WO2020027144A1 - 偏光板、光学機器及び偏光板の製造方法 - Google Patents

偏光板、光学機器及び偏光板の製造方法 Download PDF

Info

Publication number
WO2020027144A1
WO2020027144A1 PCT/JP2019/029863 JP2019029863W WO2020027144A1 WO 2020027144 A1 WO2020027144 A1 WO 2020027144A1 JP 2019029863 W JP2019029863 W JP 2019029863W WO 2020027144 A1 WO2020027144 A1 WO 2020027144A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
multilayer film
polarizing plate
etching rate
optical property
Prior art date
Application number
PCT/JP2019/029863
Other languages
English (en)
French (fr)
Inventor
和幸 渋谷
重司 榊原
利明 菅原
雄介 松野
昭夫 高田
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to CN201980003286.XA priority Critical patent/CN110998385B/zh
Priority to US16/640,609 priority patent/US11112550B2/en
Publication of WO2020027144A1 publication Critical patent/WO2020027144A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133548Wire-grid polarisers

Definitions

  • the present invention relates to a polarizing plate, an optical device, and a method for manufacturing a polarizing plate.
  • Polarizing plates are used in liquid crystal displays and the like.
  • Wire grid polarizers include reflective polarizers and absorption polarizers.
  • Patent Literature 1 describes a reflective wire grid polarizer in which thin metal wires having a rectangular cross section are arranged.
  • Patent Literature 2 describes an absorption type wire grid polarizer having a dielectric layer and an absorption layer on one surface of a reflection layer. The reflected light is canceled by causing the light reflected by the reflection layer and the light reflected by the absorption layer to interfere with each other.
  • Absorptive polarizing plates can reduce light reflected on the light emission side.
  • light reflected on the light emitting side may cause malfunction of the liquid crystal panel and deterioration of image quality due to stray light.
  • Patent Literature 3 describes a method for processing a multilayer film in the semiconductor field. Patent Literature 3 processes a multilayer film by dry etching.
  • the projections of the wire grid polarizer are manufactured on the order of nanometers. Further, the extinction ratio of the wire grid polarizer depends on the height of the reflective layer, and processing of a structure having a high aspect ratio is required.
  • the present invention has been made in view of the above problems, and has as its object to provide a method for manufacturing a polarizing plate having excellent optical characteristics, and a polarizing plate and an optical device having excellent optical characteristics.
  • the present invention provides the following means in order to solve the above problems.
  • the polarizing plate according to the first aspect is a polarizing plate having a wire grid structure, comprising: a transparent substrate; a polarizing plate extending in a first direction on the transparent substrate, and having a periodicity shorter than a wavelength of light in a use band.
  • a plurality of convex parts arranged in a matrix, the convex parts include a reflective layer, a multilayer film, and an optical property improving layer located between the reflective layer and the multilayer film,
  • the optical property improving layer includes an oxide containing a constituent element constituting the reflective layer, and an etching rate of the optical property improving layer with respect to a chlorine-based gas is 6.7 times or more and 15 times or less of an etching rate of the multilayer film. It is.
  • the optical property improving layer may be made of a material having a lower etching rate with respect to a fluorine-based gas than the multilayer film.
  • the reflective layer of the polarizing plate according to the above aspect may be made of Al or Cu, and the optical property improving layer may be made of Al or Cu oxide.
  • the optical apparatus includes the polarizing plate according to the above aspect.
  • the method for manufacturing a polarizing plate according to the third aspect includes a first laminating step of laminating a reflective layer on a transparent substrate, and heating the reflective layer so that the surface of the reflective layer opposite to the transparent substrate has optical characteristics.
  • the processing step is performed with a chlorine-based gas, and an etching rate of the optical property improving layer with respect to the chlorine-based gas is set to 6.7 times or more and 15 times or less of an etching rate of the multilayer film.
  • an etching rate of the reflection layer with respect to the chlorine-based gas may be 6.7 times or more and 15 times or less of an etching rate of the multilayer film.
  • the mask layer is composed of a plurality of layers, and the mask layer has a first mask layer made of the same material as the reflective layer closest to the substrate, and
  • the processing of the first mask layer in the forming step is performed with the chlorine-based gas, and the etching rate of the first mask layer with respect to the chlorine-based gas is set to 6.7 times or more and 15 times or less of the etching rate of the multilayer film. Good.
  • the first processing step is performed with a fluorine-based gas, and an etching rate of the optical property improving layer with respect to the fluorine-based gas is 0.22 times or more of an etching rate of the multilayer film. It may be 0.39 times or less.
  • a polarizing plate having excellent optical characteristics can be manufactured. Further, according to the polarizing plate and the optical device according to the above aspect, the optical characteristics can be improved.
  • FIG. 2 is a schematic sectional view of a polarizing plate according to the first embodiment. It is a cross section for explaining the manufacturing method of the polarizing plate concerning a 3rd embodiment. It is a cross section for explaining the manufacturing method of the polarizing plate concerning a 3rd embodiment. It is a cross section for explaining a pattern formation process in a manufacturing method of a polarizing plate concerning a 3rd embodiment. It is a cross section for explaining a pattern formation process in a manufacturing method of a polarizing plate concerning a 3rd embodiment. It is a cross section for explaining a pattern formation process in a manufacturing method of a polarizing plate concerning a 3rd embodiment. It is a cross section for explaining a pattern formation process in a manufacturing method of a polarizing plate concerning a 3rd embodiment.
  • FIG. 1 is a schematic sectional view of a polarizing plate 100 according to the first embodiment.
  • the polarizing plate 100 is a polarizing plate having a wire grid structure.
  • the polarizing plate 100 includes a substrate 10 and a plurality of convex portions 20.
  • the plurality of protrusions 20 extend in the first direction in plan view.
  • the plane in which the substrate 10 extends is referred to as an xy plane
  • the first direction in which the plurality of protrusions 20 extend is referred to as the y direction.
  • the direction orthogonal to the xy plane is defined as the z direction.
  • FIG. 1 is a cross-sectional view of the polarizing plate 100 cut along the xz plane. In other words, it is a cross-sectional view perpendicular to the first direction in which the plurality of protrusions 20 extend.
  • the polarizing plate 100 attenuates a polarized wave (TE wave (S wave)) having an electric field component parallel to the y direction in which the protrusion 20 extends, and a polarized wave (TM wave (P wave) having an electric field component perpendicular to the y direction. )).
  • the polarizing plate 100 has an absorption axis in the y direction and a transmission axis in the x direction.
  • the substrate 10 is transparent to light having a wavelength in the band used by the polarizing plate 100.
  • the expression “having transparency” does not require transmission of light having a wavelength in a used band by 100%, but may be sufficient as long as it can transmit light having a function as a polarizing plate.
  • the average thickness of the substrate 10 is preferably 0.3 mm or more and 1 mm or less.
  • a material having a refractive index of 1.1 to 2.2 for the substrate 10.
  • glass, quartz, sapphire, or the like can be used.
  • the component composition of the glass material used as the substrate 10 is not particularly limited.
  • silicate glass is widely distributed as optical glass and is inexpensive.
  • Quartz glass (refractive index: 1.46) and soda-lime glass (refractive index: 1.51) are inexpensive and have excellent transparency.
  • quartz and sapphire have excellent thermal conductivity.
  • the material of the substrate 10 can be appropriately selected according to the performance required for the polarizing plate 100.
  • a polarizing plate for an optical engine of a projector is required to have light resistance and heat dissipation because strong light is irradiated. Therefore, it is preferable to use quartz or sapphire for the substrate 10.
  • the shape of the first surface 10a of the substrate 10 is not limited to a flat surface. An uneven shape or the like may be provided according to the purpose. For example, a groove may be provided between adjacent protrusions 20.
  • the protrusion 20 extends in the y direction.
  • the protrusions 20 are periodically arranged in the x direction.
  • the plurality of protrusions 20 are periodically arranged in a direction perpendicular to the first direction in which the protrusions 20 extend.
  • the pitch P of the adjacent protrusions 20 in the x direction is shorter than the light having the wavelength in the band used by the polarizing plate 100.
  • the pitch P is preferably 100 nm or more and 200 nm or less. When the pitch P is within this range, the production of the projections 20 is facilitated, and the mechanical stability of the projections 20 and the stability of optical characteristics are enhanced.
  • the pitch P between the adjacent protrusions 20 can be measured as an average value using a scanning electron microscope or a transmission electron microscope.
  • the distance in the x direction between the adjacent convex portions 20 is measured at any four places, and the pitch P is obtained by an arithmetic average thereof.
  • a measurement method for averaging the measured values at any four positions of the plurality of protrusions 20 is referred to as electron microscopy.
