WO2020027192A1 - バイオフィルム検出試薬キットおよびバイオフィルム検出方法 - Google Patents
バイオフィルム検出試薬キットおよびバイオフィルム検出方法 Download PDFInfo
- Publication number
- WO2020027192A1 WO2020027192A1 PCT/JP2019/029993 JP2019029993W WO2020027192A1 WO 2020027192 A1 WO2020027192 A1 WO 2020027192A1 JP 2019029993 W JP2019029993 W JP 2019029993W WO 2020027192 A1 WO2020027192 A1 WO 2020027192A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- biofilm
- membrane
- solution
- pretreatment
- liquid
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/52—Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
- C12Q1/04—Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/569—Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
- G01N33/56911—Bacteria
Definitions
- the present invention relates to a method for detecting the presence or absence of a biofilm in a living tissue, and a reagent kit used for the method.
- Biofilm is a community formed by the adhesion of microorganisms, and its main components are glycoproteins, proteins, and extracellular DNA ⁇ . Biofilms exist as reservoirs of bacteria and express pathogenicity by forming populations. Furthermore, since the action of antibacterial drugs and host immunity can be avoided, it causes chronic inflammation and becomes a very strong source of infection (see Non-Patent Document 1). Therefore, healing cannot be expected as long as the biofilm exists at the wound bottom. For this reason, since the latter half of the 2000s, it has been proposed to select wound treatment depending on the presence or absence of a biofilm as biofilm-based wound therapy.
- wound surface blotting which is a method for detecting trace components present on the wound surface, quickly visualizes the distribution of the biofilm on the wound surface by detecting the polysaccharide component, which is a component of the biofilm.
- Patent Document 1 detects a minor component (anionic bacterial exopolysaccharide such as poly- ⁇ - (1-6) -N-acetyl-D-glucosamine or alginic acid) present in the extracellular matrix of a biofilm.
- a minor component anionic bacterial exopolysaccharide such as poly- ⁇ - (1-6) -N-acetyl-D-glucosamine or alginic acid
- the method includes a step of bringing a positively charged membrane (for example, a cationic nylon membrane or the like) into contact with a wound surface, and a step of bringing the membrane removed from the wound surface into a cationic dye (for example, ruthenium red or Alcian blue). And a step of washing the stained membrane with an aqueous solution containing acetic acid and 1-2% lower alcohol, whereby a negatively charged trace component derived from the biofilm is attached to the membrane. It is said that it can be dyed with.
- a positively charged membrane for example, a cationic nylon membrane or the like
- a cationic dye for example, ruthenium red or Alcian blue
- the detection time can be shortened as compared with the method of Patent Document 1, it is not sufficient, and furthermore, acetic acid having a pungent odor is used as a component of the membrane washing solution, so that it is carried out at the bedside. Not suitable for the method.
- Non-patent Documents 2 to 4 after washing the wound surface, a nitrocellulose membrane is adhered to the wound surface for 10 seconds, and then a staining solution (ruthenium red or Alcian blue) specific to a polysaccharide component derived from a biofilm is applied.
- a staining solution ruthenium red or Alcian blue
- a method for visualizing a biofilm by immersion is described. According to this method, the time required for the detection is about 2 minutes, and the biofilm can be detected simply and in a short time at the bedside, and non-invasively. Therefore, it can be used as an index for cleaning the wound. It is said that more appropriate wound local management becomes possible.
- the present inventors have been intensively studying to solve the above problems, as a method of detecting the presence or absence of a biofilm in the wound portion by wound blotting, a non-anionic surfactant on the membrane attached to the wound portion After immersion treatment in a pretreatment solution containing, a dyeing treatment and a washing treatment (decolorization treatment) were performed, whereby it was confirmed that the presence of the biofilm on the membrane could be clearly visualized in a short time. Furthermore, according to the method, it was found that the visualization on the biofilm was stable not only immediately after the decolorization treatment but also after the membrane was dried, and it became clearer. For this reason, according to the wound blotting of the present invention, the detection of a biofilm on the wound surface can be carried out simply and promptly at the bedside, and can be confirmed promptly. It can also be used effectively as an index for film removal.
- Biofilm detection reagent kit (I-1) A reagent kit used for detecting a biofilm in a test tissue, the reagent kit comprising: (A) a pretreatment liquid containing at least one surfactant selected from the group consisting of nonionic surfactants, amphoteric surfactants, and cationic surfactants; (B) a dyeing solution containing a dye, and (c) a decolorizing solution containing at least one surfactant selected from the group consisting of nonionic surfactants, amphoteric surfactants, and cationic surfactants.
- the biofilm detection is used by contacting the contact surface of the membrane after contact with the test tissue in the order of (a) a pretreatment solution, (b) a staining solution, and (c) a decolorizing solution.
- Reagent kit. (I-2) The (a) pretreatment solution, (b) staining solution, and (c) decolorizing solution are each contained in a separate container, preferably a container with a lid that can be opened and closed.
- (I-3) a cationic surfactant selected from dialkyldimethylammonium chloride and benzalkonium chloride as the surfactant used in the (a) pretreatment liquid and / or (c) the decolorizing liquid; alkyldimethyl An amphoteric surfactant selected from betaine aminoacetate and alkyldimethylamine oxide; or from a polyoxyethylene sorbitan fatty acid ester, a polyoxyalkylene alkyl ether, an alkyl polyglucoside, a polyoxyethylene polyoxypropylene glycol, and a polyglycerin fatty acid ester
- the reagent kit for detecting a biofilm according to (I-1) or (I-2), which is a selected nonionic surfactant.
- kit. The biofilm detection described in any of (I-1) to (I-4), further comprising a biofilm present in the test tissue and / or a membrane capable of adsorbing its components.
- Reagent kit. The reagent kit for detecting a biofilm according to any one of (I-1) to (I-5), further including an instruction manual.
- At least one auxiliary device selected from a dipping container, a drainer, a waste liquid container, a container having a drainer, tweezers, sterilized distilled water, and a dryer is included (I-1) to (I-1) to (I-1).
- the reagent kit for detecting a biofilm according to any one of 1-6).
- Biofilm detection method (II-1) A method for detecting a biofilm in a test tissue, comprising the following steps 1 to 4: (1) contacting a test tissue with a membrane capable of adsorbing a biofilm and / or a component thereof, (2) at least a contact surface of the membrane removed from the contact with the test tissue with the test tissue is selected from the group consisting of (a) a nonionic surfactant, an amphoteric surfactant, and a cationic surfactant; Step 2 of treating with a pretreatment liquid containing one kind of surfactant, (3) Step 3 of (a) treating at least the contact surface of the membrane treated with the pretreatment liquid with the test tissue with a (b) staining solution containing a dye, and (4) treating with the (b) staining solution A decolorizing solution containing at least one surfactant selected from the group consisting of (c) a nonionic surfactant, an amphoteric surfactant, and a cationic surfactant Step 4
- the pretreatment step of (1) is carried out for 2 to 60 seconds, preferably 2 to 30 seconds
- the dyeing step of (2) is carried out for 5 to 60 seconds, preferably 10 to 30 seconds
- the test tissue is a living tissue of a wound, a refractory wound, or a chronic wound (pressure ulcer, diabetic foot ulcer, leg ulcer) showing signs of clinical infection,
- (II-1) The method for detecting a biofilm according to any one of to (II-4).
- (II-6) The biofilm detection method according to any one of (II-1) to (II-5), further comprising a step 5 of determining whether a biofilm exists in the test tissue.
- Biofilm detection method (A) a method in which the pretreatment liquid, the staining liquid, and the decolorizing liquid are sequentially replaced in the immersion container containing the membrane obtained in the step 1, and the steps 2 to 4 are performed; (A) a method in which the membrane obtained in the step 1 is sequentially put into an immersion vessel containing a pretreatment liquid, a staining liquid and a decolorizing liquid, and the steps 2 to 4 are carried out; (C) The membrane obtained in the step 1 is placed on the draining surface of a container having a draining portion, and the pretreatment solution, the staining solution and the decolorizing solution are sprayed or dropped so as to sequentially spread over the entire surface of the membrane. A method for performing steps 2 to 4.
- the biofilm detection reagent kit of the present invention or the biofilm detection method of the present invention, the presence of a biofilm in a test tissue, in particular, a live tissue can be detected noninvasively, visually, quickly, and clearly. it can.
- visualization detection of a biofilm can be performed easily and in a short time at a medical examination or at a bedside.
- wound management can be performed at a clinical site, such as promptly removing a biofilm on the spot or determining a treatment policy.
- a preferred embodiment of the biofilm detection reagent kit of the present invention includes a kit having a staining solution containing Alcian Blue as a dye component. Since the dyeing solution is excellent in long-term storage at room temperature in the form of an aqueous solution, it can be distributed on the market in the form of a prepared solution that does not require preparation at the time of use.
- FIG. (1) and (2) are diagrams each showing an embodiment of a drainer (reference numeral 8) and a waste liquid container (reference numeral 9) used in the biofilm detection system shown in FIG.
- nonionic surfactants (1) polysorbate 80, (2) polyoxyethylene lauryl ether, and (3) polyoxyalkylene alkyl ether were used as a pretreatment liquid and a decolorizing liquid; An aqueous solution containing (7) lauryl dimethylaminoacetate betaine, which is an amphoteric surfactant, and (8) lauryl dimethylamine oxide; and (11) sodium polyoxyethylene lauryl ether sulfate, which is an anionic surfactant, is used for biotechnology.
- 4 shows the results of implementing a film detection system. The images show the colored state immediately after decolorization of the membrane and after drying.
- FIG. 9 shows an image showing the coloring state (immediately after decolorization and after drying) of a blotting membrane after decolorization in a biofilm detection system in which blotting was performed using a model wound surface (pig skin) in Experimental Example 2.
- FIG. 9 shows an image showing the coloring state (immediately after decolorization and after drying) of a blotting membrane after decolorization in a biofilm detection system in which blotting was performed using a model wound surface (pig skin) in Experimental Example 2.
- Biofilms are a complex microbial community consisting of bacteria encapsulated in an extracellular matrix.
- Biofilm extracellular matrices include polyanionic extracellular polysaccharides (eg, poly- ⁇ - (1-6) -N-acetyl-D-glucosamine, and acidic mucopolysaccharides such as alginic acid), proteins, cells Outer DNA, lipids, metal ions (Ca, Mg, Fe, etc.).
- biofilm component includes biofilms and fragments thereof, and among the components constituting the extracellular matrix of the biofilm, particularly the polyanionic cells characteristic of the extracellular matrix of the biofilm. Exopolysaccharides are included.
- biofilm component refers to a biofilm, a fragment thereof, and a component of the extracellular matrix of the biofilm, particularly a polyanionic extracellular polysaccharide characteristic of the biofilm. Is used as a generic term that includes
- Blotting is a technique for immobilizing biomolecules by adsorbing them onto a membrane.
- the membrane used for this purpose is called a blotting membrane.
- the wound surface means a wound surface, and may include not only a wound portion but also a skin surface around the wound portion.
- Wound surface blotting (round blotting) is a technique for non-invasively visualizing the invisible physiological state of the skin including the wound surface using the blotting.
- the biofilm detection targeted by the present invention is an application of the wound blotting described above. Basically, (A) a blotting membrane is attached to the wound and the surrounding skin (wound surface), which have been preliminarily washed and wiped off as necessary, and the biofilm component is collected on the surface of the membrane. (Biofilm component collection step), and (B) a step of dyeing the blotting membrane removed from the wound surface (staining step). Based on the coloring result of the stained blotting membrane, a biofilm is present on the wound surface. This is a technique for detecting whether or not to do so.
- Biofilm detection reagent kit of the present invention is a reagent kit used for detecting a biofilm in a test tissue.
- the present reagent kit can be suitably used as a biofilm detection reagent in a biofilm detection system to which wound blotting is applied.
- the biofilm detection system is not limited, but may be one having the following steps 1 to 5. Although the details of the biofilm detection system will be described later, the pretreatment solution, the staining solution, and the decolorizing solution included in the present reagent kit can be used in Steps 2, 3, and 4 of the following steps, respectively. Each of these steps is a step of treating the blotting membrane that has been affixed to the wound surface in step 1 to adsorb the biofilm components.
