
- 210000003462 vein Anatomy 0.000 description 11
- 230000005764 inhibitory process Effects 0.000 description 10
- 230000001404 mediated effect Effects 0.000 description 10
- 230000002829 reductive effect Effects 0.000 description 10
- 241000699666 Mus <mouse, genus> Species 0.000 description 9
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 9
- 239000002953 phosphate buffered saline Substances 0.000 description 9
- 230000001225 therapeutic effect Effects 0.000 description 9
- 238000001262 western blot Methods 0.000 description 9
- 241000700159 Rattus Species 0.000 description 8
- 238000010494 dissociation reaction Methods 0.000 description 8
- 230000005593 dissociations Effects 0.000 description 8
- 238000001727 in vivo Methods 0.000 description 8
- 230000037361 pathway Effects 0.000 description 8
- 230000002035 prolonged effect Effects 0.000 description 8
- 206010014522 Embolism venous Diseases 0.000 description 7
- 206010047249 Venous thrombosis Diseases 0.000 description 7
- 239000000427 antigen Substances 0.000 description 7
- 102000036639 antigens Human genes 0.000 description 7
- 108091007433 antigens Proteins 0.000 description 7
- 238000012710 chemistry, manufacturing and control Methods 0.000 description 7
- 230000003247 decreasing effect Effects 0.000 description 7
- 239000003814 drug Substances 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 210000004408 hybridoma Anatomy 0.000 description 7
- 239000003112 inhibitor Substances 0.000 description 7
- 238000002560 therapeutic procedure Methods 0.000 description 7
- 208000004043 venous thromboembolism Diseases 0.000 description 7
- 108060003951 Immunoglobulin Proteins 0.000 description 6
- 241000288906 Primates Species 0.000 description 6
- 108010000499 Thromboplastin Proteins 0.000 description 6
- 102000002262 Thromboplastin Human genes 0.000 description 6
- 102000018358 immunoglobulin Human genes 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 108050008958 Apple domains Proteins 0.000 description 5
- 102000000443 Apple domains Human genes 0.000 description 5
- 206010051055 Deep vein thrombosis Diseases 0.000 description 5
- 206010062713 Haemorrhagic diathesis Diseases 0.000 description 5
- 241000699670 Mus sp. Species 0.000 description 5
- 108090000113 Plasma Kallikrein Proteins 0.000 description 5
- 208000010378 Pulmonary Embolism Diseases 0.000 description 5
- 125000003275 alpha amino acid group Chemical group 0.000 description 5
- 150000001413 amino acids Chemical class 0.000 description 5
- 229940127219 anticoagulant drug Drugs 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 231100000673 dose–response relationship Toxicity 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 208000031169 hemorrhagic disease Diseases 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 239000003755 preservative agent Substances 0.000 description 5
- PGOHTUIFYSHAQG-LJSDBVFPSA-N (2S)-6-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-1-[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-4-methylsulfanylbutanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]propanoyl]pyrrolidine-2-carbonyl]amino]-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]acetyl]amino]-3-hydroxypropanoyl]amino]-4-methylpentanoyl]amino]-3-sulfanylpropanoyl]amino]-4-methylsulfanylbutanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-hydroxybutanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoyl]amino]-3-hydroxypropanoyl]amino]-3-hydroxypropanoyl]amino]-3-(1H-imidazol-5-yl)propanoyl]amino]-4-methylpentanoyl]amino]-3-hydroxybutanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-oxopentanoyl]amino]-3-hydroxybutanoyl]amino]-3-hydroxypropanoyl]amino]-3-carboxypropanoyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]-5-oxopentanoyl]amino]-3-phenylpropanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]-4-oxobutanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-4-carboxybutanoyl]amino]-5-oxopentanoyl]amino]hexanoic acid Chemical compound CSCC[C@H](N)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](Cc1cnc[nH]1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](Cc1ccccc1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCCN)C(O)=O PGOHTUIFYSHAQG-LJSDBVFPSA-N 0.000 description 4
- 206010003178 Arterial thrombosis Diseases 0.000 description 4
- 108091034117 Oligonucleotide Proteins 0.000 description 4
- 208000006011 Stroke Diseases 0.000 description 4
- 239000000074 antisense oligonucleotide Substances 0.000 description 4
- 238000012230 antisense oligonucleotides Methods 0.000 description 4
- 230000023555 blood coagulation Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 210000001105 femoral artery Anatomy 0.000 description 4
- 230000013595 glycosylation Effects 0.000 description 4
- 238000006206 glycosylation reaction Methods 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 230000036961 partial effect Effects 0.000 description 4
- 239000000546 pharmaceutical excipient Substances 0.000 description 4
- 239000013641 positive control Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000008685 targeting Effects 0.000 description 4
- 108020004414 DNA Proteins 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 3
- 241001529936 Murinae Species 0.000 description 3
- 108010094028 Prothrombin Proteins 0.000 description 3
- 102100027378 Prothrombin Human genes 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 230000010100 anticoagulation Effects 0.000 description 3
- 210000001367 artery Anatomy 0.000 description 3
- 210000004899 c-terminal region Anatomy 0.000 description 3
- 230000006240 deamidation Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 230000006624 extrinsic pathway Effects 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 210000002216 heart Anatomy 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 230000003053 immunization Effects 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 239000013642 negative control Substances 0.000 description 3
- 230000003285 pharmacodynamic effect Effects 0.000 description 3
- 229940039716 prothrombin Drugs 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 150000003384 small molecules Chemical class 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000007619 statistical method Methods 0.000 description 3
- 230000001732 thrombotic effect Effects 0.000 description 3
- 210000001364 upper extremity Anatomy 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- 208000004476 Acute Coronary Syndrome Diseases 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 2
- 206010002091 Anaesthesia Diseases 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- 102100022641 Coagulation factor IX Human genes 0.000 description 2
- 101710161089 Coagulation factor XI Proteins 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 108010076282 Factor IX Proteins 0.000 description 2
- 108010071241 Factor XIIa Proteins 0.000 description 2
- PIWKPBJCKXDKJR-UHFFFAOYSA-N Isoflurane Chemical compound FC(F)OC(Cl)C(F)(F)F PIWKPBJCKXDKJR-UHFFFAOYSA-N 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 241000282520 Papio Species 0.000 description 2
- 241000700157 Rattus norvegicus Species 0.000 description 2
- 108010090804 Streptavidin Proteins 0.000 description 2
- 108090000190 Thrombin Proteins 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 235000012211 aluminium silicate Nutrition 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 230000037005 anaesthesia Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 229960004676 antithrombotic agent Drugs 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229960000074 biopharmaceutical Drugs 0.000 description 2
- 230000036772 blood pressure Effects 0.000 description 2
- 230000036760 body temperature Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000003593 chromogenic compound Substances 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 208000029078 coronary artery disease Diseases 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000002224 dissection Methods 0.000 description 2
- MOTZDAYCYVMXPC-UHFFFAOYSA-N dodecyl hydrogen sulfate Chemical compound CCCCCCCCCCCCOS(O)(=O)=O MOTZDAYCYVMXPC-UHFFFAOYSA-N 0.000 description 2
- 229940043264 dodecyl sulfate Drugs 0.000 description 2
- 239000003596 drug target Substances 0.000 description 2
- 210000003414 extremity Anatomy 0.000 description 2
- 229960004222 factor ix Drugs 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 230000036737 immune function Effects 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000002050 international nonproprietary name Substances 0.000 description 2
- 229960002725 isoflurane Drugs 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 208000010125 myocardial infarction Diseases 0.000 description 2
- 208000030613 peripheral artery disease Diseases 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 108091033319 polynucleotide Proteins 0.000 description 2
- 102000040430 polynucleotide Human genes 0.000 description 2
- 239000002157 polynucleotide Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 230000004481 post-translational protein modification Effects 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000012723 sample buffer Substances 0.000 description 2
- 210000004988 splenocyte Anatomy 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 229960004072 thrombin Drugs 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 238000011725 BALB/c mouse Methods 0.000 description 1
- 241001631457 Cannula Species 0.000 description 1
- 206010008089 Cerebral artery occlusion Diseases 0.000 description 1
- 102100026735 Coagulation factor VIII Human genes 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 206010010356 Congenital anomaly Diseases 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 206010014498 Embolic stroke Diseases 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108010074860 Factor Xa Proteins 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 206010019280 Heart failures Diseases 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 101000911390 Homo sapiens Coagulation factor VIII Proteins 0.000 description 1
- 208000032382 Ischaemic stroke Diseases 0.000 description 1
- 208000034693 Laceration Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 108010003723 Single-Domain Antibodies Proteins 0.000 description 1
- 101710120037 Toxin CcdB Proteins 0.000 description 1
- 208000024248 Vascular System injury Diseases 0.000 description 1
- 208000012339 Vascular injury Diseases 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 229960001138 acetylsalicylic acid Drugs 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000001949 anaesthesia Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000005875 antibody response Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000011882 arthroplasty Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 238000007413 biotinylation Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000007211 cardiovascular event Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 108091036078 conserved sequence Proteins 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 230000009260 cross reactivity Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- -1 e.g. Substances 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 239000000710 homodimer Substances 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 239000012729 immediate-release (IR) formulation Substances 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 230000029226 lipidation Effects 0.000 description 1
- 239000012669 liquid formulation Substances 0.000 description 1
- 239000003055 low molecular weight heparin Substances 0.000 description 1
- 229940127215 low-molecular weight heparin Drugs 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 229940126619 mouse monoclonal antibody Drugs 0.000 description 1
- 238000011201 multiple comparisons test Methods 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000009635 nitrosylation Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000001543 one-way ANOVA Methods 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 230000036515 potency Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 238000012337 thromboprophylaxis Methods 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000010798 ubiquitination Methods 0.000 description 1
- 230000034512 ubiquitination Effects 0.000 description 1
- PJVWKTKQMONHTI-UHFFFAOYSA-N warfarin Chemical compound OC=1C2=CC=CC=C2OC(=O)C=1C(CC(=O)C)C1=CC=CC=C1 PJVWKTKQMONHTI-UHFFFAOYSA-N 0.000 description 1
- 229960005080 warfarin Drugs 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/02—Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/36—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against blood coagulation factors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/33—Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
- C07K2317/565—Complementarity determining region [CDR]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
Definitions
- This disclosure relates to antibodies capable of binding to the coagulation factor XI (FXI) and/or its activated form factor XIa (FXIa) , and to fragments of FXI and/or FXIa, and uses thereof, including uses as anticoagulation agents for treating thrombosis that do not compromise hemostasis.