  • the pitch P is the distance between the upper ends of the adjacent protrusions 20 or the distance between the centers in the x direction when the adjacent protrusions 20 are viewed in plan on the xy plane.
  • a measurement method of averaging measured values at four arbitrary positions using an image observed by a scanning electron microscope or a transmission electron microscope is referred to as electron microscopy.
  • the protrusion 20 protrudes from the substrate 10.
  • the main direction in which the protrusion 20 protrudes is the z direction.
  • the average width of the protrusions 20 in the x direction is not less than 20% and not more than 50% of the pitch P.
  • the average width of the convex portion 20 means an average value of the width at each point obtained by dividing the convex portion 20 into 10 in the z direction.
  • the height of the protrusion 20 be 250 nm or more and 400 nm or less.
  • the aspect ratio obtained by dividing the height of the projection 20 by the average width is preferably 5 or more and 13.3 or less.
  • the substrate 10 is an optically active crystal such as quartz
  • the direction parallel or perpendicular to the optical axis of the crystal and the direction in which the projections 20 extend coincide with each other.
  • the optical axis is a direction axis in which the difference in the refractive index between the ordinary ray (O) and the extraordinary ray (E) of the light traveling in that direction is minimized.
  • Each convex portion 20 has a reflective layer 30, a multilayer film 40, and an optical property improving layer 50, respectively.
  • the convex portion 20 shown in FIG. 1 has a multilayer film 40, an optical property improving layer 50, and a reflective layer 30 stacked in this order from the outer surface (the side farther from the substrate 10).
  • the multilayer film 40 is located farther from the substrate 10 than the reflective layer 30 is.
  • the multilayer film 40 shown in FIG. 1 includes a dielectric layer 42, an absorption layer 44, and a second dielectric layer 46 in order from the substrate 10 side.
  • the dielectric layer 42, the absorption layer 44, and the second dielectric layer 46 attenuate the polarized wave (TE wave (S wave)) reflected by the reflection layer 30 by interference.
  • S wave polarized wave
  • the dielectric layer 42 shown in FIG. 1 is laminated on the optical property improving layer 50.
  • the dielectric layer 42 does not necessarily need to be in contact with the optical property improving layer 50, and another layer may exist between the dielectric layer 42 and the optical property improving layer 50.
  • the dielectric layer 42 extends in a band shape in the y direction.
  • the dielectric layer 42 forms a part of the multilayer film 40.
  • the thickness of the dielectric layer 42 can be determined according to the polarized wave reflected by the absorption layer 44.
  • the thickness of the dielectric layer 42 is determined so that the phase of the polarized wave reflected by the absorbing layer 44 and the phase of the polarized wave reflected by the reflecting layer 30 are shifted by a half wavelength.
  • the thickness of the dielectric layer 42 is preferably 1 nm or more and 500 nm or less. Within this range, the relationship between the phases of the two reflected polarized waves can be adjusted, and the interference effect can be enhanced.
  • the thickness of the dielectric layer 42 can be measured using the above-mentioned electron microscopy.
  • the dielectric layer 42 As a material of the dielectric layer 42, metal oxide, magnesium fluoride (MgF2), cryolite, germanium, silicon, boron nitride, carbon, or a combination thereof can be used.
  • the metal oxide include Si oxide such as SiO 2 , Al 2 O 3 , beryllium oxide, bismuth oxide, boron oxide, and tantalum oxide.
  • the dielectric layer 42 is preferably made of Si oxide.
  • the refractive index of the dielectric layer 42 is greater than 1.0 and not more than 2.5.
  • the optical characteristics of the reflective layer 30 are also affected by the surrounding refractive index (for example, the refractive index of the dielectric layer 42). By adjusting the refractive index of the dielectric layer 42, the polarization characteristics of the polarizing plate can be controlled.
  • the absorption layer 44 shown in FIG. 1 is laminated on the dielectric layer 42.
  • the absorption layer 44 extends in a band shape in the y direction.
  • the absorption layer 44 forms a part of the multilayer film 40.
  • the thickness of the absorption layer 44 is preferably, for example, 10 nm or more and 100 nm or less.
  • the thickness of the absorption layer 44 can be measured using the above-mentioned electron microscopy.
  • the material of the absorption layer 44 one or more substances having a light absorption function having a non-zero optical constant extinction constant can be used.
  • a metal material or a semiconductor material can be used.
  • the material used for the absorption layer 44 can be appropriately selected depending on the wavelength range of light in the band used by the polarizing plate.
  • the metal material may be a single metal such as Ta, Al, Ag, Cu, Au, Mo, Cr, Ti, W, Ni, Fe, Sn, or one or more of these.
  • An alloy containing an element is preferable.
  • the semiconductor material is preferably Si, Ge, Te, ZnO, or a silicide material. Examples of the silicide material include ⁇ -FeSi 2 , MgSi 2 , NiSi 2 , BaSi 2 , CrSi 2 , and TaSi.
  • the polarizing plate 100 using these materials for the absorption layer 44 has a high extinction ratio in the visible light region. It is particularly preferable that the absorption layer 44 contains Fe or Ta and Si.
  • the bandgap energy of the semiconductor contributes to the light absorbing action. Therefore, the band gap energy of the semiconductor material is equal to or less than a value obtained by converting the wavelength of the used band into energy.
  • the band to be used is a visible light region, it is preferable to use a semiconductor material having a band gap energy of 3.1 eV or less, which is an absorption energy at a wavelength of 400 nm or more.
  • the absorption layer 44 is not limited to one layer and may be composed of two or more layers. When the absorption layer 44 has two or more layers, the material of each layer may be different.
  • the absorption layer 44 can be formed by a method such as evaporation or sputtering.
  • the second dielectric layer 46 shown in FIG. 1 is laminated on the absorption layer 44.
  • the second dielectric layer 46 extends in a band shape in the y direction.
  • the second dielectric layer 46 forms a part of the multilayer film 40.
  • the second dielectric layer 46 can be made of the same material as the dielectric layer 42 described above.
  • the second dielectric layer 46 may be made of the same material as the dielectric layer 42 or may be made of a different material.
  • the second dielectric layer 46 is a Si oxide.
  • the refractive index of the second dielectric layer 46 is preferably in the same range as that of the above-described dielectric layer 42.
  • the thickness of the second dielectric layer 46 is preferably, for example, not less than 10 nm and not more than 100 nm. The thickness of the second dielectric layer 46 can be measured using the above-mentioned electron microscopy.
  • the multilayer film 40 there is a combination of SiO 2 / FeSi / SiO 2 .
  • SiO 2 is used for the dielectric layer 42 and the second dielectric layer 46, and FeSi is used for the absorption layer 44.
  • the optical property improving layer 50 is formed at the interface between the reflective layer 30 and the multilayer film 40.
  • the optical property improving layer 50 extends in a band shape in the y direction.
  • the optical property improving layer 50 is an oxide layer made of an oxide containing a constituent element constituting the reflective layer.
  • the material forming the optical property improving layer 50 is an oxide containing Al (for example, aluminum oxide).
  • the material forming the optical property improving layer 50 is an oxide containing Cu (for example, copper oxide).
  • the thickness of the optical property improving layer 50 may be larger than 0 nm, and is preferably 20 nm or less.
  • the etching rate of the optical property improving layer 50 with respect to the chlorine-based gas is higher than the etching rate of the multilayer film 40.
  • the etching rate of the optical property improving layer 50 with respect to the chlorine-based gas is 6.7 times or more and 15 times or less the etching rate of the multilayer film 40. That is, the etching selectivity between the optical property improving layer 50 and the multilayer film 40 with respect to the chlorine-based gas is 6.7 or more and 15 or less.
  • the etching selectivity is obtained by dividing the etching rate of the optical property improving layer 50 by the etching rate of the multilayer film 40.
  • the optical properties of the polarizing plate 100 are improved. This is considered to be because the multilayer film 40 was excessively etched and the shape of the projections 20 was suppressed from being collapsed in the etching when the optical property improving layer 50 and the reflective layer 30 were processed. Also, at the beginning of etching when processing the reflective layer 30, the etching conditions are hardly stable. It is conceivable that the optical property improving layer 50 is located between the reflective layer 30 and the multilayer film 40 so that the reflective layer 30 has a desired shape and the optical properties of the polarizing plate 100 are improved.
  • the etching rate of the optical property improving layer 50 with respect to the fluorine-based gas is preferably lower than the etching rate of the multilayer film 40. That is, the optical property improving layer 50 is preferably made of a material having a lower etching rate with respect to the fluorine-based gas than the multilayer film 40. Specifically, it is preferable that the etching rate of the optical property improving layer 50 be 0.22 to 0.39 times the etching rate of the multilayer film 40. In etching when processing the multilayer film 40, the optical property improving layer 50 is hardly etched at the same time, and the shape of the projection 20 can be adjusted to a desired shape.
  • the chlorine-based gas is a gas containing chlorine as a constituent element.
  • a mixed gas of BCl 3 , Cl 2 and N 2 , a mixed gas of Cl 2 , CCl 4 and N 2, and the like can be given.
  • the fluorine-based gas is a gas containing fluorine as a constituent element.
