WO2020150867A1 - 直下式背光源及其制作方法、显示装置 - Google Patents

直下式背光源及其制作方法、显示装置 Download PDF

Info

Publication number
WO2020150867A1
WO2020150867A1 PCT/CN2019/072557 CN2019072557W WO2020150867A1 WO 2020150867 A1 WO2020150867 A1 WO 2020150867A1 CN 2019072557 W CN2019072557 W CN 2019072557W WO 2020150867 A1 WO2020150867 A1 WO 2020150867A1
Authority
WO
WIPO (PCT)
Prior art keywords
pitch
light
emitting unit
area
light emitting
Prior art date
Application number
PCT/CN2019/072557
Other languages
English (en)
French (fr)
Inventor
张宇
耿仕新
谷晓俊
仝广运
周昊
王腾飞
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP19835577.8A priority Critical patent/EP3916476B1/en
Priority to US16/632,676 priority patent/US11256133B2/en
Priority to CN201980000072.7A priority patent/CN111727403B/zh
Priority to PCT/CN2019/072557 priority patent/WO2020150867A1/zh
Publication of WO2020150867A1 publication Critical patent/WO2020150867A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133611Direct backlight including means for improving the brightness uniformity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133613Direct backlight characterized by the sequence of light sources
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133608Direct backlight including particular frames or supporting means

