WO2020027026A1 - 測定装置及び測定方法 - Google Patents

測定装置及び測定方法 Download PDF

Info

Publication number
WO2020027026A1
WO2020027026A1 PCT/JP2019/029596 JP2019029596W WO2020027026A1 WO 2020027026 A1 WO2020027026 A1 WO 2020027026A1 JP 2019029596 W JP2019029596 W JP 2019029596W WO 2020027026 A1 WO2020027026 A1 WO 2020027026A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
voltage
capacitor element
terminal
resistance
Prior art date
Application number
PCT/JP2019/029596
Other languages
English (en)
French (fr)
Inventor
野村 勝
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2020027026A1 publication Critical patent/WO2020027026A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/16Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using capacitive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere

Definitions

  • the present invention relates to a measuring device for measuring a voltage applied to a capacitive element.
  • the following three methods are known as methods for measuring the voltage value and the current value of the capacitor element.
  • the first method is a method of connecting a voltmeter to a capacitor element in parallel to measure the voltage value of the capacitor element, and connecting an ammeter in series to the capacitor element to measure the current value of the capacitor element.
  • the second method is a method of detecting ripple generated in the capacitor element.
  • a third method is to connect a capacitor element that simulates the electrical characteristics of the capacitive load in parallel to the capacitive load to be measured, and measure the current flowing through the capacitor element to reduce the current of the capacitive load. This is a detection method (see, for example, Patent Document 1).
  • the installation method and signal processing of the voltmeter and the ammeter are complicated. Therefore, when this method is applied to a capacitor element of a power supply device, there is a problem that a heavy burden is imposed on a user. There is also a problem that the impedance of the ammeter connected in series and the voltmeter connected in parallel affects the operation of the power supply device.
  • the current flowing through the capacitive load can be measured, but the voltage applied thereto cannot be measured. Therefore, when this method is applied to the capacitor element of the power supply device, there is a problem that the voltage of the capacitor element cannot be measured, that is, the reduction of the capacitance of the capacitor element cannot be measured. Since the reduction in the capacitance of the capacitor element greatly affects the operation of the power supply device, it is important to measure the voltage of the capacitor element of the power supply device simply and accurately in order to appropriately monitor the operation of the power supply device.
  • An object of the present invention is to measure the voltage of a capacitive element simply and accurately.
  • a measuring device is a device that measures characteristics of a capacitive element having a first terminal and a second terminal.
  • the measurement device includes a measurement circuit and an analysis unit.
  • the measurement circuit is connected in parallel to the capacitive element to be measured.
  • the measurement circuit has a first capacitor element, a second capacitor element, and a resistance element.
  • One end of the first capacitor element is connected to the first terminal of the capacitive element.
  • One end of the second capacitor element is connected to the other end of the first capacitor element.
  • One end of the resistance element is connected to the other end of the second capacitor element, and the other end is connected to the second terminal of the capacitive element.
  • the analyzing unit is configured to determine whether the first terminal or the second terminal of the capacitive element is based on a voltage between a connection point between the first capacitor element and the second capacitor element and the first terminal or the second terminal of the capacitive element. Is calculated.
  • a measuring circuit in which a first capacitor element, a second capacitor element, and a resistive element are connected in series is connected in parallel to a capacitive element to be measured, and a first capacitor is connected.
  • the voltage of the capacitive element can be simply and accurately measured based on the voltage between the connection point between the element and the second capacitor element and any terminal of the capacitive element.
  • FIG. 1 is a diagram showing a configuration of the measuring device according to the first embodiment.
  • FIG. 2 is a diagram showing the relationship between the measurement sensitivity of the current of the capacitive element and the parameters of each element of the measurement circuit.
  • FIG. 3 is a flowchart showing the operation of measuring the voltage and current of the capacitive element.
  • Embodiment 1 [1-1. Capacitive element] ⁇ The following describes the measuring device 1 for measuring the voltage v and the current i of the capacitive element C according to the first embodiment. First, the capacitive element C for which the measurement device 1 measures the voltage v and the current i will be described.
  • the capacitive element C is, for example, an electrolytic capacitor used as a smoothing capacitor of a power supply circuit. Further, the capacitive element C has a first terminal T1 and a second terminal T2 for connecting to a circuit such as a power supply circuit.
  • the smoothing capacitor whose characteristics are difficult to measure because a large voltage and a large current are applied is used as the capacitive element C to be measured.
  • the present invention is not limited to this.
  • the device 1 can be applied to the measurement of the voltage and the current of any element having a capacitance component between two terminals.
  • FIG. 1 is a diagram showing a configuration of the measuring device according to the first embodiment.
  • the measurement device 1 includes a measurement circuit 11 and an analysis unit 13.
  • the measurement circuit 11 has one end connected to the first terminal T1 of the capacitive element C and the other end connected to the second terminal T2 of the capacitive element C. That is, the measurement circuit 11 is connected to the capacitive element C in parallel.
  • a current determined by the ratio of the impedance of the capacitive element C to the combined impedance of the measuring circuit 11 is shunted to the measuring circuit 11.
  • the current shunted to the measurement circuit 11 is referred to as “measurement current isns ”. That is, the measurement circuit 11 samples the current i flowing through the capacitive element C as the measurement current isns . Further, the measurement circuit 11 divides the voltage v of the capacitive element C.
  • the analysis unit 13 calculates the current i of the capacitive element C based on the measurement value of the measurement current issns sampled by the measurement circuit 11. Further, the analysis unit 13 calculates the voltage v of the capacitive element C based on the measured value of the divided voltage v.
  • the analysis unit 13 includes a first voltage measurement device 15, a second voltage measurement device 17, and a calculation unit 19.
  • the first voltage measuring device 15 is a voltmeter that measures the voltage v of the capacitive element C divided by the measuring circuit 11.
  • the second voltage measurement device 17 measures a voltage drop caused by a measurement current isns flowing through a resistance element R described later.
  • the calculation unit 19 is a computer system including various interfaces such as a CPU, a storage device, and an A / D conversion circuit.
  • the calculation unit 19 may be realized by an SoC (System on Chip) in which the configuration of the computer system is integrated on one chip, an ASIC (Application Specific Integrated Circuit), or the like.
  • the calculating unit 19 calculates the voltage v of the capacitive element C based on the voltage measured by the first voltage measuring device 15. Further, the current i of the capacitive element C is calculated based on the voltage measured by the second voltage measuring device 17. The calculation method of the voltage v and the current i in the calculation unit 19 will be described later in detail.
  • the measurement circuit 11 has a first capacitor element C1, a second capacitor element C2, and a resistance element R.
  • the first capacitor element C1 and the second capacitor element C2 are connected in series in the measurement circuit 11. Specifically, one end of the first capacitor element C1 is connected to the first terminal T1 of the capacitive element C, and the other end is connected to one end of the second capacitor element C2.
  • the connection point between the first capacitor element C1 and the second capacitor element C2 is called a first node N1.
  • the series circuit of the first capacitor element C1 and the second capacitor element C2 divides the voltage v of the capacitive element C. Specifically, when the voltage drop due to the flow of the measurement current isns in the resistance element R is negligible, this series circuit connects C 1 * v / (C 1) between the first node N1 and the second terminal T2. + C 2 ).
  • C 1 is the capacitance of the first capacitor element C1
  • C 2 is the capacitance of the second capacitor element C2.
  • the first voltage measuring device 15 of the analyzing unit 13 connects each of the measuring terminals to the first node N1 and the second terminal T2, and measures the voltage between the first node N1 and the second terminal T2. . Thereby, the first voltage measuring device 15 can measure a voltage based on the voltage v of the capacitive element C.
  • the capacitor element does not pass a direct current, by dividing the voltage v of the capacitive element C by the two capacitor elements as described above, it is possible to suppress generation of heat by dividing the voltage v.
  • the first capacitor element C1 and the second capacitor element C2 it is preferable to use an element whose characteristics do not change due to long-term use.
  • a film capacitor can be used as the first capacitor element C1 and the second capacitor element C2.
  • any of ceramic capacitors, mica capacitors, oil capacitors, solid polymer capacitors, tantalum capacitors, niobium capacitors, air capacitors, vacuum capacitors, and glass capacitors can be used.
  • the same type of capacitor may be used for the first capacitor element C1 and the second capacitor element C2, or different types of capacitors may be used.
  • the first capacitor element C1 and the second capacitor element C2 have variable capacitance.
  • the capacitances of these capacitor elements C1 and C2 variable, the sensitivity of the measurement circuit 11 for measuring the voltage v and the current i of the capacitive element C can be adjusted, and the versatility of the measurement circuit 11 can be increased. Even if the characteristics of the measurement circuit 11 change due to aging or the like, the original characteristics can be restored by adjusting the capacitance of these capacitor elements C1 and C2.
  • a variable capacitor can be used as the first capacitor element C1 and the second capacitor element C2.
  • the plurality of sub-capacitor elements connected in parallel, and the plurality of switching elements that electrically connect or disconnect any one of the plurality of sub-capacitor elements to or from the measurement circuit 11 include the above-described capacitor element C1, C2 can be configured.
  • the capacitance can be changed by a combination of ON and OFF of each switching element.
  • the above-mentioned sub-capacitor element is, for example, a capacitor.
  • the capacitance of only one of the first capacitor element C1 and the second capacitor element C2 may be variable, or the capacitance of either capacitor element may not be variable.
  • the resistance value of the resistance element R be variable for adjusting the measurement circuit 11.
  • the resistance element R is connected in series to the second capacitor element C2 in the measurement circuit 11. Specifically, one end of the resistance element R is connected to the other end of the second capacitor element C2, and the other end is connected to the second terminal T2 of the capacitive element C.
