WO2020022791A1 - 신규 히알루론산 가수분해 효소 변이체 및 이를 포함하는 약제학적 조성물 - Google Patents

신규 히알루론산 가수분해 효소 변이체 및 이를 포함하는 약제학적 조성물 Download PDF

Info

Publication number
WO2020022791A1
WO2020022791A1 PCT/KR2019/009215 KR2019009215W WO2020022791A1 WO 2020022791 A1 WO2020022791 A1 WO 2020022791A1 KR 2019009215 W KR2019009215 W KR 2019009215W WO 2020022791 A1 WO2020022791 A1 WO 2020022791A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
variant
fragment
variants
alpha helix
Prior art date
Application number
PCT/KR2019/009215
Other languages
English (en)
French (fr)
Inventor
박순재
정혜신
이승주
유선아
송형남
이창우
Original Assignee
(주)알테오젠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2020500863A priority Critical patent/JP7204729B2/ja
Priority to EP19827585.1A priority patent/EP3636752A4/en
Priority to US16/628,258 priority patent/US20210155913A1/en
Priority to CN201980023392.4A priority patent/CN111971387A/zh
Priority to RU2020130922A priority patent/RU2766680C1/ru
Priority to MX2020009824A priority patent/MX2020009824A/es
Priority to BR112020019041-1A priority patent/BR112020019041A2/pt
Priority to AU2019311658A priority patent/AU2019311658B2/en
Application filed by (주)알테오젠 filed Critical (주)알테오젠
Priority to CA3093885A priority patent/CA3093885A1/en
Priority to KR1020207002955A priority patent/KR102151388B1/ko
Priority to KR1020207024813A priority patent/KR20210023798A/ko
Publication of WO2020022791A1 publication Critical patent/WO2020022791A1/ko
Priority to JP2022211105A priority patent/JP2023052142A/ja
Priority to AU2023200324A priority patent/AU2023200324A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/47Hydrolases (3) acting on glycosyl compounds (3.2), e.g. cellulases, lactases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2474Hyaluronoglucosaminidase (3.2.1.35), i.e. hyaluronidase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01035Hyaluronoglucosaminidase (3.2.1.35), i.e. hyaluronidase
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence

Definitions

  • the present invention relates to a novel human hyaluronidase variant that improves the enzymatic activity and thermal stability of human hyaluronidase, a hyaluronic acid hydrolase, specifically, wild type PH20 having an amino acid sequence of SEQ ID NO: 1, preferably Comprises the substitution of one or more amino acid residues at the site corresponding to the alpha helix and / or linking site of mature wild type PH20 consisting of the amino acid sequences of L36 to S490, optionally the N-terminal and / or C-terminal Hyaluronidase PH20 variants or fragments thereof, some of which have been deleted, and methods for their preparation, and pharmaceutical compositions comprising the same, wherein a portion of the amino acid residues are deleted.
  • Glycosaminoglycans include hyaluronic acid, chondroitin sulfate, dermatan sulfate, heparan sulfate, heparin, and keratin sulfate. .
  • Glycosaminoglycans form a structure in which sugars in the disaccharide form are repeatedly connected. Sugars vary in length from glycosaminoglycans to hundreds to thousands. Among glycosaminoglycans, hyaluronic acid is present in the skin of more than half of the amount present in the body. Hyaluronic acid is the only glycosaminoglycan that is synthesized by hyaluronan synthase present in the cell membrane and is present alone without binding to proteoglycan. Other glycosaminoglycans bind to proteoglycans and have sulfate groups.
  • glucuronic acid and N-acetylglucosamine are linked by ⁇ -1,3 bonds, and these disaccharides are repeated approximately 5,000 times.
  • N-acetylglucosamine and gluconic acid are connected by ⁇ -1,4 bonds.
  • About one third (5 g) of hyaluronic acid in the human body is known to degrade daily.
  • Hyaluronidase is an enzyme that degrades hyaluronic acid located in the extracellular matrix.
  • Six types of hyaluronidase are known to exist in humans (Hyal1, Hyal2, Hyal3, Hyal4, HyalPS1 and PH20 / SPAM1).
  • Hyal1 and Hyal2 are expressed in most tissues, and PH20 / SPAM1 (hereafter PH20) is expressed in the sperm cell membrane and acrosome membrane.
  • PH20 / SPAM1 hereafter PH20
  • HyalPS1 is not expressed as a pseudogene.
  • Hyaluronidase is divided into three types according to the method of cleaving hyaluronic acid.
  • Hyal1 The catalytic amino acid residues of Hyal1 are D129 and E131, and the hyaluronic acid is hydrolyzed by substrate-assisted catalysis.
  • Hyal1 shows optimal activity at acidic pH 3 ⁇ 4 and no enzyme activity above pH 4.5.
  • PH20 shows enzymatic activity in a wide pH range of pH 3-8.
  • Arming et al. Found that the catalytic amino acids of PH20 were D111 and E113 (Arming et al., 1997). Arming et al. Named Leu, the first amino acid of PH20 from which the signal sequence was removed, as 1, so that the catalytic amino acid residues correspond to D146 and E148, respectively, in PH20 included in the signal sequence.
  • Hyaluronidase hydrolyzes hyaluronic acid to reduce the viscosity of hyaluronic acid in the extracellular matrix, thereby increasing the permeability to tissues (skin). Since the subcutaneous part of the skin is neutral with a pH of about 7.0 to 7.5, PH20 is widely used in clinical practice among various types of hyaluronidase (Bookbinder et al., 2006). Examples of clinical use of PH20 in ophthalmic surgery are ophthalmic and anesthetic injection additives, and PH20 is administered in combination with subcutaneous injection of antibody therapy (Bookbinder et al., 2006).
  • hyaluronic acid overexpression in tumor cells it is used to increase the tumor cell accessibility of anticancer drugs by hydrolyzing the hyaluronic acid of tumor cell extracellular matrix with PH20. It is also used to promote resorption of excess body fluids and blood in tissues.
  • PH20 was first identified in sperm of guinea pigs by Lathrop et al., And is known to be expressed in many species of sperm. Human PH20 gene was cloned by Lin et al. And Gmachl et al. Human PH20 consists of 509 amino acid residues having a sequence according to SEQ ID NO: 1, with a 60% amino acid sequence identical to PH20 in guinea pigs.
  • the human PH20 enzyme is encoded from the SPAM1 (sperm adhesion molecule-1) gene and is present in the form of the Ser490 of PH20 combined with glycosylphosphatidylinositol (GPI) on the surface of the sperm cell membrane and inside the acrosome membrane.
  • SPAM1 sperm adhesion molecule-1
  • GPI glycosylphosphatidylinositol
  • PH20 is present within 1% of the amount of protein in sperm and has six N-glycosylation sites (N82, N166, N235, N254, N368, N393).
  • PH20 which is currently widely used, is extracted from bovine or sheep testes. Examples include Amphadase® (bovine hyaluronidase) and Vitrase® (both hyaluronidase).
  • Bovine testicular hyaluronidase removes signal peptide and 56 C-terminal amino acids from bovine wild type PH20 during post-translational modification. BTH is also a sugar protein, mannose (5%) and glucosamine (2.2%) of the total components, including amino acids. Repeated administration of animal-derived hyaluronidase in humans at high doses may result in the production of neutralizing antibodies. Animal-derived hyaluronidase contains other biomaterials in addition to PH20, which may cause allergic reactions when administered to humans (Bookbinder et al., 2006). In particular, cattle derived from PH20 have limited production and use due to concern about mad cow disease. In order to solve this problem, researches on recombinant protein of human PH20 have been conducted.
  • Recombinant proteins of human PH20 have been reported to be expressed in yeast ( P. pastoris ), DS-2 insect cells, animal cells and the like. Recombinant PH20 protein produced by insect cells and yeast differs from human PH20 in N-glycosylation during post-translational modification.
  • Hyal1 (PDB ID: 2PE4) (Chao et al., 2007) and Bee venom hyaluronidase (PDB ID: 1FCQ, 1FCU, 1FCV).
  • Hyal1 is composed of two domains, the catalytic domain and the EGF-like domain, and the catalytic domain forms 8 ( ⁇ / ⁇ ) 8 forms in which the alpha helix and beta-strand, which characterize the secondary structure of the protein, are repeated 8 times each.
  • EGF-like domains are conserved in all of the C-terminally spliced variants of Hyal1.
  • the amino acid sequences of Hyal1 and PH20 are 35.1% identical, and the protein structure of PH20 is not yet known.
  • Recombinant protein of human PH20 was developed by Halozyme Therapeutic and sold under the Hylenex trade name (Bookbinder et al., 2006; Frost, 2007).
  • Another object of the present invention is to provide a composition for treating cancer comprising the hyaluronidase PH20 variant or a fragment thereof and a method of treatment using the same.
  • the present invention comprises the substitution of one or more amino acid residues in the region corresponding to the alpha helix site and / or its linking site in the amino acid sequence of wild type PH20, preferably mature wild type PH20, Optionally providing a hyaluronidase PH20 variant, or a fragment thereof, wherein a portion of the N-terminal and / or C-terminal amino acid residues are deleted.
  • the present invention also provides a composition for treating cancer and a method of treating the same, comprising the hyaluronidase PH20 variant or a fragment thereof according to the present invention.
  • Hyal1 (PDB ID: 2PE4), whose protein crystal structure was identified, was modeled (Chao et al., 2007) in the Swiss-Model server (https://swissmodel.expasy.org/) to model the protein tertiary structure of PH20.
  • FIG. 1A shows a protein tertiary structure model of PH20 and catalytic amino acids D146 and E148.
  • the protein tertiary structure of PH20 is composed of eight beta-strand and alpha helices.
  • FIG. 1B shows an eta (n) 8 loop in which the G340-I344 residues, which form the alpha-helix 8 of PH20 and the N-terminal junction of alpha-helix 8, are located. G340, T341, L342, S343, and I344 residues are indicated, respectively.
  • 1C shows amino acid residues (C351, Y357, N363) that interact with neighboring secondary structures of amino acids located at alpha helix 8 of PH20.
  • C351 has a disulfide bond with C60 at alpha helix 1
  • Y357 has a hydrophobic interaction with F315 between beta-strand 7 and alpha helix 7
  • N363 has a hydrogen bond with D69 residue at alpha helix 1 .
  • FIG. 2 compares the protein expression levels of wild type (WT) PH20 and the variants produced in the present invention.
  • WT and variants were expressed by transient transfection methods in ExpiCHO cells.
  • WT expression level is 16.1 mg / L.
  • Variants based on the variants HM1 and HM6 showed higher protein expression than WT and the highest protein expression levels of HM4 and HM7.
  • HM11 which introduced additional amino acid substitutions (Y365F and I367L) in variant HM6, reduced protein expression to 6.4 mg / mL.
  • 3A shows SDS-PAGE results after purification of WT, variants HM1, HM6. Purification was performed using a HisTrap column and a Q Sepharose column. The molecular weight of WT and variants HM1 and HM6 is ⁇ 70 kDa (figure: M, molecular weight marker; CS, supernatant; FT, flow-through, elution, elution fraction).
  • Figure 3B is the enzyme activity values of WT and variants HM1, HM6 measured by turbidimetric assay at pH 7.0.
  • the enzyme activity measured by turbidimetric assay was expressed as specific activity.
  • Figure 3C shows the enzymatic activity of WT and variants HM1, HM6 by substrate-gel assay method. After removing SDS at 4 ° C. with 2.5% Triton X-100 (w / v), enzyme reaction was performed at 37 ° C. for 1 to 4 hours. Variant HM6 was renaturated faster than WT and variant HM1 to hydrolyze hyaluronic acid in polyacrylamide gel. The white band shows the degradation of hyaluronic acid by WT and variant proteins.
  • 3D shows the enzyme activity of WT and variant HM1 at pH 5-8 by substrate-gel assay method.
  • WT and variant HM1 show activity at pH 5-8, with the highest enzymatic activity at pH 5.0.
  • Variant HM1 has a signal peptide of human serum albumin or human Hyal1. The white band shows the degradation of hyaluronic acid by WT and variant proteins.
  • Figure 3E is the result of separating the WT, variants HM1, HM6 using a Phenyl column. Variants HM1 and HM6 elute in Phenyl columns faster than WT.
  • Figure 4 shows the results of analyzing the final product of hyaluronic acid decomposed WT and variant HM6 after 10 minutes and 1 hour using Amide-80 column.
  • 5 is an experimental result of the amino acid mutations G340 ⁇ I344 interval of PH20.
  • 5A is SDS-PAGE results after HisTrap column purification for variants HM7, HM8, HM9, HM10, HM21.
  • Figure 5B is a result of measuring the enzyme activity for WT and variants HM6, HM8, HM9, HM10, HM21, HM7 by turbidimetric assay method at pH 7.0.
  • FIG. 5C shows the enzyme activity for WT and variants HM6, HM8, HM9, HM10, HM21, HM7 using substrate-gel assay.
  • the lower bar graph of Figure 5C shows the degree of enzyme activity by quantifying the band after gel staining with Alcian blue.
  • the white band shows the degradation of hyaluronic acid by WT and variant proteins.
  • 5D shows the results of analyzing WT and variants HM8, HM9, HM10, HM21, and HM7 using a Phenyl column.
  • Figure 5E is the result of separating the WT and variants HM6, HM8, HM9, HM10, HM21, HM7 in the pH 3 ⁇ 7 section using the IEF gel according to the isoelectric point value.
  • 6A shows protein purification results using HisTrap column for variant HM11.
  • Figure 6B is the result of measuring the enzyme activity of WT and variant HM11 using turbidimetric assay at pH 7.0.
  • FIG. 7A shows protein purification results using HisTrap columns for PH20 variants HM40, HM13, HM41, HM24, HM42 and HM25.
  • Figure 7B shows the expression levels in ExpiCHO cells for PH20 variants HM40, HM13, HM41, HM24, HM42, HM25, HP61 and HP62.
  • Figure 7C shows the activity of the enzyme activity of PH20 variants HM40, HM13, HM41, HM24, HM42, HM25, HP61 and HP62 by turbidimetric assay at pH 7.0.
  • 7D shows the enzyme activity of the PH20 variants HM40, HM13, HM41, HM24, HM42 by substrate-gel assay.
  • the white band shows the degradation of hyaluronic acid by WT and variant proteins.