- Step 1 Biofilm component collection step
- Step 2 Pretreatment step (of the blotting membrane)
- Step 3 (Same) Staining step
- Step 4 (Same) Decolorization step
- Step 5 Biofilm detection determination step
- the reagent kit comprises at least the following (a) a pretreatment solution, (b) a staining solution, and (c) a decolorizing solution, each housed in a separate container: (A) a pretreatment liquid containing at least one surfactant selected from the group consisting of nonionic surfactants, amphoteric surfactants, and cationic surfactants; (B) a dyeing solution containing a dye, and (c) a decolorizing solution containing at least one surfactant selected from the group consisting of nonionic surfactants, amphoteric surfactants, and cationic surfactants. .
- each reagent included in the present reagent kit will be described in relation to steps 2 to 4 of the biofilm detection system.
- the pretreatment solution is a reagent used for treating the blotting membrane obtained in step 1.
- the pretreatment liquid is used for treating the blotting membrane in step 2 (pretreatment step) prior to step 3 (dyeing step).
- the portion of the blotting membrane on which the biofilm component is not adsorbed is dyed and the dye is fixed (colored), thereby causing coloring caused by the biofilm component. It is possible to prevent a decrease in contrast with the section, that is, a decrease in detection sensitivity and accuracy. That is, the treatment with the pretreatment liquid corresponds to a blocking treatment for suppressing nonspecific coloring of the membrane with the dye.
- the pretreatment liquid is prepared as an aqueous solution containing at least one surfactant selected from the group consisting of a nonionic surfactant, an amphoteric surfactant, and a cationic surfactant.
- the nonionic surfactant, amphoteric surfactant, and cationic surfactant are not particularly limited as long as the effects of the present invention are exhibited. Preferred are nonionic surfactants.
- nonionic surfactants include polyoxyethylene (POE) alkyl ethers (eg, POE lauryl ether) obtained by addition polymerization of ethylene oxide (EO) to a higher alcohol having 10 to 18 carbon atoms, polyoxyalkylene alkyl ether, Polyoxyethylene (POE) polyoxypropylene glycol (for example, POE (3) polyoxypropylene glycol (17), etc.) in which EO is added to polypropylene glycol, and polyoxyethylene alkyl allyl ether (for example, POE (3) polyoxypropylene glycol (17)) in which EO is added to alkyl phenol , POE nonylphenyl ether, etc.); ether ester type surfactants, such as polyoxyethylene sorbitan fatty acid esters (eg, polysorbate 20, 40, 60, 65, 80, 85, etc.).
- POE polyoxyethylene
- POE lauryl ether obtained by addition polymerization of ethylene oxide (EO) to a higher alcohol having 10
- Alkylating agents from sugars such as glucose
- ester-type surfactants such as polyglycerin fatty acid esters (eg, decaglyceryl monocaprate, polyglyceryl monolaurate, decaglyceryl monomyristate, etc.); Can be mentioned.
- Preferable examples include POE lauryl ether, polyoxyalkylene alkyl ether, POE polyoxypropylene glycol, polyoxyethylene sorbitan fatty acid ester, alkyl polyglycoside, and decaglyceryl monocaprate. More preferred are POE lauryl ether, polyoxyalkylene alkyl ether, and polysorbate 80.
- amphoteric surfactant examples include alkyl betaine-type surfactants such as alkyl dimethyl amino acetate betaine (eg, lauryl dimethyl amino acetate betaine); amines such as alkyl dimethyl amine oxide (eg, lauryl dimethyl amine oxide).
- Oxide type surfactants can be exemplified.
- cationic surfactant examples include quaternary ammonium salt type surfactants such as dialkyldimethylammonium chloride (eg, didecyldimethylammonium chloride) and benzalkonium chloride having a long-chain alkyl group having 8 to 18 carbon atoms.
- quaternary ammonium salt type surfactants such as dialkyldimethylammonium chloride (eg, didecyldimethylammonium chloride) and benzalkonium chloride having a long-chain alkyl group having 8 to 18 carbon atoms.
- Activators can be exemplified.
- Nonionic surfactants can be used alone or in any combination of two or more.
- Nonionic surfactants are preferred because they exhibit a stable effect in a relatively wide concentration range, and polyoxyethylene sorbitan represented by POE lauryl ether, polyoxyalkylene alkyl ether, and polysorbate 80 are particularly preferred. It is a fatty acid ester.
- the pretreatment liquid is used in the form of an aqueous solution in which these surfactants are dissolved in water.
- the water is not particularly limited, and examples thereof include tap water, distilled water, ion-exchanged water, purified water, and sterilized water.
- the concentration of the surfactant in the pretreatment liquid can be appropriately selected from the range of 0.001 to 20% by mass as shown in Verification Experiment 1 described later.
- the lower limit is preferably 0.005% by mass or more, more preferably 0.01% by mass or more.
- the upper limit is preferably 10% by mass or less.
- the pH of the pretreatment solution does not vary greatly depending on the level of the pretreatment solution, and various pH values within the range of pH 3 to 12 depend on the type of surfactant used. Can have. Although it is not limited, it is preferably pH 3 to 8, more preferably pH 4 to 7.
- the pretreatment liquid may contain a preservative, a bactericide, a pH adjuster, a stabilizer or the like as long as the effects of the present invention are not impaired.
- (B) Staining solution The staining solution is used to stain the blotting membrane treated in the step 2.
- the biofilm component is adsorbed on the surface of the blotting membrane obtained in step 1, but the biofilm component is adsorbed on the blotting membrane by the staining treatment with the staining solution. It can be dyed in a state.
- the dye selectively binds to anionic extracellular polysaccharides present in the extracellular matrix of the biofilm, particularly to acidic mucopolysaccharides, and can directly observe the stained biofilm extracellular polysaccharides with the naked eye.
- Cationic dyes having saturation, chromaticity and hue can be mentioned.
- the dyes conventionally used for dyeing biofilms include Crystal Bio Red and Congo Red (Karsten Pedersen, Applied and Environmental Microbiology, Jan. 1982, p. 6-13; Bradford Craigen et al., The Open Microbiology). Journal, 2011, 5 21-31; Masaaki Morikawa, "Let's examine biofilms", Biotechnology, Vol. 90, No. 5, pp.
- Non-Patent Documents 2 to 4 and the like are ruthenium red and alcian blue, and more preferably, alcian blue from the viewpoint of stability after being prepared in an aqueous solution.
- Alcian blue is a basic dye belonging to the phthalocyanine dye, has an isothiouronium group having a positive property as a functional group, and has a carboxyl group (—COO ⁇ group) or // It is known that the acid muco substance is dyed blue by ion-bonding to a sulfate group (—SO 4 — group). All of these dyes are commercially available.
- the dyeing solution is used in the form of an aqueous solution in which the dye is dissolved in water.
- the water is not particularly limited, and examples thereof include tap water, distilled water, ion-exchanged water, purified water, and sterilized water.
- the dye concentration of the staining solution can be appropriately selected from the range of 0.05 to 1.2% by mass as shown in Verification Experiment 2 described later.
- the lower limit is preferably 0.1% by mass or more.
- the upper limit is preferably 1% by mass or less, more preferably 0.6% by mass or less.
- the pH of the dyeing solution does not need to be particularly adjusted with an acid such as acetic acid or hydrochloric acid, and can be used in a state where the dye is dissolved in water, for example, in the range of pH 1 to 5.
- the pH is not limited, but is preferably pH 2 to 5, more preferably pH 2 to 4.5.
- a preservative, a bactericide, a pH adjuster, a stabilizer, or the like may be added to the staining solution as long as the effects of the present invention are not impaired.
- (C) Decolorizing solution The decolorizing solution is used for decolorizing the blotting membrane stained in the step 3.
- the dye non-specifically adhering to the blotting membrane can be eliminated.
- the dye adhering to the biofilm component adsorbed on the blotting membrane is not adsorbed by the treatment with the decolorizing liquid by adsorbing specifically to the biofilm component, or even if it is adsorbed, a little. Yes, the dyed state can be maintained (colored).
- the dye attached to the biofilm component non-adsorbed portion of the blotting membrane is removed, and the membrane region is lightened while the biofilm component adsorbed on the surface of the blotting membrane is removed. Since the dye is specifically bound (ion-bonded) and the stained state is maintained (colored), contrast is formed in comparison with the background color of the membrane, and the biofilm adsorbed on the blotting membrane by the contrast image The components can be clearly visualized.
- the decolorizing solution contains at least one surfactant selected from the group consisting of nonionic surfactants, amphoteric surfactants, and cationic surfactants.
- Nonionic surfactants, amphoteric surfactants, and cationic surfactants are not particularly limited as long as the effects of the present invention are exhibited, but specific examples include the same pretreatment liquids as described above. . For this reason, the description regarding the pretreatment liquid can be incorporated herein.
- Nonionic surfactants are preferred because they exhibit a stable effect in a relatively wide concentration range, and polyoxyethylene sorbitan represented by POE lauryl ether, polyoxyalkylene alkyl ether, and polysorbate 80 are particularly preferred. It is a fatty acid ester. Further, according to these nonionic surfactants, as shown in Verification Experiment 1 described later, after the decolorization treatment, as the blotting membrane dries, the non-adsorbed area of the biofilm component of the membrane becomes lighter and colored by the biofilm component. The effect that the contrast with the site becomes clearer and the detection sensitivity and accuracy are increased is obtained.
- the decolorizing solution is used in the form of an aqueous solution in which these surfactants are dissolved, preferably in water.
- the water is not particularly limited, and examples thereof include tap water, distilled water, ion-exchanged water, purified water, and sterilized water.
- the concentration of the surfactant in the decolorizing solution can be appropriately selected from the range of 0.001 to 20% by mass as shown in Verification Experiment 1 described below.
- the lower limit is preferably 0.005% by mass or more, more preferably 0.01% by mass or more.
- the upper limit is preferably 10% by mass or less.
- the pH of the decolorizing solution does not vary greatly depending on the level thereof, and has various pH values within the range of pH 3 to 12, depending on the type of surfactant used. be able to. Although it is not limited, it is preferably pH 3 to 8, more preferably pH 4 to 7.
- the decolorizing liquid may contain a preservative, a bactericide, a pH adjuster, a stabilizer or the like as long as the effects of the present invention are not impaired.
- a reagent having the same composition as the above-mentioned pretreatment liquid can be preferably used as the decolorizing liquid. That is, in this case, it can be said that the pretreatment liquid also serves as the decolorization liquid, while the decolorization liquid also serves as the pretreatment liquid.
- the pretreatment solution, the staining solution, and the decolorizing solution constitute part or all of the reagent kit in the state where they are stored in individual containers.
- the container is free from deterioration (including discoloration) or adsorption to the inner surface of the pretreatment solution, the staining solution, and the decolorization solution (even if it is tentative), and is made of a material that can be stably stored in a state of being housed inside. Any shape may be used, and the shape is not particularly limited.
- the material may be glass, metal (eg, aluminum, stainless steel, steel, etc.), plastic (eg, polyethylene, polypropylene, polyethylene terephthalate, vinyl chloride, polystyrene, ABS resin, acrylic) , Polyamide, polycarbonate, tetrafluoroethylene, etc.) without limitation.
- the shape of the container can be arbitrarily selected without any particular limitation, for example, a bottle shape, a bottle shape, a pouch shape or a tube shape.
- the size of the container differs depending on the used volume of the pretreatment solution, the staining solution and the decolorizing solution per use, and whether the reagent kit is used only once (disposable) or used multiple times. I do.
- the containers containing the pretreatment solution, the staining solution, and the decolorizing solution also have a capacity capable of accommodating the usage amount of each reagent at one time.
- a capacity capable of accommodating the usage amount of each reagent at one time There is no particular limitation.
- it can be appropriately selected and set from the range of 2 to 20 mL.
- the size of the container for accommodating the pretreatment solution, the staining solution, and the decolorizing solution can be appropriately selected according to the number of uses. Although not limited, for example, it can be appropriately selected and set from a range of 100 to 500 mL.
- the container may be provided with a measuring scale, or may be a container provided with a quantitative polar or a quantitative dispenser.
- the reagent kit may contain the pretreatment liquid and the decolorizing liquid in the same container. That is, in this case, the present reagent kit is configured to have at least the “pretreatment liquid” and “decolorization liquid” stored in one container and the “staining liquid” stored in one container.
- the present reagent kit may have at least the three kinds of reagents of the pretreatment solution, the staining solution, and the decolorizing solution as a basic set, and may further include a blotting membrane in addition to these. Good.
- the blotting membrane is used to collect a biofilm component from a wound surface, and then is subjected to treatment with the above-mentioned reagents.