  • the connection point between the resistance element R and the second capacitor element C2 is referred to as a second node N2.
  • the measured current i sns flows through the resistor R, the resistance element R produces a voltage drop based on the measured current i sns and R 1 * i sns.
  • R 1 is the resistance value of the resistance element R.
  • the second voltage measurement device 17 of the analysis unit 13 connects each of the measurement terminals to the second node N2 and the second terminal T2, and measures the voltage between the second node N2 and the second terminal T2. .
  • the second voltage measurement device 17 can measure a voltage based on the measurement current isns , that is, a voltage based on the current i of the capacitive element C.
  • the resistance element R used for measuring the measurement current for example, a shunt resistor can be used.
  • an element whose characteristics do not change over a long period of use similarly to the first capacitor element C1 and the second capacitor element C2.
  • the resistance value of the resistance element R is variable. By making the resistance value of the resistance element R variable, the measurement sensitivity of the voltage v and the current i of the capacitive element C by the measurement circuit 11 can be adjusted, and the versatility of the measurement circuit 11 can be increased. Further, even when the characteristics of the measurement circuit 11 change due to aging or the like, the original characteristics can be restored by adjusting the resistance value of the resistance element R.
  • a variable resistor can be used as the resistance element R.
  • the resistance element R can be configured by a plurality of sub-resistance elements connected in parallel and a plurality of switching elements that electrically connect or disconnect one of the plurality of sub-resistance elements to the measurement circuit 11. .
  • the resistance value can be changed by a combination of ON and OFF of each switching element.
  • the resistance value of the resistance element R is set small so that the voltage drop by the resistance element R does not affect the measured value of the voltage of the first voltage measurement device 15.
  • the resistance value of the resistance element R is preferably 1/10 or less of the combined impedance formed by the first capacitor element C1 and the second capacitor element C2 at the frequency of the voltage to be measured. More preferably, it is 100 or less.
  • the voltage v of the capacitive element C is measured based on the voltage between the first node N1 and the second terminal T2. Accordingly, in order to prevent the voltage drop due to the resistance element R from affecting the measurement value of the first voltage measuring device 15, the impedance of the second capacitor element C2 at the frequency of the voltage to be measured is particularly determined by changing the impedance of the resistance element R. It is preferable that the resistance is sufficiently larger than the resistance.
  • Equation 1 When the conditions that are satisfied by the measurement circuit 11 are represented by circuit equations, the following Equation 1 is obtained.
  • C ′ represents the capacitance of the capacitive element C
  • C1 represents the capacitance of the first capacitor element C
  • C2 represents the capacitance of the second capacitor element C2
  • R1 represents the resistance value of the resistance element.
  • Equation 2 I represents the Laplace transform of the current i, and I sns represents the Laplace transform of the measured current isns .
  • C ′′ represents the combined capacitance of the first capacitor element C1 and the second capacitor element C2.
  • the measurement circuit 11 of the present embodiment it is possible to measure the current i of the capacitive element C as a voltage drop due to the flow of the measurement current isns through the resistance element R with a circuit having a simple configuration. Can be.
  • the Laplace transform I sns of the measured current isns is calculated from the above-described equations 1 and 2.
  • V of v the Laplace transform of the voltage between the first node N1 and the second terminal T2, that is, the voltage measured by the first voltage measuring device 15, is C 1 * V / (C 1 + C 2 ).
  • the voltage measured by the first voltage measuring device 15 using the voltage v of the capacitive element C is expressed as C 1 * v / (C 1 + C 2 ).
  • the voltage v of the capacitive element C is obtained by dividing the voltage v by the first capacitor element C1 and the second capacitor element C2 with a circuit having a simple configuration. Can be measured. As a result, even if the voltage v of the capacitive element C is a large voltage, the voltage v of the capacitive element C can be measured at low cost. Further, by dividing the voltage v by the first capacitor element C1 and the second capacitor element C2, the voltage v can be divided without generating heat. This is because the first capacitor element C1 and the second capacitor element C2 hardly pass a DC current and hardly generate heat due to the current.
  • the measuring circuit 11 can be configured at low cost by adopting a configuration in which the voltage v is divided by the first capacitor element C1 and the second capacitor element C2.
  • the Laplace transform I sns of the measured current isns can be expressed as (C ′′ / C ′) * I. From the equation, to reduce the measurement current isns , C ′′ / C ′ is reduced, that is, the combined capacitance C ′′ of the first capacitor element C1 and the second capacitor element C2 is smaller than that of the capacitive element C. It can be seen that the ratio with respect to the capacitance C ′ may be reduced.
  • the combined capacitance C ′′ formed by the first capacitor element C1 and the second capacitor element C2 be 1/10 or less of the capacitance C ′ of the capacitive element C, and 1/100 or less. Is more preferable, and it is still more preferable to be 1/1000 or less.
  • FIG. 2 is a diagram showing the relationship between the measurement sensitivity of the current of the capacitive element and the parameters of each element of the measurement circuit.
  • the measurement sensitivity of the current i of the capacitive element C is defined as in the following Expression 4. This measurement sensitivity is calculated by dividing both sides of Equation 3 by I.
  • FIG. 2 is a plot of the relationship between the measurement sensitivity defined as in Expression 4 and the frequency f of the current i to be measured on a log-logarithmic coordinate system. Note that “s” in the Laplace transform can be expressed as 2 ⁇ f using the frequency f.
  • the above logarithmic graph of the measurement sensitivity of the current i and “s” shows that in the range where “s” is small, that is, in the low frequency side, R 1 * C ′′ / C ′ is almost equal. It will be constant. This is because, on the low frequency side, “s” is much smaller than 1 / (R 1 * C ′′), and the measurement sensitivity represented by Expression 4 is hardly affected by the value of “s”.
  • the measurement sensitivity of the current i changes depending on the magnitude of the product R 1 * C ′′ of the resistance value R 1 of the resistance element R and the combined capacitance C ′′ of the first capacitor element C 1 and the second capacitor element C 2.
  • the measurement sensitivity increases as the value of R 1 * C ′′ increases.
  • the resistance value R1 of the resistance element R when it is desired to measure a steady current i, the resistance value R1 of the resistance element R, and And / or increase the combined capacitance C ′′ of the first capacitor element C1 and the second capacitor element C2.
  • the measurement sensitivity of the current i of the measurement circuit 11 is low, but the current i in a wide frequency range is low. Is measured, for example, when a large transient current i is measured, the resistance value R1 of the resistance element R and / or the combined capacitance C ′′ of the first and second capacitor elements C1 and C2 are reduced. I do.
  • the capacitance of the first capacitor element C1 and the second capacitor element C2, and the resistance value R 1 of the resistor element R is variable, measuring circuit 11 according to this embodiment, the parameters of these devices Is appropriately changed, the voltage v and the current i of the capacitive element C can be measured at an arbitrary measurement sensitivity and an arbitrary frequency range. That is, the measurement circuit 11 according to the present embodiment has high versatility as a circuit for measuring the voltage v and the current i of the capacitive element C.
  • FIG. 3 is a flowchart showing the operation of measuring the voltage and current of the capacitive element.
  • step S2 the second voltage measurement device 17 of the analysis unit 13 measures a voltage between the second node N2 and the second terminal T2, that is, a voltage drop between both ends of the resistance element R.
  • the calculating unit 19 inputs the measured value of the voltage from the second voltage measuring device 17.
  • step S3 the calculating unit 19 calculates the voltage v of the capacitive element C based on the voltage measured by the first voltage measuring device 15. .
  • v sns C 1 * v / (C 1 + C 2 )
  • v sns C 1 * v / (C 1 + C 2 )
  • the calculating unit 19 can calculate the voltage value of the voltage v by substituting the measured value of the voltage by the first voltage measuring device 15 into v sns of the mathematical expression.
  • step S4 the calculating unit 19 calculates the current i of the capacitive element C based on the voltage measured by the second voltage measuring device 17. calculate.
  • Equation 5 when the above equation 3 is rewritten with respect to the Laplace transform I of the current i, and the rewritten equation is subjected to the inverse Laplace transform, the following equation 5 is obtained. Further, by dividing the measured value of the voltage by the second voltage measuring device 17 by the resistance value R 1 of the resistor element R, the measured current i sns is obtained. The calculation unit 19 can calculate the current value of the current i by substituting the obtained measurement current isns into Equation 5.
  • the measurement is the time derivative term of the current i sns included, the value of the derivative term, for example, this measured current i measured values of sns and previous measurement current i sns Can be calculated by dividing the difference from the measurement value of the measurement current by the acquisition cycle of the measurement value of the measurement current isns .
  • the differential term of the time may be measured using a differentiating circuit.
  • the first capacitor element C1 combined impedance of the second capacitor element C2 is much greater than the resistance value R 1 of the resistor element R, the first capacitor element C1 second capacitor element It is proportional to the reciprocal of the combined capacitance C ′′ of C2. That is, in the above Equation 5, the relationship of R 1 * C ′ ⁇ C ′ / C ′′ is established, and the differential term can be ignored in the calculation of the current i.
  • the voltage across the first capacitor element C1 that is, the voltage between the first terminal T1 and the first node N1 may be measured.
  • the voltage across the first capacitor element C1 can be expressed as C 2 * v / (C 1 + C 2).
  • the voltage measured by the first voltage measuring device 15 is not limited to the voltage between the first node N1 and the second terminal T2, but the voltage across the second capacitor element C2, that is, the first node N1 And a voltage between the second node N2. Even in this case, the voltage measured by the first voltage measuring device 15 can be expressed as C 1 * v / (C 1 + C 2 ).
  • the analysis unit 13 may have a function of notifying that an abnormality has occurred in the capacitive element C based on the calculated voltage v and current i of the capacitive element C. For example, when the current i of the capacitive element C becomes equal to or more than a predetermined threshold value, it is determined that the capacitive element C has deteriorated, and the deterioration of the capacitive element C is displayed on a display or notified by sound or the like. May be.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