  • CF 4 , CHF 3 , C 4 F 8 and the like can be mentioned.
  • the reflective layer 30 protrudes in the z direction with respect to the substrate 10 and extends in a band shape in the y direction.
  • the reflection layer 30 is located between the substrate 10 and the multilayer film 40. Another layer may be inserted between the substrate 10 and the reflective layer 30.
  • the reflection layer 30 reflects a TE wave (S wave) and transmits a TM wave (P wave).
  • the reflective layer 30 can be made of a material having reflectivity to light having a wavelength in a use band.
  • a single metal such as Al, Ag, Cu, Mo, Cr, Ti, Ni, W, Fe, Si, Ge, Ta, or an alloy thereof can be used.
  • Al, Cu, or an alloy thereof it is preferable to use Al, Cu, or an alloy thereof.
  • the reflective layer 30 is not limited to a metal, and may be an inorganic film or a resin film whose surface reflectance is increased by coloring or the like.
  • the height of the reflective layer 30 can be freely designed.
  • the height of the reflective layer 30 is preferably 100 nm or more and 300 nm or less.
  • the height of the reflective layer 30 can be determined by electron microscopy.
  • the width of the reflective layer 30 is preferably 20% or more and 50% or less of the pitch P.
  • the thickness is preferably 10 nm or more and 100 nm or less, and more preferably 20 nm or more and 50 nm or less.
  • the etching rate of the reflection layer 30 with respect to the chlorine-based gas is equal to the etching rate of the optical property improving layer 50.
  • the reflective layer 30 and the optical property improving layer 50 satisfy the above relationship, the reflective layer 30 and the optical property improving layer 50 can be simultaneously processed. Further, the etching conditions for the reflective layer 30 and the optical property improving layer 50 can be made constant, and the etching conditions at the time when the reflective layer 30 is reached can be made more stable. As a result, the shape of the reflective layer 30 becomes a desired shape, and the optical characteristics of the polarizing plate 100 are improved.
  • the etching rate of the reflection layer 30 with respect to the chlorine-based gas is 6.7 times or more and 15 times or less of the etching rate of the multilayer film 40.
  • the etching rate of the reflective layer 30 with respect to the fluorine-based gas is 0.22 to 0.39 times the etching rate of the multilayer film 40.
  • the polarizing plate 100 may have a layer other than the above configuration.
  • a diffusion barrier layer may be provided between the dielectric layer 42 or the second dielectric layer 46 and the absorption layer 44.
  • the diffusion barrier layer prevents light from diffusing in the absorption layer 44.
  • a metal film such as Ta, W, Nb, and Ti can be used as the diffusion barrier layer.
  • a protective film may be formed on the light incident side of the polarizing plate 100.
  • a protection film is formed so as to cover the first surface 10 a of the substrate 10 and the periphery of the projection 20.
  • the same material as the dielectric layer 42 can be used for the protective film.
  • the protective film prevents the metal film such as the reflective layer 30 from being oxidized more than necessary.
  • the protective film can be formed using CVD (Chemical Vapor Deposition), ALD (Atomic Layer Deposition), or the like.
  • a water-repellent film may be formed on the light incident side of the polarizing plate 100.
  • a fluorine-based silane compound such as perfluorodecyltriethoxysilane (FDTS) can be used.
  • FDTS perfluorodecyltriethoxysilane
  • the water-repellent film can be formed using CVD, ALD, or the like. The water-repellent film increases the moisture resistance of the polarizing plate 100 and improves the reliability.
  • the polarizing plate 100 As described above, the polarizing plate 100 according to the present embodiment has a low reflectance and a high transmittance. Therefore, it can be used for various optical devices.
  • the optical device according to the second embodiment includes the polarizing plate 100 according to the first embodiment.
  • the optical device includes a liquid crystal projector, a head-up display, a digital camera, and the like.
  • the polarizing plate 100 according to the first embodiment has a high transmittance of polarized light in the transmission axis direction and a low reflectance of polarized light in the absorption axis direction. Therefore, it can be used for various applications.
  • the polarizing plate 100 is made of an inorganic material.
  • the polarizing plate 100 is particularly preferably used for a liquid crystal projector, a head-up display, and the like, which require higher heat resistance than an organic polarizing plate.
  • the optical device includes a plurality of polarizing plates
  • at least one of the plurality of polarizing plates may be the polarizing plate 100 according to the first embodiment.
  • the optical device is a liquid crystal projector
  • polarizing plates are arranged on the incident side and the output side of the liquid crystal panel.
  • the polarizing plate 100 according to the first embodiment is used as one of the polarizing plates.
  • the method for manufacturing a polarizing plate according to the third embodiment includes a first laminating step, a second laminating step, a layer forming step, a pattern forming step, a first processing step, and a second processing step.
  • a first laminating step a laminating step
  • a second laminating step a layer forming step
  • a pattern forming step a first processing step
  • a second processing step a second processing step.
  • FIG. 2 is a schematic cross-sectional view illustrating a method for manufacturing a polarizing plate according to the third embodiment.
  • the reflective layer 130 is laminated on the substrate 10.
  • the reflective layer 130 uses, for example, Al.
  • the reflective layer 130 can be formed using, for example, a sputtering method or an evaporation method.
  • the reflection layer 130 is a layer that becomes the reflection layer 30 shown in FIG. 1 after processing. The same material as the above-described reflective layer 30 is used for the reflective layer 130.
  • the reflection layer 130 is heated in air as a layer forming step.
  • the surface of the reflective layer 130 is oxidized by heating, and the optical property improving layer 150 is formed.
  • the optical property improving layer 150 is formed on the surface of the reflective layer 130 opposite to the substrate 10.
  • the heating is preferably performed at 100 ° C. or higher and 500 ° C. or lower.
  • the thickness of the optical property improving layer 150 can be adjusted by heating time, heating temperature, and the like.
  • the conditions (heating time, heating temperature, etc.) for the oxidation treatment of the surface of the reflective layer 130 can be adjusted so that the optical property improving layer 150 has desired etching properties.
  • the multilayer film 140 is laminated on the optical property improving layer 150.
  • the multilayer film 140 is formed on the surface of the optical property improvement layer 150 opposite to the reflection layer 130.
  • a laminate 190 including the reflection layer 130, the optical property improving layer 150, and the multilayer film 140 is formed on the substrate 10.
  • the multilayer film 140 is obtained by sequentially laminating a dielectric layer 142, an absorption layer 144, and a second dielectric layer 146.
  • SiO 2 (dielectric layer 142), FeSi (absorption layer 144), and SiO 2 (second dielectric layer 146) are sequentially stacked. These layers can be formed by, for example, a sputtering method or an evaporation method.
  • the multilayer film 140 is a layer that becomes the multilayer film 40 shown in FIG. 1 after processing.
  • the same material as the above-described multilayer film 40 is used for the multilayer film 140.
  • FIG. 3 is a schematic cross-sectional view illustrating a method for manufacturing a polarizing plate according to the third embodiment.
  • a mask layer 160 is laminated on the surface of the laminate 190 opposite to the substrate 10.
  • the mask layer 160 shown in FIG. 3 has a three-layer structure of a first mask layer 162, a second mask layer 164, and a third mask layer 166.
  • the first mask layer 162 is a layer for processing the multilayer film 140.
  • the multilayer film 140 is processed using the difference between the etching rates of the first mask layer 162 and the multilayer film 140.
  • the first mask layer 162 is made of a material having an etching rate different from that of the multilayer film 140 with respect to a predetermined gas.
  • the same material as that of the reflective layer 130 can be used.
  • Al is used for the first mask layer 162.
  • the first mask layer 162 can be formed by a sputtering method or an evaporation method.
  • the second mask layer 164 is an anti-reflection film.
  • the second mask layer 164 prevents light for exposing the third mask layer 166 made of a resist from being reflected by the first mask layer 162 and becoming return light. The return light lowers the processing accuracy of the third mask layer 166.
  • an organic coating film can be used as the second mask layer 164.
  • SWK-EX4PE manufactured by Tokyo Ohka Kogyo Co., Ltd. can be used.
  • the second mask layer 164 can be formed by, for example, a method of heating and baking after application by spin coating or the like.
  • the third mask layer 166 is a resist.
  • TDUR-P3262EM manufactured by Tokyo Ohka Kogyo Co., Ltd. can be used.
  • the third mask layer 166 is formed for processing the first mask layer 162 and the second mask layer 164.
  • the third mask layer 166 can be formed by a known method such as spin coating.
  • FIGS. 4 to 6 are schematic cross-sectional views illustrating a pattern forming step in the method for manufacturing a polarizing plate according to the third embodiment.
  • a pattern is formed on the third mask layer 166 as shown in FIG.
  • the third mask layer 166 is patterned by using a photolithography method or the like.
  • the third mask layer 166 becomes the third mask pattern 166A.
  • the second mask layer 164 is processed using the third mask pattern 166A as a mask.
  • the processing of the second mask layer 164 is performed by etching.
  • the etching is preferably performed by a dry etching method using a mixed gas of O 2 and Ar.
