WO2020024848A1 - 显示面板和显示装置 - Google Patents

显示面板和显示装置 Download PDF

Info

Publication number
WO2020024848A1
WO2020024848A1 PCT/CN2019/097259 CN2019097259W WO2020024848A1 WO 2020024848 A1 WO2020024848 A1 WO 2020024848A1 CN 2019097259 W CN2019097259 W CN 2019097259W WO 2020024848 A1 WO2020024848 A1 WO 2020024848A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
display panel
sub
emitting units
Prior art date
Application number
PCT/CN2019/097259
Other languages
English (en)
French (fr)
Inventor
潘湾萍
朱爱华
贾小波
余海龙
Original Assignee
京东方科技集团股份有限公司
福州京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 福州京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/652,121 priority Critical patent/US11404674B2/en
Publication of WO2020024848A1 publication Critical patent/WO2020024848A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display panel and a display device.
  • OLEDs Organic light-emitting diodes
  • OLED display technology has the advantages of self-luminous, all-solid-state, and good mechanical properties, which can realize soft screen display, thinner and lighter, high brightness, efficient light emission, fast response, low-voltage driving and low power consumption, low cost, and fewer processes.
  • OLEDs are classified into, for example, monochrome, colorful, and full-color. Among them, the preparation of full-color OLEDs is the most difficult. In terms of the size of OLED products, for example, small and medium-sized OLEDs used in handheld devices or car navigation systems, notebook computers, etc.
  • the large-sized organic electroluminescent layer is mainly formed by an evaporation process, but the large-sized evaporation process has high cost, low yield, and requires the preparation of a high-precision metal mask (FMM (Fine Metal Mask)).
  • FMM Fe Metal Mask
  • embodiments of the present disclosure provide a display panel and a display device.
  • a display panel configured to display an image, the image including a plurality of image pixels and each image pixel including a plurality of sub-pixels in different colors, respectively, the display panel include:
  • a plurality of sub-beam generating components are disposed on the base substrate, each of the sub-beam generating components is configured to generate at least one sub-pixel in at least one image pixel, and each of the sub-beam generating components includes: a group of light emitting units The group of light-emitting units includes at least one light-emitting unit; and a beam-expanding layer arranged on a light-exiting side of the group of light-emitting units and configured to expand a light beam emitted from the group of light-emitting units,
  • the orthographic projection of the beam expansion layer on the base substrate partially overlaps with the orthographic projection of the group of light emitting units on the base substrate.
  • the beam expansion layer includes a microlens unit, and the microlens unit includes at least one microlens.
  • the beam expansion layer further includes a conductive medium having a refractive index different from that of the microlens unit, and the conductive medium is configured to enclose the light exit surface of the microlens unit and communicate with the light of the microlens unit.
  • the exit surface is adjacent.
  • the refractive index of the conductive medium is greater than the refractive index of the microlens unit.
  • a color filter configured to filter the color of the light beam is provided in the conductive medium.
  • the refractive index of the conductive medium is smaller than the refractive index of the medium outside the beam expansion layer adjacent to the light exit surface of the beam expansion layer.
  • the microlens The unit includes at least one micro lens, and a distance between adjacent light emitting units in the same group of light emitting units is smaller than a distance between light emitting units of the adjacent group.
  • each sub-beam generating component includes a single light-emitting unit corresponding to a single sub-pixel and each sub-beam generating component is configured to present a single image pixel
  • the micro-lens unit facing a single light-emitting unit includes a plurality of micro-lenses respectively formed by color filters of different colors, and the color filters of different colors are respectively configured to filter the light beam to remove the single to be presented A component of a color other than the color of each sub-pixel of the image pixel.
  • each sub-beam generating component includes a single light emitting unit and each sub-beam generating component is configured to present a single image pixel
  • the micro lens unit includes one micro lens
  • the color filter includes a plurality of color filter sub-elements disposed at a distance from each other, and the plurality of color filter sub-elements are respectively configured to filter a light beam and remove respective sub-pixels to be rendered from the single image pixel. Composition that extends beyond the colors.
  • the at least one microlens includes a secondary microlens arranged in a multilayer.
  • each microlens unit includes a convex lens or a concave lens.
  • each microlens unit includes a microlens with a spherical crown shape or a rectangular bottom spherical crown shape.
  • each microlens unit is extended from one group of the light emitting units facing the microlens unit in one direction or two directions orthogonal to the normal direction of the display panel. Beam.
  • the light emitting unit is an organic light emitting diode light emitting unit.
  • each of the organic light emitting diode light emitting units includes an anode, a cathode, and an organic light emitting material layer located between the anode and the cathode.
  • the group of light emitting units is a bottom emission type organic light emitting diode light emitting unit
  • the beam expanding layer is located between the plurality of groups of light emitting units and a substrate.
  • the group of light emitting units is a top emission type organic light emitting diode light emitting unit
  • the beam expanding layer is located on a side of the plurality of groups of light emitting units facing away from the substrate.
  • the single light emitting unit is a white light emitting unit.
  • the microlens unit includes a plurality of microlenses, and the plurality of light emitting units and the plurality of microlenses are arranged to face each other in a one-to-one correspondence relationship and are located in the beam expansion layer.
  • the color filter section includes a plurality of color filter sections each having the same color as the plurality of light emitting units.
  • a display device including the display panel of any of the foregoing.
  • FIG. 1 (a) is a schematic structural diagram of a display panel according to an embodiment of the present disclosure
  • FIG. 1 (b) shows a schematic structural diagram of a further exemplary display panel based on the display panel shown in FIG. 1 (a);
  • FIG. 2 (a) is a schematic structural diagram of a display panel according to another embodiment of the present disclosure.
  • FIG. 2 (b) shows a schematic structural diagram of a further exemplary display panel based on the display panel shown in FIG. 2 (a);
  • FIG. 3 (a) is a schematic structural diagram of a display panel according to still another embodiment of the present disclosure.
  • FIG. 3 (b) shows a schematic structural diagram of a further exemplary display panel based on the display panel shown in FIG. 3 (a);
  • FIG. 4 (a) is a schematic structural diagram of a display panel according to another embodiment of the present disclosure.
  • FIG. 4 (b) shows a schematic structural diagram of a further exemplary display panel based on the display panel shown in FIG. 4 (a);
  • FIGS. 6 (a) is a schematic structural diagram of a sub-beam generating component serving as a physical pixel in the display panel shown in FIGS. 2 (a) and 4 (a);
  • FIGS. 6 (b) is a schematic structural diagram of a sub-beam generating component serving as a physical pixel in the display panel shown in FIGS. 2 (b) and 4 (b);
  • FIG. 7 (a) is a schematic structural diagram of a sub-beam generating component serving as a physical pixel in a display panel according to an embodiment of the present disclosure
  • FIG. 7 (b) shows a schematic structural diagram of a sub-beam generating component serving as a physical pixel in a further exemplary embodiment based on the sub-beam generating component shown in FIG. 7 (a);
  • FIG. 8 is a schematic structural diagram of a sub-beam generating component serving as a physical pixel in a display panel according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram illustrating an exemplary correspondence relationship between a microlens unit and a light emitting unit
  • FIG. 10 shows a schematic diagram of a microlens unit including a multilayer microlens structure
  • 11 and 12 are sectional views each showing an exemplary structure of a microlens unit
  • FIG. 13 illustrates a perspective view of an exemplary structure of a microlens unit
  • FIG. 14 illustrates a structure of an example of a light emitting unit in the embodiment of the present disclosure.
  • 15 and 16 illustrate examples of a microlens unit in a display panel according to an embodiment of the present disclosure.
  • the relative position relationship may also be corresponding.
  • an element such as a layer, film, region, or substrate is referred to as being “on” or “under” another element, it can be “directly on” or “under” another element , Or there may be intermediate elements.
  • OLED display panels have a large number of light-emitting units and are densely arranged, which consumes a large amount of power and makes it difficult to dissipate heat.
  • the increase in power consumption will cause the heat in the display panel to increase and even cause the display panel to be destroyed. If the distance between the light-emitting units is enlarged, the display effect may be affected. Therefore, it is desirable to seek an OLED display panel capable of achieving a good display effect when the distance between the light emitting units is set to be relatively large.
  • FIG. 1 illustrates a display panel 100a configured to display an image according to an embodiment of the present disclosure, the image including a plurality of image pixels and each image pixel including a separate A plurality of sub-pixels 40 in different colors.
  • the display panel 100a includes a base substrate 10 (such as a glass substrate or a substrate made of other transparent materials), and a plurality of sub-beam generating components disposed on the base substrate.
  • Each of the sub-beam generating components is configured to generate at least one A plurality of sub-pixels in the image pixel, and comprising: a group of light-emitting units 20, the group of light-emitting units including at least one light-emitting unit; and a beam-expanding layer 30, the beam-expanding layer 30 is arranged on the light-emitting side of the group of light-emitting units And configured to expand a light beam emitted from the group of light emitting units.
  • light emitting units of respective corresponding groups of adjacent sub-beam generating components are spaced apart from each other, and respective beam-expanding layers of the adjacent sub-beam generating components are provided at the same layer, for example.
  • the group of light-emitting units in each of the sub-beam generating components includes at least one light-emitting unit, and a plurality of groups of light-emitting units 20 adjacent to the sub-beam generating components are disposed on the base substrate 10 And is spaced apart from the base substrate 10. And, for example, the group of light emitting units in each of the sub-beam generating components includes at least one light emitting unit.
  • the orthographic projection of the beam expansion layer 30 on the base substrate 10 and the orthographic projection of the group of light emitting units on the base substrate 10 partially overlap.
  • the at least one microlens includes a secondary microlens arranged in multiple layers.
  • the beam-expanding layers 30 of the plurality of sub-beam generating components are disposed, for example, in the same layer, and their respective microlens units form a microlens unit array including, for example, a plurality of microlens units 60 arranged in a matrix.
  • the plurality of groups of light emitting units 20 and the beam expansion layer 30 cooperatively define a plurality of sub-beam generating components, each of which includes one of the plurality of groups of light emitting units 20 opposed in a one-to-one correspondence relationship.
  • the group light emitting unit and the micro lens unit of the plurality of micro lens units 60; and the orthographic projection of the micro lens unit 60 on the base substrate 10 and the group light emitting unit 20 on the base substrate 10 The orthographic projections at least partially overlap.
  • each group of light-emitting units 20 is provided corresponding to at least one image pixel, that is, the light emitted by each group of light-emitting units 20 propagates through the plurality of groups of light-emitting units 20 and the beam expanding layer 30 and emits a monochromatic sub-beam (hereinafter Sub-beams) are finally presented with different monochrome sub-pixels 40 respectively to collectively define the corresponding at least one image pixel; and multiple groups of light-emitting units 20 work together to collectively define the entire image.
  • each sub-beam generating component functions, for example, equivalently to one physical pixel generating at least one image pixel.
  • FIGS. 1 (a) to 4 (b) schematically illustrate various structures of a display panel according to an embodiment of the present disclosure
  • FIGS. 5 (a) to 8 schematically illustrate a display panel according to an embodiment of the present disclosure.
  • the various structures of the sub-beam forming components that act as physical pixels.
  • the upper part of each figure shows a specific physical structure
  • the lower part correspondingly shows the image pixels presented by the sub-beams formed by the specific physical structure emitted from the display panel.
  • the general technical concept as described above is essentially, for example, summarized as follows: a plurality of groups of light emitting units emit light beams, and after the beam expansion layer expands the beams to form an emitted light beam, the emitted light beam is shown to include a plurality of image pixels Image.
  • monochromatic sub-beams used to present sub-pixels of different colors. Due to the existence of monochromatic light sources (such as red (R), green (G), and blue (B) colors), Light source) and white light (W) light source (such as white OLED light source, that is, WOLED light source). Monochromatic light sources of different colors form separate monochromatic lights of different colors, and white light sources need to work with color filters of different colors. In order to generate monochromatic shades of different colors. Therefore, in the embodiments of the present disclosure, for each group of light-emitting units, in order to present sub-pixels of different monochromatic colors, for example, monochromatic sub-beams can be generated before, during, and after the beam expansion. .
  • monochromatic sub-beams can be generated before, during, and after the beam expansion. .
  • the embodiment of the present invention for example, by directly setting a plurality of monochromatic light sources of different colors (for example, red (R), green (G), and blue (B) light sources) to achieve beam expansion That is, to generate monochromatic sub-beams separately; or, for example, by setting at least one white light (W) light source, and (for example, with the at least one white light) located at or adjacent to the light exit surface of the at least one white light (W) light source
  • W white light
  • Different color filters of different colors are used to generate monochromatic sub-beams before expanding the beam.
  • each white light emitting unit for example, in a case where only at least one white light emitting unit is included in each group of light emitting units, for example, by setting a corresponding number (i.e., Forming a plurality of microlenses of different color sub-beams each having the same number of subpixels), and forming a plurality of microlenses in each microlens unit in the beam expansion layer by a color filter, Specifically, for example, a color gel film is provided on at least one of a light-entry surface and a light-emitting surface of each microlens unit (that is, a microlens is produced by a surface-attach color filter process), or each microlens is Inside the unit is a colored glue film (that is, the microlens is made by the glass sandwich process), or each microlens unit is made of colored optical glass (that is, the microlens is made by the colored glass process) to generate monochromatic elements during beam expansion
  • each group of light emitting units includes only at least one white light emitting unit, for example, by A single micro-lens is set in the lens unit, and a plurality of color filter sub-elements adjacent to the corresponding number (that is, the same number of sub-pixels respectively formed by different color sub-beams to be formed) are set around the light-emitting surface of the single micro-lens unit.
  • a plurality of color filter sub-elements adjacent to the corresponding number that is, the same number of sub-pixels respectively formed by different color sub-beams to be formed
  • FIG. 1 (a) is a schematic structural diagram of a display panel according to an embodiment of the present disclosure.
  • FIG. 2 (a) schematically illustrates a structure of a display panel 100b according to another embodiment of the present disclosure.
  • the group of light-emitting units includes a plurality of light-emitting units, and each sub-beam generating component is configured to present at least one complete image pixel (illustrated to present one complete image pixel), the microlens
  • the unit includes at least one microlens.
  • the group of light emitting units includes a plurality of light emitting units, and the microlenses
  • the at least one microlens included in the unit is only a single microlens, and each sub-beam generating component is configured to present at least one complete image pixel (illustrated as presenting one complete image pixel).
  • a plurality of light emitting units in each of the sub-beam generating components for forming a single image pixel share one downstream micro lens.
  • Each of the plurality of sets of light-emitting units 20 includes, for example, three light-emitting units of different monochromatic colors, which are red (R), green (G), and blue (B) light-emitting units, which are spaced apart from each other, for example. ; And the three light emitting units respectively correspond to three sub-pixels 40a, 40b, and 40c of red (R), green (G), and blue (B).
  • each group of the plurality of groups of light-emitting units 20 may include at least one light-emitting unit 20 (such as one, two, four). Or more light-emitting units 20) and each light-emitting unit 20 corresponds to one sub-pixel 40, that is, each group of light-emitting units 20 may correspond to at least one sub-pixel 40.
  • each group of the plurality of sets of light-emitting units 20 includes, for example, at least one white (W) -color light-emitting unit, and is, for example, located closely against Or color filters of different colors adjacent to the light emitting surface of the at least one white (W) light emitting unit (for example, opposite to the at least one white light emitting unit) and spaced apart from each other,
  • the plurality of color filters e.g., a red color filter, a green color filter, and a blue color filter
  • Monochromatic light emitting units such as equivalent red (R), green (G), and blue (B) light emitting units, are not distinguished from the embodiment of FIG. 1 (a).
  • light-emitting unit corresponds to a sub-pixel
  • the light emitting unit includes, for example, an OLED light emitting unit.
  • the beam expansion layer 30 is, for example, located on the light-exiting side of the plurality of groups of light emitting units 20 and configured to expand or widen the corresponding light beam 50 emitted from each group of light emitting units 20.
  • the beam expansion layer 30 is disposed on the same side of the base substrate 10 as the plurality of groups of light-emitting units 20, as shown in FIG. 1 (a). Between 20. Specifically, as shown in FIG.
  • the beam expanding layer 30 is directly formed on one surface of the base substrate 10 (shown as the upper side), and the plurality of sets of light emitting units 20 and the light emitting unit 20 Multiple groups of light-emitting units are disposed on the same side of the base substrate 10, and are illustrated as being disposed above a side of the beam expansion layer 30 facing away from the base substrate 10 and spaced apart from the beam expansion layer 30.
  • a microlens unit is provided in the beam expansion layer 30, and the microlens unit 60 is disposed to face a group of light emitting units 20 (or to be referred to as a group of light emitting units 20).
  • the orthographic projection of the microlens unit 60 on the base substrate 10 at least partially overlaps with the orthographic projection of the corresponding group of light emitting units 20 on the base substrate 10) and is perpendicular to the normal direction of the display panel
  • a two-dimensional matrix is arranged, and the light incident surface of each micro-lens unit 60 is, for example, as shown in FIG. 1 (a), the light-emitting units 20 respectively face the corresponding group and face away from the substrate 10
  • the upper surface and the light emitting surface are, for example, lower surfaces facing the base substrate 10 as shown in FIG. 1 (a).
  • the expansion effect of the beam expansion layer 30 on the light beam 50 is mainly realized by each micro lens 60 included in the micro lens unit provided in the beam expansion layer 30.
  • the cross-sectional area of the light beam 50 will increase, so that a plurality of sub-pixels corresponding to the group of light-emitting units 20 (that is, the plurality of sub-pixels) can be increased. Display area of at least one image pixel). Therefore, when the display area of the display panel is the same, the presence of the beam expansion layer 30 can reduce the number of light-emitting units 20 required. In this way, for example, reducing the number of light emitting units 20 is achieved by increasing the distance between different groups of light emitting units 20.
  • the beam expansion factor of the beam expansion layer 30 is, for example, between 1.1 and 1.5.
  • the magnification of the light beam depends on, for example, the arrangement of the microlens units and the morphology of the microlens units. As shown in FIG.
  • each sub-beam generating component in each sub-beam generating component, the group of light-emitting units includes a plurality of light-emitting units and the micro-lens unit includes only a single micro-lens, and each sub-beam generating component is configured to present one
  • the micro-lens unit 60 is set to face the corresponding group of light-emitting units 20, that is, the orthographic projection of the micro-lens unit 60 on the substrate 10 and the group of light-emitting units 20 facing the substrate 10
  • each light emitting unit 20 includes, for example, an anode 11, a cathode 12, and an organic light emitting material layer 13 located between the anode 11 and the cathode 12.
  • the light emitting unit 20 further includes, for example, a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, and the like, so as to improve light emission efficiency.
  • the embodiments of the present disclosure are not limited thereto, and other related art light emitting structures (such as related art OLED light emitting structures) may also be adopted.
  • each light-emitting unit 20 is set to correspond to one sub-pixel, for example; or alternatively, each light-emitting unit 20 is set to correspond to multiple sub-pixels, for example, a single white light-emitting unit (such as a WOLED light-emitting unit) is designed
  • filters of different colors are additionally provided, so that the emitted white light subsequently propagates through the filters of different colors, thereby forming beams of different colors to be incident on the sub-pixels to be displayed in different colors, that is, Corresponds to sub-pixels of different colors.
  • each light emitting unit 20 also corresponds to only one pixel.
  • a group of light emitting units 20 includes three light emitting units 20 corresponding to three sub-pixels, respectively. These three sub-pixels work together to form an image pixel. Therefore, in reality, a group of the light emitting units 20 is arranged to correspond to one complete image pixel, and accordingly, each micro lens unit 60 is also arranged to correspond to one complete image pixel. Therefore, on the one hand, it can be clearly seen from FIG.
  • the beam expansion layer 30 including the microlens unit in a direction perpendicular to the normal direction of the display panel, such as a horizontal direction and a vertical direction Up (for example, the vertical direction is defined as the length direction of the display panel, and the horizontal direction is, for example, the direction perpendicular to the normal and vertical directions of the display panel, that is, the width direction).
  • the vertical direction is defined as the length direction of the display panel
  • the horizontal direction is, for example, the direction perpendicular to the normal and vertical directions of the display panel, that is, the width direction.
  • the output light intensity observed at the position corresponding to the gap between the two adjacent sets of light emitting units 20 under the display panel is compensated and the overall output light intensity of the display panel is improved. Uniformity enhances the display effect.
  • the beam expansion layer 30 including the microlens unit
  • the light beam 50 emitted from the light emitting unit is expanded after propagating through the beam expansion layer 30.
  • the beam expansion layer 30 is suitable for the light beam 50.
  • This compensation effect of the size allows the gap between the two adjacent sets of light-emitting units 20 to be set larger than in the case where there is no beam-expanding layer 30.
  • Physical pixels are usually placed next to each other against each other. Now, due to the beam expansion effect of the beam expansion layer, a certain distance can be reasonably spaced. The distance between every two adjacent current physical pixels (that is, the sub-beam generating component) is inevitable.
  • the display panel provided by the embodiment of the present invention, when the gap between the two adjacent sets of light emitting units 20 is large, the divergence effect of the beam expanding layer on the light incident thereon can be minimized as much as possible.
  • the graininess of the display screen is enhanced while the heat dissipation effect of the display panel is enhanced to obtain a good balance / compromise of picture quality and heat dissipation performance.
  • the gap between the adjacent two sets of light-emitting units 20 is increased, which causes the organic light-emitting material layers in the light-emitting units 20 to be more dispersed on the display panel to reduce the difficulty of the evaporation process (e.g. The tolerance of the gap between the units 20 may become larger), so that the required precision of the required high-precision metal mask is reduced, so as to improve the yield of the display panel.
  • the gap between two adjacent sets of light emitting units 20 increases, it is also possible to reduce the number of light emitting units 20 on the display panel, which can save raw materials, power consumption and reduce costs.
  • the gap between two adjacent sets of light-emitting units 20 is increased, which facilitates an increase in display when the number of image pixels and the number of physical pixels (i.e., sub-beam generating components) that generate the image pixels remain unchanged.
  • the size of the panel compared with increasing the size of the display panel by increasing the number of image pixels and the number of physical pixels (that is, the sub-beam generating component) that generates the image pixels, facilitates the reduction of power consumption and helps increase the large size
  • the yield of the display reduces the probability of the screen burning out.
  • the beam expansion layer 30 further includes, for example, a conductive layer 31 formed of a conductive medium 31.
  • a conductive medium 31 is provided to enclose the light exit surface 61 of the microlens unit 60 and closely abut the light exit surface 61 of the microlens unit 60.
  • the conductive medium 31 is made of, for example, a light-transmitting material having a refractive index different from that of the microlens unit 60. According to the principle of refraction, the propagation direction of the light beam 50 will change at the interface (such as the light exit surface 61) between the microlens unit 60 and the conductive medium 31.
  • the refractive index of the conductive medium 31 is greater than the refractive index of the microlens unit 60, it is beneficial to achieve the expansion of the light beam 50.
  • the microlens unit 60 is in the form of a convex lens or a concave lens, respectively, will be described below with reference to FIGS. 15 and 16.
  • the conductive medium 31 is selected, for example, such that the refractive index of the conductive medium 31 is smaller than the refractive index of the medium outside the beam expansion layer adjacent to the light exit surface 32 of the beam expansion layer 30.
  • the base substrate 10 since the beam expansion layer 30 is directly disposed on the base substrate 10, the base substrate 10 directly functions as a medium outside the beam expansion layer; however, embodiments of the present disclosure are not limited thereto, such as
  • the medium is, for example, another insulating layer adjacent to the light emitting surface 32 of the beam expanding layer 30 (for example, an insulating layer additionally interposed between the light emitting surface 32 of the beam expanding layer 30 and the base substrate 10).
  • the conductive medium 31 is made of, for example, a material having the following components and contents: 5 to 30% of an epoxy acrylate copolymer, 0 to 3% of a polyfunctional monomer, and 60 to 90% of propylene glycol methyl ether. Acetate.
  • the embodiments of the present disclosure are not limited thereto, and various materials related to the related art that can achieve a corresponding light transmission function and meet the above refractive index requirements can be used.
  • a distance between adjacent light-emitting units in the same group of light-emitting units is set to be smaller than light emission of the adjacent group.
  • the distance between adjacent light emitting units in the same group of light emitting units is set to be relatively small, which facilitates the arrangement of the micro lens units.
  • the gap between adjacent light-emitting units in the same group of light-emitting units will be amplified by the corresponding micro-lens unit along with the light beams emitted by the light-emitting units in the group, it does not have to be set as if there is no beam-expanding layer.
  • the lower gap is as small as it is; in other words, the gap is also correspondingly enlarged, for example.
  • the distance between adjacent light-emitting units in the same group is set to be too large, it is easy to cause the gap between the sub-pixels corresponding to the same group of light-emitting units to be too large and thus produce a grainy feeling.
  • the distance between the light emitting units of the adjacent groups is set to be large, which helps to improve the heat dissipation performance and reduce the difficulty of the manufacturing process of the display panel.
  • the microlens unit 60 includes, for example, a plurality of microlenses arranged in a single layer, as shown in FIG. 1.
  • the microlens unit also includes, for example, a plurality of secondary microlenses 65 arranged in multiple layers.
  • FIG. 10 shows an example of a secondary microlens arranged in multiple layers.
  • the microlens unit includes three-level microlenses 65, and the number of secondary microlenses 65 of each layer in a single microlens unit gradually increases in the light propagation direction, for example, each layer as shown in the figure.
  • Add one, that is, the secondary microlenses in a single microlens unit are arranged in a tower shape or lead to a tower shape arrangement. It can be seen from FIG. 10 that each time the light beam 50 passes through a layer of the secondary microlens 65, it is further expanded. Compared with a microlens unit having a plurality of microlenses arranged in a single layer, a microlens unit having a secondary microlens arranged in multiple layers can further expand the light beam and increase the beam magnification of the beam expansion layer.
  • the number of layers of the secondary microlenses arranged in the above multilayer is not limited to the three layers shown in the figure, for example, the number of layers of the secondary microlenses arranged in multiple layers is alternatively selected as two layers, four layers or More layers.
  • the multilayer micro-lens structure is realized by, for example, multiple exposures with a halftone mask.
  • the microlens unit described in the embodiments of the present disclosure is prepared, for example, by a method including, but not limited to, a photoresist hot-melt method, three-dimensional diffusion lithography, and the like in the related art.
  • each group of light-emitting units includes three light-emitting units 20a, 20b, and 20c corresponding to the three sub-pixels 40a, 40b, and 40c, respectively.
  • Each micro lens unit 60 is transparent to the light beams emitted by the three light emitting units. This facilitates reducing optical losses.
  • the micro lens unit 60 is made of a transparent resin material.
  • each group of light-emitting units is not limited to include only the above-mentioned three light-emitting units, for example, it may instead include, for example, one, two, or more than three light-emitting units; accordingly, each microlens unit 60 It can be set to be transparent to the light beams emitted by a group of light-emitting units that it faces.
  • each group of light-emitting units corresponds to one image pixel, and the image pixel includes three sub-pixels of red, green, and blue.
  • each group of light emitting units also corresponds to more than one image pixel instead. That is, each group of light emitting units corresponds, for example, to at least one complete image pixel. This method is beneficial for expanding the light beam based on complete image pixels.
  • each group of light emitting units also corresponds to, for example, a plurality of sub-pixels, which are, for example, sub-pixels in the same image pixel, or, for example, sub-pixels in different image pixels.
  • the group of light-emitting units includes a plurality of light-emitting units
  • the micro-lens unit includes a plurality of micro-lenses.
  • the microlenses are arranged to face each other in a one-to-one correspondence relationship (here, the definition of "face” is as described above, that is, the orthographic projection of the plurality of light-emitting units on the substrate 10 and the plurality of microlenses
  • the orthographic projections on the base substrate 10 at least partially overlap
  • each of the sub-beam generating components is configured to present at least one complete image pixel (illustrated as presenting one complete image pixel).
  • the main difference of the structure of the display panel 100b shown in FIG. 2 (a) is that although a corresponding group of light emitting units 20 in each sub-beam generating assembly also includes a plurality of The light emitting unit 20 and each of the sub-beam generating components are configured to present a single image pixel, but at least one micro lens included in the micro lens unit is a plurality of micro lenses.
  • a corresponding group of light emitting units 20 in each sub-beam generating assembly also includes a plurality of The light emitting unit 20 and each of the sub-beam generating components are configured to present a single image pixel, but at least one micro lens included in the micro lens unit is a plurality of micro lenses.
  • a corresponding group of light emitting units 20 in each of the sub-beam generating components serving as physical pixels includes a plurality of light emitting units, and the micro lens unit includes a plurality of micro lenses (micro The number of lenses is the same as the number of the plurality of light emitting units), so that each of the sub-beam generating components corresponds to a single image pixel.
  • the three light-emitting units 20 shown in the figure respectively correspond to a red sub-pixel, a green sub-pixel, and a blue sub-pixel.
  • the micro lens unit 60 includes a plurality of micro lenses, which are illustrated as three micro lenses 60 a, 60 b, and 60 c, and the three micro lenses are arranged facing the three light emitting units 20 respectively. Since each microlens is provided corresponding to only the light emitting unit 20 of the same color, the microlenses 60a, 60b, and 60c in the microlens unit 60 are formed of, for example, color filters of different colors. The color filters of different colors are respectively designed for the colors of the light emitting unit 20 that each of the microlenses 60a, 60b, and 60c in the microlens unit 60 face.
  • the color filters of different colors can be configured to filter the light beams 50 respectively, specifically by removing components of the color other than the color of the light emitting unit 20 facing the microlens 60 from the light beams 50, or removing It is realized by a color component other than the color of a single sub-pixel corresponding to the light emitting unit 20. This arrangement facilitates further purifying the color of the light beam 50 passing through the respective microlenses made of color filters of different colors in the microlens unit 60 to improve the display effect.
  • FIG. 1 (b) is a schematic structural diagram of a further exemplary display panel based on the display panel shown in FIG. 1 (a), wherein the conductive medium of the display panel is additionally provided with a separate method for each monochrome color. A color filter for further purification of the sub-beam;
  • FIG. 2 (b) shows a schematic structural diagram of a further exemplary display panel based on the display panel shown in FIG. 2 (a), wherein the conductive medium of the display panel is additionally A color filter is provided for further purifying each of the monochromatic sub-beams.
  • a structure for filtering and purifying the color of the light beam emitted from the light emitting unit is also provided in the conductive medium 31 of the beam expanding layer 30, that is, one or more color filter sections are provided in the conductive medium 31, Each color filter is used to allow only light components of a corresponding color to pass through.
  • the group of light emitting units includes a plurality of light emitting units
  • the micro lens unit includes a plurality of micro lenses
  • the plurality of light emitting units and the plurality of micro lenses are arranged to face each other in a one-to-one correspondence relationship (this The definition of “face” is as described above, that is, the orthographic projections of the plurality of light-emitting units on the base substrate 10 and the orthographic projections of the plurality of microlenses on the base substrate 10 overlap at least partially)
  • each The sub-beam generating components are configured to present at least one complete image pixel (illustrated to present one complete image pixel), and the color filter portion located in the beam expansion layer includes the same color as the plurality of light emitting units, respectively.
  • the display panel 100b includes at least a first sub-pixel 40a, a second sub-pixel 40b, and a third sub-pixel 40c.
  • the first sub-pixel 40a adjacent to each other
  • the first sub-pixel 40a has a first color (such as red)
  • the second sub-pixel 40b has a second color (such as green).
  • the first light-emitting unit 20a corresponds to the first sub-pixel 40a
  • the second light-emitting unit 20b corresponds to the second sub-pixel 40b.
  • the microlens unit 60 provided in the beam expansion layer 30 includes a first microlens 60a facing the first light emitting unit 20a and a second microlens 60b facing the second light emitting unit 20b.
  • a first color filter portion 33a and a second color filter portion 33b are provided in the conductive medium 31 .
  • the first color filter portion 33a is disposed to enclose the light exit surface 61a of the first microlens 60a and is closely adjacent to the light exit surface 61a of the first microlens 60a, and is configured to filter A component of a color other than the first color in a light beam incident thereon.
  • the second color filter portion 33b is provided to enclose the light exit surface 61b of the second microlens 60b and is closely adjacent to the light exit surface 61b of the second microlens 60b, and the second color filter portion 33b is configured to filter components of a color other than the second color in the light beam.
  • the above arrangement of the first color filter portion 33a and the second color filter portion 33b facilitates color purification for light beams of different colors respectively emitted by different light emitting units.
  • the number of color filter sections is not limited to the above two types.
  • a third color filter section 33 c is further provided in the conductive medium 31.
  • the third color filter section 33c is provided to enclose the light exit surface 61c of the third microlens 60c and closely abut the light exit surface 61c of the third microlens 60c.
  • the third microlens 60c faces the third light emitting unit 20c.
  • the third color filter portion 33c is configured, for example, to purify the color of a light beam emitted from the third light emitting unit 20c.
  • the number of color filter portions is also three or more, or even only one, for example.
  • each light-emitting unit in each group of light-emitting units 20 a plurality of, for example, the same number of light-emitting units as a plurality of light-emitting units are provided downstream of a single micro-lens serving as a common micro-lens unit.
  • Color filter sections of different colors, and each color filter section is configured to filter, for example, a component of a color other than the color of the light emitting unit 20 facing the light beam emitted from the corresponding light emitting unit, or to remove the light emitting unit.
  • a component of a color other than the color of the single sub-pixel corresponding to 20 is used to purify the color of the light beam emitted from the corresponding each light-emitting unit.
  • the color filter or color filter is made of, for example, a material having the following components and contents: 55 to 65% of propylene glycol methyl ether acetate, 15 to 20% of ethyl ethoxypropionate, and 7 to 13% of polyethylene glycol monomethyl ether, 1 to 8% of resin, 1 to 9% of pigment (red (R) / green (G) / blue (B)), and 2 to 9% of additives.
  • R propylene glycol methyl ether acetate
  • 15 to 20% of ethyl ethoxypropionate and 7 to 13% of polyethylene glycol monomethyl ether
  • 1 to 8% of resin 1 to 9% of pigment (red (R) / green (G) / blue (B)
  • pigment red (R) / green (G) / blue (B)
  • additives the embodiments of the present disclosure are not limited thereto, and various materials in the related art that can achieve the corresponding filtering function can be used.
  • FIG. 9 schematically illustrates a correspondence relationship between the microlens unit 60 and the light emitting unit 20.
  • a plurality of microlens units 60 are shown in FIG. 9, and each microlens unit 60 is disposed to face three strip-shaped light emitting units 20a, 20b, and 20c; in other words, each microlens unit 60 is on a substrate
  • the orthographic projection on 10 and the orthographic projection of the three strip-shaped light-emitting units 20a, 20b, and 20c on the base substrate 10 at least partially overlap.
  • the arrangement forms of the light-emitting units are various, for example, and are not limited to the rectangular array arrangement shown in FIG. 9.
  • the shape and arrangement of the micro-lens units 60 are designed and adjusted according to the arrangement form of the actual light-emitting unit, for example.
  • FIG. 11 to 13 show a configuration example of a microlens included in the microlens unit 60.
  • FIG. 11 shows a spherical lens-shaped microlens 62.
  • the diameter of the bottom surface of the spherical-crown-shaped microlens 62 is D, the radius of curvature is R, and the height is h.
  • the structural size of the spherical-crown-shaped microlens 62 satisfies the following formula (1):
  • FIG. 13 shows a microlens 63 with a rectangular bottom spherical crown shape, for example, viewed from its rectangular bottom.
  • FIG. 12 shows a cross-sectional view taken along line AA in FIG. 13.
  • the bottom surface of the rectangular-bottom-crown-shaped microlens 63 is a square with a side length d, and the radius of curvature of the rectangular-bottom-crown-shaped microlens 63 is also R. Therefore, the cross-sectional view taken along the diagonal direction (shown as line BB in FIG. 13) is the same as the cross-sectional view of the spherical-lens-shaped microlens 62 shown in FIG. 11.
  • the structure size of the rectangular bottom spherical crown-shaped micro lens 63 satisfies the following formula (2):
  • the bottom shape of the spherical-lens-shaped microlens 62 shown in FIG. 11 is circular, and the bottom surface of the rectangular-bottom-shaped microlens 63 shown in FIGS. 12 and 13 is rectangular (for example, a square, but (Not limited to squares).
  • the selection of the shapes of the bottom surfaces of these different microlenses facilitates adapting to the requirements of different arrangements of the OLED light emitting units on the substrate, and better matches the arrangement shape of the sub-pixels. For example, in the case where the sub-pixels are designed to be arranged in a rectangular array, it is advantageous to select the microlens 63 with a rectangular bottom spherical crown shape.
  • each of the microlens units 60 can be aligned with the microlens in two mutually perpendicular directions (such as the x direction and the y direction shown in FIG. 9) that are orthogonal to the normal direction of the display panel, respectively.
  • the light beams emitted by a group of light-emitting units 20 facing the unit 60 are expanded (for example, in the case where each micro-lens unit selects the exemplary micro-lens structure shown in FIGS. 11 to 13).
  • each micro-lens unit 60 is also instead provided, for example, to expand the light beam emitted from a group of the light-emitting units 20 facing the micro-lens unit 60 only in one direction, for example, In the form of a cylindrical lens.
  • micro-lens unit can be achieved, for example, with the help of commercial software such as ZEMAX.
  • each microlens 60 is, for example, a divergent microlens.
  • each microlens unit 60 is shown Out includes convex lenses.
  • the micro lens unit 60 also includes a concave lens, for example. 15 and 16 give some examples regarding a microlens unit in the form of a convex lens or a concave lens.
  • FIG. 15 includes a microlens in the form of a convex lens, and the refractive index of the conductive medium 31 surrounding the light exit surface 61 of the microlens unit 60 is greater than the refractive index of the microlens unit 60.
  • the micro-lens unit 60 has a diverging effect on the light beam 50, thereby achieving a beam expanding function.
  • FIG. 16 shows an example in which the microlenses included in the microlens unit 60 are in the form of a concave lens.
  • the refractive index of the conductive medium 31 is greater than the refractive index of the microlens unit 60.
  • the microlens unit 60 has a converging effect on the light beam 50, but the converged light beam is transformed into a divergent light beam after passing through the focus.
  • the cross-sectional area of the beam will go through a process of becoming smaller and then becoming larger. Therefore, the beam expansion layer 30 is set to be thick enough so that the light beam 50 can undergo the process of convergence and divergence in the process of propagating through the beam expansion layer 30, and the cross-sectional area of the beam after the divergence is larger than that of the beam 50 incident on the beam expansion layer
  • the cross-sectional area of the beam at 30 is larger, the function of expanding the beam can also be achieved. In the example shown in FIG.
  • the thickness of the beam expansion layer 30 is set to be smaller than the thickness of the beam expansion layer 30 in the example shown in FIG. 16, and the path of the light beam in the beam expansion layer 30 is compared to FIG. 16.
  • the path of the light beam in the example in the beam expansion layer 30 is short, which can reduce the optical loss.
  • the thickness of the beam expansion layer 30 can be set even smaller than the focal length of the microlens unit 60.
  • the refractive index of the conductive medium 31 can also be set smaller than the medium outside the beam expansion layer adjacent to the light exit surface 32 of the beam expansion layer 30. (Such as the base substrate 10), so that the light beam 50 emitted from the light emitting surface 32 can be appropriately shrunk compared to the situation when the light beam 50 is emitted from the light emitting unit, so as to avoid the sub-pixels of different colors presented. Colors interfere with each other.
  • the plurality of groups of light-emitting units 20 are bottom-emitting OLED light-emitting units 20, and the beam-expanding layer 30 is located at The plurality of groups of light emitting units 20 and the base substrate 10 are described.
  • the base substrate 10 is used to support the beam expansion layer 30 in a direct abutting manner, for example.
  • the beam expansion layer 30 is generated directly on the base substrate 10, and the OLED light emitting unit 20 is generated, for example, above the beam expansion layer 30 away from the base substrate 10.
  • the light-emitting side of such a bottom emission type OLED light-emitting unit 20 is disposed to face the base substrate 10.
  • FIG. 3 (a) shows another implementation according to the present disclosure.
  • the structure diagram of the display panel of the example is different from FIG. 1 (a) in that FIG. 1 (a) shows a bottom emission type structure, and FIG. 3 (a) shows a top emission type structure;
  • 4 (a) shows a schematic structural diagram of a display panel according to another embodiment of the present disclosure, which is different from FIG. 2 (a) in that FIG. 2 (a) shows a bottom-emission type structure, and FIG. 4 (a) shows a top emission type structure.
  • the plurality of groups of light-emitting units 20 are also, for example, top-emission type OLED light-emitting units 20.
  • the beam expansion layer 30 is located on the side of the plurality of groups of light-emitting units 20 facing away from the substrate 10.
  • the base substrate 10 is used to support the OLED light emitting unit 20 in a direct abutting manner, for example.
  • the OLED light-emitting unit 20 is generated directly on the base substrate 10
  • the beam expansion layer 30 is generated, for example, above the OLED light-emitting unit 20 away from the base substrate 10.
  • FIG. 3 (a) is similar to the structure of the display panel 100a shown in FIG. 1 (a) in terms of the correspondence between the microlens unit 60 and the light emitting unit, both of which are single sub-beam generating components.
  • Each of the microlens units 60 faces a plurality of light emitting units 20 in a group of light emitting units 20.
  • the structure of the display panel 100d shown in FIG. 4 (a) and the structure of the display panel 100b shown in FIG. 2 (a) are similar in the correspondence between the microlens unit 60 and the light emitting unit, and both are generated by a single beam.
  • Each microlens unit 60 in the module faces the form of a single light emitting unit 20.
  • FIG. 3 (b) shows a schematic structural diagram of a further exemplary display panel based on the display panel shown in FIG. 3 (a), wherein the conductive medium of the display panel is additionally provided with a separate function for each type.
  • a color filter for further purification of a monochromatic sub-beam FIG. 4 (b) shows a schematic structural diagram of a further exemplary display panel based on the display panel shown in FIG. 4 (a), in which the conductive medium of the display panel is An additional color filter is provided for further purification of each monochromatic sub-beam.
  • the specific settings of the color filter as shown in FIG. 3 (b) and FIG. 4 (b) are similar to those in FIG. 1 (b) and FIG. 2 (b), and are not repeated here.
  • FIG. 5 (a) shows a schematic structural diagram of a sub-beam generating component serving as a physical pixel that is compatible for use in the display panel shown in FIGS. 1 (a) and 3 (a), respectively;
  • FIG. 5 (b) 1 is a schematic structural diagram of a sub-beam generating component serving as a physical pixel that is compatible for use in a display panel as shown in FIG. 1 (b) and FIG. 3 (b).
  • FIG. 6 (a) shows a structural schematic diagram of a sub-beam generating component serving as a physical pixel that is compatible for use in a display panel as shown in FIGS. 2 (a) and 4 (a);
  • FIG. 6 (b) shows a A structural schematic diagram of a sub-beam generating component serving as a physical pixel in a display panel compatible with the display panel shown in FIG. 2 (b) and FIG. 4 (b), wherein the conductive medium of the beam expansion layer is additionally provided with a separate A color filter for further purifying each of the monochromatic sub-beams.
  • FIG. 7 (a) illustrates a schematic structural diagram of a sub-beam generating component serving as a physical pixel in a display panel according to an embodiment of the present disclosure
  • FIG. 7 (b) illustrates a sub-beam generation based on the sub-beam generation shown in FIG. 7 (a)
  • a corresponding group of light emitting units 60 in each sub-beam generating assembly includes a single light emitting unit, such as a white light (W) light emitting unit, and each sub beam is generated
  • the microlens unit 60 facing the single light emitting unit includes, for example, a plurality of microlenses 60a, 60b, 60c; W)
  • the light emitting unit emits a light beam to form a plurality of sub-beams of different colors, which are respectively used to emit sub-pixels showing a plurality of different colors to form an image pixel corresponding to the sub-beam generating component.
  • the plurality of microlenses 60a, 60b and 60c are respectively formed by color filters of different colors, and the filters of different colors are respectively configured to filter components of the light beam other than the colors of the respective sub-pixels of the single image pixel to be presented .
  • a sub-beam generating component serving as a physical pixel in a further exemplary display panel based on the display panel shown in FIG. 7 (a) as shown in FIG. 7 (b) wherein the conductive medium of the display panel is additionally provided with a color filter for separately purifying each of the monochromatic sub-beams, and the settings are similar to those shown in the previous FIGS. 5 (b) and 6 (b).
  • a schematic structural diagram of the sub-beam generating component serving as a physical pixel in the display panel is provided.
  • the conductive medium of the beam expansion layer is additionally provided with a color filter for separately purifying each of the monochromatic sub-beams. , Will not repeat them here.
  • FIG. 8 is a schematic structural diagram of a sub-beam generating component serving as a physical pixel in a display panel according to an embodiment of the present disclosure.
  • a corresponding group of light emitting units 60 also in each sub-beam generating component includes a single light emitting unit, such as a white light (W) light emitting unit, and each sub beam is generated.
  • W white light
  • the microlens unit facing the single light emitting unit includes only one microlens 60; and the light emitted from a single white light (W) light emitting unit
  • W white light
  • the microlens unit facing the single light emitting unit includes only one microlens 60; and the light emitted from a single white light (W) light emitting unit
  • W white light
  • a color filter portion for further purifying each of the monochrome sub-beams is additionally provided in the conductive medium of the display panel, and the color filter portion includes a plurality of spaced-apart pixels
  • Color filter sub-elements and the plurality of color filter sub-elements are respectively configured to filter the light beam except for the colors of the respective sub-pixels to be rendered in the single image pixel Extending components, are not repeated here.
  • the display panels 100a, 100b, 100c, and 100d further include, for example, a sealing layer 70 and a circular polarizer 80.
  • the sealing layer 70 is configured to seal the structure of the display panel, for example.
  • the plurality of sets of light emitting units and the beam expanding layer 30 are each disposed, for example, between the base substrate 10 and the sealing layer 70.
  • the circular polarizer 80 is arranged, for example, on the light-exiting side of the display panel, and more specifically, for example, on one side of the base substrate 10 on the light-exiting side of the light-emitting unit 20 (as shown in FIGS.
  • the circular polarizer 80 is, for example, disposed outside the base substrate 10, and as shown in FIGS. 3 (a) and 4
  • the top-emission type OLED light-emitting unit 20 shown in (a) and the circular polarizer 80 is arranged outside the sealing layer 70, for example.
  • the circular polarizer 80 is, for example, configured to prevent external ambient light from interfering with the display screen.
  • an isolation layer 81 is additionally provided between the circular polarizer 80 and the base substrate 10 or the sealing layer 70.
  • the display panel further includes, for example, a TFT array layer 90.
  • the TFT array layer 90 is located, for example, between the plurality of sets of light emitting units 20 and the base substrate 10.
  • an adhesive layer (such as a UV adhesive layer) 91 is provided between the TFT array layer 90 and the beam expanding layer, for example.
  • the structure of the display panel is described by taking three sub-pixels of R, G, and B as examples.
  • the embodiments of the present disclosure are not limited to the above three types of sub-pixels.
  • sub-pixels of other colors such as yellow may also be used.
  • a display device including the display panel of any of the foregoing; and the display device further includes, for example, a housing of the display device.
  • the display device is, for example, any product or component having a display function, such as a display panel, an electronic paper, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, and a navigator.
  • the display device similarly has all the advantages of the foregoing display device, and is not repeated here.
  • the display panel provided by the embodiments of the present disclosure provides a way to implement a large-sized display panel with a small number of physical pixels.
  • the display panel can at least partially weaken or even completely eliminate the graininess of the display screen caused by the large distance between the light-emitting units by using the beam diverging layer to diverge the light incident thereon. Therefore, it can obtain good performance in the case where the distance between the light-emitting units is large. Display quality.
  • the display panel provided by the embodiments of the present disclosure can improve heat dissipation performance, reduce the difficulty of the evaporation process, and improve the yield of large-sized display panels.
  • the light emitting unit in the embodiment of the present disclosure is not limited to the OLED light emitting unit, for example, the OLED light emitting unit in the above embodiment It can be replaced with various other types of light emitting units such as quantum dot light emitting units, inorganic light emitting diode light emitting units, and the like.
  • the embodiments of the present disclosure can also use the beam expanding layer to weaken or eliminate the technical effects such as the graininess of the display screen caused by the large distance between the light emitting units and the improvement of heat dissipation performance.
  • the display panel in the embodiment of the present disclosure is not limited to the OLED display panel, and includes, for example, a display panel having various other types of light emitting units.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开的实施例提供了一种配置用于显示图像的显示面板,所述图像包括多个图像像素且每个图像像素包括分别呈不同单色的多个子像素。该显示面板包括:衬底基板;多个子束生成组件,设置在衬底基板上,每个所述子束生成组件配置成生成至少一个图像像素中的多个子像素,且包括:一组发光单元,所述组发光单元包括至少一个发光单元,且每组发光单元对应于至少一个子像素;和扩束层,所述扩束层布置于所述组发光单元的出光侧并配置成扩展从所述组发光单元发出的光束,其中,所述扩束层在衬底基板上的正投影与所述组发光单元在衬底基板上的正投影至少部分重叠。

Description

显示面板和显示装置
相关申请的交叉引用
本公开实施例要求于2018年7月31日递交中国专利局的、申请号为201810856018.X的中国专利申请的权益,该申请的全部内容以引用方式并入本文。
技术领域
本公开涉及显示技术领域,尤其涉及一种显示面板和一种显示装置。
背景技术
有机发光二极管(OLED)是备受关注的未来显示技术方向。OLED显示技术具有自发光,全固态、机械性能好,可实现软屏显示,更加轻薄,高亮度,高效发光,快速响应,低压驱动和低功耗,低成本,工序少等优点。就OLED产品所显示的色彩而言,OLED例如分为单色、多彩及全彩等种类,其中全彩OLED的制备最为困难。就OLED产品的尺寸而言,例如用于手持设备或车载导航仪、笔记本电脑等中的中小尺寸OLED通常是应用低温多晶硅技术制造的,而例如用于大型家电诸如电视机等中的大尺寸OLED通常是应用氧化物技术而制造的;现今,小尺寸OLED屏幕已经可以实现量产,然而,相对于应用低温多晶硅技术的中小尺寸OLED屏幕,应用氧化物技术的大尺寸OLED屏幕在普及中遇到了众多技术难点。
在相关技术中,大尺寸有机电致发光层主要通过蒸镀工艺形成,然而大尺寸的蒸镀工艺成本高、良率低,且需要制备高精度金属掩模板(FMM(Fine Metal Mask))。
发明内容
为至少部分地克服上述相关技术中的缺陷和/或不足,本公开的实施例提供了一种显示面板和一种显示装置。
根据本公开的实施例的一方面,提供了一种配置用于显示图像的显示面板,所述图像包括多个图像像素且每个图像像素包括分别呈不同颜色的多个子像素,所述显示面板包括:
衬底基板;
多个子束生成组件,设置在衬底基板上,每个所述子束生成组件配置成生成至少 一个图像像素中的至少一个子像素,且每个所述子束生成组件包括:一组发光单元,所述组发光单元包括至少一个发光单元;和扩束层,所述扩束层布置于所述组发光单元的出光侧并配置成扩展从所述组发光单元发出的光束,
其中,所述扩束层在衬底基板上的正投影与所述组发光单元在衬底基板上的正投影至部分重叠。
在一些实施例中,所述扩束层包括一个微透镜单元,所述微透镜单元包括至少一个微透镜。
在一些实施例中,所述扩束层还包括折射率与微透镜单元不同的传导介质,所述传导介质设置成围封所述微透镜单元的光出射表面并与所述微透镜单元的光出射表面邻靠。
在一些实施例中,所述传导介质的折射率大于所述微透镜单元的折射率。
在一些实施例中,所述传导介质中设置有配置成对光束的颜色进行过滤的滤色部。在一些实施例中,所述传导介质的折射率小于与所述扩束层的出光表面邻靠的扩束层外部的介质的折射率。
在一些实施例中,在每个子束生成组件中的所述组发光单元包括多个所述发光单元,且每个子束生成组件配置成呈现至少一个完整的图像像素的情况下,所述微透镜单元包括至少一个微透镜,且在同一组发光单元中的相邻的发光单元之间的距离小于相邻组的发光单元之间的距离。
在一些实施例中,在每个子束生成组件中的所述组发光单元包括对应于单个子像素的单个发光单元且每个子束生成组件配置成呈现单个图像像素的情况下,其中,与所述单个发光单元面对的所述微透镜单元包括由不同颜色的彩色滤光片分别形成的多个微透镜,所述不同颜色的彩色滤光片分别配置成过滤光束中除去待呈现的所述单个图像像素的各自子像素的颜色之外的颜色的成分。
在一些实施例中,在每个子束生成组件中的所述组发光单元包括单个发光单元且每个子束生成组件配置成呈现单个图像像素的情况下,所述微透镜单元包括一个微透镜,且所述滤色部包括彼此间隔开设置的多个滤色子元件(sub-pieces)且所述多个滤色子元件分别配置成过滤光束中除去所述单个图像像素中待呈现的各自子像素的颜色之外的延伸的成分。
在一些实施例中,每个微透镜单元中,所述至少一个微透镜包括多层布置的次级微透镜。
在一些实施例中,所述每个微透镜单元包括凸透镜或凹透镜。
在一些实施例中,每个微透镜单元包括球冠形或矩形底球冠形的微透镜。
在一些实施例中,每个微透镜单元在与显示面板的法向正交的一个方向、或两个相互垂直的方向上扩展从与所述微透镜单元面对的一组所述发光单元发出的光束。
在一些实施例中,发光单元是有机发光二极管发光单元。
在一些实施例中,每个所述有机发光二极管发光单元包括阳极、阴极以及位于阳极和阴极之间的有机发光材料层。
在一些实施例中,所述组发光单元为底发射型的有机发光二极管发光单元,所述扩束层位于所述多组发光单元和衬底基板之间。
在一些实施例中,所述组发光单元为顶发射型的有机发光二极管发光单元,所述扩束层位于所述多组发光单元的背对衬底基板的一侧。
在一些实施例中,所述单个发光单元为白光发光单元。
在一些实施例中,所述微透镜单元包括多个微透镜,所述多个发光单元与所述多个微透镜布置成以一一对应关系彼此面对,且位于所述扩束层中的滤色部包括与所述多个发光单元的颜色分别相同的多个滤色部。
根据本公开的实施例的另一方面,提供了一种显示装置,包括前述任一项中的显示面板。
附图说明
为了更清楚地说明本公开文本的实施例的技术方案,下面将对实施例的附图进行简要说明,应当知道,以下描述的附图仅仅涉及本公开文本的一些实施例,而非对本公开文本的限制,其中:
图1(a)示出根据本公开的一种实施例的显示面板的结构示意图;
图1(b)示出基于如图1(a)所示显示面板的进一步的示例性显示面板的结构示意图;
图2(a)示出根据本公开的另一种实施例的显示面板的结构示意图;
图2(b)示出基于如图2(a)所示显示面板的进一步的示例性显示面板的结构示意图;
图3(a)示出根据本公开的再一种实施例的显示面板的结构示意图;
图3(b)示出基于如图3(a)所示显示面板的进一步的示例性显示面板的结构示意图;
图4(a)示出根据本公开的又一种实施例的显示面板的结构示意图;
图4(b)示出基于如图4(a)所示显示面板的进一步的示例性显示面板的结构示意图;
图5(a)示出如图1(a)、图3(a)所示显示面板中的充当物理像素的子束生成组件的结构示意图;
图5(b)示出如图1(b)、图3(b)所示显示面板中的充当物理像素的子束生成组件的结构示意图;
图6(a)示出如图2(a)、图4(a)所示显示面板中的充当物理像素的子束生成组件的结构示意图;
图6(b)示出如图2(b)、图4(b)所示显示面板中的充当物理像素的子束生成组件的结构示意图;
图7(a)示出根据本公开的一种实施例的显示面板中充当物理像素的子束生成组件的结构示意图;
图7(b)示出基于如图7(a)所示子束生成组件的进一步的示例性实施例中充当物理像素的子束生成组件的结构示意图;
图8示出根据本公开的一种实施例的显示面板中充当物理像素的子束生成组件的结构示意图;
图9示出微透镜单元与发光单元的示例性对应关系的示意图;
图10示出包括多层微透镜结构的微透镜单元的示意图;
图11和图12分别示出微透镜单元的示例性结构的剖视图;
图13示出了微透镜单元的示例性结构的立体图;
图14示出了本公开的实施例中的发光单元的示例的结构;以及
图15和图16示出根据本公开的实施例的显示面板中微透镜单元的示例。
具体实施方式
为更清楚地阐述本公开的目的、技术方案及优点,以下将结合附图对本公开的实施例进行详细的说明。应当理解,下文对于实施例的描述旨在对本公开的总体构思进行解释和说明,而不应当理解为是对本公开的限制。在说明书和附图中,相同或相似的附图标记指代相同或相似的部件或构件。为了清晰起见,附图不一定按比例绘制,并且附图中可能省略了一些公知部件和结构。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似 的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。措词“一”或“一个”不排除多个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”“顶”或“底”等等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。在诸如层、膜、区域或衬底基板之类的元件被称作位于另一元件“上”或“下”的情况下,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
附图中各部件的形状和大小不反映本公开实施例的显示面板的各个膜层和部件的真实比例,目的只是示意说明本公开实施例内容。
本公开的发明人已经发现,在相关技术中,大尺寸的OLED显示面板中由于发光单元众多且排列密集,功耗很大,散热困难。功耗增加又会引起显示面板内热量的增加,甚至导致显示面板的毁坏。而发光单元之间的间距如果拉大,又可能会影响显示效果。因此,期望寻求一种能够在发光单元之间的间距设置为相对较大的情况下来实现良好显示效果的OLED显示面板。
根据本公开的实施例的总体发明构思,图1示出了根据本公开的实施例的一种配置用于显示图像的显示面板100a,所述图像包括多个图像像素且每个图像像素包括分别呈不同颜色的多个子像素40。该显示面板100a包括:衬底基板10(例如玻璃基板或其它透明材料制成的基板)、多个子束生成组件,设置在衬底基板上,每个所述子束生成组件配置成生成至少一个图像像素中的多个子像素,且包括:一组发光单元20,所述组发光单元包括至少一个发光单元;和扩束层30,所述扩束层30布置位于所述组发光单元的出光侧并配置成扩展从所述组发光单元发出的光束。并且,在所述显示面板中,例如,相邻子束生成组件各自相应组的发光单元彼此间隔开布置,并且相邻子束生成组件各自的扩束层例如同层设置。作为示例,如图所示,每个所述子束生成组件中的所述组发光单元包括至少一个发光单元,相邻子束生成组件各自的多组发光单元20设置于所述衬底基板10的一侧(例如图示的上方)且与所述衬底基板10间隔开。并且,例如,每个所述子束生成组件中的所述组发光单元包括至少一个发光单元。并且,所述扩束层30在衬底基板10上的正投影与所述组发光单元在衬底基板10上的正投影至部分重叠。
并且,例如,并且,每个微透镜单元中,所述至少一个微透镜包括多层布置的次级微透镜。多个子束生成组件各自的所述扩束层30例如同层设置,且它们各自的微透镜单元形成微透镜单元阵列,所述微透镜单元阵列包括例如呈矩阵布置的多个微透镜单元60。
更具体地,例如,所述多组发光单元20与扩束层30协同限定多个子束生成组件,每个子束生成组件包括以一一对应关系对置的所述多组发光单元20中的一组发光单元和所述多个微透镜单元60中的所述微透镜单元;且所述微透镜单元60在衬底基板10上的正投影与所述组发光单元20在衬底基板10上的正投影至少部分重叠。应注意,每组发光单元20对应于相应至少一个图像像素而设置,即每组发光单元20形成的光传播经过所述多组发光单元20和扩束层30之后出射的单色子光束(下文简称子束)最终分别呈现不同单色的子像素40以共同限定相应的至少一个图像像素;并且,多组发光单元20协同工作以共同限定整个所述图像。由此,每个子束生成组件例如等效地充当生成至少一个图像像素的一个物理像素。
图1(a)至图4(b)示意性示出根据本公开实施例的显示面板的各种结构;且图5(a)至图8示意性示出根据本公开实施例的显示面板中充当物理像素的子束形成组件的各种结构。在图1(a)至8(b)中,各个图上部示出具体物理结构,下部对应地示出由具体物理结构所形成的子光束从显示面板出射所呈现的图像像素。
在本公开各个具体实施例中,如上的总体技术构思,实质上例如概括为:多组发光单元发出光束,经过扩束层扩束之后形成出射的光束,出射的光束显示出包括多个图像像素的图像。
进一步地,在显示技术领域中,考察用于分别呈现不同颜色子像素的单色子光束的生成,由于通常存在单色光源(例如是红(R)、绿(G)、蓝(B)色光源)和白光(W)光源(例如白光OLED光源,即WOLED光源),不同颜色的单色光源分别单独地形成不同颜色的单色光,而白光光源则需要与不同颜色的滤色件协同工作以生成不同颜色的单色色光。因而,在本公开实施例中,对于每组发光单元而言,为了分别呈现不同单色的子像素,例如在扩束前、扩束期间、以及扩束之后均可实现单色子光束的生成。
具体地,一方面,在本发明的实施例中,例如通过直接设置不同颜色的多个单色光源(例如红(R)、绿(G)、蓝(B)色光源)来实现在扩束前即分别产生单色子 光束;或者,例如通过设置至少一个白光(W)光源、以及位于或邻近于所述至少一个白光(W)光源的出光面处的(例如,与所述至少一个白光光源对置的)不同颜色的滤色件来在扩束前分别产生单色子光束。用于在扩束前实现单色子光束的形成的这两种方式实质上是等效的,因而,在如下文的本公开具体实施例中,例如,在每组发光单元内部,不同颜色的多个单色发光单元用于直接射出不同颜色的单色子光束;或者,例如,在每组发光单元内部,不同颜色的多个滤色件与至少一个白光发光单元的相应对置部分协同工作以等效地充当不同颜色的多个单色发光单元来协同地射出不同颜色的单色子光束,在本文中不做区分,例如分别在随附的图5(a)至图6(b)中示出。
具体地,另一方面,在本发明的替代实施例中,例如,在每组发光单元中仅包括至少一个白光发光单元的情况下,例如通过在每个微透镜单元中设置相应数目(即与所形成的不同颜色子束分别需呈现的子像素数目相同)的多个微透镜,并且通过由滤色件形成所述扩束层中的每个微透镜单元中的所述多个微透镜,具体地,例如通过在每个微透镜单元的入光面和出光面中的至少一种上设置色胶膜(即通过表面贴附滤色膜工艺来制作微透镜)、或者在每个微透镜单元内部设置有色胶膜(即通过玻璃夹膜工艺制作微透镜)、或者由有色光学玻璃制成每个微透镜单元(即色玻璃工艺制作微透镜),来在扩束期间分别产生单色子光束,例如分别在随附的图7(a)至图7(b)中示出。
具体地,再一方面,在本发明的另外的替代实施例中,例如,在每组发光单元中仅包括至少一个白光发光单元的情况下,例如通过在所述扩束层中在每个微透镜单元中设置单个微透镜、并且围绕该单个微透镜单元的出光表面设置邻接的相应数目(即与所形成的不同颜色子束分别需呈现的子像素数目相同)的的多个滤色子元件,来在扩束后分别产生单色子光束,例如在随附的图8中示出。
图1(a)示出根据本公开的一种实施例的显示面板的结构示意图。图2(a)示意性地示出根据本公开的另一种实施例的显示面板100b的结构。在每个子束生成组件中,所述组发光单元包括多个发光单元,且每个子束生成组件配置成呈现至少一个完整的图像像素(图示为呈现一个完整的图像像素),所述微透镜单元包括至少一个微透镜。
更具体地,在图1(a)的示例性实施例中,如图1(a)所示,在每个子束生成组件中,所述组发光单元包括多个发光单元,且所述微透镜单元包括的至少一个微透镜仅为单个微透镜,每个子束生成组件配置成呈现至少一个完整的图像像素(图示为呈现一个 完整的图像像素)。换言之,用于形成单个图像像素的每个子束生成组件中的多个发光单元共用下游的一个微透镜。该多组发光单元20中的每组发光单元20例如包括3个不同单色的发光单元,分别是红(R)、绿(G)、蓝(B)色发光单元,它们例如彼此间隔开设置;且这3个发光单元分别对应于红(R)、绿(G)、蓝(B)三个子像素40a、40b和40c。然而,这仅仅是示例性的,本公开的实施例不限于此,例如,该多组发光单元20中的每组发光单元20可以包括至少一个发光单元20(如1个、2个、4个或更多个发光单元20)且每个发光单元20对应于一个子像素40,即,每组发光单元20可以对应于至少一个子像素40。
作为与图1(a)的实施例相似的等效的实施例,所述多组发光单元20中的每组发光单元20例如包括至少一个白(W)色发光单元,以及例如抵紧地位于或邻近于所述至少一个白光(W)发光单元的出光面处的(例如,与所述至少一个白光发光单元对置的)、且彼此间隔开设置的不同颜色的滤色件,不同颜色的所述多个滤色件(例如红色滤色件、绿色滤色件以及蓝色滤色件)与所述至少一个白光发光单元的相应对置部分协同工作以充当不同颜色的多个等效的单色发光单元,例如等效的红(R)、绿(G)、蓝(B)色发光单元,在此与图1(a)的实施例不做区分。
在本公开中,“发光单元对应于子像素”,是指在显示面板的显示画面中,该子像素由从该发光单元所射出的光束最后被从所述显示面板出射以呈现该子像素。作为示例,该发光单元例如包括OLED发光单元。
扩束层30例如位于所述多组发光单元20的出光侧并配置成扩展或拓宽从每组发光单元20发出的相应光束50。作为示例,扩束层30例如设置于衬底基板10的与所述多组发光单元20同一侧,如图1(a)所示为设置于所述衬底基板10与所述多组发光单元20之间。具体地,如图1(a)所示,扩束层30直接地形成于所述衬底基板10的一侧表面上(图示为上侧),且所述多组发光单元20与所述多组发光单元设置在衬底基板10的同一侧,图示为设置于所述扩束层30的背离所述衬底基板10的一侧上方,且与所述扩束层30间隔开设置。并且,如图1(a)所示,在扩束层30中设有微透镜单元,所述微透镜单元60被设置呈面对一组发光单元20(或说成是与一组发光单元20对准;换言之,即微透镜单元60在衬底基板10上的正投影与对应一组发光单元20在衬底基板10上的正投影至少部分重叠)且与所述显示面板的法向垂直的二维矩阵分布(arranged in a two-dimensional matrix),且每个微透镜单元60的光入射表面例如如图1(a)所示为各自的朝向相应组的发光单元20且背离衬底基板10上侧表面,光出射表面 例如如图1(a)所示为各自的朝向衬底基板10的下侧表面。扩束层30对于光束50的扩展作用主要由扩束层30内设置的所述微透镜单元中包含的各个微透镜60来实现。一组发光单元20发出的光束50经过微透镜单元60的扩展之后,光束50的横截面积将增大,从而能够增大该组发光单元20所对应的多个子像素(即所述多个子像素共同限定的至少一个图像像素)的显示面积。于是,在显示面板的显示面积相同的情况下,扩束层30的存在可以减少所需要的发光单元20的数量。这样,例如,减少的发光单元20的数量是通过增大不同组发光单元20之间的距离来实现的。例如,假设入射到扩束层30的光束的面积为S1而经过扩束层射出的光束的面积为S2,则可定义光束扩大倍数为k=S2/S1。作为示例,扩束层30的光束扩大倍数例如在1.1至1.5之间。该光束扩大倍数例如取决于微透镜单元的排布以及微透镜单元的形貌。由于如图1(a)所示,在每个子束生成组件中,所述组发光单元包括多个发光单元且所述微透镜单元包括仅单个微透镜,且每个子束生成组件配置成呈现一个完整的图像像素,则微透镜单元60被设置成面对相应一组发光单元20,即微透镜单元60在衬底基板10上的正投影与面对的一组发光单元20在衬底基板10上的正投影至少部分重叠;因此,扩束层30的光束扩展操作是对应于一个或多个完整的发光单元20(或图像像素)而进行的。
在本公开的实施例中,如图14所示,每个发光单元20例如包括阳极11、阴极12以及位于阳极11和阴极12之间的有机发光材料层13。作为示例,发光单元20中还例如包括空穴注入层、空穴传输层、电子传输层、电子注入层等,以提高发光效率。然而本公开的实施例不限于此,其他的相关技术的发光结构(如相关技术的OLED发光结构)也可采用。需要说明的是,每个发光单元20例如设置成与一个子像素对应;或替代地,每个发光单元20设置成与多个子像素对应,例如,单个白光发光单元(如WOLED发光单元)被设计成在其下游光路中额外设置不同颜色的滤光片,从而使得所发出的白光随后传播通过不同颜色的滤光片,由此形成不同颜色的光束以入射到待显示不同颜色的子像素,即与不同颜色的子像素对应。或者,例如,每个发光单元20也与仅一个像素对应。
在图1(a)的示例中,一组发光单元20包括分别与三个子像素对应的三个发光单元20。这三个子像素协同工作以构成一个图像像素。因此,实际上,一组发光单元20设置成与一个完整的图像像素相对应,相应地,每个微透镜单元60也设置成与一个完整的图像像素相对应。由此,一方面,从图1(a)中可以清楚地看出,由于包括微透镜单元的扩束层30的存在,在与所述显示面板的法向垂直的方向上,例如横向和纵向上 (纵向例如被限定为所述显示面板的长度方向,横向则例如被限定为与所述显示面板的法向和纵向均垂直的方向即宽度方向),在相邻的两组发光单元20之间具有比较大的间隙。如果没有扩束层30,光束50将径直地向下方的出光侧射出,当观察者从显示面板下方沿迎着光束50的方向观看显示面板时,在显示面板下方的与介于相邻的两组发光单元20之间的该间隙对应的位置处观察到的出射光强将会显著地低于与发光单元对应的位置处的出射光强,从而可能发生的是观察者看到图像像素之间的较宽的清晰边界,造成所观察到的显示画面具备较强颗粒感。而在图1(a)的示例中,由于扩束层30的存在,从相邻的两组发光单元20发出的光束50均被扩展,因此,当观察者从显示面板下方沿迎着光束50的方向观看显示面板时,在显示面板下方的与相邻的两组发光单元20之间的间隙对应的位置处观察到的出射光强得到了补偿而提高了显示面板的整体的出射光强的均匀性,增强了显示效果。
另一方面,由于包括微透镜单元的扩束层30的存在,从发光单元所发射的光束50传播经过所述扩束层30之后会被扩展,则相应地,由于扩束层30对于光束50的尺寸的这种补偿作用,使得相邻的两组发光单元20之间的间隙可以被设置成比没有扩束层30的情况有所增大,具体地,例如,实际上就是,相关技术中通常将物理像素彼此抵靠地邻接设置,现在则由于扩束层的扩束作用而可以合理地间隔开一定距离,每两个相邻的当前物理像素(即子束生成组件)之间距离必然小于原先两个彼此邻接的物理像素之间的距离,即小于一个物理像素(即单个子束生成组件)的宽度;由此改善显示面板的散热性能,降低了屏幕烧毁的概率。根据本发明的实施例所提供的显示面板,能够在相邻的两组发光单元20之间的间隙较大的情况下,在通过扩束层对于入射到其上光线的发散作用来尽可能最小化显示画面的颗粒感的同时增强显示面板的散热效果,以获得画质和散热性能的良好平衡/折衷(balance/compromise)。
同时,相邻的两组发光单元20之间的间隙增大,导致发光单元20中的有机发光材料层在显示面板上分布得更分散以降低蒸镀工艺的难度(例如相邻的两组发光单元20之间的间隙的公差可能变大),从而对所需的高精度金属掩模板精度的要求降低,以提高显示面板的良率。
另外,相邻的两组发光单元20之间的间隙增大,还有可能减少显示面板上的发光单元20的个数,从而能够节省原料、功耗和降低成本。再者,相邻的两组发光单元20之间的间隙增大,便利了在图像像素、以及与生成该图像像素的物理像素(即子束生成组件)数目保持不变的情况下增大显示面板的尺寸,这与通过增加图像像素、以 及与生成该图像像素的物理像素(即子束生成组件)像素数目来增大显示面板尺寸相比,便利了降低功耗,有助于提高大尺寸显示屏的良率,降低屏幕烧毁的概率。
作为示例,扩束层30还例如包括由传导介质31形成的传导层31。在所述传导层中,传导介质31设置成围封所述微透镜单元60的所述光出射表面61并与所述微透镜单元60的光出射表面61紧密邻靠。传导介质31例如由与微透镜单元60折射率不同的透光材料制成。根据折射原理,光束50的传播方向在微透镜单元60与传导介质31之间的界面(如光出射表面61)处将会产生变化。在传导介质31的折射率大于微透镜单元60的折射率的情况下,有利于实现光束50的扩展。关于微透镜单元60分别为凸透镜或凹透镜形式的示例,将在下文分别参照图15和图16进行介绍。
在一些示例中,传导介质31例如被选择为使得传导介质31的折射率小于与扩束层30的出光表面32邻接的扩束层外部的介质的折射率。在图1的示例中,由于所述扩束层30直接设置在衬底基板10上,则衬底基板10直接充当该扩束层外部的介质;然而,本公开的实施例不限于此,例如,该介质也例如是与扩束层30的出光表面32邻接的另一种绝缘层(例如,额外地插置在扩束层30的出光表面32和衬底基板10之间的绝缘层)。根据折射原理,由于传导介质31的折射率小于与扩束层30的出光表面32邻接的介质的折射率,有利于实现对经过扩展的光束50的聚合,以避免所呈现的相邻的不同颜色的子像素的色彩相互干扰。作为示例,传导介质31例如由具有以下成分及含量的材料制成:5~30%的环氧丙烯酸酯共聚物、0~3%的多官能基单体和60~90%的丙二醇甲基醚乙酸酯。然而本公开的实施例不限于此,本领域相关技术的各种能够实现相应的透光功能且满足上述折射率要求的材料均可以使用。
在本公开的一些实施例中,在每组发光单元20包括多个所述发光单元的情况下,在同一组发光单元中的相邻的发光单元之间的距离设置成小于相邻组的发光单元之间的距离。同一组发光单元中相邻的发光单元之间的距离设置成相对较小,便利了微透镜单元的布置。由于同一组发光单元中相邻的发光单元之间的间隙会随同由该组中的发光单元所分别发射的光束被对应的微透镜单元的放大而不必设置成如同在不存在扩束层的情况下的间隙般小;换言之,所述间隙也例如相应地被设置成一起放大。然而,如果同一组中相邻的发光单元之间的距离设置为过于大,易于导致同一组发光单元所对应的子像素之间的间隙过大进而产生颗粒感。而相邻组的发光单元之间的距离设置成较大,则有助于提高散热性能、降低显示面板的制作工艺难度等。
在一些示例中,微透镜单元60例如包括单层布置的多个微透镜,如图1所示。 而作为替代的示例,微透镜单元也例如包括多层布置的多个次级微透镜65。图10给出了多层布置的次级微透镜的示例。在图10的示例中,微透镜单元包括三层次级微透镜65,并且在光传播方向上,单个微透镜单元中各层的次级微透镜65的数目逐渐递增,例如如图所示每层增加一个,即单个微透镜单元中的次级微透镜布置为呈塔状或导致塔状布置。从图10可以看出,光束50每经过一层次级微透镜65都会进一步扩展。与具有单层布置的多个微透镜的微透镜单元相比,具有多层布置的次级微透镜的微透镜单元能够进一步扩展光束和提高扩束层的光束扩大倍数。在本公开的实施例中,上述多层布置的次级微透镜的层数不限于图示的三层,例如多层布置的次级微透镜的层数替代地选择为两层、四层或更多层。作为示例,该多层微透镜结构例如通过半色调掩膜(Half Tone Mask)多次曝光来实现。在本公开的实施例中所述的微透镜单元例如利用包括但不限于相关技术中的光刻胶热熔法、三维扩散光刻等方法来制备。
在图1(a)所示的示例中,每组发光单元包括分别对应于三个子像素40a、40b和40c的三个发光单元20a、20b和20c。每个微透镜单元60对于这三个发光单元所发出的光束均是透明的。这便利了减少光学损失。例如,微透镜单元60采用透明树脂材料制成。本公开的实施例中,每组发光单元不限于仅包括上述三个发光单元,例如,其替代地例如包括一个、两个或多于三个的发光单元;相应地,每个微透镜单元60可以设置成对于其所面对的一组发光单元发出的光束均是透明的。
如前所述,在图1(a)所示的示例中,每组发光单元对应于一个图像像素,该图像像素包括红、绿、蓝三个子像素。然而,本公开的实施例不限于此,例如,每组发光单元还替代地对应于多于一个图像像素。即,每组发光单元例如对应于至少一个完整的图像像素。这种方式有利于基于完整的图像像素来对光束进行扩展。在本公开的实施例中,每组发光单元也例如对应于多个子像素,这些子像素例如是同一图像像素中的子像素,或替代地例如是不同的图像像素中的子像素。
如图2(a)所示,在每个子束生成组件中,所述组发光单元包括多个发光单元,且所述微透镜单元包括多个微透镜,所述多个发光单元与所述多个微透镜布置成以一一对应关系彼此面对(此处“面对”的定义如前所述,即所述多个发光单元在衬底基板10上的正投影与所述多个微透镜在衬底基板10上的正投影至少部分重叠),每个子束生成组件配置成呈现至少一个完整的图像像素(图示为呈现一个完整的图像像素)。与图1(a)所示的结构相比,图2(a)所示的显示面板100b的结构的主要区别在于,在每个子束生成组件中的相应一组发光单元20虽然也包括多个发光单元20且每个子束生 成组件配置成呈现单个图像像素,但所述微透镜单元包括的至少一个微透镜是多个微透镜。换言之,如图2(a)所示结构中,充当物理像素的每个子束生成组件中的相应一组发光单元20包括多个发光单元、且所述微透镜单元中包括多个微透镜(微透镜的数目与多个发光单元的数目相同),从而该每个子束生成组件对应于单个图像像素。以图2(a)所示的RGB子像素为例,图中示出的三个发光单元20分别与红色子像素、绿色子像素和蓝色子像素对应。而所述微透镜单元60中包括多个微透镜,图示为三个微透镜60a、60b、60c,则所述三个微透镜分别面对这三个发光单元20布置。由于每个微透镜仅对应于同一种颜色的发光单元20设置,因此,该微透镜单元60中的微透镜60a、60b、60c例如由不同颜色的彩色滤光片形成。该不同颜色的彩色滤光片分别针对于该微透镜单元60中每个微透镜60a、60b、60c分别所面对的发光单元20的颜色来设计。不同颜色的该彩色滤光片例如可配置成分别过滤光束50,具体地通过从光束50中除去该微透镜60所面对的发光单元20的颜色之外的颜色的成分来实现,或者说除去与该发光单元20所对应的单个子像素的颜色之外的颜色的成分来实现。这种布置便利了使得经过微透镜单元60中分别由不同颜色的彩色滤光片制成的各个微透镜的光束50的颜色被进一步纯化,以提高显示效果。
图1(b)示出基于如图1(a)所示显示面板的进一步的示例性显示面板的结构示意图,其中所述显示面板的传导介质中还额外设有分别用于对每种单色子光束进行进一步纯化的滤色部;图2(b)示出基于如图2(a)所示显示面板的进一步的示例性显示面板的结构示意图,其中所述显示面板的传导介质中还额外设有分别用于对每种单色子光束进行进一步纯化的滤色部。
作为示例,用于对发光单元的发出的光束的颜色进行过滤纯化的结构也例如设置在扩束层30的传导介质31中,即在传导介质31中设置有一种或更多种滤色部,每种滤色部用于仅允许对应颜色的光成分通过。例如,所述组发光单元包括多个发光单元,且所述微透镜单元包括多个微透镜,所述多个发光单元与所述多个微透镜布置成以一一对应关系彼此面对(此处“面对”的定义如前所述,即所述多个发光单元在衬底基板10上的正投影与所述多个微透镜在衬底基板10上的正投影至少部分重叠),每个子束生成组件配置成呈现至少一个完整的图像像素(图示为呈现一个完整的图像像素),且位于所述扩束层中的滤色部包括与所述多个发光单元的颜色分别相同的多个滤色部。具体地,对于图2(b)所示的示例,显示面板100b至少包括第一子像素40a和第二子像素40b、以及第三子像素40c,其中,例如对于彼此邻接的第一子像素40a和第二 子像素40b而言,第一子像素40a具有第一颜色(如红色),所述第二子像素40b具有第二颜色(如绿色)。第一发光单元20a与第一子像素40a对应,第二发光单元20b与第二子像素40b对应。对应地,设置在扩束层30中的微透镜单元60包括:面对第一发光单元20a的第一微透镜60a和面对第二发光单元20b的第二微透镜60b。并且对应地,在传导介质31中,设置有第一滤色部33a和第二滤色部33b。具体地,第一滤色部33a设置成围封所述第一微透镜60a的光出射表面61a设置并与所述第一微透镜60a的光出射表面61a紧密邻靠,且配置成用于过滤入射到其上的光束中除所述第一颜色之外的颜色的成分。类似地,第二滤色部33b设置成围封所述第二微透镜60b的光出射表面61b设置并与所述第二微透镜60b的光出射表面61b紧密邻靠,且第二滤色部33b配置成过滤光束中除所述第二颜色之外的颜色的成分。第一滤色部33a和第二滤色部33b的如上设置便利了用于分别对于不同发光单元各自发出的不同颜色的光束进行颜色提纯。
当然,滤色部的数量不限于上述两种,如在图2(b)的示例中还例示出了在传导介质31中,还设置有第三滤色部33c,所述第三滤色部33c设置成围封第三微透镜60c的光出射表面61c并与第三微透镜60c的光出射表面61c紧密邻靠。该第三微透镜60c面对第三发光单元20c。与前述类似,第三滤色部33c例如配置成用于对于从第三发光单元20c发出的光束的颜色进行提纯。在本公开的实施例中,滤色部的数量也例如是三种以上,或甚至仅一种。
类似地,图1(a)的示例中,针对每组发光单元20中的每个发光单元,在充当微透镜单元的共用的单个微透镜下游,也设置了例如与发光单元相同数目的多个不同颜色的滤色部,每个滤色部例如配置成过滤从相应每个发光单元发出的光束中除去所面对的发光单元20的颜色之外的颜色的成分,或者说除去与该发光单元20所对应的单个子像素的颜色之外的颜色的成分,从而用于对于从相应每个发光单元发出的光束的颜色进行提纯。
作为示例,上述彩色滤光片或滤色部例如由具有以下成分及含量的材料制成:55~65%的丙二醇甲醚醋酸酯、15~20%的乙氧基丙酸乙酯、7~13%的聚乙二醇单甲醚、1~8%的树脂、1~9%的颜料(红(R)/绿(G)/蓝(B))以及2~9%的添加剂。然而本公开的实施例不限于此,本领域相关技术的各种能够实现相应的滤光功能的材料均可以使用。
图9示意性地示出了微透镜单元60与发光单元20的对应关系。图9中示出了多 个微透镜单元60,每个微透镜单元60与三个条形的发光单元20a、20b和20c面对地设置;换言之,即每个微透镜单元60在衬底基板10上的正投影与所述三个条形的发光单元20a、20b和20c在衬底基板10上的正投影至少部分重叠。需要说明的是,在实际中,发光单元的布置形式例如是多种多样的,并不限于如图9所示的矩形阵列的排布,例如替代地存在有其他形式的错位排布等。微透镜单元60的形状和排布形式例如根据实际的发光单元的布置形式来进行设计和调整。
图11至图13示出了微透镜单元60所包括的微透镜的结构示例。图11示出了球冠形的微透镜62。该球冠形的微透镜62的底面直径为D,曲率半径为R,高度为h。该球冠形的微透镜62的结构尺寸满足下式(1):
Figure PCTCN2019097259-appb-000001
图13示出了矩形底球冠形的微透镜63,例如从其矩形底部观察。图12示出了沿图13中线AA截得的剖视图。在图13示出的示例中,该矩形底球冠形的微透镜63的底面为边长为d的正方形,且该矩形底球冠形的微透镜63的曲率半径也为R。因而,在沿对角线方向(如图13中线BB所示)截得的剖视图与图11所示的球冠形的微透镜62的剖视图相同。该矩形底球冠形的微透镜63结构尺寸满足下式(2):
Figure PCTCN2019097259-appb-000002
上述如图11所示球冠形的微透镜62的底面形状为圆形,而如图12、13所示的该矩形底球冠形的微透镜63的底面形状为矩形(例如是正方形,但不限于正方形)。这些不同的微透镜底面形状的选择便利了适应于OLED发光单元在衬底基板上的不同的排布方式的要求,而与子像素的排布形状更好地匹配。例如,在子像素被设计成以矩形阵列排布的情况下,有利的是选用该矩形底球冠形的微透镜63。
作为示例,每个微透镜单元60在例如分别与显示面板的法向正交的两个相互垂直的方向(如图9中所示的x方向和y方向)上均能够对从与该微透镜单元60面对的一组发光单元20发出的光束进行扩展(例如在每个微透镜单元选用在图11至图13示出的示例性的微透镜结构的情况下)。然而,在本公开的实施例中,每个微透镜单元60也例如替代地设置成仅在一个方向上扩大从与该微透镜单元60面对的一组所述发光单元20发出的光束,例如,采用柱面透镜的形式。
对于微透镜单元的具体设计,例如可以借助于ZEMAX等商用软件来实现。
更具体地,每个微透镜60例如是发散型微透镜。在图1(a)至图4(b)所示的显示面板的示例中,即对应地图5(a)至图8所示的子束生成组件的示例中,每个微透镜单元60均示出为包括凸透镜。然而,本公开不限于此,例如,微透镜单元60也例如包括凹透镜。图15和图16给出了关于采用凸透镜或凹透镜形式的微透镜单元的一些示例。图15所示出的微透镜单元60包括的微透镜为凸透镜形式,且包围微透镜单元60的光出射表面61的传导介质31的折射率大于微透镜单元60的折射率。这与图2(a)所示出的示例是相同的。如前所述,在此情况下,微透镜单元60对于光束50具有发散作用,从而实现扩束功能。图16示出的是微透镜单元60包括的微透镜为凹透镜形式的示例。在图16的示例中,传导介质31的折射率大于微透镜单元60的折射率,微透镜单元60对于光束50具有会聚作用,但经过会聚的光束在经过焦点之后会转变成发散光束,因此,光束截面面积会经历先变小再逐渐变大的过程。所以,在扩束层30设置为足够厚以使得光束50能够在传播经过扩束层30的过程中经历先会聚后发散的过程、且经过发散后的光束截面面积比光束50入射到扩束层30上时的光束截面面积更大的情况下,也能够实现对光束的扩展功能。上述图15示出的示例中,扩束层30的厚度例如设置成小于如图16所示的示例中的扩束层30的厚度,且光束在扩束层30中的路径相比于图16示例中的光束在扩束层30中的路径是较短的,能够削减光学损耗。例如,在上述图15示出的示例中,扩束层30的厚度甚至能够设置成小于微透镜单元60的焦距。
在替代的实施例中,在上述图15和图16所示出的示例中,传导介质31的折射率均还能设置成小于与扩束层30的出光表面32邻接的扩束层外部的介质(例如衬底基板10)的折射率,从而使从出光表面32出射的光束50相比于光束50从发光单元发射时的情况能够被适当地收缩,以避免所呈现的不同颜色的子像素的色彩相互干扰。
在本公开的一些实施例中,例如,如图1(a)和图2(a)所示,该多组发光单元20为底发射型的OLED发光单元20,所述扩束层30位于所述多组发光单元20和衬底基板10之间。在这种具有底发射型的OLED发光单元20的显示面板的结构中,衬底基板10例如用于以直接抵靠的方式支撑扩束层30。例如,扩束层30直接在衬底基板10上生成,而OLED发光单元20例如在扩束层30的与衬底基板10背离的上方生成。这种底发射型的OLED发光单元20的出光侧设置成朝向衬底基板10。
而在另一些实施例中,例如,如图3(a)、3(b)和图4(a)、4(b)所示,图3(a)示出根据本公开的再一种实施例的显示面板的结构示意图,其与图1(a)不同之处在于,图1(a) 示出的是底发射型结构,而图3(a)示出的是顶发射型结构;图4(a)示出根据本公开的又一种实施例的显示面板的结构示意图,其与图2(a)不同之处在于,图2(a)示出的是底发射型结构,而图4(a)示出的是顶发射型结构。该多组发光单元20也例如替代地为顶发射型的OLED发光单元20,所述扩束层30位于所述多组发光单元20的背对衬底基板10的一侧。在这种具有顶发射型的OLED发光单元20的显示面板的结构中,衬底基板10例如用于以直接抵靠的方式支撑OLED发光单元20。例如,OLED发光单元20直接在衬底基板10上生成,而扩束层30例如在OLED发光单元20的与衬底基板10背离的上方生成。如图3(a)所示的显示面板100c的结构与如图1(a)所示的显示面板100a的结构在微透镜单元60与发光单元的对应性方面相似,均为单个子束生成组件中每个微透镜单元60面对一组发光单元20中的多个发光单元20的形式。而如图4(a)所示的显示面板100d的结构与如图2(a)所示的显示面板100b的结构在微透镜单元60与发光单元的对应性方面相似,均为单个子束生成组件中每个微透镜单元60面对单个发光单元20的形式。
并且,图3(b)示出基于如图3(a)所示显示面板的进一步的示例性显示面板的结构示意图,其中所述显示面板的传导介质中还额外设有分别用于对每种单色子光束进行进一步纯化的滤色部;图4(b)示出基于如图4(a)所示显示面板的进一步的示例性显示面板的结构示意图,其中所述显示面板的传导介质中还额外设有分别用于对每种单色子光束进行进一步纯化的滤色部。根据本公开实施例,如图3(b)、图4(b)中所示滤色部的具体设置与图1(b)、图2(b)中的情况相似,在此不再赘述。
并且,图5(a)示出可兼容地用于如图1(a)、图3(a)分别所示显示面板中的充当物理像素的子束生成组件的结构示意图;图5(b)示出可兼容地用于如图1(b)、图3(b)所示显示面板中的充当物理像素的子束生成组件的结构示意图,其中所述扩束层的传导介质中还额外设有分别用于对每种单色子光束进行进一步纯化的滤色部。
图6(a)示出可兼容地用于如图2(a)、图4(a)所示显示面板中的充当物理像素的子束生成组件的结构示意图;图6(b)示出可兼容地用于如图2(b)、图4(b)所示显示面板中的充当物理像素的子束生成组件的结构示意图,其中所述扩束层的传导介质中还额外设有分别用于对每种单色子光束进行进一步纯化的滤色部。
根据本公开实施例,这些子束生成组件的具体结构请参见前面实施例的描述,在此不再赘述。
图7(a)示出根据本公开的一种实施例的显示面板中充当物理像素的子束生成组件的结构示意图;图7(b)示出基于如图7(a)所示子束生成组件的进一步的示例性实施例中充当物理像素的子束生成组件的结构示意图。
下面考察每个子束生成组件中的相应一组发光单元包括仅单个发光单元的情况。根据本公开实施例,例如,如图7(a)所示,在每个子束生成组件中的相应一组发光单元60包括单个发光单元,例如一个白光(W)发光单元,且每个子束生成组件配置成呈现单个图像像素的情况下,如图所示,与所述单个发光单元面对的所述微透镜单元60例如包括多个微透镜60a、60b、60c;且为了实现从单个白光(W)发光单元发射光束形成多个不同颜色的子光束以分别用于出射呈现多个不同颜色的子像素来形成与该子束生成组件对应的图像像素,则例如所述多个微透镜60a、60b、60c分别由不同颜色的彩色滤光片形成,所述不同颜色的滤光片分别配置成过滤光束中除去待呈现的所述单个图像像素中的各自子像素的颜色之外的颜色的成分。
并且,根据本公开实施例,在如图7(b)所示的基于如图7(a)所示显示面板的进一步的示例性显示面板中充当物理像素的子束生成组件的示意性结构中,其中所述显示面板的传导介质中还额外设有分别用于对每种单色子光束进行进一步纯化的滤色部,其设置类似于前面图5(b)、6(b)中所示出的在显示面板中的充当物理像素的子束生成组件的结构示意图,其中所述扩束层的传导介质中还额外设有分别用于对每种单色子光束进行进一步纯化的滤色部,在此不再赘述。
图8示出根据本公开的一种实施例的显示面板中充当物理像素的子束生成组件的结构示意图。
另外,根据本公开实施例,例如如图8所示,同样在在每个子束生成组件中的相应一组发光单元60包括单个发光单元,例如一个白光(W)发光单元,且每个子束生成组件配置成呈现单个图像像素的情况下,例如如图所示,与所述单个发光单元面对的所述微透镜单元包括仅一个微透镜60;且在从单个白光(W)发光单元发射的光束在入射到仅包括单个微透镜的所述微透镜单元上的情况下为了实现形成多个不同颜色的子光束以分别用于出射呈现多个不同颜色的子像素、并且共同限定与该子束生成组件对应的图像像素,则所述显示面板的传导介质中还额外设有分别用于对每种单色子光束进行进一步纯化的滤色部,所述滤色部包括彼此间隔开设置的多个滤色子元件 且所述多个滤色子元件分别配置成过滤光束中除去所述单个图像像素中待呈现的各自子像素的颜色之外的延伸的成分,在此不再赘述。
并且,作为示例,根据本公开的实施例的显示面板100a、100b、100c和100d还例如额外包括:密封层70和圆偏光片80。密封层70例如配置成用于对显示面板的结构进行封闭。该多组发光单元和扩束层30均例如布置成位于衬底基板10和密封层70之间。圆偏光片80例如布置于显示面板的出光侧,更具体地例如布置在位于所述发光单元20的出光侧上的所述衬底基板10的一侧上(如图1(a)、2(a)所示)、或布置在位于所述发光单元20的出光侧上的在密封层70的背对所述发光单元的一侧上(如图3、4所示)。换言之,对于如图1(a)、2(a)所示的底发射型的OLED发光单元20,圆偏光片80例如布置在衬底基板10的外侧,而对于如图3(a)、4(a)所示顶发射型的OLED发光单元20,圆偏光片80例如布置在密封层70的外侧。圆偏光片80例如配置成用于防止外界环境光对于显示画面的干扰。例如,圆偏光片80与衬底基板10或密封层70之间还例如额外地设置有隔离层81。
作为示例,为了对于发光单元20进行更好地控制,显示面板还例如包括TFT阵列层90。TFT阵列层90例如位于所述多组发光单元20与衬底基板10之间。例如,在TFT阵列层90和扩束层之间例如设置有胶层(如UV胶层)91。
在本公开的上述实施例中,以R、G、B三种子像素为例对显示面板的结构进行了介绍。但应当理解,本公开的实施例并不限于上述三种子像素,例如黄色等其他颜色的子像素也可以采用。
根据本公开实施例的总体技术构思,在本公开的实施例的另一方面,还提供了一种显示装置,包括前述任一项中的显示面板;并且所述显示装置例如还包括容纳所述显示面板的壳体。所述显示装置例如为:显示面板、电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。所述显示装置类似地具备前述显示装置的所有优点,在此不再赘述。
与相关技术相比,本公开的实施例具有如下的有益效果:
本公开的实施例所提供的显示面板提供了一种采用数量较少的物理像素来实现大尺寸的显示面板的方式。该显示面板利用扩束层对于入射到其上光线的发散作用可 以至少部分削弱或甚至完全消除发光单元间距较大所导致的显示画面颗粒感,因而能够在发光单元间距较大的情况下获得良好的显示画面质量。本公开的实施例所提供的显示面板能够提高散热性能,降低蒸镀工艺难度,提高大尺寸的显示面板的良率。
尽管在上述实施例中以OLED发光单元为例对本公开的技术构思进行了描述,但是,本公开的实施例中的发光单元并不限于OLED发光单元,例如,在上述实施例中的OLED发光单元可以被替换成量子点发光单元、无机发光二极管发光单元等各种其它类型的发光单元。对于这些其它类型的发光单元,本公开的实施例也可以利用扩束层来削弱或消除发光单元间距较大所导致的显示画面颗粒感和提高散热性能等技术效果。相应地,本公开的实施例中的显示面板也不限于OLED显示面板,也例如包括具有各种其它类型的发光单元的显示面板。
上述实施例仅例示性的说明了本公开的原理及构造,而非用于限制本公开,本领域的技术人员应明白,在不偏离本公开的总体构思的情况下,对本公开所作的任何改变和改进都在本公开的范围内。本公开的保护范围,应如本申请的权利要求书所界定的范围为准。

Claims (20)

  1. 一种配置用于显示图像的显示面板,所述图像包括多个图像像素且每个图像像素包括分别呈不同颜色的多个子像素,所述显示面板包括:
    衬底基板;
    多个子束生成组件,设置在衬底基板上,每个所述子束生成组件配置成生成至少一个图像像素中的至少一个子像素,且每个所述子束生成组件包括:
    一组发光单元,所述组发光单元包括至少一个发光单元;和
    扩束层,所述扩束层布置位于所述组发光单元的出光侧并配置成扩展从所述组发光单元发出的光束,
    其中,所述扩束层在衬底基板上的正投影与所述组发光单元在衬底基板上的正投影至少部分重叠。
  2. 根据权利要求1所述的显示面板,其中,其中,所述扩束层包括一个微透镜单元,所述微透镜单元包括至少一个微透镜。
  3. 根据权利要求2所述的显示面板,其中,所述扩束层还包括折射率与微透镜单元不同的传导介质,所述传导介质设置成围封所述微透镜单元的光出射表面并与所述微透镜单元的光出射表面邻靠。
  4. 根据权利要求3所述的显示面板,其中,所述传导介质的折射率大于所述微透镜单元的折射率。
  5. 根据权利要求3或4所述的显示面板,其中,所述传导介质中还设置有配置成对光束的颜色进行过滤的滤色部。
  6. 根据权利要求3或4所述的显示面板,其中,所述传导介质的折射率小于与所述扩束层的出光表面邻靠的扩束层外部的介质的折射率。
  7. 根据权利要求2-6中任一项所述的显示面板,其中,在每个子束生成组件中的所述组发光单元包括多个所述发光单元,且每个子束生成组件配置成呈现至少一个完整的图像像素的情况下,所述微透镜单元包括至少一个微透镜,且在同一组发光单元中的相邻的发光单元之间的距离小于相邻组的发光单元之间的距离。
  8. 根据权利要求2-6中任一项所述的显示面板,其中,在每个子束生成组件中的所述组发光单元包括单个发光单元且每个子束生成组件配置成呈现单个图像像素的情况下,其中,与所述单个发光单元面对的所述微透镜单元包括由不同颜色的滤光片分别形成的多个微透镜,所述不同颜色的滤光片分别配置成过滤光束中除去待呈现的所述单个图像像素中的各自子像素的颜色之外的颜色的成分。
  9. 根据权利要求5所述的显示面板,其中,在每个子束生成组件中的所述组发光单元包括单个发光单元且每个子束生成组件配置成呈现单个图像像素的情况下,所述微透镜单元包括一个微透镜,且所述滤色部包括彼此间隔开设置的多个滤色子元件且所述多个滤色子元件分别配置成过滤光束中除去所述单个图像像素中待呈现的各自子像素的颜色之外的延伸的成分。
  10. 根据权利要求2所述的显示面板,其中,每个微透镜单元中,所述至少一个微透镜包括多层布置的次级微透镜。
  11. 根据权利要求10所述的显示面板,其中,所述每个微透镜包括凸透镜或凹透镜。
  12. 根据权利要求11所述的显示面板,其中,每个微透镜单元包括球冠形或矩形底球冠形的微透镜。
  13. 根据权利要求2所述的显示面板,其中,每个微透镜单元在与显示面板的法向正交的一个方向、或两个相互垂直的方向上扩展从与所述微透镜单元面对的一组所述发光单元发出的光束。
  14. 根据权利要求1所述的显示面板,其中,所述发光单元是有机发光二极管发光单元。
  15. 根据权利要求1所述的显示面板,其中,所述组发光单元为底发射型的有机发光二极管发光单元,所述扩束层位于所述组发光单元和衬底基板之间。
  16. 根据权利要求1所述的显示面板,其中,所述组发光单元为顶发射型的有机发光二极管发光单元,所述扩束层位于所述组发光单元的背对衬底基板的一侧。
  17. 根据权利要求8所述的显示面板,其中,所述单个发光单元为白光发光单元。
  18. 根据权利要求9所述的显示面板,其中,所述单个发光单元为白光发光单元。
  19. 根据权利要求7所述的显示面板,其中,所述微透镜单元包括多个微透镜,所述多个发光单元与所述多个微透镜布置成以一一对应关系彼此面对,且位于所述扩束层中的滤色部包括与所述多个发光单元的颜色分别相同的多个滤色部。
  20. 一种显示装置,包括根据权利要求1至19中任一项所述的显示面板。
PCT/CN2019/097259 2018-07-31 2019-07-23 显示面板和显示装置 WO2020024848A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/652,121 US11404674B2 (en) 2018-07-31 2019-07-23 Display panel configured to display images and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810856018.X 2018-07-31
CN201810856018.XA CN110783367B (zh) 2018-07-31 2018-07-31 显示面板

Publications (1)

Publication Number Publication Date
WO2020024848A1 true WO2020024848A1 (zh) 2020-02-06

Family

ID=69232370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097259 WO2020024848A1 (zh) 2018-07-31 2019-07-23 显示面板和显示装置

Country Status (3)

Country Link
US (1) US11404674B2 (zh)
CN (1) CN110783367B (zh)
WO (1) WO2020024848A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4123358A4 (en) * 2020-03-19 2023-04-26 BOE Technology Group Co., Ltd. DISPLAY DEVICE AND ASSOCIATED DISPLAY METHOD

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116774481A (zh) * 2019-05-20 2023-09-19 群创光电股份有限公司 发光设备
CN111834544B (zh) * 2020-06-30 2022-08-23 湖北长江新型显示产业创新中心有限公司 显示面板和显示装置
CN111628111B (zh) * 2020-06-30 2022-09-13 湖北长江新型显示产业创新中心有限公司 一种显示面板及其制备方法、显示装置
CN111725429B (zh) * 2020-06-30 2022-09-02 湖北长江新型显示产业创新中心有限公司 一种显示面板及显示装置
JP2023540880A (ja) * 2020-08-20 2023-09-27 アプライド マテリアルズ インコーポレイテッド Oled光照射野アーキテクチャ
TW202211724A (zh) * 2020-09-10 2022-03-16 日商索尼半導體解決方案公司 顯示裝置及電子機器
CN112038502B (zh) * 2020-09-16 2023-06-09 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置
CN112510073B (zh) * 2020-12-15 2023-02-03 云谷(固安)科技有限公司 一种显示面板及显示装置
CN113036052A (zh) * 2021-02-26 2021-06-25 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法、显示装置
CN113241354B (zh) * 2021-04-07 2022-07-12 武汉华星光电技术有限公司 Oled显示面板及其制备方法
WO2023065247A1 (zh) * 2021-10-21 2023-04-27 京东方科技集团股份有限公司 显示模组及其制备方法、显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005242166A (ja) * 2004-02-27 2005-09-08 Seiko Epson Corp ディスプレイ装置および画像表示方法
JP2006332077A (ja) * 2005-05-23 2006-12-07 Nikon Corp 光源ユニット、照明光学装置、露光装置、および露光方法
JP2012234093A (ja) * 2011-05-06 2012-11-29 Dainippon Printing Co Ltd 立体映像表示装置
CN107515435A (zh) * 2017-09-11 2017-12-26 京东方科技集团股份有限公司 显示面板和显示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3957760B2 (ja) * 1996-07-10 2007-08-15 統寶光電股▲ふん▼有限公司 有機発光素子用のカプセル封入材としてのシロキサンおよびシロキサン誘導体
TWI224295B (en) * 2003-08-21 2004-11-21 Ritdisplay Corp Color tunable panel of organic electroluminescent displays
CN1612658A (zh) * 2003-10-29 2005-05-04 铼宝科技股份有限公司 可调色有机发光显示面板
JP4011591B2 (ja) 2005-07-20 2007-11-21 シャープ株式会社 マイクロレンズ付き液晶表示パネルの製造方法
JP5341701B2 (ja) * 2009-10-02 2013-11-13 キヤノン株式会社 表示装置およびデジタルカメラ
KR20140040650A (ko) 2012-09-24 2014-04-03 네오뷰코오롱 주식회사 유기발광 표시장치
JP2015069700A (ja) * 2013-09-26 2015-04-13 株式会社ジャパンディスプレイ 表示装置
CN104900683A (zh) * 2015-06-10 2015-09-09 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示装置
CN108198844A (zh) * 2018-01-03 2018-06-22 京东方科技集团股份有限公司 一种显示面板、其制作方法及显示装置
CN109378404B (zh) * 2018-10-17 2021-04-27 京东方科技集团股份有限公司 一种3d显示面板及其制作方法,以及显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005242166A (ja) * 2004-02-27 2005-09-08 Seiko Epson Corp ディスプレイ装置および画像表示方法
JP2006332077A (ja) * 2005-05-23 2006-12-07 Nikon Corp 光源ユニット、照明光学装置、露光装置、および露光方法
JP2012234093A (ja) * 2011-05-06 2012-11-29 Dainippon Printing Co Ltd 立体映像表示装置
CN107515435A (zh) * 2017-09-11 2017-12-26 京东方科技集团股份有限公司 显示面板和显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4123358A4 (en) * 2020-03-19 2023-04-26 BOE Technology Group Co., Ltd. DISPLAY DEVICE AND ASSOCIATED DISPLAY METHOD
US11980055B2 (en) 2020-03-19 2024-05-07 Boe Technology Group Co., Ltd. Display device and display method thereof

Also Published As

Publication number Publication date
CN110783367A (zh) 2020-02-11
US20200251689A1 (en) 2020-08-06
CN110783367B (zh) 2022-05-24
US11404674B2 (en) 2022-08-02

Similar Documents

Publication Publication Date Title
WO2020024848A1 (zh) 显示面板和显示装置
US10707191B2 (en) Colour inorganic LED display for display devices with a high number of pixel
KR102473326B1 (ko) 실리콘 상의 컬러 iled 디스플레이
CN111682122B (zh) 一种显示面板及其制备方法、显示装置
CN110278300A (zh) 显示装置
US10910602B2 (en) Display panel with beam diffusion layer and manufacturing method thereof, and display device
US11372319B2 (en) LCD projector with active color separation lighting
US11600803B2 (en) Organic light-emitting display panel comprising concave structure and convex microlens
WO2022237077A1 (zh) 近眼显示装置
WO2021184324A1 (zh) 显示装置及其显示方法
US20180090717A1 (en) Organic light emitting diode display device
WO2020078322A1 (zh) 显示面板及其制作方法,以及显示装置
CN111261662A (zh) Oled显示面板及oled显示装置
CN112987295B (zh) 近眼显示装置和虚拟/增强现实设备
WO2022022076A1 (zh) 显示器件和近眼显示设备
WO2024045987A1 (zh) 显示基板、显示装置及显示基板的制备方法
CN113178466B (zh) 显示器件及电子设备
CN113224106B (zh) 显示面板以及显示装置
CN110491292B (zh) 多层显示装置及电子设备
Jiang et al. Design of self-luminous pico-projection optical engine based on a quantum-dot color converted micro-LED
WO2022227025A1 (zh) 双栅线阵列基板、显示面板
CN220381442U (zh) 双片式Micro-LED投影光学装置
CN218957007U (zh) 一种微显示光引擎和投影机
US20230343880A1 (en) Optical module, manufacturing method, and display device
US20240164191A1 (en) Display panel and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19843940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19843940

Country of ref document: EP

Kind code of ref document: A1