JP7188222B2 - モニタリングモジュール - Google Patents

モニタリングモジュール Download PDF

Info

Publication number
JP7188222B2
JP7188222B2 JP2019057444A JP2019057444A JP7188222B2 JP 7188222 B2 JP7188222 B2 JP 7188222B2 JP 2019057444 A JP2019057444 A JP 2019057444A JP 2019057444 A JP2019057444 A JP 2019057444A JP 7188222 B2 JP7188222 B2 JP 7188222B2
Authority
JP
Japan
Prior art keywords
output
remaining life
input
power supply
capacitive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019057444A
Other languages
English (en)
Other versions
JP2020162238A (ja
Inventor
栄一 高橋
勝彦 堂下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2019057444A priority Critical patent/JP7188222B2/ja
Publication of JP2020162238A publication Critical patent/JP2020162238A/ja
Application granted granted Critical
Publication of JP7188222B2 publication Critical patent/JP7188222B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Dc-Dc Converters (AREA)
  • Power Conversion In General (AREA)

Description

本発明は、モニタリングモジュールに関する。
スイッチング電源装置には、電圧平滑用として電解コンデンサが用いられることがある。この電解コンデンサは、経年変化により電解液の量が低下するなどして性能が低下し、残存寿命が比較的短いことが知られている。したがって、スイッチング電源装置の残存寿命は、内蔵された電解コンデンサの残存寿命に依存する場合があった。従来、電源装置に用いられる電解コンデンサに流れるリップル電流を測定して、電解コンデンサの劣化状況を監視する技術が開示されている(例えば、特許文献1を参照)。
特開平09-121471号公報
しかしながら、上記のような従来技術においては、電解コンデンサの入出力電流を直接測定する構成であるため、スイッチング電源装置の内部に組み込むことが求められた。スイッチング電源の内部に回路を追加することなく、スイッチング電源の残存寿命を演算することができれば、スイッチング電源を簡素に構成することができるため好ましい。
本発明は、このような事情を考慮してなされたもので、スイッチング電源の外部からスイッチング電源の残存寿命を演算することができるモニタリングモジュールを提供することを課題とする。
本発明の一実施形態は、スイッチング素子と入力側容量素子と出力側容量素子とを備える電源装置と、当該電源装置の出力電流が供給される負荷装置との間に接続される中継端子と、前記電源装置から前記負荷装置に対して前記中継端子を介して流れる出力電流の波形の周波数特性に基づいて、前記電源装置の入力側容量素子に生じる交流リップル電圧の電圧値に応じた交流リップル電圧検出結果を生成する交流リップル検出部と、前記出力電流の波形の周波数特性に基づいて、前記スイッチング素子のスイッチング動作によって生じるスイッチングリップル電圧の電圧値に応じたスイッチングリップル電圧検出結果を生成するスイッチングリップル検出部と、前記交流リップル検出部が出力する前記交流リップル電圧検出結果と、前記入力側容量素子に生じるリップル電圧の基準値である入力側基準値を示す入力側特性情報とに基づいて、前記入力側容量素子の残存寿命を演算する入力側残存寿命演算部と、前記スイッチングリップル検出部が出力する前記スイッチングリップル電圧検出結果と、前記出力側容量素子に生じるリップル電圧の基準値である出力側基準値を示す出力側特性情報とに基づいて、前記出力側容量素子の残存寿命を演算する出力側残存寿命演算部と、前記入力側残存寿命演算部が演算する前記入力側容量素子の残存寿命と、前記出力側残存寿命演算部が演算する前記出力側容量素子の残存寿命とに基づいて、前記電源装置の残存寿命を演算する電源装置残存寿命演算部と、を備えるモニタリングモジュールである。