  • the etching rate of the second mask layer 164 with respect to the mixed gas of O 2 and Ar is preferably 10 times or more the etching rate of the first mask layer 162.
  • the etching rate can be adjusted by changing the material of the layer to be processed, the type of gas, the gas flow rate, the gas pressure, the output voltage for generating ions or radicals, and the like.
  • a pattern can be formed only on the second mask layer 164 while suppressing a change in the shape of the first mask layer 162.
  • the second mask layer 164 becomes the second mask pattern 164A.
  • the first mask layer 162 is processed using the second mask pattern 164A and the third mask pattern 166A as a mask.
  • the processing of the first mask layer 162 is performed by etching.
  • a dry etching method using a chlorine-based gas is preferably used.
  • the chlorine-based gas it is preferable to use a mixed gas of BCl 3 , Cl 2 and N 2 , and the respective flow ratios are 16-30 sccm for BCl 3 , 8-17 sccm for Cl 2 , and 2-18 sccm for N 2. preferable.
  • the etching rate of the first mask layer 162 with respect to a chlorine-based gas is preferably 6.7 to 15 times the etching rate of the multilayer film 140.
  • a pattern can be formed only on the first mask layer 162 while suppressing a change in the shape of the multilayer film 140.
  • the first mask layer 162 becomes the first mask pattern 162A.
  • FIG. 7 is a schematic cross-sectional view for explaining a first processing step in the method for manufacturing a polarizing plate according to the third embodiment.
  • the multilayer film 140 is processed via the formed mask pattern 160A.
  • the first processing step is preferably performed with a fluorine-based gas.
  • the dielectric layer 142, the absorption layer 144, and the second dielectric layer 146 that constitute the multilayer film 140 exhibit an etching rate comparable to that of a fluorine-based gas.
  • a fluorine-based gas By using a fluorine-based gas, the multilayer film 140 can be processed at one time.
  • the etching rate of the optical property improving layer 150 and the reflection layer 130 with respect to the fluorine-based gas is preferably 0.22 to 0.39 times the etching rate of the multilayer film 140.
  • the multilayer film 140 can be processed without processing the optical property improving layer 150 and the reflective layer 130.
  • the multilayer film 140 becomes the multilayer film 40 including the dielectric layer 42, the absorption layer 44, and the second dielectric layer 46 by processing.
  • the mask pattern 160A is removed by etching with a fluorine-based gas. As shown in FIG. 7, the first mask pattern 162A may partially remain. The first mask pattern 162A is removed in the next step.
  • the second processing step is performed.
  • the optical property improving layer 150 and the reflective layer 130 are processed using the multilayer film 40 as a mask.
  • the reflection layer 130 becomes the reflection layer 30 by etching, and the polarizing plate 100 shown in FIG. 1 is obtained.
  • the etching conditions may not be stable.
  • etching conditions for processing the reflective layer 130 can be stabilized. Since the incident light is reflected by the reflective layer 130, the optical characteristics of the polarizing plate 100 are improved by forming the reflective layer 130 into a desired shape.
  • the second processing step is performed using a chlorine-based gas.
  • the etching rate of the optical property improving layer 150 with respect to the chlorine-based gas is preferably 6.7 times or more and 15 times or less the etching rate of the multilayer film 40. Further, it is preferable that the etching rate of the reflection layer 130 with respect to the chlorine-based gas be 6.7 times or more and 15 times or less the etching rate of the multilayer film 40.
  • the multilayer film 40 and the optical property improving layer 50 are prevented from being excessively etched.
  • the method for manufacturing a polarizing plate according to the present embodiment when a predetermined layer is processed by etching, the influence on other layers can be reduced. As a result, the projections 20 having a desired shape can be manufactured, and the polarizing plate 100 having excellent optical characteristics can be obtained.
  • Example 1 A non-alkali glass (Eagle XG, manufactured by Corning) was prepared as the substrate 10.
  • An Al (reflective layer 130) having a thickness of 250 nm was stacked thereon by a sputtering method.
  • the reflection layer 130 was heated at 300 ° C. to produce the optical property improving layer 150 (see FIG. 2).
  • the thickness of the optical property improving layer was 5 nm.
  • SiO 2 dielectric layer 142
  • FeSi absorbing layer 144
  • SiO 2 second dielectric layer 1466
  • the thickness of the dielectric layer 142 was 5 nm
  • the thickness of the absorption layer 144 was 35 nm
  • the thickness of the second dielectric layer 146 was 60 nm.
  • a laminate 190 including the reflective layer 130, the optical property improving layer 150, and the multilayer film 140 was formed on the substrate 10 (see FIG. 2).
  • first mask layer 162 Al (first mask layer 162), an antireflection film (second mask layer 164), and a resist (third mask layer 166) were sequentially laminated as mask layer 160 on laminate 190 (see FIG. 3).
  • the anti-reflection film was BARC.
  • the thickness of the first mask layer 162 was 60 nm
  • the thickness of the second mask layer 164 was 30 nm
  • the thickness of the third mask layer 166 was 130 nm.
  • a pattern was formed on the resist serving as the third mask layer 166 by using photolithography (see FIG. 5).
  • the pattern was line and space.
  • the pitch between adjacent lines was 140 nm, and the shortest distance between lines was 110 nm.
  • a pattern was formed on the second mask layer 164 (see FIG. 6).
  • the etching of the second mask layer 164 was performed using a dry etching apparatus (manufactured by ULVAC, Inc. (NE-5700)) under the conditions of APC press: 0.5 Pa and Bias RF Power: 50 W.
  • APC press is the pressure during etching, and Bias RF Power is the applied voltage on the bias side.
  • Etching gas, a mixed gas of Ar and O 2, the ratio between Ar and O 2 5: was 1, and. Under these conditions, the etching rate of the second mask layer 164 was 1 nm / sec, and the etching rate of the first mask layer 162 was 0.1 nm / sec. That is, the etching rate of the second mask layer 164 was ten times the etching rate of the first mask layer 162.
  • the first mask layer 162 was etched using a dry etching apparatus (manufactured by ULVAC, Inc. (NE-5700)) under the conditions of APC press: 0.5 Pa , Bias RF Power: 50 W.
  • Etching gas, a mixed gas of N 2 and BCl 3 and Cl 2, N 2 and BCl 3, Cl 2, and the ratio of 2: 16.5: was 30. Under these conditions, the etching rate of the first mask layer 162 was 2-3 nm / sec, and the etching rate of the second dielectric layer 146 was 0.2-0.3 nm / sec. That is, the etching rate of the first mask layer 162 was in the range of 6.7 to 15 times the etching rate of the second dielectric layer 146.
  • the multilayer film 140 was processed using the produced mask pattern 160A as a mask (see FIG. 7).
  • the etching of the multilayer film 140 was performed using a dry etching apparatus (NE-5700 manufactured by ULVAC, Inc.) under the conditions of APC press: 0.5 Pa and Bias RF Power: 60 W.
  • Etching gas, a mixed gas of Ar and CF 4, the ratio of Ar and CF 4 1: was 4.
  • the etching rate of the multilayer film 140 was 1.8 to 2.3 nm / sec
  • the etching rates of the optical property improving layer 150 and the reflection layer 130 were 0.5 to 0.7 nm / sec. That is, the etching rates of the optical property improving layer 150 and the reflective layer 130 were in the range of 0.22 to 0.39 times the etching rate of the multilayer film 140.
  • the reflection layer 130 and the optical property improving layer 150 were processed (see FIG. 1).
  • the reflection layer 130 and the optical property improving layer 150 were etched using a dry etching apparatus (manufactured by ULVAC (NE-5700)) under the conditions of APC press: 0.5 Pa and Bias RF Power: 50 W.
  • the etching rate of the reflective layer 130 and the optical property improving layer 150 was 2 to 3 nm / sec
  • the etching rate of the multilayer film 140 was 0.2 to 0.3 nm / sec. That is, the etching rates of the reflective layer 130 and the optical property improving layer 150 were in the range of 6.7 to 15 times the etching rates of the multilayer film 140 and the optical property improving layer 150.
  • Example 1 The structure of the manufactured polarizing plate of Example 1 is summarized below.
  • Substrate non-alkali glass (Eagle XG (manufactured by Corning Incorporated)), a projection having a height of 20 nm provided on the surface, and the projection exists below the reflective layer.
  • Convex part pitch 140 nm, interval 105 nm between adjacent convex parts
  • Reflective layer Al, width 35 nm, thickness 250 nm
  • Optical property improving layer Al 2 O 3 , width 35 nm, thickness 5 nm
  • Dielectric layer SiO 2 , width 35 nm, thickness 5 nm
  • Absorbing layer Fe (5 atm%) Si (95 atm%), width 35 nm, thickness 35 nm
  • Second dielectric layer SiO 2 , width 35 nm, thickness 30 nm
  • Examples 2 to 4 and Comparative Example 1 differ from Example 1 in that the conditions for forming the optical property improving layer were changed to change the thickness of the optical property improving layer.
  • the thickness of the optical property improving layer was 10 nm in Example 2, 20 nm in Example 3, 30 nm in Example 3, and 0 nm in Comparative Example 1.
  • FIG. 8 shows the results of measuring the transmission axis transmittance and the absorption axis transmittance of the polarizing plates of Examples 1 to 4 and Comparative Example 1.
  • FIG. 8A shows the result of the transmittance on the transmission axis
  • FIG. 8B shows the result of the transmittance on the absorption axis.
  • the transmittance in the transmission axis was improved as compared with Comparative Example 1.
  • the absorption axis reflectance was reduced.
  • Substrate 10a 1st surface 20 Convex part 30, 130 Reflective layer 40, 140 Multilayer film 42, 142 Dielectric layer 44, 144 Absorption layer 46, 146 Second dielectric layer 50, 150 Optical property improvement layer 100 Polarizer 160 Mask Layer 160A Mask pattern 162 First mask layer 162A First mask pattern 164 Second mask layer 164A Second mask pattern 166 Third mask layer 166A Third mask pattern 190 Stack