【課題】容量性素子の電圧を簡単かつ精度よく測定する。【解決手段】測定装置1は、測定回路11と、分析部13と、を備える。測定回路は、容量性素子Cに並列接続し、第1キャパシタ素子C1と、第2キャパシタ素子C2と、抵抗素子Rと、を有する。第1キャパシタ素子C1は、一端が容量性素子Cの第1端子T1に接続する。第2キャパシタ素子C2は、一端が第1キャパシタ素子C1の他端に接続する。抵抗素子Rは、一端が第2キャパシタ素子C2の他端に接続し、他端が容量性素子Cの第2端子T2に接続する。分析部13は、第1キャパシタ素子C1と第2キャパシタ素子C2の接続点である第1ノードN1と、容量性素子Cの第1端子T1又は第2端子T2と、の間の電圧に基づいて、容量性素子Cの第1端子T1と第2端子T2の間の電圧値を算出する。

Description

測定装置及び測定方法
本発明は、容量性素子に印加された電圧を測定する測定装置に関する。
交流入力を直流出力に変換して出力する電源装置において、電解コンデンサなどのキャパシタ素子が使用されている。この電解コンデンサは、経年劣化してその特性が変化しやすい。そのため、電源装置が適切に動作しているか否かを監視するために、電解コンデンサの電圧値及び電流値を測定する技術に対する要望は大きい。 
キャパシタ素子の電圧値及び電流値を測定する方法としては、以下の3つの方法が知られている。 第1の方法は、キャパシタ素子に電圧計を並列に接続してキャパシタ素子の電圧値を測定し、電流計をキャパシタ素子に直列に接続してキャパシタ素子の電流値を測定する方法である。 第2の方法は、キャパシタ素子で生じるリプルを検出する方法である。 第3の方法は、測定対象の容量性負荷に、当該容量性負荷の電気的特性を模擬するキャパシタ素子を並列接続し、当該キャパシタ素子に流れる電流を測定することで、容量性負荷の電流を検出する方法である(例えば、特許文献1を参照)。
日本国特許公報:特許第5198491号
上記第1の方法においては、大きな電圧が印加されるか及び/又は大きな電流が流れるキャパシタ素子を測定対象とする場合、電圧計及び電流計の設置方法や信号処理が複雑になる。そのため、この方法を電源装置のキャパシタ素子に適用した場合、ユーザに大きな負担となるとの問題点がある。また、直列接続された電流計及び並列接続された電圧計が有するインピーダンスが、電源装置の動作に影響を及ぼすとの問題点がある。 
一方、上記第2の方法においては、例えばキャパシタ素子の電流値が変動する場合に、リプル検出の確実性が低くなる。そのため、この方法を電源装置のキャパシタ素子に適用した場合、当該キャパシタ素子の特性を精度よく測定できないとの問題点がある。 
さらに、上記第3の方法においては、容量性負荷に流れる電流は測定できるものの、それに印加される電圧が測定できない。そのため、この方法を電源装置のキャパシタ素子に適用した場合、当該キャパシタ素子の電圧が測定できない、すなわち、キャパシタ素子の容量低減を測定できないとの問題点がある。キャパシタ素子の容量低減は電源装置の動作に大きく影響するので、電源装置のキャパシタ素子の電圧を簡単かつ精度よく測定することは、電源装置の動作を適切に監視する上では重要である。 
本発明は、容量性素子の電圧を簡単かつ精度よく測定することを目的とする。
本願の例示的な一実施形態の測定装置は、第1端子と第2端子を有する容量性素子の特性を測定する装置である。測定装置は、測定回路と、分析部と、を備える。測定回路は、測定対象の容量性素子に並列接続する。また、測定回路は、第1キャパシタ素子と、第2キャパシタ素子と、抵抗素子と、を有する。第1キャパシタ素子は、一端が容量性素子の第1端子に接続する。第2キャパシタ素子は、一端が上記の第1キャパシタ素子の他端に接続する。抵抗素子は、一端が第2キャパシタ素子の他端に接続し、他端が容量性素子の第2端子に接続する。 
分析部は、第1キャパシタ素子と第2キャパシタ素子の接続点と、容量性素子の第1端子又は第2端子と、の間の電圧に基づいて、容量性素子の第1端子と第2端子の間の電圧値を算出する。
本願の例示的な一実施形態の測定装置では、測定対象の容量性素子に対して、第1キャパシタ素子、第2キャパシタ素子、及び抵抗素子を直列接続した測定回路を並列接続し、第1キャパシタ素子と第2キャパシタ素子との接続点と容量性素子のいずれかの端子との間の電圧に基づいて、容量性素子の電圧を簡単かつ精度よく測定できる。
図1は、実施の形態1に係る測定装置の構成を示す図である。 図2は、容量性素子の電流の測定感度と、測定回路の各素子のパラメータとの関係を示す図である。 図3は、容量性素子の電圧及び電流の測定動作を示すフローチャートである。
以下、図面を参照しながら、本発明の実施形態について説明する。なお、本発明の範囲は、以下の実施形態に限定されず、本発明の技術的思想の範囲内で任意に変更可能である。 
(実施の形態1)[1-1.容量性素子] 以下、実施の形態1に係る容量性素子Cの電圧v及び電流iを測定する測定装置1について説明する。まず、測定装置1で電圧v及び電流iを測定する対象となる容量性素子Cについて説明する。容量性素子Cは、例えば、電源回路の平滑コンデンサとして用いられる電解コンデンサである。また、容量性素子Cは、電源回路などの回路に接続するための第1端子T1と第2端子T2とを有する。 
なお、本実施形態においては、大電圧及び大電流が印加されるために特性の測定が困難な平滑コンデンサを測定対象の容量性素子Cとしているが、これに限られず、本実施形態に係る測定装置1は、二端子間に容量成分が存在するあらゆる素子の電圧及び電流の測定に適用できる。 
[1-2.測定装置の構成] 次に、図1を用いて、容量性素子Cの特性、すなわち、電圧v及び電流iを測定する測定装置1の構成を説明する。図1は、実施の形態1に係る測定装置の構成を示す図である。測定装置1は、測定回路11と、分析部13と、を備える。 
測定回路11は、一端が容量性素子Cの第1端子T1に接続し、他端が容量性素子Cの第2端子T2に接続する。すなわち、測定回路11は、容量性素子Cに並列接続する。測定回路11が容量性素子Cに並列接続することで、容量性素子Cのインピーダンスと測定回路11の合成インピーダンスとの比率で決定される電流が、測定回路11へと分流する。以後、測定回路11へ分流する電流を、「測定電流isns」と呼ぶ。つまり、測定回路11は、容量性素子Cに流れる電流iを、測定電流isnsとしてサンプリングする。また、測定回路11は、容量性素子Cの電圧vを分圧する。 
分析部13は、測定回路11にてサンプリングした測定電流isnsの測定値に基づいて、容量性素子Cの電流iを算出する。また、分析部13は、分圧された電圧vの測定値に基づいて、容量性素子Cの電圧vを算出する。分析部13は、第1電圧測定装置15と、第2電圧測定装置17と、算出部19と、を有する。 
