WO2020026427A1 - 整流装置及びそれを備えた車両用交流発電装置 - Google Patents

整流装置及びそれを備えた車両用交流発電装置 Download PDF

Info

Publication number
WO2020026427A1
WO2020026427A1 PCT/JP2018/029169 JP2018029169W WO2020026427A1 WO 2020026427 A1 WO2020026427 A1 WO 2020026427A1 JP 2018029169 W JP2018029169 W JP 2018029169W WO 2020026427 A1 WO2020026427 A1 WO 2020026427A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode side
mosfet
semiconductor element
voltage
negative electrode
Prior art date
Application number
PCT/JP2018/029169
Other languages
English (en)
French (fr)
Inventor
眞一郎 南
勝也 辻本
小紫 啓一
真吾 井上
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP18928255.1A priority Critical patent/EP3832875B1/en
Priority to US17/254,354 priority patent/US11932111B2/en
Priority to PCT/JP2018/029169 priority patent/WO2020026427A1/ja
Priority to JP2020534010A priority patent/JP6918244B2/ja
Priority to CN201880096187.6A priority patent/CN112514232B/zh
Publication of WO2020026427A1 publication Critical patent/WO2020026427A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/04Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for rectification
    • H02K11/049Rectifiers associated with stationary parts, e.g. stator cores
    • H02K11/05Rectifiers associated with casings, enclosures or brackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/0085Partially controlled bridges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • H02P9/26Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
    • H02P9/30Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices
    • H02P9/305Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices controlling voltage
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20909Forced ventilation, e.g. on heat dissipaters coupled to components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present application relates to a rectifier and an AC generator for a vehicle including the rectifier.
  • both the semiconductor element on the positive electrode side and the semiconductor element on the negative electrode side have a PN junction diode. Also, a Schottky barrier diode that can reduce the forward drop voltage is used.
  • a MOSFET can lower the voltage drop and has a small leakage current, but is expensive, so that using MOSFETs on both the positive electrode side and the negative electrode side increases the cost. there were.
  • the rectifier according to the present application is: A semiconductor element on the positive side connected to the output terminal on the positive side and a semiconductor element on the negative side connected to the output terminal on the negative side are connected in series, and the connection point of the series connection is connected to the corresponding AC power supply.
  • the semiconductor element on the positive electrode side and the semiconductor element on the negative electrode side have at least a rectifying function of flowing a current from the negative electrode side to the positive electrode side,
  • One of the semiconductor element on the positive electrode side and the semiconductor element on the negative electrode side is a MOSFET for all of the n sets,
  • the other of the semiconductor element on the positive electrode side and the semiconductor element on the negative electrode side is a specific diode for at least one of the n sets,
  • the specific diode is a Schottky barrier diode or a MOS diode which is a MOSFET in which a drain terminal and a gate terminal are short-circuited.
  • the vehicle AC generator according to the present application includes the rectifier and the n-phase winding as the AC power supply.
  • the specific diode is used for at least one of the n sets on the other of the positive electrode side and the negative electrode side
  • MOSFETs are provided on both the positive electrode side and the negative electrode side.
  • the cost can be reduced as compared with the case where it is used.
  • the MOSFET is used on one of the positive electrode side and the negative electrode side
  • rectification loss can be reduced as compared with the case where a Schottky barrier diode is used on both the positive electrode side and the negative electrode side.
  • the leakage current can be reduced by the MOSFETs provided on one of the positive electrode side and the negative electrode side, and even if a Schottky barrier diode is used, an increase in the leakage current flowing through the series circuit can be suppressed. Since the MOS diode has a small leakage current, an increase in the leakage current can be suppressed. Therefore, increase in cost, rectification loss, and leakage current can be suppressed.
  • FIG. 2 is a circuit diagram of a rectifier and a vehicle power generator according to Embodiment 1.
  • 3 is a time chart for explaining a phase voltage waveform according to the first embodiment.
  • FIG. 4 is a diagram illustrating reduction of rectification loss according to the first embodiment.
  • FIG. 4 is a diagram illustrating reduction of leakage current according to the first embodiment.
  • FIG. 3 is a diagram illustrating a current path when a high-voltage surge according to the first embodiment occurs.
  • FIG. 2 is a cross-sectional view of the vehicle power generation device according to Embodiment 1.
  • FIG. 2 is a schematic partial cross-sectional view of the vehicle power generator according to Embodiment 1.
  • FIG. 2 is a partial perspective view of the rectifier according to Embodiment 1.
  • FIG. 2 is an exploded partial perspective view of the rectifier according to Embodiment 1.
  • FIG. 2 is a schematic sectional view of a package of the MOSFET according to the first embodiment.
  • FIG. 3 is a diagram of one surface of a chip of the MOSFET according to the first embodiment;
  • FIG. 2 is a diagram of the other surface of the MOSFET chip according to the first embodiment;
  • FIG. 9 is a circuit diagram of a rectifier and a vehicular power generator according to a second embodiment. 9 is a time chart for explaining a phase voltage waveform according to the second embodiment.
  • FIG. 7 is a schematic partial cross-sectional view of a vehicle power generator according to Embodiment 2.
  • FIG. 10 is a partial perspective view of a rectifier according to another embodiment.
  • FIG. 1 is a circuit diagram of the rectifier 1 and the power generator 10 for a vehicle.
  • the vehicle power generation device 10 includes a stator 39 fixed to a housing 34 and a rotation member disposed radially inside the stator 39 and rotatably supported by the housing 34. And a child 38 (see FIG. 6).
  • the stator 39 is provided with three-phase windings 9U, 9V, and 9W, and the rotor 38 is provided with the field winding 14.
  • the three-phase windings 9U, 9V, and 9W are star-connected.
  • the three-phase windings 9U, 9V, and 9W may be ⁇ -connected or staggered-connected.
  • the vehicle power generation device 10 generates power by the rotational driving force of the engine.
  • the rotating shaft 36 of the rotor 38 is connected to a crankshaft of the engine via a connecting mechanism such as a pulley and a belt mechanism.
  • the field winding 14 is connected in series between the positive output terminal 5 and the negative output terminal 6 via a switching element 15 for the field winding.
  • a freewheel diode 16 is connected in parallel to the field winding 14 and returns a current flowing through the field winding 14 when the switching element 15 for the field winding is off.
  • a MOSFET or the like is used for the switching element 15 for the field winding.
  • the gate terminal of the switching element 15 for the field winding is connected to the drive circuit 9 provided in the voltage control circuit 12.
  • the terminal of the U-phase winding 9U is connected to the voltage control circuit 12, and the voltage control circuit 12 detects the rotation speed of the rotor 38 based on the fluctuation of the terminal voltage of the U-phase winding 9U. I do.
  • the voltage control circuit 12 drives the switching element 15 for the field winding on and off so that the generated voltage of the vehicle power generator 10 approaches a target voltage (for example, 14 V).
  • the vehicle power generator 10 includes the rectifier 1 that rectifies the three-phase AC voltage output from the three-phase windings 9U, 9V, and 9W and converts the voltage into a DC voltage.
  • the rectifier 1 includes a series circuit in which a positive-side semiconductor element 2 connected to a positive-side output terminal 5 and a negative-side semiconductor element 3 connected to a negative-side output terminal 6 are connected in series. Set is provided. A connection point 11 of the series connection of the semiconductor element 2 on the positive electrode side and the semiconductor element 3 on the negative electrode side is connected to a corresponding winding as an AC power supply.
  • power storage device 101 is a 14 V lead storage battery.
  • the semiconductor element 2 on the positive electrode side and the semiconductor element 3 on the negative electrode side have at least a rectifying function of flowing a current from the negative electrode side to the positive electrode side.
  • One of the semiconductor element 2 on the positive electrode side and the semiconductor element 3 on the negative electrode side is a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) for all three sets.
  • the other of the semiconductor element 2 on the positive electrode side and the semiconductor element 3 on the negative electrode side is a specific diode for at least one (all in this example) of three sets.
  • the specific diode is a Schottky barrier diode (hereinafter referred to as SBD (Schottky Barrier Diode)).
  • SBD Schottky Barrier Diode
  • the SBD is a diode using a Schottky barrier generated by a junction between a metal and a semiconductor.
  • an SBD has a lower forward voltage drop and a higher switching speed than a PN junction diode, but has a large reverse leakage current and a low reverse breakdown voltage.
  • the semiconductor element 2 on the positive electrode side is a MOSFET for all three sets.
  • the semiconductor element 3 on the negative electrode side is SBD for all three sets.
  • the drain terminal D of the positive side MOSFET is connected to the output terminal 5 on the positive side
  • the source terminal S of the positive side MOSFET is connected to the cathode terminal K of the negative side SBD
  • the anode terminal A of the SBD on the side is connected to the output terminal 6 on the negative side.
  • a connection point 11 between the MOSFET on the positive side and the SBD on the negative side is connected to a corresponding winding.
  • the MOSFET on the positive side has a parasitic diode 7 formed by a PN junction.
  • the cathode terminal of the parasitic diode 7 is connected to the output terminal 5 on the positive side.
  • the anode terminal of the parasitic diode 7 is connected to the output terminal on the negative side. 6 side. Therefore, the parasitic diode 7 of the MOSFET on the positive electrode side and the SBD on the negative electrode side have a rectifying function of flowing a current from the negative electrode side to the positive electrode side.
  • the rectifier 1 includes a control circuit 8 that drives each of the positive-side MOSFETs on and off.
  • each of the positive-side MOSFETs is provided with an integrated circuit (IC) as a control circuit 8 for driving the MOSFETs on and off.
  • the control circuit 8 is connected to the drain terminal D and the source terminal S of the MOSFET, and detects the voltage at the drain terminal D and the source terminal S.
  • the control circuit 8 is connected to the gate terminal G of the MOSFET, outputs an ON signal to the gate terminal G when the voltage of the source terminal S exceeds the voltage of the drain terminal D, and turns on the MOSFET. I do.
  • the control circuit 8 when the voltage of the source terminal S is lower than the voltage of the drain terminal D, the control circuit 8 outputs an off signal to the gate terminal G to turn off the MOSFET.
  • the control circuit 8 sets the ON point of the MOSFET on the basis of the point in time when the difference voltage obtained by subtracting the voltage of the drain terminal D from the voltage of the source terminal S exceeds a preset ON determination threshold, and The off point of the MOSFET is set based on the point in time when the value falls below a preset off determination threshold.
  • FIG. 2 shows a phase voltage waveform of any one phase (for example, U phase).
  • the U-phase phase voltage VU corresponds to the voltage at the connection point 11U connected to the U-phase winding, the voltage at the source terminal S of the U-phase positive side MOSFET, and the cathode of the U-phase negative side SBD. It becomes equal to the voltage of the terminal K.
  • the voltage VB of the output terminal 5 on the positive electrode side is equal to the voltage of the drain terminal D of the MOSFET on the U-phase positive electrode side.
  • the voltage VN at the negative output terminal 6 is equal to the voltage at the anode terminal A of the U-phase negative SBD.
  • the U-phase positive voltage As shown in FIG. 2, during the period when the U-phase phase voltage VU (the voltage at the source terminal S) exceeds the voltage VB (the voltage at the drain terminal D) at the positive output terminal 5, the U-phase positive voltage Are turned on.
  • the U-phase positive-side MOSFET is turned off at both ends of the period exceeding the period.
  • the source terminal S and the drain terminal D conduct, and the voltage drop from the source terminal S to the drain terminal D is the voltage obtained by multiplying the resistance of the n-type semiconductor in the MOSFET by the current flowing. For example, under a condition of 25 ° C. and a current of 100 A, the voltage drops to 0.1 V or less.
  • the voltage drop from the source terminal S to the drain terminal D is a forward voltage drop of the parasitic diode 7 due to the PN junction. The voltage drops to about 0.7V. Therefore, by turning on the MOSFET during a period when the voltage of the source terminal S exceeds the voltage of the drain terminal D, rectification loss in the MOSFET can be significantly reduced. Note that the rectification loss is an integrated value of a value obtained by multiplying a voltage drop indicated by hatching in FIG. 2 by an energizing current.
  • the voltage drop from the anode terminal A to the cathode terminal K is , SBD, for example, under a condition of 25 ° C. and a current of 100 A, a voltage drop of about 0.6 V, and a rectification loss corresponding to the voltage drop of 0.6 V occurs.
  • the rectification loss is 35 %, And the power generation efficiency of the vehicle power generation device 10 can be improved.
  • FIG. 4 shows the leakage current of the rectifier 1 when the vehicle power generator 10 is stopped.
  • the voltage of the power storage device 101 is applied to the rectifier 1 even when the vehicle power generator 10 is stopped.
  • the leakage current flowing from the positive electrode side to the negative electrode side in each series circuit increases exponentially as the element temperature increases. For example, at an element temperature of 120 ° C., a leakage current of several mA occurs. When the leakage current increases, the heat generated by the element increases. Therefore, in the comparative example, it is necessary to carefully design the heat of the cooling mechanism and the like so that thermal runaway does not occur.
  • the leakage current of the parasitic diode 7 due to the PN junction is smaller than that of the SBD. Therefore, in the present embodiment using the MOSFET on the positive electrode side and the SBD on the negative electrode side, in each series circuit, the leakage current can be reduced by the MOSFET on the positive electrode side, and even if the element temperature becomes high, each series circuit Is suppressed from increasing. For example, even at an element temperature of 120 ° C., the leakage current can be suppressed to about 0.1 mA. Therefore, in the present embodiment, the concern of thermal runaway can be eliminated, and the reliability of the device can be improved.