Definitions

  • the embodiments of the present disclosure relate to a direct type backlight source, a manufacturing method thereof, and a display device.
  • LCD liquid crystal displays
  • CCFL Cold Cathode Fluorescent Lamp
  • LED Light Emitting Diode
  • At least one embodiment of the present disclosure provides a direct type backlight, including: a light-emitting unit array, including a plurality of light-emitting units arranged in an array along a first direction and a second direction;
  • the center lines of the light-emitting unit array along the first direction and the second direction are the axis of symmetry and are arranged axisymmetrically;
  • the light-emitting unit array includes a third area in the first direction, from the first edge to the second
  • the three areas further include a first area and a second area in sequence, wherein the center line along the second direction is the axis of symmetry of the third area;
  • the light-emitting unit array includes a first area in the second direction
  • the sixth area, from the second edge to the sixth area further includes a fourth area and a fifth area in sequence, wherein the center line along the first direction is the axis of symmetry of the sixth area; the first area ,
  • the fourth area, the The pitches of the light emitting units adjacent in the second direction in the fifth area and the sixth area are a fourth pitch, a fifth pitch, and a sixth pitch, respectively; the second pitch is larger than the The first pitch and the third pitch, and the fifth pitch is larger than the fourth pitch and the sixth pitch, respectively.
  • the third pitch is larger than the first pitch
  • the sixth pitch is larger than the fourth pitch
  • the ratio of the first pitch, the second pitch, and the third pitch is proportional to the fourth pitch, the fifth pitch and the The proportions of the three of the sixth spacing are equal.
  • the second pitch and the fifth pitch are equal.
  • the light emitting unit includes a light emitting diode.
  • the light emitting unit further includes a secondary optical lens provided on the light emitting diode, and the secondary optical lens is configured to enlarge the light emitting unit The range of light-emitting angles.
  • the light emitting angle of the light emitting unit ranges from 75° to 85°.
  • the ratio of the first pitch, the second pitch, and the third pitch is 1:1.3:1.2
  • the fourth pitch is 1:1.3:1.2.
  • the direct type backlight provided by an embodiment of the present disclosure further includes a film structure arranged opposite to the light-emitting unit array, and the film structure includes a diffuser, a brightness enhancement film, and a diffuser; wherein the diffuser
  • the plate is arranged on the light-emitting side of the light-emitting unit array
  • the brightness enhancement film is arranged on the side of the diffuser plate away from the light-emitting unit array
  • the diffusion sheet is arranged on the brightness enhancement film away from the diffuser.
  • the distance from the light-emitting surface of the light-emitting unit to the diffuser is in the range of 30-35mm, and the second pitch is in the range of 120-150mm.
  • the range of the fifth distance is 120-150mm.
  • the distance from the light emitting surface of the light emitting unit to the diffuser is in the range of 25-30mm, and the second pitch is in the range of 120-130mm.
  • the range of the fifth pitch is 120-130mm.
  • the distance from the light emitting surface of the light emitting unit to the diffuser is in the range of 20-25mm, and the second pitch is in the range of 90-105mm.
  • the range of the fifth pitch is 90-105mm.
  • the direct type backlight provided by an embodiment of the present disclosure further includes a back plate and a reflective sheet attached to the back plate; wherein the side of the back plate attached to the reflective sheet includes The plurality of grooves extending in the first direction, the array of light-emitting units are arranged in the plurality of grooves; the reflective sheet includes a plurality of notches corresponding to the plurality of light-emitting units one-to-one, the plurality The light emitting body of the light emitting unit is exposed from the multiple notches.
  • the edges of the back plate are parallel to the first direction and the second direction, respectively; the edges of the back plate parallel to the second direction reach all the edges.
  • the distance of the light emitting unit array is greater than or equal to half of the first pitch and less than or equal to half of the second pitch; the distance from the edge of the back plate parallel to the first direction to the light emitting unit array is greater than Or equal to half of the fourth interval and less than or equal to half of the fifth interval.
  • the light-emitting unit array further includes a seventh area in the second direction, and the seventh area is located in the fifth area and the sixth area. Between regions; the distance between adjacent light emitting units in the second direction in the seventh region is a seventh distance, and the seventh distance is within 7% of the fifth distance.
  • At least one embodiment of the present disclosure further provides a display device including the direct type backlight provided by any embodiment of the present disclosure.
  • At least one embodiment of the present disclosure also provides a manufacturing method corresponding to the direct-lit backlight provided by the embodiments of the present disclosure, including: obtaining the point light field distribution of the light-emitting unit; according to the height of the target optical cavity and the preset spacing, The point light field distributions of the multiple light emitting units of the light emitting unit array are superimposed to obtain the surface light field distribution of the light emitting unit array, and the light flux ratio between the darkest point and the brightest point in the surface light field distribution is calculated If the luminous flux ratio is less than the target ratio, the preset spacing is adjusted, and the multiple light-emitting units of the light-emitting unit array are adjusted according to the height of the target optical cavity and the adjusted preset spacing The point light field distribution is superimposed to obtain the surface light field distribution of the light-emitting unit array, and calculate the light flux ratio between the darkest point and the brightest point in the surface light field distribution; if If the luminous flux ratio is greater than or equal to the target ratio, the preset distance is determined
  • the preset spacing includes six initial values of spacing corresponding to the first to sixth spacings, and adjusting the preset spacing includes adjusting the six spacings. At least one of the initial values of the spacing is adjusted.
  • the target ratio is 0.85-0.95.
  • the manufacturing method provided by an embodiment of the present disclosure further includes: arranging the multiple light-emitting units according to the target pitch.
  • Figure 1A is a schematic cross-sectional view of a direct backlight structure
  • FIG. 1B is a schematic plan view of a light-emitting unit array corresponding to the direct backlight structure shown in FIG. 1A;
  • FIG. 2 is a schematic plan view of a light-emitting unit array of a direct-lit backlight provided by some embodiments of the present disclosure
  • 3A is a schematic structural diagram of a light-emitting unit in a direct-lit backlight provided by some embodiments of the present disclosure
  • 3B is a schematic structural diagram of a light-emitting unit in another direct-lit backlight provided by some embodiments of the present disclosure
  • 3C is a schematic structural diagram of a film structure in a direct type backlight provided by some embodiments of the present disclosure
  • FIG. 4 is a schematic structural diagram of a direct type backlight provided by some embodiments of the present disclosure.
  • FIG. 5 is a schematic plan view of another light-emitting unit array of a direct type backlight provided by some embodiments of the present disclosure
  • FIG. 6 is a schematic structural diagram of a display device provided by some embodiments of the present disclosure.
  • FIG. 7 is a schematic flowchart of a manufacturing method of a direct type backlight provided by some embodiments of the present disclosure.
  • Backlight sources can be divided into two types, edge-type backlight sources and direct-type backlight sources, according to the incident position of the light source.
  • the LED light bar is set on one side of the display panel, and the light guide plate converts the light emitted by the line light source in the side direction into the light from the front of the display panel (that is, the side that displays the image) through the scattering of the light guide particles.
  • Eject that is, convert the linear light source into a surface light source
  • optical films such as diffusion film and brightness enhancement film convert the surface light source into a uniform backlight source with a certain divergence angle that can be used as a display panel backlight.
  • the LED array is directly arranged on the back of the display panel, and optical films such as diffusion film and brightness enhancement film are also required to convert the light emitted by the LED array into a backlight with uniform brightness and chromaticity.
  • the side-type LED backlight has a small thickness and mature technology, which is suitable for small and medium-sized LCD screens, such as smart phones, tablet computers, and electronic photo frames.
  • the ultra-thin performance of the direct-lit LED backlight is slightly inferior, but it is not limited by the screen size, and is particularly suitable for super-large screens, such as LCD TVs.
  • FIG. 1A is a schematic cross-sectional view of a direct-lit backlight structure
  • FIG. 1B is a plan schematic view of a light-emitting unit array corresponding to the direct-lit backlight structure shown in FIG. 1A.
  • the direct type backlight source 10 includes a backplane 100 and a film frame 200.
  • the back plate 100 and the membrane frame 200 are arranged oppositely, and a plurality of light emitting units 150 are arranged on the surface of the back plate 100 close to the membrane frame 200.
  • the backplane 100 may include a circuit board, such as a printed circuit board.
  • the light-emitting unit may include an LED, and may also include a secondary optical lens provided on the LED to control the light output energy and spatial distribution properties of the light emitted by the LED.
  • the secondary optical lens can be used to increase the spatial solid angle of the light field emitted by the LED, where the light field refers to the collection of light emitted by the light emitting unit 150.
  • the membrane structure 200 may include a diffuser plate, a brightness enhancement film, and a diffuser sheet.
  • a plurality of light emitting units 150 are arranged in an array along a first direction and a second direction to form a light emitting unit array.
  • the first direction and the second direction are perpendicular to each other.
  • the distance between two adjacent light-emitting units 150 is a fixed value L1; in the second direction, the distance between two adjacent light-emitting units 150 is a fixed value L2; that is, in the direct mode
  • a plurality of light emitting units 150 are evenly arranged at equal intervals.
  • L1 may be equal to L2.
  • the brightness of each area A on the film structure 200 depends on the superposition of the light field emitted by the light emitting unit 150 in and around the area B on the circuit board opposite to the area A in the area A. Since the light-emitting unit 150 is a point light source, the brightness distribution of the light field emitted by it decays quickly as the distance increases. Therefore, the number of light-emitting units participating in the above-mentioned light field superposition is limited.
  • area A When area A is the middle area, the light field received by area A is fully superimposed; when area A is the edge area (excluding the four corner areas), the number of light-emitting units that contribute to the light field received by area A It is reduced by about half; when area A is a corner area, the number of light-emitting units that contribute to the light field received by area A is further reduced. Therefore, for the display screen adopting the direct-lit backlight 10, the brightness of the edge area and the four corner areas of the display screen is obviously lower than that of the middle area of the display screen.