第1電圧測定装置15は、測定回路11により分圧された容量性素子Cの電圧vを測定する電圧計である。第2電圧測定装置17は、測定電流isnsが後述する抵抗素子Rに流れることにより生じる電圧降下を測定する。 
算出部19は、CPU、記憶装置、A/D変換回路などの各種インターフェースを備えたコンピュータシステムである。その他、算出部19は、コンピュータシステムの構成を1チップに集積したSoC(System on Chip)、ASIC(Application Specific Integrated Circuit)などにより実現されてもよい。 
算出部19は、第1電圧測定装置15による電圧の測定値に基づいて、容量性素子Cの電圧vを算出する。また、第2電圧測定装置17による電圧の測定値に基づいて、容量性素子Cの電流iを算出する。算出部19における電圧v及び電流iの算出方法については、後ほど詳しく説明する。 
[1-3.測定回路の構成] 以下、図1を用いて、容量性素子Cの電圧v及び電流iを測定するための測定回路11の構成を説明する。測定回路11は、第1キャパシタ素子C1と、第2キャパシタ素子C2と、抵抗素子Rと、を有する。 
第1キャパシタ素子C1及び第2キャパシタ素子C2は、測定回路11において、直列接続する。具体的には、第1キャパシタ素子C1は、一端が容量性素子Cの第1端子T1に接続し、他端が第2キャパシタ素子C2の一端に接続する。なお、第1キャパシタ素子C1と第2キャパシタ素子C2との接続点を、第1ノードN1と呼ぶ。 
第1キャパシタ素子C1及び第2キャパシタ素子C2の直列回路は、容量性素子Cの電圧vを分圧する。具体的には、この直列回路は、抵抗素子Rに測定電流isnsが流れることによる電圧降下が無視できる場合、第1ノードN1と第2端子T2の間に、C*v/(C+C)との電圧を生じる。ここで、Cは第1キャパシタ素子C1の容量であり、Cは第2キャパシタ素子C2の容量である。 
従って、分析部13の第1電圧測定装置15は、測定端子のそれぞれを第1ノードN1と第2端子T2とに接続し、第1ノードN1と第2端子T2との間の電圧を測定する。これにより、第1電圧測定装置15は、容量性素子Cの電圧vに基づく電圧を測定できる。 
キャパシタ素子は直流電流を流さないので、上記のように2つのキャパシタ素子により容量性素子Cの電圧vを分圧することにより、当該電圧vを分圧することによる熱の発生を抑制できる。 
第1キャパシタ素子C1、第2キャパシタ素子C2は、長期間の使用によりその特性が変化しない素子を用いることが好ましい。 
長期間の特性の安定性及び入手性を考慮した場合、第1キャパシタ素子C1及び第2キャパシタ素子C2としては、例えば、フィルムコンデンサを用いることができる。その他、セラミックコンデンサ、マイカコンデンサ、オイルコンデンサ、固体高分子コンデンサ、タンタルコンデンサ、ニオブコンデンサ、空気コンデンサ、真空コンデンサ、ガラスコンデンサのいずれかを用いることができる。また、第1キャパシタ素子C1及び第2キャパシタ素子C2に同一種類のコンデンサを用いてもよいし、異なる種類のコンデンサを用いてもよい。 
また、本実施形態において、第1キャパシタ素子C1及び第2キャパシタ素子C2は、容量が可変である。これらのキャパシタ素子C1、C2の容量を可変とすることで、測定回路11による容量性素子Cの電圧v及び電流iの測定感度を調整して、測定回路11の汎用性を高めることができる。また、経年劣化等により測定回路11の特性が変化した場合でも、これらのキャパシタ素子C1、C2の容量を調整することで、元の特性に戻すことができる。 
これらのキャパシタ素子C1、C2の容量を可変とする場合、第1キャパシタ素子C1及び第2キャパシタ素子C2として、例えば、可変容量コンデンサを用いることができる。その他、例えば、並列接続した複数の副キャパシタ素子と、複数の副キャパシタ素子のうちのいずれかを電気的に測定回路11に接続するか切断する複数のスイッチング素子と、により上記のキャパシタ素子C1、C2を構成できる。この場合、各スイッチング素子のオンとオフの組み合わせで容量を変更できる。なお、上記の副キャパシタ素子は、例えば、コンデンサである。 
なお、第1キャパシタ素子C1又は第2キャパシタ素子C2の一方のみの容量が可変であってもよいし、いずれのキャパシタ素子も容量が可変でなくてもよい。特に、いずれのキャパシタ素子も容量が可変でない場合には、測定回路11の調整のために、抵抗素子Rの抵抗値は可変とすることが好ましい。 
抵抗素子Rは、測定回路11において、第2キャパシタ素子C2に直列接続する。具体的には、抵抗素子Rは、一端が第2キャパシタ素子C2の他端に接続し、他端が容量性素子Cの第2端子T2に接続する。以後、抵抗素子Rと第2キャパシタ素子C2との接続点を、第2ノードN2と呼ぶ。 
上記のように、第1キャパシタ素子C1と第2
キャパシタ素子C2が直列接続し、第2キャパシタ素子C2と抵抗素子Rが直列接続することは、これら3つの素子が直列接続していることを意味している。従って、抵抗素子Rには測定電流isnsが流れ、抵抗素子RはR*isnsとの測定電流isnsに基づく電圧降下を生じる。ここで、Rは、抵抗素子Rの抵抗値である。 
従って、分析部13の第2電圧測定装置17は、測定端子のそれぞれを第2ノードN2と第2端子T2とに接続し、第2ノードN2と第2端子T2との間の電圧を測定する。これにより、第2電圧測定装置17は、測定電流isnsに基づく電圧、すなわち、容量性素子Cの電流iに基づく電圧を測定できる。 
測定電流isnsを測定する目的で使用される抵抗素子Rとしては、例えば、シャント抵抗を用いることができる。なお、抵抗素子Rも、第1キャパシタ素子C1及び第2キャパシタ素子C2と同様に、長期間の使用によりその特性が変化しない素子を用いることが好ましい。 
抵抗素子Rは、抵抗値が可変である。抵抗素子Rの抵抗値を可変とすることで、測定回路11による容量性素子Cの電圧v及び電流iの測定感度を調整して、測定回路11の汎用性を高めることができる。また、経年劣化等により測定回路11の特性が変化した場合でも、抵抗素子Rの抵抗値を調整することで、元の特性に戻すことができる。 
この場合、抵抗素子Rとしては、例えば、可変抵抗を用いることができる。その他、例えば、並列接続した複数の副抵抗素子と、複数の副抵抗素子のうちのいずれかを測定回路11に電気的に接続するか切断する複数のスイッチング素子と、により抵抗素子Rを構成できる。この場合、各スイッチング素子のオンとオフの組み合わせで抵抗値を変更できる。 