  • the breakdown voltage of the SBD on the negative electrode side is lower than the clamp voltage of the MOSFET on the positive electrode side.
  • the drain-source difference voltage which is obtained by subtracting the voltage of the source terminal S from the voltage of the drain terminal D
  • a clamp circuit is provided to prevent the source difference voltage from exceeding the clamp voltage.
  • the clamp voltage is set lower than the breakdown voltage of the parasitic diode 7 so that the MOSFET does not fail due to the breakdown of the parasitic diode 7.
  • Types of the clamp circuit include an active clamp circuit having a Zener diode between the drain terminal D and the source terminal S, an avalanche clamp circuit having a Zener diode connected in anti-parallel to the MOSFET, and the like.
  • the clamp circuit is built in the control circuit 8 (IC).
  • the SBD on the negative electrode breaks down before the clamp circuit of the MOSFET on the positive electrode operates. Then, the terminal voltages of the three-phase windings 9U, 9V, and 9W can be fixed to the breakdown voltage of the SBD on the negative side, so that an excessive voltage is not applied to the MOSFET on the positive side.
  • the phase voltage of the V-phase winding 9V becomes lower than that of the electric wire on the negative side, and the current flows from the electric wire on the negative side to the V-phase winding 9V through the SBD 3V on the negative side of the V-phase to the electric wire on the negative side.
  • the potential difference at the connection point 11V of the V-phase series circuit is fixed to a negative value of the forward drop voltage of the SBD.
  • the phase voltage of the W-phase winding 9W becomes lower than that of the negative wire, and the current flows from the negative wire through the W-phase negative SBD 3W to the W-phase winding 9W, and the current to the negative wire is reduced.
  • the potential difference at the connection point 11W of the W-phase series circuit is fixed to a negative value of the forward drop voltage of the SBD.
  • the three SBDs on the negative electrode side can prevent the voltages at the connection points 11U, 11V, and 11W of the series circuit of each phase from exceeding the breakdown voltage of the SBD. Voltage can be prevented from being applied. In addition, energy can be consumed by the three SBDs on the negative electrode side to attenuate the high voltage surge. In addition, since energy is consumed in a well-balanced manner by the three SBDs on the negative electrode side, it is possible to prevent the SBDs from generating uneven heat. Therefore, by using the MOSFET on the positive electrode side and the SBD on the negative electrode side, the MOSFET can be protected from a high voltage surge, and the high voltage surge can be efficiently attenuated by the power consumption of the SBD.
  • FIG. 6 is a cross-sectional view of the vehicular power generating device 10 cut along a plane passing through the axis of the rotating shaft 36.
  • the vehicle power generator 10 includes a stator 39 fixed to the housing 34 and a rotor 38 disposed radially inside the stator 39 and rotatably supported by the housing 34.
  • the rotor 38 and the stator 39 are housed in the housing 34.
  • the rotation shaft 36 penetrates the center of the rotor 38 and rotates integrally with the rotor 38.
  • the rotating shaft 36 is rotatably supported on the housing 34 via bearings 35 on both sides of the stator 39 in the axial direction.
  • the housing 34 includes a front housing 32 and a rear housing 33.
  • the front housing 32 has a cylindrical outer peripheral wall and a disk-shaped side wall extending radially inward from the front end of the outer peripheral wall, and the rotation shaft 36 penetrates the center of the side wall. , A through hole to which the bearing 35 is fixed is provided.
  • the rear housing 33 has a cylindrical outer peripheral wall, and a disk-shaped side wall extending radially inward from the rear end of the outer peripheral wall, and the rotation shaft 36 penetrates the center of the side wall. , A through hole to which the bearing 35 is fixed is provided.
  • the front housing 32 and the rear housing 33 are connected by bolts extending in the axial direction.
  • the front end of the rotating shaft 36 penetrates through the through-hole of the front housing 32 and protrudes forward from the front housing 32.
  • the pulley 37 is fixed to this protruding portion.
  • a belt is stretched between the pulley 37 and a pulley fixed to the crankshaft of the engine, and the rotational driving force of the engine is transmitted to the rotating shaft 36.
  • the rear end of the rotating shaft 36 penetrates through the through-hole of the rear housing 33 and protrudes rearward from the rear housing 33.
  • a pair of slip rings 40 are provided on this protruding portion. .
  • the pair of slip rings 40 are connected to the field winding 14 of the rotor 38.
  • the rotor 38 is of a Rundel type (also called a claw pole type).
  • the field core 82 of the rotor 38 includes a cylindrical central portion 57, a front claw portion 58 extending from a front end of the central portion 57 to a radial outside of the central portion 57, And a rear claw portion 59 extending from the rear end portion to the radial outside of the center portion 57.
  • the insulated copper wire of the field winding 14 is wound concentrically around the outer peripheral surface of the central portion 57 of the field iron core 82.
  • the claw portions 58 on the front side and the claw portions 59 on the rear side are provided alternately in the circumferential direction, and have different magnetic poles. For example, six or eight front claw portions 58 and rear claw portions 59 are provided, respectively.
  • the stator 39 is arranged so as to surround the rotor 38 with a small gap therebetween, and has a cylindrical stator core 91 provided with slots, and a three-phase winding wound around the slots of the stator core 91. 9U, 9V, and 9W.
  • the three-phase windings 9U, 9V, and 9W have a front-side coil end portion 43 protruding forward from the stator core 91 and a rear-side coil end portion 44 protruding rearward from the stator core 91. .
  • the lead wires 50 of the three-phase windings 9U, 9V, and 9W pass through the rear housing 33 and extend to the rear side.
  • the front housing 32 and the rear housing 33 are provided at an interval in the axial direction.
  • the stator core 91 is sandwiched from both ends in the axial direction by a rear opening end of the front housing 32 and a front opening end of the rear housing 33.
  • FIG. 7 shows a partial cross-sectional view of a schematic vehicle power generation device 10 for describing the flow of the cooling air on the rear side and the arrangement of each member.
  • a front fan 41 having a plurality of blades is attached to a front end of the field iron core 82, and a plurality of blades are attached to a rear end of the field iron core 82.
  • a rear fan 42 having blades is mounted, and they rotate integrally with the rotor 38.
  • the front-side fan 41 and the rear-side fan 42 send air to the outside in the radial direction, respectively, and cool the front-side coil end portion 43 and the rear-side coil end portion 44 arranged outside in the radial direction.
  • the outer peripheral wall portion of the front housing 32 radially outside the front fan 41 and the outer peripheral wall portion of the rear housing 33 radially outside the rear fan 42 are each dispersed in the circumferential direction. Discharge port 45 is formed. The air sent to the outside in the radial direction by the front fan 41 and the rear fan 42 is discharged outside through the outlet 45 of the front housing 32 and the rear housing 33.
  • a plurality of intake ports 46 distributed in the circumferential direction are respectively provided on a side wall portion of the front housing 32 on the front side of the front fan 41 and a side wall portion of the rear housing 33 on the rear side of the rear fan 42. Are formed.
  • the air drawn into the front fan 41 flows from the front side to the rear side through the suction port 46 in the side wall of the front housing 32.
  • the air drawn into the rear fan 42 flows from the rear side to the front side through the suction port 46 in the side wall of the rear housing 33.
  • the cylindrical space radially outside the rear-side protruding portion of the rotating shaft 36 protruding rearward from the rear-side housing 33 includes the rectifier 1, the pair of brushes 48, the brush holder 49, the voltage control circuit 12, and the like.
  • the circuit is located.
  • the pair of brushes 48 slide on each of the pair of slip rings 40, and the brush holder 49 accommodates the brushes 48.
  • the voltage control circuit 12 controls the electric power supplied to the field winding 14 via the brush 48 and the slip ring 40 as described above.
  • the protection cover 27 has a cylindrical outer peripheral wall and a disk-shaped side wall extending radially inward from a rear end of the outer peripheral wall.
  • a connector 20 for inputting and outputting signals between the voltage control circuit 12 and an external device (not shown) is fixed to an outer peripheral portion of the protective cover 27.
  • a plurality of suction ports 47 are formed on the side wall of the protective cover 27 so as to be dispersed in the circumferential direction and the radial direction.
  • the air sucked into the suction port 46 on the side wall of the rear housing 33 flows from the rear side to the front side through the suction port 47 on the side wall of the protective cover 27.
  • the cooling air flows in the protection cover 27 in the axial direction from the rear side to the front side, and each circuit arranged in the protection cover 27 is cooled.
  • the SBD on the negative electrode side has a larger rectification loss and a larger amount of heat generation than the MOSFET on the positive electrode side.
  • the SBD on the negative electrode side is arranged downstream of the cooling air from the MOSFET on the positive electrode side.
  • the SBD on the negative electrode side is arranged on the front side of the MOSFET on the positive electrode side. Contrary to the present embodiment, if an SBD having a large heat generation is arranged on the upstream side, the cooling of the SBD can be improved, but the cooling air is warmed on the upstream side, and the cooling of the MOSFET on the downstream side is deteriorated.
  • the MOSFET having a small calorific value is arranged on the upstream side, so that the MOSFET on the upstream side can be cooled well, the temperature rise of the cooling air on the upstream side is suppressed, and The deterioration of the cooling of the SBD can be suppressed. That is, in the arrangement of the present embodiment, the cooling efficiency of the entire SBD and MOSFET can be improved.
  • the negative electrode side SBD has a characteristic that the higher the temperature is, the smaller the forward voltage drop from the negative electrode side to the positive electrode side is.
  • the SBD on the negative electrode side is arranged on the downstream side of the cooling air more than the MOSFET on the positive electrode side, so that the SBD on the negative electrode side is arranged more upstream of the cooling air than the MOSFET on the positive electrode side.
  • the temperature of the SBD can be increased. Therefore, the forward voltage drop of the SBD can be reduced, and the rectification loss of the SBD can be reduced.
  • the leakage current of the SBD increases. However, since the leakage current is reduced by the MOSFET on the positive electrode side, the increase in the leakage current of the series circuit is suppressed.
  • the rectifying device 1 includes a heat sink 18A on the positive electrode side and a heat sink 18B on the negative electrode side. All the positive-side MOSFETs are fixed to the positive-side heat sink 18A. All positive electrode side SBDs are fixed to the negative side heat sink 18B. The heat sink 18B on the negative electrode side to which the SBD is fixed is disposed downstream (front side in this example) of the cooling air from the heat sink 18A on the positive electrode side to which the MOSFET is fixed.
  • the rectifier 1 includes a positive-side MOSFET, a negative-side SBD, three-phase windings 9U, 9V, 9W, a positive-side output terminal 5, and a negative-side output terminal 5.
  • a circuit board 19 for connecting the output terminals 5 is provided.
  • FIG. 8 is a partial perspective view of the heat sink 18A on the positive electrode side to which the MOSFET is fixed, the heat sink 18B on the negative electrode side to which the SBD is fixed, and the circuit board 19 viewed obliquely from the rear side.
  • FIG. 9 is an exploded partial perspective view of the heat sink 18A on the positive electrode side, the heat sink 18B on the negative electrode side, and the circuit board 19 disassembled in the axial direction and obliquely viewed from the rear side.
  • the circuit board 19 is sandwiched between the heat sink 18A on the positive electrode side and the heat sink 18B on the negative electrode side in the flow direction of the cooling air.
  • MOSFETAll the MOSFETs on the positive electrode side are arranged on the same plane, and all the SBDs on the negative electrode side are arranged on the same plane.
  • the plane on which all the positive-side MOSFETs are arranged and the plane on which all the negative-side SBDs are arranged are displaced in the flow direction (axial direction in this example) of the cooling air. According to this configuration, the temperature of the MOSFET on the positive electrode side arranged on the same plane can be made uniform, and the temperature of the SBD on the negative electrode side arranged on the same plane can be made uniform.
  • the plane on which all the positive-side MOSFETs are arranged and the plane on which all the negative-side SBDs are arranged are orthogonal to the flow direction (axial direction in this example) of the cooling air. . Therefore, the contact of the cooling air to each MOSFET and each SBD can be made uniform, and the temperature can be made uniform.
  • a cylindrical through-hole is formed in the flat plate-shaped portion of the heat sink 18A on the positive electrode side in the cooling air flow direction (axial direction in this example), and the cylindrical through-hole is formed in the through-hole.
  • MOSFET package is press-fitted.
  • the flat plate portion is formed in an arc plate shape so as to surround the rotation shaft 36, and three through holes are formed dispersedly in the circumferential direction.
  • a plurality of fins 60 that are parallel to the flow direction are provided on the inner peripheral portion of the arc-shaped plate portion, and the cooling performance is enhanced.
  • the MOSFET package includes a copper columnar base portion 54, a planar MOSFET chip 51, a lead portion 55, and an epoxy resin 56. ing.
  • a drain terminal D is provided on one surface of the MOSFET chip 51, and the drain terminal D is joined to one surface of the base portion 54 by soldering.
  • the drain terminal D is connected to the positive output terminal 5 via the base 54 and the positive heat sink 18A.
  • a source terminal S is provided on the other surface of the MOSFET chip 51, and the source terminal S is joined to the lead portion 55 by soldering.
  • the lead portion 55 is connected to the circuit board 19, and is connected to the negative electrode side SBD and the winding via the circuit board 19.
  • the control circuit 8 (IC) is built in the MOSFET chip 51. Then, one surface of the base portion 54, the connection portion between the MOSFET chip 51 and the lead portion 55 are potted with epoxy resin 56, and are formed into a columnar shape having the same cross-sectional area as the base portion 54.