  • the brightness uniformity can be improved by simultaneously reducing the pitch of the light-emitting unit (for example, the above-mentioned L1 and L2) and the optical cavity height H, it is usually at the expense of increasing backlight power consumption and sacrificing the thickness of the liquid crystal display.
  • the height H of the optical cavity is the distance from the light-emitting surface of the light-emitting unit 150 to the film structure 200.
  • At least one embodiment of the present disclosure provides a direct type backlight, including: a light-emitting unit array, including a plurality of light-emitting units arrayed in a first direction and a second direction.
  • the plurality of light-emitting units are arranged in axisymmetrical arrangement with the centerline of the light-emitting unit array along the first direction and the second direction as the symmetry axis;
  • the light-emitting unit array includes a third area in the first direction, from the first edge to the third area It also includes a first area and a second area in sequence, wherein the center line along the second direction is the axis of symmetry of the third area;
  • the light emitting unit array includes a sixth area in the second direction, from the second edge to the sixth area.
  • the regions further include a fourth region and a fifth region in sequence, wherein the center line along the first direction is the symmetry axis of the sixth region; the first region, the second region and the third region are adjacent in the first direction
  • the pitches of the light-emitting units are the first pitch, the second pitch, and the third pitch, respectively, and the pitches of the light-emitting units adjacent in the second direction in the fourth, fifth, and sixth regions are the fourth pitch and the first pitch, respectively.
  • Some embodiments of the present disclosure also provide a manufacturing method and a display device corresponding to the above-mentioned direct type backlight.
  • the direct type backlight provided by the embodiment of the present disclosure can effectively improve the display device adopting the direct type backlight by arranging the light emitting units in the first direction and the second direction according to the trend of "dense-sparse-dense".
  • the uniformity of brightness and chromaticity effectively reduces the phenomenon of low brightness on the display edges and corners of the display device.
  • the direct type backlight 20 includes a light-emitting unit array
  • the light-emitting unit array includes a plurality of light-emitting units 150 arranged in an array along a first direction and a second direction.
  • the light-emitting unit array is arranged on the backplane 100.
  • the plurality of light-emitting units 150 are respectively arranged axisymmetrically with the centerline 122 along the first direction and the centerline 121 along the second direction of the light-emitting unit array as symmetry axes.
  • the light-emitting unit array includes a third area D3 in the first direction, and further includes a first area D1 and a second area D2 from the first edge E1 to the third area D3, wherein the center line 121 along the second direction Is the axis of symmetry of the third area D3; the light-emitting unit array includes a sixth area D6 in the second direction, and further includes a fourth area D4 and a fifth area D5 from the second edge E2 to the sixth area D6, wherein , The center line 122 along the first direction is the symmetry axis of the sixth region D6.
  • the distances between the light emitting units 150 adjacent in the first direction in the first area D1, the second area D2, and the third area D3 are a first distance L11, a second distance L12, and a third distance L13, respectively.
  • the fourth area D4 The pitches of the light emitting units 150 adjacent to each other in the second direction in the fifth area D5 and the sixth area D6 are a fourth pitch L21, a fifth pitch L22, and a sixth pitch L23, respectively.
  • the second distance L12 is respectively greater than the first distance L11 and the third distance L13
  • the fifth distance L22 is respectively greater than the fourth distance L21 and the sixth distance L23.
  • the light emitting unit 150 is based on "dense-sparse-dense" in both the first direction and the second direction (the smaller the pitch, the denser; the larger the pitch, the sparser)
  • the trends are arranged so as to effectively improve the brightness and chromaticity uniformity of the display device adopting the direct-lit backlight 20, and effectively reduce the phenomenon of low brightness of the display edge and four corners of the display device.
  • the light-emitting unit located on the boundary line of any one of the first area D1 to the sixth area D6 is regarded as being located in any one of the areas.
  • a plurality of light-emitting units located on the boundary line between the first area D1 and the second area D2 (the boundary line is both the boundary line of the first area D1 and the boundary line of the second area D2) , It is deemed to be located in both the first area D1 and the second area D2.
  • the division of the attribution areas of the multiple light-emitting units located on the other boundary lines of the first area D1 to the sixth area D6 is the same as this, and will not be repeated here.
  • the number of repetitions of the corresponding pitch (L11-L13, L21-L23) in each region is illustrative. The disclosure does not limit this, as long as the brightness and chromaticity uniformity of the display device using the direct-lit backlight 20 meet the requirements.
  • the third pitch L13 is larger than the first pitch L11
  • the sixth pitch L23 is larger than the fourth pitch L21. Since the first pitch L11 and the fourth pitch L21 both correspond to the pitch of the light-emitting units in the edge area, the light-emitting units 150 are densely arranged in the edge area, which can effectively reduce the display edges and corners of the display device using the direct-lit backlight. The phenomenon of low brightness.
  • the ratio of the first pitch L11, the second pitch L12, and the third pitch L13 to the fourth pitch L21, the fifth pitch L22, and the sixth pitch is equal. Since the light-emitting unit 150 is a point light source, the light field emitted by the light-emitting unit 150 is spatially symmetric. Therefore, the arrangement of the light-emitting unit array in the first direction and the second direction may be similar or the same.
  • the second pitch L12 and the fifth pitch L22 are equal, so that the first pitch L11 and the fourth pitch L21 are also equal, and the third pitch L13 and the sixth pitch L23 are also equal. equal. It should be noted that in the present disclosure, equality includes strict equality, and also includes approximate equality within 3%.
  • FIG. 3A is a schematic structural diagram of a light-emitting unit in a direct type backlight according to some embodiments of the present disclosure.
  • the light-emitting unit 150 includes a light-emitting diode 151.
  • the light emitted by the light emitting diode is white light.
  • the light emitting unit 150 further includes a secondary optical lens 152 disposed on the light emitting diode 151, and the secondary optical lens 152 is configured to enlarge the light emitting unit The range of 150 luminous angle EA.
  • FIG. 3B is a schematic structural diagram of a light-emitting unit in another direct type backlight provided by some embodiments of the present disclosure. Compared with FIG. 3A, in FIG. 3B, the light emitting unit 150 does not include the secondary optical lens 152. In FIG.
  • the secondary optical lens 152 can refract the light emitted by the light-emitting diode 151, the light field emitted by the light-emitting unit 150 has a larger spatial solid angle, that is, the secondary optical lens 152 can enlarge the light-emitting unit.
  • the range of 150 luminous angle EA It should be noted that, as shown in FIGS. 3A and 3B, in the present disclosure, the light emitting angle EA of the light emitting unit 150 is half of the spatial solid angle of the light field emitted by the light emitting unit 150.
  • the secondary optical lens 152 can also make the energy distribution of the light field emitted by the light-emitting unit 150 more uniform, thereby improving the brightness uniformity.
  • the secondary optical lens 152 in FIG. 3A is schematic.
  • the structure and size of the secondary optical lens can refer to the commonly used secondary optical lens manufacturing technology. This disclosure does not limit this, as long as it can be enlarged.
  • the light-emitting angle range of the light-emitting unit can be improved to improve the brightness uniformity.
  • the light emitting unit 150 only includes the light emitting diode 151, and the light emitting angle of the light emitting diode 151 does not exceed, for example, 60°, that is, the light emitting angle of the light emitting unit does not exceed 60°.
  • the light-emitting unit 150 includes not only the light-emitting diode 151, but also the secondary optical lens 152, even if the light-emitting angle of the light-emitting diode 151 does not exceed, for example, 60°. Under the action of 152, the light-emitting angle range of the light-emitting unit 150 can be increased to, for example, 75°-85°.
  • the light emitting angle of the light emitting unit 150 ranges from 75° to 85°.
  • the ratio of the first pitch L11, the second pitch L12, and the third pitch L13 is 1. :1.3:1.2
  • the ratio of the fourth pitch L21, the fifth pitch L22 and the sixth pitch L23 is 1:1.3:1.2.
  • the direct-lit backlight provided by some examples further includes a film frame 200 arranged opposite to the light-emitting unit array.
  • 3C is a schematic structural diagram of a film structure in a direct type backlight provided by some embodiments of the present disclosure.
  • the film structure 200 includes a diffuser 210, a brightness enhancement film 220 and a diffuser 230.
  • the diffusion plate 210 is arranged on the light-emitting side of the light-emitting unit array, the brightness enhancement film 220 is arranged on the side of the diffusion plate 210 away from the light-emitting unit array, and the diffusion sheet 230 is arranged on the side of the brightness enhancement film 220 away from the diffusion plate 210.
  • the diffuser 210, the brightness enhancement film 220, and the diffuser 230 can all refer to common manufacturing techniques or directly adopt mature products available on the market, which is not limited in the present disclosure.
  • the membrane structure 200 shown in FIG. 3C is schematic, and the present disclosure includes but is not limited to this.
  • the distance between the light-emitting surface of the light-emitting unit and the diffuser ie, the height of the optical cavity
  • the spacing of the light-emitting unit can be adjusted synchronously to improve the efficiency of the direct-lit backlight.
  • the brightness and chromaticity uniformity of the display device can be adjusted synchronously to improve the efficiency of the direct-lit backlight.
  • the distance from the light emitting surface of the light emitting unit to the diffuser is in the range of 30-35mm
  • the second pitch L12 is in the range of 120-150mm
  • the fifth pitch L22 is in the range of 120-150mm.
  • the direct type backlight source can provide a backlight for a large-size liquid crystal display panel.
  • the size of the liquid crystal display panel includes but is not limited to 46 inches, 49 inches, 55 inches, and 65 inches.
  • the distance from the light emitting surface of the light emitting unit to the diffuser is in the range of 25-30mm
  • the second pitch L12 is in the range of 120-130mm
  • the fifth pitch L22 is in the range of 120-130mm.
  • the direct type backlight source can provide a backlight for a large-size liquid crystal display panel.
  • the size of the liquid crystal display panel includes but is not limited to 46 inches, 49 inches, 55 inches, and 65 inches.
  • the distance from the light emitting surface of the light emitting unit to the diffuser is in the range of 20-25 mm
  • the second pitch L12 is in the range of 90-105 mm