さらに、抵抗素子Rによる電圧降下により、第1電圧測定装置15の電圧の測定値に影響が出ないように、抵抗素子Rの抵抗値は小さくしておくことが好ましい。具体的には、抵抗素子Rの抵抗値は、測定する電圧の周波数において、第1キャパシタ素子C1と第2キャパシタ素子C2により構成される合成インピーダンスの1/10以下であることが好ましく、1/100以下であることがさらに好ましい。 
また、本実施形態においては、第1ノードN1と第2端子T2との間の電圧に基づいて、容量性素子Cの電圧vを測定する。従って、抵抗素子Rによる電圧降下が第1電圧測定装置15の測定値に影響を与えないようにするために、特に、測定する電圧の周波数における第2キャパシタ素子C2のインピーダンスを、抵抗素子Rの抵抗値よりも十分に大きくすることが好ましい。
これにより、後述するように、抵抗素子Rによる電圧降下を無視して、容量性素子Cの電圧vを、第1キャパシタ素子C1と第2キャパシタ素子C2による電圧vの分圧として測定することができる。 
[1-4.容量性素子の電圧/電流の測定原理] 以下、上記の構成を有する測定回路11を用いた容量性素子Cの電圧v及び電流iの測定原理を、測定回路11にて成立する回路方程式を用いて説明する。回路方程式を作成するに当たり、容量性素子Cの電圧v、電流i、及び測定電流isnsについてどのような条件が成立しているかを検討する。まず、測定回路11は容量性素子Cに並列接続していることから、測定回路11に印加される電圧は、容量性素子Cの電圧と等しくなる。また、測定回路11の第1キャパシタ素子C1、第2キャパシタ素子C2、及び抵抗素子Rは直列接続されていることから、第1キャパシタ素子C1、第2キャパシタ素子C2、及び抵抗素子Rには同一の測定電流isnsが流れる。 
上記の測定回路11にて成立する条件を回路方程式にて表すと、以下の数式1のようになる。以下の数式1において、C’は容量性素子Cの容量、C1は第1キャパシタ素子C1の容量、C2は第2キャパシタ素子C2の容量、R1は抵抗素子の抵抗値を示す。  
Figure JPOXMLDOC01-appb-M000001
上記の回路方程式をラプラス変換すると、以下の数式2のようになる。以下の数式2において、Iは電流iのラプラス変換、Isnsは測定電流isnsのラプラス変換を表す。また、C’’は、第1キャパシタ素子C1と第2キャパシタ素子C2の合成容量を表す。  
Figure JPOXMLDOC01-appb-M000002
上記の数式2をIsnsについて解いて、さらに、抵抗素子Rに測定電流isnsが流れることによる電圧降下、すなわち、第2電圧測定装置17の電圧測定値として表現すると、第2電圧測定装置17にて測定される電圧のラプラス変換は、以下の数式3のように表すことができる。  
Figure JPOXMLDOC01-appb-M000003
このように、本実施形態の測定回路11を用いれば、簡単な構成の回路にて、抵抗素子Rに測定電流isnsが流れることによる電圧降下として、容量性素子Cの電流iを測定することができる。 
一方、抵抗素子Rの抵抗値が十分に小さく抵抗素子Rの電圧降下が無視できるとすると、上記の数式1及び数式2から、測定電流isnsのラプラス変換Isnsは、容量性素子Cの電圧vのラプラス変換Vを用いて、Isns=sC’’*Vと表すことができる。また、上記の数式2から、第1ノードN1と第2端子T2との間の電圧、すなわち、第1電圧測定装置15にて測定される電圧のラプラス変換は、C*V/(C+C)と表される。さらに、容量性素子Cの電圧vを用いて、第1電圧測定装置15にて測定される電圧は、C*v/(C+C)と表される。 
このように、本実施形態の測定回路11を用いれば、簡単な構成の回路にて、第1キャパシタ素子C1と第2キャパシタ素子C2による電圧vの分圧として、容量性素子Cの電圧vを測定することができる。その結果、容量性素子Cの電圧vが大電圧であっても、安価に容量性素子Cの電圧vを測定できる。また、第1キャパシタ素子C1と第2キャパシタ素子C2により電圧vを分圧することにより、発熱を生じない電圧vの分圧を実現できる。なぜなら、第1キャパシタ素子C1と第2キャパシタ素子C2は、直流電流をほとんど流さず、電流による発熱がほとんどないからである。 
また、高耐圧のキャパシタ素子の入手は容易であるので、第1キャパシタ素子C1と第2キャパシタ素子C2により電圧vを分圧する構成とすることで、測定回路11を安価に構成できる。 
[1-5.測定回路の素子パラメータ] 以下、上記の数式1~数式3の式を用いて、測定回路11の第1キャパシタ素子C1、第2キャパシタ素子C2、及び抵抗素子Rに対する最適なパラメータを説明する。まず、測定電流isnsの条件に基づいた最適な素子パラメータについて説明する。容量性素子Cが接続した外部の回路の動作への影響を最小限するために、容量性素子Cが接続した外部の回路から「サンプリング」する測定電流isnsは、小さくすることが好ましい。また、測定電流isnsを小さくすることで、第1キャパシタ素子C1及び第2キャパシタ素子C2の電流耐量定格、及び、抵抗素子Rの定格電力を小さくできる。 
説明を容易にするために、上記の数式3においてs=0とすると、測定電流isnsのラプラス変換Isnsは、(C’’/C’)*Iと表すことができる。当該式から、測定電流isnsを小さくするには、C’’/C’を小さくする、すなわち、第1キャパシタ素子C1と第2キャパシタ素子C2の合成容量C’’の、容量性素子Cの容量C’に対する割合を小さくすればよいことが分かる。 
例えば、第1キャパシタ素子C1と第2キャパシタ素子C2により構成される合成容量C’’を、容量性素子Cの容量C’の1/10以下とすることが好ましく、1/100以下とすることがより好ましく、1/1000以下とすることがさらに好ましい。 
次に、図2を用いて、容量性素子Cの電流iの測定感度と、測定回路11の各素子のパラメータとの関係を説明する。図2は、容量性素子の電流の測定感度と、測定回路の各素子のパラメータとの関係を示す図である。本実施形態においては、容量性素子Cの電流iの測定感度を、以下の数式4のように定義する。この測定感度は、上記の数式3の両辺をIで割ることにより算出される。図2は、数式4のように定義した測定感度と、測定する電流iの周波数fと、の関係を両対数座標上にプロットしたものである。なお、ラプラス変換の「s」は、周波数fを用いて、2πfと表すことができる。  
Figure JPOXMLDOC01-appb-M000004
図2に示すように、上記の電流iの測定感度と「s」の両対数グラフは、「s」が小さい範囲、すなわち、低周波数側においては、R*C’’/C’でほぼ一定となる。なぜなら、低周波数側では、「s」が1/(R*C’’)よりもはるかに小さく、数式4で表される測定感度が「s」の値の影響を受けにくいからである。 