- FXI coagulation factor XI
- FXIa activated form factor XIa
- Thrombosis is a condition that involves blood clotting in a blood vessel, thereby blocking or obstructing blood flow in the affected area. This condition can lead to serious complications if the blood clots travel along the circulatory system to a crucial body part such as heart, brain, and lungs, causing heart attack, stroke, pulmonary embolism, etc.
- Thrombosis is the major cause of most strokes and myocardial infarctions, deep vein thrombosis (DVT) , pulmonary embolism, and other cardiovascular events.
- DVT deep vein thrombosis
- 1, 2 Thrombosis can be treated or prevented by anticoagulants such as low-molecular-weight heparin, warfarin, and Factor Xa direct inhibitors.
- anticoagulants such as low-molecular-weight heparin, warfarin, and Factor Xa direct inhibitors.
- the most common adverse effect of these currently available therapies is impairing haemostasis.
- antibodies that bind to coagulation factor XI (FXI) and/or its activated form factor XIa (FXIa) , and to fragments of FXI and/or FXIa.
- the antibodies are monoclonal antibodies.
- the antibodies are recombinant antibodies.
- the antibodies are humanized antibodies.
- the antibodies are immunologically active portions of immunoglobulin molecules, e.g., Fabs, Fvs, or scFvs.
- the antibodies bind to the A3 domain of FXI and/or FXIa.
- the antibodies include one or more CDRs consisting of or comprising the amino acid sequences of SEQ ID NOs: 11-16, 27-32, 43-48, 59-64, 75-80, 91-96, 107-112, 123-128, 139-144, 155-160, 171-176, and 187-192.
- the pharmaceutical composition comprises one or more anti-FXI and/or anti-FXIa antibodies as disclosed herein.
- the pharmaceutical composition further comprises one or more pharmaceutically acceptable adjuvants, carriers, excipients, preservatives, or a combination thereof.
- nucleic acid encoding an anti-FXI and/or anti-FXIa antibody as disclosed herein, or a functional fragment of either antibody, as well as a vector comprising the nucleic acid, and a host cell comprising the vector.
- the vector is an expression vector that is capable of producing the antibody or a functional fragment thereof encoded by the nucleic acid in a host cell.
- kits comprising one or more anti-FXI and/or anti-FXIa antibodies as disclosed herein for use in treating and/or preventing thrombosis and/or complications or conditions associated with thrombosis.
- the kit comprises a pharmaceutical composition comprising one or more anti-FXI and/or anti-FXIa antibodies as disclosed herein for use in treating and/or preventing thrombosis and/or complications or conditions associated with thrombosis.
- the kit further comprises instructions for use.
- the method includes administering to a subject in need thereof a therapeutically effective amount of one or more anti-FXI and/or anti-FXIa antibodies as disclosed herein.
- the method includes administering to a subject in need thereof a therapeutically effective amount of a pharmaceutical composition containing an anti-FXI antibody, an anti-FXIa antibody, or a functional fragment of either antibody.
- an anti-FXI and/or anti-FXIa antibody as disclosed herein formulating a medicament for treating and/or preventing thrombosis and/or complications or conditions associated with thrombosis.
- an anti-FXI and/or anti-FXIa antibody as disclosed herein.
- the method entails the steps of transforming a host cell with a vector comprising a nucleic acid encoding the antibody, and expressing the antibody in the host cell.
- the method can further include purifying the expressed antibody from the host cell.
- the purified antibody can be subjected to modifications such that the modified recombinant antibody retains the activity of the corresponding human antibody.
- an antibody disclosed herein can be produced from culturing a hybridoma.
- Figures 1A-1E illustrate the effects of five anti-FXI antibodies via APTT assay in human plasma.
- Human plasma supplemented with five different antibodies at a concentration ranging from 0 to 400 nM were tested in an APTT assay as described in Example 3.
- the five antibodies tested included 19F6 (A) , 34F8 (B) , 42A5 (C) , 1A6 (D) , and 14E11 (E) .
- Antibodies 1A6 and 14E11 were used as positive controls in this experiment.
- Figures 2A-2C illustrate the effects of antibodies 19F6 (A) , 34F8 (B) , and 42A5 (C) on the APTT assay in monkey plasma.
- Figures 3A-3F illustrates SPR sensorgrams for FXI binding to immobilized h-19F6 (A) , h-34F8 (B) , and h-42A5 (C) , as well as SPR sensorgrams for FXIa binding to immobilized h-19F6 (D) , h-34F8 (E) , and h-42A5 (F) .
- Data were fit with 1: 1 binding model, and curve fits at test concentrations of FXI (0.005 -1 ng/mL) are shown overlaid on the sensorgrams. Each curve indicates a different test concentration of FXI or FXIa.
- Figures 4A-4C illustrate the concentration-response curves of antibodies h-19F6 (A) , h-34F8 (B) , and h-42A5 (C) inhibiting human FXIa from hydrolyzing S-2366.
- Figures 5A-5B illustrate the inhibitory effects of antibodies h-19F6 (A) and h-42A5 (B) on FXIa-mediated activation of FIX to FIXa.
- Human FIX 200 nM was incubated with FXIa (5 nM) in PBS with 5 mM CaCl 2 at room temperature with 1 ⁇ M h-19F6 or h-42A5. At the indicated intervals, samples were collected and the FIX as well as FIXa was determined by Western blots using goat anti-human FIX IgG (Affinity Biologicals) .
- Figures 5C-5D illustrate the inhibitory effects of antibodies h-19F6 (C) and h-42A5 (D) on FXIIa-mediated activation of FXI to FXIa.
- Human FXI 500 nM was incubated with FXIIa (50 nM) in the presence of 1 ⁇ M of h-19F6 or h-42A5.
- FXI, as well as FXIa light chain, which represents FXIa production, at indicated time points was determined by Western blots.
- a human IgG4 (1 ⁇ M) was used as the control.
- Figures 6A-6C illustrate the effects of antibodies h-34F8, h-19F6, and h-42A5 on APTT in cynomolgus monkeys.