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

この偏光板は、ワイヤグリッド構造を有する偏光板であって、透明基板と、前記透明基板上の第1方向に延在し、使用帯域の光の波長よりも短いピッチで周期的に配列された複数の凸部と、を備え、前記凸部は、反射層と、多層膜と、前記反射層と前記多層膜との間に位置する光学特性改善層と、を備え、前記光学特性改善層は、前記反射層を構成する構成元素を含む酸化物を含み、塩素系ガスに対する前記光学特性改善層のエッチングレートは、前記多層膜のエッチングレートの6.7倍以上15倍以下である。

Description

偏光板、光学機器及び偏光板の製造方法
 本発明は、偏光板、光学機器及び偏光板の製造方法に関する。
 本願は、2018年7月31日に、日本に出願された特願2018-144093号に基づき優先権を主張し、その内容をここに援用する。
 偏光板は、液晶ディスプレイ等に用いられている。近年、使用帯域の光の波長より短い周期で反射層が配列したワイヤグリッド偏光板に注目が集まっている。
 ワイヤグリッド偏光板は、反射型の偏光板と吸収型の偏光板とがある。例えば、特許文献1には、断面形状が矩形の金属細線が配列した反射型のワイヤグリッド偏光板が記載されている。一方で、特許文献2には、反射層の一面に誘電体層と吸収層とを有する吸収型のワイヤグリッド偏光板が記載されている。反射層で反射した光と、吸収層で反射した光と、を干渉させることで、反射光を打ち消す。
 吸収型の偏光板は、光の出射側に反射する光を低減できる。例えば液晶プロジェクタ等においては、光の出射側に反射する光は、液晶パネルの誤作動及び迷光による画質の劣化の原因となりうる。
 一方で、吸収型の偏光板は多層膜であり、加工が難しい。例えば、特許文献3には、半導体分野における多層膜の加工方法が記載されている。特許文献3は、ドライエッチングにより多層膜を加工している。
特開2010-237437号公報 特許第5333615号公報 特開2010-135563号公報
 ワイヤグリッド偏光板の凸部は、ナノメートルオーダーで作製される。またワイヤグリッド偏光板の消光比は反射層の高さに依存し、高アスペクト比の構造体の加工が求められる。
 本発明は上記問題に鑑みてなされたものであり、光学特性に優れた偏光板の製造方法、及び、光学特性に優れる偏光板及び光学機器を提供することを目的とする。
 本発明は、上記課題を解決するため、以下の手段を提供する。
 第1の態様にかかる偏光板は、ワイヤグリッド構造を有する偏光板であって、透明基板と、前記透明基板上の第1方向に延在し、使用帯域の光の波長よりも短いピッチで周期的に配列された複数の凸部と、を備え、前記凸部は、反射層と、多層膜と、前記反射層と前記多層膜との間に位置する光学特性改善層と、を備え、前記光学特性改善層は、前記反射層を構成する構成元素を含む酸化物を含み、塩素系ガスに対する前記光学特性改善層のエッチングレートは、前記多層膜のエッチングレートの6.7倍以上15倍以下である。
 上記態様にかかる偏光板における前記光学特性改善層は、前記多層膜よりフッ素系ガスに対するエッチングレートが低い材料からなってもよい。
 上記態様にかかる偏光板の前記反射層は、Al又はCuからなり、前記光学特性改善層は、Al又はCuの酸化物からなってもよい。
 第2の態様にかかる光学機器は、上記態様にかかる偏光板を備える。
 第3の態様にかかる偏光板の製造方法は、透明基板に、反射層を積層する第1積層工程と、前記反射層を加熱し、前記反射層の前記透明基板と反対側の面に光学特性改善層を形成する層形成工程と、前記形成された光学特性改善層に、多層膜とマスク層とを順に積層する第2積層工程と、前記マスク層にマスクパターンを形成するパターン形成工程と、前記マスクパターンを介して前記多層膜を加工する第1加工工程と、前記多層膜をマスクとして、前記光学特性改善層及び前記反射層を加工する第2加工工程と、を有し、前記第2加工工程を塩素系ガスで行い、前記塩素系ガスに対する前記光学特性改善層のエッチングレートを、前記多層膜のエッチングレートの6.7倍以上15倍以下とする。
 上記態様にかかる偏光板の製造方法において、前記塩素系ガスに対する前記反射層のエッチングレートを、前記多層膜のエッチングレートの6.7倍以上15倍以下としてもよい。
 上記態様にかかる偏光板の製造方法において、前記マスク層は、複数の層からなり、前記マスク層は、最も前記基板側に前記反射層と同じ材料からなる第1マスク層を有し、前記パターン形成工程における前記第1マスク層の加工を前記塩素系ガスで行い、前記塩素系ガスに対する前記第1マスク層のエッチングレートを、前記多層膜のエッチングレートの6.7倍以上15倍以下としてもよい。
 上記態様にかかる偏光板の製造方法において、前記第1加工工程をフッ素系ガスで行い、前記フッ素系ガスに対する前記光学特性改善層のエッチングレートを、前記多層膜のエッチングレートの0.22倍以上0.39倍以下としてもよい。
 上記態様にかかる偏光板の製造方法によれば、光学特性に優れた偏光板を製造することができる。また上記態様にかかる偏光板及び光学機器によれば、光学特性を向上させることができる。
第1実施形態にかかる偏光板の断面模式図である。 第3実施形態にかかる偏光板の製造方法を説明するための断面模式図である。 第3実施形態にかかる偏光板の製造方法を説明するための断面模式図である。 第3実施形態にかかる偏光板の製造方法におけるパターン形成工程を説明するための断面模式図である。 第3実施形態にかかる偏光板の製造方法におけるパターン形成工程を説明するための断面模式図である。 第3実施形態にかかる偏光板の製造方法におけるパターン形成工程を説明するための断面模式図である。 第3実施形態にかかる偏光板の製造方法における第1加工工程を説明するための断面模式図である。 実施例1~4及び比較例1の偏光板の透過軸透過率の測定結果である。 実施例1~4及び比較例1の偏光板の吸収軸透過率の測定結果である。
 以下、本実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、本発明の効果を奏する範囲で適宜変更して実施することが可能である。
「偏光板」
 図1は、第1実施形態にかかる偏光板100の断面模式図である。偏光板100は、ワイヤグリッド構造を有する偏光板である。偏光板100は、基板10と複数の凸部20とを備える。複数の凸部20は、平面視で第1方向に延びる。以下、基板10が延びる平面をxy平面とし、複数の凸部20の延びる第1方向をy方向とする。またxy平面に直交する方向をz方向とする。図1は、偏光板100をxz平面で切断した断面図である。言い換えると、複数の凸部20の延在する第1方向に対して垂直な断面図である。
 偏光板100は、凸部20が延びるy方向に平行な電界成分をもつ偏光波(TE波(S波))を減衰し、y方向に垂直な電界成分をもつ偏光波(TM波(P波))を透過する。
偏光板100は、y方向が吸収軸であり、x方向が透過軸である。
(基板)
 基板10は、偏光板100の使用帯域の波長の光に対して透明性を有する。「透明性を有する」とは、使用帯域の波長の光を100%透過する必要はなく、偏光板としての機能を保持可能な程度に透過できればよい。基板10の平均厚みは、0.3mm以上1mm以下であることが好ましい。
 基板10には、屈折率1.1~2.2の材料を用いることが好ましい。例えば、ガラス、水晶、サファイア等を用いることができる。基板10として用いられるガラス材料の成分組成は特に制限されない。
 例えばケイ酸塩ガラスは、光学ガラスとして広く流通し、安価である。また石英ガラス(屈折率1.46)、ソーダ石灰ガラス(屈折率1.51)は、コストが安く、透過性に優れる。これに対し水晶、サファイアは、熱伝導性に優れる。基板10の材料は、偏光板100に求められる性能に応じて適宜選択できる。例えば、プロジェクタの光学エンジン用の偏光板は、強い光が照射されるため、耐光性及び放熱性が要求される。そのため、基板10には、水晶又はサファイアを用いることが好ましい。
 基板10の第1面10aの形状は、平坦面に限られない。目的に応じて凹凸形状等を設けてもよい。例えば、隣接する凸部20との間に溝を設けてもよい。
(凸部)
 凸部20は、y方向に延びる。凸部20は、x方向に周期的に配列している。言い換えると、凸部20の延在する第1方向に対して垂直な方向に複数の凸部20が周期的に配列される。隣接する凸部20のx方向のピッチPは、偏光板100の使用帯域の波長の光より短い。例えばピッチPは、100nm以上200nm以下であることが好ましい。ピッチPがこの範囲内であれば、凸部20の作製が容易になり、凸部20の機械的安定性、及び、光学特性の安定性が高まる。
 隣接する凸部20のピッチPは、走査型電子顕微鏡又は透過型電子顕微鏡により平均値として計測できる。例えば、任意の4か所において隣接する凸部20のx方向の距離を測定し、その算術平均によりピッチPが求められる。複数の凸部20のうち任意の4か所の計測値を平均化する測定方法を、電子顕微鏡法と称する。
 ここで、隣接する凸部20の上端部間の距離、又は隣接する凸部20をxy面で平面視した際のx方向の中心間の距離をピッチPとする。
 以下、走査型電子顕微鏡又は透過型電子顕微鏡により観察した画像を用い、任意の4か所の計測値を平均化する測定方法を、電子顕微鏡法と称する。
 凸部20は、基板10に対して突出する。凸部20が突出する主方向は、z方向である。凸部20のx方向の平均幅は、ピッチPの20%以上50%以下であることが好ましい。ここで凸部20の平均幅とは、凸部20をz方向に10分割した各点における幅の平均値を意味する。凸部20の高さは、250nm以上400nm以下であることが好ましい。また凸部20の高さを平均幅で割ったアスペクト比は、5以上13.3以下であることが好ましい。
 基板10が水晶等の光学活性な結晶の場合は、結晶の光学軸に対して平行又は垂直な方向と凸部20の延びる方向とを一致させることが好ましい。ここで光学軸とは、その方向に進む光の常光線(O)と異常光線(E)の屈折率の差が最小となる方向軸である。当該方向に凸部20を延在させることで、光学特性を向上させることができる。
 各凸部20はそれぞれ、反射層30と多層膜40と光学特性改善層50とを有する。図1に示す凸部20は、外表面(基板10から遠い側)から多層膜40、光学特性改善層50、反射層30、の順に積層されている。
<多層膜>
 多層膜40は、反射層30より基板10から離れた位置にある。図1に示す多層膜40は、基板10側から順に誘電体層42と、吸収層44と、第2誘電体層46を有する。誘電体層42、吸収層44及び第2誘電体層46は、反射層30で反射された偏光波(TE波(S波))を干渉により減衰する。
「誘電体層」
 図1に示す誘電体層42は、光学特性改善層50上に積層されている。誘電体層42は、必ずしも光学特性改善層50と接している必要はなく、誘電体層42と光学特性改善層50の間に別の層が存在してもよい。誘電体層42は、y方向に帯状に延びる。誘電体層42は、多層膜40の一部をなす。
 誘電体層42の膜厚は、吸収層44で反射する偏光波に応じて決定できる。吸収層44で反射した偏光波の位相と反射層30で反射した偏光波の位相とが、半波長分だけずれるように誘電体層42の膜厚を決定する。誘電体層42の膜厚は、具体的には、1nm以上500nm以下であることが好ましい。当該範囲内であれば、反射した2つの偏光波の位相の関係を調整でき、干渉効果を高めることができる。誘電体層42の膜厚は、上述の電子顕微鏡法を用いて測定することができる。
 誘電体層42の材料には、金属酸化物、フッ化マグネシウム(MgF2)、氷晶石、ゲルマニウム、ケイ素、窒化ボロン、炭素又はこれらの組合わせを用いることができる。金属酸化物は、SiO等のSi酸化物、Al、酸化ベリリウム、酸化ビスマス、酸化ボロン、酸化タンタル等が挙げられる。これらの中でも、誘電体層42は、Si酸化物であることが好ましい。
 誘電体層42の屈折率は、1.0より大きく2.5以下であることが好ましい。反射層30の光学特性は、周囲の屈折率(例えば、誘電体層42の屈折率)によっても影響を受ける。誘電体層42の屈折率を調整することで、偏光板の偏光特性を制御できる。
「吸収層」