- the blotting membrane may be a sheet (membrane) made of a material that adsorbs a biofilm and / or its component (biofilm component) on one of its surfaces, and may be a porous sheet (for example, a nonwoven fabric or the like) made of various fiber materials. ) Can be exemplified.
- the blotting membrane is applied to the surface of the skin (wound surface) including the wound affected area where the biofilm is to be detected in a dry state as it is or when wet with sterile water or the like, if necessary, for several seconds to several tens of seconds. Preferably, it is used after being left for about 10 seconds and then peeled off. By doing so, if a biofilm exists on the wound surface, the biofilm component can be adsorbed on the contact surface of the blotting membrane and collected. For this reason, it is preferable that the fiber material and the fiber structure of the blotting membrane are capable of adsorbing biofilm components by the above-mentioned blotting.
- the dyeing solution (dye) non-specifically attached to the membrane has a fiber material and a fiber structure such that the dyeing solution (dye) can be easily detached (dropped) by the decolorizing solution in the subsequent decolorizing step.
- a fiber material is not limited, for example, as shown in Verification Experiment 3 described below, cellulose fibers such as nitrocellulose, cellulose mixed ester, and cellulose acetate; nylon (non-charged nylon, positive nylon And hydrophilic fluororesin-based fibers such as hydrophilic polytetrafluoroethylene (hydrophilic PVDF) and hydrophilic polytetrafluoroethylene (hydrophilic PTFE). From the result of the verification experiment 3, it can be seen that although the blotting membrane can be used regardless of the presence or absence of charge, a material having polarity or a fiber material having high hydrophilicity can be suitably used.
- the pore diameter of the blotting membrane is not limited, but may be 0.1 to 0.5 ⁇ m, preferably 0.2 to 0.45 ⁇ m.
- the thickness of the blotting membrane is not particularly limited, but can be appropriately selected from the range of 0.05 to 1 mm, preferably 0.05 to 0.3 mm from the viewpoint of handling.
- the shape of the blotting membrane is not particularly limited.
- the blotting membrane may have a roll shape so that it can be used after being cut into a desired shape and size at the time of use, or may have a pre-cut shape. (For example, a rectangle).
- a rectangle For convenience in use, it is preferable to be cut in advance.
- the size of the cut is not particularly limited. For example, as an example, in the case of a rectangle, it can be appropriately selected from a range of 3 to 30 cm in length and 3 to 30 cm in width.
- the blotting membrane may be packaged in a sterilized state, one by one or a plurality of together. Alternatively, it may be pre-soaked in sterile water or the like and packaged in an airtight bag.
- the reagent kit may further include a written instruction manual, a method for evaluating test results (evaluation of biofilm detection), or a subsequent (recommended) treatment method.
- auxiliary equipment for using this reagent kit, such as a dipping container, a drainer, a waste liquid receiving tray (waste liquid container), a container having a drainer, tweezers, sterilized distilled water, or a drying device such as a dryer. It may be something.
- the container having the drainage portion may be one in which the drainage member and the waste liquid container are integrated, or one in which the drainage member and the waste liquid container are detachably paired. .
- the container having the drainage portion may have a lid so that the treated membrane can be left or carried with the treated membrane placed on the drainage portion surface, for example.
- a drainer, a container having a drainer, a method of handling the reagent kit, a method of evaluating test results visualized on a blotting membrane, and a subsequent treatment based on the results will be described below.
- This reagent kit can be used as a test tissue for wounds where there is a particular possibility of the presence of a biofilm, such as signs of clinical infection (inflammation, increased exudate, delayed healing, abscess formation, discoloration of the wound surface, granulation tissue formation, Rupture, wound pocket formation, bad odor, etc.) and intractable wounds, for example, in the detection of biofilms in chronic wounds such as pressure sores, leg ulcers and diabetic foot ulcers be able to. It can also be used to detect biofilms in acute wounds (cut wounds, abrasions, burns, etc.). This reagent kit can be used at the consultation or when changing bandages or bandages at the bedside because of the ease of handling and the quickness of the result determination.Based on the results, treatment can be performed on the spot, It is also possible to make a treatment plan.
- signs of clinical infection inflammation, increased exudate, delayed healing, abscess formation, discoloration of the wound surface,
- the biofilm detection method of the present invention basically comprises the above-described step 1 (biofilm component collection step), step 2 (pretreatment step of blotting membrane), step 3 (staining step), and step 4 (bleaching step). If necessary, the method may further include a step 5 (biofilm detection determination step).
- Step 1 includes a step of bringing a membrane capable of adsorbing a biofilm component into contact with a test tissue.
- the membrane used in this step the blotting membrane described in the above section 2 can be exemplified. It is preferable that the membrane be wetted with sterilized water or the like before being brought into contact with the test tissue. By doing so, the pain of the affected area caused by the contact with the membrane is alleviated, and the biofilm component is easily attached and adsorbed to the membrane.
- the target test tissue is a wound in which the possibility of the presence of a biofilm is concerned as described above, and includes, for example, signs of clinical infection (inflammation, increased exudate, delayed healing, abscess formation, discoloration of the wound surface, granulation) Tissue formation, wound breakdown, pocket formation at the wound bottom, bad smell, etc.) and intractable wounds can be suitably exemplified.
- signs of clinical infection inflammation, increased exudate, delayed healing, abscess formation, discoloration of the wound surface, granulation
- intractable wounds can be suitably exemplified.
- chronic wounds such as pressure ulcers, leg ulcers and diabetic foot ulcers can be suitable test tissues because of the extremely high risk of developing infections.
- it may be an acute wound (cut wound, abrasion wound, burn, etc.). It is preferable that the test tissue is pretreated before contacting with the membrane, for example,
- the contact of the membrane with the test tissue is not limited, but can be performed by attaching the membrane to the surface (wound surface) of the test tissue.
- the sticking time is not limited, but may be, for example, several seconds to several tens of seconds, for example, 5 seconds or more, preferably 10 seconds or more, and particularly preferably about 10 seconds.
- the surface of the membrane applied on the wound surface may be gently pressed during the application time to facilitate attachment or adsorption of the biofilm component present in the test tissue to the membrane.
- the biofilm component can be collected on the membrane by removing the membrane from the test tissue. That is, by the operation in the step 1, a membrane having the surface on which the biofilm component collected from the test tissue is adsorbed can be prepared.
- Step 2 includes an operation of pretreating the membrane obtained in step 1 above, on which the biofilm component is adsorbed on the surface, using a pretreatment liquid. This step can prevent the dye from non-specifically adhering to the membrane and fixing (coloring).
- the pretreatment liquid used in the step the pretreatment liquid described in the above section 2 can be exemplified.
- the treatment of the membrane with the pretreatment liquid may be a treatment (wetting treatment) in which the pretreatment liquid is brought into contact with the entire membrane, and the pretreatment liquid is infiltrated and wetted. It is not something to be done.
- a treatment wetting treatment
- the membrane (reference numeral 4) taken out of the test tissue in step 1 is put in a container (for example, a tray) (reference numeral 5), and in that state, the container (reference numeral 5) is placed in the container.
- the membrane (symbol 4) is a member having an opening such as a net (in the present invention, this is referred to as a "water draining member"). It can also be carried out in a state where it is put on the reference numeral 8).
- the draining member is not particularly limited in its material, shape, size, and the like, and can be disposed in a state where the membrane is spread thereon, and also allows passage of an excessive amount of the pretreatment liquid that is more than the membrane wetted. What is necessary is just to have the opening part (liquid passage hole) which can be made.
- a colander semiconductor or hollow hollow drainer
- a lye extractor or a tea strainer or a powdered material.
- Something like a sieve can also be used without distinction. In this case, as shown in FIGS.
- a receiving tray or a container for storing the pretreatment liquid passed under the draining member (reference numeral 8).
- a container having a draining portion in which the draining member and the waste liquid container are detachably paired can be used.
- the shape and size of the opening (liquid passage hole) of the drainer are not particularly limited as long as the above-mentioned object can be achieved.
- the wet treatment time is not limited, a range of 2 to 60 seconds can be exemplified at room temperature (25 ⁇ 5 ° C.).
- the pretreatment liquid is 2 to 30 seconds, more preferably 2 to 15 seconds.
- the pretreatment liquid is removed from the container (see FIG. 1A), the treated membrane is taken out of the container containing the pretreatment liquid (see FIG. 2), or a draining member is provided.
- the pretreatment liquid is dropped from the opening of the draining member by its own weight (tilting the draining member as required) (FIG. 3A), and the waste liquid container (reference numeral 9) is used as waste liquid. ) Can be completed (see FIG. 4) to complete Step 2.
- the amount of the pretreatment liquid used for one wet treatment is not particularly limited as long as the above wet treatment can be achieved. Although it differs depending on the size of the target test tissue and the size of the membrane to be used, for example, when the membrane is a rectangular sheet of 5 cm ⁇ 5 cm, the amount can be exemplified as 2 to 10 mL / time. In addition, although the number of times of the wet treatment is not limited, one treatment is usually sufficient.
- Step 3 includes an operation of dyeing the membrane (pretreated membrane) obtained in Step 2 described above.
- the biofilm component adsorbed on the membrane can be dyed while being adsorbed on the membrane.
- the staining solution used in the step the staining solution described in the above section 2 can be exemplified.
- the treatment of the membrane with the staining solution may be a treatment (wetting treatment) in which the staining solution is brought into contact with at least the biofilm component adsorption site of the membrane pretreated (wetting treatment) with the pretreatment solution, and the dyeing solution is infiltrated and wetted.
- a staining solution reference numeral 2
- a container reference numeral 5
- the entire membrane reference numeral 4
- a method of immersing the membrane in a dyeing solution and infiltrating the membrane from a container (numeral 5) containing a pretreatment liquid (numeral 1) is replaced with a container (numeral 2) containing a staining liquid (numeral 2). No. 5) and immersed in the dyeing solution to infiltrate it (above, immersion method), or a method of spraying or dripping the dyeing solution on the membrane pretreated in step 2 (spraying / dropping method) And the like.
- the spraying / dropping method is adopted, as shown in FIG. 3 (2), the membrane (reference numeral 4) is formed by draining the membrane (reference numeral 8) in the same manner as in the pretreatment step (and continuously with the pretreatment step).
- a waste liquid container (reference numeral 9) is provided below the draining member (reference numeral 8).
- the arrangement of (1) allows the staining solution to be recovered as a waste solution in the same manner as the pretreatment solution. Since the dyeing solution used in the present invention does not generate heat or react even when mixed with the above-mentioned pretreatment solution, the waste liquid container used in step 2 is further stained with the pretreatment solution stored therein. The liquid can be stored as waste liquid.
- the wet treatment time (dyeing time) with the dyeing solution is not limited, but may be, for example, in the range of 5 to 60 seconds at room temperature (25 ⁇ 5 ° C.). Preferably it is 10 to 60 seconds, more preferably 10 to 30 seconds.
- the staining solution is removed from the container (see FIG. 1 (2))
- the treated membrane is removed from the container containing the staining solution (see FIG. 2), or While leaving the membrane as it is, an excessive amount of the staining solution is dropped from the opening of the draining member by its own weight (tilting the draining member if necessary) (FIG. 3 (2)), and collected as waste liquid in the waste liquid container (FIG. 4). Step 3) can be completed.
- the amount of the staining solution used for one wetting treatment is not particularly limited as long as the above wetting treatment (dyeing treatment) can be achieved. Although it differs depending on the size of the target test tissue and the size of the membrane to be used, for example, when the membrane is a rectangular sheet of 5 cm ⁇ 5 cm, the amount can be exemplified as 2 to 10 mL / time. In addition, although the number of times of the wetting treatment (dyeing treatment) is not limited, one treatment is usually sufficient.
- Step 4 includes an operation of decolorizing the membrane (stained membrane) obtained in step 3 described above.
- the dye non-specifically adhering to the membrane can be desorbed while the coloring of the biofilm component adsorbed on the membrane remains.
- the coloration of the background membrane itself is reduced (lightened).
- the presence of the biofilm component adsorbed on the membrane can be raised as a contrast image, so that it can be clearly and easily confirmed visually.
- the decolorizing liquid used in the step include the decolorizing liquid described in the above section 2.
- a reagent having the same composition as the pretreatment liquid used in step 2 can be used.
- the treatment of the membrane with the decolorizing solution may be a treatment (wetting process) in which the decolorizing solution is brought into contact with the membrane region that has been wet-treated with the staining solution (staining process), and the decolorizing solution is infiltrated and wetted.