- the monkeys were intravenously administered with indicated doses of h-34F8 (A) , h-19F6 (B) , and h-42A5 (C) .
- Ex vivo clotting time APTT was determined at pre-dose (time 0) , and 0.5, 1, 3, 6, 12, and 24 hours post-dose.
- Figures 7A-7C illustrate the effects of antibodies h-34F8, h-19F6, and h-42A5 on PT in cynomolgus monkeys.
- Monkeys were intravenously administered with the indicated doses of h-34F8 (A) , h-19F6 (B) , and h-42A5 (C) .
- Ex vivo clotting time PT was determined at pre-dose (time 0) , and 0.5, 1, 3, 6, 12, and 24 hours post-dose.
- Figures 8A-8C illustrate the effects of antibodies h-34F8, h-19F6, and h-42A5 on AV shunt thrombosis in cynomolgus monkeys.
- Figures 9A-9C illustrate the effects of antibodies h-34F8, h-19F6, and h-42A5 on bleeding time in cynomolgus monkeys.
- Figures 10A-10B illustrate the antithrombotic effects of antibodies h-34F8, h-19F6, and h-42A5.
- the time to 80%thrombotic occlusion (A) and to 100%thrombotic occlusion (B) were determined by monitoring the blood flow velocity.
- Figures 11A-11D illustrate that the treatment with antibodies h-34F8, h-19F6, or h-42A5 did not prolong the bleeding time in monkeys.
- the individual bleeding time in h-34F8, h-19F6, and h-42A5 treated group is shown in (A) , (B) and (C) , respectively.
- the bleed time change upon vehicle, h-34F8, h-19F6, or h-42A5 treatment is shown in (D) .
- Figures 12A-12B illustrate the effects of antibodies h-34F8, h-19F6, and h-42A5 on clotting times of monkey plasma.
- the APTT changes and PT changes are shown in (A) and (B) , respectively. **P ⁇ 0.01 and ***P ⁇ 0.001 vs. vehicle.
- Figure 13 illustrates the amino acid sequence of human FXI (SEQ ID NO: 203) .
- Figures 14A-14B illustrate the effects of modified antibodies h-19F6 (A) , and h-42A5 (B) on APTT in cynomolgus monkeys.
- the monkeys were intravenously administered with indicated doses of modified h-19F6 and h-42A5.
- Ex vivo clotting time APTT was determined at pre-dose (time 0) , and 0.5, 2, 6, 12, 24, 48, 96, 168, 240, and 336 hours post-dose.
- Figures 15A-15B illustrate the effects of modified antibodies h-19F6 (A) , and h-42A5 (B) on PT in cynomolgus monkeys.
- Monkeys were intravenously administered with the indicated doses of modified h-19F6 and h-42A5.
- Ex vivo clotting time PT was determined at pre-dose (time 0) , and 0.5, 2, 6, 12, 24, 48, 96, 168, 240, and 336 hours post-dose.
- Figures 16A-16B illustrate the effects of h-19F6 and h-42A5 on APTT and PT in human plasma.
- Figure 16A shows the effects of h-19F6 and h-42A5 on APTT in human plasma.
- Figure 16B shows the effects of h-19F6 and h-42A5 on PT in human plasma.
- Figure 17 shows the binding specificity of test antibodies to human FXI.
- 10 ⁇ L of human standard plasma or FXI-deficient plasma were served as FXI-positive and FXI-negative controls.
- Figure 18 shows the effects of h-19F6 and h-42A5 in AV shunt thrombosis models on bleeding times recorded at pre-dose and 1-hour post-dose.
- Figures 19A-19D show the binding properties of h-19F6 and h-42A5 to human FXI.
- Figure 19A shows sensorgrams for h-19F6 captured on a sensor chip subjected to flows of indicated concentrations of FXI.
- Figure 19B shows sensorgrams for h-42A5 captured on a sensor chip subjected to flows of indicated concentrations of FXI.
- Figure 19C shows antibodies captured when test antibodies (5 ⁇ g/mL) flew through a sensor chip immobilized with equal amounts of 4 mutant FXIs in which the A1, A2, A3, or A4 domain was replaced with the corresponding domain from prekallikrein. A reported anti-FXI antibody, O1A6, was also tested a positive control.
- Figure 19D shows that FXI was immobilized on a sensor chip.
- H-19F6 and h-42A5 (5 ⁇ g/ml) were successively injected into flow cells on the sensor surface at a flow rate of 30 ⁇ l/minute, and the response change was monitored. The experiment was performed twice, and a representative result is depicted.
- Figures 20A-20B show the binding properties of h-19F6 and h-42A5 to human FXIa.
- Figure 20A shows sensorgrams for h-19F6 captured on a sensor chip subjected to flows of indicated concentrations of FXIa.
- Figure 20B shows sensorgrams for h-42A5 captured on a sensor chip subjected to flows of indicated concentrations of FXIa.
- the intrinsic pathway also called the contact activation pathway, is initiated by contact with a surface interface and results in activation of FXII.
- the intrinsic pathway also involves FXI, FIX and FVIII.
- the extrinsic pathway also called the tissue factor (TF) pathway, is initiated by vascular injury and results in the formation of an activated complex of TF-FVIIa. These two pathways meet and activate the common pathway, leading to conversion of prothrombin to thrombin and eventually the formation of cross-linked fibrin clot.
- An ideal anticoagulant should be efficacious in preventing thrombosis without compromising haemostasis.
- FXI can be activated by factor XIIa via the intrinsic pathway to FXIa, which in turn activates factor IX.
- Epidemiological studies have suggested that FXI deficiency in humans is associated with decreased risk of venous thromboembolism and stroke, whereas increased FXI levels are associated with increased risk. 9-11
- FXI-deficient humans show a very low bleeding tendency. 12, 13
- mice deficient in FXI are protected against many types of thrombosis without increased bleeding.
- small-molecule inhibitors, antibodies and antisense oligonucleotides that inhibit FXI have demonstrated antithrombotic properties with no bleeding risk in many animal models of thrombosis.
- the antibodies disclosed herein binds to FXI and/or FXIa and target the intrinsic pathway of blood coagulation.
- the structure of FXI and FXI’s involvement in blood coagulation have been reported in various publications. 33
- FXI-deficient mice have been studied by many research teams and have displayed remarkable antithrombotic phenotypes in several models, including FeCl 3 -induced arterial and deep vein thrombosis models, a pulmonary embolism model, and a cerebral artery occlusion model. 14, 17, 22, 23
- VTE venous thromboembolism
- FXI thromboembolism
- FXI-deficient mice do not show excessive bleeding, as their tail-bleeding times are comparable to those of wild-type animals. 23, 24 In addition, severely FXI-deficient patients do not exhibit spontaneous bleeding, although they may display a variable bleeding tendency during surgical operations. 12, 13 Combination of two or more anti-thrombotics are widely used clinically. A previous study showed that aspirin caused a similar bleeding tendency in wild-type and FXI-deficient mice, suggesting that targeting FXI might still be safe even in the presence of other anti-thrombotic therapies. 14
- FXI/FXIa is a safe drug target for treating thrombosis-related diseases without compromising haemostasis.
- many approaches have been applied to target FXI/FXIa for developing therapeutics for treating thrombosis, such as antibodies, oligonucleotides, and small-molecule inhibitors.
- antibody-type blockers of FXI/FXIa were generated.
- the advantages of antibodies include fast-acting properties and a low frequency of dosing, and a major weakness of antibodies is their potential immunogenicity. 25 At least two test antibodies were humanized before conducting in vivo studies.
- FXI/FXIa inhibitors have prolonged APTT and exhibited antithrombotic effects in different models.
- Anti-FXI antibody 14E11 increased APTT by approximately 1.3-fold and reduced thrombosis in exteriorized femoral arteriovenous shunts in baboons. 17
- An antisense oligonucleotide inhibiting FXI expression reduced plasma FXI levels by approximately 50%and decreased thrombus formation in baboons. 26, 27
- an orally bioavailable small-molecule FXIa inhibitor, ONO-5450598 significantly inhibited thrombosis formation in monkey models of thrombosis.