  • the fifth pitch L22 is in the range of 90-105 mm.
  • the direct type backlight source can provide a backlight for a large-size liquid crystal display panel.
  • the size of the liquid crystal display panel includes but is not limited to 46 inches, 49 inches, 55 inches, and 65 inches.
  • the first distance L11 and the third distance L13 may be based on the ratio of the first distance L11, the second distance L12, and the third distance L13 (for example, 1:1.3: 1.2) Obtain;
  • the fourth distance L21 and the sixth distance L23 can be based on the ratio of the fourth distance L21, the fifth distance L22, and the sixth distance L23 (for example, 1: 1.3:1.2) Obtained.
  • FIG. 4 is a schematic structural diagram of a direct type backlight provided by some embodiments of the disclosure.
  • the direct-lit backlight provided by some examples further includes a back plate 100 and a reflective sheet 110 attached to the back plate 100.
  • the side of the back plate 100 where the reflective sheet 110 is attached includes a plurality of grooves extending along the first direction, and the light emitting unit array is arranged in the plurality of grooves, that is, each light emitting unit 150 is arranged in one of the grooves.
  • the reflective sheet 110 includes a plurality of notches corresponding to the multiple light-emitting units 150 one-to-one, and the light-emitting bodies of the multiple light-emitting units 150 (that is, the cone of the emitted light field) are exposed from the multiple notches, that is, the reflective sheet 110 does not The light emitted by the light emitting unit 150 is blocked. It should be noted that the arrangement of the reflective sheet 110 and the light emitting unit 150 on the back plate 100 shown in FIG. 4 is illustrative, and the present disclosure includes but is not limited to this.
  • the light-emitting unit is arranged on a plurality of light bars extending in a first direction; the plurality of light bars are arranged on a back plate, for example, the back plate includes a plurality of grooves extending in the first direction , Each groove is provided with a light bar; the reflective sheet covers the back plate, and the reflective sheet includes a plurality of notches to expose the multiple light bars without blocking the light emitted by the light-emitting unit.
  • the edges of the backplane 100 are parallel to the first direction and the second direction, for example, the first edge E1 of the backplane 100 is parallel to the second direction.
  • the second edge E2 is parallel to the first direction.
  • the distance from the edge of the backplane 100 parallel to the second direction (ie, the first edge E1) to the light emitting unit array is greater than or equal to half of the first interval L11 and less than or equal to half of the second interval L12; the backplane 100 is parallel to the first
  • the distance from the edge of the direction (ie, the second edge E2) to the light emitting unit array is greater than or equal to half of the fourth interval L21 and less than or equal to half of the fifth interval L22.
  • the distance from the first edge E1 and the second edge E2 of the backplane 100 to the light emitting unit array refers to the distance between the first edge E1 and the second edge E2 and the light emitting unit closest to the first edge E1, respectively.
  • the distance from the light emitting surface of the light emitting unit to the diffuser and the respective values of the second distance L12 and the fifth distance L22 are selected reasonably, and then according to the first distance L11, the second distance L12, and the The ratio of the third distance L13 to the ratio of the fourth distance L21, the fifth distance L22, and the sixth distance L23 determines the values of the first distance L11, the third distance L13, the fourth distance L21, and the sixth distance L23 Finally, the number of repetitions for each pitch is reasonably determined, so that the distance from the first edge E1 of the backplane 100 to the light-emitting unit array is greater than or equal to half of the first pitch L11 and less than or equal to half of the second pitch L12, and The distance from the second edge E2 of the board 100 to the light emitting unit array is greater than or equal to half of the fourth interval L21 and less than or equal to half of the fifth interval L22, so as to meet the requirement of brightness uniformity.
  • the distance from the edge E1 and/or E2 of the backplane 100 to the light-emitting unit array cannot be achieved through the above process.
  • an additional area can be added accordingly in the first direction and/or the second direction, and the distance between adjacent light-emitting units in this area is different from the distance between adjacent light-emitting units in other areas in the same direction Therefore, the distance from the edge E1 and/or E2 of the backplane 100 to the light-emitting unit array can meet the above requirements.
  • FIG. 5 is a schematic plan view of another light emitting unit array of a direct type backlight provided by some embodiments of the present disclosure.
  • the light emitting unit array of the direct type backlight shown in FIG. 5 is different from the light emitting unit array of the direct type backlight shown in FIG. 2 in that: in the direct type backlight 20 shown in FIG. 5, the light emitting unit array is
  • the second direction also includes a seventh area D7.
  • the seventh area D7 may be located between the fifth area D5 and the sixth area D6, which is not limited in the present disclosure.
  • the pitch between adjacent light-emitting units in the second direction is a seventh pitch L24.
  • the seventh pitch L24 may be within 7% of the fifth pitch L22, so that the light-emitting units 150 are still arranged in the second direction according to the trend of "dense-sparse-dense".
  • the embodiments of the present disclosure do not limit the specific values that fluctuate up and down, as long as the requirements of brightness uniformity are met.
  • the other settings of the light-emitting unit array of the direct-lit backlight shown in FIG. 5 are basically the same as those of the light-emitting unit array of the direct-lit backlight shown in FIG. The description of the direct backlight source will not be repeated here.
  • the light-emitting unit array may further include an eighth area in the first direction, the eighth area is located between the second area and the third area, and the eighth area is in the first direction.
  • the distance between the upwardly adjacent light-emitting units is an eighth distance, and the eighth distance is within 7% of the second distance, so that the light-emitting units are still arranged in the first direction according to the trend of "dense-sparse-dense" .
  • the brightness and chromaticity uniformity of the backlight provided by the light-emitting unit array of the direct-lit backlight provided by the embodiments of the present disclosure can be verified by combining theoretical calculations and experiments.
  • the verification method and process can refer to the present disclosure below.
  • the manufacturing method of the direct type backlight provided in the article For example, the point light field distribution of the light-emitting unit can be obtained through experimental measurement, and then based on the spacing parameters of the light-emitting unit array in the above embodiment, the surface light field distribution of the light-emitting unit array is calculated, and then the darkest point in the surface light field distribution is calculated.
  • the ratio of the luminous flux to the brightest spot For example, the light flux ratio of the darkest point and the brightest point of the direct-lit backlight provided by the embodiment of the present disclosure can reach, for example, 0.85 or more, such as 0.9 or more, for example, 0.95 or more.
  • FIG. 6 is a schematic structural diagram of a display device provided by some embodiments of the present disclosure.
  • the display device 1 includes the aforementioned direct-lit backlight 20.
  • the display device 1 may further include a display panel 25, for example, the display panel 25 may be a liquid crystal display panel.
  • the non-display side of the liquid crystal display panel 25 is opposite to the light emitting side of the direct-type backlight 20, so that the direct-type backlight 20 can provide backlight for the liquid crystal display panel 25.
  • the display device 1 in this embodiment may be any product or component with a display function, such as a display or a liquid crystal television, which is not limited in the embodiment of the present disclosure.
  • a display or a liquid crystal television which is not limited in the embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart of a manufacturing method of a direct type backlight provided by some embodiments of the present disclosure. As shown in Figure 7, the manufacturing method may include the following steps:
  • Step S110 Obtain the point light field distribution of the light-emitting unit
  • Step S120 According to the height of the target optical cavity and the preset spacing, superimpose the point light field distributions of the multiple light emitting units of the light emitting unit array to obtain the surface light field distribution of the light emitting unit array, and calculate the darkest point in the surface light field distribution The ratio of luminous flux to the brightest spot;
  • Step S130 If the luminous flux ratio is less than the target ratio, the preset spacing is adjusted, and the spot light field distributions of the multiple light-emitting units of the light-emitting unit array are superimposed according to the height of the target optical cavity and the adjusted preset spacing to obtain light emission
  • the surface light field distribution of the unit array is calculated, and the luminous flux ratio between the darkest point and the brightest point in the surface light field distribution is calculated; if the luminous flux ratio is greater than or equal to the target ratio, the preset interval is determined as the target interval.
  • the point light field distribution of the light-emitting unit can be obtained through experimental measurement or theoretical calculation.
  • the light-emitting unit includes a light-emitting diode and a secondary optical lens. Based on the light-emitting angle of the light-emitting diode, combined with the refractive index and surface structure of the secondary optical lens, the light-emitting angle of the light-emitting unit can be calculated according to Fresnel's law. .
  • the point light field distribution of the light-emitting unit can be measured by changing the relative position of the detection area of the photodetector and the light-emitting unit during the experimental measurement process.
  • the preset spacing in step S120 includes six initial spacing values corresponding to the first to sixth spacings.
  • the six initial spacing values may be set to the same value, or may be Set according to a certain ratio based on experience.
  • the ratio of the first, second, and third spacing to the fourth, fifth, and sixth spacing is 1:1.3:1.2. Set up.
  • adjusting the preset distance in step S130 includes adjusting at least one of the six initial values of the distance.
  • each pitch included in the preset pitch is variable, and iterative adjustments are continuously performed in the process of the manufacturing method until the brightness uniformity of the direct-lit backlight reaches the preset Requirement (that is, the ratio of the luminous flux between the darkest point and the brightest point is greater than or equal to the target ratio).
  • the target ratio can be set to 0.85-0.95. It should be noted that the larger the value of the target ratio is set, the more the preset pitch needs to be adjusted iteratively in principle, the more time it takes, and the higher the brightness uniformity of the resulting direct-lit backlight will be.
  • the manufacturing method provided by some examples further includes step S140: arranging a plurality of light-emitting units according to the target pitch.
  • a plurality of light emitting units may be arranged on the backplane.
  • the manufacturing method provided by some examples further includes: manufacturing a complete direct-lit backlight based on the backplane obtained in step 140, for example, by setting a reflective sheet and a film structure, etc.