 図1に示す吸収層44は、誘電体層42上に積層されている。吸収層44は、y方向に帯状に延びる。吸収層44は、多層膜40の一部をなす。
 吸収層44の膜厚は、例えば10nm以上100nm以下であることが好ましい。吸収層44の膜厚は、上述の電子顕微鏡法を用いて測定することができる。
 吸収層44の材料には、光学定数の消衰定数が零でない光吸収作用をもつ物質を1種以上用いることができる。吸収層44には、金属材料又は半導体材料を用いることができる。吸収層44に用いる材料は、偏光板の使用帯域の光の波長範囲によって適宜選択できる。
 吸収層44に金属材料が用いられる場合、金属材料は、Ta、Al、Ag、Cu、Au、Mo、Cr、Ti、W、Ni、Fe、Sn等の単体金属又はこれらのうち1種以上の元素を含む合金であることが好ましい。また吸収層44に半導体材料が用いられる場合は、半導体材料はSi、Ge、Te、ZnO、シリサイド材料であることが好ましい。シリサイド材料は、例えば、β-FeSi、MgSi、NiSi、BaSi、CrSi、TaSi等が挙げられる。これらの材料を吸収層44に用いた偏光板100は、可視光域に対して高い消光比を有する。また吸収層44は、Fe又はTaとSiとを含むことが特に好ましい。
 吸収層44に半導体材料が用いられる場合、光の吸収作用に半導体のバンドギャップエネルギーが寄与する。そのため、半導体材料のバンドギャップエネルギーは、使用帯域の波長をエネルギー換算した値以下となる。例えば、使用帯域が可視光域の場合、波長400nm以上における吸収エネルギーにあたる3.1eV以下のバンドギャップエネルギーを有する半導体材料を用いることが好ましい。
 吸収層44は、1層に限られず2層以上で構成されていてもよい。吸収層44が2層以上の場合は、それぞれの層の材料は異なるものでもよい。吸収層44は、蒸着、スパッタリング法等の方法により成膜できる。
「第2誘電体層」
 図1に示す第2誘電体層46は、吸収層44上に積層されている。第2誘電体層46は、y方向に帯状に延びる。第2誘電体層46は、多層膜40の一部をなす。
 第2誘電体層46は、上述の誘電体層42と同様の材料を用いることができる。第2誘電体層46は、誘電体層42と同一の材料からなっても、異なる材料からなってもよい。第2誘電体層46は、Si酸化物であることが好ましい。第2誘電体層46の屈折率も、上述の誘電体層42と同様の範囲であることが好ましい。第2誘電体層46の厚みは、例えば、10nm以上100nm以下であることが好ましい。第2誘電体層46の厚みは、上述の電子顕微鏡法を用いて測定できる。
 多層膜40の一例として、SiO/FeSi/SiOの組み合わせがある。誘電体層42及び第2誘電体層46としてSiO、吸収層44としてFeSiが用いられる。
<光学特性改善層>
 光学特性改善層50は、反射層30と多層膜40の界面に形成されている。光学特性改善層50は、y方向に帯状に延びる。
 光学特性改善層50は、反射層を構成する構成元素を含む酸化物からなる酸化層である。例えば、反射層30がAlを含む場合(例えば、反射層30がAlからなる層である場合)は、光学特性改善層50を構成する材料はAlを含む酸化物(例えば、酸化アルミニウム)であり、反射層30がCuを含む場合(例えば、反射層30がCuからなる層である場合)は、光学特性改善層50を構成する材料はCuを含む酸化物(例えば、銅酸化物)である。
 光学特性改善層50の厚みは、0nmより大きければよく、20nm以下であることが好ましい。
 光学特性改善層50の塩素系ガスに対するエッチングレートは、多層膜40のエッチングレートより高い。塩素系ガスに対する光学特性改善層50のエッチングレートは、多層膜40のエッチングレートの6.7倍以上15倍以下である。すなわち、塩素系ガスに対する光学特性改善層50と多層膜40との間のエッチング選択比は、6.7以上15以下となる。エッチング選択比は、光学特性改善層50のエッチングレートを多層膜40のエッチングレートで割って求められる。
 塩素系ガスに対する光学特性改善層50と多層膜40との間のエッチング選択比が上記関係を満たすと、偏光板100の光学特性が向上する。光学特性改善層50及び反射層30を加工する際のエッチングにおいて、多層膜40が過度にエッチングされ、凸部20の形状が崩れることが抑制されたためと考えられる。また反射層30を加工する際のエッチングの初期は、エッチング条件が安定しにくい。光学特性改善層50が反射層30と多層膜40との間に位置することにより反射層30が所望の形状となり、偏光板100の光学特性が向上するとも考えられる。
 これに対し、光学特性改善層50のフッ素系ガスに対するエッチングレートは、多層膜40のエッチングレートより低いことが好ましい。すなわち、光学特性改善層50は、多層膜40よりフッ素系ガスに対するエッチングレートが低い材料からなることが好ましい。具体的には、光学特性改善層50のエッチングレートを、多層膜40のエッチングレートの0.22倍以上0.39倍以下とすることが好ましい。多層膜40を加工する際のエッチングにおいて、光学特性改善層50が同時にエッチングされにくくなり、凸部20の形状を所望の形状に整えることができる。
 ここで塩素系ガスとは、構成元素に塩素を含むガスである。例えば、BClとClとNとの混合ガス、ClとCClとNとの混合ガス等が挙げられる。またフッ素系ガスとは、構成元素にフッ素を含むガスである。例えば、CF、CHF、C等が挙げられる。
<反射層>
 反射層30は、基板10に対してz方向に突出し、y方向に帯状に延びる。反射層30は、基板10と多層膜40との間に位置する。基板10と反射層30との間には、別の層が挿入されていてもよい。反射層30は、TE波(S波)を反射し、TM波(P波)を透過する。
 反射層30には、使用帯域の波長の光に対して反射性を有する材料を用いることができる。例えば、Al、Ag、Cu、Mo、Cr、Ti、Ni、W、Fe、Si、Ge、Ta等の単体金属又はこれらの合金を用いることができる。これらの中でも、Al、Cu又はこれらの合金を用いることが好ましい。また反射層30は、金属に限られず、着色等により表面反射率を高めた無機膜又は樹脂膜を用いることができる。
 反射層30の高さは、自由に設計できる。例えば、反射層30の高さは100nm以上300nm以下であることが好ましい。反射層30の高さは、電子顕微鏡法で求めることができる。
 反射層30の幅は、ピッチPの20%以上50%以下であることが好ましい。具体的には、10nm以上100nm以下であることが好ましく、20nm以上50nm以下であることがより好ましい。
 反射層30は、塩素系ガスに対するエッチングレートが、光学特性改善層50のエッチングレートと同等である。
 反射層30と光学特性改善層50とが上記関係を満たすことで、反射層30と光学特性改善層50とを同時に加工できる。また反射層30と光学特性改善層50とのエッチング条件を一定にすることができ、反射層30に至った時点でのエッチング条件をより安定にすることができる。その結果、反射層30の形状が所望の形状となり、偏光板100の光学特性が向上する。
 また反射層30は、塩素系ガスに対するエッチングレートが、多層膜40のエッチングレートの6.7倍以上15倍以下であることが好ましい。上記関係を満たすと、反射層30を加工する際のエッチングにおいて、多層膜40が過度にエッチングされ、凸部20の形状が崩れることを抑制できる。その結果、凸部20の形状が所望の形状となり、偏光板100の光学特性が向上する。
 また反射層30は、フッ素系ガスに対するエッチングレートが、多層膜40のエッチングレートの0.22倍以上0.39倍以下であることが好ましい。上記関係を満たすと、多層膜40を加工する際のエッチングにおいて、反射層30が過度にエッチングされることを抑制できる。その結果、凸部20の形状が所望の形状となり、偏光板100の光学特性が向上する。
(その他の構成)
 偏光板100は、上記の構成以外の層を有してもよい。
 例えば、誘電体層42又は第2誘電体層46と吸収層44との間に、拡散バリア層を有してもよい。拡散バリア層は、吸収層44における光の拡散を防止する。拡散バリア層は、Ta、W、Nb、Ti等の金属膜を用いることができる。
また偏光板100の光の入射側に保護膜を形成してもよい。例えば、図1において+z方向から-z方向に向かって光が入射する場合、基板10の第1面10a及び凸部20の周囲を覆うように保護膜を形成する。保護膜は、誘電体層42と同様の材料を用いることができる。保護膜は、反射層30等の金属膜が必要以上に酸化されることを抑制する。保護膜は、CVD(Chemical Vapor Deposition)、ALD(Atomic Layer Deposition)等を利用して形成できる。
 また偏光板100の光の入射側に撥水膜を形成してもよい。撥水膜は、例えば、パーフルオロデシルトリエトキシシラン(FDTS)等のフッ素系シラン化合物を用いることができる。撥水膜は、CVD、ALD等を利用して形成できる。撥水膜は、偏光板100の耐湿性を高め、信頼性を向上する。
 上述のように、本実施形態にかかる偏光板100は、反射率が低く、透過率が高い。そのため様々な光学機器に用いることができる。
「光学機器」
 第2実施形態にかかる光学機器は、上記の第1実施形態にかかる偏光板100を備える。光学機器は、液晶プロジェクタ、ヘッドアップディスプレイ、デジタルカメラ等が挙げられる。第1実施形態にかかる偏光板100は、透過軸方向の偏光の透過率が高く、吸収軸方向の偏光の反射率が低い。そのため、種々の用途に利用可能である。また偏光板100は無機材料により構成される。有機偏光板に比べて耐熱性が要求される液晶プロジェクタ、ヘッドアップディスプレイ等に、偏光板100は特に好適に用いられる。
 光学機器が複数の偏光板を備える場合、複数の偏光板のうち少なくとも一つが第1実施形態にかかる偏光板100であればよい。例えば、光学機器が液晶プロジェクタの場合は、液晶パネルの入射側及び出射側に偏光板は配置される。このうち一方の偏光板に、第1実施形態にかかる偏光板100を用いる。
「偏光板の製造方法」
 第3実施形態にかかる偏光板の製造方法は、第1積層工程と、第2積層工程と、層形成工程と、パターン形成工程と、第1加工工程と、第2加工工程と、を有する。以下、図2~図8を用いて、第3実施形態にかかる偏光板の製造方法の一例について具体的に説明する。
 図2は、第3実施形態にかかる偏光板の製造方法を説明するための断面模式図である。
まず第1積層工程では、基板10に、反射層130を積層する。反射層130は、例えばAlを用いる。反射層130は、例えばスパッタリング法又は蒸着法を用いて形成できる。反射層130は、加工後に図1に示す反射層30となる層である。反射層130は、上述の反射層30と同じ材料が用いられる。
 次いで、層形成工程として反射層130を空気中で加熱する。加熱により反射層130の表面が酸化され、光学特性改善層150が形成される。光学特性改善層150は、反射層130の基板10と反対側の面に形成される。加熱は、100℃以上500℃以下とすることが好ましい。光学特性改善層150の厚みは、加熱時間、加熱温度等で調整できる。反射層130の表面の酸化処理の条件(加熱時間、加熱温度等)は、光学特性改善層150が所望のエッチング特性を有するように調整できる。
 次いで、第2積層工程として、光学特性改善層150に多層膜140を積層する。多層膜140は、光学特性改善層150の反射層130と反対側の面に形成される。基板10に、反射層130、光学特性改善層150及び多層膜140からなる積層体190が形成される。多層膜140は、誘電体層142、吸収層144及び第2誘電体層146を順次積層することで得られる。例えばSiO(誘電体層142)、FeSi(吸収層144)、SiO(第2誘電体層146)を順次積層する。これらの層は、例えばスパッタリング法又は蒸着法を用いて形成できる。
 多層膜140は、加工後に図1に示す多層膜40となる層である。多層膜140は、上述の多層膜40と同じ材料が用いられる。
 図3は、第3実施形態にかかる偏光板の製造方法を説明するための断面模式図である。
第2積層工程では、積層体190の基板10と反対側の面に、マスク層160を積層する。図3に示すマスク層160は、第1マスク層162、第2マスク層164、第3マスク層166の三層構造からなる。