  • the electric test terminal is provided on the surface on the source terminal S side, the area of the source terminal S is smaller than the area of the drain terminal D. Therefore, the drain terminal D having a small thermal resistance is connected to the base portion 54 having a large heat mass and the heat sink 18A on the positive electrode side, so that heat dissipation is improved.
  • the MOSFET package is arranged such that the base portion 54 is on the leeward side (rear side) and the lead portion 55 is on the leeward side (front side). Therefore, the cooling air can be applied to the base portion 54 to which the heat generated by the MOSFET is transmitted in the most upstream direction, and the cooling performance of the MOSFET is enhanced.
  • a cylindrical through-hole penetrating in the flow direction of cooling air (axial direction in this example) is formed in a flat plate-shaped portion of the heat sink 18B on the negative electrode side, and a cylindrical SBD package is pressed into this through-hole. Fitted by fit.
  • the flat plate portion is formed in an arc plate shape so as to surround the rotation shaft 36, and three through holes are formed dispersedly in the circumferential direction.
  • a plurality of fins 61 parallel to the flow direction are provided on the outer peripheral portion and the inner peripheral portion of the arc-shaped plate portion, so that the cooling performance is enhanced.
  • the plate-shaped portion of the heat sink 18A on the positive electrode side and the plate-shaped portion of the heat sink 18B on the negative electrode side are arranged so as to overlap in the flow direction (axial direction).
  • a circuit board 19 is arranged between the parts.
  • the SBD package includes a copper columnar base, a flat SBD chip, a lead, and an epoxy resin.
  • An anode terminal A is provided on one surface of the SBD chip, and the anode terminal A is joined to one surface of the base portion by soldering.
  • the anode terminal A is connected to the output terminal 6 on the negative electrode side via the base portion and the heat sink 18B on the negative electrode side.
  • a cathode terminal K is provided on the other surface of the SBD chip, and the cathode terminal K is joined to the lead portion 62 by soldering.
  • the lead portion 62 is connected to the circuit board 19, and is connected to the positive side MOSFET and the winding via the circuit board 19. Then, one surface of the base portion, the SBD chip, and the connection portion of the lead portion 62 are potted with epoxy resin, and are formed into a columnar shape having the same cross-sectional area as the base portion.
  • the rectification loss is reduced by 35% as compared with the comparative example in which the SBD is used for both the positive and negative electrode semiconductor elements. Can be done.
  • the cooling performance of each semiconductor element is improved by devising the arrangement and configuration. Therefore, the size of the heat sink for cooling each semiconductor element can be reduced. Therefore, the outer diameter D1 of the heat sinks 18A and 18B on the positive electrode side and the negative electrode side can be reduced. For example, as shown in FIGS.
  • the outer diameter D1 of the heat sinks 18A and 18B on the positive electrode side and the negative electrode side is changed to the inner diameter D2 of the outer peripheral wall of the rear housing 33 (particularly, the outer peripheral wall provided with the discharge port 45). (Inner diameter of the portion). Since the outer diameter D1 of the heat sink is reduced, the suction port 47 provided on the rear side wall of the protective cover 27 can be disposed radially inward. Accordingly, the distance between the suction port 47 and the discharge port 45 can be increased, and the warm air discharged from the discharge port 45 can be hardly re-inhaled from the suction port 47, and the cooling performance is improved.
  • Embodiment 2 Next, a rectifier 1 and a vehicle power generator 10 according to Embodiment 2 will be described. The description of the same components as those in the first embodiment is omitted.
  • the semiconductor element 2 on the positive electrode side is SBD for all three sets, and the semiconductor element 3 on the negative electrode is MOSFET and This is different from the first embodiment.
  • the cathode terminal K of the SBD on the positive side is connected to the output terminal 5 on the positive side
  • the anode terminal A of the SBD on the positive side is connected to the drain terminal D of the MOSFET on the negative side
  • the source terminal S of the MOSFET on the side is connected to the output terminal 6 on the negative side.
  • a connection point 11 between the SBD on the positive electrode side and the MOSFET on the negative electrode side is connected to a corresponding winding.
  • Each of the negative-side MOSFETs includes an IC as a control circuit 8 similar to that of the first embodiment, and drives the MOSFETs on and off.
  • FIG. 14 shows a phase voltage waveform of any one phase (for example, U phase).
  • VN voltage at the source terminal S
  • VU phase voltage at the drain terminal D
  • the U-phase positive-side MOSFET is turned on. I have.
  • the U-phase positive-side MOSFET is turned off at both ends of the period exceeding the period.
  • the rectification in this embodiment using the SBD on the positive electrode side and the MOSFET on the negative electrode side is different from the comparative example in which the SBD is used for both the positive electrode side and the negative electrode side semiconductor elements.
  • the loss can be reduced by 35%, and the power generation efficiency of the vehicle power generator 10 can be improved.
  • the leakage current can be reduced by the MOSFET on the negative electrode side, and even if the element temperature becomes high, the increase in the leakage current flowing through each series circuit can be suppressed.
  • the breakdown voltage of the SBD on the positive electrode side is lower than the clamp voltage of the MOSFET on the negative electrode side.
  • the SBD on the positive electrode side breaks down before the clamp circuit of the negative-side MOSFET operates.
  • the terminal voltages of the three-phase windings 9U, 9V, and 9W can be fixed to the breakdown voltage of the positive-side SBD, so that an excessive voltage is not applied to the negative-side MOSFET. .
  • the MOSFET can be protected from the high voltage surge, and the high voltage surge can be efficiently attenuated by the power consumption of the SBD.
  • the SBD on the positive electrode side is arranged downstream of the cooling air from the MOSFET on the negative electrode side.
  • the heat sink 18A on the positive electrode side to which the SBD is fixed is disposed downstream (front side in this example) of the cooling air from the heat sink 18B on the negative electrode side to which the MOSFET is fixed. Therefore, the cooling efficiency of the entire SBD and MOSFET can be improved, and by increasing the temperature of the SBD, the forward voltage drop of the SBD can be reduced, and the rectification loss of the SBD can be reduced.
  • the circuit board 19 is sandwiched between the heat sink 18A on the positive electrode side and the heat sink 18B on the negative electrode side in the flow direction of the cooling air. Further, all the MOSFETs on the negative electrode side are arranged on the same plane, and all the SBDs on the positive electrode side are arranged on the same plane. The plane on which all the MOSFETs on the negative electrode side are arranged and the plane on which all the SBDs on the positive electrode side are arranged are displaced in the flow direction of the cooling air (axial direction in this example).
  • through holes are formed in each of the heat sinks 18A and 18B, and a MOSFET package and an SBD package are fitted into each through hole by press-fitting.
  • the MOSFET package and the SBD package are configured in the same manner as in the first embodiment.
  • the MOSFET package is arranged such that the base portion 54 is on the leeward side (rear side) and the lead portion 55 is on the leeward side (front side).
  • the heat sink 18B on the negative electrode side to which the MOSFET is fixed is arranged on the upstream side of the heat sink 18A on the positive electrode side to which the SBD is fixed.
  • the cooling air can be applied to the MOSFET, thereby improving the cooling performance of the MOSFET.
  • the outer diameter of the heat sinks 18A and 18B on the positive electrode side and the negative electrode side is made smaller than the inner diameter of the outer peripheral wall of the rear housing 33 (in particular, the inner diameter of the outer peripheral wall provided with the discharge port 45).
  • the forward voltage drop of the SBD is about 0.6 V under the conditions of 25 ° C. and 100 A conduction.
  • the forward drop voltage of the SBD is a voltage lower than 0.6 V, for example, an SBD of a very low forward drop voltage of 0.3 V to 0.4 V under the condition of 25 ° C. and 100 A conduction. Used.
  • the forward drop voltage of the SBD is lower than 0.6 V, there is a problem that the leakage current increases.
  • the forward drop voltage is lower than 0.6 V without using a special circuit such as a leakage current control circuit due to a fear of thermal runaway due to leakage current. It has been difficult to adopt SBD.
  • the leakage current can be reduced by the MOSFET on the positive electrode side or the negative electrode side. Therefore, even if an SBD having a forward drop voltage lower than 0.6 V is used, the leakage current of the entire series circuit increases. Can be suppressed.
  • the trade-off between a reduction in the forward drop voltage of the SBD and an increase in the leakage current can be solved by providing a MOSFET on the positive electrode side or the negative electrode side.
  • the rectification loss can be further reduced as compared with the first and second embodiments. Further, since the voltage drop due to the forward drop voltage of the SBD can be suppressed, the output of the rectifier 1 increases. Therefore, the rectifier 1 with high efficiency and high output can be obtained.
  • the shape of the P layer arranged inside the guard ring portion is changed to a stripe shape or a dot shape.
  • man-hours were required for the development of the SBD, and the cost of the SBD was also increasing.
  • the number of steps for developing the SBD can be reduced, and there is no need to use an expensive SBD.
  • the semiconductor element 3 on the negative electrode side is SBD for all three sets.
  • the semiconductor element 2 on the positive electrode side is SBD for all three sets.
  • the embodiment of the present application is not limited to this. That is, in the case of the first embodiment, at least one of the three sets of the semiconductor elements 3 on the negative electrode side may be set as the SBD. One may be SBD.
  • the remaining semiconductor element 3 on the negative electrode side, which is not SBD, may be a MOSFET similar to the MOSFET on the positive electrode side, or may be a diode with a PN junction. In the case of the second embodiment, at least one of the three sets of the semiconductor element 2 on the positive electrode side may be SBD.
  • the semiconductor element 2 on the positive electrode side may be one or two of the three sets. , SBD.
  • the remaining semiconductor element 2 on the positive electrode side, which is not SBD, may be a MOSFET similar to the MOSFET on the negative electrode side, or may be a diode with a PN junction.
  • three sets of series circuits are provided, three-phase windings 9U, 9V, and 9W are provided as AC power supplies, and a three-phase full-wave rectifier circuit is used as an example.
  • the embodiment of the present application is not limited to this. That is, two or more sets of series circuits may be provided.
  • two sets of three-phase windings may be provided as an AC power supply, and six sets of series circuits may be provided. Five-phase windings may be provided as an AC power supply, and five sets of series circuits may be provided.
  • the AC power supply may be a one-phase commercial AC power supply or the like, and two sets of series circuits may be provided as a single-phase full-wave rectifier circuit.
  • the rectifier 1 is provided in the vehicle power generator 10 as an example.
  • the embodiment of the present application is not limited to this. That is, the rectifying device 1 may be used in a device other than the vehicle power generator 10.
  • the rectifier 1 may be used for a power generator for wind power, hydraulic power, or the like, or may be used for a converter that converts commercial AC power to DC power.
  • the Schottky barrier diode SBD is used as the specific diode.
  • the embodiment of the present application is not limited to this. That is, a MOS diode which is a MOSFET in which the drain terminal and the gate terminal are short-circuited may be used as the specific diode.
  • the drain terminal of the MOS diode is connected to the positive electrode, and the source terminal of the MOS diode is connected to the negative electrode.
  • the forward voltage drop of the MOS diode from the source terminal to the drain terminal becomes larger than the voltage drop when the normal MOSFET is turned on, and becomes equal to the forward voltage drop of the SBD.
  • the leakage current of the MOS diode from the drain terminal to the source terminal is equal to the leakage current of a normal MOSFET, and is smaller than the leakage current of the SBD. Therefore, even if a MOS diode is used as the specific diode, rectification loss can be reduced and leakage current can be reduced. Since the MOS diode does not require the control circuit 8 and the clamp circuit, the MOS diode is cheaper than the MOSFET having the control circuit 8 and the clamp circuit. Also, various SBDs such as a junction barrier Schottky diode may be used as the SBD.
  • the forward drop voltage of the SBD is about 0.6 V under the conditions of 25 ° C. and 100 A conduction
  • the forward drop voltage of the SBD is , 25 ° C., and 100 A, and the case where the voltage is about 0.3 V to 0.4 V has been described as an example.
  • the forward drop voltage of the SBD may be, for example, a voltage in the range of 0.3 V to 0.65 V under the conditions of 25 ° C. and 100 A conduction.
  • each of the MOSFETs is provided with an IC as the control circuit 8
  • the embodiment of the present application is not limited to this. That is, one control circuit may be provided for all MOSFETs as the control circuit 8, and one control circuit may be provided when the voltage of the source terminal S exceeds the voltage of the drain terminal D for each MOSFET. Alternatively, an on signal may be output to the gate terminal G to turn on the MOSFET.
  • the heat sinks on the positive electrode side and the negative electrode side are formed with the cylindrical through-holes penetrating in the flow direction (axial direction) of the cooling air, and the cylindrical MOSFETs are formed in the through-holes.
  • the package of the columnar SBD are fitted by press-fitting as an example.
  • the embodiment of the present application is not limited to this. That is, as shown in the partial perspective view of FIG. 16, a rectangular parallelepiped through hole is formed in the heat sinks on the positive electrode side and the negative electrode side in the flow direction (axial direction) of the cooling air, and the rectangular parallelepiped through hole is formed in the through hole.
  • MOSFET package and rectangular parallelepiped SBD package may be fitted by press-fitting.
  • the solder used for the MOSFET and the specific diode may be lead-containing solder or lead-free solder. Since the heat generation due to the rectification loss of the rectification device 1 is reduced and the cooling performance is improved, even if lead-free solder is used, the occurrence of thermal deterioration can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Rectifiers (AREA)