Abstract

一种直下式背光源(20)及其制作方法、显示装置。该直下式背光源(20)包括:发光单元阵列,包括在第一方向和第二方向上均呈轴对称排列的多个发光单元(150);发光单元阵列在第一方向上包括第三区域(D3),从第一边缘(E1)到第三区域(D3)之间还依次包括第一区域(D1)和第二区域(D2);在第二方向上包括第六区域(D6),从第二边缘(E2)到第六区域(D6)之间还依次包括第四区域(D4)和第五区域(D5);第一区域(D1)、第二区域(D2)和第三区域(D3)中在第一方向上相邻的发光单元(150)的间距分别为第一间距(L11)、第二间距(L12)和第三间距(L13),第四区域(D4)、第五区域(D5)和第六区域(D6)中在第二方向上相邻的发光单元(150)的间距分别为第四间距(L21)、第五间距(L22)和第六间距(L23);第二间距(L12)分别大于第一间距(L11)和第三间距(L13),第五间距(L22)分别大于第四间距(L21)和第六间距(L23)。

Description

直下式背光源及其制作方法、显示装置 技术领域
本公开的实施例涉及一种直下式背光源及其制作方法、显示装置。
背景技术
近年来,随着消费电子器件的蓬勃发展,各个尺寸的显示设备的市场需求越来越大,其中,液晶显示器(Liquid Crystal Display,LCD)以轻薄、低成本、高画质等多种优势占据了平板显示的重要地位。LCD是一种被动发光装置,需要背光源发出的光线来显示图像内容,常见的背光源包括冷阴极荧光灯管(Cold Cathode Fluorescent Lamp,CCFL)和发光二极管(Light Emitting Diode,LED)等,其中LED以高流明效率、高显色能力、低压驱动、不含易碎部件、不含重金属材料等优点成为背光源的主流技术。
发明内容
本公开至少一个实施例提供一种直下式背光源,包括:发光单元阵列,包括沿第一方向和第二方向阵列排布的多个发光单元;其中,所述多个发光单元分别以所述发光单元阵列的沿所述第一方向和所述第二方向的中心线为对称轴呈轴对称排列;所述发光单元阵列在所述第一方向上包括第三区域,从第一边缘到第三区域之间还依次包括第一区域和第二区域,其中,沿所述第二方向的中心线为所述第三区域的对称轴;所述发光单元阵列在所述第二方向上包括第六区域,从第二边缘到第六区域之间还依次包括第四区域和第五区域,其中,沿所述第一方向的中心线为所述第六区域的对称轴;所述第一区域、所述第二区域和所述第三区域中在所述第一方向上相邻的所述发光单元的间距分别为第一间距、第二间距和第三间距,所述第四区域、所述第五区域和所述第六区域中在所述第二方向上相邻的所述发光单元的间距分别为第四间距、第五间距和第六间距;所述第二间距分别大于所述第一间距和所述第三间距,所述第五间距分别大于所述第四间距和所述第六间距。
例如,在本公开一实施例提供的直下式背光源中,所述第三间距大于 第一间距,所述第六间距大于第四间距。
例如,在本公开一实施例提供的直下式背光源中,所述第一间距、所述第二间距和所述第三间距三者的比例与所述第四间距、所述第五间距和所述第六间距三者的比例相等。
例如,在本公开一实施例提供的直下式背光源中,所述第二间距和所述第五间距相等。
例如,在本公开一实施例提供的直下式背光源中,所述发光单元包括发光二极管。
例如,在本公开一实施例提供的直下式背光源中,所述发光单元还包括设置在所述发光二极管上的二次光学透镜,所述二次光学透镜被配置为增大所述发光单元的发光角度范围。
例如,在本公开一实施例提供的直下式背光源中,所述发光单元的发光角度范围为75°-85°。
例如,在本公开一实施例提供的直下式背光源中,所述第一间距、所述第二间距和所述第三间距三者的比例为1:1.3:1.2,所述第四间距、所述第五间距和所述第六间距三者的比例为1:1.3:1.2。
例如,本公开一实施例提供的直下式背光源,还包括与所述发光单元阵列相对设置的膜材架构,所述膜材架构包括扩散板、增亮膜和扩散片;其中,所述扩散板设置在所述发光单元阵列的出光侧,所述增亮膜设置在所述扩散板的远离所述发光单元阵列的一侧,所述扩散片设置在所述增亮膜的远离所述扩散板的一侧。
例如,在本公开一实施例提供的直下式背光源中,所述发光单元的出光面到所述扩散板的距离范围为30-35mm,所述第二间距的范围为120-150mm,所述第五间距的范围为120-150mm。
例如,在本公开一实施例提供的直下式背光源中,所述发光单元的出光面到所述扩散板的距离范围为25-30mm,所述第二间距的范围为120-130mm,所述第五间距的范围为120-130mm。
例如,在本公开一实施例提供的直下式背光源中,所述发光单元的出光面到所述扩散板的距离范围为20-25mm,所述第二间距的范围为90-105mm,所述第五间距的范围为90-105mm。
例如,本公开一实施例提供的直下式背光源,还包括背板和贴附在所 述背板上的反射片;其中,所述背板的贴附所述反射片的一侧包括沿所述第一方向延伸的多个凹槽,所述发光单元阵列设置在所述多个凹槽中;所述反射片包括与所述多个发光单元一一对应的多个缺口,所述多个发光单元的出光体从所述多个缺口中露出。
例如,在本公开一实施例提供的直下式背光源中,所述背板的边缘分别平行于所述第一方向和所述第二方向;所述背板平行于第二方向的边缘到所述发光单元阵列的距离大于或等于所述第一间距的一半且小于或等于所述第二间距的一半;所述背板平行于所述第一方向的边缘到所述发光单元阵列的距离大于或等于所述第四间距的一半且小于或等于所述第五间距的一半。
例如,在本公开一实施例提供的直下式背光源中,所述发光单元阵列在所述第二方向上还包括第七区域,所述第七区域位于所述第五区域和所述第六区域之间;所述第七区域中在所述第二方向上相邻的所述发光单元的间距为第七间距,所述第七间距为所述第五间距上下浮动7%以内。
本公开至少一实施例还提供一种显示装置,包括本公开任一实施例提供的直下式背光源。
本公开至少一实施例还提供一种对应于本公开实施例提供的直下式背光源的制作方法,包括:获得所述发光单元的点光场分布;根据目标光腔高度和预设间距,对所述发光单元阵列的所述多个发光单元的点光场分布进行叠加,获得所述发光单元阵列的面光场分布,并计算所述面光场分布中最暗点和最亮点的光通量比值;若所述光通量比值小于目标比值,则对所述预设间距进行调整,根据所述目标光腔高度和调整后的所述预设间距,对所述发光单元阵列的所述多个发光单元的所述点光场分布进行叠加,获得所述发光单元阵列的所述面光场分布,并计算所述面光场分布中所述最暗点和所述最亮点的所述光通量比值;若所述光通量比值大于或等于所述目标比值,则将所述预设间距确定为目标间距。
例如,在本公开一实施例提供的制作方法中,所述预设间距包括与所述第一至第六间距对应的六个间距初始值,对所述预设间距进行调整包括对所述六个间距初始值的至少之一进行调整。
例如,在本公开一实施例提供的制作方法中,所述目标比值为0.85-0.95。
例如,本公开一实施例提供的制作方法,还包括:根据所述目标间距布置所述多个发光单元。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1A为一种直下式背光源结构的截面示意图;
图1B为一种对应于图1A所示的直下式背光源结构的发光单元阵列的平面示意图;
图2为本公开一些实施例提供的一种直下式背光源的发光单元阵列的平面示意图;
图3A为本公开一些实施例提供的一种直下式背光源中的发光单元的结构示意图;
图3B为本公开一些实施例提供的另一种直下式背光源中的发光单元的结构示意图;
图3C为本公开一些实施例提供的一种直下式背光源中的膜材架构的结构示意图;
图4为本公开一些实施例提供的一种直下式背光源的结构示意图;
图5为本公开一些实施例提供的另一种直下式背光源的发光单元阵列的平面示意图;
图6为本公开一些实施例提供的一种显示装置的结构示意图;
图7为本公开一些实施例提供的一种直下式背光源的制作方法的示意性流程图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
背光源根据光源入射位置的不同可分为侧入式背光源与直下式背光源两种。对于侧入式背光源,LED灯条被设置在显示面板的一个侧面,导光板通过导光颗粒的散射作用将侧面方向的线光源发出的光转换为从显示面板的正面(即显示图像的一面)射出,即将线光源转换为面光源,扩散膜、增亮膜等光学薄膜将面光源再转换为可用作显示面板背光的均匀的且具有一定发散角度的背光源。对于直下式背光源,LED阵列直接设置在显示面板的背面,同样需要扩散膜、增亮膜等光学薄膜将LED阵列发出的光线转换为亮度、色度均匀性符合要求的背光源。一般而言,侧入式LED背光源的厚度较小,技术成熟,适用于中小尺寸液晶显示屏,如智能手机、平板电脑、电子相框等。直下式LED背光源的超薄性能略逊,但是不受屏幕尺寸限制,特别适合于超大尺寸屏幕,诸如液晶电视等。
图1A为一种直下式背光源结构的截面示意图,图1B为一种对应于图1A所示的直下式背光源结构的发光单元阵列的平面示意图。
如图1A所示,直下式背光源10包括背板100和膜材架构200。背板100和膜材架构200相对设置,在背板100靠近膜材架构200的面上设置有多个发光单元150。例如,背板100可以包括电路板,例如印刷电路板。例如,该发光单元可以包括LED,还可以包括设置在LED上的二次光学透镜,用于控制LED发射的光线的出光能量和空间分布属性。例如,二次光学透镜可以用于增大LED发射的光场的空间立体角度,其中光场是指发光单元150发射的光线的集合。例如,膜材架构200可以包括扩散板、增亮膜和扩散片。
如图1B所示,在直下式背光源10中,多个发光单元150沿第一方向和第二方向阵列排布形成发光单元阵列。例如,第一方向和第二方向互相垂直。在第一方向上,相邻的两个发光单元150的间距均为一个固定值L1;在第二方向上,相邻的两个发光单元150的间距均为一个固定值L2;即在直下式背光源10中,多个发光单元150等间距均匀排列。例如,在一些示例中,L1可以等于L2。
膜材架构200上的每一个区域A的亮度取决于与区域A相对的电路板上的一个区域B内及区域B周围的发光单元150发出的光场在区域A的叠加。由于发光单元150为点光源,其发出的光场的亮度分布随距离的增加而很快衰减,因此,参与上述光场叠加的发光单元的数量是有限的。当区域A为中间区域时,区域A接收到的光场得到了充分叠加;当区域A为边缘区域(不包括四个角落区域)时,对区域A接收到的光场有贡献的发光单元数量减少了大约一半;当区域A为角落区域时,对区域A接收到的光场有贡献的发光单元数量进一步减少了。因此,对于采用直下式背光源10的显示屏,与显示屏的中间区域相比,显示屏的边缘区域和四个角落区域的亮度明显偏低。虽然可以通过同步减小发光单元的间距(例如,上述L1和L2)和光腔高度H的方式来改善亮度均匀性,但是通常以增加背光功耗、牺牲液晶显示器的厚度为代价。需要说明的是,在本公开中,光腔高度H为发光单元150的出光面到膜材架构200的距离。
本公开至少一个实施例提供一种直下式背光源,包括:发光单元阵列,包括沿第一方向和第二方向阵列排布的多个发光单元。多个发光单元分别以发光单元阵列的沿第一方向和第二方向的中心线为对称轴呈轴对称排列;发光单元阵列在第一方向上包括第三区域,从第一边缘到第三区域之间还依次包括第一区域和第二区域,其中,沿第二方向的中心线为第三区域的对称轴;发光单元阵列在第二方向上包括第六区域,从第二边缘到第六区域之间还依次包括第四区域和第五区域,其中,沿第一方向的中心线为第六区域的对称轴;第一区域、第二区域和第三区域中在第一方向上相邻的发光单元的间距分别为第一间距、第二间距和第三间距,第四区域、第五区域和第六区域中在第二方向上相邻的发光单元的间距分别为第四间距、第五间距和第六间距;第二间距分别大于第一间距和第三间距,第五间距分别大于第四间距和第六间距。
本公开的一些实施例还提供对应于上述直下式背光源的制作方法、显示装置。