  • Figure 7E is the result of analyzing the WT and variants HM40, HM13, HM41, HM24, HM42 using a Phenyl column.
  • Figure 7F shows the change in particle size with increasing temperature for PH20 variants HM40, HM13, HM41, HM42.
  • Figure 8 is an experimental result for the C-terminal truncation variants HM14, HM15, HM16 prepared with HM6 template.
  • 8A shows SDS-PAGE results after HisTrap purification for variants HM14, HM15, HM16. Controls included WT and variant HM6.
  • Figure 8B is the result of measuring the enzyme activity of WT and variants HM6, HM14, HM15, HM16 by turbidimetric assay method at pH 7.0.
  • Figure 8C is the result of measuring the enzyme activity for WT and variants HM6, HM14, HM15, HM16 for 1, 2, 4 hours by substrate-gel assay method. 8C shows a bar graph of enzyme activity after staining with Alcian-blue after 1 hour of enzyme reaction. The white band shows the degradation of hyaluronic acid by WT and variant proteins.
  • 8D shows the results of analyzing WT and variants HM6, HM14, HM15, and HM16 using a Phenyl column.
  • Figure 8E is the result of separating the variants HM14, HM15, HM16 according to the isoelectric point value in the pH 3 ⁇ 7 section using the IEF gel.
  • 9A shows protein purification results using a HisTrap column for PH20 variants HM19 and HM20.
  • Figure 9B compares the enzyme activity against PH20 variants HM19 and HM20 by turbidimetric assay at pH 7.0.
  • Figure 9C is a substrate-gel assay for WT and HM10, HM19, HM20 by SDS gel staining Alcian blue dye after enzyme reaction for 1 hour at 37 ° C.
  • the white band shows the degradation of hyaluronic acid by WT and variant proteins.
  • Figure 10 is a value measured the aggregation temperature of the WT and PH20 variants using a dynamic light scattering (DLS) equipment. The measurement was repeated three times and the mean ⁇ S.E. Represented by value.
  • DLS dynamic light scattering
  • Figure 11 shows the Stern-Volmer plot after measuring the fluorescence change of tryptophan residues of WT and PH20 variants when acrylamide (0 ⁇ 0.5 M) addition.
  • Tryptophan among the amino acids is excited at 295 nm and emits a maximum fluorescence wavelength at 340 nm.
  • Acrylamide is a small molecule that can penetrate into the structure of a protein to quench the fluorescence emission of tryptophan. The more flexible the structure of the protein, the greater the quenching of fluorescence by acrylamide.
  • F0 is a fluorescence value when acrylamide is absent, and F is a fluorescence value when acrylamide (0 to 0.5 M) is added. The change in fluorescence measurement is expressed as the ratio of F0 / F.
  • 11A is a Stern-Volmer plot for WT and variants HM1, HM4, HM6, HM7.
  • 11B is a Stern-Volmer plot for WT and variants HM14, HM15, HM16.
  • Figure 12B shows the expression level of each variant in a table.
  • WT and PH20 variants had a 6xHis-tag at the C-terminus and expressed the protein expression in mg / L after HisTrap column purification.
  • HM30-HM33 variants were not expressed in ExpiCHO cells.
  • Figure 13 is a Western blot results for the cell culture of HM29, HM30, HM31, HM32 and HM33.
  • HM10 based variants HM29, HM30, HM31, HM32, HM33 are truncated at the C-terminus following A467, C464, D461, C358 and C455.
  • HM29, whose C-terminus was cleaved at A467 was expressed in ExpiCHO cells, but not at ExpiCHO cells when the C-terminus was cleaved at C464 or shorter.
  • Primary antibody was rabbit anti-PH20 polyclonal antibody (Abcam) and diluted 1: 500. Secondary antibody was Goat anti-rabbit IgG HRP and diluted 1: 2,000.
  • Figure 14A is the result of measuring the enzyme activity by turbidimetric assay at pH 7.0 for the C-terminal cleavage variants prepared with HM10 template.
  • FIG. 14B shows C of 17 PH20 variants (HM43, HM44, HM45, HM20, HM19, HM35, HM36, HM37, HM38, HM39, HM47, HM48, HM49, HM50, HM51, HM52, HM10) prepared with HM10 as a template -Enzyme activity according to terminal cleavage site.
  • 14C shows Alcian blue dye after enzyme reaction at 37 ° C for 1 hour by substrate-gel assay for HM29, HM35, HM36, HM37, HM38, HM39, HM43, HM44 and HM45 among PH20 variants prepared with HM10 template SDS gel was stained.
  • the white band shows the degradation of hyaluronic acid by WT and variant proteins.
  • FIG. 15 shows the SDS gel after the final column during protein purification for HP34 (FIG. 15A) and HP46 (FIG. 15B) expressed in ExpiCHO cells.
  • FIG. HP34 was purified through four steps of Q Sepharose, Butyl HP, Heparin, and Blue Sepharose columns, and SDS gel was the result after Blue Sepharose column purification.
  • HP46 was purified by three steps of Q Sepharose, Butyl HP, Heparin column, SDS gel is the result after Heparin column purification.
  • Figure 16 shows the enzymatic activity of HP34 and HP46, 6xHis-tag-free PH20 variants prepared with HM21 template.
  • Figure 16A is the result of measuring the enzyme activity of WT and variants HM21, HP34, HP46 by turbidimetric assay method at pH 7.0.
  • Figure 16B is the result of measuring the enzyme activity of HW2 and variants HM21, HP34, HP46 by Morgan-Elson assay method at pH 5.3.
  • K m Michaelis-Menten constant
  • k cat turnover number
  • k cat / K m catalytic efficiency
  • Figure 17 shows the results of the analysis HM21-based variants.
  • FIG. 17A shows the coagulation temperature measured by DLS for HP34 and HP46, which are 6xHis-tag-free PH20 variants prepared with HM21. As a control, the aggregation temperature of HW2 and HM21 was shown.
  • Figure 17B is the result of measuring the enzyme activity for 1 hour by substrate-gel assay for HW2 and PH20 variants HP20, HP34, HP46.
  • 17D shows expression levels in ExpiCHO cells for PH20 variants HM21, HM53, HM54, HM55, HM56, HP59 and HP60.
  • Figure 17E shows the activity of the enzyme activity of PH20 variants HM21, HM53, HM54, HM55, HM56, HP59 and HP60 by turbidimetric assay at pH 5.3.
  • FIG. 18 shows the results of stimulating index measurement of CD4 + T cells at 1.5 ng / mL and 15 ng / mL concentration treatments of PH20 and PH20 variants, respectively.
  • the amino acid sequence of wild type PH20 preferably mature wild type PH20, alpha helix site and / or the site corresponding to the linking site, preferably alpha helix 8 sites (S347 ⁇ C381) and / or alpha Hyaluronidase PH20 variants that include substitution of one or more amino acid residues at the helix 7 and alpha helix 8 linkage sites (A333-R346) and optionally a portion of the amino acid residues at the N- and / or C-terminus are cleaved Or a fragment thereof.
  • the position of the amino acid residue of each variant depends on the position of the amino acid of wild type PH20 according to SEQ ID NO: 1.
  • matured wild type PH20 is a sequence number of the amino acid sequence of wild type PH20 of SEQ ID NO: 1, the deletion of the signal peptide M1 to T35 and A491 to L509 irrelevant to the actual function of PH20, SEQ ID NO: It means the protein which consists of amino acid residues of L36-S490 of 1.
  • the PH20 variant or fragment thereof according to the present invention is one selected from the group consisting of T341A, T341C, T341G, S343E, M345T, K349E, L353A, L354I, N356E and I361T in wild type PH20 having the sequence of SEQ ID NO: 1
  • the above variant is preferably characterized in that it comprises substitution of amino acid residues, and preferably it comprises substitution of one or more amino acid residues selected from the group consisting of T341A, T341C, L354I and N356E.
  • PH20 variant includes not only the variation of some amino acid residues in the sequence of wild type PH20, preferably the substitution of amino acid residues, but also the N-terminal or C-terminal with the substitution of such amino acid residues. It is used as a concept encompassing all of the deletion of some amino acid residues in Equation, and is used in substantially the same concept as the expression “PH20 variant or fragment thereof”.
  • a protein tertiary structure of PH20 located outside the active site was studied by modeling the protein structure of human PH20 based on Hyal1 (SEQ ID NO: 2), a human hyaluronidase known protein tertiary structure.
  • Hyal1 SEQ ID NO: 2
  • alpha helix 8 is located outside of the protein tertiary structure of PH20 and has less interaction with neighboring alpha helices or beta-strands than other alpha helices.
  • the amino acid sequence of the alpha helix 8 site of the human PH20, the alpha helix 7 and the alpha helix 8 amino acid sequence, and the helix hydrophilic alpha helix 8 site and the alpha helix 7 and alpha helix 8 Based on the results of experiments showing that partial substitution with the amino acid sequence increases enzyme activity and protein aggregation temperature (Tagg.) At neutral pH, new PH20 variants or fragments thereof with increased enzyme activity and thermal stability than wild-type PH20 can be obtained. It was found that it can be provided.
  • the PH20 variant according to the present invention has a wild type PH20 (having the amino acid sequence of SEQ ID NO: 1), preferably the amino acid sequence of the mature wild type PH20 (having a sequence consisting of L36 ⁇ S490 in the amino acid sequence of SEQ ID NO: 1)
  • At least one amino acid residue selected from the group consisting of T341A, T341C, T341G, S343E, M345T, K349E, L353A, L354I, N356E and I361T preferably at least one selected from the group consisting of T341A, T341C, L354I and N356E Includes substitution of amino acid residues,
  • Alpha helix site and / or a site corresponding to the linking site thereof preferably alpha helix 8 sites (S347 to C381) and / or alpha helix 7 and alpha helix 8 connecting sites (A333 to R346), and more preferably T341 to N363, T341 ⁇ I361, L342 ⁇ I361, S343 ⁇ I361, I344 ⁇ I361, M345 ⁇ I361 or M345 ⁇ N363 characterized in that one or more amino acid residues are substituted in the amino acid site.
  • the PH20 variant according to the present invention has the alpha-helix 8 sites (S347-C381) and / or the linking sites (A333-R346) of alpha-helix 7 and alpha-helix 8 of the wild-type PH20, preferably mature wild-type PH20.
  • Some amino acid residues in the amino acid sequence of the corresponding site of Hyal1 having the sequence of number 2 (see Table 2 and Table 3) may be substituted, but are not limited thereto.
  • novel PH20 variant or fragment thereof comprises the substitution of amino acid residues of L354I and / or N356E in the amino acid sequence of wild type PH20, preferably mature wild type PH20,
  • amino acids at one or more positions selected between T341 and N363, in particular at least one position selected from the group consisting of T341, L342, S343, I344, M345, S347, M348, K349, L352, L353, D355, E359, I361 and N363 It is preferred to include substitution of residues, but not limited thereto.
  • Substitution of the amino acid residue at one or more positions selected from the group consisting of T341, L342, S343, I344, M345, S347, M348, K349, L352, L353, D355, E359, I361 and N363 is T341A, T341C, T341D, T341G More preferably, but not limited to, one or more selected from the group consisting of, T341S, L342W, S343E, I344N, M345T, S347T, M348K, K349E, L352Q, L353A, D355K, E359D, I361T, and N363G.
  • novel PH20 variant or fragment thereof according to the invention is characterized by comprising substitution of amino acid residues of M345T, S347T, M348K, K349E, L352Q, L353A, L354I, D355K, N356E, E359D and I361T,
  • T341A, T341C, T341D, T341G, T341S, L342W, S343E, I344N, and N363G may be characterized by including but not limited to substitution of one or more amino acid residues selected from the group consisting of T341A, T341C, T341D, T341G, T341S, L342W, S343E, I344N, and N363G.
  • novel PH20 variant or fragment thereof according to the present invention may be any one selected from the group consisting of, but is not limited thereto.
  • the expression in which the name and number of the amino acid residue of one letter such as “S347” are described together means the amino acid residue at each position in the amino acid sequence according to SEQ ID NO: 1.
  • S347 means that the amino acid residue at position 347 in the amino acid sequence of SEQ ID 1 is serine.
  • S347T means that the 347th serine of SEQ ID NO: 1 is substituted with threonine.
  • PH20 variants or fragments thereof in accordance with the present invention are to be interpreted to include variants or fragments thereof in which certain amino acid residues are conservatively substituted.
  • “conservative substitutions” refers to modifications of the PH20 variant that include replacing one or more amino acids with amino acids having similar biochemical properties that do not cause a loss of biological or biochemical function of that PH20 variant.
  • a “conservative amino acid substitution” is a substitution that replaces an amino acid residue with an amino acid residue having a similar side chain.
  • a class of amino acid residues with similar side chains is defined in the art and is well known. These classes include amino acids with basic side chains (eg lysine, arginine, histidine), amino acids with acidic side chains (eg aspartic acid, glutamic acid), amino acids with uncharged polar side chains (eg glycine , Asparagine, glutamine, serine, threonine, tyrosine, cysteine), amino acids with non-polar side chains (eg, alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains Amino acids (eg threonine, valine, isoleucine) and amino acids having aromatic side chains (eg tyrosine, phenylalanine, tryptophan, his
  • PH20 variants of the present invention may still retain activity even with conservative amino acid substitutions.
  • the PH20 variant or fragment thereof according to the present invention has substantially the same function and / or effect as the PH20 variant or fragment thereof according to the present invention, and is 80% or 85% or higher, preferably 90% or higher, more preferably Preferably it is to be construed to include PH20 variants or fragments thereof having at least 95%, most preferably at least 99% amino acid sequence homology.
  • PH20 variants or fragments thereof according to the present invention have increased expression in animal cells than mature wild-type PH20, protein folding also increases the thermal stability, and even though the thermal stability is increased, their enzyme activity was increased or similar to mature wild type PH20.
  • the cleavage of the C-terminal region of the mature wild type PH20 is known to reduce the enzyme activity, but the PH20 variants according to the present invention are mature wild type despite the cleavage of the C-terminus due to increased protein folding and increased thermal stability
  • the enzyme activity was increased or similar to that of PH20, and the enzyme activity was maintained even when N-terminal amino acids were cleaved up to 5, indicating that N-terminal P41 residues play an important role in protein expression and enzyme activity.