 第1マスク層162は、多層膜140を加工するための層である。第1マスク層162と多層膜140のエッチングレート差を利用して、多層膜140を加工する。第1マスク層162は、所定のガスに対して多層膜140とエッチングレートが異なる材料により構成される。第1マスク層162は、例えば反射層130と同様の材料を用いることができる。一例として、第1マスク層162にはAlが用いられる。第1マスク層162は、スパッタリング法又は蒸着法を用いて形成できる。
 第2マスク層164は、反射防止膜である。第2マスク層164は、レジストからなる第3マスク層166を露光する光が、第1マスク層162により反射し、戻り光となるのを防ぐ。戻り光は、第3マスク層166の加工精度を低下させる。第2マスク層164は、有機物の塗布膜を利用できる。例えば、東京応化工業株式会社製のSWK-EX4PEを用いることができる。第2マスク層164は、スピンコート等によって塗布後、加熱して焼成する方法等によって形成できる。
 第3マスク層166は、レジストである。例えば、東京応化工業株式会社製のTDUR-P3262EMを用いることができる。第3マスク層166は、第1マスク層162及び第2マスク層164を加工するために形成される。第3マスク層166は、スピンコート等の公知の方法で形成できる。
 図4~図6は、第3実施形態にかかる偏光板の製造方法におけるパターン形成工程を説明するための断面模式図である。まず図4に示すように、第3マスク層166に対してパターンを形成する。第3マスク層166は、フォトリソグラフィー法等を用いてパターン形成する。第3マスク層166は、第3マスクパターン166Aとなる。
 次いで、図5に示すように、第3マスクパターン166Aをマスクとして第2マスク層164を加工する。第2マスク層164の加工は、エッチングにより行う。エッチングは、OとArの混合ガスを用いたドライエッチング法を用いることが好ましい。
 第2マスク層164のOとArの混合ガスに対するエッチングレートは、第1マスク層162のエッチングレートより10倍以上とすることが好ましい。エッチングレートは、加工する層の材料、ガス種、ガス流量、ガス圧、イオン又はラジカルを発生されるための出力電圧等を変えることで調整できる。
 第1マスク層162の形状変化を抑制しつつ、第2マスク層164のみにパターン形成できる。第2マスク層164は、第2マスクパターン164Aとなる。
 次いで、図6に示すように、第2マスクパターン164A及び第3マスクパターン166Aをマスクとして第1マスク層162を加工する。第1マスク層162の加工は、エッチングにより行う。エッチングは、塩素系ガスを用いたドライエッチング法を用いることが好ましい。塩素系ガスはBClとClとNの混合ガスを用いることが好ましく、それぞれの流量比はBClが16~30sccm、Clが8~17sccm、Nが2~18sccmとすることが好ましい。
 第1マスク層162の塩素系ガスに対するエッチングレートは、多層膜140のエッチングレートより6.7倍以上15倍以下とすることが好ましい。多層膜140の形状変化を抑制しつつ、第1マスク層162のみにパターン形成できる。第1マスク層162は、第1マスクパターン162Aとなる。
 上述のように、3段階に分けてマスク層160を加工することで、精度の高いマスクパターン160Aが形成される。
 図7は、第3実施形態にかかる偏光板の製造方法における第1加工工程を説明するための断面模式図である。第1加工工程は、形成したマスクパターン160Aを介して多層膜140を加工する。
 第1加工工程は、フッ素系ガスで行うことが好ましい。多層膜140を構成する誘電体層142、吸収層144及び第2誘電体層146はフッ素系ガスに対して同等程度のエッチングレートを示す。フッ素系ガスを用いることで、多層膜140を一度に加工できる。
 フッ素系ガスに対する光学特性改善層150及び反射層130のエッチングレートは、多層膜140のエッチングレートの0.22倍以上0.39倍以下とすることが好ましい。光学特性改善層150及び反射層130をほとんど加工せずに、多層膜140を加工できる。多層膜140は、加工により誘電体層42、吸収層44及び第2誘電体層46からなる多層膜40となる。
 マスクパターン160Aは、フッ素系ガスによるエッチングにより除去される。図7に示すように、第1マスクパターン162Aが一部残る場合もある。第1マスクパターン162Aは次工程で除去される。
 最後に、第2加工工程を行う。第2加工工程は、多層膜40をマスクとして光学特性改善層150及び反射層130を加工する。反射層130はエッチングにより反射層30となり、図1に示す偏光板100が得られる。
 エッチングの初期は、エッチング条件が安定しない場合がある。光学特性改善層150を設けることで、反射層130を加工する際のエッチング条件を安定化させることができる。入射した光は反射層130で反射するため、反射層130を所望の形状にすることで、偏光板100の光学特性が向上する。
 第2加工工程は、塩素系ガスを用いて行う。塩素系ガスに対する光学特性改善層150のエッチングレートは、多層膜40のエッチングレートの6.7倍以上15倍以下とすることが好ましい。また塩素系ガスに対する反射層130のエッチングレートは、多層膜40のエッチングレートの6.7倍以上15倍以下とすることが好ましい。光学特性改善層150及び反射層130の加工時に多層膜40及び光学特性改善層50が過剰にエッチングされることが避けられる。
 上述のように、本実施形態にかかる偏光板の製造方法によれば、所定の層をエッチングにより加工する際に、他の層への影響を低減できる。その結果、所望の形状の凸部20を作製することができ、光学特性に優れた偏光板100を得ることができる。
 以上、本発明の好ましい実施の形態について詳述したが、本発明は特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
「実施例1」
 基板10として無アルカリガラス(イーグルXG、コーニング社製)を準備した。その上に、スパッタリング法を用いて厚み250nmのAl(反射層130)を積層した。次いで、反射層130を300℃で加熱し、光学特性改善層150を作製した(図2参照)。光学特性改善層の厚みは、5nmであった。
 次いで、反射層の上に、SiO(誘電体層142)、FeSi(吸収層144)、SiO(第2誘電体層146)を順に積層した。これらの層の積層は、スパッタリング法を用いて行った。誘電体層142の厚みは5nm、吸収層144の厚みは35nm、第2誘電体層146の厚みは60nmとした。このようにして、基板10上に、反射層130と光学特性改善層150と多層膜140とからなる積層体190を作製した(図2参照)。
 積層体190にマスク層160として、Al(第1マスク層162)、反射防止膜(第2マスク層164)、レジスト(第3マスク層166)を順次積層した(図3参照)。反射防止膜は、BARCとした。第1マスク層162の厚みは60nm、第2マスク層164の厚みは30nm、第3マスク層166の厚みは130nmとした。
 フォトリソグラフィーを利用して、第3マスク層166であるレジストにパターンを形成した(図5参照)。パターンは、ラインアンドスペースとした。隣接するライン間のピッチは140nmとし、ラインとラインとの最短距離は110nmとした。
 パターン形成されたレジストをマスクとして、第2マスク層164にパターンを形成した(図6参照)。第2マスク層164のエッチングは、ドライエッチング装置(アルバック社製(NE-5700))を用いて、APC press:0.5Pa、Bias RF Power:50Wの条件で行った。APC pressは、エッチング中の圧力であり、Bias RF Powerはバイアス側の印加電圧である。エッチングガスは、ArとOの混合ガスとし、ArとOとの比率を5:1とした。この条件における第2マスク層164のエッチングレートは1nm/secであり、第1マスク層162のエッチングレートは0.1nm/secであった。すなわち、第2マスク層164のエッチングレートは、第1マスク層162のエッチングレートの10倍であった。
 第3マスクパターン166Aおよび第2マスクパターン164Aをマスクとして、第1マスク層162にパターンを形成した(図6参照)。第1マスク層162のエッチングは、ドライエッチング装置(アルバック社製(NE-5700))を用いて、APC press:0.5PaBias RF Power:50Wの条件で行った。エッチングガスは、NとBClとClとの混合ガスとし、NとBClとClと比率を2:16.5:30とした。この条件における第1マスク層162のエッチングレートは2~3nm/secであり、第2誘電体層146のエッチングレートは0.2~0.3nm/secであった。すなわち、第1マスク層162のエッチングレートは、第2誘電体層146のエッチングレートの6.7倍から15倍の範囲内であった。
 作製したマスクパターン160Aをマスクとして、多層膜140を加工した(図7参照)。多層膜140のエッチングは、ドライエッチング装置(アルバック社製(NE-5700))を用いて、APC press:0.5PaBias RF Power:60Wの条件で行った。エッチングガスは、ArとCFとの混合ガスとし、ArとCFとの比率を1:4とした。この条件における多層膜140のエッチングレートは1.8~2.3nm/secであり、光学特性改善層150及び反射層130のエッチングレートは0.5~0.7nm/secであった。すなわち、光学特性改善層150及び反射層130のエッチングレートは、多層膜140のエッチングレートの0.22倍から0.39倍の範囲内であった。
 最後に、反射層130及び光学特性改善層150を加工した(図1参照)。反射層130及び光学特性改善層150のエッチングは、ドライエッチング装置(アルバック社製(NE-5700))を用いて、APC press:0.5Pa、Bias RF Power:50Wの条件で行った。エッチングガスは、NとBClとClとの混合ガスとし、NとBClとClと比率を9:4:8とした。この条件における反射層130及び光学特性改善層150のエッチングレートは2~3nm/secであり、多層膜140のエッチングレートは0.2~0.3nm/secであった。すなわち、反射層130及び光学特性改善層150のエッチングレートは、多層膜140及び光学特性改善層150のエッチングレートの6.7倍から15倍の範囲内であった。
 以下の表1に、実施例1の製造条件をまとめた。
Figure JPOXMLDOC01-appb-T000001
 作製した実施例1の偏光板の構成を以下にまとめる。
 基板:無アルカリガラス(イーグルXG(コーニング社製))、表面に高さ20nmの凸部を設け、凸部は反射層の下方に存在する。
 凸部:ピッチ140nm、隣接する凸部間の間隔105nm
 反射層:Al、幅35nm、厚み250nm
 光学特性改善層:Al、幅35nm、厚み5nm
 誘電体層:SiO、幅35nm、厚み5nm
 吸収層:Fe(5atm%)Si(95atm%)、幅35nm、厚み35nm
 第2誘電体層:SiO、幅35nm、厚み30nm
「実施例2~4及び比較例1」
 実施例2~4及び比較例1は、光学特性改善層を形成する際の条件を変えて、光学特性改善層の厚みを変えた点が実施例1と異なる。光学特性改善層の厚みは、実施例2が10nm、実施例3が20nm、実施例3が30nm、比較例1は0nmであった。
 図8は、実施例1~4及び比較例1の偏光板の透過軸透過率及び吸収軸透過率を測定した結果である。図8(a)は透過軸透過率の結果であり、図8(b)は吸収軸透過率の結果である。実施例1~4はいずれも比較例1より透過軸透過率が向上した。特に光学特性改善層の厚みが0nmより大きく20nm以下の範囲で、吸収軸反射率が低下した。
10 基板
10a 第1面
20 凸部
30、130 反射層
40、140 多層膜
42、142 誘電体層
44、144 吸収層
46、146 第2誘電体層
50、150 光学特性改善層
100 偏光板
160 マスク層
160A マスクパターン
162 第1マスク層
162A 第1マスクパターン
164 第2マスク層
164A 第2マスクパターン
166 第3マスク層
166A 第3マスクパターン
190 積層体