本公开实施例提供的直下式背光源,通过将发光单元分别在第一方向和第二方向上根据“密—疏—密”的趋势进行排列,可以有效提高采用该直下式背光源的显示装置的亮度、色度均匀性,有效减轻显示装置的显示边缘和四角亮度偏低的现象。
下面结合附图对本公开的几个实施例进行详细说明。需要说明的是,为了保持本公开实施例的说明的清楚和简要,可省略已知功能和已知部(元)件的详细说明。当本公开实施例的任一部(元)件在一个以上的附图中出现时,该部(元)件在每个附图中由相同或类似的参考标号表示。
图2为本公开一些实施例提供的一种直下式背光源的发光单元阵列的平面示意图。如图2所示,该直下式背光源20包括发光单元阵列,该发光单元阵列包括沿第一方向和第二方向阵列排布的多个发光单元150。例如,与图1A所示直下式背光源相同,该发光单元阵列设置在背板100上。该多个发光单元150分别以该发光单元阵列的沿第一方向的中心线122和沿第二方向的中心线121为对称轴呈轴对称排列。该发光单元阵列在第一方向上包括第三区域D3,从第一边缘E1到第三区域D3之间还依次包括第一区域D1和第二区域D2,其中,沿第二方向的中心线121为第三区域D3的对称轴;该发光单元阵列在第二方向上包括第六区域D6,从第二边缘E2到第六区域D6之间还依次包括第四区域D4和第五区域D5,其中,沿第一方向的中心122线为第六区域D6的对称轴。第一区域D1、第二区域D2和第三区域D3中在第一方向上相邻的发光单元150的间距分别为第一间距L11、第二间距L12和第三间距L13,第四区域D4、第五区域D5和第六区域D6在第二方向上相邻的发光单元150的间距分别为第四间距L21、第五间距L22和第六间距L23。其中,第二间距L12分别大于第一间距L11和第三间距L13,第五间距L22分别大于第四间距L21和第六间距L23。因此,在直下式背光源20中,发光单元150在第一方向和第二方向上均是根据“密—疏—密”(间距越小,表示越密;间距越大,表示越疏)的趋势进行排列,从而可以有效提高采用该直下式背光源20的显示装置的亮度、色度均匀性,有效减轻显示装置的显示边缘和四角亮度偏低的现象。
需要说明的是,在本公开的实施例中,位于第一区域D1至第六区域 D6中任一区域的边界线上的发光单元视为位于该任一区域中。例如,如图2所示,位于第一区域D1和第二区域D2的分界线(该分界线既是第一区域D1的边界线,又是第二区域D2的边界线)上的多个发光单元,视为既位于第一区域D1中,又位于第二区域D2中。位于第一区域D1至第六区域D6的其他边界线的多个发光单元归属区域的划分与此类同,在此不再赘述。
需要说明的是,在图2所示的直下式背光源20中,每个区域(即D1-D6)中,相应的间距(L11-L13,L21-L23)重复的次数是示意性的,本公开对此不作限制,只要采用该直下式背光源20的显示装置的亮度、色度均匀性满足要求即可。
例如,在一些示例提供的直下式背光源中,如图2所示,第三间距L13大于第一间距L11,第六间距L23大于第四间距L21。由于第一间距L11和第四间距L21均对应于边缘区域的发光单元的间距,因此在边缘区域将发光单元150进行密排列,可以有效减轻采用该直下式背光源的显示装置的显示边缘和四角亮度偏低的现象。
例如,在一些示例提供的直下式背光源中,如图2所示,第一间距L11、第二间距L12和第三间距L13三者的比例与第四间距L21、第五间距L22和第六间距L23三者的比例相等。由于发光单元150为点光源,其发出的光场在空间上是对称的,因此,发光单元阵列在第一方向上和第二方向上的排列可以是相似或相同的。例如,进一步地,在一些示例提供的直下式背光源中,第二间距L12和第五间距L22相等,从而第一间距L11和第四间距L21也相等,第三间距L13和第六间距L23也相等。需要说明的是,在本公开中,相等包括严格相等,也包括相差3%以内的近似相等。
图3A为本公开一些实施例提供的一种直下式背光源中的发光单元的结构示意图。例如,在一些示例提供的直下式背光源中,如图3A所示,发光单元150包括发光二极管151。例如,在一些示例中,该发光二极管发出的光为白光。
例如,在一些示例提供的直下式背光源中,如图3A所示,发光单元150还包括设置在发光二极管151上的二次光学透镜152,该二次光学透镜152被配置为增大发光单元150的发光角度EA的范围。图3B为本公开一些实施例提供的另一种直下式背光源中的发光单元的结构示意图。与图3A 相比,在图3B中,发光单元150不包括二次光学透镜152。在图3A中,由于二次光学透镜152可以使发光二极管151发射的光线发生折射,从而使发光单元150发射的光场具有更大的空间立体角,即二次光学透镜152可以增大发光单元150的发光角度EA的范围。需要说明的是,如图3A和图3B所示所示,在本公开中,发光单元150的发光角度EA为发光单元150发出的光场的空间立体角的一半。另外,二次光学透镜152还可以使发光单元150发出的光场的能量分布更加均匀,从而可以提高亮度均匀性。
需要说明的是,图3A中的二次光学透镜152是示意性的,二次光学透镜的结构和尺寸可以参考常用的二次光学透镜制作技术,本公开对此不作限制,只要其能增大发光单元的发光角度范围,提高亮度均匀性即可。
例如,在如图3B所示的直下式背光源中,发光单元150仅包括发光二极管151,发光二极管151的发光角度不超过例如60°,即发光单元的发光角度不超过60°。例如,在如图3B所示的直下式背光源中,发光单元150不仅包括发光二极管151,还包括二次光学透镜152,即使发光二极管151的发光角度不超过例如60°,在二次光学透镜152的作用下,发光单元150的发光角度范围可以增大到例如75°-85°。
例如,在一些示例提供的直下式背光源中,发光单元150的发光角度范围为75°-85°,此时,第一间距L11、第二间距L12和第三间距L13三者的比例为1:1.3:1.2,第四间距L21、第五间距L22和第六间距L23三者的比例为1:1.3:1.2。
例如,一些示例提供的直下式背光源,如图3A和图3B所示,还包括与发光单元阵列相对设置的膜材架构200。图3C为本公开一些实施例提供的一种直下式背光源中的膜材架构的结构示意图。如图3C所示,该膜材架构200包括扩散板210、增亮膜220和扩散片230。扩散板210设置在发光单元阵列的出光侧,增亮膜220设置在扩散板210的远离发光单元阵列的一侧,扩散片230设置在增亮膜220的远离扩散板210的一侧。例如,扩散板210、增亮膜220和扩散片230均可以参考常见的制作技术或者直接采用市场上可以购买到的成熟产品,本公开对此不作限制。需要说明的是,图3C所示的膜材架构200是示意性的,本公开包括但不限于此。
在本公开的实施例提供的直下式背光源中,可以通过同步调节发光单 元的出光面到扩散板的距离(即光腔高度)与发光单元的各个间距,以提高采用该直下式背光源的显示装置的亮度、色度均匀性。
例如,在一些示例提供的直下式背光源中,发光单元的出光面到扩散板的距离范围为30-35mm,第二间距L12的范围为120-150mm,第五间距L22的范围为120-150mm。例如,该直下式背光源可以为大尺寸的液晶显示面板提供背光,例如液晶显示面板的尺寸包括但不限于46英寸、49英寸、55英寸、65英寸。
例如,在一些示例提供的直下式背光源中,发光单元的出光面到扩散板的距离范围为25-30mm,第二间距L12的范围为120-130mm,第五间距L22的范围为120-130mm。例如,该直下式背光源可以为大尺寸的液晶显示面板提供背光,例如液晶显示面板的尺寸包括但不限于46英寸、49英寸、55英寸、65英寸。
例如,一些示例提供的直下式背光源中,发光单元的出光面到扩散板的距离范围为20-25mm,第二间距L12的范围为90-105mm,第五间距L22的范围为90-105mm。例如,该直下式背光源可以为大尺寸的液晶显示面板提供背光,例如液晶显示面板的尺寸包括但不限于46英寸、49英寸、55英寸、65英寸。
需要说明的是,在确定了第二间距L12之后,第一间距L11和第三间距L13可以根据第一间距L11、第二间距L12和第三间距L13三者的比例(例如,1:1.3:1.2)得到;同样地,在确定了第五间距L22之后,第四间距L21和第六间距L23可以根据第四间距L21、第五间距L22和第六间距L23三者的比例(例如,1:1.3:1.2)得到。
图4为本公开一些实施例提供的一种直下式背光源的结构示意图。例如,如图4所示,一些示例提供的直下式背光源还包括背板100和贴附在背板100上的反射片110。背板100的贴附反射片110的一侧包括沿第一方向延伸的多个凹槽,发光单元阵列设置在多个凹槽中,即每个发光单元150设置在其中一个凹槽中。反射片110包括与多个发光单元150一一对应的多个缺口,多个发光单元150的出光体(即发射的光场的圆锥体)从该多个缺口中露出,即反射片110不会阻挡发光单元150发出的光线。需要说明的是,图4所示的反射片110和发光单元150在背板100上的设置方式是示意性的,本公开包括但不限于此。例如,在另一些示例中,发光 单元设置在沿第一方向延伸的多根灯条上;该多根灯条设置在背板上,例如,背板包括沿第一方向延伸的多个凹槽,每个凹槽中设置一根灯条;反射片覆盖在背板上,且反射片包括多个缺口以露出该多根灯条,不阻挡发光单元发出的光线。
例如,在一些示例提供的直下式背光源中,如图2所示,背板100的边缘分别平行于第一方向和第二方向,例如,背板100的第一边缘E1平行于第二方向,第二边缘E2平行于第一方向。背板100平行于第二方向的边缘(即第一边缘E1)到发光单元阵列的距离大于或等于第一间距L11的一半且小于或等于第二间距L12的一半;背板100平行于第一方向的边缘(即第二边缘E2)到发光单元阵列的距离大于或等于第四间距L21的一半且小于或等于第五间距L22的一半。由此,可以有效减轻采用该直下式背光源的显示装置的显示边缘和四角亮度偏低的现象。需要说明的是,背板100的第一边缘E1和第二边缘E2到发光单元阵列的距离是分别是指第一边缘E1和第二边缘E2与距第一边缘E1最近的发光单元的距离。
需要说明的是,在一些示例中,通过合理选取发光单元的出光面到扩散板的距离以及第二间距L12和第五间距L22各自的取值,再根据第一间距L11、第二间距L12和第三间距L13三者的比例与第四间距L21、第五间距L22和第六间距L23三者的比例确定第一间距L11、第三间距L13、第四间距L21和第六间距L23的取值,最后合理地确定每个间距的重复次数,可以使得背板100的第一边缘E1到发光单元阵列的距离大于或等于第一间距L11的一半且小于或等于第二间距L12的一半,且背板100的第二边缘E2到发光单元阵列的距离大于或等于第四间距L21的一半且小于或等于第五间距L22的一半,以达到亮度均匀性的要求。然而,在另一些示例中,由于背板100的尺寸(对应于显示装置显示区域的尺寸)的限制,无法通过上述过程使背板100的边缘E1和/或E2到发光单元阵列的距离达到上述要求,此时,可以相应地在第一方向和/或第二方向上额外增加一个区域,该区域中相邻发光单元的间距不同于在同一方向上的其他区域中的相邻发光单元的间距,从而可以使背板100的边缘E1和/或E2到发光单元阵列的距离达到上述要求。
图5为本公开一些实施例提供的另一种直下式背光源的发光单元阵列的平面示意图。图5所示的直下式背光源的发光单元阵列与图2所示的直 下式背光源的发光单元阵列的不同之处在于:在图5所示的直下式背光源20中,发光单元阵列在第二方向上还包括第七区域D7。例如,第七区域D7可以位于第五区域D5和第六区域D6之间,本公开对此不作限制。第七区域D7中,在第二方向上相邻的发光单元的间距为第七间距L24。例如,第七间距L24可以为第五间距L22上下浮动7%以内,从而发光单元150在第二方向上仍然是根据“密—疏—密”的趋势进行排列。需要说明的是,本公开的实施例对上下浮动的具体数值不作限制,只要满足亮度均匀性的要求即可。需要说明的是,图5所示的直下式背光源的发光单元阵列的其他设置与图2所示的直下式背光源的发光单元阵列基本相同,相同之处可以参考上述对于图2所示的直下式背光源的描述,在此不再赘述。