- Bleeding risk is the most concerning issue in developing antithrombotic agents. As previously mentioned, FXI-deficient patients may show a bleeding tendency under surgical settings. It is unclear to what extent plasma FXI activity inhibition is still safe in terms of bleeding risk. As demonstrated in the working examples, the bleeding risk of intensive inhibition of FXI/FXIa by h-19F6 and h-42A5 was tested in the same monkeys used in thrombosis experiments. In AV shunt thrombosis animals, no bleeding tendency was observed as the treating dose of h-19F6 or h-42A5 escalated, suggesting that bleeding risk may be independent of the extent of FXI inhibition.
- antibodies that bind to FXI, FXIa, and/or a fragment of FXI or FXIa and inhibit the formation of blood clot are capable of binding to FXI, FXIa, and/or a fragment of FXI or FXIa (e.g., a fragment comprising the A3 domain) and exhibiting an inhibitory effect at a concentration that is much lower than the maximum safety dose.
- a dose of the antibody between 0.1 mg/kg i.v. and 3 mg/kg i.v. exhibits an inhibitory effect on conversion of FXI to FXIa in cynomolgus monkeys.
- the antibodies disclosed herein can be used as anticoagulation agents with superior safety due to their minimal risk of causing bleeding versus conventional anticoagulation agents such as heparin.
- anti-human FXI antibodies were generated by immunizing rats with human FXI to identify antibodies with anticoagulation properties. A dozen such antibodies were identified, and some of which were humanized for further development.
- the humanized rat anti-human FXI antibodies such as h-19F6 and h-42A5 antibodies, were characterized in vitro and in vivo. In the in vitro studies, the humanized antibodies inhibited activated FXI (FXIa) -mediated hydrolysis of factor IX but not factor XIIa-induced FXI activation.
- the binding properties of the antibodies to FXI were determined, and the dissociation constants (KD) for h-19F6 and h-42A5 were 22 pM and 35 pM, respectively. These two antibodies bind different sites in the A3 domain of FXI.
- two distinct primate thrombosis models were used to evaluate the anti-thrombotic effects and bleeding risks of the humanized antibodies.
- arteriovenous (AV) shunt thrombosis models both antibodies dose-dependently decreased thrombus formation without causing bleeding.
- AV arteriovenous
- FeCl3-induced thrombosis models both antibodies extended the time to thrombosis-mediated vessel occlusion, and neither antibody increased bleeding. The two antibodies showed anti-thrombotic efficacy without compromising haemostasis in primates, further confirming that targeting FXI can be used for treating thrombosis.
- composition or method includes at least the recited elements.
- consisting essentially of means that the composition or method includes the recited elements, and may further include one or more additional elements that do not materially affect the novel and basic characteristics of the composition or method.
- a composition consisting essentially of recited elements may include those recited elements plus one or more trace contaminants from the isolation and purification method, pharmaceutically acceptable carriers such as phosphate buffered saline, preservatives, and the like.
- Consisting of means the composition or method includes only the recited elements. Embodiments defined by each of the transitional terms are within the scope of this invention.
- an antibody refers to an immunoglobulin molecule or an immunologically active portion thereof that specifically binds to, or is immunologically reactive with a particular antigen, for example, FXI, FXIa, or a particular domain or fragment of FXI or FXIa, e.g., the A3 domain.
- an antibody for use in the present methods, compositions, and kits is a full-length immunoglobulin molecule, which comprises two heavy chains and two light chains, with each heavy and light chain containing three complementary determining regions (CDRs) .
- antibody in addition to natural antibodies, also includes genetically engineered or otherwise modified forms of immunoglobulins, such as synthetic antibodies, intrabodies, chimeric antibodies, fully human antibodies, humanized antibodies, peptibodies and heteroconjugate antibodies (e.g., bispecific antibodies, multispecific antibodies, dual-specific antibodies, anti-idiotypic antibodies, diabodies, triabodies, and tetrabodies) .
- the antibodies disclosed herein can be monoclonal antibodies or polyclonal antibodies.
- an antibody is an immunologically active portion of an immunoglobulin molecule
- the antibody may be, for example, a Fab, Fab’, Fv, Fab’F (ab’) 2 , disulfide-linked Fv, single chain Fv antibody (scFv) , single domain antibody (dAb) , or diabody.
- the antibodies disclosed herein, including those that are immunologically active portion of an immunoglobulin molecule, retain the ability to bind a specific antigen, for example FXI or FXIa, or to bind a specific fragment of FXI or FXIa such as the A3 domain.
- the anti-FXI and/or anti-FXIa antibodies disclosed herein have undergone post-translational modifications such as phosphorylation, methylation, acetylation, ubiquitination, nitrosylation, glycosylation, or lipidation associated with expression in a mammalian cell line, including a human or a non-human host cell.
- post-translational modifications such as phosphorylation, methylation, acetylation, ubiquitination, nitrosylation, glycosylation, or lipidation associated with expression in a mammalian cell line, including a human or a non-human host cell.
- polynucleotides or nucleic acids encoding the anti-FXI and/or anti-FXIa antibodies disclosed herein include DNA, mRNA, cDNA, plasmid DNA.
- the nucleic acid encoding the antibody or a functional fragment thereof disclosed herein can be cloned into a vector, such as a pTT5 mammalian expression vector, which may further include a promoter and/or other transcriptional or translational control elements such that the nucleic acid can be expressed to produce the antibody or the functional fragment thereof.
- nucleic acid (DNA) and/or amino acid (PRT) sequences including the sequences of the VH and VL and CDRs, of some examples of the antibodies disclosed herein are listed in Table 1 below.
- humanized anti-FXI and/or anti-FXIa antibodies are provided in certain embodiments herein.
- Various techniques are known in the art for humanizing antibodies from non-human species such that the antibodies are modified to increase their similarity to antibodies naturally occurring in humans.
- Six CDRs are present in each antigen binding domain of a natural antibody. These CDRs are short, non-contiguous sequences of amino acids that are specifically positioned to form the antigen binding domain as the antibody assumes its three dimensional configuration.
- the remainder of the amino acids in the antigen binding domains referred to as “framework” regions, show less inter-molecular variability and form a scaffold to allow correct positioning of the CDRs.
- the antibodies or fragments disclosed herein have conserved sequences for CDR3 regions.
- humanization of the antibodies disclosed herein can be accomplished by CDR grafting of monoclonal antibodies produced by immunizing mice or rats.
- the CDRs of a mouse monoclonal antibody can be grafted into a human framework, which is subsequently joined to a human constant region to obtain a humanized antibody.
- the human germline antibody sequence database, the protein data bank (PDB) , the INN (International Nonproprietary Names) database, and other suitable databases can be searched and the most similar frameworks to the antibodies can be identified by the search.
- some back mutations to the donor residues are made in the human acceptor frameworks.
- the variable regions are linked to a human IgG constant region.
- human IgG1, IgG2, IgG3 and IgG4 Fc domains can be used. It is within the purview of one of ordinary skill in the art to humanize a monoclonal antibody produced by a non-human species based on the existing technology.
- the antibodies provided herein include variants of the sequences disclosed herein that contain one or more mutations in their amino acid sequences while retaining binding affinity for FXI, FXIa, and/or a fragment thereof (e.g., a fragment comprising the A3 domain) .
- the antibodies include a variable region having an amino acid sequence that is at least 85%, at least 90%, at least 95%, at least 98%, or at least 99%identical to a sequence selected from the group consisting of SEQ ID NOs: 9, 10, 25, 26, 41, 42, 57, 58, 73, 74, 89, 90, 105, 106, 121, 122, 137, 138, 153, 154, 169, 170, 185, 186, and 197-209, or a fragment thereof that retains binding affinity for FXI, FXIa, and/or a fragment thereof.
- nucleic acids encoding antibodies that bind to FXI, FXIa, and/or a fragment thereof (e.g., a fragment comprising the A3 domain) .
- the nucleic acids encoding the antibodies include a variable region having a nucleic acid sequence that is at least 85%, at least 90%, at least 95%, at least 98%, or at least 99%identical to a sequence selected from the group consisting of SEQ ID NOs: 1, 2, 17, 18, 33, 34, 49, 50, 65, 66, 81, 82, 97, 98, 113, 114, 129, 130, 145, 146, 161, 162, 177, and 178, or a fragment thereof that encodes a polypeptide with binding affinity for FXI, FXIa, and/or a fragment thereof.