この発明によれば、スイッチング電源の外部からスイッチング電源の残存寿命を演算することができる。
本実施形態のシステムの一例を示す図である。 本実施形態の交流リップル検出部の構成の一例を示す図である。 本実施形態のスイッチングリップル検出部の構成の一例を示す図である。 本実施形態の判定しきい値の補正情報の一例を示す図である。
以下、図面を参照して、本発明の実施形態を説明する。
図1は、本実施形態のシステム1の一例を示す図である。システム1は、モニタ装置10と、入力電源20と、電源装置30と、負荷装置40と、外部機器50と、外部機器60とを備える。
入力電源20とは、例えば、商用電源(単相100V~240V、50Hz又は60Hz)である。
電源装置30は、例えば、スイッチング電源装置(以下、SW電源装置ともいう。)であって、供給される交流電力を直流電力に変換して出力する。電源装置30は、入力側端子31と、出力側端子32とを備える。入力側端子31には、第1入力側端子31A(例えば、L極の端子)と、第2入力側端子31B(例えば、N極の端子)とがある。出力側端子32には、第1出力側端子321(例えば、正極電位の出力端子)と、第2出力側端子322(例えば、負極電位の出力端子)とがある。
また、電源装置30は、入力側容量素子33と、スイッチング素子34と、出力側容量素子35と、全波整流素子36とを備える。全波整流素子36は、入力側端子31に供給される交流電圧を全波整流し、全波整流電圧として出力する。入力側容量素子33は、全波整流素子36が出力する全波整流電圧を平滑化する。スイッチング素子34は、電源装置30の制御部(不図示)の制御に基づいてスイッチング動作することによって電圧変換を行う。出力側容量素子35は、スイッチング素子34が変換した電圧を平滑化する。
ここで、入力側容量素子33及び出力側容量素子35とは、電解液が内封されたコンデンサ(一例として、アルミニウム電解コンデンサ)である。一般にアルミニウム電解コンデンサは、余剰電解液の量と電解液が封止ゴム(不図示)を通過して蒸発するスピード、そのスピードを決定する温度などによって定まる寿命を有する。ここで、アルミニウム電解コンデンサの寿命とは、静電容量が許容値を下回ったり、誘電正接が許容値よりも大きくなったり、漏れ電流が許容値よりも大きくなった状態をいう。
なお、アルミニウム電解コンデンサの寿命は、周囲温度や負荷率の変化によって、変化する。ここで負荷率とは、電源装置30の出力電流の設計定格値に対する負荷電流(出力電流I)の割合である。
負荷装置40とは、例えば、電源装置30が出力する出力電流Iが供給されることにより動作する種々の装置である。負荷装置40は、負荷装置端子41を備える。負荷装置端子41には、第1負荷装置端子411(例えば、正極電源端子)と、第2負荷装置端子412(例えば、負極電源端子)とがある。
なお、上述した各端子は、以下の説明において配線が着脱可能であるものとして説明するが、配線が端子にモールドされているものなど着脱不可能であるものであってもよい。
外部機器50とは、例えば、パーソナルコンピュータである。外部機器60は、例えば、計測器である。外部機器50及び外部機器60は、いずれも、モニタ装置10が出力する情報に基づいて、電源装置30に関する情報を利用者に提示可能である。
[モニタ装置10の構成]
モニタ装置10は、モニタリングモジュールとも称し、電源装置30の出力電流Iの状況を監視する。モニタ装置10は、中継端子11と、制御部100と、温度検出部110と、電流検出部120と、交流リップル検出部130と、スイッチングリップル検出部140と、通信部150と、外部出力部160と、表示部170とを備える。
中継端子11は、電源装置30の出力側端子32と、負荷装置40の負荷装置端子41とを接続して、電力の供給を中継する端子である。中継端子11には、第1中継端子11A1と、第2中継端子11A2と、第3中継端子11B1と、第4中継端子11B2とがある。
第1中継端子11A1と、第2中継端子11A2とは互いに電気的に接続されている。第1中継端子11A1には、電源装置30の第1出力側端子321に接続された配線(例えば、正極側配線)が接続される。第2中継端子11A2には、負荷装置40の第1負荷装置端子411に接続された配線(例えば、正極側配線)が接続される。これにより、電源装置30の第1出力側端子321と、負荷装置40の第1負荷装置端子411とが電気的に接続される。