需要说明的是,本领域技术人员应当可以从图5所示的直下式背光源得到启示。例如,在一些示例提供的直下式背光源中,发光单元阵列可以在第一方向上还包括第八区域,第八区域位于第二区域和第三区域之间,第八区域中在第一方向上相邻的发光单元的间距为第八间距,所述第八间距为第二间距上下浮动7%以内,从而发光单元在第一方向上仍然是根据“密—疏—密”的趋势进行排列。
需要说明的是,本公开实施例提供的直下式背光源的发光单元阵列提供的背光的亮度、色度均匀性可以通过结合理论计算和实验进行验证,例如,验证方法和过程可以参考本公开在下文中提供的直下式背光源的制作方法。例如,可以通过实验测量获得发光单元的点光场分布,然后基于上述实施例中的发光单元阵列的各间距参数,计算发光单元阵列的面光场分布,进而计算面光场分布中最暗点和最亮点的光通量比值。例如,本公开实施例提供的直下式背光源的最暗点和最亮点的光通量比值可以达到,例如0.85以上,例如0.9以上,例如0.95以上。
本公开至少一实施例还提供一种显示装置,该显示装置包括本公开上述实施例提供的直下式背光源。图6为本公开一些实施例提供的一种显示装置的结构示意图。例如,如图6所示,该显示装置1包括上述直下式背光源20。例如,如图6所示,该显示装置1还可以包括显示面板25,例如显示面板25可以为液晶显示面板。例如,如图6所示,液晶显示面板25的非显示侧与直下式背光源20的出光侧相对,从而,直下式背光源20可以为液晶显示面板25提供背光。
需要说明的是,本实施例中的显示装置1可以为:显示器、液晶电视等任何具有显示功能的产品或部件,本公开的实施例对此不作限制。本公开的实施例提供的显示装置的技术效果可以参考上述实施例中关于直下式背光源的相应描述,这里不再赘述。
需要说明的是,为表示清楚、简洁,并没有给出该显示装置1的全部结构。为实现显示装置的必要功能,本领域技术人员可以根据具体应用场景进行设置其他未示出的结构,本公开的实施例对此不做限制。
本公开至少一实施例还提供一种对应于本公开上述实施例提供的直下式背光源的制作方法。图7为本公开一些实施例提供的一种直下式背光源的制作方法的示意性流程图。如图7所示,该制作方法可以包括以下步骤:
步骤S110:获得发光单元的点光场分布;
步骤S120:根据目标光腔高度和预设间距,对发光单元阵列的多个发光单元的点光场分布进行叠加,获得发光单元阵列的面光场分布,并计算面光场分布中最暗点和最亮点的光通量比值;
步骤S130:若光通量比值小于目标比值,则对预设间距进行调整,根据目标光腔高度和调整后的预设间距,对发光单元阵列的多个发光单元的点光场分布进行叠加,获得发光单元阵列的面光场分布,并计算面光场分布中最暗点和最亮点的光通量比值;若光通量比值大于或等于所述目标比值,则将预设间距确定为目标间距。
例如,在步骤S110中,可以通过实验测量或者理论计算获得发光单元的点光场分布。例如,在一些示例中,发光单元包括发光二极管和二次光学透镜,可以基于发光二极管的发光角度,结合二次光学透镜的折射率和表面结构,根据菲涅尔定律计算出发光单元的发光角度。例如,在一些示例中,可以在实验测量过程中,通过改变光电探测器的探测区域与发光单元的相对位置,测量发光单元的点光场分布。
例如,在一些示例提供的制作方法中,步骤S120中的预设间距包括与第一至第六间距对应的六个间距初始值,例如,该六个间距初始值可以设置为同一数值,或者可以根据经验按照一定的比例进行设置,例如按照第一间距、第二间距和第三间距三者的比例与第四间距、第五间距和第六间距三者的比例均为1:1.3:1.2进行设置。例如,在一些示例提供的制作方 法中,步骤S130中对预设间距进行调整包括对六个间距初始值的至少之一进行调整。
需要说明的是,预设间距中包括的每个间距的数值均是可变的,且均在该制作方法的进程中不断进行迭代调整,直到该直下式背光源的亮度均匀性达到预设的要求(即最暗点和最亮点的光通量比值大于或等于目标比值)为止。
例如,在一些示例提供的制作方法中,目标比值可以设置为0.85-0.95。需要说明的是,目标比值的数值设置得越大,预设间距需要迭代调整的次数原则上越多,花费的时间也越多,而最终得到的直下式背光源的亮度均匀性会越高。
例如,一些示例提供的制作方法,如图7所示,还包括步骤S140:根据目标间距布置多个发光单元。例如,在步骤140中,多个发光单元可以布置在背板上。例如,一些示例提供的制作方法,还包括:基于步骤140获得的背板,例如通过设置反射片和膜材架构等,制作完整的直下式背光源。
本公开的实施例提供的直下式背光源的制作方法的技术效果可以参考上述实施例中关于直下式背光源20的相应描述,这里不再赘述。
需要说明的是,为表示清楚、简洁,并没有给出直下式背光源的制作方法的全部流程。为实现直下式背光源的必要功能,本领域技术人员可以在本公开实施例提供的制作方法的步骤的基础上增加其他步骤(例如设置反射片、扩散板等),本公开的实施例对此不做限制。
对于本公开,有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种直下式背光源,包括:发光单元阵列,包括沿第一方向和第二方向阵列排布的多个发光单元;其中,
    所述多个发光单元分别以所述发光单元阵列的沿所述第一方向和所述第二方向的中心线为对称轴呈轴对称排列;
    所述发光单元阵列在所述第一方向上包括第三区域,从第一边缘到所述第三区域之间还依次包括第一区域和第二区域,其中,沿所述第二方向的中心线为所述第三区域的对称轴;
    所述发光单元阵列在所述第二方向上包括第六区域,从第二边缘到所述第六区域之间还依次包括第四区域和第五区域,其中,沿所述第一方向的中心线为所述第六区域的对称轴;
    所述第一区域、所述第二区域和所述第三区域中在所述第一方向上相邻的所述发光单元的间距分别为第一间距、第二间距和第三间距,所述第四区域、所述第五区域和所述第六区域中在所述第二方向上相邻的所述发光单元的间距分别为第四间距、第五间距和第六间距;
    所述第二间距分别大于所述第一间距和所述第三间距,所述第五间距分别大于所述第四间距和所述第六间距。
  2. 根据权利要求1所述的直下式背光源,其中,所述第三间距大于第一间距,所述第六间距大于第四间距。
  3. 根据权利要求1或2所述的直下式背光源,其中,所述第一间距、所述第二间距和所述第三间距三者的比例与所述第四间距、所述第五间距和所述第六间距三者的比例相等。
  4. 根据权利要求3所述的直下式背光源,其中,所述第二间距和所述第五间距相等。
  5. 根据权利要求1-4任一项所述的直下式背光源,其中,所述发光单元包括发光二极管。
  6. 根据权利要求5所述的直下式背光源,其中,所述发光单元还包括设置在所述发光二极管上的二次光学透镜,所述二次光学透镜被配置为增大所述发光单元的发光角度范围。
  7. 根据权利要求6所述的直下式背光源,其中,所述发光单元的发 光角度范围为75°-85°。
  8. 根据权利要去7所述的直下式背光源,其中,所述第一间距、所述第二间距和所述第三间距三者的比例为1:1.3:1.2,所述第四间距、所述第五间距和所述第六间距三者的比例为1:1.3:1.2。
  9. 根据权利要求6或7所述的直下式背光源,还包括与所述发光单元阵列相对设置的膜材架构,所述膜材架构包括扩散板、增亮膜和扩散片;其中,
    所述扩散板设置在所述发光单元阵列的出光侧,所述增亮膜设置在所述扩散板的远离所述发光单元阵列的一侧,所述扩散片设置在所述增亮膜的远离所述扩散板的一侧。
  10. 根据权利要求9所述的直下式背光源,其中,所述发光单元的出光面到所述扩散板的距离范围为30-35mm,所述第二间距的范围为120-150mm,所述第五间距的范围为120-150mm。
  11. 根据权利要求9所述的直下式背光源,其中,所述发光单元的出光面到所述扩散板的距离范围为25-30mm,所述第二间距的范围为120-130mm,所述第五间距的范围为120-130mm。
  12. 根据权利要求9所述的直下式背光源,其中,所述发光单元的出光面到所述扩散板的距离范围为20-25mm,所述第二间距的范围为90-105mm,所述第五间距的范围为90-105mm。
  13. 根据权利要求1-12任一项所述的直下式背光源,还包括背板和贴附在所述背板上的反射片;其中,
    所述背板的贴附所述反射片的一侧包括沿所述第一方向延伸的多个凹槽,所述发光单元阵列设置在所述多个凹槽中;
    所述反射片包括与所述多个发光单元一一对应的多个缺口,所述多个发光单元的出光体从所述多个缺口中露出。
  14. 根据权利要求13所述的直下式背光源,其中,所述背板的边缘分别平行于所述第一方向和所述第二方向;
    所述背板平行于第二方向的边缘到所述发光单元阵列的距离大于或等于所述第一间距的一半且小于或等于所述第二间距的一半;所述背板平行于所述第一方向的边缘到所述发光单元阵列的距离大于或等于所述第四间距的一半且小于或等于所述第五间距的一半。
  15. 根据权利要求1-14任一项所述的直下式背光源,其中,所述发光单元阵列在所述第二方向上还包括第七区域,所述第七区域位于所述第五区域和所述第六区域之间;
    所述第七区域中在所述第二方向上相邻的所述发光单元的间距为第七间距,所述第七间距为所述第五间距上下浮动7%以内。
  16. 一种显示装置,包括根据权利要求1-15任一项所述的直下式背光源。
  17. 一种根据权利要求1所述的直下式背光源的制作方法,包括:
    获得所述发光单元的点光场分布;
    根据目标光腔高度和预设间距,对所述发光单元阵列的所述多个发光单元的点光场分布进行叠加,获得所述发光单元阵列的面光场分布,并计算所述面光场分布中最暗点和最亮点的光通量比值;
    若所述光通量比值小于目标比值,则对所述预设间距进行调整,根据所述目标光腔高度和调整后的所述预设间距,对所述发光单元阵列的所述多个发光单元的所述点光场分布进行叠加,获得所述发光单元阵列的所述面光场分布,并计算所述面光场分布中所述最暗点和所述最亮点的所述光通量比值;
    若所述光通量比值大于或等于所述目标比值,则将所述预设间距确定为目标间距。
  18. 根据权利要求17所述的制作方法,其中,所述预设间距包括与所述第一至第六间距对应的六个间距初始值,对所述预设间距进行调整包括对所述六个间距初始值的至少之一进行调整。
  19. 根据权利要求17或18所述的制作方法,其中,所述目标比值为0.85-0.95。
  20. 根据权利要求17-19任一项所述的制作方法,还包括:根据所述目标间距布置所述多个发光单元。
PCT/CN2019/072557 2019-01-21 2019-01-21 直下式背光源及其制作方法、显示装置 WO2020150867A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19835577.8A EP3916476B1 (en) 2019-01-21 2019-01-21 Direct-type backlight source and manufacturing method therefor, and display device
US16/632,676 US11256133B2 (en) 2019-01-21 2019-01-21 Direct-lit backlight source and manufacturing method thereof, display device
CN201980000072.7A CN111727403B (zh) 2019-01-21 2019-01-21 直下式背光源及其制作方法、显示装置
PCT/CN2019/072557 WO2020150867A1 (zh) 2019-01-21 2019-01-21 直下式背光源及其制作方法、显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/072557 WO2020150867A1 (zh) 2019-01-21 2019-01-21 直下式背光源及其制作方法、显示装置