その一方で、「s」が大きくなる、すなわち、周波数fが大きくなるに従って、電流iの測定感度と「s」の両対数グラフは、傾きが-1である直線に漸近する。なぜなら、高周波数側では、「s」が1/(R*C’’)よりもはるかに大きく、数式4で表される測定感度が「s」の値に大きく影響を受けるからである。図2において、測定感度が漸近する傾きが-1の直線は、二点鎖線にて示されている。 
その他、電流iの測定感度は、抵抗素子Rの抵抗値Rと第1キャパシタ素子C1及び第2キャパシタ素子C2の合成容量C’’との積R*C’’の大きさにより変化する特徴を有している。具体的には、R*C’’の値が大きくなるに従って測定感度が向上する。その一方で、R*C’’の値が小さくなるに従って、s=0のときの測定感度(R*C’’/C’)から測定感度が半減したときの周波数(=1/(2π*R*C’’))が大きくなる。すなわち、R*C’’の値が小さくなるに従って、測定感度がほぼ一定である周波数fの範囲が広くなる。 
従って、測定する電流iの周波数範囲を狭くしてでも測定回路11による電流iの測定感度を向上したい場合、例えば定常的な電流iを測定したい場合には、抵抗素子Rの抵抗値R1、及び/又は、第1キャパシタ素子C1及び第2キャパシタ素子C2の合成容量C’’を大きくする。 
その一方で、測定回路11の電流iの測定感度は低くとも広い周波数範囲の電流i
を測定したい場合、例えば過渡的な大きな電流iを測定したい場合には、抵抗素子Rの抵抗値R1、及び/又は、第1キャパシタ素子C1及び第2キャパシタ素子C2の合成容量C’’を小さくする。 
上記のように、第1キャパシタ素子C1及び第2キャパシタ素子C2の容量、及び、抵抗素子Rの抵抗値Rは可変であるので、本実施形態に係る測定回路11は、これらの素子のパラメータを適宜変更することにより、任意の測定感度、及び、任意の周波数範囲にて容量性素子Cの電圧v及び電流iを測定できる。つまり、本実施形態に係る測定回路11は、容量性素子Cの電圧v及び電流iを測定する回路としての汎用性が高い。 
[1-6.容量性素子の電圧/電流の測定方法] 以下、図3を用いて、第1実施形態に係る測定装置1により実行される、容量性素子Cの電圧v及び電流iの測定動作を説明する。図3は、容量性素子の電圧及び電流の測定動作を示すフローチャートである。 測定装置1が容量性素子Cの電圧v及び電流iの測定を開始すると、ステップS1において、分析部13の第1電圧測定装置15が、第1ノードN1と第2端子T2間の電圧を測定する。算出部19が、当該電圧の測定値を第1電圧測定装置15から入力する。 
次に、ステップS2において、分析部13の第2電圧測定装置17が、第2ノードN2と第2端子T2間の電圧、すなわち、抵抗素子Rの両端間の電圧降下を測定する。算出部19が、当該電圧の測定値を第2電圧測定装置17から入力する。 
第1ノードN1と第2端子T2間の電圧を測定後、ステップS3において、算出部19が、第1電圧測定装置15による電圧の測定値に基づいて、容量性素子Cの電圧vを算出する。 
具体的には、第1電圧測定装置15による電圧の測定値をvsnsとすると、上記にて説明したように、vsns=C*v/(C+C)との数式を導出できる。当該数式を電圧vについて書き直すと、v=(C+C)*vsns/Cとの数式を導出できる。算出部19は、当該数式のvsnsに第1電圧測定装置15による電圧の測定値を代入して、電圧vの電圧値を算出できる。 
また、第2ノードN2と第2端子T2間の電圧を測定後、ステップS4において、算出部19が、第2電圧測定装置17による電圧の測定値に基づいて、容量性素子Cの電流iを算出する。 
具体的には、上記の数式3を電流iのラプラス変換Iについて書き直し、当該書き直した数式を逆ラプラス変換すると、以下の数式5が得られる。また、第2電圧測定装置17による電圧の測定値を抵抗素子Rの抵抗値Rで割ることにより、測定電流isnsが得られる。算出部19は、得られた測定電流isnsを数式5に代入して、電流iの電流値を算出できる。  
Figure JPOXMLDOC01-appb-M000005
なお、上記の数式5には、測定電流isnsの時間の微分項が含まれているが、当該微分項の値は、例えば、今回の測定電流isnsの測定値と前回の測定電流isnsの測定値との差分を、測定電流isnsの測定値の取得周期にて割ることにより算出できる。その他、当該時間の微分項を、微分回路を用いて測定してもよい。 
また、上記にて説明したように、第1キャパシタ素子C1と第2キャパシタ素子C2の合成インピーダンスは、抵抗素子Rの抵抗値Rよりもはるかに大きく、第1キャパシタ素子C1と第2キャパシタ素子C2の合成容量C’’の逆数に比例する。すなわち、上記の数5においては、R*C’<<C’/C’’との関係が成り立ち、電流iの算出において微分項は無視することもできる。 
従って、他の実施形態において、算出部19は、数式5の微分項を無視して、i=(C’/C’’)*isnsとの数式から、容量性素子Cの電流iを算出してもよい。 
(その他実施形態) 以上のように、本出願において開示する技術の例示として、上記実施形態を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行うことは可能である。そこで、以下、他の実施の形態を例示する。 
[1] 図3に示すフローチャートの処理の順番及び/又は処理内容は、本開示における技術の範囲内において適宜変更できる。 
[2] 容量性素子Cの電圧vを測定する目的で、第1キャパシタ素子C1の両端の電圧、すなわち、第1端子T1と第1ノードN1との間の電圧を測定してもよい。この場合、第1キャパシタ素子C1の両端の電圧は、C*v/(C+C)と表すことができる。 
[3] 第1電圧測定装置15にて測定する電圧は、第1ノードN1と第2端子T2との間の電圧に限られず、第2キャパシタ素子C2の両端の電圧、すなわち、第1ノードN1と第2ノードN2との間の電圧であってもよい。この場合であっても、第1電圧測定装置15にて測定される電圧は、C*v/(C+C)と表すことができる。 
[4] 分析部13は、算出した容量性素子Cの電圧v及び電流iに基づいて、容量性素子Cに異常が発生したことを通知する機能を有してもよい。例えば、容量性素子Cの電流iが所定の閾値以上になったときに、容量性素子Cが劣化したと判断し、容量性素子Cが劣化したことをディスプレイに表示、又は、音などにより通知してもよい。
1     測定装置11   測定回路C1   第1キャパシタ素子C2   第2キャパシタ素子R     抵抗素子N1   第1ノードN2   第2ノード13   分析部15   第1電圧測定装置17   第2電圧測定装置19   算出部C     容量性素子T1   第1端子T2   第2端子