これと同様に、第3中継端子11B1と、第4中継端子11B2とは互いに電気的に接続されている。第3中継端子11B1には、電源装置30の第2出力側端子322に接続された配線(例えば、負極側配線)が接続される。第4中継端子11B2には、負荷装置40の第2負荷装置端子412に接続された配線(例えば、負極側配線)が接続される。これにより、電源装置30の第2出力側端子322と、負荷装置40の第2負荷装置端子412とが電気的に接続される。
すなわち、中継端子11は、スイッチング素子34と入力側容量素子33と出力側容量素子35とを備える電源装置30と、当該電源装置30の出力電流Iが供給される負荷装置40との間に接続される。
温度検出部110は、温度センサを備えており、電源装置30の周囲温度を検出する。温度検出部110は、検出した電源装置30の周囲温度に応じた温度検出結果D1を出力する。
電流検出部120は、電流センサを備えており、第1中継端子11A1から第2中継端子11A2に対して流れる出力電流Iを検出する。電流検出部120は、検出した出力電流Iの電流値に応じた電流検出結果D2を出力する。
交流リップル検出部130は、第1中継端子11A1に接続された正極側入力端子T131と、第3中継端子11B1に接続された負極側入力端子T132と、出力端子(入力側残存寿命出力端子T133)とを備える。交流リップル検出部130のより具体的な構成について、図2を参照して説明する。
図2は、本実施形態の交流リップル検出部130の構成の一例を示す図である。交流リップル検出部130は、バンドパスフィルタ131と、差動増幅器132とを備える。
バンドパスフィルタ131は、正極側入力端子T131と負極側入力端子T132とが接続される。バンドパスフィルタ131は、負極側入力端子T132の電位を基準にした正極側入力端子T131の電位の波形のうち、所定の周波数範囲の波形を抽出する。本実施形態のバンドパスフィルタ131は、入力電源20から供給される電圧の周波数に基づく周波数範囲の波形を抽出する。
この一例において、入力電源20から供給される電圧の周波数が50Hz~60Hz(すなわち、商用周波数)である場合、電源装置30は、この商用周波数の電圧を全波整流して100Hz~120Hzの電圧(すなわち、全波整流電圧)を生成する。電源装置30は、この全波整流電圧について、スイッチング素子34のスイッチング動作によって電圧変換を行う。
この一例の場合、バンドパスフィルタ131は、電源装置30における全波整流電圧の周波数(例えば、100Hz~120Hz)に基づいた周波数範囲(例えば、30Hz~200Hz)の波形を抽出する。
バンドパスフィルタ131は、抽出した波形を差動増幅器132に出力する。
差動増幅器132は、例えば、反転入力型のコンパレータとして構成され、バンドパスフィルタ131の出力と、基準電位VR13との比較結果を出力端子(入力側残存寿命出力端子T133)から出力する。
上述したように電源装置30の入力側容量素子33は、全波整流素子36が整流した全波整流電圧を平滑化する。したがって、電源装置30の出力電圧Vの電圧変動(リップル)のうち、全波整流電圧の周波数のリップルには、入力側容量素子33の性能の状況が現れる。例えば、全波整流電圧の周波数のリップルが所定の基準値以下であれば、入力側容量素子33の性能が維持されている(又は、入力側容量素子33の性能が低下していない)と判定することができる。また、全波整流電圧の周波数のリップルが所定の基準値を超えている場合には、入力側容量素子33の性能が低下していると判定することができる。
以下の説明において、全波整流電圧の周波数のリップル電圧のことを交流リップル電圧(又はACリップル電圧)ともいう。
すなわち、交流リップル検出部130は、電源装置30から負荷装置40に対して中継端子11を介して出力される出力電圧Vの周波数に基づいて、電源装置30の入力側容量素子33に生じる交流リップル電圧の電圧値に応じた交流リップル電圧検出結果R1を生成する。
図1に戻り、スイッチングリップル検出部140は、第1中継端子11A1に接続された正極側入力端子T141と、第3中継端子11B1に接続された負極側入力端子T142と、出力端子(出力側残存寿命出力端子T143)とを備える。スイッチングリップル検出部140のより具体的な構成について、図3を参照して説明する。