- the specific processing operation is not particularly limited. As an example, as shown in FIG. 1 (3), after washing the container if necessary in a container (reference numeral 5) containing the membrane from which the staining liquid has been removed in Step 3, a decolorizing liquid (reference numeral 3) is added, and the entire membrane is placed.
- the membrane (reference numeral 4) is similar to the pretreatment step and the dyeing step (in addition to the pretreatment step and the dyeing step), It can also be carried out in a state of being placed on a drainer (reference numeral 8). Also in this case, similarly to the pretreatment step and the dyeing step (and subsequent to the pretreatment step and the dyeing step), as shown in FIGS.
- a waste liquid container (reference numeral 9) the decolorizing liquid can be recovered as waste liquid in the same manner as the pretreatment liquid and the staining liquid.
- the waste solution container used in steps 2 and 3 contains the pretreatment solution and the staining solution. Can be further stored as waste liquid in the state in which is stored.
- the wet treatment time (decolorization time) to the decolorizing solution is not limited, but may be, for example, in the range of 10 to 120 seconds at room temperature (25 ⁇ 5 ° C.). Preferably it is 10 to 60 seconds, more preferably 10 to 30 seconds. After the wetting treatment (decolorization treatment) with the decolorizing liquid, the decolorizing liquid is removed from the container (see FIG.
- Step 4 the treated membrane is removed from the container containing the decolorizing liquid (see FIG. 2), or the membrane is removed. As it is, an excessive amount of the decolorizing liquid is dropped from the opening of the draining member by its own weight (tilting the draining member if necessary) (FIG. 3 (3)), and is collected as waste liquid in the waste liquid container (see FIG. 4). ), Step 4 can be completed.
- the amount of the decolorizing liquid used in one wetting treatment is not particularly limited as long as the above-mentioned wetting treatment (decolorization treatment) can be achieved. Although it differs depending on the size of the target test tissue and the size of the membrane to be used, for example, when the membrane is a rectangular sheet of 5 cm ⁇ 5 cm, the amount can be exemplified as 2 to 10 mL / time. Although the number of times of the wetting process (the decolorizing process) is not limited, one process is usually sufficient.
- the series of operations in Steps 1 to 4 can be performed continuously, but can be performed discontinuously as long as the effects of the present invention can be obtained.
- the total required time required for the operations is the total of the required time of each of the above-described steps, and may be, for example, preferably 2 minutes or less.
- the membrane prepared in Step 1 may be stored until subjected to Step 2, or the membrane pretreated in Step 2 may be Similarly, it may be stored until it is subjected to the dyeing step of step 3.
- Step 5 Biofilm detection determination step
- the presence or absence of the biofilm component adsorbed on the membrane can be confirmed by visually observing the colored state of the membrane after the decolorization treatment obtained in step 4. Specifically, when the contact surface of the membrane obtained in the step 4 with the test tissue shows formation of contrast with respect to the background color (light color) of the membrane by coloring with the dye used in the step 3, Assuming that the biofilm component is adsorbed on the membrane, it can be determined that the biofilm exists in the target test tissue. On the other hand, if the formation of the contrast is not observed in the membrane obtained in step 4, it is determined that the biofilm component is not adsorbed to the membrane, and that no biofilm exists in the target test tissue. Can be determined.
- the determination by the visualization can be performed immediately after the decolorization process, but is not limited thereto, and can be performed even after the membrane is dried.
- an aqueous solution containing at least one nonionic surfactant selected from POE lauryl ether, polyoxyalkylene alkyl ether, and polyoxyethylene sorbitan fatty acid ester represented by polysorbate 80 is used for the pretreatment liquid and the decolorizing liquid.
- the detection of the biofilm component based on the contrast (contrast image) of the membrane against the background color of the membrane, and the determination (judgment) of the presence of the biofilm in the test tissue based on the coloring in the membrane, are performed in the above steps 1 to 4. It can be simply carried out using a membrane obtained by a treatment or, if necessary, a subsequent drying treatment. Therefore, according to the biofilm detection method of the present invention, in particular, the biofilm detection method using the reagent kit of the present invention, not only doctors, anyone can easily determine the presence or absence of biofilm in the test tissue Can be.
- the biofilm detection determination of a test tissue using the reagent kit or the detection method of the present invention can be used for definitive diagnosis of the presence of a biofilm in living tissue, and has been conventionally performed. It can be used for auxiliary diagnosis or pre-diagnosis of tissue biopsy and / or microscopic observation.
- the biofilm is removed from the test tissue and, if necessary, the biofilm is prevented from being reformed. It is preferable to take measures to perform the following.
- the treatment may be performed continuously after the biofilm detection method of the present invention, or may be performed as one of the treatment methods after proposal and examination. Methods for removing the biofilm are not limited, but conventional methods include physical disruption (aggressive / sharp debridement) and physical cleaning (washing or sonication).
- microorganisms can be treated using a dressing material (for example, a silver dressing material, an iodine dressing material, a PHMB dressing material, a medical honey dressing material, etc.), a local wide-area antibacterial agent, or a surfactant.
- a dressing material for example, a silver dressing material, an iodine dressing material, a PHMB dressing material, a medical honey dressing material, etc.
- a local wide-area antibacterial agent for example, a method of sterilizing to prevent further wound infection can be exemplified (see Non-Patent Document 1 and the like).
- Step 1 Biofilm collection step (time required: about 10 seconds)
- Step 1 is a step of attaching a blotting membrane to a wound surface and adsorbing a biofilm component present on the wound surface to the membrane. By this step, when a biofilm exists on the wound surface, the biofilm component can be collected on the blotting membrane.
- the biofilm suspension of Pseudomonas aeruginosa (10 7 to 10 9 CFU /) prepared by the following method was used instead of the step of attaching the blotting membrane to the wound surface and adsorbing the biofilm components.
- mL was dropped (2 ⁇ L, 10 ⁇ L) on the surface of a blotting membrane (5 cm ⁇ 5 cm rectangular sheet) which had been wetted with sterile water in advance, so that the biofilm component was adsorbed on the blotting membrane.
- the colonies (including extracellular substances) used in the biofilm suspension were collected with a platinum loop, attached to the hard (glass) surface, added with a 0.1% crystal violet aqueous solution, and stained for about 20 minutes. After that, it was confirmed that the cells were stained by gently washing them two or three times with water.
- Pseudomonas aeruginosa PAO1, ATCC15442 and ATCC27853 were evaluated as Pseudomonas aeruginosa
- Staphylococcus aureus ATCC29213 was evaluated as S. aureus.
- Step 2 Pretreatment step of blotting membrane (time required: 2 to 60 seconds)
- Step 2 is a step of treating the blotting membrane having the biofilm component adsorbed thereon with a pretreatment liquid. By this step, it is possible to prevent coloring of the membrane portion where the biofilm component is not adsorbed.
- the blotting membrane treated in step 1 was placed in a container for immersion treatment (a plate-like container having a size of 7 cm ⁇ 7 cm and a height of 1 cm).
- a container for immersion treatment a plate-like container having a size of 7 cm ⁇ 7 cm and a height of 1 cm.
- the present step 2 and the subsequent steps 3 and 4 were all performed in the container.
- the outline is shown in FIG. Specifically, 2 to 10 mL of the pretreatment liquid (reference numeral 1) is added to the container (reference numeral 5) containing the blotting membrane (reference numeral 4), and the blotting membrane is immersed in the pretreatment liquid for 30 seconds.
- the pretreatment liquid was removed from the container (see FIG. 1 (1)).
- this step 2 was performed using the method shown in FIG.
- Experimental Example 4 (2) using the method shown in FIG. 3 (1).
- the blotting membrane (reference numeral 4) was immersed in a container (reference numeral 5) containing 2 to 10 mL of the pretreatment liquid (reference numeral 1) and wetted. The membrane was taken out of the container (see FIG. 2).
- a blotting membrane (reference numeral 4) was placed on a draining member (reference numeral 8), and 2 to 10 mL of a pretreatment liquid (reference numeral 1) was sprayed from there over the entire surface. Then, the pretreatment liquid is passed through the draining member (reference numeral 8) (see FIG. 3 (1)), and then drained under the draining member as waste liquid. Collected in the waste liquid container arranged in the above.
- Step 3 Staining step of blotting membrane (time required: 5 to 60 seconds)
- Step 3 is a step of treating the blotting membrane treated with the pretreatment liquid in step 2 with a staining liquid. By this step, the biofilm component adsorbed on the surface of the blotting membrane can be stained while staining the blotting membrane.
- the blotting membrane (reference numeral 4) was immersed in a container (reference numeral 5) containing 2 to 10 mL of the staining solution (reference numeral 2) and wetted. The membrane was taken out of the container (see FIG. 2).
- a blotting membrane (reference numeral 4) was placed on a draining member (reference numeral 8), and 2 to 10 mL of a staining solution (reference numeral 2) was sprayed evenly from above. Alternatively, the solution is dropped and spread over the entire membrane (infiltration), and then an excessive amount of the staining solution is passed through the draining member (reference numeral 8) (see FIG. 3 (2)), and disposed as a waste liquid below the draining member. Collected in a waste liquid container.
- Step 4 Decolorizing step of blotting membrane (time required: 10 to 120 seconds)
- Step 4 is a step of treating the blotting membrane treated with the staining solution in step 3 with a decolorizing solution.
- the dye non-specifically adhering to the blotting membrane stained in the step 3 can be desorbed.
- the dye specifically bound to the biofilm component adsorbed on the blotting membrane remains intact without desorption (coloring), the presence of the biofilm component adsorbed on the blotting membrane can be clearly confirmed visually ( Visualization of biofilm components).
- the blotting membrane (reference numeral 4) was placed in a container (reference numeral 5) containing 2 to 10 mL of the decolorizing liquid (reference numeral 3), immersed in the container, and then wetted. The membrane was taken out of the container (see FIG. 2).
- a blotting membrane (reference numeral 4) was placed on a draining member (reference numeral 8), and 2 to 10 mL of a decolorizing liquid (reference numeral 3) was sprayed evenly from above.
- the solution is dropped and spread over the entire membrane (infiltration), and then an excessive amount of the decolorizing solution is allowed to flow through the draining member (reference numeral 8) (see FIG. 3 (2)), and disposed as a waste liquid below the draining member. Collected in a waste liquid container.
- Step 5 Biofilm detection determination step Step 5 is a step of visually checking the coloring state of the blotting membrane treated with the decolorizing solution in step 4. By this step, it can be determined whether or not a biofilm exists on the wound surface to which the blotting membrane has been attached in step 1. If the contact surface with the wound surface of the blotting membrane treated with the decolorizing solution is colored with a dye and a contrast image is observed against the background color of the membrane (positive detection), it can be determined that a biofilm exists on the wound surface. it can. Specifically, when a biofilm is present on the wound surface, the biofilm component is adsorbed on the contact surface of the blotting membrane with the wound surface. Do not detach.
- the adsorbed portion is in a state of being colored with a darker color than the background color (light color) of the membrane to which the dye has been desorbed, and a dark color contrast is formed with respect to the background color (light color) of the membrane. (Contrast image).
- a nitrocellulose membrane with a pore size of 0.2 ⁇ m (trade name: nitrocellulose membrane with support, Bio-Rad # 1620097) was cut into a 5 cm ⁇ 5 cm rectangle as the blotting membrane used in step 1. did.
- a staining solution used in step 3 staining step
- Tables 1 and 2 show the results of using a suspension of Pseudomonas aeruginosa PAO1 strain (10 9 CFU / mL of 10 ⁇ l blot) as a biofilm suspension.
- Table 2 shows Pseudomonas aeruginosa ATCC15442 as a biofilm suspension and green This is the result of using each suspension of P. aeruginosa ATCC 27853 and S. aureus ATCC 29213 (10 ⁇ l blot of 10 9 CFU / mL).
- evaluation criteria A contrast image can be visually observed immediately after decolorization.
- ⁇ A contrast image cannot be visually confirmed immediately after decolorization, but a contrast image can be visually confirmed when the membrane is dried.
- X A contrast image cannot be visually confirmed even immediately after decolorization even if the membrane dries.
- FIG. 5 shows an image showing the coloring state (immediately after bleaching and after drying) of the blotting membrane that has been subjected to the pretreatment and the bleaching treatment.
- an aqueous solution containing a nonionic surfactant, an amphoteric surfactant, and a cationic surfactant at a concentration of 0.001 to 20% is useful as a pretreatment liquid and a decolorizing liquid. It was confirmed that. Also, as shown in FIG. 5, by performing the pretreatment and the decolorization treatment using an aqueous solution containing a nonionic surfactant or an amphoteric surfactant, the presence of the biofilm is clearly shown on the blotting membrane immediately after the decolorization treatment. The condition was stably maintained even after the blotting membrane was dried.
- an aqueous solution containing a nonionic surfactant in particular, (1) polysorbate 80, (2) polyoxyethylene lauryl ether, or (3) polyoxyalkylene alkyl ether can obtain stable results in a wide range of concentrations.
- a nonionic surfactant in particular, (1) polysorbate 80, (2) polyoxyethylene lauryl ether, or (3) polyoxyalkylene alkyl ether
- polysorbate 80 polyoxyethylene lauryl ether
- polyoxyalkylene alkyl ether polyoxyalkylene alkyl ether
- step 2 step 3 and step 4 were performed successively.
- the blotting membrane pretreated in step 1 was left to dry at room temperature for one week and then dried, It was also confirmed that the presence of the biofilm could be remarkably visualized on the blotting membrane even in the case of performing the step of staining and decolorizing.
- each staining solution was prepared by the following method.
- the staining solution was not prepared, but was prepared immediately before performing this verification experiment.
- Ruthenium red aqueous solution Ruthenium red powder (color index 77800) was dissolved in water so as to be 0.5%.
- Alcian blue aqueous solution Alcian blue powder (color index 74240) was dissolved in water to a concentration of 0.05% to 1.2%.
- a nitrocellulose membrane having a pore size of 0.2 ⁇ m (trade name: nitrocellulose membrane with support, Bio-Rad # 1620097) was cut into a 5 cm ⁇ 5 cm rectangle as the blotting membrane used in step 1. used.
- a 5% aqueous solution of polyoxyethylene lauryl ether (Brownon EL1509: manufactured by Aoki Yushi Kogyo Co., Ltd.) was used. used.
- Table 3 shows the results of using a suspension of Pseudomonas aeruginosa PAO1 strain (10 9 CFU / mL of 10 ⁇ l blot) as a biofilm suspension.
- Table 4 shows Pseudomonas aeruginosa ATCC15442 as a biofilm suspension and green The result using each suspension of Pseudomonas aeruginosa ATCC 27853 and S. aureus ATCC 29213 (10 ⁇ l blot of 10 9 CFU / mL) is shown.
- the evaluation criteria of ⁇ ⁇ ⁇ shown in each table are the same as the criteria used in the verification experiment 1.
- Table 3 also shows the results of the same verification experiment performed after preparing the staining solution and storing it at 50 ° C. for one month.
- ruthenium red solution As shown in Tables 3 and 4, at least a 0.5% aqueous ruthenium red solution and a 0.05 to 1.2%, preferably 0.1 to 1.2% aqueous Alcian blue solution were prepared according to the present invention. It was confirmed that it can be used effectively as a staining solution in the biofilm detection system of the above. Alcian blue, unlike ruthenium red, had excellent storage stability in an aqueous solution. Further, it was confirmed that ruthenium red and alcian blue can be stably used as a staining solution simply by dissolving in water without adjusting the pH of the aqueous solution.
- Verification Experiment 3 Verification of Blotting Membrane
- a biofilm detection system pretreatment was used by using membrane sheets made of various materials shown in Table 3 as blotting membranes used in steps 1 to 5. : 30 seconds, staining treatment: 30 seconds, decolorization treatment: 60 seconds, total of 2 minutes) to verify the practicality of the blotting membrane.
- pretreatment liquid used in step 2 (pretreatment step) and a decolorization liquid used in step 4 (decolorization step) a 5% aqueous solution of polyoxyethylene lauryl ether (Brownon EL1509: manufactured by Aoki Yushi Kogyo Co., Ltd.)
- an aqueous solution of Alcian blue (Sigma A9186) (pH 4.0) having a concentration of 0.3% was used as a staining solution used in step 3 (staining step).
- the results shown in Tables 5 and 6 are the results of using a suspension of Pseudomonas aeruginosa PAO1 strain (10 9 CFU / mL blot of 10 ⁇ l) as a biofilm suspension.
- Table 6 shows the results of using each suspension of P. aeruginosa ATCC 15442, P. aeruginosa ATCC 27853, and S. aureus ATCC 29213 as a biofilm suspension (10 ⁇ l blot of 10 9 CFU / mL).
- the evaluation criteria of ⁇ ⁇ ⁇ shown in each table are the same as the criteria used in the verification experiment 1.
- blotting membrane used in steps 2 to 4 various membranes shown in Table 7 were cut into a rectangle of 5 cm ⁇ 5 cm and used.
- pretreatment liquid used in step 2 (pretreatment step) and the decolorization liquid used in step 4 (decolorization step) a 5% aqueous solution of polyoxyethylene lauryl ether (Brownon EL1509: manufactured by Aoki Yushi Kogyo Co., Ltd.) was used. used.
- a staining solution used in step 3 (dyeing step) an aqueous solution of Alcian blue having a concentration of 0.3% shown in Table 4 was used.
- the biofilm detection method of the present invention can visually detect a biofilm containing at least 0.1 mg / mL of hyaluronic acid and chondroitin sulfate.
- Experimental Example 3 Verification of Biofilm Detection System The biofilm detection system established in Experimental Example 1 (verification experiments 1 to 3) was verified using a model wound surface prepared using pig skin.
- a membrane (nitrocellulose with support: Bio-Rad, 0.2 ⁇ m) (5 cm ⁇ 5 cm) wetted with sterile water is applied to the model wound surface (pig skin) prepared above for 10 seconds (step 1: blotting), and then peeled off Steps 2 to 4 were performed on the membrane in the same manner as in Experimental Example 1.
- 5% concentration aqueous solution of polyoxyethylene lauryl ether (Brownon EL1509: manufactured by Aoki Yushi Kogyo Co., Ltd.) is used as the pretreatment liquid used in step 2 (pretreatment step) and the decolorization liquid used in step 4 (decolorization step). did.
- an aqueous solution of Alcian blue having a concentration of 0.3% was used as a staining solution used in step 3 (staining step).
- FIG. 6 shows an image showing the coloration state of the blotting membrane after bleaching treatment (immediately after bleaching and after drying).
- Step 1 a suspension of Pseudomonas aeruginosa PAO1 strain ( 10 9 CFU / mL) or an aqueous solution containing hyaluronic acid (aqueous solution containing 0.1 mg / mL sodium hyaluronate) is dropped (10 ⁇ L) onto the surface of the blotting membrane, which has been wetted with sterile water in advance, to obtain a biofilm component.
- a suspension of Pseudomonas aeruginosa PAO1 strain 10 9 CFU / mL
- an aqueous solution containing hyaluronic acid aqueous solution containing 0.1 mg / mL sodium hyaluronate
- pretreatment liquid used in step 2 (pretreatment step) and a decolorization liquid used in step 4 (decolorization step) a 5% aqueous solution of polyoxyethylene lauryl ether (Brownon EL1509: manufactured by Aoki Yushi Kogyo Co., Ltd.)
- an aqueous solution of Alcian blue (Sigma A9186) (pH 4.0) having a concentration of 0.3% was used as a staining solution used in step 3 (staining step).
- the pretreatment step is a minimum of 2 seconds
- the staining step is a minimum of 10 seconds
- a decolorization step is a minimum of 10 seconds. It is confirmed that the treatment can be completed in seconds, and that the pretreatment step is extended for at least 180 seconds, the dyeing step is extended for at least 300 seconds, and the decolorization step is extended for at least 600 seconds without affecting the reaction result.
- the preferable treatment time in each step is not limited, but the pretreatment step is 2 to 60 seconds, the dyeing step is 10 to 60 seconds, and the decolorization step is 10 to 60 seconds. Considering use in a clinical setting, it is preferable to select and set the processing time of each step from the above range so that the total time of each step is within 2 minutes.
- Pretreatment liquid 1.
- Staining solution 3.
- Decolorizing solution 4.
- Blotting membrane Immersion container 6.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Hematology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Urology & Nephrology (AREA)
- Toxicology (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Cell Biology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Virology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
(I)バイオフィルム検出試薬キット
(I-1)被験組織におけるバイオフィルムを検出するために用いられる試薬キットであって、当該試薬キットは:
(a)ノニオン性界面活性剤、両性界面活性剤、及びカチオン性界面活性剤からなる群より選択される少なくとも1種の界面活性剤を含有する前処理液、
(b)染料を含有する染色液、及び
(c)ノニオン性界面活性剤、両性界面活性剤、及びカチオン性界面活性剤からなる群より選択される少なくとも1種の界面活性剤を含有する脱色液
を備え、被験組織に接触させた後のメンブレンの当該接触面に、前記(a)前処理液、(b)染色液、及び(c)脱色液の順に接触させて用いられる、上記バイオフィルム検出用試薬キット。
(I-2)前記(a)前処理液、(b)染色液、及び(c)脱色液が、各々個別の容器、好ましくは開閉可能な蓋付き容器に収容されてなる、(I-1)に記載するバイオフィルム検出用試薬キット。
(I-3)前記(a)前処理液および/または前記(c)脱色液に用いられる界面活性剤が、塩化ジアルキルジメチルアンモニウム及び塩化ベンザルコニウムより選択されるカチオン性界面活性剤;アルキルジメチルアミノ酢酸ベタイン、及びアルキルジメチルアミンオキサイドより選択される両性界面活性剤;またはポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシアルキレンアルキルエーテル、アルキルポリグルコシド、ポリオキシエチレンポリオキシプロピレングリコール、及びポリグリセリン脂肪酸エステルより選択されるノニオン性界面活性剤である、(I-1)または(I-2)に記載するバイオフィルム検出用試薬キット。
(I-4)前記(a)前処理液と(c)脱色液とが、同一組成からなる水溶液である(I-1)~(I-3)のいずれかに記載するバイオフィルム検出用試薬キット。
(I-5)さらに、被験組織に存在するバイオフィルムおよび/またはその成分を吸着することができるメンブレンを含有する、(I-1)~(I-4)のいずれかに記載するバイオフィルム検出用試薬キット。
(I-6)さらに、取扱説明書を含む(I-1)~(I-5)のいずれかに記載するバイオフィルム検出用試薬キット。
(I-7)さらに、浸漬容器、水切り部材、廃液容器、水切り部を有する容器、ピンセット、滅菌蒸留水、及び乾燥器から選択される少なくとも1種の補助器具を含む(I-1)~(I-6)のいずれかに記載するバイオフィルム検出用試薬キット。
(II-1)下記の工程1~4を有する、被験組織におけるバイオフィルムを検出する方法:
(1)バイオフィルムおよび/またはその成分を吸着することができるメンブレンを被験組織に接触させる工程1、
(2)被験組織との接触から外したメンブレンの少なくとも被験組織との接触面を、(a)ノニオン性界面活性剤、両性界面活性剤、及びカチオン性界面活性剤からなる群より選択される少なくとも1種の界面活性剤を含有する前処理液で処理する工程2、
(3)前記(a)前処理液で処理したメンブレンの少なくとも被験組織との接触面を(b)染料を含有する染色液で処理する工程3、及び
(4)前記(b)染色液で処理したメンブレンの少なくとも被験組織との接触面を(c)ノニオン性界面活性剤、両性界面活性剤、及びカチオン性界面活性剤からなる群より選択される少なくとも1種の界面活性剤を含有する脱色液で処理する工程4。
(II-2)前記(a)前処理液および/または前記(c)脱色液に用いられる界面活性剤が、塩化ジアルキルジメチルアンモニウム及び塩化ベンザルコニウムより選択されるカチオン性界面活性剤;アルキルジメチルアミノ酢酸ベタイン、及びアルキルジメチルアミンオキサイドより選択される両性界面活性剤;またはポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシアルキレンアルキルエーテル、アルキルポリグルコシド、ポリオキシエチレンポリオキシプロピレングリコール、及びポリグリセリン脂肪酸エステルより選択されるノニオン性界面活性剤である、(II-1)に記載するバイオフィルム検出方法。
(II-3)前記(a)前処理液と(c)脱色液とが、同一組成からなる水溶液である(II-1)または(II-2)に記載するバイオフィルム検出方法。
(II-4)(1)の前処理工程を2~60秒間、好ましくは2~30秒間、(2)の染色処理工程を5~60秒間、好ましくは10~30秒間、及び(3)の脱色工程を10~120秒間、好ましくは10~60秒間の時間配分で実施する(II-1)~(II-3)のいずれかに記載するバイオフィルム検出方法。
(II-5)被験組織が、臨床感染の徴候が見られる創傷部、難治性創傷部、または慢性創傷部(褥瘡、糖尿病性足潰瘍、下腿潰瘍)の生組織である、(II-1)~(II-4)のいずれかに記載するバイオフィルム検出方法。
(II-6)さらに、被験組織にバイオフィルムが存在するか否かを決定する工程5を有する(II-1)~(II-5)のいずれかに記載するバイオフィルム検出方法。
(II-7)前記工程5が、脱色液で処理したメンブレンの被験組織との接触面に、メンブレンの背景色に対してコントラストのある染料由来の着色(コントラスト像)が認められる場合に、被験組織にバイオフィルムが存在すると決定する工程である、(II-6)に記載するバイオフィルム検出方法。
(II-8)前記工程2~4を、下記(ア)~(ウ)のいずれかの方法で実施することを特徴とする(II-1)~(II-7)のいずれかに記載するバイオフィルム検出方法:
(ア)工程1で得られたメンブレンを入れた浸漬容器に、前処理液、染色液及び脱色液を順次、入れ替えて前記工程2~4を実施する方法、
(イ)工程1で得られたメンブレンを、前処理液、染色液及び脱色液をそれぞれ入れた浸漬容器に、順次、入れだしして前記工程2~4を実施する方法、
(ウ)工程1で得られたメンブレンを、水切り部を有する容器の水切り部面上に載せ、前処理液、染色液及び脱色液を、順次、メンブレン全面に行き渡るように噴霧または滴下して前記工程2~4を実施する方法。
バイオフィルムは、細胞外マトリックスに包まれた細菌からなる複合的微生物コミュニティーである。バイオフィルムの細胞外マトリックスには、ポリアニオン性の細胞外多糖類(例えば、ポリ-β-(1-6)-N-アセチル-D-グルコサミン、およびアルギン酸などの酸性ムコ多糖類)、タンパク質、細胞外DNA、脂質、および金属イオン(Ca、Mg、Feなど)などが含まれている。本明細書における「バイオフィルム成分」という用語には、バイオフィルム、およびその断片、並びにバイオフィルムの細胞外マトリックスを構成する成分のうち、特にバイオフィルムの細胞外マトリックスに特徴的なポリアニオン性の細胞外多糖類が含まれる。つまり「バイオフィルム成分」という用語は、特に言及しない限り、バイオフィルム、およびその断片、並びにバイオフィルムの細胞外マトリックスを構成する成分のうち、特にバイオフィルムに特徴的なポリアニオン性の細胞外多糖類を包含する総称として用いられる。
本発明のバイオフィルム検出試薬キット(以下、単に「本試薬キット」とも称する)は、被験組織におけるバイオフィルムを検出するために用いられる試薬キットである。本試薬キットは、好適には創面ブロッティングを応用したバイオフィルム検出システムにおいてバイオフィルム検出用試薬として使用することができる。
工程1:バイオフィルム成分採取工程
工程2:(ブロッティングメンブレンの)前処理工程
工程3:(同)染色工程
工程4:(同)脱色工程
工程5:バイオフィルム検出判定工程。
(a)ノニオン性界面活性剤、両性界面活性剤、及びカチオン性界面活性剤からなる群より選択される少なくとも1種の界面活性剤を含有する前処理液、
(b)染料を含有する染色液、及び
(c)ノニオン性界面活性剤、両性界面活性剤、及びカチオン性界面活性剤からなる群より選択される少なくとも1種の界面活性剤を含有する脱色液。
前処理液は、工程1で得られたブロッティングメンブレンを処理するために用いられる試薬である。創面にバイオフィルムが存在している場合、工程1で得られたブロッティングメンブレンの創面接触表面にはバイオフィルムおよび/またはその成分(バイオフィルム成分)が吸着している。前処理液は、工程3(染色工程)に先立ち、工程2(前処理工程)において、前記ブロッティングメンブレンを処理するために使用される。染色処理に先だって当該前処理液による処理を行うことで、バイオフィルム成分が吸着していないブロッティングメンブレンの部分が染色されて染料が定着(着色)してしまうことで、バイオフィルム成分に起因した着色部とのコントラストが低下すること、つまり検出感度及び精度の低下を防ぐことができる。つまり前処理液による処理は、染料によるメンブレンへの非特異的着色を抑制するためのブロッキング処理に相当する。
染色液は、前記工程2で処理したブロッティングメンブレンを染色するために使用される。創面にバイオフィルムが存在している場合、工程1で得られたブロッティングメンブレンの表面にはバイオフィルム成分が吸着しているが、当該染色液による染色処理により、バイオフィルム成分をブロッティングメンブレンに吸着した状態で染色することができる。
脱色液は、前記工程3で染色されたブロッティングメンブレンを脱色するために用いられる。当該脱色液による処理により、ブロッティングメンブレンに非特異的に付着した染料を脱離させることができる。これに対して、ブロッティングメンブレンに吸着したバイオフィルム成分に付着した染料は、バイオフィルム成分に特異的に吸着することで、当該脱色液による処理によっても脱離しないか、脱離したとしても僅かであり、染色状態を維持(着色)することができる。つまり、当該脱色液による脱色処理により、ブロッティングメンブレンのバイオフィルム成分非吸着部分に付着した染料は除去されて、当該メンブレン領域は淡色化する一方、ブロッティングメンブレンの表面に吸着されたバイオフィルム成分には染料が特異的に結合(イオン結合)して染色された状態が維持(着色)されるため、前記メンブレン背景色との対比でコントラストが形成され、当該コントラスト像によりブロッティングメンブレンに吸着されたバイオフィルム成分を明瞭に視覚化することができる。
当該ブロッティングメンブレンは、創面からバイオフィルム成分を採取するために用いられ、その後、前記各試薬による処理に供される。ブロッティングメンブレンは、表面の一方にバイオフィルムおよび/またはその成分(バイオフィルム成分)を吸着する素材からなるシート(メンブレン)であればよく、各種の繊維素材からなる多孔性シート(例えば不織布等を含む)を例示することができる。ブロッティングメンブレンは、そのままの乾燥状態、または必要に応じて滅菌水等にて濡らした状態で、バイオフィルムを検出する対象の創傷患部を含む皮膚表面(創面)に貼付し、数秒~数十秒間程度、好ましくは10秒間程度そのまま放置した後に剥がすという態様で用いられる。こうすることで、創面にバイオフィルムが存在していれば、ブロッティングメンブレンの接触表面にバイオフィルム成分を吸着させて採取することができる。このため、ブロッティングメンブレンの繊維素材やその繊維構造は、上記ブロッティングによってバイオフィルム成分を吸着できるものであることが好ましい。より好ましくは、その後の前処理工程、染色工程、及び脱色工程によってもバイオフィルム成分を安定して吸着保持できる繊維素材及び繊維構造を有するものであり、さらに好ましくは、前処理工程後の染色工程においてメンブレンに非特異的に付着した染色液(染料)が、その後の脱色工程における脱色液により容易に脱着(脱落)するような繊維素材及び繊維構造を有するものである。
よいし。また予め滅菌水などに浸潤された状態で気密性の袋に包装されていてもよい。
本発明のバイオフィルム検出方法は、基本的には、前述する工程1(バイオフィルム成分採取工程)、工程2(ブロッティングメンブレンの前処理工程)、工程3(染色工程)、及び工程4(脱色工程)を有するものである。
必要に応じて、その後に工程5(バイオフィルム検出判定工程)を有するものであってもよい。
工程1は、バイオフィルム成分を吸着することができるメンブレンを被験組織に接触させる工程を有する。当該工程で使用されるメンブレンとしては、前記2の項で説明したブロッティングメンブレンを例示することができる。メンブレンは、被験組織に接触させる前に、事前に滅菌水などで湿潤させておくことが好ましい。こうしておくことで、メンブレンが接触することによる患部の痛みが緩和するとともに、メンブレンにバイオフィルム成分が付着及び吸着しやすくなる。
工程2は、前記の工程1で得られた、バイオフィルム成分を表面に吸着したメンブレンを前処理液を用いて前処理する操作を有する。この工程により、メンブレンに染料が非特異的に付着し定着(着色)してしまうこと防止することができる。当該工程で使用される前処理液としては、前記2の項で説明した前処理液を例示することができる。
工程3は、前記の工程2で得られたメンブレン(前処理済みメンブレン)を染色する操作を有する。この工程により、メンブレンに吸着したバイオフィルム成分を、メンブレンに吸着した状態で染色することができる。当該工程で使用される染色液としては、前記2の項で説明した染色液を例示することができる。
工程4は、前記の工程3で得られたメンブレン(染色処理済みメンブレン)を脱色する操作を有する。この工程により、メンブレンに吸着したバイオフィルム成分の着色は残った状態で、メンブレンに非特異的に付着した染料を脱着させることができる。これにより、バックグランドとなるメンブレンそのものの着色が低減(淡色化)する結果、メンブレンに吸着したバイオフィルム成分の存在がコントラスト像として浮き立たせることができるので目視により明確且つ容易に確認することが可能になる(バイオフィルムの視覚化)。当該工程で使用される脱色液としては、前記2の項で説明した脱色液を例示することができる。好ましくは工程2で使用した前処理液と同一組成からなる試薬を使用することができる。
工程4により得られた脱色処理後のメンブレンの着色状態を目視することで、メンブレンに吸着したバイオフィルム成分の存在の有無を確認することができる。具体的には、工程4により得られたメンブレンの被験組織との接触面に、工程3で用いた染料による着色によってメンブレンの背景色(淡色)に対してコントラストの形成が認められる場合は、当該メンブレンにバイオフィルム成分が吸着しているとして、対象とした被験組織にバイオフィルムが存在していると決定することができる。一方、工程4により得られたメンブレンに、上記コントラストの形成が認められない場合は、当該メンブレンにはバイオフィルム成分が吸着していないとして、対象とした被験組織にバイオフィルムは存在していないと決定することができる。なお、当該視覚化による判断は、脱色処理直後に速やかに行うこともできるが、それに限らず、メンブレンが乾燥した後でも行うことができる。特に、前処理液及び脱色液をPOEラウリルエーテル、ポリオキシアルキレンアルキルエーテル、並びにポリソルベート80で代表されるポリオキシエチレンソルビタン脂肪酸エステルから選択される少なくとも1つのノニオン性界面活性剤を含む水溶液を用いて前処理及び脱色処理を行うことで、脱色処理後のメンブレンの乾燥により、メンブレンの背景色の淡色化がより顕著になるため、コントラストもより鮮明になり、バイオフィルム成分を浮き立たせて視覚化することができる。このため、脱色工程後、検出判定工程前に、メンブレンを乾燥する工程を有することもできる。
創面ブロッティングを応用して、下記工程1~5からなるバイオフィルム検出システムを設計し、工程2で使用する前処理液、工程3で使用する染色液、工程4で使用する脱色液、及び工程1~5で使用するブロッティングメンブレンを検証した。
工程1:バイオフィルム成分採取工程
工程2:(ブロッティングメンブレンの)前処理工程
工程3:(同)染色工程
工程4:(同)脱色工程
工程5:バイオフィルム検出判定工程
工程1は、ブロッティングメンブレンを創面に貼付して、創面に存在するバイオフィルム成分を当該メンブレンに吸着させる工程である。この工程により、創面にバイオフィルムが存在する場合はブロッティングメンブレンにバイオフィルム成分を採取することができる。
緑膿菌として、Pseudomonas aeruginosa PAO1株、ATCC15442、およびATCC27853を、また黄色ブドウ球菌として、Staphylococcus aureus ATCC29213をそれぞれ用いて評価した。各緑膿菌及び黄色ブドウ球菌は、トリプトソーヤブイヨン寒天培地上で37℃、48時間培養し、培養により生成したコロニー(菌体外物質を含む)を滅菌水で回収し、それぞれ107~109CFU/mLずつになるように調整した。これらを以下の検証実験1~3においてバイオフィルム懸濁液として使用した。
工程2は、バイオフィルム成分を吸着させた前記ブロッティングメンブレンを前処理液で処理する工程である。この工程により、バイオフィルム成分が吸着していないメンブレン部分への着色を防ぐことができる。
工程3は、工程2において前処理液で処理した前記ブロッティングメンブレンを染色液で処理する工程である。この工程により、ブロッティングメンブレンを染色するとともに、ブロッティングメンブレンの表面に吸着したバイオフィルム成分も染色することができる。
工程4は、工程3において染色液で処理した前記ブロッティングメンブレンを脱色液で処理する工程である。この工程により、前記工程3で染色処理したブロッティングメンブレンに非特異的に付着した染料を脱着させることができる。しかし、ブロッティングメンブレンに吸着したバイオフィルム成分に特異的に結合した染料は脱着せずにそのまま残るため(着色)、ブロッティングメンブレンに吸着したバイオフィルム成分の存在を目視により明確に確認することができる(バイオフィルム成分の視覚化)。
工程5は、工程4において脱色液で処理したブロッティングメンブレンの着色状況を目視で確認する工程である。この工程により、工程1においてブロッティングメンブレンを貼付した創面にバイオフィルムが存在するか否かを判定することができる。脱色液で処理したブロッティングメンブレンの創面との接触面が、染料によって着色し、メンブレンの背景色に対してコントラスト像が認められた場合(陽性検出)、創面にバイオフィルムが存在すると判定することができる。具体的には、創面にバイオフィルムが存在している場合は、ブロッティングメンブレンの創面との接触面にバイオフィルム成分が吸着するため、染色処理後の脱色処理によっても、当該吸着部分からは染料が脱着しない。このため、当該吸着部分は、染料が脱着したメンブレンの背景色(淡色)よりは明らかに濃い色で着色した状態になり、メンブレンの背景色(淡色)に対して濃い色のコントラストを形成することになる(コントラスト像)。
本検証実験1では、工程2(前処理工程)で使用する前処理液、及び工程4(脱色処理工程)で使用する脱色液として、表1に記載する界面活性剤を各種濃度(0.001~20%)になるように希釈調製した水溶液を用いて、前記のバイオフィルム検出システム(前処理:30秒間、染色処理:30秒間、脱色処理:60秒間、合計2分間)を実施し、前処理液及び脱色液の実用性を検証した。本検証実験では、工程1で使用するブロッティングメンブレンとして、ポアサイズ0.2μmのニトロセルロース製メンブレン(商品名:サポート付ニトロセルロースメンブレン、Bio-Rad#1620097)を5cm×5cmの矩形にカットして使用した。また工程3(染色工程)で使用する染色液として、アルシアンブルー8GX(シグマ社A9186)を用いて調製した0.3%濃度のアルシアンブルー水溶液(pH4.0)を使用した。
[評価基準]
○:脱色直後に目視でコントラスト像が確認できる。
△:脱色直後には目視でコントラスト像は確認できないが、メンブレンが乾燥すると目視でコントラスト像が確認できる。
×:脱色直後もメンブレンが乾燥しても目視でコントラスト像が確認できない。
本検証実験2では、工程3(染色工程)で使用する染色液として、表2に記載する染料(ルテニウムレッド、アルシアンブルー)を各種濃度(0.05~1.2%)になるように希釈調製した水溶液を用いて、前記のバイオフィルム検出システム(前処理:30秒間、染色処理:30秒間、脱色処理:60秒間、合計2分間)を実施し、染色液の実用性を検証した。
(1)ルテニウムレッド水溶液
ルテニウムレッド粉末(カラーインデックス77800)を0.5%になるように水で溶解した。
(2)アルシアンブルー水溶液
アルシアンブルー粉末(カラーインデックス74240)を0.05%~1.2%になるように水で溶解した。
本検証実験3では、工程1~工程5を通じて使用するブロッティングメンブレンとして、表3に記載する各種の素材からなるメンブレンシートを用いて、前記のバイオフィルム検出システム(前処理:30秒間、染色処理:30秒間、脱色処理:60秒間、合計2分間)を実施し、ブロッティングメンブレンの実用性を検証した。なお、表3に記載するメンブレンのうち、PVDF(Amersham Hybond P)/親水性処理、PVDF(イミュン-ブロット)/親水性処理、及びPVDF(シーケブロット)/親水性処理は、それぞれ市販のPVDF(Amersham Hybond P)、PVDF(イミュン-ブロット)、及びPVDF(シーケブロット)を親水性処理して調製したものを使用した。親水性処理は市販メンブレンを95容量%のエタノールに10分間浸漬処理(親水性処理)し、自然乾燥することで行った(実際の使用に際しては、乾燥メンブレンを滅菌水にて濡らした後に工程1に供する)。工程2(前処理工程)で使用する前処理液及び工程4(脱色工程)で使用する脱色液として、5%濃度のポリオキシエチレンラウリルエーテル(ブラウノンEL1509:青木油脂工業株式会社製)水溶液を、また工程3(染色工程)で使用する染色液として、0.3%濃度のアルシアンブルー(シグマ社A9186)水溶液(pH4.0)を使用した。
実験例1(検証実験1~3)で確立したバイオフィルム検出システムを用いて、本発明のバイオフィルム検出方法の検出感度を評価した。具体的には、実験例1で用いた緑膿菌のバイオフィルム懸濁液に代えて、バイオフィルムの構成成分である酸性ムコ多糖の一種であるヒアルロン酸とコンドロイチン硫酸を含む水溶液(0.1mg/mLヒアルロン酸ナトリウム、及び0.1mg/mLコンドロイチン硫酸ナトリウム含有水溶液)を用いて、工程2~工程4(工程2の前処理:30秒間、工程3の染色処理:30秒間、工程4の脱色処理:60秒間、合計2分間)を実施した。工程2~4で使用するブロッティングメンブレンとして、表7に記載する各種メンブレンを5cm×5cmの矩形にカットして使用した。また工程2(前処理工程)で使用する前処理液及び工程4(脱色工程)で使用する脱色液として、5%濃度のポリオキシエチレンラウリルエーテル(ブラウノンEL1509:青木油脂工業株式会社製)水溶液を使用した。また工程3(染色工程)で使用する染色液として、表4に記載する0.3%濃度のアルシアンブルー水溶液を用いた。
ブタの皮を用いて作製したモデル創面を用いて、実験例1(検証実験1~3)で確立したバイオフィルム検出システムを検証した。
食用に屠殺されたブタから採取した皮膚の毛を除去した市販のブタ皮片(5cm×5cm)の表面中心に、各種菌液(緑膿菌PAO1、緑膿菌ATCC27853、黄色ブドウ球菌ATCC29213、これら3菌の混合液)109CFU/mLを200μLずつ滴下し、円状(直径1.5~2cm)に塗り広げた。次いで、37℃で3日間培養して、バイオフィルムを有するモデル創面を作製した。
実験例4(1)及び(2)では、バイオフィルム検出システムとして、それぞれ図2及び図3に記載する各工程(前処理工程、染色工程、及び脱色工程)を各々処理時間を変えて実施し、バイオフィルムの反応性を検証した(表8及び9)。本実験例では、ブロッティングメンブレンとして、ポアサイズ0.2μmのニトロセルロース製メンブレン(商品名:サポート付ニトロセルロースメンブレン、Bio-Rad#1620097)を5cm×5cmの矩形にカットして使用した。工程1では、実験例1または実験例2と同様に、ブロッティングメンブレンを創面に貼付してバイオフィルム成分を吸着する工程に代えて、バイオフィルム懸濁液として緑膿菌PAO1株の懸濁液(109 CFU/mL)またはヒアルロン酸を含む水溶液(0.1mg/mLヒアルロン酸ナトリウム含有水溶液)を、予め滅菌水で濡らしておいた上記ブロッティングメンブレンの表面に滴下(10μL)することで、バイオフィルム成分をブロッティングメンブレンに吸着させた。工程2(前処理工程)で使用する前処理液及び工程4(脱色工程)で使用する脱色液として、5%濃度のポリオキシエチレンラウリルエーテル(ブラウノンEL1509:青木油脂工業株式会社製)水溶液を、また工程3(染色工程)で使用する染色液として、0.3%濃度のアルシアンブルー(シグマ社A9186)水溶液(pH4.0)を使用した。
2.染色液
3.脱色液
4.ブロッティングメンブレン
5.浸漬容器
6.前処理液、染色液または脱色液を収容する容器
7.ピンセット
8.水切り部材
9.廃液容器
Claims (15)
- 被験組織におけるバイオフィルムを検出するために用いられる試薬キットであって、当該試薬キットは:
(a)ノニオン性界面活性剤、両性界面活性剤、及びカチオン性界面活性剤からなる群より選択される少なくとも1種の界面活性剤を含有する前処理液、
(b)染料を含有する染色液、及び
(c)ノニオン性界面活性剤、両性界面活性剤、及びカチオン性界面活性剤からなる群より選択される少なくとも1種の界面活性剤を含有する脱色液
を備え、被験組織に接触させた後のメンブレンの当該接触面に、前記(a)前処理液、(b)染色液、及び(c)脱色液の順に接触させて用いられる、上記バイオフィルム検出用試薬キット。 - 前記(a)前処理液と(c)脱色液とが、同一組成からなる水溶液である請求項1に記載するバイオフィルム検出用試薬キット。
- 前記(a)前処理液および/または前記(c)脱色液に用いられる界面活性剤が、塩化ジアルキルジメチルアンモニウム及び塩化ベンザルコニウムより選択されるカチオン性界面活性剤;アルキルジメチルアミノ酢酸ベタイン、及びアルキルジメチルアミンオキサイドより選択される両性界面活性剤;またはポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシアルキレンアルキルエーテル、アルキルポリグルコシド、ポリオキシエチレンポリオキシプロピレングリコール、及びポリグリセリン脂肪酸エステルより選択されるノニオン性界面活性剤である、請求項1または2に記載するバイオフィルム検出用試薬キット。
- さらに、被験組織に存在するバイオフィルムおよび/またはその成分を吸着することができるメンブレンを含有する、請求項1~3のいずれかに記載するバイオフィルム検出用試薬キット。
- さらに、浸漬容器、水切り部材、廃液容器、水切り部を有する容器、ピンセット、滅菌蒸留水、及び乾燥器から選択される少なくとも1種の補助器具を含有する、請求項1~4のいずれかに記載するバイオフィルム検出用試薬キット。
- 前記(a)前処理液、(b)染色液、及び(c)脱色液が、各々個別の容器、好ましくは開閉可能な蓋付き容器に収容されてなる、請求項1~5のいずれかに記載するバイオフィルム検出用試薬キット。
- さらに取扱説明書を含む、請求項1~6のいずれかに記載するバイオフィルム検出用試薬キット。
- 下記の工程1~4を有する、被験組織におけるバイオフィルムを検出する方法:
(1)バイオフィルムおよび/またはその成分を吸着することができるメンブレンを被験組織に接触させる工程1、
(2)被験組織との接触から外したメンブレンの少なくとも被験組織との接触面を、(a)ノニオン性界面活性剤、両性界面活性剤、及びカチオン性界面活性剤からなる群より選択される少なくとも1種の界面活性剤を含有する前処理液で処理する工程2、
(3)前記(a)前処理液で処理したメンブレンの少なくとも被験組織との接触面を(b)染料を含有する染色液で処理する工程3、及び
(4)前記(b)染色液で処理したメンブレンの少なくとも被験組織との接触面を(c)ノニオン性界面活性剤、両性界面活性剤、及びカチオン性界面活性剤からなる群より選択される少なくとも1種の界面活性剤を含有する脱色液で処理する工程4。 - 前記(a)前処理液と(c)脱色液とが、同一組成からなる水溶液である、請求項8に記載するバイオフィルム検出方法。
- 前記(a)前処理液および/または前記(c)脱色液に用いられる界面活性剤が、塩化ジアルキルジメチルアンモニウム及び塩化ベンザルコニウムより選択されるカチオン性界面活性剤;アルキルジメチルアミノ酢酸ベタイン、及びアルキルジメチルアミンオキサイドより選択される両性界面活性剤;またはポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシアルキレンアルキルエーテル、アルキルポリグルコシド、ポリオキシエチレンポリオキシプロピレングリコール、及びポリグリセリン脂肪酸エステルより選択されるノニオン性界面活性剤である、請求項8または9に記載するバイオフィルム検出方法。
- 前記(1)の前処理工程1を2~60秒間、前記(2)の染色処理工程2を5~60秒間、及び前記(3)の脱色工程3を10~120秒間の時間配分で実施する、請求項8~10のいずれかに記載するバイオフィルム検出方法。
- 被験組織が、臨床感染の徴候が見られる創傷部、難治性創傷部、または慢性創傷部の生組織である、請求項8~11のいずれかに記載するバイオフィルム検出方法。
- さらに、被験組織にバイオフィルムが存在するか否かを決定する工程5を有する、請求項8~12のいずれかに記載するバイオフィルム検出方法。
- 前記工程5が、脱色液で処理したメンブレンの被験組織との接触面に、メンブレンの背景色に対してコントラストのある染料由来の着色が認められる場合に、被験組織にバイオフィルムが存在すると決定する工程である、請求項13に記載するバイオフィルム検出方法。
- 前記工程2~4を、下記(ア)~(ウ)のいずれかの方法で実施することを特徴とする請求項8~14のいずれかに記載するバイオフィルム検出方法:
(ア)工程1で得られたメンブレンを入れた浸漬容器に、前処理液、染色液及び脱色液を順次、入れ替えて前記工程2~4を実施する方法、
(イ)工程1で得られたメンブレンを、前処理液、染色液及び脱色液をそれぞれ入れた浸漬容器に、順次、入れだしして前記工程2~4を実施する方法、
(ウ)工程1で得られたメンブレンを、水切り部を有する容器の水切り部面上に載せ、前処理液、染色液及び脱色液を、順次、メンブレン全面に行き渡るように噴霧または滴下して前記工程2~4を実施する方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019571752A JP6732275B2 (ja) | 2018-07-31 | 2019-07-31 | バイオフィルム検出試薬キットおよびバイオフィルム検出方法 |
CN201980050498.3A CN112513637B (zh) | 2018-07-31 | 2019-07-31 | 用于检测生物膜的试剂盒和用于检测生物膜的方法 |
EP19843360.9A EP3832308A4 (en) | 2018-07-31 | 2019-07-31 | REAGENT KIT FOR DETECTION OF A BIOFILM AND BIOFILM DETECTION METHOD |
AU2019313935A AU2019313935A1 (en) | 2018-07-31 | 2019-07-31 | Reagent kit for detecting biofilm and method for detecting biofilm |
US17/263,851 US11572578B2 (en) | 2018-07-31 | 2019-07-31 | Reagent kit for detecting biofilm and method for detecting biofilm |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-144610 | 2018-07-31 | ||
JP2018144610 | 2018-07-31 | ||
JP2018155979 | 2018-08-23 | ||
JP2018-155979 | 2018-08-23 | ||
JP2018-222063 | 2018-11-28 | ||
JP2018222063 | 2018-11-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020027192A1 true WO2020027192A1 (ja) | 2020-02-06 |
Family