Claims (8)

  1.  ワイヤグリッド構造を有する偏光板であって、
     透明基板と、
     前記透明基板上の第1方向に延在し、使用帯域の光の波長よりも短いピッチで周期的に配列された複数の凸部と、を備え、
     前記凸部は、反射層と、多層膜と、前記反射層と前記多層膜との間に位置する光学特性改善層と、を備え、
     前記光学特性改善層は、前記反射層を構成する構成元素を含む酸化物を含み、
     塩素系ガスに対する前記光学特性改善層のエッチングレートは、前記多層膜のエッチングレートの6.7倍以上15倍以下である、偏光板。
  2.  前記光学特性改善層は、前記多層膜よりフッ素系ガスに対するエッチングレートが低い材料からなる、請求項1に記載の偏光板。
  3.  前記反射層は、Al又はCuからなり、
     前記光学特性改善層は、Al又はCuの酸化物からなる、請求項1又は2に記載の偏光板。
  4.  請求項1~3のいずれか一項に記載の偏光板を備える、光学機器。
  5.  透明基板に、反射層を積層する第1積層工程と、
     前記反射層を加熱し、前記反射層の前記透明基板と反対側の面に光学特性改善層を形成する層形成工程と、
     前記形成された光学特性改善層に、多層膜とマスク層とを順に積層する第2積層工程と、
     前記マスク層にマスクパターンを形成するパターン形成工程と、
     前記マスクパターンを介して前記多層膜を加工する第1加工工程と、
     前記多層膜をマスクとして、前記光学特性改善層及び前記反射層を加工する第2加工工程と、を有し、
     前記第2加工工程を塩素系ガスで行い、
     前記塩素系ガスに対する前記光学特性改善層のエッチングレートを、前記多層膜のエッチングレートの6.7倍以上15倍以下とする、偏光板の製造方法。
  6.  前記塩素系ガスに対する前記反射層のエッチングレートを、前記多層膜のエッチングレートの6.7倍以上15倍以下とする、請求項5に記載の偏光板の製造方法。
  7.  前記マスク層は、複数の層からなり、
     前記マスク層は、最も前記基板側に前記反射層と同じ材料からなる第1マスク層を有し、
     前記パターン形成工程における前記第1マスク層の加工を前記塩素系ガスで行い、
     前記塩素系ガスに対する前記第1マスク層のエッチングレートを、前記多層膜のエッチングレートの6.7倍以上15倍以下とする、請求項5又は6に記載の偏光板の製造方法。
  8.  前記第1加工工程をフッ素系ガスで行い、
     前記フッ素系ガスに対する前記光学特性改善層のエッチングレートを、前記多層膜のエッチングレートの0.22倍以上0.39倍以下とする、請求項5~7のいずれか一項に記載の偏光板の製造方法。
PCT/JP2019/029863 2018-07-31 2019-07-30 偏光板、光学機器及び偏光板の製造方法 WO2020027144A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980003286.XA CN110998385B (zh) 2018-07-31 2019-07-30 偏振片、光学设备和偏振片的制备方法
US16/640,609 US11112550B2 (en) 2018-07-31 2019-07-30 Polarizing plate, optical apparatus and method of manufacturing polarizing plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018144093A JP6703050B2 (ja) 2018-07-31 2018-07-31 偏光板、光学機器及び偏光板の製造方法
JP2018-144093 2018-07-31

Publications (1)

Publication Number Publication Date
WO2020027144A1 true WO2020027144A1 (ja) 2020-02-06

Family

ID=64478604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029863 WO2020027144A1 (ja) 2018-07-31 2019-07-30 偏光板、光学機器及び偏光板の製造方法

Country Status (4)

Country Link
US (1) US11112550B2 (ja)
JP (1) JP6703050B2 (ja)
CN (1) CN110998385B (ja)
WO (1) WO2020027144A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11249234B2 (en) * 2019-07-29 2022-02-15 Moxtek, Inc. Polarizer with composite materials
JP7142057B2 (ja) * 2020-05-07 2022-09-26 デクセリアルズ株式会社 偏光板、光学機器及び偏光板の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012598A (ja) * 1996-06-21 1998-01-16 Mitsubishi Electric Corp 半導体装置の製造方法
JP2009109821A (ja) * 2007-10-31 2009-05-21 Seiko Epson Corp 光学素子、液晶装置及び電子機器
JP2011054594A (ja) * 2009-08-31 2011-03-17 Dainippon Printing Co Ltd エッチング方法とこれを利用したナノインプリント用モールドの製造方法と検査方法およびエッチング装置
JP2012027221A (ja) * 2010-07-23 2012-02-09 Asahi Kasei Corp ワイヤーグリッド偏光子
JP2014052439A (ja) * 2012-09-05 2014-03-20 Dexerials Corp 偏光素子、プロジェクター及び偏光素子の製造方法
JP2015125252A (ja) * 2013-12-26 2015-07-06 株式会社日立エルジーデータストレージ 偏光板およびそれを用いた液晶プロジェクタ
US20160161654A1 (en) * 2014-12-05 2016-06-09 Samsung Display Co. Ltd. Wire grid polarizer, display device including the same, and method of fabricating the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4488033B2 (ja) 2007-02-06 2010-06-23 ソニー株式会社 偏光素子及び液晶プロジェクター
JP5140568B2 (ja) 2008-12-04 2013-02-06 株式会社アルバック 多層膜のエッチング方法
JP2010237437A (ja) 2009-03-31 2010-10-21 Asahi Kasei Corp ワイヤグリッド偏光子
JP6634727B2 (ja) * 2015-08-10 2020-01-22 セイコーエプソン株式会社 光学素子、光学素子の製造方法、及び電子機器
US10698148B2 (en) * 2015-10-28 2020-06-30 Dexerials Corporation Polarizing element and method of producing same
KR20170061209A (ko) * 2015-11-25 2017-06-05 삼성디스플레이 주식회사 와이어 그리드 편광자 및 이를 포함하는 표시장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012598A (ja) * 1996-06-21 1998-01-16 Mitsubishi Electric Corp 半導体装置の製造方法
JP2009109821A (ja) * 2007-10-31 2009-05-21 Seiko Epson Corp 光学素子、液晶装置及び電子機器
JP2011054594A (ja) * 2009-08-31 2011-03-17 Dainippon Printing Co Ltd エッチング方法とこれを利用したナノインプリント用モールドの製造方法と検査方法およびエッチング装置
JP2012027221A (ja) * 2010-07-23 2012-02-09 Asahi Kasei Corp ワイヤーグリッド偏光子
JP2014052439A (ja) * 2012-09-05 2014-03-20 Dexerials Corp 偏光素子、プロジェクター及び偏光素子の製造方法
JP2015125252A (ja) * 2013-12-26 2015-07-06 株式会社日立エルジーデータストレージ 偏光板およびそれを用いた液晶プロジェクタ
US20160161654A1 (en) * 2014-12-05 2016-06-09 Samsung Display Co. Ltd. Wire grid polarizer, display device including the same, and method of fabricating the same

Also Published As

Publication number Publication date
CN110998385A (zh) 2020-04-10
CN110998385B (zh) 2021-02-02
US20200209451A1 (en) 2020-07-02
JP6703050B2 (ja) 2020-06-03
JP2018189983A (ja) 2018-11-29
US11112550B2 (en) 2021-09-07

Similar Documents

Publication Publication Date Title
US11754766B2 (en) Polarizing element, polarizing element manufacturing method, and optical device
JP6577641B2 (ja) 偏光板及びその製造方法、並びに光学機器
JP7236230B2 (ja) 光学素子、液晶表示装置および投射型画像表示装置
WO2019159982A1 (ja) 偏光板及びその製造方法、並びに光学機器
JP7142057B2 (ja) 偏光板、光学機器及び偏光板の製造方法
WO2020027144A1 (ja) 偏光板、光学機器及び偏光板の製造方法
JP6722832B2 (ja) 偏光板及びこれを備える光学機器
CN110998383B (zh) 偏振片和光学设备
JP2023181285A (ja) 偏光板、光学機器及び偏光板の製造方法
JP6609351B1 (ja) 偏光板およびその製造方法
US11630254B2 (en) Wire grid polarizing plate having trapezoidal absorption layer
US11543702B2 (en) Polarizer and optical apparatus
CN111198412B (zh) 偏振光元件、偏振光元件的制造方法以及光学设备
US11867938B2 (en) Polarizing plate having outermost layer of anti-reflection layer recessed towards substrate
JP7075372B2 (ja) 偏光板及びその製造方法、並びに光学機器
JP7204611B2 (ja) 偏光板およびその製造方法
JP2020003771A (ja) 偏光板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19844711

Country of ref document: EP

Kind code of ref document: A1