図3は、本実施形態のスイッチングリップル検出部140の構成の一例を示す図である。スイッチングリップル検出部140は、バンドパスフィルタ141と、正方向ピークホールド部142と、負方向ピークホールド部143と、差動増幅器144とを備える。
バンドパスフィルタ141は、正極側入力端子T141と負極側入力端子T142とが接続される。バンドパスフィルタ141は、負極側入力端子T142の電位を基準にした正極側入力端子T141の電位の波形のうち、所定の周波数範囲の波形を抽出する。本実施形態のバンドパスフィルタ141は、電源装置30のスイッチング素子34によるスイッチング動作の周波数(つまり、スイッチング周波数)に基づく周波数範囲の波形を抽出する。
一例として、電源装置30のスイッチング周波数が100kHz~150kHzである場合、バンドパスフィルタ141は、電源装置30のスイッチング周波数(例えば、100kHz~150kHz)に基づいた周波数範囲(例えば、50kHz~200kHz)の波形を抽出する。
バンドパスフィルタ141は、抽出した波形を正方向ピークホールド部142及び負方向ピークホールド部143に出力する。
正方向ピークホールド部142及び負方向ピークホールド部143は、いずれも、いわゆるピークホールド回路を備えている。
正方向ピークホールド部142は、バンドパスフィルタ141が抽出した波形のうち、電圧が正方向(+電位方向)の最大値(ピーク値)を保持する。正方向ピークホールド部142は、保持した最大値を差動増幅器144に出力する。
負方向ピークホールド部143は、バンドパスフィルタ141が抽出した波形のうち、電圧が負方向(-電位方向)の最大値(ピーク値)、つまり最小値を保持する。負方向ピークホールド部143は、保持した最小値を差動増幅器144に出力する。
なお、ここでいう最大値又は最小値とは、所定の時間範囲における電圧のピーク値をいう。例えば、正方向ピークホールド部142及び負方向ピークホールド部143は、所定の測定タイミングごとにピークホールド動作を行い、電圧のピーク値を保持する。この結果、電圧のピーク値は、測定タイミングごとに更新される。
差動増幅器144は、正方向ピークホールド部142の出力と、負方向ピークホールド部143の出力との差分を出力する。
上述したように電源装置30の出力側容量素子35は、スイッチング素子34がスイッチング動作することにより発生させた電圧を平滑化する。したがって、電源装置30の出力電圧Vの電圧変動(リップル)のうち、スイッチング周波数に応じた周波数のリップルには、出力側容量素子35の性能の状況が現れる。例えば、出力電圧Vに含まれるスイッチング周波数のリップルが所定の基準値以下であれば、出力側容量素子35の性能が維持されている(又は、出力側容量素子35の性能が低下していない)と判定することができる。また、出力電圧Vに含まれるスイッチング周波数のリップルが所定の基準値を超えている場合には、出力側容量素子35の性能が低下していると判定することができる。
以下の説明において、スイッチング周波数に応じた周波数のリップル電圧のことをスイッチングリップル電圧(又はSWリップル電圧)ともいう。
すなわち、スイッチングリップル検出部140は、出力電圧Vの波形の周波数に基づいて、スイッチング素子34のスイッチング動作によって生じるスイッチングリップル電圧の電圧値に応じたスイッチングリップル電圧検出結果R2を生成する。
ここで、スイッチングリップル検出部140は、出力電圧Vに含まれるスイッチングリップル電圧の波形の最大値と最小値との差分を、スイッチングリップル電圧検出結果R2として生成する。
図1に戻り、制御部100は、例えば、マイクロプロセッサを備えており、入力側残存寿命演算部101と、出力側残存寿命演算部103と、電源装置残存寿命演算部105とをその機能部として備える。
[入力側容量素子の残存寿命の演算]
入力側残存寿命演算部101は、交流リップル検出部130が出力する交流リップル電圧検出結果R1と、入力側容量素子33に生じるリップル電圧の基準値である入力側基準値を示す入力側特性情報C1とに基づいて、入力側容量素子33の残存寿命(入力側素子残存寿命R3)を演算する。
この一例では、入力側基準値とは、入力側容量素子33の残存寿命の判定しきい値である。入力側特性情報C1には、この判定しきい値が含まれる。この一例の場合、入力側残存寿命演算部101は、交流リップル電圧検出結果R1が、残存寿命の判定しきい値以下であれば「残存寿命あり」として、残存寿命を演算し、残存寿命の判定しきい値を超えていれば「残存寿命なし」として、残存寿命を演算する。