- the antibodies are further subjected to a strategic Chemistry, Manufacturing, and Control (CMC) development such that the novel antibodies such as monoclonal antibodies or humanized monoclonal antibodies disclosed herein are advanced from discovery to human clinical trials, and then to the pharmaceutical market.
- CMC strategic Chemistry, Manufacturing, and Control
- the modifications further improve the properties of the antibodies without compromising the immunological functions of the antibodies.
- a CMC modified antibody is more stable under various temperatures (e.g., 4°C, 25°C, and 37°C) for an extended period of time (e.g., 3 days, 7 days, 14 days and 28 days) and under repeated freeze/thaw cycles (e.g., -40°C/25°C for up to 5 cycles) comparing to the unmodified antibody.
- the CMC modified antibodies have an acceptable solubility.
- certain amino acids can be potential oxidation and glycosylation sites. These amino acid residues at the potential oxidation, deamidation, or glycosylation sites may be mutated and additional residues in the proximity can also be mutated and/or optimized to maintain the 3D structure and function of a particular antibody.
- one or more amino acid residues in a CDR region having the potential of oxidation, deamidation, or glycosylation are mutated to improve the stability of the antibody or a fragment thereof without compromising the immunological functions.
- one or more Met residues in a CDR region having the potential of oxidation are mutated.
- one or more Asn residues in a CDR region having the potential of deamidation are mutated.
- the antibodies disclosed herein can be formulated into pharmaceutical compositions.
- the pharmaceutical compositions may further comprise one or more pharmaceutically acceptable carriers, excipients, preservatives, or a combination thereof.
- the pharmaceutical compositions can have various formulations, e.g., injectable formulations, lyophilized formulations, liquid formulations, etc. Depending on the formulation and administration route, one would select suitable additives, such as adjuvants, carriers, excipients, preservatives. 34
- the pharmaceutical composition can be included in a kit with an instruction for using the composition.
- a method of treating and/or preventing thrombosis in a subject suffering from thrombosis and/or at an elevated risk of developing thrombosis is also provided.
- a method of inhibiting the formation of blood clots in a subject entail administering a therapeutically effective amount of an anti-FXI and/or FXIa antibody provided herein to intervene in the intrinsic pathway.
- these methods comprise administering a pharmaceutical composition comprising an anti-FXI and/or anti-FXIa antibody as provided herein to the subject.
- thrombosis causes or is associated with a number of complications or conditions, such as embolic stroke, venous thrombosis such as venous thromboembolism (VTE) , deep vein thrombosis (DVT) , and pulmonary embolism (PE) , arterial thrombosis such as acute coronary syndrome (ACS) , coronary artery disease (CAD) , and peripheral artery disease (PAD) .
- embolic stroke venous thrombosis such as venous thromboembolism (VTE) , deep vein thrombosis (DVT) , and pulmonary embolism (PE)
- VTE venous thromboembolism
- VVT deep vein thrombosis
- PE pulmonary embolism
- PE pulmonary embolism
- ACS acute coronary syndrome
- CAD coronary artery disease
- PAD peripheral artery disease
- thrombosis Other conditions associated with thrombosis include, for example, high risk of VTE in surgical patients, immobilized patients, patients with cancer, patients with heart failure, pregnant patients, or patients having other medical conditions that may cause thrombosis.
- the methods disclosed herein relate to a preventive anticoagulant therapy, that is, thromboprophylaxis. These methods entail administering to a subject suffering from a thrombosis-related complication disclosed above a therapeutically effective amount of an anti-FXI and/or FXIa antibody as disclosed herein or a therapeutically effective amount of a pharmaceutical composition comprising the anti-FXI and/or FXIa antibody.
- the antibody or pharmaceutical composition can be administered either alone or in combination with any other therapy for treating or preventing the thrombosis-related complications or conditions.
- the antibodies disclosed herein can be used as a secondary therapy in combination with other therapeutic agents for treating sepsis, such as antibiotics.
- the term “subject” refers to mammalian subject, preferably a human.
- a "subject in need thereof” refers to a subject who has been diagnosed with thrombosis or complications or conditions associated with thrombosis, or is at an elevated risk of developing thrombosis or complications or conditions associated with thrombosis.
- the phrases “subject” and “patient” are used interchangeably herein.
- treat, ” “treating, ” and “treatment” as used herein with regard to a condition refers to alleviating the condition partially or entirely, preventing the condition, decreasing the likelihood of occurrence or recurrence of the condition, slowing the progression or development of the condition, or eliminating, reducing, or slowing the development of one or more symptoms associated with the condition.
- treating may refer to preventing or slowing the existing blood clot from growing larger, and/or preventing or slowing the formation of blood clot.
- the term “treat, ” “treating, ” or “treatment” means that the subject has a reduced number or size of blood clots comparing to a subject without being administered with the antibodies or functional fragments thereof. In some embodiments, the term “treat, ” “treating, ” or “treatment” means that one or more symptoms of thrombosis and/or thrombosis-related conditions or complications are alleviated in a subject receiving an antibody or pharmaceutical composition as disclosed herein comparing to a subject who does not receive such treatment.
- a “therapeutically effective amount” of an antibody or pharmaceutical composition as used herein is an amount of the antibody or pharmaceutical composition that produces a desired therapeutic effect in a subject, such as treating and/or preventing thrombosis.
- the therapeutically effective amount is an amount of the antibody or pharmaceutical composition that yields maximum therapeutic effect.
- the therapeutically effective amount yields a therapeutic effect that is less than the maximum therapeutic effect.
- a therapeutically effective amount may be an amount that produces a therapeutic effect while avoiding one or more side effects associated with a dosage that yields maximum therapeutic effect.
- a therapeutically effective amount for a particular composition will vary based on a variety of factors, including but not limited to the characteristics of the therapeutic composition (e.g., activity, pharmacokinetics, pharmacodynamics, and bioavailability) , the physiological condition of the subject (e.g., age, body weight, sex, disease type and stage, medical history, general physical condition, responsiveness to a given dosage, and other present medications) , the nature of any pharmaceutically acceptable carriers, excipients, and preservatives in the composition, and the route of administration.
- the characteristics of the therapeutic composition e.g., activity, pharmacokinetics, pharmacodynamics, and bioavailability
- the physiological condition of the subject e.g., age, body weight, sex, disease type and stage, medical history, general physical condition, responsiveness to a given dosage, and other present medications
- the nature of any pharmaceutically acceptable carriers, excipients, and preservatives in the composition e.g., the nature of any pharmaceutically acceptable
- a therapeutically effective amount of an antibody disclosed herein is in the range from about 0.01 mg/kg to about 30 mg/kg, from about 0.1 mg/kg to about 10 mg/kg, from about 1 mg/kg to about 5 mg/kg.
- the antibody or pharmaceutical composition can be administered continuously or intermittently, for an immediate release, controlled release or sustained release. Additionally, the antibody or pharmaceutical composition can be administered three times a day, twice a day, or once a day for a period of 3 days, 5 days, 7 days, 10 days, 2 weeks, 3 weeks, or 4 weeks. The antibody or pharmaceutical composition may be administered over a pre-determined time period. Alternatively, the antibody or pharmaceutical composition may be administered until a particular therapeutic benchmark is reached. In certain embodiments, the methods provided herein include a step of evaluating one or more therapeutic benchmarks to determine whether to continue administration of the antibody or pharmaceutical composition.
- these methods entail the steps of cloning a nucleic acid encoding an anti-FXI and/or anti-FXIa antibody into a vector, transforming a host cell with the vector, and culturing the host cell to express the antibody.
- the expressed antibody can be purified from the host cell using any known technique.
- Various expression vectors such as pTT5 vector, and pcDNA3 vector, as well as various host cell lines such as CHO cells (e.g. CHO-K1 and ExpiCHO) , and HEK193T cells, can be used.
- antibodies produced by the method disclosed above may have been subjected to one or more post-translational modifications.
- Antibody preparation Animal immunization and hybridoma screening were performed at Genscript Inc. (Nanjing, China) , and the procedures that were applied to animals in this protocol were approved by the Genscript Institutional Animal Care and Use Committee. The experiment was performed in accordance with the approved guidelines. Wistar rats were immunized with human FXI, and splenocytes from animals with a good immune response were collected for the preparation of hybridomas, which were subjected to subcloning by limiting dilution. Finally, several monoclonal hybridoma clones expressing the desired anti-FXI antibodies, including 19F6, h-34F8 and 42A5, were obtained by using ELISA and functional screening.