Claims (10)

  1. 容量性素子の特性を測定する測定装置であって、 前記容量性素子に並列接続し、 一端が前記容量性素子の第1端子に接続する第1キャパシタ素子と、 一端が前記第1キャパシタ素子の他端に接続する第2キャパシタ素子と、 一端が前記第2キャパシタ素子の他端に接続し、他端が前記容量性素子の第2端子に接続する抵抗素子と、を有する測定回路と、 前記第1キャパシタ素子と前記第2キャパシタ素子の接続点と、前記第1端子又は前記第2端子と、の間の電圧に基づいて、前記容量性素子の前記第1端子と前記第2端子の間の電圧値を算出する分析部と、 を備える測定装置。
  2. 前記第1キャパシタ素子及び前記第2キャパシタ素子の少なくとも一方は、容量が可変である、請求項1に記載の測定装置。
  3. 容量が可変である前記第1キャパシタ素子及び前記第2キャパシタ素子の少なくとも一方は、 複数の副キャパシタ素子と、 前記複数の副キャパシタ素子のうちのいずれかを前記測定回路に接続する複数のスイッチング素子と、 を有する、請求項2に記載の測定装置。
  4. 前記抵抗素子は抵抗値が可変である、請求項1~3のいずれかに記載の測定装置。
  5. 抵抗値が可変である前記抵抗素子は、 複数の副抵抗素子と、 前記複数の副抵抗素子のうちのいずれかを前記測定回路に接続する複数のスイッチング素子と、 を有する、請求項4に記載の測定装置。
  6. 前記抵抗素子の抵抗値は、前記測定回路により測定する電圧の周波数において、前記第1キャパシタ素子と前記第2キャパシタ素子により構成される合成インピーダンスの1/10以下である、請求項1~5のいずれかに記載の測定装置。
  7. 前記第1キャパシタ素子と前記第2キャパシタ素子により構成される合成容量は、前記容量性素子の容量の1/10以下である、請求項1~6のいずれかに記載の測定装置。
  8. 前記第1キャパシタ素子及び前記第2キャパシタ素子の少なくとも一方は、フィルムコンデンサ、セラミックコンデンサ、マイカコンデンサ、オイルコンデンサ、固体高分子コンデンサ、タンタルコンデンサ、ニオブコンデンサ、空気コンデンサ、真空コンデンサ、ガラスコンデンサのいずれかである、請求項1~7のいずれかに記載の測定装置。
  9. 前記分析部は、前記抵抗素子の両端間の電圧に基づいて、前記容量性素子に流れる電流を算出する、請求項1~8のいずれかに記載の測定装置。
  10. 容量性素子に並列接続し、一端が前記容量性素子の第1端子に接続する第1キャパシタ素子と、一端が前記第1キャパシタ素子の他端に接続する第2キャパシタ素子と、一端が前記第2キャパシタ素子の他端に接続し、他端が前記容量性素子の第2端子に接続する抵抗素子と、を有する測定回路と、分析部と、を備える測定装置による前記容量性素子の特性の測定方法であって、 前記分析部により、前記第1キャパシタ素子と前記第2キャパシタ素子との接続点と、前記第1端子又は前記第2端子と、の間の電圧を測定するステップと、 前記分析部により、前記第1キャパシタ素子と前記第2キャパシタ素子との接続点と、前記第1端子又は前記第2端子と、の間の電圧値に基づいて、前記容量性素子の前記第1端子と前記第2端子の間の電圧値を算出するステップと、 を含む測定方法。 
PCT/JP2019/029596 2018-07-30 2019-07-29 測定装置及び測定方法 WO2020027026A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018142721 2018-07-30
JP2018-142721 2018-07-30