Abstract

コスト、整流損失、及び漏れ電流の増加を抑制できる整流装置及び車両用交流発電装置を提供する。正極側の半導体素子(2)及び負極側の半導体素子(3)の一方は、nセットの全てについて、MOSFETであり、正極側の半導体素子(2)及び負極側の半導体素子(3)の他方は、nセットの少なくとも1つについて、特定ダイオードであり、特定ダイオードは、ショットキーバリアダイオード、又はドレイン端子とゲート端子が短絡されたMOSFETであるMOSダイオードである整流装置(1)。

Description

整流装置及びそれを備えた車両用交流発電装置
 本願は、整流装置、及びそれを備えた車両用交流発電装置に関するものである。
 特許文献1の技術では、整流装置の整流損失を低減して、車両用交流発電装置の発電効率を向上させるため、正極側の半導体素子と負極側の半導体素子の双方に、PN接合のダイオードよりも順方向降下電圧を低減できるショットキーバリアダイオードが用いられている。
国際公開第1999/36966号公報
 しかしながら、正極側と負極側の双方にショットキーバリアダイオードを用いると、PN接合のダイオードと比較して、特に高温度における漏れ電流が大きくなる課題があった。漏れ電流が大きくなると、素子の発熱が大きくなるため、正極側と負極側の双方にショットキーバリアダイオードを用いる場合は、熱暴走が生じないように、冷却機構等の熱設計を慎重に行う必要があった。
 また、ショットキーバリアダイオードの素子設計において、順方向降下電圧の低下と、漏れ電流の増加とはトレードオフの関係がある。そのため、整流損失をより低下させるためには、ショットキーバリアダイオードの中でも順方向降下電圧の低いものを採用したいが、漏れ電流が増加するため、容易に採用することができなかった。
 ところで、MOSFETは、ショットキーバリアダイオードと比較して、降下電圧を低くでき、漏れ電流が小さいが、高価であるため、正極側と負極側の双方にMOSFETを用いると、コストが増加する問題があった。
 そこで、コスト、整流損失、及び漏れ電流の増加を抑制できる整流装置及び車両用交流発電装置が望まれる。
 本願に係る整流装置は、
 正極側の出力端子に接続される正極側の半導体素子と、負極側の出力端子に接続される負極側の半導体素子とが直列接続され、直列接続の接続点が対応する交流電源に接続される直列回路を、nセット設け(nは2以上の自然数)、
 前記正極側の半導体素子及び前記負極側の半導体素子は、負極側から正極側に電流を流す整流機能を少なくとも有し、
 前記正極側の半導体素子及び前記負極側の半導体素子の一方は、前記nセットの全てについて、MOSFETであり、
 前記正極側の半導体素子及び前記負極側の半導体素子の他方は、前記nセットの少なくとも1つについて、特定ダイオードであり、
 前記特定ダイオードは、ショットキーバリアダイオード、又はドレイン端子とゲート端子が短絡されたMOSFETであるMOSダイオードである。
 また、本願に係る車両用交流発電装置は、上記の整流装置、及び前記交流電源としての前記n相の巻線を備えたものである。
 本願に係る整流装置及び車両用交流発電装置によれば、正極側及び負極側の他方は、nセットの少なくとも1つについて特定ダイオードが用いられているため、正極側及び負極側の双方にMOSFETを用いる場合よりも、コストを低減できる。また、正極側及び負極側の一方に、MOSFETが用いられているため、正極側及び負極側の双方にショットキーバリアダイオードを用いる場合よりも、整流損失を低減できる。また、正極側及び負極側の一方に設けられたMOSFETにより、漏れ電流を絞ることができ、ショットキーバリアダイオードを用いても直列回路を流れる漏れ電流の増加を抑制できる。なお、MOSダイオードは、漏れ電流が小さいため、漏れ電流の増加を抑制できる。よって、コスト、整流損失、及び漏れ電流の増加を抑制できる。
実施の形態1に係る整流装置及び車両用発電装置の回路図である。 実施の形態1に係る相電圧波形を説明するためのタイムチャートである。 実施の形態1に係る整流損失の低減を説明する図である。 実施の形態1に係る漏れ電流の低減を説明する図である。 実施の形態1に係る高電圧サージの発生時の電流経路を説明する図である。 実施の形態1に係る車両用発電装置の断面図である。 実施の形態1に係る車両用発電装置の模式的な部分断面図である。 実施の形態1に係る整流装置の部分斜視図である。 実施の形態1に係る整流装置の分解部分斜視図である。 実施の形態1に係るMOSFETのパッケージの模式的な断面図である。 実施の形態1に係るMOSFETのチップの一方側の面の図である。 実施の形態1に係るMOSFETのチップの他方側の面の図である。 実施の形態2に係る整流装置及び車両用発電装置の回路図である。 実施の形態2に係る相電圧波形を説明するためのタイムチャートである。 実施の形態2に係る車両用発電装置の模式的な部分断面図である。 その他の実施の形態に係る整流装置の部分斜視図である。
1.実施の形態1
 実施の形態1に係る整流装置1、及び整流装置1を備えた車両用発電装置10について図面を参照して説明する。図1は、整流装置1及び車両用発電装置10の回路図である。
1-1.車両用発電装置10の回路構成
 車両用発電装置10は、ハウジング34に固定された固定子39と、当該固定子39の径方向内側に配置され、ハウジング34に対して回転可能に支持された回転子38と、を備えている(図6参照)。固定子39には3相の巻線9U、9V、9Wが設けられ、回転子38には界磁巻線14が設けられている。3相の巻線9U、9V、9Wは、スター結線されている。なお、3相の巻線9U、9V、9Wは、Δ結線又は千鳥結線されてもよい。車両用発電装置10は、エンジンの回転駆動力により発電する。回転子38の回転軸36は、プーリ及びベルト機構等の連結機構を介してエンジンのクランク軸に連結される。
 界磁巻線14は、界磁巻線用のスイッチング素子15を介して、正極側の出力端子5と負極側の出力端子6との間に直列接続されている。還流ダイオード16が、界磁巻線14に並列に接続されており、界磁巻線用のスイッチング素子15がオフのときに、界磁巻線14に流れる電流を還流させる。界磁巻線用のスイッチング素子15には、MOSFET等が用いられる。界磁巻線用のスイッチング素子15のゲート端子は、電圧制御回路12に備えられた駆動回路9に接続されている。電圧制御回路12には、U相の巻線9Uの端子が接続されており、電圧制御回路12は、U相の巻線9Uの端子電圧の変動に基づいて、回転子38の回転速度を検出する。電圧制御回路12は、車両用発電装置10の発電電圧が目標電圧(例えば14V)に近づくように、界磁巻線用のスイッチング素子15をオンオフ駆動する。
 車両用発電装置10は、3相の巻線9U、9V、9Wから出力される3相の交流電圧を整流し直流電圧に変換する整流装置1を備えている。整流装置1は、正極側の出力端子5に接続される正極側の半導体素子2と、負極側の出力端子6に接続される負極側の半導体素子3とが直列接続された直列回路を、3セット設けている。正極側の半導体素子2と負極側の半導体素子3の直列接続の接続点11は、対応する交流電源としての巻線に接続されている。
 正極側の出力端子5及び負極側の出力端子6は、電気負荷102及び蓄電装置101に接続されている。本実施の形態では、蓄電装置101は、14Vの鉛蓄電池とされている。
 正極側の半導体素子2及び負極側の半導体素子3は、負極側から正極側に電流を流す整流機能を少なくとも有している。正極側の半導体素子2及び負極側の半導体素子3の一方は、3セットの全てについて、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)である。正極側の半導体素子2及び負極側の半導体素子3の他方は、3セットの少なくとも1つ(本例では全て)について、特定ダイオードである。
 本実施の形態では、特定ダイオードは、ショットキーバリアダイオード(以下、SBD(Schottky Barrier Diode)と称す)とされている。SBDは、金属と半導体との接合により生じるショットキー障壁を利用したダイオードである。一般に、SBDは、PN接合によるダイオードと比較して、順方向の降下電圧が低く、スイッチング速度が速いが、逆方向の漏れ電流が大きく、逆方向の降伏電圧が低い。正極側の半導体素子2は、3セットの全てについて、MOSFETとされている。負極側の半導体素子3は、3セットの全てについて、SBDとされている。
 各相の直列回路において、正極側のMOSFETのドレイン端子Dは、正極側の出力端子5に接続され、正極側のMOSFETのソース端子Sは、負極側のSBDのカソード端子Kに接続され、負極側のSBDのアノード端子Aは、負極側の出力端子6に接続されている。正極側のMOSFETと負極側のSBDとの接続点11は、対応する巻線に接続されている。
 正極側のMOSFETは、PN接合による寄生ダイオード7を有しており、寄生ダイオード7のカソード端子は、正極側の出力端子5側に接続され、寄生ダイオード7のアノード端子は、負極側の出力端子6側に接続されている。よって、正極側のMOSFETの寄生ダイオード7、及び負極側のSBDは、負極側から正極側に電流を流す整流機能を有している。
<整流損失の低減>
 整流装置1は、正極側のMOSFETのそれぞれをオンオフ駆動する制御回路8を備えている。本実施の形態では、正極側のMOSFETのそれぞれに、MOSFETをオンオフ駆動する制御回路8としてのIC(Integrated Circuit)が備えられている。制御回路8は、MOSFETのドレイン端子Dとソース端子Sに接続されており、ドレイン端子Dとソース端子Sの電圧を検出する。そして、制御回路8は、MOSFETのゲート端子Gに接続されており、ソース端子Sの電圧が、ドレイン端子Dの電圧を上回る場合に、ゲート端子Gにオン信号を出力して、MOSFETをオンにする。一方、制御回路8は、ソース端子Sの電圧が、ドレイン端子Dの電圧を下回る場合に、ゲート端子Gにオフ信号を出力して、MOSFETをオフにする。例えば、制御回路8は、ソース端子Sの電圧からドレイン端子Dの電圧を減算した差電圧が、予め設定されたオン判定閾値を上回った時点を基準にMOSFETのオン時点を設定し、差電圧が予め設定されたオフ判定閾値を下回った時点を基準にMOSFETのオフ時点を設定する。
 図2に、いずれか一相(例えば、U相)の相電圧波形を示す。U相の相電圧VUは、U相の巻線に接続された接続点11Uの電圧に対応し、U相の正極側のMOSFETのソース端子Sの電圧、及びU相の負極側のSBDのカソード端子Kの電圧に等しくなる。また、正極側の出力端子5の電圧VBは、U相の正極側のMOSFETのドレイン端子Dの電圧に等しくなる。負極側の出力端子6の電圧VNは、U相の負極側のSBDのアノード端子Aの電圧に等しくなる。
 図2に示すように、U相の相電圧VU(ソース端子Sの電圧)が、正極側の出力端子5の電圧VB(ドレイン端子Dの電圧)を上回っている期間で、U相の正極側のMOSFETがオンにされている。本実施の形態では、上回っている期間の両端は、U相の正極側のMOSFETがオフにされている。