ここで「残存寿命」とは、ある時点(例えば、現時点)から電源装置30の寿命が尽きるまでの期間の長さ(例えば、余命)のことをいう。
なお、上述した残存寿命の判定しきい値は、複数の段階に分けられていてもよい。この場合、入力側残存寿命演算部101は、交流リップル電圧検出結果R1と、判定しきい値との比較の結果、残存寿命の長さを複数の段階に分けて判定してもよい。例えば、入力側残存寿命演算部101は、交流リップル電圧検出結果R1が、第1段階の判定しきい値を超えた場合には、入力側容量素子33の残存寿命が1年程度であり、第2段階の判定しきい値を超えた場合には、入力側容量素子33の残存寿命が半年程度であり、第3段階の判定しきい値を超えた場合には、入力側容量素子33の残存寿命なしと演算してもよい。
また、上述した残存寿命の判定しきい値は、電源装置30の種類(例えば、製造メーカー、型番など)毎に、個別に設定されていてもよい。この場合、制御部100は、監視対象の電源装置30の種類を示す情報を取得し、取得した電源装置30の種類を示す情報に基づいて、電源装置30の種類に応じた判定しきい値を選択する。
なお、モニタ装置10は、入力側特性情報C1を記憶する入力側特性情報記憶部102を備えていてもよい。この場合、制御部100は、入力側特性情報記憶部102から入力側特性情報C1を取得し、取得した入力側特性情報C1に基づいて入力側容量素子33の残存寿命を演算する。
また、モニタ装置10は、入力側特性情報記憶部102を備えておらず、入力側特性情報C1を外部の装置(例えば、情報サーバ装置)から取得するように構成されていてもよい。
[周囲温度・負荷率による補正]
上述した入力側特性情報C1には、電源装置30の周囲温度による判定しきい値の補正情報、及び電源装置30の負荷率による判定しきい値の補正情報のいずれか、又は両方が含まれていてもよい。
図4は、本実施形態の判定しきい値の補正情報の一例を示す図である。同図に示すように、判定しきい値の補正情報は、横軸を電源装置30の周囲温度Tと、縦軸を補正係数(以下単に係数ともいう。)として、周囲温度Tの変化に対する補正係数の変化を示す。また、判定しきい値の補正情報は、周囲温度Tの変化に対する補正係数の変化を、電源装置30の負荷率ごとに示す。
同図に示すように入力側特性情報C1に電源装置30の周囲温度による判定しきい値の補正情報が含まれる場合、入力側特性情報C1とは、入力側基準値(例えば、入力側容量素子33の残存寿命の判定しきい値)を、電源装置30の周囲温度毎に示す情報であるといえる。
この場合、入力側残存寿命演算部101は、温度検出部110が出力する温度検出結果D1にさらに基づいて、入力側容量素子33の残存寿命を演算する。
また、同図に示すように入力側特性情報C1に電源装置30の負荷率による判定しきい値の補正情報が含まれる場合、入力側特性情報C1とは、入力側基準値(例えば、入力側容量素子33の残存寿命の判定しきい値)を、電源装置30の負荷率毎に示す情報であるといえる。
ここで、負荷率とは、上述したように、電源装置30の種類ごとに定められる出力電流の設計定格値に対する、実際に電源装置30から出力されている出力電流Iの割合である。つまり、入力側特性情報C1とは、入力側基準値を、電源装置30の出力電流Iの電流値毎に示す情報であるともいえる。
この場合、入力側残存寿命演算部101は、電流検出部120が出力する電流検出結果D2にさらに基づいて、入力側容量素子33の残存寿命を演算する。
[出力側容量素子の残存寿命の演算]
出力側残存寿命演算部103は、上述した入力側残存寿命演算部101と同様にして、出力側容量素子35の残存寿命を演算する。
具体的には、出力側残存寿命演算部103は、スイッチングリップル検出部140が出力するスイッチングリップル電圧検出結果R2と、出力側容量素子35に生じるリップル電圧の基準値である出力側基準値を示す出力側特性情報C2とに基づいて、出力側容量素子35の残存寿命(出力側素子残存寿命R4)を演算する。
この一例では、出力側基準値とは、出力側容量素子35の残存寿命の判定しきい値である。この場合、出力側特性情報C2には、出力側容量素子35の残存寿命の判定しきい値が含まれる。出力側残存寿命演算部103は、スイッチングリップル電圧検出結果R2が、残存寿命の判定しきい値以下であれば残存寿命ありとして、残存寿命を演算し、残存寿命の判定しきい値を超えていれば残存寿命なしとして、残存寿命を演算する。
なお、出力側残存寿命演算部103は、上述した入力側残存寿命演算部101が備える、複数段階の判定しきい値による残存寿命の演算、電源装置30の種類毎の残存寿命の演算、温度・負荷率による残存寿命の補正等の各機能を有している。
例えば、温度による残存寿命の補正機能について、出力側特性情報C2は、出力側基準値を、電源装置30の周囲温度毎に示す情報であって、出力側残存寿命演算部103は、温度検出部110が出力する温度検出結果D1にさらに基づいて、出力側容量素子35の残存寿命を演算する。
また、例えば、負荷率による残存寿命の補正機能について、出力側特性情報C2は、出力電流Iの電流値と、出力側基準値との関係を示す情報であって、出力側残存寿命演算部103は、電流検出部120が出力する電流検出結果D2にさらに基づいて、出力側容量素子35の残存寿命(出力側素子残存寿命R4)を演算する。
これら出力側残存寿命演算部103が有する各機能の詳細については、入力側残存寿命演算部101が有する機能と同様であるため、その説明を省略する。
電源装置残存寿命演算部105は、入力側残存寿命演算部101が演算する入力側容量素子33の残存寿命と、出力側残存寿命演算部103が演算する出力側容量素子35の残存寿命とに基づいて、電源装置30の残存寿命(電源装置残存寿命R5)を演算する。
具体的には、電源装置残存寿命演算部105は、演算された入力側容量素子33の残存寿命と出力側容量素子35の残存寿命とのうち短いほうの残存寿命を、電源装置残存寿命R5として演算する。
通信部150及び外部出力部160はそれぞれ、電源装置残存寿命演算部105が演算する電源装置30の残存寿命(電源装置残存寿命R5)を示す残存寿命情報を、無線又は有線によって外部機器50(又は他の外部機器60)に出力する。なお、外部出力部160は、外部出力端子を備えるものとして構成されていてもよい。
ここで、残存寿命情報とは、電源装置30の残存寿命を示す数値であってもよいし、電源装置30の残存寿命がない(又は少ない)ことを示す記号や文字列であってもよい。
なお、通信部150は、電源装置30の残存寿命が所定値よりも少ない場合に、残存寿命情報を出力するものとして構成されていてもよい。
表示部170は、例えば、液晶ディスプレイなどの表示デバイスを備えており、電源装置30の残存寿命を示す残存寿命情報を表示する。
[実施形態のまとめ]
以上説明したように、本実施形態のモニタ装置10は、交流リップル検出部130及びスイッチングリップル検出部140を備え、電源装置30の出力電流Iのリップルの状態を監視することにより、電源装置30の残存寿命を演算することができる。
このように構成された本実施形態のモニタ装置10によれば、電源装置30の実際の使用状況に応じて演算された残存寿命に基づいて、電源装置30の運用管理を行うことができる。例えば、本実施形態のモニタ装置10によれば、電源装置30の設計寿命(例えば、電源装置30の保証期間)を超えて電源装置30を使用する場合であっても、残存寿命が示されることにより、利用者が安心して電源装置30を使用し続けることができる。つまり、本実施形態のモニタ装置10によれば、電源装置30の実際の利用状況における寿命を延ばすことができる。
また、本実施形態のモニタ装置10は、入力側、出力側の双方の容量素子の残存寿命に基づいて電源装置30の残存寿命を演算する。このように構成された本実施形態のモニタ装置10によれば、いずれか一方の容量素子の残存寿命を演算する場合に比べて、電源装置30の残存寿命の演算精度をより向上させることができる。
以上、本発明の実施形態を図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更を加えることができる。上述した各実施形態に記載の構成を組み合わせてもよい。
なお、上記の実施形態における各装置が備える各部は、専用のハードウェアにより実現されるものであってもよく、また、メモリおよびマイクロプロセッサにより実現させるものであってもよい。
なお、モニタ装置10は、制御部100がメモリおよびCPU(中央演算装置)により構成され、制御部100の機能を実現するためのプログラムをメモリにロードして実行することによりその機能を実現させるものであってもよい。
1…システム、10…モニタ装置、11…中継端子、20…入力電源、30…電源装置、40…負荷装置、50…外部機器、100…制御部、101…入力側残存寿命演算部、102…入力側特性情報記憶部、103…出力側残存寿命演算部、104…出力側特性情報記憶部、105…電源装置残存寿命演算部、110…温度検出部、120…電流検出部、130…交流リップル検出部、140…スイッチングリップル検出部、150…通信部、160…外部出力部、170…表示部

Claims (7)

  1. スイッチング素子と入力側容量素子と出力側容量素子とを備える電源装置と、当該電源装置の出力電流が供給される負荷装置との間に接続される中継端子と、
    前記電源装置から前記負荷装置に対して前記中継端子を介して流れる出力電流の波形の周波数特性に基づいて、前記電源装置の入力側容量素子に生じる交流リップル電圧の電圧値に応じた交流リップル電圧検出結果を生成する交流リップル検出部と、
    前記出力電流の波形の周波数特性に基づいて、前記スイッチング素子のスイッチング動作によって生じるスイッチングリップル電圧の電圧値に応じたスイッチングリップル電圧検出結果を生成するスイッチングリップル検出部と、
    前記交流リップル検出部が出力する前記交流リップル電圧検出結果と、前記入力側容量素子に生じるリップル電圧の基準値である入力側基準値を示す入力側特性情報とに基づいて、前記入力側容量素子の残存寿命を演算する入力側残存寿命演算部と、
    前記スイッチングリップル検出部が出力する前記スイッチングリップル電圧検出結果と、前記出力側容量素子に生じるリップル電圧の基準値である出力側基準値を示す出力側特性情報とに基づいて、前記出力側容量素子の残存寿命を演算する出力側残存寿命演算部と、
    前記入力側残存寿命演算部が演算する前記入力側容量素子の残存寿命と、前記出力側残存寿命演算部が演算する前記出力側容量素子の残存寿命とに基づいて、前記電源装置の残存寿命を演算する電源装置残存寿命演算部と、
    を備えるモニタリングモジュール。
  2. 前記入力側特性情報は、前記入力側基準値を、前記電源装置の周囲温度毎に示す情報を含み、
    前記出力側特性情報は、前記出力側基準値を、前記電源装置の周囲温度毎に示す情報を含み、
    前記電源装置の周囲温度に応じた温度検出結果を出力する温度検出部
    をさらに備え、
    前記入力側残存寿命演算部は、前記温度検出部が出力する前記温度検出結果にさらに基づいて、前記入力側容量素子の残存寿命を演算し、
    前記出力側残存寿命演算部は、前記温度検出部が出力する前記温度検出結果にさらに基づいて、前記出力側容量素子の残存寿命を演算する
    請求項1に記載のモニタリングモジュール。
  3. 前記入力側特性情報は、前記出力電流の電流値と、前記入力側基準値との関係を示す情報を含み、
    前記出力側特性情報は、前記出力電流の電流値と、前記出力側基準値との関係を示す情報を含み、
    前記出力電流の電流値に応じた電流検出結果を出力する電流検出部
    をさらに備え、
    前記入力側残存寿命演算部は、前記電流検出部が出力する前記電流検出結果にさらに基づいて、前記入力側容量素子の残存寿命を演算し、
    前記出力側残存寿命演算部は、前記電流検出部が出力する前記電流検出結果にさらに基づいて、前記出力側容量素子の残存寿命を演算する
    請求項1又は請求項2に記載のモニタリングモジュール。
  4. 前記スイッチングリップル検出部は、
    前記スイッチングリップル電圧の最大値と最小値との差分を、前記スイッチングリップル電圧検出結果として生成する
    請求項1から請求項3のいずれか一項に記載のモニタリングモジュール。
  5. 前記電源装置残存寿命演算部が演算する前記電源装置の残存寿命を示す残存寿命情報を、無線又は有線によって他の装置に出力する通信部
    をさらに備える請求項1から請求項4のいずれか一項に記載のモニタリングモジュール。
  6. 前記通信部は、
    前記電源装置の残存寿命が所定値よりも少ない場合に、前記残存寿命情報を出力する
    請求項5に載のモニタリングモジュール。
  7. 前残存寿命情報に基づく情報を表示する表示部
    をさらに備える請求項1から請求項6のいずれか一項に記載のモニタリングモジュール。
JP2019057444A 2019-03-25 2019-03-25 モニタリングモジュール Active JP7188222B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019057444A JP7188222B2 (ja) 2019-03-25 2019-03-25 モニタリングモジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019057444A JP7188222B2 (ja) 2019-03-25 2019-03-25 モニタリングモジュール