Publications (1)

Publication Number Publication Date
WO2020027026A1 true WO2020027026A1 (ja) 2020-02-06

Family

ID=69231848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029596 WO2020027026A1 (ja) 2018-07-30 2019-07-29 測定装置及び測定方法

Country Status (1)

Country Link
WO (1) WO2020027026A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5434872A (en) * 1977-08-23 1979-03-14 Bunjirou Ichijiyou Device for precision measurement of lowwimpedance capacity and resistance
JPH1031037A (ja) * 1996-07-17 1998-02-03 Meidensha Corp コンデンサ分圧器
US20060170432A1 (en) * 2002-12-20 2006-08-03 Morgan Adolfsson Method and a device for voltage measurement in a high-voltage conductor
JP2007334690A (ja) * 2006-06-15 2007-12-27 Tokai Rika Co Ltd 静電容量センサ回路
JP2009531713A (ja) * 2006-03-29 2009-09-03 ローズマウント インコーポレイテッド 静電容量検出回路
JP2012122941A (ja) * 2010-12-10 2012-06-28 Omron Automotive Electronics Co Ltd 計測装置、静電容量センサ、および、計測方法
JP2015169440A (ja) * 2014-03-04 2015-09-28 オムロン株式会社 電圧測定装置および電圧測定方法
JP2019078677A (ja) * 2017-10-26 2019-05-23 大崎電気工業株式会社 電圧測定装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5434872A (en) * 1977-08-23 1979-03-14 Bunjirou Ichijiyou Device for precision measurement of lowwimpedance capacity and resistance
JPH1031037A (ja) * 1996-07-17 1998-02-03 Meidensha Corp コンデンサ分圧器
US20060170432A1 (en) * 2002-12-20 2006-08-03 Morgan Adolfsson Method and a device for voltage measurement in a high-voltage conductor
JP2009531713A (ja) * 2006-03-29 2009-09-03 ローズマウント インコーポレイテッド 静電容量検出回路
JP2007334690A (ja) * 2006-06-15 2007-12-27 Tokai Rika Co Ltd 静電容量センサ回路
JP2012122941A (ja) * 2010-12-10 2012-06-28 Omron Automotive Electronics Co Ltd 計測装置、静電容量センサ、および、計測方法
JP2015169440A (ja) * 2014-03-04 2015-09-28 オムロン株式会社 電圧測定装置および電圧測定方法
JP2019078677A (ja) * 2017-10-26 2019-05-23 大崎電気工業株式会社 電圧測定装置

Similar Documents

Publication Publication Date Title
JP6619471B2 (ja) 内部集積回路抵抗の較正
JP6293406B2 (ja) 容量性高インピーダンス測定方法
JP6462948B2 (ja) エネルギ貯蔵セル・インピーダンス測定装置、方法、および関連システム
JP2003028900A (ja) 非接触電圧測定方法およびその装置
JP2013011444A (ja) インピーダンス測定装置
US20150305648A1 (en) Impedance measurement circuit
US8781770B2 (en) Method and system for estimating battery percentage
CN110287648B (zh) 一种薄膜电容器参数测试方法
WO2020027026A1 (ja) 測定装置及び測定方法
JP6570981B2 (ja) 測定装置および測定方法
US6803776B2 (en) Current-comparator-based four-terminal resistance bridge for power frequencies
CN107569229B (zh) 一种生物阻抗测量方法、装置及电子设备
WO2015133212A1 (ja) 電圧測定装置および電圧測定方法
WO2017161870A1 (zh) 一种频率调节的方法及装置
CN105453088B (zh) 考虑到施加交流电压的电容器的静电电容值决定方法及程序
CN107561147B (zh) 一种血糖仪电流的检测电路、校准方法及装置
CN106199285A (zh) 任意交流载波下的电容特性测量设备及其测量方法
JP6657822B2 (ja) インダクタのシミュレーションモデル
CN112147408A (zh) 自测量电路及其工作方法
JP6315273B2 (ja) 絶縁状態測定装置
CN210572495U (zh) 自测量电路
JP7188222B2 (ja) モニタリングモジュール
WO2023189370A1 (ja) 測定装置
JP5664580B2 (ja) 3相コイル抵抗測定装置及び3相コイル抵抗測定方法
RU2556301C2 (ru) Измеритель параметров многоэлементных rlc-двухполюсников

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19844225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP