WO2022022076A1 - 显示器件和近眼显示设备 - Google Patents

显示器件和近眼显示设备 Download PDF

Info

Publication number
WO2022022076A1
WO2022022076A1 PCT/CN2021/098924 CN2021098924W WO2022022076A1 WO 2022022076 A1 WO2022022076 A1 WO 2022022076A1 CN 2021098924 W CN2021098924 W CN 2021098924W WO 2022022076 A1 WO2022022076 A1 WO 2022022076A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
display device
lens
emitting
emitting portion
Prior art date
Application number
PCT/CN2021/098924
Other languages
English (en)
French (fr)
Inventor
王灿
孟宪东
凌秋雨
张盎然
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/921,914 priority Critical patent/US20230180586A1/en
Publication of WO2022022076A1 publication Critical patent/WO2022022076A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display device and a near-eye display device.
  • Near-eye display devices for example, Augmented Reality, AR
  • High-end products use optical waveguide technology for thinning, but the optical waveguide has a large light loss and requires high device brightness (>3000nit).
  • Silicon-based organic light-emitting display devices Organic Light-Emitting Diode, OLED
  • OLED Organic Light-Emitting Diode
  • Embodiments of the present disclosure provide a display device, including:
  • the light-emitting layer located on one side of the base substrate, the light-emitting layer includes a plurality of light-emitting parts;
  • an encapsulation layer located on the side of the light-emitting layer away from the base substrate;
  • the lens layer is located on the side of the encapsulation layer away from the light-emitting layer, and the lens layer includes a plurality of lens structures corresponding to the light-emitting parts one-to-one and protruding toward the side away from the light-emitting parts.
  • the center of the orthographic projection of the at least one lens structure on the base substrate does not overlap with the center of the orthographic projection of the corresponding light-emitting portion on the base substrate.
  • a surface area of the lens structure facing the light-emitting portion is larger than a surface area of the light-emitting portion facing the lens structure, from the first axis of symmetry along the first direction to at least one side edge
  • each of the lens structures is sequentially displaced relative to the light-emitting portion, and the first axis of symmetry passes through the center of the display device and is perpendicular to the first direction.
  • the dislocation length of each lens structure relative to the light-emitting portion increases sequentially.
  • the length A of the surface of the lens structure facing the light-emitting part in the first direction is the same as the length A of the surface of the light-emitting part facing the lens structure in the first direction
  • the length B in the direction satisfies the following relationship:
  • AB L1/N, where L1 is the dislocation length of the light-emitting portion at the edge of the lens structure relative to the edge of the light-emitting portion in the first direction, and N is the distance from the light-emitting portion in the middle along the first direction to one direction. The number of the light-emitting parts whose side edges are displaced.
  • a color resist film layer is further provided between the encapsulation layer and the lens layer, and the color resist film layer includes a plurality of color resist parts;
  • the surface area of the color resist portion facing the light-emitting portion is larger than the surface area of the light-emitting portion facing the color resist portion, from the first axis of symmetry to all the edges of at least one side along the first direction.
  • each color resist portion is sequentially displaced relative to the light emitting portion.
  • the dislocation length of each color-resisting portion relative to the light-emitting portion increases sequentially.
  • the length C of the surface of the color resist portion facing the lens structure in the first direction is the same as the length C of the surface of the light-emitting portion facing the lens structure in the first direction
  • the upward length B satisfies the following relationship:
  • C-B L2/N, wherein L2 is the dislocation length in the first direction of the color resist portion at the edge relative to the light-emitting portion at the edge.
  • the length of the surface of the color resist portion facing the lens structure in the first direction is smaller than the length of the surface of the lens structure facing the light-emitting portion in the first direction length in the direction.
  • an overlapping area exists adjacent to the color resist portions.
  • the side of the lens layer facing away from the encapsulation layer further has a protective layer
  • the ratio of the refractive index of the protective layer to the refractive index of the lens structure is greater than 1.1.
  • a flat layer is further provided between the color resist film layer and the lens layer.
  • a ratio of a surface area of the light-emitting portion facing the lens structure to a surface area of the lens structure facing the light-emitting portion is less than 35.2%.
  • each of the lens structures is sequentially displaced relative to the light-emitting portion.
  • each of the lens structures is sequentially displaced relative to the light-emitting portion.
  • Embodiments of the present disclosure also provide a near-eye display device, which includes the display device provided by the embodiments of the present disclosure.
  • FIG. 1 is a schematic cross-sectional view of a display device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic top view of a display device according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of an arrangement relationship between a lens structure and a light-emitting portion according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a dislocation relationship between a lens structure and a light-emitting portion according to an embodiment of the present disclosure
  • FIG. 5 is a schematic cross-sectional view of another display device provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of another arrangement relationship between the color resist portion and the light emitting portion according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of another dislocation relationship between the color resist portion and the light emitting portion according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of overlapping between different color resists according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of the enhancement ratio of the light output brightness of the display device provided by different film layers according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a near-eye display device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of the principle of obtaining an exit angle according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of the size relationship between adjacent film layers of a lens structure according to an embodiment of the present disclosure
  • FIG. 13 is a schematic diagram of a design flow of a display device according to an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a display device, which includes:
  • the light-emitting layer 2 is located on one side of the base substrate 1.
  • the light-emitting layer 2 includes a plurality of light-emitting parts 20, for example, may include a red light-emitting part 21 that emits red light, a green light-emitting part 22 that emits green light, and a blue light-emitting part 22 that emits blue light color light-emitting part 23;
  • the encapsulation layer 3 is located on the side of the light-emitting layer 2 away from the base substrate 1;
  • the lens layer 4 is located on the side of the encapsulation layer 3 away from the light-emitting layer 2.
  • the lens layer 4 includes a plurality of lens structures 40 corresponding to the light-emitting portions 20 one-to-one and protruding toward the side away from the light-emitting portion 20.
  • the lens layer 4 is perpendicular to the substrate.
  • the center of the orthographic projection of the at least one lens structure 40 on the base substrate 1 does not overlap with the center of the orthographic projection of the corresponding light emitting portion 20 on the base substrate 1 .
  • the display device includes a lens layer located on the side of the encapsulation layer away from the light-emitting layer, and the lens layer includes a plurality of lens structures corresponding to the light-emitting parts one-to-one.
  • the lens structures have a light-gathering effect, it can further improve the The function of the light-emitting brightness of the display device, and the middle lens structure is aligned with the middle light-emitting part, and on a cross-section perpendicular to the base substrate, at least one lens structure 40 is at the center of the orthographic projection of the base substrate 1 and the corresponding The light-emitting portion 20 does not overlap at the center of the orthographic projection of the base substrate 1, which will cause the lens structure to be displaced relative to the light-emitting portion one by one.
  • the lens structure will be relatively displaced relative to the light-emitting portion.
  • the maximum exit angle of the light emitted by the light emitting part at the edge is the first angle.
  • the surface area S1 of the lens structure 40 facing the light-emitting portion 20 is greater than the surface area S2 of the light-emitting portion 20 facing the lens structure 40 , from the first axis of symmetry EF along the first direction AB to at least one side
  • the lens structures 40 at the edge are sequentially displaced relative to the light emitting portion 20 so that the maximum exit angle of the light emitted by the light emitting portion 20 at the edge is the first angle ⁇ , for example, the first angle ⁇ may be 18°.
  • the first axis of symmetry EF passes through the center of the display device and is perpendicular to the first direction AB.
  • the first angle ⁇ can be set according to the needs of the user, and the first direction AB can also be set according to the needs of the user.
  • the shape of the display device is a rectangle, and the first direction AB can be specifically landscape.
  • the display device further has a first insulating layer 81 between the encapsulation layer 3 and the light-emitting layer 2 .
  • each lens structure 40 increases sequentially from the middle lens structure 40 along the first direction AB to at least one edge of the lens structures 40 .
  • the dislocation length of each lens structure 40 relative to the light emitting portion 20 increases sequentially from the middle lens structure 40 along the first direction AB to at least one edge of the lens structures 40 .
  • the dislocation length of the first lens structure 40 relative to the first light-emitting part 20 is a, the first The dislocation length of the two lens structures 40 relative to the second light emitting part 20 is 2a, the dislocation length of the third lens structure 40 relative to the third light emitting part 20 is 3a, and the fourth lens structure 40 relative to the fourth light emitting part 20 The dislocation length is 4a, and so on.
  • the length A of the surface of the lens structure 40 facing the light-emitting portion 20 in the first direction AB and the length B of the surface of the light-emitting portion 20 facing the lens structure 40 in the first direction AB satisfy the following relationship:
  • AB L1/N
  • L1 is the dislocation length of the lens structure 40 at the edge relative to the light-emitting portion 20 at the edge in the first direction AB
  • N is the displacement from the middle light-emitting portion 20 along the first direction AB to one side edge.
  • the dislocation length of the lens structure 40 at the edge relative to the light-emitting part 20 at the edge can meet the requirement
  • the required dislocation length can realize that the maximum outgoing angle of the outgoing light of the light emitting part 20 at the edge satisfies the first angle ⁇ .
  • the color-resistance film layer 5 includes a plurality of color-resistance parts 50 ;
  • the surface area S3 of the light-emitting portion 20 is larger than the surface area S2 of the light-emitting portion 20 facing the color-resisting portion 50. From the first axis of symmetry EF along the first direction AB to the color-resisting portion 50 on at least one edge, the color-resisting portions 50 are opposite to each other.
  • the light-emitting parts 20 are sequentially displaced.
  • the surface area of the color-resisting portion 50 facing the light-emitting portion 20 is larger than the surface area of the light-emitting portion 20 facing the color-resisting portion 50, so that the color-resisting portion The 50 is sequentially displaced relative to the light-emitting portion 20, so as to accurately filter the light during the deflection and propagation of the light at a specific angle, so as to improve the display quality of the display device.
  • the dislocation length of each color resist portion 50 relative to the light emitting portion 20 increases sequentially. For example, as shown in FIG. 7 , from the first symmetry axis EF along the first direction AB to the color resist portion 50 on at least one edge, the dislocation length of each color resist portion 50 relative to the light emitting portion 20 increases sequentially. For example, as shown in FIG. 7 , from the first symmetry axis EF along the first direction AB to the color resist portion 50 on at least one edge, the dislocation length of each color resist portion 50 relative to the light emitting portion 20 increases sequentially. For example, as shown in FIG.
  • the dislocation length of the first color resist portion 50 relative to the first light emitting portion 20 is b
  • the dislocation length of the second color resistance part 50 relative to the second light emitting part 20 is 2b
  • the dislocation length of the third color resistance part 50 relative to the third light emitting part 20 is 3b
  • the dislocation length of the four light-emitting parts 20 is 4b, and so on.
  • the length C of the surface of the color blocking portion 50 facing the lens structure 40 in the first direction AB and the length B of the surface of the light-emitting portion 20 facing the lens structure 40 in the first direction AB satisfy the following relationship:
  • C-B L2/N
  • L2 is the dislocation length of the color resist portion 50 at the edge relative to the light emitting portion 20 at the edge in the first direction AB.
  • the dislocation length of the color resist portion 50 at the edge relative to the light emitting portion 20 at the edge can be realized. Achieving the required offset length for accurate filtering.
  • the length C of the surface of the color resist portion 50 facing the lens structure 40 in the first direction AB is smaller than the length of the surface of the lens structure 40 facing the light-emitting portion 20 in the first direction A.
  • an overlapping area 55 exists between adjacent color resist portions 50 .
  • adjacent color resist portions 50 have overlapping regions 55, and no light is emitted in the overlapping regions 55, which can improve the color crosstalk between different colors.
  • the lens layer 4 also has a protective layer 6 on the side away from the encapsulation layer 3 ; a flat layer 7 is also provided between the color resist film layer 5 and the lens layer 4 ; the protective layer
  • the ratio of the refractive index of 6 to the refractive index of lens structure 40 is greater than 1.1.
  • the refractive index of the flat layer 7 is n1
  • the refractive index of the lens structure 40 is n2
  • the refractive index of the protective layer 6 is n3.
  • the ratio of the surface area of the light emitting portion 20 facing the lens structure 40 to the surface area of the lens structure 40 facing the light emitting portion 20 is less than 35.2%. In the embodiment of the present disclosure, the ratio of the surface area of the light emitting part 20 facing the lens structure 40 to the surface area of the lens structure 40 facing the light emitting part 20 is less than 35.2%, and the edge angle can be customized to be greater than or equal to 10°.
  • the display device may be a specific angle customization on both sides, that is, a lens structure from the first symmetry axis EF along the first direction AB to the edges of both sides, and each lens structure 40 is sequentially displaced relative to the light-emitting portion 20; It is also possible to implement angle customization only on one side, that is, from the first axis of symmetry EF along the first direction AB to the lens structures 40 on one side edge, each lens structure 40 is sequentially displaced relative to the light-emitting portion 20 .
  • an embodiment of the present disclosure further provides a near-eye display device, which includes the display Microdisplay provided by the embodiment of the present disclosure.
  • the near-eye display device includes an optical waveguide structure 90 , a display device 91 located on the light incident side of the optical waveguide structure 91 , and a collimator structure 92 located between the display device 91 and the optical waveguide structure 90 .
  • an optical coupling-in structure 93 (In-coupling hologram) located at one end of the optical waveguide structure 90 away from the display device 91
  • an optical coupling-out structure 94 (Out-coupling hologram) located at one end of the optical waveguide structure 90 away from the display device 91 coupling hologram) to couple out the light in the optical waveguide structure 90 to the human eye.
  • the design process of the display device in the embodiment of the present disclosure may be as follows:
  • lens structure size (lens pitch) and the color resist size (CF pitch) according to the angle customization requirements; for example, if the angle customization at the edge needs to meet the requirements of ⁇ 18°, the design size of the lens and color filter can be obtained. and the design position, 18° corresponds to the angle customization in the air.
  • the high-refractive material (n2 ⁇ 1.55) of the lens layer is made of low-refractive material (n3 ⁇ 1.45) for the upper layer to ensure the refraction effect, and the lower layer uses organic materials with good flatness and adhesion;
  • the above-mentioned use optical simulation software to scan the pixel opening area, and obtain the optimal light-emitting part size setting;
  • Packaging layer design placement selection
  • the thickness of the package is generally smaller than the focal length of the lens, and the optimum brightness value can be obtained by simulation;
  • the color filter on the encapsulation layer is carried out using the design scheme in step 1, and the CF pitch refers to the design method of step 1;
  • the color filter overlap that is, overlap between the red color resistance part and the green color resistance part, between the green color resistance part and the blue color resistance part, and between the red color resistance part and the blue color resistance part , due to the existence of the overlay, the laminated structure does not emit light, and the interference can be eliminated;
  • the backplane of the light-emitting device is made according to the EL opening design scheme
  • the specific encapsulation layer thickness that is, the lens placement height, the specific encapsulation layer film layer and the film layer thickness are selected;
  • Lens production using photolithography hot-melt or other imprinting solutions for lens production, the production meets the design size; the refractive index and transmittance of the lens material meet the design requirements;
  • the display device includes a lens layer on the side of the encapsulation layer away from the light-emitting layer, and the lens layer includes a plurality of lens structures corresponding to the light-emitting parts one-to-one.
  • the lens structure in the middle is aligned with the light-emitting part in the middle, and at least one lens structure 40 is located in the center of the orthographic projection of the base substrate 1 with the corresponding light-emitting part 20.
  • the centers of the orthographic projections of the base substrate 1 do not overlap, so that the lens structure will be displaced relative to the light-emitting portion one by one, and at the edge of the display device, the lens structure will be greatly displaced relative to the light-emitting portion, so that the light-emitting portion can emit light.
  • the maximum exit angle of the light at the edge is the first angle.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开提供了一种显示器件和近眼显示设备,所述显示器件包括:衬底基板;发光层,位于所述衬底基板的一侧,所述发光层包括多个发光部;封装层,位于所述发光层的背离所述衬底基板的一侧;透镜层,位于所述封装层的背离所述发光层的一侧,所述透镜层包括多个与所述发光部一一对应且向远离所述发光部一侧凸起的透镜结构,在垂直于所述衬底基板的截面上,至少一个所述透镜结构在所述衬底基板的正投影的中心与对应的所述发光部在所述衬底基板的正投影的中心不重叠。

Description

显示器件和近眼显示设备
相关申请的交叉引用
本申请要求在2020年07月31日提交中国专利局、申请号为202010761074.2、申请名称为“显示器件和近眼显示设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种显示器件和近眼显示设备。
背景技术
近眼显示设备(例如,增强现实Augmented Reality,AR)近年来发展迅速,高端产品使用光波导技术进行轻薄化处理,但光波导光损失较大,需要器件亮度较高(>3000nit)。硅基有机发光显示器件(Organic Light-Emitting Diode,OLED)具有自发光轻薄化的优点,可以满足AR易携带的需求,但器件亮度较低(<1500nit),无法对应AR高亮度的需求。而且,为了适应光学系统,在AR光学系统中需要使用特定的角度定制。
发明内容
本公开实施例提供一种显示器件,其中,包括:
衬底基板;
发光层,位于所述衬底基板的一侧,所述发光层包括多个发光部;
封装层,位于所述发光层的背离所述衬底基板的一侧;
透镜层,位于所述封装层的背离所述发光层的一侧,所述透镜层包括多个与所述发光部一一对应且向远离所述发光部一侧凸起的透镜结构,在垂直于所述衬底基板的截面上,至少一个所述透镜结构在所述衬底基板的正投影的中心与对应的所述发光部在所述衬底基板的正投影的中心不重叠。
在一种可能的实施方式中,所述透镜结构面向所述发光部的表面面积大于所述发光部面向所述透镜结构的表面面积,由第一对称轴沿第一方向到至少一侧边缘的所述透镜结构中,各所述透镜结构相对所述发光部依次错位,所述第一对称轴过所述显示器件的中心且垂直于所述第一方向。
在一种可能的实施方式中,由所述第一对称轴沿所述第一方向到至少一侧边缘的所述透镜结构中,各所述透镜结构相对所述发光部的错位长度依次增加。
在一种可能的实施方式中,所述透镜结构的面向所述发光部的表面在所述第一方向上的长度A,与所述发光部的面向所述透镜结构的表面在所述第一方向上的长度B满足以下关系:
A-B=L1/N,其中,L1为边缘的所述透镜结构相对边缘的所述发光部在所述第一方向的错位长度,N为由中间的所述发光部沿所述第一方向到一侧边缘发生错位的所述发光部的数量。
在一种可能的实施方式中,所述封装层与所述透镜层之间还具有色阻膜层,所述色阻膜层包括多个色阻部;
所述色阻部的面向所述发光部的表面面积大于所述发光部的面向所述色阻部的表面面积,由所述第一对称轴沿所述第一方向到至少一侧边缘的所述色阻部中,各所述色阻部相对所述发光部依次错位。
在一种可能的实施方式中由所述第一对称轴沿所述第一方向到至少一侧边缘的所述色阻部,各所述色阻部相对所述发光部的错位长度依次增加。
在一种可能的实施方式中,所述色阻部的面向所述透镜结构的表面在第一方向上的长度C,与所述发光部的面向所述透镜结构的表面在所述第一方向上的长度B满足以下关系:
C-B=L2/N,其中,L2为边缘的所述色阻部相对边缘的所述发光部在所述第一方向的错位长度。
在一种可能的实施方式中,所述色阻部的面向所述透镜结构的表面在所述第一方向上的长度,小于所述透镜结构的面向所述发光部的表面在所述第 一方向上的长度。
在一种可能的实施方式中,相邻所述色阻部存在交叠区域。
在一种可能的实施方式中,所述透镜层的背离所述封装层的一侧还具有保护层;
所述保护层的折射率与所述透镜结构的折射率的比值大于1.1。
在一种可能的实施方式中,所述色阻膜层与所述透镜层之间还具有平坦层。
在一种可能的实施方式中,所述发光部面向所述透镜结构的表面面积与所述透镜结构面向所述发光部的表面面积的比值小于35.2%。
在一种可能的实施方式中,由所述第一对称轴沿所述第一方向到两侧边缘的所述透镜结构中,各所述透镜结构相对所述发光部依次错位。
在一种可能的实施方式中,由所述第一对称轴沿所述第一方向到一侧边缘的所述透镜结构中,各所述透镜结构相对所述发光部依次错位。
本公开实施例还提供一种近眼显示设备,其中,包括如本公开实施例提供的所述显示器件。
附图说明
图1为本公开实施例提供的一种显示器件的剖视示意图;
图2为本公开实施例提供的一种显示器件的俯视示意图;
图3为本公开实施例提供的一种透镜结构与发光部的排列关系示意图;
图4为本公开实施例提供的一种透镜结构与发光部的错位关系示意图;
图5为本公开实施例提供的另一种显示器件的剖视示意图;
图6为本公开实施例提供的另一种色阻部与发光部的排列关系示意图;
图7为本公开实施例提供的另一种色阻部与发光部的错位关系示意图;
图8为本公开实施例提供的不同色阻部之间存在交叠的示意图;
图9为本公开实施例提供的不同膜层对显示器件出光亮度的提升倍率示意图;
图10为本公开实施例提供的一种近眼显示设备的结构示意图;
图11为本公开实施例提供的获取出射角度的原理示意图;
图12为本公开实施例提供的透镜结构相邻膜层的尺寸关系示意图;
图13为本公开实施例提供的显示器件的设计流程示意图。
具体实施方式
为了使得本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
为了保持本公开实施例的以下说明清楚且简明,本公开省略了已知功能和已知部件的详细说明。
参见图1、图2和图3所示,本公开实施例提供一种显示器件,其中,包括:
衬底基板1;
发光层2,位于衬底基板1的一侧,发光层2包括多个发光部20,例如,可以包括出射红光的红色发光部21,出射绿光的绿色发光部22,以及出射蓝 光的蓝色发光部23;
封装层3,位于发光层2的背离衬底基板1的一侧;
透镜层4,位于封装层3的背离发光层2的一侧,透镜层4包括多个与发光部20一一对应且向远离发光部20一侧凸起的透镜结构40,在垂直于衬底基板1的截面上,至少一个透镜结构40在衬底基板1的正投影的中心与对应的发光部20在衬底基板1的正投影的中心不重叠。
本公开实施例中,显示器件包括位于封装层的背离发光层一侧的透镜层,透镜层包括多个与发光部一一对应的透镜结构,由于透镜结构具有聚光作用,进而可以起到提高显示器件的出光亮度的作用,而且,使中间的透镜结构与中间的发光部对齐,在垂直于衬底基板的截面上,至少一个透镜结构40在衬底基板1的正投影的中心与对应的发光部20在衬底基板1的正投影的中心不重叠,进而会使透镜结构会相对发光部进行一一错位,在显示器件的边缘处,透镜结构会相对发光部发生较大错位,进而可以使发光部发出的光线在边缘处最大的出射角度为第一角度,在将显示器件应用到近眼显示设备中,可以实现对边缘角度的特定出光角度定制。
在具体实施时,结合图1所示,透镜结构40面向发光部20的表面面积S1大于发光部20面向透镜结构40的表面面积S2,由第一对称轴EF沿第一方向AB到至少一侧边缘的透镜结构40中,各透镜结构40相对发光部20依次错位,以使发光部20发出的光线在边缘处最大的出射角度为第一角度α,例如,第一角度α可以为18°。第一对称轴EF过所述显示器件的中心且垂直于第一方向AB。
第一角度α可以根据用户的需求设置,第一方向AB也可以根据用户的需求进行具体设置,例如,结合图2所示,显示器件的形状为矩形,第一方向AB具体可以为显示器件的横向。具体的,显示器件在封装层3与发光层2之间还具有第一绝缘层81。衬底基板1与发光层2之间还可以具有驱动电路(图中未示出),驱动电路具体可与常规的驱动有机发光器件发光的驱动电路相同。
在具体实施时,参见图4所示,由中间的透镜结构40沿第一方向AB到至少一侧边缘的透镜结构40中,各透镜结构40相对发光部20的错位长度依次增加。例如,结合图4所示,由中间的透镜结构40沿第一方向AB到至少一侧边缘的透镜结构40中,第一个透镜结构40相对第一个发光部20的错位长度为a,第二个透镜结构40相对第二个发光部20的错位长度为2a,第三个透镜结构40相对第三个发光部20的错位长度为3a,第四个透镜结构40相对第四个发光部20的错位长度为4a,以此类推。
在具体实施时,透镜结构40的面向发光部20的表面在第一方向AB上的长度A,与发光部20的面向透镜结构40的表面在第一方向AB上的长度B满足以下关系:
A-B=L1/N,其中,L1为边缘的透镜结构40相对边缘的发光部20在第一方向AB的错位长度,N为由中间的发光部20沿第一方向AB到一侧边缘发生错位的发光部20的数量,例如,结合图4所示,边缘位置处的第四个透镜结构40的中心与第四个发光部20的中心的错位长度为4a,则A-B=2x=4a/4=a。本公开实施例中,透镜结构40的长度A与发光部20的长度B满足A-B=L1/N-1时,可以实现使边缘处的透镜结构40相对边缘处的发光部20的错位长度达到需要错位长度,而该需要的错位长度可以实现在边缘处使发光部20的出射光的最大的出射角度满足第一角度α。
在具体实施时,参见图5和图6所示,封装层3与透镜层4之间还具有色阻膜层5,色阻膜层5包括多个色阻部50;色阻部50的面向发光部20的表面面积S3大于发光部20的面向色阻部50的表面面积S2,由第一对称轴EF沿第一方向AB到至少一侧边缘的色阻部50中,各色阻部50相对发光部20依次错位。本公开实施例中,与透镜结构40相对发光部20进行错位类似,使色阻部50的面向发光部20的表面面积大于发光部20的面向色阻部50的表面面积,可以使色阻部50相对发光部20发生依次错位,以在光线在以特定角度偏转传播的过程中,对光进行准确滤光,提高显示器件的显示画质。
在具体实施时,参见图7所示,由第一对称轴EF沿第一方向AB到至少 一侧边缘的色阻部50,各色阻部50相对发光部20的错位长度依次增加。例如,结合图7所示,由中间的色阻部50沿第一方向AB到至少一侧边缘的色阻部50,第一个色阻部50相对第一个发光部20的错位长度为b,第二个色阻部50相对第二个发光部20的错位长度为2b,第三个色阻部50相对第三个发光部20的错位长度为3b,第四个色阻部50相对第四个发光部20的错位长度为4b,以此类推。
在具体实施时,色阻部50的面向透镜结构40的表面在第一方向AB上的长度C,与发光部20的面向透镜结构40的表面在第一方向AB上的长度B满足以下关系:
C-B=L2/N,其中,L2为边缘的色阻部50相对边缘的发光部20在第一方向AB的错位长度。例如,结合图7所示,边缘位置处的第四个色阻部50的中心与第四个发光部20的中心的错位长度为4b,则C-B=2y=4b/4=b。本公开实施例中,色阻部50的长度C与发光部20的长度B满足C-B=L2/N-1时,可以实现使边缘处的色阻部50相对边缘处的发光部20的错位长度达到需要错位长度,以进行准确滤光。
在具体实施时,结合图5所示,色阻部50的面向透镜结构40的表面在第一方向AB上的长度C,小于透镜结构40的面向发光部20的表面在第一方向上的长度A。
在具体实施时,参见图8所示,相邻色阻部50存在交叠区域55。本公开实施例中,相邻色阻部50存在交叠区域55,在交叠区域55不出光,可以改善不同颜色之间的颜色串扰。
在具体实施时,结合图1和图5所示,透镜层4的背离封装层3的一侧还具有保护层6;色阻膜层5与透镜层4之间还具有平坦层7;保护层6的折射率与透镜结构40的折射率的比值大于1.1。具体的,平坦层7的折射率为n1,透镜结构40的折射率为n2,保护层6的折射率为n3,三者对显示器件出光亮度的提升倍率如图9所示,平坦层7的折射率为n1变化对亮度提升无影响;透镜结构40的折射率为n2≥1.55,提升效果>1.25倍;保护层6的折 射率为n3越低提升越高,要达到1.25倍,需n3≤1.45;目前显示器件需求要在1.25倍以上,需要折射比n2/n3=1.1倍,如果需求更高的提升倍率,需要更高的折射率比值。
在具体实施时,发光部20面向透镜结构40的表面面积与透镜结构40面向发光部20的表面面积的比值小于35.2%。本公开实施例中,发光部20面向透镜结构40的表面面积与透镜结构40面向发光部20的表面面积的比值小于35.2%,可以实现边缘角度定制大于等于10°。
在具体实施时,显示器件可以是两侧均实现特定的角度定制,即,由第一对称轴EF沿第一方向AB到两侧边缘的透镜结构,各透镜结构40相对发光部20依次错位;也可以是仅一侧实现角度定制,即,由第一对称轴EF沿第一方向AB到一侧边缘的透镜结构40,各透镜结构40相对发光部20依次错位。
基于同一发明构思,参见图10所示,本公开实施例还提供一种近眼显示设备,其中,包括如本公开实施例提供的显示器Microdisplay。具体的,如图10所示,近眼显示设备包括光波导结构90,位于光波导结构91入光侧的显示器件91,位于显示器件91与光波导结构90之间的准直结构92(collimator),位于光波导结构90的背离显示器件91一侧一端的光耦入结构93(In-coupling hologram),以及位于光波导结构90的背离显示器件91一侧一端的光耦出结构94(Out-coupling hologram),以将光波导结构90内的光耦出到人眼。
在具体实施时,结合图13所示,对于本公开实施例中显示器件的设计过程可以如下:
1、根据角度定制需求进行透镜结构尺寸(lens pitch)和色阻部尺寸(CF pitch)设计;例如,比如边缘处角度定制需要满足±18°的需求,可以得出lens和彩膜的设计尺寸及设计位置,18°对应是空气中的角度定制,根据这个角度可以求出在介质(也即保护层6)中的出光角度,如图11所示;根据折射定律,n1sinθ1=n2sinθ2,可以求出θ2=arcsin(n1/n2)*sinθ1,对应18°的介质中的角度是θ=12.57°;假设lens放置于发光层发光像素面3um处,根 据偏离角度可以计算出所需错位值x,x=h*tanθ2,根据12.57°,可以得到总错位为0.66893um,根据0.39全高清(Full High Definition,FHD)的分辨率是1920*1080,可知横向子像素个数是2880个,一半即1440个,所以单像素的错位即为=总错位/像素个数,即0.00046453um,使用错位渐变设计(lens统一尺寸,单个lens尺寸即为3.000465um;彩膜设计与lens方法等同,不再累述,具体尺寸可以如下表1和表2所示;
表1
air角度 出光角度 弧度 放置高度 总错位 单像素错位 Lens pitch
18 12.57 0.219388 3 0.66893 0.00046453 3.000465
表2
air角度 出光角度 弧度 放置高度 总错位 单像素错位 CF pitch
18 12.57 0.219388 0.9 0.200679 0.00013936 3.000139
①由上面表1和表2可知,lens pitch和CF pitch设计,然后lens设计原则是lens口径最大化,根据lens材料特性结合设备能力可以确定lens的口径;
②Lens拱高设计时,遵循半球原则,拱高是口径的一半尺寸进行设计;
③结合图12所示,根据公式:
Figure PCTCN2021098924-appb-000001
可以得出lens的曲率半径r;
④确定lens上下膜层关系,lens层高折材料(n2≥1.55)上层采用低折材料(n3≤1.45),确保折光效果,下层使用平坦性、粘附性好的有机材料;
2、显示器件背板设计:
1)、根据产品规格设计像素区域尺寸;
2)、根据亮度需求设计开口率;
3)、上述使用光学模拟软件进行像素开口面积的扫描,得出最佳发光部尺寸设置;
3、封装层设计(放置位置选择):
1)、封装厚度一般小于透镜焦距值,具体需要多少可以通过模拟得出最 佳亮度值;
2)、具体操作来讲,选用上述步骤1和步骤2中的透镜结构尺寸和发光部尺寸,然后进行放置高度的扫描,得出最佳的放置位置;在示例中选用了3um的放置高度;
4、彩膜设计:
1)、在封装层上的彩膜使用步骤1中的设计方案进行,CF pitch参照步骤1的设计方法;
2)、彩膜交叠(overlay),即红色色阻部与绿色色阻部之间、绿色色阻部与蓝色色阻部之间、红色色阻部与蓝色色阻部之间进行交叠,由于overlay的存在,叠层结构不出光,干扰可以排除;
明确了具体的设计方案以后,就可以进行具体的工艺制作,结合图13所示,制作顺序从下往上依次为:
1、发光器件背板制作,遵循EL开口设计方案;
2、封装层制作,根据具体的封装层厚度即lens放置高度进行具体封装层膜层及膜层厚度的选择;
3、彩膜制作,彩膜pitch和彩膜overlay遵循彩膜的设计方法;
4、Lens制作,采用光刻热熔或其他压印方案进行lens的制作,制作符合设计的尺寸;lens材料折射率及透过率满足设计需求;
5、Lens上层材料选择,选用低折的材料进行lens的匹配使用,折射率≤1.45;
6、进行盖板CG贴合,完成微显示器的整个制作流程。
本公开实施例有益效果如下:本公开实施例中,显示器件包括位于封装层的背离发光层一侧的透镜层,透镜层包括多个与发光部一一对应的透镜结构,由于透镜结构的聚光作用,进而可以起到提高显示器件的出光亮度,而且,使中间的透镜结构与中间的发光部对齐,至少一个透镜结构40在衬底基板1的正投影的中心与对应的发光部20在衬底基板1的正投影的中心不重叠,进而会使透镜结构会相对发光部进行一一错位,在显示器件的边缘处,透镜 结构会相对发光部发生较大错位,进而可以使发光部发出的光线在边缘处最大的出射角度为第一角度,在将显示器件应用到近眼显示设备中,可以实现对边缘角度的特定出光角度定制。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (15)

  1. 一种显示器件,其中,包括:
    衬底基板;
    发光层,位于所述衬底基板的一侧,所述发光层包括多个发光部;
    封装层,位于所述发光层的背离所述衬底基板的一侧;
    透镜层,位于所述封装层的背离所述发光层的一侧,所述透镜层包括多个与所述发光部一一对应且向远离所述发光部一侧凸起的透镜结构,在垂直于所述衬底基板的截面上,至少一个所述透镜结构在所述衬底基板的正投影的中心与对应的所述发光部在所述衬底基板的正投影的中心不重叠。
  2. 如权利要求1所述的显示器件,其中,所述透镜结构面向所述发光部的表面面积大于所述发光部面向所述透镜结构的表面面积,由第一对称轴沿第一方向到至少一侧边缘的所述透镜结构中,各所述透镜结构相对所述发光部依次错位,所述第一对称轴过所述显示器件的中心且垂直于所述第一方向。
  3. 如权利要求2所述的显示器件,其中,由所述第一对称轴沿所述第一方向到至少一侧边缘的所述透镜结构中,各所述透镜结构相对所述发光部的错位长度依次增加。
  4. 如权利要求3所述的显示器件,其中,所述透镜结构的面向所述发光部的表面在所述第一方向上的长度A,与所述发光部的面向所述透镜结构的表面在所述第一方向上的长度B满足以下关系:
    A-B=L1/N,其中,L1为边缘的所述透镜结构相对边缘的所述发光部在所述第一方向的错位长度,N为由中间的所述发光部沿所述第一方向到一侧边缘发生错位的所述发光部的数量。
  5. 如权利要求4所述的显示器件,其中,所述封装层与所述透镜层之间还具有色阻膜层,所述色阻膜层包括多个色阻部;
    所述色阻部的面向所述发光部的表面面积大于所述发光部的面向所述色阻部的表面面积,由所述第一对称轴沿所述第一方向到至少一侧边缘的所述 色阻部中,各所述色阻部相对所述发光部依次错位。
  6. 如权利要求5所述的显示器件,其中,由所述第一对称轴沿所述第一方向到至少一侧边缘的所述色阻部,各所述色阻部相对所述发光部的错位长度依次增加。
  7. 如权利要求6所述的显示器件,其中,所述色阻部的面向所述透镜结构的表面在第一方向上的长度C,与所述发光部的面向所述透镜结构的表面在所述第一方向上的长度B满足以下关系:
    C-B=L2/N,其中,L2为边缘的所述色阻部相对边缘的所述发光部在所述第一方向的错位长度。
  8. 如权利要求7所述的显示器件,其中,所述色阻部的面向所述透镜结构的表面在所述第一方向上的长度,小于所述透镜结构的面向所述发光部的表面在所述第一方向上的长度。
  9. 如权利要求5所述的显示器件,其中,相邻所述色阻部存在交叠区域。
  10. 如权利要求5所述的显示器件,其中,所述透镜层的背离所述封装层的一侧还具有保护层;
    所述保护层的折射率与所述透镜结构的折射率的比值大于1.1。
  11. 如权利要求10所述的显示器件,其中,所述色阻膜层与所述透镜层之间还具有平坦层。
  12. 如权利要求1所述的显示器件,其中,所述发光部面向所述透镜结构的表面面积与所述透镜结构面向所述发光部的表面面积的比值小于35.2%。
  13. 如权利要求1-12任一项所述的显示器件,其中,由所述第一对称轴沿所述第一方向到两侧边缘的所述透镜结构中,各所述透镜结构相对所述发光部依次错位。
  14. 如权利要求1-12任一项所述的显示器件,其中,由所述第一对称轴沿所述第一方向到一侧边缘的所述透镜结构中,各所述透镜结构相对所述发光部依次错位。
  15. 一种近眼显示设备,其中,包括如权利要求1-14任一项所述的显示 器件。
PCT/CN2021/098924 2020-07-31 2021-06-08 显示器件和近眼显示设备 WO2022022076A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/921,914 US20230180586A1 (en) 2020-07-31 2021-06-08 Display device and near-eye display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010761074.2 2020-07-31
CN202010761074.2A CN111864119B (zh) 2020-07-31 2020-07-31 显示器件和近眼显示设备

Publications (1)

Publication Number Publication Date
WO2022022076A1 true WO2022022076A1 (zh) 2022-02-03

Family

ID=72954036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098924 WO2022022076A1 (zh) 2020-07-31 2021-06-08 显示器件和近眼显示设备

Country Status (3)

Country Link
US (1) US20230180586A1 (zh)
CN (1) CN111864119B (zh)
WO (1) WO2022022076A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111864119B (zh) * 2020-07-31 2024-01-19 京东方科技集团股份有限公司 显示器件和近眼显示设备
CN113161504B (zh) * 2021-04-21 2022-08-19 湖北长江新型显示产业创新中心有限公司 显示面板及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102376742A (zh) * 2010-08-09 2012-03-14 佳能株式会社 有机电致发光显示装置
CN102770795A (zh) * 2009-11-11 2012-11-07 健康与环境慕尼黑德国研究中心赫姆霍茨中心(有限公司) 自动立体显示器
CN110634415A (zh) * 2019-09-25 2019-12-31 京东方科技集团股份有限公司 一种显示装置
CN111175982A (zh) * 2020-02-24 2020-05-19 京东方科技集团股份有限公司 近眼显示装置和可穿戴设备
CN111864119A (zh) * 2020-07-31 2020-10-30 京东方科技集团股份有限公司 显示器件和近眼显示设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013114772A (ja) * 2011-11-25 2013-06-10 Canon Inc 表示装置
CN104678641A (zh) * 2015-03-17 2015-06-03 京东方科技集团股份有限公司 彩膜基板及其制作方法、显示装置
JP7057147B2 (ja) * 2018-01-31 2022-04-19 ソニーセミコンダクタソリューションズ株式会社 発光素子及び表示装置
JP7444070B2 (ja) * 2018-11-30 2024-03-06 ソニーグループ株式会社 表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102770795A (zh) * 2009-11-11 2012-11-07 健康与环境慕尼黑德国研究中心赫姆霍茨中心(有限公司) 自动立体显示器
CN102376742A (zh) * 2010-08-09 2012-03-14 佳能株式会社 有机电致发光显示装置
CN110634415A (zh) * 2019-09-25 2019-12-31 京东方科技集团股份有限公司 一种显示装置
CN111175982A (zh) * 2020-02-24 2020-05-19 京东方科技集团股份有限公司 近眼显示装置和可穿戴设备
CN111864119A (zh) * 2020-07-31 2020-10-30 京东方科技集团股份有限公司 显示器件和近眼显示设备

Also Published As

Publication number Publication date
CN111864119A (zh) 2020-10-30
US20230180586A1 (en) 2023-06-08
CN111864119B (zh) 2024-01-19

Similar Documents

Publication Publication Date Title
WO2020024848A1 (zh) 显示面板和显示装置
CN111584754B (zh) 显示面板及其制备方法、显示装置
WO2022022076A1 (zh) 显示器件和近眼显示设备
WO2021258897A1 (zh) 一种显示面板及其制备方法、显示装置
WO2022052689A1 (zh) 显示面板、显示装置及显示设备
CN111564571B (zh) Oled显示面板及显示装置
WO2019228046A1 (zh) 一种显示面板、其制作方法及显示装置
WO2021184324A1 (zh) 显示装置及其显示方法
US20200279517A1 (en) Organic light emitting diode display pixel array
WO2021004088A1 (zh) 像素排布结构、显示面板和显示装置
CN113328054B (zh) 一种显示面板和显示装置
WO2020150867A1 (zh) 直下式背光源及其制作方法、显示装置
WO2024045987A1 (zh) 显示基板、显示装置及显示基板的制备方法
US11616213B2 (en) Display panel and display device having light extraction structure
WO2024037317A1 (zh) 显示面板和显示装置
CN114361365B (zh) 一种显示面板和显示装置
CN117915691A (zh) 一种显示面板及显示装置
CN220326165U (zh) 一种显示基板及显示屏
WO2024000300A1 (zh) 显示面板及显示装置
CN218957007U (zh) 一种微显示光引擎和投影机
WO2023206147A1 (zh) 显示面板、显示装置
US20240032402A1 (en) Display panel and display apparatus
WO2022227025A1 (zh) 双栅线阵列基板、显示面板
US11656400B2 (en) Backlight module and electronic device
TWI815661B (zh) 電子裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21851303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21851303

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09.08.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21851303

Country of ref document: EP

Kind code of ref document: A1