  • the PH20 variant or a fragment thereof according to the present invention may be selected from the alpha helix 8 sites (S347-C381) and / or the amino acid residues of the alpha helix 7 and the alpha helix 8 (A333-R346). In addition to substitutions, it is additionally characterized by the deletion of some amino acid residues at the C-terminus and / or the N-terminus, but is not limited thereto.
  • the PH20 variant or fragment thereof according to the present invention is preceded by an amino acid residue selected from the group consisting of M1 to P42 of the amino acid sequence N-terminus of SEQ ID NO: 1, preferably L36, N37, F38, R39, A40 , Cleavage before the amino acid residue of P41 or P42 results in deletion of some amino acid residues at the N-terminus, and / or an amino acid residue selected from the group consisting of V455 to L509 at the C-terminus, preferably V455 to S490.
  • Amino acid residues selected from the group consisting of, most preferably V455, C458, D461, C464, I465, D466, A467, F468, K470, P471, P472, M473, E474, T475, E476, P478, I480, Y482, A484, Cleavage after the amino acid residues of P486, T488 or S490 can be characterized as deletion of some amino acid residues at the C-terminus.
  • the expression that the cleavage in front of the amino acid residue selected from the group consisting of the N-terminal M1 to P42 has occurred means that the amino acid residue immediately preceding the amino acid residue selected from the N-terminal M1 to P42 has been cleaved and deleted.
  • the expression of cleavage in front of the amino acid residue of L36, N37, F38, R39, A40, P41 or P42 occurred from M1 to M35 in the sequence of SEQ ID NO: 1 to T35, the amino acid residue immediately before L36, respectively.
  • L1 the amino acid residue immediately before N37, to N37, the amino acid residue just before M1 through F38, from F1, the amino acid residue just before M1 to R39, from R39, the amino acid residue from M1 to A40, from M1 to P41.
  • cleavage occurred after an amino acid residue selected from the group consisting of C455-terminal V455 to L509 means that the cleavage occurred after the amino acid residue immediately following the amino acid residue selected from C455-terminal V455 to L509.
  • the novel PH20 variant or fragment thereof according to the present invention may be selected from the group consisting of the amino acid sequences of SEQ ID NO: 60 to SEQ ID NO: 115, but is not limited thereto.
  • the novel PH20 variant or fragment thereof according to the present invention has the amino acid sequence of SEQ ID NO: 99.
  • the novel PH20 variant having the amino acid sequence of SEQ ID NO: 99 replaces 15 amino acid residues with T341S, L342W, S343E, I344N, M345T, S347T, M348K, K349E, L352Q, L353A, L354I, D355K, N356E, E359D, I361T , Cleaved before the N-terminal F38 residue, followed by the C-terminal F468 residue.
  • a novel PH20 variant or fragment thereof according to the invention which has increased enzyme activity and thermal stability compared to mature wild type PH20, is characterized in that for the amino acid sequence of wild type PH20, preferably mature wild type PH20, T341A, T341C, T341G , S343E, M345T, K349E, L353A, L354I, N356E, and I361T, the substitution of one or more amino acid residues selected from the group of alpha helix 8 sites (S347-C381) and / or alpha helix 7 and alpha helix 8 Some of the amino acids located at the linking sites (A333 to R346) are substituted with other amino acids.
  • amino acid substitution of the linking region of alpha helix 8, alpha helix 7 and alpha helix 8 is in the region of T341 to N363, T341 to I361, L342 to I361, S343 to I361, I344 to I361, M345 to I361, or M345 to N363. Some amino acid substitutions are included.
  • PH20 variants HM6, HM10, and HM21 were selected as templates for the effects of C-terminal cleavage on PH20 variants substituted with the linking sites of alpha helix 8, alpha helix 7 and alpha helix 8.
  • HM6 is a variant in which the amino acid sequence of the M345 to N363 region is substituted with the amino acid sequence of Hyal1 (M345T, S347T, M348K, K349E, L352Q, L353A, L354I, D355K, N356E, E359D, and I361T are substituted in SEQ ID NO: 1).
  • the PH20 variant according to the present invention that does not include C-terminal cleavage (ie, in the form of a C-terminal amino acid residue S490, such as mature wild type PH20), the linking site of alpha helix 8 and alpha helix 7 and alpha helix 8 Is the variant with the least substitution of
  • HM10 is a variant in which amino acids in the L342-I361 interval are substituted with the amino acid sequence of Hyal1 (L342W, S343E, I344N, M345T, S347T, M348K, K349E, L352Q, L353A, L354I, D355K, N356E, E359D, and I361T in SEQ ID NO: 1).
  • Substituted which also does not include additional C-terminal truncation and is the highest thermally stable variant of the PH20 variant according to the invention with similar enzymatic activity as the mature wild type PH20,
  • HM21 is a variant in which amino acids in the T341 to I361 sections are substituted with the amino acid sequence of Hyal1 (T341S, L342W, S343E, I344N, M345T, S347T, M348K, K349E, L352Q, L353A, L354I, D355K, N356E, E359D, in SEQ ID NO: 1).
  • I361T is substituted), which also does not include additional C-terminal truncation and is a variant about 2 times higher in enzyme activity than wild type PH20 at pH 7.0.
  • HM6 based PH20 variant produced in the present invention was cleaved at the N-terminus at L36 and the C-terminus following I465, F468, or P471 as shown in Table 4.
  • HM10 based PH20 variants commonly have an N-terminus truncated before the F38 residue and the C-terminus is V455, C4578, D46, C464, I465, D466, A467, F468, K470, P472, M473, E474 as shown in Table 5. Cleaved after T475, E476, P478, I480, Y482, A484, P486, or T488 residues.
  • the N-terminus is cleaved before the F38 residue, and the C-terminus is I465, D466, A467,
  • the PH20 variants according to the invention are independent of the C-terminal cleavage position. It showed similar enzyme activity as mature wild type PH20.
  • HM21 based PH20 variants were commonly cleaved at the N-terminus before the F38 residue as in Table 6, and at the C-terminus after the F468 or K470 residue as in Table 6.
  • HM21 which has about 2 times higher enzyme activity than mature wild type PH20, contains amino acid substitutions in the T341-I361 region of the alpha helix 8 and alpha helix 7 and alpha helix 8 linkages, with the N-terminus preceding the F38 residue. Variants that were cleaved and whose C-terminus were cut after F468 or K470 retained the high enzymatic activity of HM21 regardless of the C-terminal cleavage position.
  • HM6 was used as a template to prepare variants HM40, HM13, HM41, HM24, HM42 and HM25, whose N-terminus were truncated at the amino acid sequence of SEQ ID NO: 1 before N37, F38, R39, A40, P41, or P42 residues (Table 1). 7).
  • the present invention was intended to improve the expression of recombinant PH20 protein by using a signal peptide of another protein having a large amount of protein expression in animal cells rather than the native signal peptide of PH20.
  • the novel PH20 variant according to the invention has the amino acid sequence of MATGSRTSLLLAFGLLCLPWLQEGSA according to SEQ ID NO: 3 as described in Table 8 at the N-terminus, in place of the signal peptide of wild type PH20 of M1 to T35
  • the present invention is not limited thereto.
  • the term "replaces the signal peptide of wild type PH20 of M1 to T35” means a case in which some or all of the signal peptide of wild type PH20 is deleted, thereby failing to perform the function of the signal peptide of wild type PH20. If some are further deleted, for example, cleavage in front of the N37, F38, R39, A40, P41 or P42 residues is used to mean that additional N-terminal deletions occur with the signal peptide of wild type PH20. .
  • the present invention provides a composition for treating cancer comprising the novel PH20 variant according to the present invention, and a method for treating cancer using the same.
  • Cancers or carcinomas treatable with the novel PH20 variant according to the present invention are not particularly limited and include both solid and hematological cancers.
  • Examples of such cancers include skin cancer such as melanoma, liver cancer, hepatocellular carcinoma, gastric cancer, breast cancer, lung cancer, ovarian cancer, bronchial cancer, nasopharyngeal cancer, laryngeal cancer, pancreatic cancer, bladder cancer, colon cancer, colon cancer, cervical cancer, and brain cancer.
  • Prostate cancer bone cancer, thyroid cancer, parathyroid cancer, kidney cancer, esophageal cancer, biliary tract cancer, testicular cancer, rectal cancer, head and neck cancer, cervical cancer, ureter cancer, osteosarcoma, neuroblastoma, fibrosarcoma, rhabdomyosarcoma, astrocytoma, neuroblastoma and neuroblastoma It may be selected from the group consisting of glioma, but is not limited thereto.
  • the cancer that can be treated with the composition of the present invention may be selected from the group consisting of colorectal cancer, breast cancer, lung cancer and kidney cancer, but is not limited thereto.
  • the composition may be a pharmaceutical composition.
  • the pharmaceutical composition may further comprise a pharmaceutically acceptable carrier, which is commonly used in the formulation of drugs, lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate , Alginate, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, mineral oil, etc. It may be one or more selected from the group consisting of, but is not limited thereto.
  • the pharmaceutical composition may further include one or more selected from the group consisting of diluents, excipients, lubricants, wetting agents, sweeteners, flavoring agents, emulsifiers, suspending agents, preservatives commonly used in the manufacture of pharmaceutical compositions.
  • the pharmaceutical composition may be administered orally or parenterally.
  • parenteral administration it can be administered by intravenous injection, subcutaneous injection, intramuscular injection, intraperitoneal injection, endothelial administration, topical administration, intranasal administration, pulmonary administration and rectal administration.
  • the oral composition may be formulated to coat the active agent or to protect it from degradation in the stomach.
  • the composition may be administered by any device in which the active agent may migrate to the target cell.
  • compositions may be in the form of solutions, suspensions, syrups or emulsions in oils or aqueous media, or in the form of extracts, powders, powders, granules, tablets or capsules, etc. It may further include a topic.
  • composition for treating cancer according to the present invention is characterized in that it is used in combination therapy with other anticancer agents.
  • the anticancer agent that can be used in combination therapy with the novel PH20 variant according to the present invention is preferably, but not limited to, a chemocancer agent, an anticancer agent in the form of an antibody, RNAi, a cell therapeutic agent, and the like.
  • the anticancer agent which can be used in combination therapy with the novel PH20 variant according to the present invention is an immune anticancer agent, particularly preferably an immune checkpoint inhibitor, but is not limited thereto.
  • the present invention relates to a nucleic acid encoding a PH20 variant or variant thereof according to the present invention.
  • Nucleic acids as used herein may be present in cells, cell lysates, or in partially purified or substantially pure form. Nucleic acids are prepared by other cellular components or other contaminants, for example, by standard techniques, including alkali / SDS treatment, CsCl banding, column chromatography, agarose gel electrophoresis, and others well known in the art. When purified from nucleic acids or proteins of other cells, they are “isolated” or “substantially pure.” Nucleic acids of the invention can be, for example, DNA or RNA.
  • the present invention relates to a vector comprising the nucleic acid.
  • DNA encoding PH20 variants can be obtained by standard molecular biology techniques (e.g., PCR amplification or cDNA cloning using hybridomas expressing PH20 variants).
  • the DNA can be “bind operatively” to transcription and translation control sequences and inserted into the expression vector.
  • binding to act refers to a gene encoding a PH20 variant or fragment thereof such that the transcriptional and translational control sequences in the vector serve the intended function of regulating the transcription and translation of the gene encoding the PH20 variant or fragment thereof. May be ligated into the vector.
  • the expression vector and expression control sequences are chosen to be compatible with the expression host cell used.
  • Genes encoding PH20 variants are standard methods (e.g., ligation of complementary restriction enzyme sites on gene fragments and vectors encoding PH20 variants or fragments thereof, or blunt terminal lysation if no restriction enzyme sites are present). Into the expression vector).
  • the recombinant expression vector has a regulatory sequence that controls the expression of the gene encoding the PH20 variant in the host cell.
  • a “regulatory sequence” can include promoters, enhancers and other expression control elements (eg, polyadenylation signals) that control the transcription or translation of a gene encoding a PH20 variant or fragment thereof.
  • promoters can include promoters, enhancers and other expression control elements (eg, polyadenylation signals) that control the transcription or translation of a gene encoding a PH20 variant or fragment thereof.
  • the design of the expression vector can vary by differently selecting regulatory sequences depending on factors such as the choice of host cell to be transformed, the expression level of the protein, and the like.
  • the present invention relates to a host cell comprising the nucleic acid or the vector.
  • the host cell according to the present invention is preferably selected from the group consisting of animal cells, plant cells, yeast, E. coli and insect cells, but is not limited thereto.
  • the host cell according to the present invention is E. coli, Bacillus subtilis, Streptomyces sp., Pseudomonas sp., Proteus mirabilis or Staphyllo Prokaryotic cells, such as the Staphylococcus sp. Also fungi such as Aspergillus sp., Pichia pastoris, Saccharomyces cerevisiae, Schizosaccharomyces sp. Eukaryotic cells such as yeast, such as Neurospora crassa, other lower eukaryotic cells, and cells of higher eukaryotes such as cells from insects.
  • COS7 cells monkey kidney cells (COS7) cells, NSO cells, SP2 / 0, Chinese hamster ovary (CHO) cells, W138, baby hamster kidney (BHK) cells, MDCK, myeloma cell lines, HuT 78 cells and HEK293 cells and the like are available, but are not limited to these.
  • COS7 cells monkey kidney cells
  • NSO cells NSO cells
  • SP2 / 0 Chinese hamster ovary (CHO) cells W138
  • BHK baby hamster kidney
  • MDCK myeloma cell lines
  • HuT 78 cells and HEK293 cells and the like are available, but are not limited to these.
  • CHO cells can be used.
  • the nucleic acid or vector is transfected or transfected into a host cell.
  • Various expression host / vector combinations may be used to express the PH20 variant or fragment thereof according to the present invention. Include, but are not limited to, expression control sequences derived from SV40, bovine papilloma virus, adenovirus, adeno-associated virus, cytomegalovirus and retroviruses.
  • Vectors include Escherichia coli, such as pET, pRSET, pBluescript, pGEX2T, pUC vectors, col E1, pCR1, pBR322, pMB9 and derivatives thereof.
  • coli Escherichia coli
  • a plasmid with a broader host range such as RP4, phage DNA that can be exemplified by a wide variety of phage lambda derivatives such as ⁇ gt10 and ⁇ gt11, NM989, and M13 and filamentary single strands.