ID=69231076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/029993 WO2020027192A1 (ja) | 2018-07-31 | 2019-07-31 | バイオフィルム検出試薬キットおよびバイオフィルム検出方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11572578B2 (ja) |
EP (1) | EP3832308A4 (ja) |
JP (1) | JP6732275B2 (ja) |
CN (1) | CN112513637B (ja) |
AU (1) | AU2019313935A1 (ja) |
WO (1) | WO2020027192A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022251410A1 (en) * | 2021-05-27 | 2022-12-01 | Cornell University | Optical clearing and auto-fluorescence quenching solutions and method of use for enhanced microscopy imaging of biological tissues |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114088703B (zh) * | 2020-08-24 | 2024-04-02 | 台湾永光化学工业股份有限公司 | 用于检测铝阳极染液活性的快筛套组及方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10206424A (ja) * | 1997-01-21 | 1998-08-07 | Kitasato Inst:The | 創傷進展度測定検査方法、測定用キット、及び創傷面治療法決定方法 |
JPH10309280A (ja) * | 1997-03-12 | 1998-11-24 | Johnson & Johnson Medical Ltd | 創傷状態をマッピングするための装置及びその方法 |
JPH11190736A (ja) * | 1997-09-12 | 1999-07-13 | Ethicon Inc | 傷の診断用の試験片、装置および方法 |
JP2012512857A (ja) * | 2008-12-20 | 2012-06-07 | コンバテック・テクノロジーズ・インコーポレイテッド | 皮膚および創傷における使用のための組成物 |
JP2014500495A (ja) * | 2010-11-30 | 2014-01-09 | コンバテック・テクノロジーズ・インコーポレイテッド | 生組織におけるバイオフィルムを検出するための組成物 |
US9145574B2 (en) | 2009-04-24 | 2015-09-29 | University Of Florida Research Foundation, Inc. | Materials and methods for assessing and mapping microbes and microbial biofilms on wounds |
JP2016021888A (ja) * | 2014-07-17 | 2016-02-08 | 国立大学法人 東京大学 | クリティカルコロナイゼーション創傷又は感染創傷の判定キット、判定方法及び試験方法 |
JP2018144610A (ja) | 2017-03-03 | 2018-09-20 | マツダ株式会社 | 車両の前部車体構造 |
JP2018155979A (ja) | 2017-03-21 | 2018-10-04 | コニカミノルタ株式会社 | 画像形成装置および画像形成装置の制御プログラム |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4651868B2 (ja) * | 2001-03-28 | 2011-03-16 | 株式会社ジーシー | 唾液の前処理用キット及びこれを用いた唾液の前処理方法 |
JP5466782B1 (ja) * | 2013-07-09 | 2014-04-09 | アムテック株式会社 | 洗浄剤組成物 |
-
2019
- 2019-07-31 JP JP2019571752A patent/JP6732275B2/ja active Active
- 2019-07-31 AU AU2019313935A patent/AU2019313935A1/en active Pending
- 2019-07-31 EP EP19843360.9A patent/EP3832308A4/en active Pending
- 2019-07-31 WO PCT/JP2019/029993 patent/WO2020027192A1/ja unknown
- 2019-07-31 US US17/263,851 patent/US11572578B2/en active Active
- 2019-07-31 CN CN201980050498.3A patent/CN112513637B/zh active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10206424A (ja) * | 1997-01-21 | 1998-08-07 | Kitasato Inst:The | 創傷進展度測定検査方法、測定用キット、及び創傷面治療法決定方法 |
JPH10309280A (ja) * | 1997-03-12 | 1998-11-24 | Johnson & Johnson Medical Ltd | 創傷状態をマッピングするための装置及びその方法 |
JPH11190736A (ja) * | 1997-09-12 | 1999-07-13 | Ethicon Inc | 傷の診断用の試験片、装置および方法 |
JP2012512857A (ja) * | 2008-12-20 | 2012-06-07 | コンバテック・テクノロジーズ・インコーポレイテッド | 皮膚および創傷における使用のための組成物 |
US9145574B2 (en) | 2009-04-24 | 2015-09-29 | University Of Florida Research Foundation, Inc. | Materials and methods for assessing and mapping microbes and microbial biofilms on wounds |
US9927438B2 (en) | 2009-04-24 | 2018-03-27 | University Of Florida Research Foundation, Incorporated | Materials and methods for assessing and mapping microbes and microbial biofilms on wounds |
JP2014500495A (ja) * | 2010-11-30 | 2014-01-09 | コンバテック・テクノロジーズ・インコーポレイテッド | 生組織におけるバイオフィルムを検出するための組成物 |
JP2016021888A (ja) * | 2014-07-17 | 2016-02-08 | 国立大学法人 東京大学 | クリティカルコロナイゼーション創傷又は感染創傷の判定キット、判定方法及び試験方法 |
JP2018144610A (ja) | 2017-03-03 | 2018-09-20 | マツダ株式会社 | 車両の前部車体構造 |
JP2018155979A (ja) | 2017-03-21 | 2018-10-04 | コニカミノルタ株式会社 | 画像形成装置および画像形成装置の制御プログラム |
Non-Patent Citations (9)
Title |
---|
BRADFORD CRAIGEN ET AL., THE OPEN MICROBIOLOGY JOURNAL, vol. 5, 2011, pages 21 - 31 |
DAVID J LEAPER ET AL.: "Extending the TIME concept: What have we learned in the past 10 years", INTERNATIONAL WOUND JOURNAL, vol. 9, no. 2, 2014, pages 1 - 19 |
GOJIRO NAKAGAMI ET AL.: "Transformation of wound care with biofilm visualization", JOURNAL OF THE JAPANESE SOCIETY OF FOOTCARE, vol. 16, no. 1, 2018, pages 1 - 6 |
GOJIRO NAKAGAMI ET AL.: "Visualize biofilm", VISUAL DERMATOLOGY, vol. 17, no. 2, 2018, pages 156 - 159 |
GOJIRO NAKAGAMI: "New wound care utilizing biofilm detection technology that can be performed at the bedside", JSWH NEWS LETTER, no. 105, May 2018 (2018-05-01) |
KARSTEN PEDERSEN, APPLIED AND ENVIRONMENTAL MICROBIOLOGY, January 1982 (1982-01-01), pages 6 - 13 |
MASAAKI MORIKAWA: "Let's examine biofilm", BIOTECHNOLOGY, vol. 90, no. 5, 2012, pages 246 - 250 |
NAKAGAMI, GOJIRO ET AL.: "Innovation of Wound Care by Visualizing Biofilms", JAPANESE JOURNAL OF FOOT CARE, vol. 16, no. 1, 2018, pages 1 - 6, XP055781407 * |
See also references of EP3832308A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022251410A1 (en) * | 2021-05-27 | 2022-12-01 | Cornell University | Optical clearing and auto-fluorescence quenching solutions and method of use for enhanced microscopy imaging of biological tissues |
Also Published As
Publication number | Publication date |
---|---|
EP3832308A4 (en) | 2022-05-04 |
JPWO2020027192A1 (ja) | 2020-08-06 |
US11572578B2 (en) | 2023-02-07 |
JP6732275B2 (ja) | 2020-07-29 |
AU2019313935A1 (en) | 2021-03-18 |
US20210262002A1 (en) | 2021-08-26 |
CN112513637A (zh) | 2021-03-16 |
EP3832308A1 (en) | 2021-06-09 |
CN112513637B (zh) | 2024-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK2646566T3 (en) | Composition for detection of biofilm on viable tissues | |
Gridley | Manual of histologic and special staining technics | |
AU2003302906B2 (en) | Gelatine-based materials as swabs | |
WO2020027192A1 (ja) | バイオフィルム検出試薬キットおよびバイオフィルム検出方法 | |
US7547552B2 (en) | Indication composition for surgical instrument cleaning evaluation | |
US11629371B2 (en) | Article and methods to determine efficacy of disinfection process | |
Norris et al. | Staining bacteria | |
EP1733044A2 (de) | Verfahren und einrichtung zum testen bakterizider wirkung von substanzen | |
JP2020516259A (ja) | 変色性組成物 | |
Ogodo et al. | Principles of applied microbiology and biotechnology: Technique for the screening of antimicrobial herbs | |
CN211394494U (zh) | 一种三维细胞培养装置 | |
Maheshwari | Practical Microbiology | |
Chebli et al. | Live fluorescence visualization of cellulose and pectin in plant cell walls | |
Nicholls | Jensen staining, a neglected tool in phycology | |
RU2808738C1 (ru) | Способ оценки процесса формирования сосудистой сети на хориоаллантоисной мембране куриного эмбриона | |
Liu et al. | Layer-by-layer self-assembled smart antibacterial coatings for surface management of orthokeratology lens | |
CN111206067B (zh) | 湿纸巾防腐效果的评价方法 | |
RU2262342C1 (ru) | Композиция для обработки и хранения мягких контактных линз | |
Liepins et al. | How clean is clean? In-vitro comparison of biofilm removal efficacy and cleaning characteristics of three debridement pads | |
JP3084670U (ja) | 環境微生物検査用拭き取り器具 | |
Sangeetha | Functional Properties of Activated Carbon Treated Textile Material | |
Raji et al. | ANTIBACTERIAL ACTIVITIES OF DIFFERENT BRANDS OF ANTISEPTIC SOAPS ON STAPHYLOCOCCUS AUREUS AND PSEUDOMONAS AERUGINOSA ISOLATED FROM WOUND INFECTIONS. | |
WO2022172163A1 (en) | A method for capturing bacteria from suspensions and related device | |
AlShehry et al. | Cleaning excessive cross-linker crystallization on S10 plastinated brain slices | |
AbuShattal | Dr. Sulaiman Alnaimat |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019571752 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19843360 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019843360 Country of ref document: EP Effective date: 20210301 |
|
ENP | Entry into the national phase |
Ref document number: 2019313935 Country of ref document: AU Date of ref document: 20190731 Kind code of ref document: A |