Publications (2)

Publication Number Publication Date
JP2020162238A JP2020162238A (ja) 2020-10-01
JP7188222B2 true JP7188222B2 (ja) 2022-12-13

Family

ID=72640148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019057444A Active JP7188222B2 (ja) 2019-03-25 2019-03-25 モニタリングモジュール

Country Status (1)

Country Link
JP (1) JP7188222B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113689044B (zh) * 2021-08-26 2024-06-21 北京航空航天大学 一种开关电源剩余使用寿命预测方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010193627A (ja) 2009-02-18 2010-09-02 Dx Antenna Co Ltd 寿命検出装置および寿命検出方法
JP2018191446A (ja) 2017-05-09 2018-11-29 株式会社日立製作所 電力変換装置及び電力変換装置の診断方法
JP2018194489A (ja) 2017-05-19 2018-12-06 星和電機株式会社 コンデンサ劣化判定ユニット、電源装置及びコンデンサ劣化判定方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128270A (ja) * 1986-11-18 1988-05-31 Nippon Chemicon Corp 電解コンデンサの劣化検出回路
JP3655077B2 (ja) * 1998-01-29 2005-06-02 東芝エフエーシステムエンジニアリング株式会社 電源装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010193627A (ja) 2009-02-18 2010-09-02 Dx Antenna Co Ltd 寿命検出装置および寿命検出方法
JP2018191446A (ja) 2017-05-09 2018-11-29 株式会社日立製作所 電力変換装置及び電力変換装置の診断方法
JP2018194489A (ja) 2017-05-19 2018-12-06 星和電機株式会社 コンデンサ劣化判定ユニット、電源装置及びコンデンサ劣化判定方法

Also Published As

Publication number Publication date
JP2020162238A (ja) 2020-10-01

Similar Documents

Publication Publication Date Title
KR102554612B1 (ko) 배터리 내부저항 측정 장치 및 방법
US20170187215A1 (en) Charging device
JP6755126B2 (ja) 二次電池の劣化判定装置
US20110115427A1 (en) Energy storage device
JP2013527613A (ja) 光起電力システム及び装置の接点の診断方法
CN109061314B (zh) 一种检测逆变器的滤波电容容值的方法及装置
US10345361B2 (en) Monitoring system for detecting error of harmonic filter in high voltage direct current (HVDC) system, and monitoring method thereof
JP6037951B2 (ja) フィルタ回路
CN111007327A (zh) 一种变流器及其电容器的状态监测方法和设备
JP7188222B2 (ja) モニタリングモジュール
WO2016024490A1 (ja) 充電装置
KR102027558B1 (ko) 고압 직류 송전 시스템에 포함되는 고조파 필터의 손실을 측정하는 손실 전력 측정 시스템 및 그의 손실 전력 측정 방법
JP6240059B2 (ja) 電源装置内部の1次平滑コンデンサの劣化状態の推定装置及びその方法
CN112636304A (zh) 一种过流保护装置、方法和pfc电路
KR20100104216A (ko) 축전지 진단장치
JP6357384B2 (ja) インピーダンス測定方法およびその測定装置
JP2009014428A (ja) 電源装置および電気機器
WO2016039204A1 (ja) バッテリーチェッカー
KR101316972B1 (ko) 스위칭 전원장치의 수명감지회로
JP5618575B2 (ja) 蓄電池評価装置及び方法
KR102309483B1 (ko) 전원 공급 이상 여부 감지 장치
CN202435254U (zh) 一种开关电源控制芯片的频率调节装置
JP2001327162A (ja) 電源装置およびこれに用いるアルミ電解コンデンサ
CN108333515B (zh) 可显示电池内阻信息的不断电系统
JP2009131125A (ja) 電気車制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211229

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221031

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221114

R150 Certificate of patent or registration of utility model

Ref document number: 7188222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150