Publications (1)

Publication Number Publication Date
WO2020150867A1 true WO2020150867A1 (zh) 2020-07-30

Family

ID=71735368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072557 WO2020150867A1 (zh) 2019-01-21 2019-01-21 直下式背光源及其制作方法、显示装置

Country Status (4)

Country Link
US (1) US11256133B2 (zh)
EP (1) EP3916476B1 (zh)
CN (1) CN111727403B (zh)
WO (1) WO2020150867A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220120959A1 (en) * 2019-07-08 2022-04-21 Japan Display Inc. Illumination device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114236908A (zh) * 2021-12-16 2022-03-25 深圳市穗晶光电股份有限公司 一种直下式背光模组结构
CN114967229A (zh) * 2022-04-29 2022-08-30 上海天马微电子有限公司 光源面板、直下式背光模组和显示装置
CN115047674B (zh) * 2022-06-14 2023-04-25 惠科股份有限公司 背光模组及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1713055A (zh) * 2005-07-25 2005-12-28 友达光电股份有限公司 直下式背光源
CN202915104U (zh) * 2012-10-31 2013-05-01 南京中电熊猫液晶显示科技有限公司 一种直下式led背光源
CN103104858A (zh) * 2011-11-15 2013-05-15 群康科技(深圳)有限公司 背光模块及显示装置
CN103499072A (zh) * 2013-09-13 2014-01-08 熊猫电子集团有限公司 直下式led液晶电视背光模组灯条布局设置的方法
KR20140128798A (ko) * 2013-04-29 2014-11-06 주식회사 토파즈 백라이트 유닛용 도광판

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI281074B (en) * 2005-06-27 2007-05-11 Au Optronics Corp A direct type backlight
US7229199B2 (en) * 2005-10-21 2007-06-12 Eastman Kodak Company Backlight using surface-emitting light sources
KR20070081840A (ko) * 2006-02-14 2007-08-20 삼성전자주식회사 광 발생 모듈, 이를 갖는 백라이트 어셈블리 및 표시장치
JP2010153257A (ja) * 2008-12-25 2010-07-08 Toshiba Corp バックライトユニットおよびこれを備えた液晶表示装置
CN102459994A (zh) * 2009-06-15 2012-05-16 夏普株式会社 照明装置、显示装置以及电视接收装置
CN101839423B (zh) * 2009-11-02 2013-01-02 西安交通大学 一种提高led背光源亮度均匀性的方法
TWI471650B (zh) * 2011-11-15 2015-02-01 Innocom Tech Shenzhen Co Ltd 背光模組及顯示裝置
CN202419362U (zh) * 2011-12-31 2012-09-05 四川长虹光电有限公司 液晶显示屏直下式背光源结构
KR101282029B1 (ko) * 2013-01-31 2013-07-04 삼성전자주식회사 디스플레이 모듈 및 이를 갖춘 디스플레이 장치
CN103449072A (zh) 2013-09-16 2013-12-18 金陵科技学院 一种家用可分类垃圾桶
KR102444760B1 (ko) * 2015-10-30 2022-09-16 엘지디스플레이 주식회사 디스플레이용 프레임 및 이를 포함하는 디스플레이 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1713055A (zh) * 2005-07-25 2005-12-28 友达光电股份有限公司 直下式背光源
CN103104858A (zh) * 2011-11-15 2013-05-15 群康科技(深圳)有限公司 背光模块及显示装置
CN202915104U (zh) * 2012-10-31 2013-05-01 南京中电熊猫液晶显示科技有限公司 一种直下式led背光源
KR20140128798A (ko) * 2013-04-29 2014-11-06 주식회사 토파즈 백라이트 유닛용 도광판
CN103499072A (zh) * 2013-09-13 2014-01-08 熊猫电子集团有限公司 直下式led液晶电视背光模组灯条布局设置的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220120959A1 (en) * 2019-07-08 2022-04-21 Japan Display Inc. Illumination device
US11714225B2 (en) * 2019-07-08 2023-08-01 Japan Display Inc. Illumination device

Also Published As

Publication number Publication date
US20210223624A1 (en) 2021-07-22
CN111727403B (zh) 2023-11-14
US11256133B2 (en) 2022-02-22
EP3916476A4 (en) 2022-08-31
CN111727403A (zh) 2020-09-29
EP3916476B1 (en) 2023-12-13
EP3916476A1 (en) 2021-12-01

Similar Documents

Publication Publication Date Title
WO2020150867A1 (zh) 直下式背光源及其制作方法、显示装置
CN103486480B (zh) 一种背光模组及显示装置
US10768481B2 (en) Direct type backlight and method of manufacturing the same, and display device
US20070147079A1 (en) Backlight module with multiple light sources
WO2016026181A1 (zh) 彩色液晶显示模组结构及其背光模组
CN203337958U (zh) 背光模组及显示装置
US7553061B2 (en) Side type backlight module
CN109581750B (zh) 一种背光模组及显示装置
KR101408324B1 (ko) 광 확산렌즈
US20130051072A1 (en) Light source device
CN103823271A (zh) 导光板
CN104597553A (zh) 导光板
CN103912846A (zh) 一种背光透镜及其直下式背光模块
US10095063B2 (en) Direct type backlight module and display device
US8964318B2 (en) Prism sheet and display device
US20240103319A1 (en) Diffusion Plate And Backlight Module Having The Diffusion Plate
CN102472845B (zh) 聚光型光学片
CN109358451B (zh) 一种背光模组及其显示装置
CN102588832B (zh) 一种带光扩散组件的背光源模组
US20190049792A1 (en) Light source component, backlight module and liquid crystal display
TWI421583B (zh) Variable angle of the liquid crystal display
CN203745767U (zh) 一种液晶显示器
CN103672615A (zh) 一种用于成像投影系统的背光模组
KR20150069324A (ko) 액정표시장치
TWM553818U (zh) 光學膜片、背光模組和顯示裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19835577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019835577

Country of ref document: EP

Effective date: 20210823