  • Other DNA phages, such as DNA phages include expression vectors useful for yeast cells, 2 ° C. plasmids and derivatives thereof, and useful vectors for insect cells are pVL941.
  • the present invention relates to a method for producing a PH20 variant or fragment thereof according to the present invention comprising culturing a host cell to express the PH20 variant or fragment thereof according to the present invention.
  • the PH20 variant or variant thereof When a recombinant expression vector capable of expressing the PH20 variant or fragment thereof is introduced into a mammalian host cell, the PH20 variant or variant thereof is cultured for a period sufficient to be expressed in the host cell, or more preferably in the host cell being cultured. It can be prepared by incubating the host cell for a period of time sufficient to secrete the PH20 variant into the medium.
  • the expressed PH20 variant may be purified from the host cell to be homogeneous. Separation or purification of the PH20 variant may be performed by separation, purification methods, such as chromatography, which are used in conventional proteins.
  • the chromatography may be, but is not limited to, for example, one or more combinations selected from affinity chromatography, ion exchange chromatography or hydrophobic chromatography. In addition to the above chromatography, filtration, ultrafiltration, salting out, dialysis and the like can be used in combination.
  • the wild-type PH20 cDNA (clone ID: hMU002604) was purchased from the Korean Human Gene Bank for the preparation of the PH20 variant. Wild type PH20 encodes amino acids L36 to S490.
  • PH20 gene was amplified using a polymerase chain reaction (hereinafter, referred to as PCR) and inserted into the Xho I and Not I restriction enzyme sites of the pcDNA3.4-TOPO vector.
  • PCR polymerase chain reaction
  • the cDNA of the PH20 variant was prepared even without the 6xHis-tag.
  • ExpiCHO cells were transfected using ExpiFectamine CHO Reagent with a plasmid in which cDNA of wild-type or variant PH20 was inserted into pcDNA3.4-TOPO vector when the cell number of ExpiCHO cells reached 6x10 6 / mL.
  • Cell culture medium was used ExpiCHO Expression Medium (100 ⁇ 500 mL).
  • ExpiCHO cells were shaken for 6 days at 130 rpm. During this period, ExpiCHO cells were cultured at 37 ° C. for 1 day, and the temperature was lowered to 32 ° C. for 5 more days. Upon completion of the culture, the cell supernatant was recovered by centrifugation at 10,000 rpm for 30 minutes.
  • Recombinant proteins of wild-type and variant PH20 with C-terminal 6xHis attached to ExpiCHO cells were purified in three steps: HisTrap column, Q Sepharose column, and Phenyl column using AKTA prime equipment.
  • Buffer A (20 mM sodium phosphate, pH 7.5, 0.5 M NaCl) and buffer B (20 mM sodium phosphate, pH 7.5, 0.5 M NaCl, 0.5 M imidazole) were prepared for protein purification using a HisTrap column. Binding the protein to the HisTrap column, flowing 5 column volume (CV) of buffer A to remove the non-specifically bound protein, and adding 20% of buffer B after confirming that the conductivity remained constant. 5 CV was eluted off the protein. The eluted protein was dialyzed using Dialysis buffer (20 mM sodium phosphate, pH 7.5, 50 mM NaCl).
  • Buffer A (20 mM sodium phosphate, pH 7.5) and buffer B (20 mM sodium phosphate, pH 7.5, 0.5 M NaCl) were prepared for protein purification using Q Sepharose column.
  • the protein was bound to the Q Sepharose column, Buffer A was flowed 5 CV to remove the non-specifically bound protein, and buffer B was flowed 5 CV at a concentration gradient of 0-100% to elute the protein.
  • Buffer A (20 mM sodium phosphate, pH 7.0, 1.5 M (NH 4) 2 SO 4) and buffer B (20 mM sodium phosphate, pH 7.0) were prepared for protein purification using a phenyl column.
  • the protein was bound to the Phenyl column, Buffer A was flowed 5 CV to remove the non-specifically bound protein, and the buffer B was flowed 5 CV at a concentration gradient of 0-100% to elute the protein.
  • the enzyme activity of wild-type and variant PH20 was measured using turbidimetric assay, substrate-gel assay and Morgan-Elson assay.
  • Turbidimetric assay is a method to measure the precipitate produced by mixing hyaluronic acid and albumin (BSA) using absorbance.
  • BSA albumin
  • Purified protein samples were dissolved in enzyme diluent buffer (20 mM Tris-HCl, pH 7.0, 77 mM NaCl, 0.01% (w / v) bovine serum albumin) and diluted to 100X, 300X, 600X, 1200X, 2400X, each tube. Be prepared.
  • Substrate-gel assay electrophoresed proteins on a 10% SDS gel (containing 0.17 mg / mL hyaluronic acid) for 1 hour and SDS at 4 ° C for 2 hours using 2.5% Triton X-100 (w / v). Remove it. After enzymatic reaction at 50 °C sodium phosphate, pH 7.0, 150 mM NaCl buffer at 37 °C, the optimum temperature of PH20 for 1 to 4 hours, the protein was stained using 0.5% Alcian Blue reagent. Alcian Blue reagent that did not bind with hyaluronic acid was removed using a de-staining solution. After taking the SDS gel stained Alcian Blue, the band was quantified.
  • amino acid sequence substituted or cleaved from the PH20 variant prepared in the present invention is shown in Table 11 below.
  • the 6xHis-tag attached to the C-terminus was named HM
  • the variant without 6xHis-tag was named HP
  • the mature wild type PH20 with 6xHis-tag attached to the C-terminus was named WT
  • mature wild-type PH20 (L36-Y482) with C-terminus cleaved after Y482 without the 6xHis-tag was named HW2.
  • the amino acid sequences M345 to N363 of PH20 correspond to alpha helix 8 sites and alpha helix 7 and alpha helix 8 linkage sites in the protein tertiary structure model as shown in FIG. 1B.
  • C351 has a disulfide bond with C60 of alpha helix 1
  • Y357 has a hydrophobic interaction with F315 of alpha helix 7
  • N363 forms a hydrogen bond with D69 of alpha helix 1
  • the secondary structure is stabilized (FIG. 1C).
  • amino acids located at alpha helix 8 of PH20 C351 involved in disulfide bonds and Y357 involved in hydrophobic interaction were not substituted.
  • the amino acid sequences substituted in the variants HM1, HM2 and HM3 are shown in Table 11.
  • variant HM1 When transfected into ExpiCHO cells with the pcDNA3.4-TOPO plasmid containing the genes of variants HM1, HM2, and HM3, variant HM1 was expressed in ExpiCHO cells (FIG. 3A), and variants HM2 and HM3 were not expressed. Protein expression was confirmed by Western blot using an enzyme activity measurement as well as antibodies to human PH20 (Abcam, ab193009). The epitope of the antibody ranges from Q173 to P222.
  • Variant HM6 was expressed in ExpiCHO cells and the expression level was similar to variant HM1 (3.4 times more expression than WT) (FIG. 2). When the enzyme activity was measured by the Turbidimetric assay method, variant HM6 increased 1.3 times the enzyme activity than WT (Fig. 3B).
  • Substrate-gel assay generally removes SDS using 2.5% Triton X-100 (w / v) after SDS-PAGE and reacts for 1 to 4 hours at 37 ° C, whereby hyaluronidase hydrolyzes hyaluronic acid. Is measured using Alcian blue dye. When SDS is removed from the substrate gel, protein refolding occurs immediately, and it is known that the substrate does not affect protein folding.
  • HM6 showed higher enzyme activity than WT and variant HM1 when the enzyme activity of WT and variants HM1 and HM6 was measured at 37 ° C. for 1-4 hours by substrate-gel assay (FIG. 3C). These results suggest that protein refolding and resulting renaturation of variants HM1 and HM6 are faster than WT, and that the resulting variants show higher enzyme activity than WT.
  • the signal peptide of PH20 itself the protein expression level was low in ExpiCHO cells. To solve this problem, the signal peptide sequence of human serum albumin or human Hyal1 was used. As shown in FIG.
  • the coagulation temperature of the variants HM1 and HM6 was 46.5 ° C and 4.0 ° C higher than WT, respectively, at 46.5 ° C, 53.0 ° C, and 50.5 ° C (FIG. 10). Aggregation temperature measurements are consistent with the protein refolding results shown in the substrate-gel assay. These results are the first to show that the hydrogen bonds formed by the N363 residues in alpha helix 8 play an important role in the thermal stability and enzyme activity of protein structures.
  • variants HM4 and HM7 including amino acids substituted in variants HM1 and HM6 and additionally substituted G340V, T341S, L342W, S343E, and I344N amino acids between G340 and I344 were prepared, respectively.
  • the amino acid sequences substituted in the variants HM4 and HM7 are shown in Table 11.
  • Variants HM4 and HM7 were expressed in ExpiCHO cells. Protein purification results for HM7 are shown in Figure 5A. In HM4 and HM7, protein expression was increased by 6.3 times than WT, and aggregation temperature increased by 10 °C and 11.5 °C, respectively.
  • the enzyme activity of HM4 and HM7 measured by turbidimetric assay method was only about 15% compared to WT (FIG. 5B).
  • the enzyme activity and the thermal stability has a trade-off relationship, but in the present invention, the substitutions introduced in the variants HM1 and HM6 increase the thermal stability while maintaining the enzyme activity, and in the variants HM4 and HM7 It is believed that the enzyme activity was reduced due to excessive increase in thermal stability.
  • the increase in the aggregation temperature of 11.5 ° C. in variants HM4 and HM7 is a very significant result.
  • variants HM6 and HM7 The difference between variants HM6 and HM7 is the amino acid between G340 and I344.
  • HM6 substituted with I344N, S343 and HM9 substituted with I344N, L342W, S343E, HM10 substituted with I344N, T341S, L342W, S343E and I344N The substituted HM21 was produced, respectively.
  • the amino acid sequences substituted in the variants HM8, HM9, HM10 and HM21 are shown in Table 11. Variants HM8, HM9, HM10, HM21 were expressed in ExpiCHO cells (FIG. 5A).
  • IEF Isoelectric focusing
  • variant HM11 Based on the variant HM6, the amino acids were substituted in the C-terminal direction of alpha helix 8 to prepare variants HM11 and HM12.
  • the amino acid sequences substituted in the variants HM11 and HM12 are shown in Table 11.
  • Variant HM11 was expressed in ExpiCHO cells but expression was lower than wild type WT (FIG. 2), and variant HM12 was not expressed in ExpiCHO cells.
  • Variant HM11 showed 32% activity compared to WT (FIG. 6B).
  • variants HM40, HM13 which are truncated at N37, F38, R39, A40, P41, P42, based on variant HM6, HM41, HM24, HM42 and HM25 were prepared (Table 11).
  • HP61 and HP62 were prepared by modifying the N-terminal amino acid.
  • HM40, HM13, HM41, HM24, HM42, HP61, HP62 were expressed in ExpiCHO cells but not HM25 ( Figures 7A and 7B).
  • N-terminal truncated PH20 variants showed differences in enzyme activity depending on the N-terminal starting position.
  • Variants HM40, HM13 and HM41 with 1 to 3 amino acids cleaved were similar in enzyme activity to HM6 as a template, but HM24 and HM42 with 4 to 5 amino acids were slightly less active than HM6 (FIG. 7C).
  • the six amino acid cleaved HM25 was rarely expressed in ExpiCHO and markedly low in enzyme activity of 3.5 U / ⁇ g.
  • HP61 and HP62 which modified the N-terminal amino acid the change of enzyme activity does not seem to be significant.
  • the enzyme activity of the N-terminal cleavage variant measured by the substrate-gel assay method (1 hour reaction) was similar to that of HM6 as a template for HM40, HM13, and HM41, but HM24 and HM42 decreased than that of HM6. (FIG. 7D). HM25 with 6 amino acids cleaved could not be analyzed due to its low protein content.
  • the aggregation temperature of the N-terminal truncation variants measured by DLS showed a difference between the variants depending on where the amino acid starts (FIG. 7F).
  • Variants HM40, HM13, HM41 and HM42 showed a cohesive temperature of 50 ° C. or more even though the N-terminus was cut, so that the characteristics of the template HM6 were maintained.
  • HM40 and HM42 showed 3 ⁇ 4 °C higher agglomeration temperature than HM6, suggesting the increased thermal stability.
  • variants HM17 and PH20 of N20-terminated amino acid sequences 36-47 (LNFRAPPVIPNV) of PH20 were replaced with FRGPLLPNR.
  • variant HM18 was prepared in which the N-terminal amino acid sequence 36-52 (LNFRAPPVIPNVPFLWA) was substituted with FRGPLLPNRPFTTV.
  • the amino acid sequences substituted in the variants HM17 and HM18 are shown in Table 11. Variants HM17 and HM18 were not expressed in ExpiCHO cells. Although cutting up to 5 amino acids at the N-terminus showed protein expression and enzymatic activity, substitution of more amino acid sequences, such as 36-47 or 36-52, suggests that protein folding is affected.
  • variants HM14, HM15, and HM16 were prepared by cleaving C-terminal amino acids at I465, F468, and K471, respectively, based on variant HM6.
  • the amino acid sequences substituted in the variants HM14, HM15, and HM16 are shown in Table 11.
  • Variants HM14, HM15, HM16 were expressed in ExpiCHO cells (FIG. 8A), and protein expression amount decreased as more C-terminal amino acids were cut in the order of HM16> HM15> HM14 (FIG. 8A).
  • the C-terminally truncated variants (HM14, HM15, HM16) prepared in the present invention were prepared based on variant HM6, resulting in increased protein folding due to amino acid substitution in the M345-I361 region, thereby increasing thermal stability. Therefore, the cleavage after C-terminal I465, F468, P471 was similar to WT and the enzyme activity, there was no significant decrease in enzyme activity.
  • the variants HM14, HM15, and HM16 were all eluted before WT and showed hydrophilic properties, and the hydrophilicity among the variants was in the order of variants HM16> HM14> HM15 ( 8D).
  • Example 6 Construction of HM10-based variants HM19, HM20 comprising N-terminal and C-terminal amino acid cleavage.
  • the PH20 variants prepared in the present invention showed better performance in terms of protein expression, enzyme activity, and thermal stability of HM6, HM8, HM9 and HM10 based on HM6 and the amino acid substitution of G340 ⁇ I344.
  • Variants HM19 and HM20 were prepared in which the N-terminus was cleaved at F38 and the C-terminus was cleaved at K470 or F468 based on HM10 having high enzyme activity and thermal stability among HM8, HM9 and HM10. Both HM19 and HM20 were expressed in ExpiCHO cells and purified using HisTrap column (FIG. 9A).
  • HM19 and HM20 When enzyme activity was measured by the Turbidimetric assay method, HM19 and HM20 showed 10% higher enzyme activity than WT (FIG. 9B). In the substrate-gel assay, HM19 and HM20 showed higher enzyme activity than WT (FIG. 9C).
  • HM10-based C-terminal truncation variants showed a tendency to decrease the expression in ExpiCHO cells as the length of the C-terminal shortened, but was not expressed when the length of the C-terminal is less than C464 (Fig. 12).
  • C464 is essential because it forms a disulfide bond with C437 and is important for maintaining protein structure.
  • Enzymatic activity of HM10 based C-terminal truncation variants measured by the Turbidimetric assay method is shown in FIGS. 14A and 14B.
  • C-terminal truncation variants showed enzymatic activity of ⁇ 20% compared to WT.
  • the enzyme activity overall increased.
  • 6His-tag affects the enzyme activity of HP19 and HP20, which are 23% and 9.6% lower than those of 6xHis-tag, respectively.
  • HM10-based C-terminal cleavage variants When the enzyme activity of HM10-based C-terminal cleavage variants was measured by the substrate-gel assay method, these variants showed higher enzyme activity than WT, and were similar to the enzyme activity of template HM10. Was not large (FIG. 14C).
  • Variant HP34 was purified via a four stage column (FIG. 15A) and HP46 was purified through a three stage column (FIG. 15B).
  • the yields of HP34 and HP46 were 1.73 mg / L and 25.6 mg / L, respectively.
  • HP34 and HP46 are 6xHis-tag-free variants, which are different from those with 6xHis-tag, which makes it difficult to compare protein expression levels.
  • the activity of HP34 and HP46 was 45.6 U / ⁇ g and 47.2 U / ⁇ g, respectively, about 2 times higher than that of WT, and the activity was increased by approximately 10% than that of the template HM21 (FIG. 16A).
  • the aggregation temperature of HP34 and HP46 measured by DLS was 51.5 ° C. and 51.0 ° C., respectively, similar to that of HM21, which was about 5 ° C. higher than HW2 (FIG. 17A).
  • the activity of variant HP34 measured by Substrate-gel assay was similar to that of HP20, whereas HP46 showed higher enzymatic activity than HP20, suggesting better protein folding of HM21 than HM10 as a template (FIG. 17B).
  • HP46 When wild-type HW2 and the mutant HP46 were left overnight at pH 7.0 and pH 3.0 and compared to enzyme activity by substrate-gel assay, HP46 showed high stability at pH 3.0 as well as pH 7.0 and showed excellent stability (FIG. 17C). ).
  • HM53, HM54, HM55, HM56, HP59, HP60 are variants having an amino acid at position 341 of the HM21 based variant. As the amino acid at position 341 is mutated, it was confirmed to have various effects on the expression level and activity (FIG. 17D and FIG. 17E).
  • Biopharmaceuticals with larger molecular weights than those of low molecular weight chemicals present a risk of unintended immune responses when they enter the body.
  • the secondary structure of a large molecular weight biomaterial, or the contact surface with the outside created by folding or interacting with adjacent domains in the tertiary structure provides immunity to the biomaterial by providing epitopes to the immune system in the human body. Can promote the reaction.
  • This immune response may produce an anti-drug antibody (ADA) that may inhibit the drug's effectiveness, cause hypersensitivity to the drug, or remove the drug from the body. can promote clearance.
  • ADA anti-drug antibody
  • the immune response to the drug may therefore affect the results in clinical trials and may cause serious adverse reactions with prolonged use.
  • HLA human leukocyte antigen
  • CD4 + T cells are activated by antigen presenting cells (APCs) recognizing antigens presented through their type II MHC (major histocompatibility complex). Activated CD4 + T cells release cytokines to activate macrophages, cytotoxic T cells, and B cells, resulting in high levels of antibody production.
  • APCs antigen presenting cells
  • CD8 + T cells have direct cytotoxicity and can directly remove antigen-infected cells, damaged or nonfunctional cells.
  • CD8 + T cells have T cell receptors that can recognize peptides of specific antigens attached to type I MHC molecules located on the surface of every cell.
  • CD8 + T cells can also be activated by recognizing antigens presented by antigen presenting cells, which activation can be further enhanced in cytokines of CD4 + T cells. Therefore, by measuring the activation level of CD4 + T cells and CD8 + T cells of new biomaterials in vitro, it is possible to predict the immunogenic response that can be induced in the clinical process.
  • the control material PH20 and PH20 variants HP46
  • the control material PH20 and PH20 variants HP46
  • the stimulating index SI is defined as follows. If the SI value is 2 or more, it can be determined that the activation at a significant level.
  • Stimulating Index (T cell activation after treatment of test sample) /
  • the immunogenic response may vary depending on the HLA type. Therefore, the experiment was performed using T cells isolated from PBMCs received from 10 healthy donors to measure the response in more diverse HLA types.
  • the HLA types of the 10 PBMCs used are shown in Table 12 below.
  • the activation results of CD4 + and CD8 + T cells in PH20 and PH20 variants are summarized in Table 13.
  • both PH20 and PH20 variants were determined to have relatively low activation levels.
  • CD4 + T cell activation was measured to be greater than 2 in two experiments, and in the case of PH20 variants, activation of CD4 + T cells was not measured.
  • CD8 + T cells activation was measured in one experiment in PH20, and in the case of PH20 variants, activation was also measured in one experiment.
  • the SI value was measured to be 2 or more at both 1.5 ng / mL and 15 ng / mL, whereas for the PH20 variant, the SI value was 2 or less at 1.5 ng / mL, and at 15 ng / mL, the SI value was 2 or more. The value was measured (see FIGS. 18 and 19).
  • CD4 + T cells and CD8 + T cells are less likely to be activated in PH20 variants than PH20.
  • PH20 variants or fragments thereof according to the present invention increased the protein expression when expressed in ExpiCHO cells compared to mature wild type PH20, protein aggregation temperature increased by 4 ⁇ 11.5 °C, having high thermal stability and efficiently There is an effect that can be produced.
  • the PH20 variant or fragments thereof according to the present invention have improved protein folding in the results of substrate-gel assay, which is one of the experiments measuring the activity of hyaluronidase, resulting in faster rerenaturation than mature wild type PH20. There is an effect, and the effect of maintaining the original enzyme activity regardless of the cleavage position of the C-terminal.
  • the PH20 variant or fragments thereof according to the present invention have low immunogenicity, and thus can be repeatedly administered to the human body.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 발명은 히알루론산 가수분해 효소인 인간 히알루로니다제의 효소 활성과 열 안정성을 높이는 단백질 공학 기술분야에 관한 것으로, 서열번호 1의 야생형 PH20의 아미노산 서열 중에서 알파나선 부위 및/또는 그 연결 부위에 해당하는 부위에서 하나 이상의 아미노산 잔기의 치환과, 선택적으로 추가적인 N-말단 및/또는 C-말단의 아미노산 잔기가 결실된, 히알루로니다제 PH20 변이체 또는 이의 절편에 대한 것이다. 구체적으로는 서열번호 1의 서열을 갖는 야생형 PH20에 있어, T341A, T341C, T341G, S343E, M345T, K349E, L353A, L354I, N356E 및 I361T로 구성된 군에서 선택된 하나 이상의 잔기의 치환을 포함하고, 추가적으로 알파나선 8 부위 및/또는 알파나선 7 및 알파나선 8의 연결 부위에 위치한 아미노산의 치환을 포함하며, N-말단 및 C-말단 부위의 일부 아미노산이 결실된 PH20의 변이체 및 이의 절편에 관한 것이다.

Description

신규 히알루론산 가수분해 효소 변이체 및 이를 포함하는 약제학적 조성물
본 발명은 히알루론산 가수분해 효소인 인간 히알루로니다제의 효소 활성과 열 안정성을 향상시킨 신규 인간 히알루로니다제 변이체에 관한 것으로, 구체적으로는 서열번호 1의 아미노산 서열을 가지는 야생형 PH20, 바람직하게는 L36~S490의 아미노산 서열로 이루어진 성숙된 야생형 PH20의 알파나선 부위 및/또는 그 연결 부위에 해당하는 부위에서 하나 이상의 아미노산 잔기의 치환을 포함하고, 선택적으로 N-말단 및/또는 C-말단의 아미노산 잔기 일부가 결실된 히알루로니다제 PH20 변이체 또는 이의 절편, 이의 제조 방법 및 이를 포함하는 약제학적 조성물에 관한 것이다.
인간의 피부는 표피, 진피, 피하지방층으로 구성되어 있으며, 피부에는 6 종류의 글리코사미노글리칸(glycosaminoglycan)이 존재한다. 글리코사미노글리칸에는 히알루론산(hyaluronic acid), 콘드로이틴 황산염(chondroitin sulfate), 더마탄 황산염(dermatan sulfate), 헤파란 황산염(heparan sulfate), 헤파린(heparin), 케라탄 황산염(keratin sulfate)이 속한다.
글리코사미노글리칸은 이당류 형태의 당이 반복적으로 연결된 구조를 이룬다. 당의 길이는 글리코사미노글리칸 마다 다르지만 수백 개에서 수천 개에 해당한다. 글리코사미노글리칸 중에서 히알루론산은 체내 존재량의 절반 이상이 피부에 존재한다. 히알루론산은 세포막에 존재하는 히알루론산 합성효소(hyaluronan synthase)에 의해 합성되며 프로테오글리칸 (proteoglycan)과 결합하지 않고 단독으로 존재하며, 황산기가 없는 유일한 글리코사미노글리칸이다. 다른 글리코사미노글리칸들은 프로테오글리칸과 결합하며 황산기를 가지고 있다. 히알루론산은 글루크론산(glucuronic acid)과 N-아세틸글루코사민(N-acetylglucosamine)이 β-1,3 결합에 의해 연결되어 있고, 이러한 이당류가 대략 5,000번 반복된다. N-아세틸글루코사민과 글루크론산 사이는 β-1,4 결합에 의해 연결되어 있다. 인간의 몸에서 대략 1/3 정도(5 g)의 히알루론산은 매일 분해되는 것으로 알려져 있다.
히알루로니다제는 세포외기질(extracellular matrix)에 위치한 히알루론산을 분해하는 효소이다. 인간에는 6 종류의 히알루로니다제가 존재하는 것으로 알려져 있다 (Hyal1, Hyal2, Hyal3, Hyal4, HyalPS1 그리고 PH20/SPAM1). 인간에서 Hyal1과 Hyal2은 대부분의 조직에서 발현되며, PH20/SPAM1 (이하 PH20)은 정자의 세포막과 첨체(acrosome) 막에 발현된다. 그렇지만 HyalPS1은 pseudogene으로 발현되지 않는다. 히알루로니다제는 히알루론산을 절단하는 방식에 따라 3 종류로 나누어진다. H2O를 사용하여 N-아세틸글루코사민과 글루크론산 사이의 β-1,4 결합을 절단하는 효소(EC 3.2.1.35)와 β-1,3 결합을 절단하는 효소(EC 3.2.1.36), 그리고 H2O를 사용하지 않고 β-1,4 결합을 절단하는 세균의 히알루로니다제(EC 4.2.99.1)로 나누어진다.
Hyal1의 촉매 아미노산 잔기는 D129와 E131이며, substrate-assisted catalysis 방법으로 히알루론산을 가수분해한다. Hyal1은 산성인 pH 3~4에서 최적 활성을 나타내며, pH 4.5 이상에서는 효소 활성이 없다. PH20은 Hyal1과 달리 pH 3~8의 넓은 pH 구간에서 효소 활성을 나타낸다.
Arming 등은 PH20의 촉매 아미노산이 D111과 E113임을 밝혔다 (Arming et al., 1997). Arming 등은 신호 서열이 제거된 PH20의 첫 번째 아미노산인 Leu를 1번으로 명명하였으므로, 신호 서열에 포함되어 있는 PH20에서는 촉매 아미노산 잔기는 각각 D146과 E148에 해당한다.
히알루로니다제는 히알루론산을 가수분해하여 세포외기질의 히알루론산의 점성(viscosity)을 감소시켜 조직(피부)으로의 투과성(permeability)를 증가시킨다. 피부의 피하 (subcutaneous) 부위는 pH가 대략 7.0 ~ 7.5인 중성이므로, 여러 종류의 히알루로니다제 중에서 PH20이 임상에서 많이 사용되고 있다 (Bookbinder et al., 2006). PH20이 임상에서 사용되는 예로는 안과 수술에서 안구이완제 및 마취 주사 첨가제로 이용되고 있고, 항체치료제를 피하 주사할 때도 PH20을 병용 투여한다 (Bookbinder et al., 2006). 또한 종양세포에 히알루론산이 과발현 되는 특성을 이용하여 PH20으로 종양세포 세포외기질의 히알루론산을 가수분해하여 항암치료제의 종양세포 접근성을 높이는데 사용된다. 또한 조직 내에 과다하게 존재하는 체액 및 혈액의 재흡수를 촉진하는데도 사용된다.
PH20은 Lathrop 등에 의해 기니피그(guinea pig)의 정자에서 처음으로 동정되었고, 다른 많은 종의 정자에도 발현됨이 알려져 있다. 인간의 PH20 유전자는 Lin 등 및 Gmachl 등에 의해 클로닝 되었다. 인간 PH20는 서열번호 1에 따른 서열을 가지는 509개의 아미노산 잔기로 구성되어 있고, 기니피그의 PH20과는 60% 아미노산 서열이 일치한다. 인간의 PH20 효소는 SPAM1 (sperm adhesion molecule-1) 유전자로부터 코딩 되며 정자의 세포막 표면과 첨체의 막 안쪽에 PH20의 Ser490이 glycosylphosphatidylinositol (GPI)과 결합한 형태로 존재한다. 정자는 히알루론산이 많은 난자의 cumulus layer를 통과하여 난자 안으로 침투할 때 PH20을 이용하여 히알루론산을 가수분해한다. PH20은 정자 내 단백질 양의 1% 이내로 존재하며, 6개의 N-당화 자리를 가진다 (N82, N166, N235, N254, N368, N393).
현재 상업적으로 많이 이용되는 PH20은 소나 양의 고환에서 추출한 형태이다. 예로는 암파다제(Amphadase®) (소 히알루로니다제)와 비트라제(Vitrase®) (양 히알루로니다제) 등이 있다.
Bovine testicular hyaluronidase (BTH)는 소의 야생형 PH20에서 신호 펩티드(signal peptide)와 C-말단 56개의 아미노산을 단백질번역후변형(post-translational modification) 과정에서 제거한 형태이다. BTH 또한 당 단백질이며 아미노산을 포함한 전체 성분 중 만노오스(mannose)가 5%, 글루코사민(glucosamine)이 2.2%를 차지한다. 동물 유래 히알루로니다제를 인체에 고 용량으로 반복 투여할 경우 중화항체 (neutralizing antibody)가 생성될 수 있다. 동물에서 유래한 히알루로니다제에는 PH20 이외에도 다른 생체물질이 포함되어 있어서, 인체에 투여 시 알러지 반응을 일으키는 원인이 될 수 있다 (Bookbinder et al., 2006). 특히 소에서 추출한 PH20의 경우에는 광우병에 대한 우려로 생산과 이용에 제한이 있다. 이러한 문제점을 개선하기 위해 인간 PH20의 재조합 단백질에 대한 연구가 진행되었다.
인간 PH20의 재조합 단백질은 효모(P. pastoris), DS-2 곤충세포, 동물세포 등에서 발현된 것이 보고되었다. 곤충세포와 효모에서 생산된 재조합 PH20 단백질은 단백질번역후변형 과정에서 N-당화의 양상이 인간 PH20과 다르다.
히알루로니다제 중에서 단백질 구조가 밝혀진 것은 Hyal1 (PDB ID: 2PE4) (Chao et al., 2007)과 Bee venom hyaluronidase (PDB ID: 1FCQ, 1FCU, 1FCV)가 있다. Hyal1은 촉매 도메인과 EGF-유사 도메인의 2개 도메인으로 구성되어 있으며, 촉매 도메인은 단백질의 2차구조를 특징하는 알파나선과 베타-스트랜드가 각각 8번씩 반복되는 (β/α)8 형태를 이룬다 (Chao et al., 2007). EGF-유사도메인은 Hyal1의 C-말단이 다르게 스플라이싱 된 변이체에서 모두 보존되어 있다. Hyal1과 PH20의 아미노산 서열은 35.1% 일치하며, 아직 PH20의 단백질 구조는 밝혀지지 않았다.
인간 PH20의 재조합 단백질은 Halozyme Therapeutic사에 의해 개발되어 Hylenex 상품명으로 판매되고 있다 (Bookbinder et al., 2006; Frost, 2007).
PH20의 촉매 아미노산인 D146과 E148을 각각 아스파라진(D146N)과 글루타민(E148Q)으로 돌연변이시켰을 때 효소 활성이 없었다 (Arming et al., 1997). 또한 PH20의 R246을 글리신으로 치환하면 효소 활성의 90%가 감소하였고, E319를 글루타민, R322을 트레오닌으로 치환하면 효소 활성이 없어졌다. PH20의 C-말단 부위 아미노산 36개가 제거된(474-509 아미노산 절단) 변이체는 야생형 PH20보다 효소 활성이 75% 감소하였다. 이 돌연변이는 세포 밖으로 분비되지 않고, HeLa 세포 내에 잔존하였다. PH20에서 C-말단 134개 아미노산이 제거되면, PH20의 효소 활성이 없었으며, 세포 밖으로 분비되지 않았다. Frost 등에 의하면 PH20의 C-말단 477-483 부위는 수용성(soluble) 발현에 필수적이다 (Frost, 2007). Full-length PH20 (1~509) 또는 C-말단이 467에서 절단된 PH20 변이체의 활성은 C-말단이 477~483 중 한 곳에서 절단된 PH20 변이체의 10%에 불과하였다 (Frost, 2007).
한편, 재조합 PH20은 여전히 열 안정성이나 발현율이 충분치 못하여, 보다 향상된 특성을 가지는 히알루로니다제에 대한 수요가 큰 상황이다.
발명의 요약
본 발명의 목적은 야생형 PH20, 바람직하게는 성숙된 야생형 PH20에 비해 안정성, 효소 활성 및 발현율이 향상된 신규 히알루로니다제 PH20 변이체 또는 이의 절편을 제공하는 것이다.
본 발명의 다른 목적은 상기 히알루로니다제 PH20 변이체 또는 이의 절편을 포함하는 암 치료용 조성물 및 이를 이용한 치료방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 야생형 PH20, 바람직하게는 성숙된 야생형 PH20의 아미노산 서열에 있어, 알파나선 부위 및/또는 그 연결 부위에 해당하는 부위에서 하나 이상의 아미노산 잔기의 치환을 포함하고, 선택적으로 N-말단 및/또는 C-말단의 아미노산 잔기의 일부가 결실된 히알루로니다제 PH20 변이체 또는 이의 절편을 제공한다.
본 발명은 또한 상기 본 발명에 따른 히알루로니다제 PH20 변이체 또는 이의 절편을 포함하는 암 치료용 조성물 및 이를 이용한 치료방법을 제공한다.
도 1은 PH20의 단백질 3차구조 모델이다. 단백질 결정구조가 밝혀진 Hyal1 (PDB ID: 2PE4)을 주형으로 (Chao et al., 2007) Swiss-Model server (https://swissmodel.expasy.org/)에서 PH20의 단백질 3차구조를 모델링 하였다.
도 1A에는 PH20의 단백질 3차구조 모델과 촉매 아미노산인 D146과 E148가 표시되어 있다. PH20의 단백질 3차구조는 베타-스트랜드와 알파나선이 8번 반복되어 구성되어 있다.
도 1B는 PH20의 알파나선 8과 알파나선 8의 N-말단 방향 연결부위를 이루는 G340~I344 잔기가 위치한 에타(n) 8 루프를 나타낸다. G340, T341, L342, S343, I344 잔기가 각각 표시되어 있다.
도 1C에는 PH20의 알파나선 8에 위치한 아미노산 중 이웃한 2차구조와 상호작용을 이루는 아미노산 잔기(C351, Y357, N363)가 표시되어 있다. C351은 알파나선 1에 위치한 C60과 이황화결합을 이루고, Y357은 베타-스트랜드 7과 알파나선 7 사이에 위치한 F315와 소수성 상호작용을 이루고, N363은 알파나선 1에 위치한 D69 잔기와 수소결합을 이루고 있다.
도 2는 야생형(wild type : WT) PH20 및 본 발명에서 제작한 변이체들의 단백질 발현량을 비교한 것이다. WT 및 변이체들은 ExpiCHO 세포에서 transient transfection 방법으로 발현되었다. WT는 발현량이 16.1 mg/L이다. 변이체 HM1과 HM6에 기반한 변이체들은 단백질 발현량이 WT보다 많았으며, HM4와 HM7의 단백질 발현량이 가장 많았다. 변이체 HM6에서 추가적인 아미노산 치환(Y365F 및 I367L)을 도입한 HM11은 단백질 발현이 6.4 mg/mL로 감소하였다.
도 3은 변이체 HM1과 HM6에 대한 실험결과이다.
도 3A는 WT와 변이체 HM1, HM6의 정제 후 SDS-PAGE 결과이다. 정제는 HisTrap 컬럼과 Q Sepharose 컬럼을 사용하였다. WT와 변이체 HM1, HM6의 분자량은 ~70 kDa이다 (그림 설명: M, 분자량 마커; CS, 상등액; FT, flow-through, Elution, 용출 분획).
도 3B는 pH 7.0에서 turbidimetric assay로 측정한 WT와 변이체 HM1, HM6의 효소 활성 값이다. 본 발명에서 turbidimetric assay로 측정한 효소 활성은 비활성도(specific activity)로 나타내었다.
도 3C는 substrate-gel assay 방법으로 WT와 변이체 HM1, HM6의 효소 활성을 나타낸 것이다. 2.5% Triton X-100 (w/v)으로 4℃에서 SDS를 제거한 후 37℃에서 1~4 시간 동안 효소 반응을 진행하였다. 변이체 HM6는 WT와 변이체 HM1보다 빨리 renaturation되어 polyacrylamide gel에서 히알루론산을 가수분해하였다. 흰색의 밴드는 WT 및 변이체 단백질에 의해 히알루론산이 분해된 것이다.
도 3D는 substrate-gel assay 방법으로 WT와 변이체 HM1의 효소 활성을 pH 5~8에서 각각 나타낸 것이다. WT와 변이체 HM1은 pH 5~8 구간에서 활성을 나타내며, pH 5.0에서 가장 효소 활성이 높다. 변이체 HM1은 인간 혈청 알부민 또는 인간 Hyal1의 신호 펩티드를 가지고 있다. 흰색의 밴드는 WT 및 변이체 단백질에 의해 히알루론산이 분해된 것이다.
도 3E는 Phenyl 컬럼을 이용하여 WT와 변이체 HM1, HM6를 분리한 결과이다. 변이체 HM1과 HM6가 WT보다 더 빨리 Phenyl 컬럼에서 용출된다.
도 4는 Amide-80 컬럼을 이용하여 10분 및 1시간 후의 WT와 변이체 HM6가 분해한 히알루론산의 최종생성물을 분석한 결과이다.
도 5는 PH20의 G340~I344 구간 아미노산 돌연변이에 대한 실험결과이다.
도 5A는 변이체 HM7, HM8, HM9, HM10, HM21에 대한 HisTrap 컬럼 정제 후 SDS-PAGE 결과이다.
도 5B는 pH 7.0에서 turbidimetric assay 방법으로 WT와 변이체 HM6, HM8, HM9, HM10, HM21, HM7에 대한 효소 활성을 측정한 결과이다.
도 5C는 substrate-gel assay를 이용하여 WT와 변이체 HM6, HM8, HM9, HM10, HM21, HM7에 대한 효소 활성을 측정한 것이다. 도 5C의 아래의 막대그래프는 Alcian blue로 gel을 염색 후 밴드를 정량하여 효소 활성 정도를 나타낸 것이다. 흰색의 밴드는 WT 및 변이체 단백질에 의해 히알루론산이 분해된 것이다.
도 5D는 Phenyl 컬럼을 이용하여 WT와 변이체 HM8, HM9, HM10, HM21, HM7을 분석한 결과이다.
도 5E는 IEF gel을 이용하여 pH 3~7 구간에서 WT와 변이체 HM6, HM8, HM9, HM10, HM21, HM7을 등전점 값에 따라 분리한 결과이다.
도 6은 변이체 HM11에 대한 실험결과이다.
도 6A는 변이체 HM11에 대한 HisTrap 컬럼을 이용한 단백질 정제결과이다.
도 6B는 pH 7.0에서 turbidimetric assay를 이용하여 WT와 변이체 HM11의 효소 활성을 측정한 결과이다.
도 7은 N-말단이 절단된 PH20 변이체 HM40, HM13, HM41, HM24, HM42 및 HM25에 대한 실험결과이다.
도 7A는 PH20 변이체 HM40, HM13, HM41, HM24, HM42 및 HM25에 대한 HisTrap 컬럼을 이용한 단백질 정제결과이다.
도 7B는 PH20 변이체 HM40, HM13, HM41, HM24, HM42, HM25, HP61 및 HP62에 대한 ExpiCHO 세포에서의 발현량을 나타낸 것이다.
도 7C는 pH 7.0에서 turbidimetric assay로 PH20 변이체 HM40, HM13, HM41, HM24, HM42, HM25, HP61 및 HP62의 효소 활성을 비활성도로 나타낸 것이다.
도 7D는 PH20 변이체 HM40, HM13, HM41, HM24, HM42의 효소 활성을 substrate-gel assay로 나타낸 것이다. 흰색의 밴드는 WT 및 변이체 단백질에 의해 히알루론산이 분해된 것이다.
도 7E는 Phenyl 컬럼을 이용하여 WT와 변이체 HM40, HM13, HM41, HM24, HM42를 분석한 결과이다.
도 7F는 PH20 변이체 HM40, HM13, HM41, HM42에 대해 온도 증가에 따른 입자 크기의 변화를 나타낸 것이다.
도 8은 HM6를 주형으로 제작된 C-말단 절단 변이체인 HM14, HM15, HM16에 대한 실험결과이다.
도 8A는 변이체 HM14, HM15, HM16에 대한 HisTrap 정제 후 SDS-PAGE 결과이다. 대조군으로 WT와 변이체 HM6를 포함하였다.
도 8B는 pH 7.0에서 turbidimetric assay 방법으로 WT와 변이체 HM6, HM14, HM15, HM16의 효소 활성을 측정한 결과이다.
도 8C는 substrate-gel assay 방법으로 1, 2, 4시간 동안 WT와 변이체 HM6, HM14, HM15, HM16에 대한 효소 활성을 측정한 결과이다. 도 8C의 오른쪽 그래프는 효소 반응 1시간 후 Alcian-blue로 염색한 후 효소 활성을 막대 그래프로 나타낸 것이다. 흰색의 밴드는 WT 및 변이체 단백질에 의해 히알루론산이 분해된 것이다.
도 8D는 Phenyl 컬럼을 이용하여 WT와 변이체 HM6, HM14, HM15, HM16을 분석한 결과이다.
도 8E는 IEF gel을 이용하여 pH 3~7 구간에서 변이체 HM14, HM15, HM16을 등전점 값에 따라 분리한 결과이다.
도 9는 HM10을 주형으로 제작한 PH20 변이체 HM19와 HM20에 대한 실험 결과이다.
도 9A는 PH20 변이체 HM19와 HM20에 대한 HisTrap 컬럼을 이용한 단백질 정제결과이다.
도 9B는 PH20 변이체 HM19와 HM20에 대한 효소 활성을 pH 7.0에서 turbidimetric assay로 비교한 것이다.
도 9C는 WT와 HM10, HM19, HM20에 대해 substrate-gel assay로 37°C에서 1시간 동안 효소반응 후 Alcian blue 염색약으로 SDS gel을 염색한 것이다. 흰색의 밴드는 WT 및 변이체 단백질에 의해 히알루론산이 분해된 것이다.
도 10은 동적광산란법(Dynamic Light Scattering, 이하 DLS라고 함) 장비를 이용하여 WT와 PH20 변이체들의 응집온도를 측정한 값이다. 측정은 3회 반복하였고 평균 ±S.E. 값으로 나타내었다.
도 11은 아크릴아마이드 (0~0.5 M) 첨가 시 WT와 PH20 변이체의 트립토판 잔기의 형광변화를 측정한 후 Stern-Volmer plot으로 나타낸 것이다. 아미노산 중 트립토판은 295 nm에서 여기(excitation)되어 340 nm에서 최대 형광 파장을 방출한다(emission). 아크릴아마이드는 작은 분자로 단백질의 구조 내부로 침투하여 트립토판의 형광 방출을 quenching할 수 있다. 단백질의 구조가 유연할수록 아크릴아마이드에 의한 형광 quenching은 더 크다. F0는 아크릴아마이드가 없을 때의 형광 값이고, F는 아크릴아마이드 (0~0.5 M) 첨가 시의 형광 값이다. 형광 측정 값의 변화를 F0/F의 비율로 나타내었다.
도 11A는 WT와 변이체 HM1, HM4, HM6, HM7에 대한 Stern-Volmer plot이다.
도 11B는 WT와 변이체 HM14, HM15, HM16에 대한 Stern-Volmer plot이다.
도 12는 HM10 기반 PH20 변이체의 ExpiCHO 세포에서의 발현량을 나타낸 것이다.
도 12A는 각 변이체의 발현량을 그래프로 나타낸 것이다.
도 12B는 각 변이체의 발현량을 표로 나타낸 것이다. WT와 PH20 변이체들은 C-말단에 6xHis-tag을 가지고 있으며, HisTrap 컬럼 정제 후의 단백질 발현량을 mg/L로 표시하였다. HM30~HM33 변이체들은 ExpiCHO 세포에서 발현되지 않았다.
도 13은 HM29, HM30, HM31, HM32 및 HM33의 세포배양액에 대한 Western blot 결과이다. HM10 기반의 변이체인 HM29, HM30, HM31, HM32, HM33은 C-말단이 A467, C464, D461, C358 및 C455의 다음에서 절단된다. C-말단이 A467에서 절단된 HM29는 ExpiCHO 세포에서 발현되었으나, C-말단이 C464에서 절단되거나 더 짧을 경우에는 ExpiCHO 세포에서 발현되지 않았다. Primary antibody는 rabbit anti-PH20 polyclonal antibody (Abcam)이며 1:500으로 희석하였다. Secondary antibody는 Goat anti-rabbit IgG HRP이며 1:2,000으로 희석하였다.
도 14는 HM10을 주형으로 제작된 C-말단 절단 변이체들에 대해 실험결과이다.
도 14A는 HM10을 주형으로 제작된 C-말단 절단 변이체들에 대해 pH 7.0에서 turbidimetric assay로 효소 활성을 측정한 결과이다.
도 14B는 HM10을 주형으로 제작한 17개 PH20 변이체(HM43, HM44, HM45, HM20, HM19, HM35, HM36, HM37, HM38, HM39, HM47, HM48, HM49, HM50, HM51, HM52, HM10)들의 C-말단 절단 자리에 따른 효소 활성을 비교한 것이다.
도 14C는 HM10을 주형으로 제작한 PH20 변이체들 중에서 HM29, HM35, HM36, HM37, HM38, HM39, HM43, HM44 및 HM45에 대해 substrate-gel assay로 37°C에서 1시간 동안 효소반응 후 Alcian blue 염색약으로 SDS gel을 염색한 것이다. 흰색의 밴드는 WT 및 변이체 단백질에 의해 히알루론산이 분해된 것이다.
도 15는 ExpiCHO 세포에서 발현된 HP34 (도 15A)와 HP46 (도 15B)에 대한 단백질 정제 중 최종 컬럼을 거친 후의 SDS gel을 나타낸 것이다. HP34는 Q Sepharose, Butyl HP, Heparin, Blue Sepharose 컬럼의 4 단계 정제를 거쳤으며 SDS gel은 Blue Sepharose 컬럼 정제 후의 결과이다. HP46은 Q Sepharose, Butyl HP, Heparin 컬럼의 3 단계 정제를 거쳤으며, SDS gel은 Heparin 컬럼 정제 후의 결과이다.
도 16은 HM21을 주형으로 제작된 6xHis-tag이 없는 PH20 변이체인 HP34와 HP46의 효소 활성을 나타낸 것이다.
도 16A는 pH 7.0에서 turbidimetric assay 방법으로 WT와 변이체 HM21, HP34, HP46의 효소 활성을 측정한 결과이다.
도 16B는 pH 5.3에서 Morgan-Elson assay 방법으로 HW2와 변이체 HM21, HP34, HP46의 효소 활성을 측정한 결과이다. K m: Michaelis-Menten 상수, k cat: turnover number, k cat / K m: catalytic efficiency).
도 17은 HM21 기반의 변이체 특성 분석 결과를 나타낸 결과이다.
도 17A는 HM21을 주형으로 제작된 6xHis-tag이 없는 PH20 변이체인 HP34와 HP46에 대해 DLS로 응집온도를 측정한 것이다. 대조군으로 HW2와 HM21의 응집온도를 나타내었다.
도 17B는 HW2와 PH20 변이체 HP20, HP34, HP46에 대하여 substrate-gel assay로 1시간 동안 효소 활성을 측정한 결과이다.
도 17C는 pH 3.0과 pH 7.0에서 HW2와 HP46 시료를 14시간 동안 방치한 후, substrate-gel assay를 수행하였다. SDS-PAGE 후 2.5% Triton X-100 (w/v)으로 SDS 제거하고 37℃에서 1시간 동안 효소반응을 진행한 결과이다.
도 17D는 PH20 변이체 HM21, HM53, HM54, HM55, HM56, HP59 및 HP60에 대한 ExpiCHO 세포에서의 발현량을 나타낸 것이다.
도 17E는 pH 5.3에서 turbidimetric assay로 PH20 변이체 HM21, HM53, HM54, HM55, HM56, HP59 및 HP60의 효소 활성을 비활성도로 나타낸 것이다.
도 18은 PH20과 PH20 변이체의 각각 1.5 ng/mL과 15 ng/mL 농도 처리에서의 CD4+ T cell의 stimulating index 측정 결과이다.
도 19는 PH20과 PH20 변이체의 각각 1.5 ng/mL과 15 ng/mL 농도 처리에서의 CD8+ T cell의 stimulating index 측정 결과이다.
발명의 상세한 설명 및 바람직한 구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명은 야생형 PH20, 바람직하게는 성숙된 야생형 PH20의 아미노산 서열에 있어, 알파나선 부위 및/또는 그 연결 부위에 해당하는 부위, 바람직하게는 알파나선 8 부위(S347~C381) 및/또는, 알파나선 7과 알파나선 8 연결 부위(A333~R346)에서 하나 이상의 아미노산 잔기의 치환을 포함하고, 선택적으로 N-말단 및/또는 C-말단의 아미노산 잔기 일부가 절단되어 결실된 히알루로니다제 PH20 변이체 또는 이의 절편을 제공한다.
본 발명에 있어, 각 변이체의 아미노산 잔기의 위치는 서열번호 1에 따른 야생형 PH20의 아미노산의 위치에 따른다.
또한, 본 발명에 있어, “성숙된 야생형 PH20”은 서열번호 1의 야생형 PH20의 아미노산 서열에서, 시그널 펩타이드인 M1 내지 T35와, PH20의 실질적인 기능과는 무관한 A491~L509가 결실된, 서열번호 1의 L36~S490의 아미노산 잔기로 이루어진 단백질을 의미한다.
Figure PCTKR2019009215-appb-T000001
구체적으로, 본 발명에 따른 PH20 변이체 또는 이의 절편은 서열번호 1의 서열을 갖는 야생형 PH20에 있어, T341A, T341C, T341G, S343E, M345T, K349E, L353A, L354I, N356E 및 I361T로 구성된 군에서 선택된 하나 이상의 변이, 바람직하게는 아미노산 잔기의 치환을 포함하는 것을 특징으로 하며, 바람직하게는 T341A, T341C, L354I 및 N356E로 구성된 군에서 선택된 하나 이상의 아미노산 잔기의 치환을 포함하는 것을 특징으로 한다.
본 발명에 있어, “PH20 변이체”는 야생형 PH20의 서열에서 일부 아미노산 잔기의 변이, 바람직하게는 아미노산 잔기의 치환을 포함하는 것 뿐 아니라, 그러한 아미노산 잔기의 치환과 함께, N-말단 또는 C-말단에서의 일부 아미노산 잔기의 결실이 일어난 것을 모두 포함하는 개념으로 사용되며, “PH20 변이체 또는 이의 절편”이라는 표현과 실질적으로 동일한 개념으로 사용된다.
본 발명에서는 단백질 3차구조가 알려진 인간 히알루로니다제인 Hyal1 (서열번호 2)을 바탕으로 인간 PH20의 단백질 구조 모델링을 통하여 활성부위 바깥에 위치한 PH20의 단백질 3차구조를 연구한 결과, PH20의 알파나선 8 부위에 위치한 아미노산을 선택하여 Hyal1의 알파나선 8의 아미노산 서열로 치환하여 효소의 촉매작용에는 영향을 주지 않으면서도 단백질 구조의 열 안정성 강화를 시도하였다. 특히 알파나선 8은 PH20의 단백질 3차구조에서 바깥쪽에 위치하고 있으며, 이웃한 알파나선 또는 베타-스트랜드와 상호작용이 다른 알파나선에 비해 적다. 본 발명에 따르면, 인간 PH20의 알파나선 8 부위와, 알파나선 7과 알파나선 8의 연결 부위의 아미노산 서열을 친수성이 큰 Hyal1의 알파나선 8 부위와, 알파나선 7과 알파나선 8의 연결 부위의 아미노산 서열로 일부 치환하면, 중성 pH에서의 효소 활성과 단백질 응집온도(aggregation temperature, Tagg.)가 증가한다는 실험결과를 바탕으로, 야생형 PH20보다 효소 활성과 열 안정성이 증가한 새로운 PH20 변이체 또는 이의 절편을 제공할 수 있음을 규명하였다.
이에 따라 본 발명에 따른 PH20 변이체는 야생형 PH20(서열번호 1의 아미노산 서열을 가짐), 바람직하게는 성숙된 야생형 PH20의 아미노산 서열(서열번호 1의 아미노산 서열 중에서 L36~S490로 이루어진 서열을 가짐)에 있어, T341A, T341C, T341G, S343E, M345T, K349E, L353A, L354I, N356E 및 I361T로 구성된 군에서 선택된 하나 이상의 아미노산 잔기의 치환, 바람직하게는 T341A, T341C, L354I 및 N356E로 구성된 군에서 선택된 하나 이상의 아미노산 잔기의 치환을 포함하며,
알파나선 부위 및/또는 그 연결 부위에 해당하는 부위, 바람직하게는 알파나선 8 부위(S347~C381) 및/또는 알파나선 7과 알파나선 8 연결 부위(A333~R346), 더욱 바람직하게는 T341~N363, T341~I361, L342~I361, S343~I361, I344~I361, M345~I361 또는 M345~N363에 해당하는 아미노산 부위에서 하나 이상의 아미노산 잔기가 치환된 것을 특징으로 한다.
특히 본 발명에 따른 PH20 변이체는 상기 야생형 PH20, 바람직하게는 성숙된 야생형 PH20의 알파나선 8 부위(S347~C381) 및/또는, 알파나선 7과 알파나선 8의 연결 부위(A333~R346)가 서열번호 2의 서열을 가지는 Hyal1의 대응되는 부위(표 2 및 표 3 참조)의 아미노산 서열 중의 일부 아미노산 잔기로 치환될 수 있지만, 이에 한정되는 것은 아니다.
Figure PCTKR2019009215-appb-T000002
Figure PCTKR2019009215-appb-T000003
보다 구체적으로 본 발명에 따른 신규 PH20 변이체 또는 이의 절편은 야생형 PH20, 바람직하게는 성숙된 야생형 PH20의 아미노산 서열에 있어, L354I 및/또는 N356E의 아미노산 잔기의 치환을 포함하고,
추가적으로 T341 내지 N363 사이에서 선택된 하나 이상의 위치, 특히 T341, L342, S343, I344, M345, S347, M348, K349, L352, L353, D355, E359, I361 및 N363로 구성된 군에서 선택된 하나 이상의 위치에서의 아미노산 잔기의 치환을 포함하는 것이 바람직하지만, 이에 한정되는 것은 아니다.
상기 T341, L342, S343, I344, M345, S347, M348, K349, L352, L353, D355, E359, I361 및 N363로 구성된 군에서 선택된 하나 이상의 위치에서의 아미노산 잔기의 치환은 T341A, T341C, T341D, T341G, T341S, L342W, S343E, I344N, M345T, S347T, M348K, K349E, L352Q, L353A, D355K, E359D, I361T 및 N363G로 구성된 군에서 선택된 하나 이상인 것이 더욱 바람직하지만, 이에 한정되는 것은 아니다.
바람직하게는 본 발명에 따른 신규 PH20 변이체 또는 이의 절편은 M345T, S347T, M348K, K349E, L352Q, L353A, L354I, D355K, N356E, E359D 및 I361T의 아미노산 잔기의 치환을 포함하는 것을 특징으로 하며,
추가적으로 T341A, T341C, T341D, T341G, T341S, L342W, S343E, I344N 및 N363G로 구성된 군에서 선택된 하나 이상의 아미노산 잔기의 치환을 포함하는 것을 특징으로 할 수 있지만 이에 한정되는 것은 아니다.
보다 바람직하게는 본 발명에 따른 신규 PH20 변이체 또는 이의 절편은 다음으로 구성된 군에서 선택된 어느 하나일 수 있지만, 이에 한정되는 것은 아니다.