- 19F6, h-34F8 and 42A5 were subjected to humanization, resulting in three humanized antibodies, h-19F6 , h-34F8 and h-42A5, in an IgG4 form. These three humanized antibodies were produced in a transient mammalian expression system and purified by Protein G chromatography.
- APTT Activated partial thromboplastin time
- PT prothrombin time
- monkey plasma diluted with an equal volume of phosphate-buffered saline (PBS) was used instead of the above mentioned human plasma-antibody mixture.
- FXI activation by FXIIa Human FXI (500 nM) was pre-incubated at room temperature with 1 ⁇ M control IgG4 or h-19F6 or h-34F8 or h-42A5 in PBS for 5 minutes. At time zero, FXIIa, HK, and kaolin were added so that the final concentrations were FXI (250 nM) , FXIIa (50 nM) , HK (100 nM) , and kaolin (0.5 mg/mL) . At 0, 30, 60, 120 min intervals, 50- ⁇ L samples were collected into dodecyl sulfate sample buffer.
- FXIa-mediated FIX activation Human FIX (200 nM) was incubated with FXIa (5 nM) in PBS containing 5 mM CaCl 2 at room temperature in the presence of 1 ⁇ M control lgG4, h-19F6, h-34F8, or h-42A5. At intervals of 0, 15, 30, 45, and 60 min, 50- ⁇ L samples were collected into dodecyl sulfate sample buffer. Samples were size-fractionated on 10%non-reducing gels and transferred to polyvinylidene fluoride membranes. Western blotting was performed to determine the FIX as well as FIXa levels using goat anti-human FIX IgG (Affinity Biologicals) . The image results were acquired using a ChemiDocMP Imaging System with Image Lab Software (Bio-Rad) .
- SPR Surface plasmon resonance
- test antibodies on FXI were first generated by replacing each apple domain (A1, A2, A3, and A4) with the corresponding domains from human prekallikrein. Equal amounts of each mutant were immobilized on a CM5 sensor chip, and test antibodies (33.3nM) were allowed to flow through the chip for 180 s for association and then for 1200 s for dissociation. The amounts of each antibody captured were recorded in response units (RU) using the Biacore Evaluation Software.
- Epitope binding results of the test antibodies were also analyzed using the Biacore T200 system. Briefly, wild-type FXI with 6 ⁇ His tag was pre-immobilized on a CM5 sensor chip (GE Healthcare) , and h-19F6, h-34F8, or h-42A5 (5 ⁇ g/ml) was successively injected into flow cells on the sensor surface at a flow rate of 30 ⁇ l/minute to monitor the change in response.
- Plasma samples were diluted with an equal volume of phosphate buffered saline (pH 7.4) and then subjected to APTT and PT analysis on an automatic analyser (CA660, Sysmex Inc. ) .
- AV shunt thrombosis and bleeding time test A 30-min post-test antibody treatment was administered via intravenous bolus in cynomolgus monkeys. A tail vein bleeding time test was then performed, followed by thrombosis induction. Thrombosis was induced by connecting a shunt device between the femoral arterial and femoral venous cannulas containing a pre-weighed 10-cm-long thread. Blood was allowed to flow through the shunt for 10 min. The thrombus formed on the thread was weighed. Immediately after the removal of the shunt, blood samples were collected, and the next higher level of test antibody was administered. This bleeding/thrombosis process was carried out four times to dose the vehicle and three escalating levels (0.1, 0.3, 1 mg/kg) of test antibody in the same animal.
- a 2-mL syringe was inserted into the tail vein of the animals.
- the elapsed time was recorded manually as the bleeding time.
- Ferric chloride (FeCl 3 ) -induced thrombosis and bleeding time test This animal experiment was performed at PharmaLegacy Laboratories Inc. (Shanghai, China) , and the procedures that were applied to animals in this protocol were approved by the PharmaLegacy Institutional Animal Care and Use Committee. The experiment was performed in accordance with the approved guidelines. Cynomolgus monkeys were pre-anaesthetized with 1.5 mg/kg of Zoletil, intubated, and ventilated with a respirator. Anaesthesia was maintained with isoflurane. Blood pressure, heart rate, and body temperature were monitored throughout the entire procedure.
- the vehicle or 0.3 mg/kg of h-19F6, h-34F8, or h-42A5 was administered through a limb vein 2 hours before FeCl 3 application.
- the left femoral artery was exposed and isolated via blunt dissection.
- a Doppler flow probe was set up on the artery, and blood flow was continuously recorded.
- blood flow was measured for at least 5 minutes.
- two pieces of filter paper pre-soaked with 40%FeCl 3 were applied to the adventitial surface of the vessel upstream of the probe for 10 minutes. After the filter paper was removed, the site of application was washed with saline. Blood flow was continuously measured until it decreased to 0.
- test antibodies (h-19F6, h-42A5, and 14E11) were first biotinylated using EZ-Link TM Sulfo-NHS-LC-Biotinylation Kit (Cat No. 21435, Thermo Fisher Inc. ) . These antibodies (25 ⁇ g each) were incubated with 200 ⁇ L of human standard plasma (Siemens Inc. ) or FXI-deficient plasma (Hyphen Biomed Inc. ) for 1h. Then 50 ⁇ L of Streptavidin-coated beads (Dynabeads TM M-280 Streptavidin, Thermo Fisher Inc.
- mice and Wistar rats were immunized with human FXI, and splenocytes from the animals with good immune response were collected for the preparation of hybridomas, which were subjected to subcloning by limiting dilution. Twelve monoclonal hybridoma clones expressing desired anti-FXI antibodies 3G12, 5B2, 7C9, 7F1, 13F4, 19F6, 21F12, 34F8, 38E4, 42A5, 42F4, and 45H1 were obtained by using capture ELISA and functional screening.
- V L and V H variable region of the light (V L ) and heavy chain (V H ) of these antibodies.
- cDNAs encoding V L and V H were cloned from the corresponding hybridoma cells by standard RT-PCR procedures.
- the V L and V H sequences of exemplary antibodies, including the sequences of CDRs, are shown in Table 1.
- Example 3 Determination of anti-coagulation activity in human plasma using activated partial thromboplastin time (APTT) assay and prothrombin time (PT) assay
- APTT assay measures the activity of the intrinsic and common pathways of coagulation; whereas PT assay measures the activity of the extrinsic and common pathways of coagulation.
- the antibodies tested in these experiments were 19F6, 34F8, 42A5, 1A6 and 14E11. Antibodies 1A6 and 14E11 were used as positive controls in this experiment.
- the sequences of the variable regions of the control antibodies were obtained from U.S. Patent No. 8,388,959 and U.S. Patent Application Publication No. 2013/0171144 and reformatted to IgG4. These antibodies were then expressed using ExpiCHO cell system.
- the APTT assay and PT assay were performed as described above.
- Example 4 Determination of the anti-coagulation activity in the plasma of non-human species using activated partial thromboplastin time (APTT) assay
- the affinity of anti-FXI/FXIa antibodies to FXI/FXIa were determined using surface plasmon resonance (SPR) technology performed on the BIAcore T200 instrument.
- the humanized antibodies were constructed by linking the variable regions of the antibodies disclosed herein to human IgG4 Fc domain and the recombinants were expressed in CHO cells. These antibodies were captured onto a Biacore CM5 sensor chip that was pre-immobilized with an anti-human IgG antibody.
- the dissociation constants (K D ) of h-19F6, h-34F8, and h-42A5 to FXI and FXIa were calculated and detailed in Table 4.
- the affinities of each antibody to FXI and FXIa are considered to be the same since the difference between them is less than 10 times.
- the binding sites of 19F6 and 42A5 on FXI were determined using the SPR technology. Briefly, human IgG capture antibody was pre-immobilized on a Biacore CM5 sensor chip, and recombinant h-19F6 or h-42A5 was captured by flowing through the chip. An equal amount (15 relative units) of h-19F6 and h-42A5 was captured through adjustment of the antibody flowing time. Then wild type FXI or chimeric FXI in which individual apple domain was replaced with the corresponding domain from the human prekallikrein (FXI/PK chimeras) was allowed to flow through the chip for 180 seconds for association with h-19F6 or h-42A5, followed by a time period of 1800 seconds for dissociation.
- FXI/PK chimeras human prekallikrein
- the binding data was analyzed in a high performance kinetic mode as only one concentration of FXI, wild-type or chimeric, was tested in the SPR assay. Results showed that both h-19F6 and h-42A5 bound FXI as well as FXI/PK chimeras except when the A3 domain of FXI was replaced with the corresponding PK domain, indicating that part or the complete epitope of h-19F6 and h-42A5 on FXI is located in the A3 domain.
- Human FXIa activity was determined by measuring the cleavage of a specific, chromogenic substrate, S-2366 (Diapharma Inc. ) .
- S-2366 Diapharma Inc.
- antibodies h-19F6, h-34F8 and h-42A5 were pre-incubated for 5 minutes at room temperature with a final concentration of 5 nM of FXIa in PBS (phosphate buffer saline) .
- PBS phosphate buffer saline
- S-2366 phosphate buffer saline
- S-2366 phosphate buffer saline
- Data were analyzed using the GraphPad Prism software and are shown in Figure 4.
- the calculated apparent Ki for h-19F6, h-34F8, and h-42A5 are 0.67, 2.08, and 1.43 nM, respectively. Therefore, all three antibodies tested exhibited satisfying inhibitory effects on FXIa at a relatively low concentration.
- the FXIa-mediated FIX activation was performed as described above.
- Anti-FXI antibodies may modulate the intrinsic pathway by inhibiting FXI activation and/or by inhibiting FXIa activity.
- both h-19F6 and h-42A5 reduced FIX activation in a concentration-dependent manner.
- the inhibitory effect of these two antibodies on FXIa activity was further confirmed by using a chromogenic substrate of FXIa, S-2366. Both antibodies concentration-dependently inhibited the hydrolysis of S-2366 ( Figure 4) .
- Example 10 Evaluation of the effects of anti-FXI antibodies on clotting time in cynomolgus monkeys
- APTT test 50 ⁇ L of diluted plasma sample and 25 ⁇ L of APTT reagent (SMN 10445709, Symens Inc. ) were mixed and incubated at 37 °C for 4 min. Then 25 ⁇ L of CaCl 2 Solution (25 mM, SMN 10446232, Symens Inc. ) was added and time to clot formation was determined.
- APTT reagent 25 mM, SMN 10446232, Symens Inc.
- PT test 50 ⁇ L of diluted plasma sample was mixed with equal volume of PT reagent (SMN 10446442, Symens Inc. ) and incubated at 37°C and time to clot formation was determined. All three antibodies tested demonstrated dose-dependently increased APTT as shown in Figure 6 and none of them affected PT as shown in Figure 7.
- Example 11 Evaluation of the effects of anti-FXI antibodies in arteriovenous (AV) shunt thrombosis and tail vein bleeding models in cynomolgus monkeys
- Both thrombosis and bleeding time were assessed in the same animal for multiple doses of each antibody tested.
- the antibodies included in this experiment were h-34F8, h-19F6, and h42A5. Briefly, bleeding time and thrombosis were sequentially evaluated at pre-dose and 30 minutes following each administration of the antibody. The bleeding/thrombosis assessments were conducted four times: pre-dose and post-dose at three escalating dose levels (0.1, 0.3 and 1 mg/kg) .
- a shunt device containing a pre-weighed 10-cm long silk thread was applied to connecting the femoral arterial and femoral venous cannulae, and blood was allowed to flow through the shunt for 10 minutes. Then the thread was removed from the shunt and weighed again. Clot weight on the thread was calculated as the difference of the thread weight before and after blood flow.
- a 2-mL syringe was inserted into the tail vein of the animals.
- the elapsed time was recorded manually as the bleeding time.
- Example 12 Evaluation of the effects of anti-FXI antibodies on ferric chloride–induced artery thrombosis and template bleeding time in cynomolgus monkeys
- Cynomolgus monkeys were pre-anesthetized with 1.5 mg/kg of Zoletil, intubated, and ventilated with a respirator. Anesthesia was maintained with isoflurane. The blood pressure, heart rate, and body temperature were monitored throughout the entire procedure. The antibodies tested, including h-34F8, h-19F6, and h-42A5, or the vehicle control were administered through limb vein by injection 2 hours before FeCl 3 application. The left femoral artery was exposed and isolated via blunt dissection. A Doppler flow probe was set up on the artery and the blood flow was continuously recorded. Before applying FeCl 3 , the blood flow was measured for at least 5 minutes.
- Example 13 Evaluation of the effects of modified anti-FXI antibodies on clotting time in cynomolgus monkeys for an extended period of time
- modified antibodies disclosed herein did not show any adverse effects of prolonged bleeding while effectively inhibiting the intrinsic pathway of coagulation for an extended period of time, up to 14 days.
- Example 14 Effects on clotting times of standard human plasma
- Example 15 Binding properties of h-19F6 and h-42A5 to FXI
- the affinities of h-19F6 and h-42A5 to FXI were determined using surface plasmon resonance (SPR) technology.
- the test antibodies were captured on a sensor chip, and then indicated concentrations of FXI were allowed to flow through the chip.
- Sensorgrams for h-19F6 ( Figure 19A) and h-42A5 ( Figure 19B) were obtained.
- the dissociation constants for h-19F6 and h-42A5 were 22 and 36 pM, respectively ( Figures 19A and 19B) .
- FXI is a homodimer consisting of 4 tandem apple domains (A1-4) and a catalytic domain.
- A1-4 tandem apple domains
- Four mutants of FXI were generated by replacing each apple domain with corresponding domains from human prekallikrein and tested the binding properties of h-19F6 or h-42A5 to the 4 mutants of FXI using SPR.
- Equal amounts of the 4 mutant FXIs in which the A1, A2, A3, or A4 domain was replaced with the corresponding domain from prekallikrein were immobilized on a sensor chip, and test antibodies (5 ⁇ g/mL) were allowed to flow through the chip for association. The amounts of each antibody captured were recorded.
- Example 16 Binding properties of h-19F6 and h-42A5 to FXIa
- the antibodies bound to FXIa with the good affinities with which they bound to FXI ( Figures 20A and 20B) .
- the affinities of h-19F6 and h-42A5 to FXI were determined using surface plasmon resonance (SPR) technology.
- the dissociation constants for h-19F6 and h-42A5 were 26 and 81 pM, respectively ( Figures 20A and 20B) .