 MOSFETがオンである場合は、ソース端子Sとドレイン端子Dが導通し、ソース端子Sからドレイン端子Dへの降下電圧は、MOSFET内の主にn型半導体の抵抗に通電電流を乗算した電圧になり、例えば、25℃、100A通電の条件で、0.1V以下の降下電圧になる。一方、MOSFETがオフである場合は、ソース端子Sからドレイン端子Dへの降下電圧は、PN接合による寄生ダイオード7の順方向の降下電圧になり、例えば、25℃、100A通電の条件で、0.7V程度の降下電圧になる。よって、ソース端子Sの電圧がドレイン端子Dの電圧を上回る期間で、MOSFETをオンにすることで、MOSFETにおける整流損失を大幅に低下させることができる。なお、整流損失は、図2にハッチングで示す降下電圧分に、通電電流を乗算した値の積算値となる。
 一方、U相の相電圧VU(カソード端子Kの電圧)が、負極側の出力端子6の電圧VN(アノード端子Aの電圧)を下回る期間では、アノード端子Aからカソード端子Kへの降下電圧は、SBDの順方向降下電圧になり、例えば、25℃、100A通電の条件で、0.6V程度の降下電圧になり、0.6Vの降下電圧に応じた整流損失が生じる。
 図3に示すように、正極側及び負極側の半導体素子の双方にSBDを用いる比較例に比べて、正極側にMOSFETを用い、負極側にSBDを用いる本実施の形態では、整流損失を35%低下させることができ、車両用発電装置10の発電効率を向上させることができる。
<漏れ電流の低減>
 上述したように、SBDは、逆方向の電圧を印加した場合に、カソード端子Kからアノード端子Aに流れる漏れ電流が、PN接合のダイオードに比べて大きくなる。また、SBDは、素子温度が高くなるに従って、漏れ電流が大きくなる。
 図4に、車両用発電装置10が停止中の整流装置1の漏れ電流を示す。車両用発電装置10が停止中でも、整流装置1には蓄電装置101の電圧が印加される。正極側及び負極側の双方にSBDを用いる比較例では、素子温度が高くなるに従って、各直列回路を正極側から負極側に流れる漏れ電流が指数関数的に大きくなる。例えば、120℃の素子温度では、数mAの漏れ電流が発生する。漏れ電流が大きくなると、素子の発熱が大きくなるため、比較例では、熱暴走が生じないように、冷却機構等の熱設計を慎重に行う必要がある。
 一方、MOSFETでは、PN接合による寄生ダイオード7の漏れ電流は、SBDに比べて小さくなる。よって、正極側にMOSFETを用い、負極側にSBDを用いる本実施の形態では、各直列回路において、正極側のMOSFETにより漏れ電流を絞ることができ、素子温度が高くなっても、各直列回路を流れる漏れ電流の増加が抑制されている。例えば、120℃の素子温度でも、0.1mA程度の漏れ電流に抑制できる。よって、本実施の形態では、熱暴走の懸念を無くすことができ、装置の信頼性を向上させることができる。
<高電圧サージからのMOSFETの保護>
 車両用発電装置10が発電している時に、例えば正極側の出力端子5が外れることによって、急激に電気負荷102及び蓄電装置101が遮断された場合、界磁巻線14に流れる電流は直ちにゼロにならず、界磁巻線14の時定数で減衰していくため、3相の巻線9U、9V、9Wには高電圧サージが発生する。
 負極側のSBDの降伏電圧は、正極側のMOSFETのクランプ電圧よりも低い。正極側のMOSFETは、ドレイン端子Dの電圧からソース端子Sの電圧を減算したドレイン-ソース差電圧がクランプ電圧以上になった場合に、ドレイン端子Dからソース端子Sに電流を流して、ドレイン-ソース差電圧がクランプ電圧を上回らないようにするクランプ回路を有している。寄生ダイオード7の降伏によりMOSFETが故障しないように、クランプ電圧は、寄生ダイオード7の降伏電圧より低く設定されている。クランプ回路の種類には、ドレイン端子Dとソース端子Sとの間にツェナーダイオードを設けたアクティブクランプ回路、MOSFETに逆並列接続されたツェナーダイオードを設けたアバランシェクランプ回路等がある。本実施の形態では、クランプ回路は、制御回路8(IC)に内蔵されている。
 よって、高電圧サージが発生した場合に、正極側のMOSFETのクランプ回路が作動する前に、負極側のSBDが降伏する。そして、3相の巻線9U、9V、9Wの端子電圧を、負極側のSBDの降伏電圧に固定することができ、正極側のMOSFETに過大な電圧がかからないようにできる。
 高電圧サージの発生時の電流経路を、図5を用いて説明する。矢印で示すように、U相巻線9Uの相電圧が最大になり、U相の負極側のSBD3Uの降伏電圧を上回ると、電流がU相巻線9UからU相の負極側のSBD3Uを通って負極側の電線に流れ、負極側の電線に対するU相の直列回路の接続点11Uの電位差は、SBDの降伏電圧に固定される。一方、V相巻線9Vの相電圧が負極側の電線よりも低くなり、電流が負極側の電線からV相の負極側のSBD3Vを通ってV相巻線9Vに流れ、負極側の電線に対するV相の直列回路の接続点11Vの電位差は、SBDの順方向降下電圧の負値に固定される。また、W相巻線9Wの相電圧が負極側の電線よりも低くなり、電流が負極側の電線からW相の負極側のSBD3Wを通ってW相巻線9Wに流れ、負極側の電線に対するW相の直列回路の接続点11Wの電位差は、SBDの順方向降下電圧の負値に固定される。回転子38の回転により相電圧が最大になる相が入れ替わっていき、各相の巻線及びSBDの状態が入れ替わっていく。
 このように、負極側の3つのSBDにより、各相の直列回路の接続点11U、11V、11Wの電圧が、SBDの降伏電圧を上回らないようにすることができ、正極側のMOSFETに過大な電圧がかからないようにできる。また、負極側の3つのSBDにより、エネルギーを消費させて、高電圧サージを減衰させることができる。また、エネルギーは、負極側の3つのSBDによりバランスよく消費されるので、SBDの発熱が偏ることを防止できる。従って、正極側をMOSFETとし、負極側をSBDとすることで、高電圧サージからMOSFETを保護することができる共に、高電圧サージをSBDの電力消費により効率よく減衰させることができる。
1-2.車両用発電装置10の構造
 次に、車両用発電装置10の構造について説明する。図6は、回転軸36の軸心を通る平面で切断した車両用発電装置10の断面図である。車両用発電装置10は、ハウジング34に固定された固定子39と、固定子39の径方向内側に配置され、ハウジング34に対して回転可能に支持された回転子38と、を備えている。回転子38及び固定子39がハウジング34内に収容されている。回転軸36は、回転子38の中心部を貫通しており、回転子38と一体回転する。回転軸36は、固定子39の軸方向の両側で、それぞれベアリング35を介して、ハウジング34に対して回転可能に支持されている。
 以下、回転軸36の軸心に平行な軸方向の一方側(図6の右側)をフロント側と称し、軸方向の他方側(図6の左側)をリア側と称する。ハウジング34は、フロント側ハウジング32とリア側ハウジング33から構成されている。フロント側ハウジング32は、円筒状の外周壁と、外周壁のフロント側端部から径方向内側に延びた円板状の側壁とを有しており、側壁の中心部に回転軸36が貫通し、ベアリング35が固定される貫通孔が設けられている。リア側ハウジング33は、円筒状の外周壁と、外周壁のリア側端部から径方向内側に延びた円板状の側壁とを有しており、側壁の中心部に回転軸36が貫通し、ベアリング35が固定される貫通孔が設けられている。フロント側ハウジング32とリア側ハウジング33は、軸方向に延びたボルトによって接続されている。
 回転軸36のフロント側の端部は、フロント側ハウジング32の貫通孔を貫通して、フロント側ハウジング32よりもフロント側に突出しており、この突出部にプーリ37が固定されている。プーリ37と、エンジンのクランクシャフトに固定されたプーリとの間にベルトが掛け渡され、エンジンの回転駆動力が回転軸36に伝達される。
 回転軸36のリア側の端部は、リア側ハウジング33の貫通孔を貫通して、リア側ハウジング33よりもリア側に突出しており、この突出部に一対のスリップリング40が設けられている。一対のスリップリング40は、回転子38の界磁巻線14に接続されている。
 回転子38は、ランデル型(クローポール型ともいう)とされている。回転子38の界磁鉄心82は、円筒状の中心部57と、中心部57のフロント側の端部から中心部57の径方向外側まで延びたフロント側の爪部58と、中心部57のリア側の端部から中心部57の径方向外側まで延びたリア側の爪部59と、を備えている。界磁巻線14の絶縁処理された銅線は、界磁鉄心82の中心部57の外周面に同心状に巻回されている。フロント側の爪部58とリア側の爪部59とは、周方向に交互に設けられており、互いに異なる磁極となる。例えば、フロント側の爪部58とリア側の爪部59は、それぞれ6個又は8個設けられる。
 固定子39は、微小な隙間をあけて回転子38を取り囲むよう配設され、スロットを設けた円筒状の固定子鉄心91と、固定子鉄心91のスロットに巻装された3相の巻線9U、9V、9Wと、を備えている。3相の巻線9U、9V、9Wは、固定子鉄心91からフロント側に突出したフロント側コイルエンド部43、固定子鉄心91からリア側に突出したリア側コイルエンド部44を有している。3相の巻線9U、9V、9Wのリード線50は、リア側ハウジング33を貫通して、リア側に延びている。
 フロント側ハウジング32とリア側ハウジング33とは、軸方向に間隔を空けて設けられている。固定子鉄心91は、フロント側ハウジング32のリア側の開口端部とリア側ハウジング33のフロント側の開口端部とにより軸方向両端から挟持されている。
 図7に、リア側の冷却風の流れと、各部材の配置を説明するための模式的な車両用発電装置10の部分断面図を示す。図6及び図7に示すように、界磁鉄心82のフロント側の端部には、複数のブレードを有するフロント側ファン41が取り付けられ、界磁鉄心82のリア側の端部には、複数のブレードを有するリア側ファン42が取り付けられ、それらは、回転子38と一体回転する。フロント側ファン41及びリア側ファン42は、それぞれ、径方向外側に送風し、径方向外側に配置されたフロント側コイルエンド部43及びリア側コイルエンド部44等を冷却する。
 フロント側ファン41の径方向外側のフロント側ハウジング32の外周壁の部分、及びリア側ファン42の径方向外側のリア側ハウジング33の外周壁の部分には、それぞれ、周方向に分散して複数の排出口45が形成されている。フロント側ファン41及びリア側ファン42により径方向外側に送られた空気は、フロント側ハウジング32及びリア側ハウジング33の排出口45を通って、外部に排出される。
 フロント側ファン41のフロント側のフロント側ハウジング32の側壁の部分、及びリア側ファン42のリア側のリア側ハウジング33の側壁の部分には、それぞれ、周方向に分散して複数の吸入口46が形成されている。フロント側ファン41に吸入される空気は、フロント側ハウジング32の側壁の吸入口46を通って、フロント側からリア側に流れる。リア側ファン42に吸入される空気は、リア側ハウジング33の側壁の吸入口46を通って、リア側からフロント側に流れる。
 リア側ハウジング33よりもリア側に突出した回転軸36のリア側突出部の径方向外側の円筒状の空間には、整流装置1、一対のブラシ48、ブラシホルダ49、電圧制御回路12等の回路が配置されている。一対のブラシ48は、一対のスリップリング40のそれぞれに摺動し、ブラシホルダ49は、ブラシ48を収容する。電圧制御回路12は、上述したように、ブラシ48及びスリップリング40を介して界磁巻線14に供給する電力を制御する。
 円筒状の回路配置空間の径方向外側及びリア側は、保護カバー27によって覆われている。保護カバー27は、円筒状の外周壁と、外周壁のリア側端部から径方向内側に延びた円板状の側壁とを有している。保護カバー27の外周部には電圧制御回路12と外部装置(図示せず)との信号の入出力を行うコネクタ20が固定されている。
 保護カバー27の側壁には、周方向及び径方向に分散して複数の吸入口47が形成されている。リア側ハウジング33の側壁の吸入口46に吸入される空気は、保護カバー27の側壁の吸入口47を通って、リア側からフロント側に流れる。このように、冷却風は、保護カバー27内をリア側からフロント側に軸方向に流れ、保護カバー27内に配置された各回路が冷却される。
<回路配置>
 上述したように、負極側のSBDは、正極側のMOSFETよりも整流損失が大きく、発熱量が大きくなる。図7に示すように、負極側のSBDは、正極側のMOSFETよりも冷却風の下流側に配置されている。本実施の形態では、負極側のSBDは、正極側のMOSFETよりもフロント側に配置されている。本実施の形態とは逆に、発熱量が大きいSBDを上流側に配置すると、SBDの冷却を向上できるものの、上流側で冷却風が温められ、下流側のMOSFETの冷却が悪化する。本実施の形態では、発熱量が小さいMOSFETを上流側に配置しているので、上流側のMOSFETを良好に冷却することができると共に、上流側における冷却風の温度上昇を抑制し、下流側のSBDの冷却が悪化することを抑制できる。すなわち、本実施の形態の配置では、SBD及びMOSFETの全体の冷却効率を向上させることができる。
 負極側のSBDは、温度が高くなるほど、負極側から正極側への順方向の降下電圧が小さくなる特性を有している。本実施の形態では、負極側のSBDを正極側のMOSFETよりも冷却風の下流側に配置しているので、負極側のSBDを正極側のMOSFETよりも冷却風の上流側に配置する場合よりも、SBDの温度を高くすることができる。よって、SBDの順方向の降下電圧を低下させ、SBDの整流損失を低下させることができる。なお、SBDの温度が高くなると、SBDの漏れ電流が大きくなるが、正極側のMOSFETにより漏れ電流が絞られるので、直列回路の漏れ電流の増加は抑制される。
 整流装置1は、正極側のヒートシンク18Aと、負極側のヒートシング18Bとを備えている。正極側のヒートシンク18Aには、全ての正極側のMOSFETが固定される。負極側のヒートシンク18Bには、全ての正極側のSBDが固定される。SBDが固定されている負極側のヒートシング18Bは、MOSFETが固定されている正極側のヒートシンク18Aよりも、冷却風の下流側(本例ではフロント側)に配置されている。
 この構成によれば、ヒートシンクを介してSBD、MOSFETを冷却する場合でも、同様に、SBD及びMOSFETの全体の冷却効率を向上させることができる共に、SBDの整流損失を低下させることができる。
 図1の回路を構成するために、整流装置1は、正極側のMOSFETと、負極側のSBDと、3相の巻線9U、9V、9Wと、正極側の出力端子5と、負極側の出力端子5と、を接続するサーキットボード19を備えている。
 図8に、MOSFETが固定された正極側のヒートシンク18A、SBDが固定された負極側のヒートシング18B、及びサーキットボード19を、リア側から斜めに見た部分斜視図を示す。図9に、正極側のヒートシンク18A、負極側のヒートシング18B、及びサーキットボード19を軸方向に分解し、リア側から斜めに見た分解部分斜視図を示す。
 図7、図8、及び図9に示すように、サーキットボード19は、冷却風の流れ方向における、正極側のヒートシンク18Aと負極側のヒートシンク18Bとの間に挟まれている。
 全ての正極側のMOSFETは、同一平面上に配置され、全ての負極側のSBDは、同一平面上に配置されている。全ての正極側のMOSFETが配置される平面と、全ての負極側のSBDが配置される平面とは、冷却風の流れ方向(本例では軸方向)にずれている。この構成によれば、同一平面上に配置された正極側のMOSFETの温度を均質化することができ、同一平面上に配置された負極側のSBDの温度を均一化することができる。本実施の形態では、全ての正極側のMOSFETが配置される平面と、全ての負極側のSBDが配置される平面とは、冷却風の流れ方向(本例では軸方向)に直交している。よって、各MOSFET及び各SBDへの冷却風の当たりを均一化することができ、温度を均一化することができる。
 本実施の形態では、正極側のヒートシンク18Aの平板状の部分に、冷却風の流れ方向(本例では軸方向)に貫通する円柱状の貫通孔が形成されており、この貫通孔に円柱状のMOSFETのパッケージがプレスフィットにより嵌め込まれている。平板状の部分は、回転軸36を取り囲むように、円弧板状に形成されており、3つの貫通孔が、周方向に分散して形成されている。円弧板状の部分の内周部には、流れ方向に平行な複数のフィン60が設けられており、冷却性が高められている。
 図10にプレスフィット後の断面図を示すように、MOSFETのパッケージは、銅製の円柱状のベース部54と、平板状のMOSFETのチップ51と、リード部55と、エポキシ樹脂56と、を備えている。図11に示すように、MOSFETのチップ51の一方の面に、ドレイン端子Dが設けられ、ドレイン端子Dは、ベース部54の一方の面に半田により接合される。ドレイン端子Dは、ベース部54及び正極側のヒートシンク18Aを介して、正極側の出力端子5に接続される。図12に示すように、MOSFETのチップ51の他方の面に、ソース端子Sが設けられ、ソース端子Sは、リード部55に半田により接合される。リード部55は、サーキットボード19に接続され、サーキットボード19を介して負極側のSBD及び巻線に接続される。なお、MOSFETのチップ51には、制御回路8(IC)が内蔵されている。そして、ベース部54の一方の面、MOSFETのチップ51、及びリード部55の接続部が、エポキシ樹脂56によりポッティングされ、ベース部54と同じ断面積を持つ円柱状に成形されている。
 本実施の形態では、電気検査用端子が、ソース端子S側の面に設けられるため、ソース端子Sの面積が、ドレイン端子Dの面積よりも小さくなる。よって、熱抵抗が小さいドレイン端子Dが、ヒートマスの大きいベース部54及び正極側のヒートシンク18Aに接続され、放熱性が高められている。また、MOSFETのパッケージは、ベース部54が風上側(リア側)になり、リード部55が風下側(フロント側)になる向きで配置される。よって、MOSFETの発熱が伝達されるベース部54に、最上流で冷却風を当てることができ、MOSFETの冷却性が高められる。
 負極側のヒートシンク18Bの平板状の部分に、冷却風の流れ方向(本例では軸方向)に貫通する円柱状の貫通孔が形成されており、この貫通孔に円柱状のSBDのパッケージがプレスフィットにより嵌め込まれている。平板状の部分は、回転軸36を取り囲むように、円弧板状に形成されており、3つの貫通孔が、周方向に分散して形成されている。円弧板状の部分の外周部及び内周部には、流れ方向に平行な複数のフィン61が設けられており、冷却性が高められている。なお、正極側のヒートシンク18Aの平板状の部分と、負極側のヒートシンク18Bの平板状の部分とは、流れ方向(軸方向)に見て重複するように配置されており、2つの平板状の部分の間に、サーキットボード19が配置されている。
 MOSFETのパッケージと同様に、SBDのパッケージは、銅製の円柱状のベース部と、平板状のSBDのチップと、リード部と、エポキシ樹脂と、を備えている。SBDのチップの一方の面に、アノード端子Aが設けられ、アノード端子Aは、ベース部の一方の面に半田により接合される。アノード端子Aは、ベース部及び負極側のヒートシンク18Bを介して、負極側の出力端子6に接続される。SBDのチップの他方の面に、カソード端子Kが設けられ、カソード端子Kは、リード部62に半田により接合される。リード部62は、サーキットボード19に接続され、サーキットボード19を介して正極側のMOSFET及び巻線に接続される。そして、ベース部の一方の面、SBDのチップ、及びリード部62の接続部が、エポキシ樹脂によりポッティングされ、ベース部と同じ断面積を持つ円柱状に成形されている。
 上述したように、正極側及び負極側の半導体素子の双方にSBDを用いる比較例に比べて、正極側にMOSFETを用い、負極側にSBDを用いる本実施の形態では、整流損失を35%低下させることができる。また、上述したように、配置及び構成を工夫することにより、各半導体素子の冷却性が高められている。よって、各半導体素子を冷却するヒートシンクの大きさを小さくできる。そのため、正極側及び負極側のヒートシンク18A、18Bの外径D1を小さくすることができる。例えば、図7及び図6に示すように、正極側及び負極側のヒートシンク18A、18Bの外径D1を、リア側ハウジング33の外周壁の内径D2(特に、排出口45が設けられた外周壁の部分の内径)よりも小さくできる。ヒートシンクの外径D1が小さくなったことで、保護カバー27のリア側の側壁に設けた吸入口47を径方向内側に配置することができる。よって、吸入口47と排出口45との距離を延ばすことができ、排出口45から排出された暖かい空気が、吸入口47から再吸入され難くでき、冷却性が高められる。
 また、整流損失を低減できているので、整流装置1を冷却した後、リア側ハウジング33に吸入される冷却風の温度上昇を抑制することができる。よって、リア側ハウジング33に収容されたリア側コイルエンド部44及びリア側のベアリング35等の冷却性が高められる。よって、整流装置1だけでなく、車両用発電装置10全体の温度上昇を抑制し、車両用発電装置10の信頼性を高めることができる。また、3相の巻線9U、9V、9Wの温度が下がれば、発電電流を増加させることができ、車両用発電装置10を高出力化できる。
2.実施の形態2
 次に、実施の形態2に係る整流装置1及び車両用発電装置10について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態では、図13の回路図に示すように、正極側の半導体素子2は、3セットの全てについて、SBDとされ、負極側の半導体素子3は、3セットの全てについて、MOSFETとされている点が、実施の形態1と異なる。
 各相の直列回路において、正極側のSBDのカソード端子Kは、正極側の出力端子5に接続され、正極側のSBDのアノード端子Aは、負極側のMOSFETのドレイン端子Dに接続され、負極側のMOSFETのソース端子Sは、負極側の出力端子6に接続されている。正極側のSBDと負極側のMOSFETとの接続点11は、対応する巻線に接続されている。
 負極側のMOSFETのそれぞれは、実施の形態1と同様の制御回路8としてのICを備えており、MOSFETをオンオフ駆動する。図14に、いずれか一相(例えば、U相)の相電圧波形を示す。負極側の出力端子6の電圧VN(ソース端子Sの電圧)が、U相の相電圧VU(ドレイン端子Dの電圧)を上回っている期間で、U相の正極側のMOSFETがオンにされている。本実施の形態では、上回っている期間の両端は、U相の正極側のMOSFETがオフにされている。
 実施の形態1の図2と同様に、MOSFETがオンである場合は、ソース端子Sからドレイン端子Dへの降下電圧は、0.1V以下の降下電圧になる。一方、正極側の出力端子6の電圧VB(カソード端子Kの電圧)が、U相の相電圧VU(アノード端子Aの電圧)を下回る期間では、アノード端子Aからカソード端子Kへの降下電圧は、SBDの順方向降下電圧の0.6V程度の降下電圧になる。
 よって、実施の形態1と同様に、正極側及び負極側の半導体素子の双方にSBDを用いる比較例に比べて、正極側にSBDを用い、負極側にMOSFETを用いる本実施の形態でも、整流損失を35%低下させることができ、車両用発電装置10の発電効率を向上させることができる。
 また、各直列回路において、負極側のMOSFETにより漏れ電流を絞ることができ、素子温度が高くなっても、各直列回路を流れる漏れ電流の増加を抑制することができる。
 本実施の形態でも、正極側のSBDの降伏電圧は、負極側のMOSFETのクランプ電圧よりも低い。発電中に正極側の出力端子5が外れる等して高電圧サージが発生した場合に、負極側のMOSFETのクランプ回路が作動する前に、正極側のSBDが降伏する。実施の形態1と同様に、3相の巻線9U、9V、9Wの端子電圧を、正極側のSBDの降伏電圧に固定することができ、負極側のMOSFETに過大な電圧がかからないようにできる。高電圧サージからMOSFETを保護することができる共に、高電圧サージをSBDの電力消費により効率よく減衰させることができる。
 本実施の形態でも、図15に示すように、正極側のSBDは、負極側のMOSFETよりも冷却風の下流側に配置されている。SBDが固定されている正極側のヒートシング18Aは、MOSFETが固定されている負極側のヒートシンク18Bよりも、冷却風の下流側(本例ではフロント側)に配置されている。よって、SBD及びMOSFETの全体の冷却効率を向上させることができると共に、SBDの温度を高くすることによって、SBDの順方向の降下電圧を低下させ、SBDの整流損失を低下させることができる。
 サーキットボード19は、冷却風の流れ方向における、正極側のヒートシンク18Aと負極側のヒートシンク18Bとの間に挟まれている。また、全ての負極側のMOSFETは、同一平面上に配置され、全ての正極側のSBDは、同一平面上に配置されている。全ての負極側のMOSFETが配置される平面と、全ての正極側のSBDが配置される平面とは、冷却風の流れ方向(本例では軸方向)にずれている。
 また、実施の形態1と同様に、各ヒートシンク18A、18Bに貫通孔が形成されており、各貫通孔に、MOSFETのパッケージ及びSBDのパッケージがプレスフィットにより嵌め込まれている。MOSFETのパッケージ及びSBDのパッケージは、実施の形態1と同様に構成されている。また、MOSFETのパッケージは、ベース部54が風上側(リア側)になり、リード部55が風下側(フロント側)になる向きで配置される。MOSFETが固定されている負極側のヒートシンク18Bは、SBDが固定されている正極側のヒートシング18Aよりも上流側に配置されているので、MOSFETの発熱が伝達されるベース部54に、最上流で冷却風を当てることができ、MOSFETの冷却性が高められる。また、正極側及び負極側のヒートシンク18A、18Bの外径を、リア側ハウジング33の外周壁の内径(特に、排出口45が設けられた外周壁の部分の内径)よりも小さくされている。
3.実施の形態3
 次に、実施の形態3に係る整流装置1及び車両用発電装置10について説明する。上記の実施の形態1又は2と同様の構成部分は説明を省略する。実施の形態1及び2では、SBDの順方向降下電圧が、25℃、100A通電の条件で、0.6V程度であった。本実施の形態では、SBDの順方向降下電圧が、25℃、100A通電の条件で、0.6Vよりも低い電圧、例えば、0.3Vから0.4Vの超低順方向降下電圧のSBDが用いられる。
 SBDの順方向降下電圧を0.6Vよりも低くすると、漏れ電流が大きくなる課題がある。正極側及び負極側の半導体素子の双方にSBDを用いる場合は、漏れ電流による熱暴走の懸念から漏れ電流制御回路等の特別な回路を用いずに、順方向降下電圧が0.6Vよりも低いSBDを採用することは、困難であった。
 しかし、本実施の形態では、正極側又は負極側のMOSFETにより漏れ電流を絞ることができるので、順方向降下電圧が0.6Vよりも低いSBDを用いても、直列回路全体の漏れ電流の増加を抑制できる。SBDの順方向降下電圧の低下と、漏れ電流の増加とのトレードオフを、正極側又は負極側にMOSFETを設けることにより解決できる。
 SBDの順方向降下電圧を0.6Vよりも低減できるので、実施の形態1及び2よりも整流損失を更に低減できる。また、SBDの順方向降下電圧による電圧降下を抑制できるので、整流装置1の出力が増加する。よって、高効率、高出力な整流装置1を得ることができる。
 SBDの順方向降下電圧の低下と、漏れ電流の増加とのトレードオフを改善するために、SBDの内部構造において、ガードリング部の内側に配列されるP層の形状をストライプ状またはドット状とする等、SBDの開発に工数がかけられ、SBDのコストも増加していた。本実施の形態では、このSBDの開発工数を削減可能であり、高価なSBDを用いる必要がない。
〔その他の実施の形態〕
 最後に、本願のその他の実施の形態について説明する。なお、以下に説明する各実施の形態の構成は、それぞれ単独で適用されるものに限られず、矛盾が生じない限り、他の実施の形態の構成と組み合わせて適用することも可能である。
(1)上記の実施の形態1では、負極側の半導体素子3は、3セットの全てについて、SBDとされ、実施の形態2では、正極側の半導体素子2は、3セットの全てについて、SBDとされている場合を例として説明した。しかし、本願の実施の形態はこれに限定されない。すなわち、実施の形態1の場合では、負極側の半導体素子3は、3セットの少なくとも1つについて、SBDとされればよく、例えば、負極側の半導体素子3は、3セットの1つ又は2つについて、SBDとされてもよい。なお、SBDとされていない残りの負極側の半導体素子3は、正極側のMOSFETと同様のMOSFETとされてもよく、PN接合によるダイオードとされてもよい。実施の形態2の場合では、正極側の半導体素子2は、3セットの少なくとも1つについて、SBDとされればよく、例えば、正極側の半導体素子2は、3セットの1つ又は2つについて、SBDとされてもよい。なお、SBDとされていない残りの正極側の半導体素子2は、負極側のMOSFETと同様のMOSFETとされてもよく、PN接合によるダイオードとされてもよい。
(2)上記の各実施の形態では、直列回路が3セット設けられ、交流電源として3相の巻線9U、9V、9Wが設けられ、3相全波整流回路とされている場合を例として説明した。しかし、本願の実施の形態はこれに限定されない。すなわち、直列回路が2セット以上設けられればよい。例えば、交流電源として2組の3相の巻線が設けられ、直列回路が6セット設けられてもよく、交流電源として5相の巻線が設けられ、直列回路が5セット設けられてもよく、交流電源が1相の商用交流電源等とされ、単相全波整流回路として直列回路が2セット設けられてもよい。
(3)上記の各実施の形態では、整流装置1が、車両用発電装置10に設けられている場合を例として説明した。しかし、本願の実施の形態はこれに限定されない。すなわち、整流装置1が、車両用発電装置10以外の装置に用いられてもよい。例えば、整流装置1は、風力、水力等の発電装置に用いられてよく、商用交流電源を直流電源に変換する変換装置に用いられてもよい。
(4)上記の各実施の形態では、特定ダイオードとして、ショットキーバリアダイオードSBDが用いられている場合を例として説明した。しかし、本願の実施の形態はこれに限定されない。すなわち、特定ダイオードとして、ドレイン端子とゲート端子が短絡されたMOSFETであるMOSダイオードが用いられてもよい。MOSダイオードのドレイン端子が正極側に接続され、MOSダイオードのソース端子が負極側に接続される。ソース端子からドレイン端子へのMOSダイオードの順方向降下電圧は、通常のMOSFETがオンの時の降下電圧よりも大きくなり、SBDの順方向降下電圧と同等になる。ドレイン端子からソース端子へのMOSダイオードの漏れ電流は、通常のMOSFETの漏れ電流と同等になり、SBDの漏れ電流よりも小さくなる。よって、特定ダイオードとしてMOSダイオードを用いても、整流損失を低減でき、漏れ電流を低減できる。MOSダイオードは、制御回路8及びクランプ回路を必要としないため、制御回路8及びクランプ回路を備えたMOSFETよりも安価である。また、SBDとして、ジャンクションバリアショットキーダイオード等の各種のSBDが用いられてもよい。
(5)上記の実施の形態1、2では、SBDの順方向降下電圧が、25℃、100A通電の条件で、0.6V程度であり、実施の形態3では、SBDの順方向降下電圧が、25℃、100A通電の条件で、0.3Vから0.4V程度である場合を例として説明した。しかし、SBDの順方向降下電圧は、25℃、100A通電の条件で、例えば、0.3Vから0.65Vの範囲内の電圧であればよい。
(6)上記の各実施の形態では、MOSFETのそれぞれに、制御回路8としてのICが備えられている場合を例として説明した。しかし、本願の実施の形態はこれに限定されない。すなわち、制御回路8として、全てのMOSFETに対して1つの制御回路が設けられていてもよく、1つの制御回路が、各MOSFETについて、ソース端子Sの電圧がドレイン端子Dの電圧を上回る場合に、ゲート端子Gにオン信号を出力して、MOSFETをオンにしてもよい。
(7)上記の各実施の形態では、正極側及び負極側のヒートシンクに、冷却風の流れ方向(軸方向)に貫通する円柱状の貫通孔が形成されており、貫通孔に円柱状のMOSFETのパッケージ及び円柱状のSBDのパッケージがプレスフィットにより嵌め込まれている場合を例として説明した。しかし、本願の実施の形態はこれに限定されない。すなわち、図16の部分斜視図に示すように、正極側及び負極側のヒートシンクに、冷却風の流れ方向(軸方向)に貫通する直方体状の貫通孔が形成されており、貫通孔に直方体状のMOSFETのパッケージ及び直方体状のSBDのパッケージがプレスフィットにより嵌め込まれてもよい。
(8)MOSFET及び特定ダイオードに用いられる半田は、鉛入り半田であってもよく、鉛フリー半田であってもよい。整流装置1の整流損失による発熱が低下し、冷却性が向上しているため、鉛フリー半田を用いても熱劣化の発生を抑制できる。
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
1 整流装置、2 正極側の半導体素子、3 負極側の半導体素子、5 正極側の出力端子、6 負極側の出力端子、8 制御回路、10 車両用発電装置、11 直列接続の接続点、18A 正極側のヒートシンク、18B 負極側のヒートシンク、19 サーキットボード、34 ハウジング、SBD ショットキーバリアダイオード

Claims (14)

  1.  正極側の出力端子に接続される正極側の半導体素子と、負極側の出力端子に接続される負極側の半導体素子とが直列接続され、直列接続の接続点が対応する交流電源に接続される直列回路を、nセット設け(nは2以上の自然数)、
     前記正極側の半導体素子及び前記負極側の半導体素子は、負極側から正極側に電流を流す整流機能を少なくとも有し、
     前記正極側の半導体素子及び前記負極側の半導体素子の一方は、前記nセットの全てについて、MOSFETであり、
     前記正極側の半導体素子及び前記負極側の半導体素子の他方は、前記nセットの少なくとも1つについて、特定ダイオードであり、
     前記特定ダイオードは、ショットキーバリアダイオード、又はドレイン端子とゲート端子が短絡されたMOSFETであるMOSダイオードである整流装置。
  2.  前記正極側の半導体素子及び前記負極側の半導体素子の他方は、前記nセットの全てについて、前記特定ダイオードである請求項1に記載の整流装置。
  3.  前記MOSFETをオンオフ駆動する制御回路を更に備え、
     前記制御回路は、前記MOSFETのソース端子の電圧が、前記MOSFETのドレイン端子の電圧を上回る場合に、前記MOSFETをオンにする請求項1又は2に記載の整流装置。
  4.  前記ショットキーバリアダイオードの降伏電圧は、前記MOSFETのクランプ電圧よりも低い請求項1から3のいずれか一項に記載の整流装置。
  5.  負極側から正極側への前記ショットキーバリアダイオードの順方向の降下電圧は、25℃、100A通電の条件で、0.3Vから0.65Vの範囲内の電圧である請求項1から4のいずれか一項に記載の整流装置。
  6.  前記特定ダイオードは、前記MOSFETよりも冷却風の下流側に配置される請求項1から5のいずれか一項に記載の整流装置。
  7.  前記ショットキーバリアダイオードは、温度が高くなるほど、負極側から正極側への降下電圧が小さくなる特性を有する請求項6に記載の整流装置。
  8.  全ての前記正極側の半導体素子は、同一平面上に配置され、全ての前記負極側の半導体素子は、同一平面上に配置され、
     全ての前記正極側の半導体素子が配置される平面と、全ての前記負極側の半導体素子が配置される平面とは、前記冷却風の流れ方向にずれている請求項6又は7に記載の整流装置。
  9.  全ての前記正極側の半導体素子が固定される正極側のヒートシンクと、全ての前記負極側の半導体素子が固定される負極側のヒートシンクと、を更に備え、
     前記正極側のヒートシンクと前記負極側のヒートシンクとのいずれか前記特定ダイオードが固定されている方は、前記特定ダイオードが固定されていない方よりも、前記冷却風の下流側に配置されている請求項6から8のいずれか一項に記載の整流装置。
  10.  前記正極側の半導体素子と前記負極側の半導体素子と前記交流電源と前記正極側の出力端子と前記負極側の出力端子とを接続するサーキットボードを更に備え、
     前記サーキットボードは、前記冷却風の流れ方向における、前記正極側のヒートシンクと前記負極側のヒートシンクとの間に挟まれている請求項9に記載の整流装置。
  11.  前記正極側の半導体素子及び前記負極側の半導体素子のパッケージは、円柱状又は直方体状であり、前記正極側のヒートシンク及び前記負極側のヒートシンクに形成された円柱状又は直方体状の貫通孔に嵌め込まれている請求項9又は10に記載の整流装置。
  12.  前記MOSFET及び前記特定ダイオードに用いられる半田は、鉛フリー半田である請求項1から11のいずれか一項に記載の整流装置。
  13.  請求項1から12のいずれか一項に記載の整流装置、及び前記交流電源としてのn相の巻線を備えた車両用交流発電装置。
  14.  前記正極側の半導体素子及び前記負極側の半導体素子が固定されるヒートシンクの外径は、前記n相の巻線を収容するハウジングの外周壁の内径よりも小さい請求項13に記載の車両用交流発電装置。
PCT/JP2018/029169 2018-08-03 2018-08-03 整流装置及びそれを備えた車両用交流発電装置 WO2020026427A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18928255.1A EP3832875B1 (en) 2018-08-03 2018-08-03 Rectification device and vehicle ac power generating apparatus provided with same
US17/254,354 US11932111B2 (en) 2018-08-03 2018-08-03 Rectifier and vehicle AC generator provided therewith
PCT/JP2018/029169 WO2020026427A1 (ja) 2018-08-03 2018-08-03 整流装置及びそれを備えた車両用交流発電装置
JP2020534010A JP6918244B2 (ja) 2018-08-03 2018-08-03 整流装置及びそれを備えた車両用交流発電装置
CN201880096187.6A CN112514232B (zh) 2018-08-03 2018-08-03 整流装置及具有该整流装置的车辆用交流发电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/029169 WO2020026427A1 (ja) 2018-08-03 2018-08-03 整流装置及びそれを備えた車両用交流発電装置

Publications (1)

Publication Number Publication Date
WO2020026427A1 true WO2020026427A1 (ja) 2020-02-06

Family

ID=69231592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029169 WO2020026427A1 (ja) 2018-08-03 2018-08-03 整流装置及びそれを備えた車両用交流発電装置

Country Status (5)

Country Link
US (1) US11932111B2 (ja)
EP (1) EP3832875B1 (ja)
JP (1) JP6918244B2 (ja)
CN (1) CN112514232B (ja)
WO (1) WO2020026427A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112514232B (zh) * 2018-08-03 2024-10-11 三菱电机株式会社 整流装置及具有该整流装置的车辆用交流发电装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0833228A (ja) * 1994-05-12 1996-02-02 Kokusan Denki Co Ltd 内燃機関用電源装置
JPH10146047A (ja) * 1996-11-12 1998-05-29 Sanyo Electric Co Ltd Dc−dcコンバータ装置
WO1999036966A1 (fr) 1998-01-14 1999-07-22 Mitsubishi Denki Kabushiki Kaisha Systeme redresseur
JPH11225446A (ja) * 1998-02-05 1999-08-17 Shindengen Electric Mfg Co Ltd バッテリ充電装置
JP2005341730A (ja) * 2004-05-27 2005-12-08 Murata Mfg Co Ltd 過電流保護回路
WO2014083609A1 (ja) * 2012-11-27 2014-06-05 三菱電機株式会社 整流装置の製造方法及び整流装置
WO2016174731A1 (ja) * 2015-04-28 2016-11-03 三菱電機株式会社 回転電機

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6423768A (en) 1987-07-16 1989-01-26 Sanken Electric Co Ltd Dc and ac power circuit unit
US5650941A (en) 1994-09-07 1997-07-22 Intel Corporation Computer architecture for creating and manipulating displayable objects
US5646866A (en) 1995-02-15 1997-07-08 Intel Corporation Preloading files for subsequent processing
JPH1023768A (ja) * 1996-06-28 1998-01-23 Toyo Electric Mfg Co Ltd 電力変換装置の冷却用ヒ−トシンク組立体
TW516984B (en) * 1999-12-28 2003-01-11 Toshiba Corp Solder material, device using the same and manufacturing process thereof
DE102010062677A1 (de) * 2010-12-09 2012-06-14 Robert Bosch Gmbh Generatorvorrichtung zur Spannungsversorgung eines Kraftfahrzeugs
TWI658568B (zh) * 2017-01-03 2019-05-01 Leadtrend Technology Corporation 高壓半導體元件以及同步整流控制器
CN112514232B (zh) * 2018-08-03 2024-10-11 三菱电机株式会社 整流装置及具有该整流装置的车辆用交流发电装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0833228A (ja) * 1994-05-12 1996-02-02 Kokusan Denki Co Ltd 内燃機関用電源装置
JPH10146047A (ja) * 1996-11-12 1998-05-29 Sanyo Electric Co Ltd Dc−dcコンバータ装置
WO1999036966A1 (fr) 1998-01-14 1999-07-22 Mitsubishi Denki Kabushiki Kaisha Systeme redresseur
JPH11225446A (ja) * 1998-02-05 1999-08-17 Shindengen Electric Mfg Co Ltd バッテリ充電装置
JP2005341730A (ja) * 2004-05-27 2005-12-08 Murata Mfg Co Ltd 過電流保護回路
WO2014083609A1 (ja) * 2012-11-27 2014-06-05 三菱電機株式会社 整流装置の製造方法及び整流装置
WO2016174731A1 (ja) * 2015-04-28 2016-11-03 三菱電機株式会社 回転電機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3832875A4

Also Published As

Publication number Publication date
EP3832875A4 (en) 2021-07-28
EP3832875A1 (en) 2021-06-09
EP3832875B1 (en) 2024-06-05
CN112514232A (zh) 2021-03-16
JPWO2020026427A1 (ja) 2020-12-17
CN112514232B (zh) 2024-10-11
JP6918244B2 (ja) 2021-08-11
US20210257888A1 (en) 2021-08-19
US11932111B2 (en) 2024-03-19

Similar Documents

Publication Publication Date Title
US5742498A (en) Motor vehicle alternator having sealed rectifiers for efficient high-temperature operation
US7589481B2 (en) Control device integrated dynamo-electric machine
US7242120B2 (en) Alternator
JP3443363B2 (ja) 車両用交流発電機
US7015607B1 (en) AC generator for vehicle
JPWO2016185510A1 (ja) 車両用交流発電機
JP3230829B2 (ja) 車両用交流発電機と整流器
KR100379907B1 (ko) 차량용 교류발전기
US6731081B2 (en) Vehicle alternator having rectifier circuit using diode and FET
US10396636B2 (en) Power converter and rotary electric machine
WO2016079866A1 (ja) 車両用交流発電機
JP6324531B2 (ja) 車両用交流発電機
WO2020026427A1 (ja) 整流装置及びそれを備えた車両用交流発電装置
US10770577B2 (en) Rectifier and rotating electric machine including rectifier
US11051433B2 (en) Rectifier of rotating electric machine
JP4089421B2 (ja) 車両用交流発電機
JP2010041849A (ja) 回転電機
CN108988311B (zh) 电力转换装置和电力转换电路
JP2010041850A (ja) 回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928255

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020534010

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018928255

Country of ref document: EP

Effective date: 20210303