- the test antibodies were captured on a sensor chip, and then indicated concentrations of FXIa were allowed to flow through the chip. Sensorgrams for h-19F6 ( Figure 20A) and h-42A5 ( Figure 20B) were obtained.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Hematology (AREA)
- Public Health (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Diabetes (AREA)
- Biophysics (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Priority Applications (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18929685.8A EP3833692A1 (fr) | 2018-08-09 | 2018-08-09 | Anticorps anti-facteur xi |
PCT/CN2018/099638 WO2020029179A1 (fr) | 2018-08-09 | 2018-08-09 | Anticorps anti-facteur xi |
CN202111466510.4A CN114478781B (zh) | 2018-08-09 | 2018-08-09 | 抗凝血因子xi抗体 |
BR112021002472-7A BR112021002472A2 (pt) | 2018-08-09 | 2018-08-09 | anticorpos antifator xi |
JP2021506623A JP2021534098A (ja) | 2018-08-09 | 2018-08-09 | 抗第xi因子抗体 |
AU2018436195A AU2018436195A1 (en) | 2018-08-09 | 2018-08-09 | Anti-factor XI antibodies |
CN201880098606.XA CN113227150B (zh) | 2018-08-09 | 2018-08-09 | 抗凝血因子xi抗体 |
KR1020217006922A KR20210042352A (ko) | 2018-08-09 | 2018-08-09 | 항-인자 xi 항체 |
CA3108708A CA3108708A1 (fr) | 2018-08-09 | 2018-08-09 | Anticorps anti-facteur xi |
CN202111467365.1A CN114478782B (zh) | 2018-08-09 | 2018-08-09 | 抗凝血因子xi抗体 |
MX2021001613A MX2021001613A (es) | 2018-08-09 | 2018-08-09 | Anticuerpos anti-factor xi. |
CN202410287101.5A CN118496369A (zh) | 2018-08-09 | 2018-08-09 | 抗凝血因子xi抗体 |
CN202310301532.8A CN116554334A (zh) | 2018-08-09 | 2018-08-09 | 抗凝血因子xi抗体 |
US16/537,427 US11958911B2 (en) | 2017-02-10 | 2019-08-09 | Anti-coagulation factor XI antibody |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/099638 WO2020029179A1 (fr) | 2018-08-09 | 2018-08-09 | Anticorps anti-facteur xi |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/119856 Continuation WO2018145533A1 (fr) | 2017-02-10 | 2017-12-29 | Anticorps anti-facteur xi de coagulation |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020029179A1 true WO2020029179A1 (fr) | 2020-02-13 |
Family
ID=69413757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/099638 WO2020029179A1 (fr) | 2017-02-10 | 2018-08-09 | Anticorps anti-facteur xi |
Country Status (9)
Country | Link |
---|---|
EP (1) | EP3833692A1 (fr) |
JP (1) | JP2021534098A (fr) |
KR (1) | KR20210042352A (fr) |
CN (5) | CN114478782B (fr) |
AU (1) | AU2018436195A1 (fr) |
BR (1) | BR112021002472A2 (fr) |
CA (1) | CA3108708A1 (fr) |
MX (1) | MX2021001613A (fr) |
WO (1) | WO2020029179A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3914624A4 (fr) * | 2019-01-21 | 2022-10-19 | Aronora, Inc. | Nouveaux anticorps humanisés dirigés contre le facteur xi ayant des effets anti-thrombotiques et anti-inflammatoires et utilisations associées |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11958911B2 (en) | 2017-02-10 | 2024-04-16 | Shanghai Benemae Pharmaceutical | Anti-coagulation factor XI antibody |
CN114478782B (zh) * | 2018-08-09 | 2024-04-02 | 上海仁会生物制药股份有限公司 | 抗凝血因子xi抗体 |
US20230343982A1 (en) | 2021-03-31 | 2023-10-26 | Lg Energy Solution, Ltd. | Mono-Cell Manufacturing Apparatus with Gloss Meter and Manufacturing Method Using the Same |
CN116410258B (zh) * | 2023-04-13 | 2024-07-19 | 上海太阳生物技术有限公司 | 因子xi缺乏血浆保护剂及其应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009067660A2 (fr) * | 2007-11-21 | 2009-05-28 | Oregon Health & Science University | Anticorps monoclonaux anti-facteur xi et procédés d'utilisation |
WO2017162791A1 (fr) * | 2016-03-23 | 2017-09-28 | Prothix Bv | Anticorps monoclonaux contre le site actif du facteur xi et leurs utilisations |
WO2018145533A1 (fr) * | 2017-02-10 | 2018-08-16 | 上海仁会生物制药股份有限公司 | Anticorps anti-facteur xi de coagulation |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2014202009A1 (en) * | 2007-11-21 | 2014-05-01 | Oregon Health & Science University | Anti-factor xi monoclonal antibodies and methods of use thereof |
HUE041556T2 (hu) * | 2008-06-19 | 2019-05-28 | Prothix Bv | XI-es faktor elleni ellenanyagok alkalmazása vérrögképzõdés megelõzésére vagy kezelésére |
EP2373691B1 (fr) * | 2008-12-18 | 2019-01-23 | Oregon Health&Science University | Anticorps anti-fxi et procédés d'utilisation |
CN104684932B (zh) * | 2012-05-10 | 2019-03-12 | 拜耳药业股份公司 | 能够结合凝血因子XI和/或其活化形式因子XIa的抗体及其用途 |
JOP20200312A1 (ar) * | 2015-06-26 | 2017-06-16 | Novartis Ag | الأجسام المضادة للعامل xi وطرق الاستخدام |
JOP20170013B1 (ar) * | 2016-01-22 | 2021-08-17 | Merck Sharp & Dohme | أجسام xi مضادة لعامل مضاد للتجلط |
CN114478782B (zh) * | 2018-08-09 | 2024-04-02 | 上海仁会生物制药股份有限公司 | 抗凝血因子xi抗体 |
-
2018
- 2018-08-09 CN CN202111467365.1A patent/CN114478782B/zh active Active
- 2018-08-09 EP EP18929685.8A patent/EP3833692A1/fr not_active Withdrawn
- 2018-08-09 KR KR1020217006922A patent/KR20210042352A/ko unknown
- 2018-08-09 CN CN202410287101.5A patent/CN118496369A/zh active Pending
- 2018-08-09 CA CA3108708A patent/CA3108708A1/fr not_active Abandoned
- 2018-08-09 WO PCT/CN2018/099638 patent/WO2020029179A1/fr unknown
- 2018-08-09 JP JP2021506623A patent/JP2021534098A/ja active Pending
- 2018-08-09 CN CN201880098606.XA patent/CN113227150B/zh active Active
- 2018-08-09 MX MX2021001613A patent/MX2021001613A/es unknown
- 2018-08-09 CN CN202310301532.8A patent/CN116554334A/zh not_active Withdrawn
- 2018-08-09 AU AU2018436195A patent/AU2018436195A1/en not_active Abandoned
- 2018-08-09 CN CN202111466510.4A patent/CN114478781B/zh active Active
- 2018-08-09 BR BR112021002472-7A patent/BR112021002472A2/pt not_active Application Discontinuation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009067660A2 (fr) * | 2007-11-21 | 2009-05-28 | Oregon Health & Science University | Anticorps monoclonaux anti-facteur xi et procédés d'utilisation |
WO2017162791A1 (fr) * | 2016-03-23 | 2017-09-28 | Prothix Bv | Anticorps monoclonaux contre le site actif du facteur xi et leurs utilisations |
WO2018145533A1 (fr) * | 2017-02-10 | 2018-08-16 | 上海仁会生物制药股份有限公司 | Anticorps anti-facteur xi de coagulation |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3914624A4 (fr) * | 2019-01-21 | 2022-10-19 | Aronora, Inc. | Nouveaux anticorps humanisés dirigés contre le facteur xi ayant des effets anti-thrombotiques et anti-inflammatoires et utilisations associées |
Also Published As
Publication number | Publication date |
---|---|
KR20210042352A (ko) | 2021-04-19 |
CN114478781A (zh) | 2022-05-13 |
MX2021001613A (es) | 2021-04-28 |
CN114478782B (zh) | 2024-04-02 |
CN113227150A (zh) | 2021-08-06 |
CN118496369A (zh) | 2024-08-16 |
CN113227150B (zh) | 2023-07-28 |
CN114478781B (zh) | 2024-04-02 |
CN114478782A (zh) | 2022-05-13 |
JP2021534098A (ja) | 2021-12-09 |
BR112021002472A2 (pt) | 2021-07-27 |
CN116554334A (zh) | 2023-08-08 |
EP3833692A1 (fr) | 2021-06-16 |
CA3108708A1 (fr) | 2020-02-13 |
AU2018436195A1 (en) | 2021-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020029179A1 (fr) | Anticorps anti-facteur xi | |
EP3581587A1 (fr) | Anticorps anti-facteur xi de coagulation | |
JP7366988B2 (ja) | 抗凝固因子xi抗体 | |
JP2024054266A (ja) | 組織因子経路インヒビター抗体およびその使用 | |
JP7022081B2 (ja) | 抗凝固因子xi抗体 | |
JP2019534282A (ja) | 抗il−33抗体およびその使用 | |
TW201529602A (zh) | 對抗抗凝血酶β之單株抗體 | |
US11958911B2 (en) | Anti-coagulation factor XI antibody | |
WO2022002249A1 (fr) | Anticorps anti-fxi/fxia, fragment de liaison à l'antigène de celui-ci et utilisation pharmaceutique de celui-ci | |
RU2800719C2 (ru) | Антитела к фактору xi | |
WO2023044280A1 (fr) | Anticorps anti-il-1-bêta |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18929685 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3108708 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2021506623 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018436195 Country of ref document: AU Date of ref document: 20180809 Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112021002472 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 20217006922 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018929685 Country of ref document: EP Effective date: 20210309 |
|
ENP | Entry into the national phase |
Ref document number: 112021002472 Country of ref document: BR Kind code of ref document: A2 Effective date: 20210209 |