(a) T341S, L342W, S343E, I344N, M345T, S347T, M348K, K349E, L352Q,
L353A, L354I, D355K, N356E, E359D 및 I361T;
(b) L342W, S343E, I344N, M345T, S347T, M348K, K349E, L352Q, L353A,
L354I, D355K, N356E, E359D 및 I361T;
(c) M345T, S347T, M348K, K349E, L352Q, L353A, L354I, D355K, N356E, E359D, I361T 및 N363G;
(d) T341G, L342W, S343E, I344N, M345T, S347T, M348K, K349E, L352Q, L353A, L354I, D355K, N356E, E359D 및 I361T;
(e) T341A, L342W, S343E, I344N, M345T, S347T, M348K, K349E, L352Q, L353A, L354I, D355K, N356E, E359D 및 I361T;
(f) T341C, L342W, S343E, I344N, M345T, S347T, M348K, K349E, L352Q, L353A, L354I, D355K, N356E, E359D 및 I361T;
(g) T341D, L342W, S343E, I344N, M345T, S347T, M348K, K349E, L352Q, L353A, L354I, D355K, N356E, E359D 및 I361T;
(h) I344N, M345T, S347T, M348K, K349E, L352Q, L353A, L354I, D355K, N356E, E359D 및 I361T; 및
(i) S343E, I344N, M345T, S347T, M348K, K349E, L352Q, L353A, L354I, D355K, N356E, E359D 및 I361T
본 발명에 있어서, “S347”과 같이 1 글자(one letter)의 아미노산 잔기명과 숫자가 함께 기재된 표현은 서열번호 1에 따른 아미노산 서열에서의 각 위치에서의 아미노산 잔기를 의미한다.
예를 들어 “S347”은 서열번호 1의 아미노산 서열에서의 347번째 위치에서의 아미노산 잔기가 세린임을 의미한다.
또한, “S347T”는 서열번호 1의 347번째 세린이 트레오닌으로 치환된 것임을 의미한다.
본 발명에 따른 PH20 변이체 또는 이의 절편은, 특정 아미노산 잔기 위치에서, 아미노산 잔기가 보존적으로 치환된 변이체 또는 이의 절편들도 포함하는 의미로 해석된다.
본 명세서에서 “보존적 치환”이란 1개 이상의 아미노산을 해당 PH20 변이체의 생물학적 또는 생화학적 기능의 손실을 야기하지 않는 유사한 생화학적 특성을 갖는 아미노산으로 치환하는 것을 포함하는 PH20 변이체의 변형을 의미한다.
“보존적 아미노산 치환”은 아미노산 잔기를 유사한 측쇄를 갖는 아미노산 잔기로 대체시키는 치환이다. 유사한 측쇄를 갖는 아미노산 잔기 부류는 해당 기술분야에 규정되어 있으며, 잘 알려져 있다. 이들 부류는 염기성 측쇄를 갖는 아미노산(예를 들어, 라이신, 아르기닌, 히스티딘), 산성 측쇄를 갖는 아미노산(예를 들어, 아스파르트산, 글루탐산), 대전되지 않은 극성 측쇄를 갖는 아미노산(예를 들어, 글리신, 아스파라진, 글루타민, 세린, 트레오닌, 티로신, 시스테인), 비-극성 측쇄를 갖는 아미노산(예를 들어, 알라닌, 발린, 류신, 이소류신, 프롤린, 페닐알라닌, 메티오닌, 트립토판), 베타-분지된 측쇄를 갖는 아미노산(예를 들어, 트레오닌, 발린, 이소류신) 및 방향족 측쇄를 갖는 아미노산(예를 들어, 티로신, 페닐알라닌, 트립토판, 히스티딘)을 포함한다.
본 발명의 PH20 변이체는 보존적 아미노산 치환을 갖더라도 여전히 활성을 보유할 수 있음이 예상된다.
또한, 본 발명에 따른 PH20 변이체 또는 이의 절편은, 본 발명에 따른 PH20 변이체 또는 이의 절편과 실질적으로 동일한 기능 및/또는 효과를 가지며, 80% 또는 85% 이상, 바람직하게는 90% 이상, 더욱 바람직하게는 95% 이상, 가장 바람직하게는 99% 이상의 아미노산 서열 상동성을 가지는 PH20 변이체 또는 이의 절편들도 포함하는 의미로 해석된다.
본 발명에 따른 PH20 변이체 또는 이의 절편들은 성숙된 야생형 PH20보다 동물세포에서 발현이 증가하며, 단백질 접힘도 증가하여 열 안정성이 증가하는 효과를 나타내며, 나아가 열 안정성이 증가함에도 불구하고, 이들의 효소 활성은 성숙된 야생형 PH20보다 증가하거나 유사하였다.
한편, 성숙된 야생형 PH20의 C-말단 부위가 절단되면 효소 활성이 감소하는 것으로 알려져 있으나, 본 발명에 따른 PH20 변이체들은 단백질 접힘 증가와 열 안정성 증가로 인하여 C-말단이 절단됨에도 불구하고 성숙된 야생형 PH20보다 증가하거나 유사한 효소 활성을 유지하였으며, 또한 N-말단의 아미노산이 5개까지 절단되어도 효소 활성을 유지하여 N-말단의 P41 잔기부터가 단백질 발현과 효소 활성에 중요한 역할을 함을 보였다.
이에 따라 본 발명에 따른 PH20 변이체 또는 이의 절편은, 야생형 PH20의 알파나선 8 부위(S347~C381) 및/또는, 알파나선 7과 알파나선 8의 연결 부위(A333~R346)에서의 일부 아미노산 잔기의 치환과 함께, 추가적으로 C-말단 및/또는 N-말단에서의 일부 아미노산 잔기가 결실된 것을 특징으로 하지만, 이에 한정되는 것은 아니다.
한 측면에서, 본 발명에 따른 PH20 변이체 또는 이의 절편은, 서열번호 1의 아미노산 서열 N-말단의 M1 내지 P42로 구성된 군에서 선택된 아미노산 잔기의 앞, 바람직하게는 L36, N37, F38, R39, A40, P41 또는 P42의 아미노산 잔기 앞에서의 절단이 일어나 N-말단에서의 일부 아미노산 잔기가 결실되거나, 및/또는 C-말단의 V455 내지 L509로 구성된 군에서 선택된 아미노산 잔기 다음, 바람직하게는 V455 내지 S490로 구성된 군에서 선택된 아미노산 잔기 다음, 가장 바람직하게는 V455, C458, D461, C464, I465, D466, A467, F468, K470, P471, P472, M473, E474, T475, E476, P478, I480, Y482, A484, P486, T488 또는 S490의 아미노산 잔기 다음에서의 절단이 일어나 C-말단에서의 일부 아미노산 잔기가 결실된 것을 특징으로 할 수 있다.
상기 N-말단의 M1 내지 P42로 구성된 군에서 선택된 아미노산 잔기의 앞에서의 절단이 일어났다는 표현은 N-말단의 M1 내지 P42에서 선택된 아미노산 잔기의 바로 앞 아미노산 잔기까지가 절단되어 결실되었다는 의미이다.
예를 들어, L36, N37, F38, R39, A40, P41 또는 P42의 아미노산 잔기 앞에서의 절단이 일어났다는 표현은, 각각 서열번호 1의 서열에서 M1부터 L36의 바로 앞 아미노산 잔기인 T35까지, M1부터 N37의 바로 앞 아미노산 잔기인 L36까지, M1부터 F38의 바로 앞 아미노산 잔기인 N37까지, M1부터 R39의 바로 앞 아미노산 잔기인 F38 까지, M1부터 A40의 바로 앞 아미노산 잔기인 R39까지, M1부터 P41의 바로 앞 아미노산 잔기인 A40까지, M1부터 P42의 바로 앞 아미노산 잔기인 P41까지가 절단되어 제거되었다는 것을 의미한다.
또한, C-말단의 V455 내지 L509로 구성된 군에서 선택된 아미노산 잔기 다음에서 절단이 일어났다는 표현은 C-말단의 V455 내지 L509에서 선택된 아미노산 잔기의 바로 다음 아미노산 잔기부터 절단되어 결실되었다는 의미이다.
예를 들어, C-말단의 V455, C458, D461, C464, I465, D466, A467, F468, K470, P471, P472, M473, E474, T475, E476, P478, I480, Y482, A484, P486, T488 또는 S490의 아미노산 잔기 다음에서의 절단이 일어났다는 표현은 각각 서열번호 1의 서열에서 상기 V455, C458, D461, C464, I465, D466, A467, F468, K470, P472, M473, E474, T475, E476, P478, I480, Y482, A484, P486, T488 또는 S490 다음 아미노산 잔기부터 절단되어 제거되었음을 의미한다.
바람직하게는, 본 발명에 따른 신규 PH20 변이체 또는 이의 절편은 서열번호 60 내지 서열번호 115의 아미노산 서열로 구성된 군에서 선택될 수 있지만, 이에 한정되는 것은 아니다.
가장 바람직하게는, 본 발명에 따른 신규 PH20 변이체 또는 이의 절편은 서열번호 99의 아미노산 서열을 가지는 것을 특징으로 한다. 상기 서열번호 99의 아미노산 서열을 갖는 신규 PH20 변이체는 T341S, L342W, S343E, I344N, M345T, S347T, M348K, K349E, L352Q, L353A, L354I, D355K, N356E, E359D, I361T로 15개 아미노산 잔기를 치환하고, N-말단의 F38 잔기 앞에서 절단되며, C-말단의 F468 잔기 다음에서 절단된 것을 특징으로 한다.
본 발명에 따른 구체적 실시예에서 제작한 PH20 변이체에서 치환 또는 절단된 아미노산의 서열은 표 11에 기재된 바와 같다.
본 발명에서와 같이 단백질의 3차구조를 형성하는 2차구조인 알파나선과 그 연결부위의 아미노산 치환을 통해 PH20의 효소 활성과 열 안정성을 증가시키려는 연구는 보고된 바가 없다. 선행연구에서 야생형 PH20의 경우 C-말단에 위치한 아미노산 잔기의 절단 위치에 따라 효소 활성이 변하는 것으로 보고되었으나, 본 발명에서는 PH20의 2차구조를 이루는 특정 알파나선을 다른 인간 히알루로니다제의 알파 나선으로 치환하여 야생형 PH20보다 안정성이 높은 PH20 변이체를 제작하였고, 이 변이체들은 치환된 알파 나선 도메인이 PH20의 다른 2차 구조를 이루는 부분들과의 상호 작용이 야생형 PH20과 다른 양상을 나타냄으로써 C-말단 절단 위치에 상관없이 일정한 효소 활성을 지니는 변이체인 것을 특징으로 한다.
구체적인 실시예에서, 성숙된 야생형 PH20 대비 효소 활성과 열 안정성이 증가한, 본 발명에 따른 새로운 PH20 변이체 또는 이의 절편은 야생형 PH20, 바람직하게는 성숙된 야생형 PH20의 아미노산 서열에 있어, T341A, T341C, T341G, S343E, M345T, K349E, L353A, L354I, N356E 및 I361T로 구성된 군에서 선택된 하나 이상의 아미노산 잔기의 치환을 포함하며, 알파나선 8 부위(S347~C381) 및/또는, 알파나선 7과 알파나선 8의 연결 부위(A333~R346)에 위치한 일부 아미노산이 다른 아미노산으로 치환된 것을 특징으로 한다.
구체적으로 알파나선 8과, 알파나선 7과 알파나선 8의 연결 부위 아미노산 치환은 T341~N363, T341~I361, L342~I361, S343~I361, I344~I361, M345~I361 또는 M345~N363 구간에서의 일부 아미노산을 치환을 포함한다.
알파나선 8과 알파나선 7 및 알파나선 8의 연결 부위를 치환한 PH20 변이체에서 C-말단 절단의 효과를 알아보기 위해 3개의 PH20 변이체 HM6, HM10 및 HM21을 주형으로 선정하였다.
HM6는 M345~N363 구간의 아미노산을 Hyal1의 아미노산 서열로 치환한 변이체 (서열번호 1에서 M345T, S347T, M348K, K349E, L352Q, L353A, L354I, D355K, N356E, E359D, I361T이 치환됨)로, 추가적인 C-말단 절단을 포함하지 않는(즉, 성숙된 야생형 PH20과 같이 C-말단 아미노산 잔기가 S490인 형태) 본 발명에 따른 PH20 변이체 중에서 알파나선 8 부위와, 알파나선 7 및 알파나선 8의 연결 부위의 치환이 가장 적은 변이체이고,
HM10은 L342~I361 구간의 아미노산을 Hyal1의 아미노산 서열로 치환한 변이체 (서열번호 1에서 L342W, S343E, I344N, M345T, S347T, M348K, K349E, L352Q, L353A, L354I, D355K, N356E, E359D, I361T이 치환됨)로, 역시 추가적인 C-말단 절단은 포함하지 않으며 본 발명에 따른 PH20 변이체 중에서 성숙된 야생형 PH20과 유사한 효소 활성을 가지면서 열 안정성이 가장 높은 변이체이고,
HM21은 T341~I361 구간의 아미노산을 Hyal1의 아미노산 서열로 치환한 변이체(서열번호 1에서 T341S, L342W, S343E, I344N, M345T, S347T, M348K, K349E, L352Q, L353A, L354I, D355K, N356E, E359D, I361T이 치환됨)로, 역시 추가적인 C-말단 절단은 포함하지 않으며, pH 7.0에서 야생형 PH20보다 효소 활성이 약 2배 높은 변이체이다.
본 발명에서 제작한 HM6 기반의 PH20 변이체는 N-말단은 L36에서 절단되고, C-말단이 표 4에서와 같이 I465, F468, 또는 P471 다음에서 절단되었다.
Figure PCTKR2019009215-appb-T000004
HM10 기반의 PH20 변이체는 공통적으로 N-말단이 F38 잔기 앞에서 절단되고, C-말단은 표 5에서와 같이 V455, C4578, D46, C464, I465, D466, A467, F468, K470, P472, M473, E474, T475, E476, P478, I480, Y482, A484, P486, 또는 T488 잔기 다음에서 절단되었다.
Figure PCTKR2019009215-appb-T000005
Figure PCTKR2019009215-appb-I000001
HM10을 주형으로 알파나선 8 부위 및 알파나선 7과 알파나선 8 연결 부위 의 L342~I361 구간의 아미노산 치환을 포함하고, N-말단이 F38 잔기 앞에서 절단되고, C-말단이 I465, D466, A467, F468, K470, P472, M473, E474, T475, E476, P478, I480, Y482, A484, P486 또는 T488에서 절단된 변이체들의 예에서 보듯이 본 발명에 따른 PH20 변이체들은 C-말단의 절단 위치와 상관없이 성숙된 야생형 PH20과 유사한 효소 활성을 나타내었다.
HM21 기반의 PH20 변이체 2개는 표 6에서와 같이 공통적으로 N-말단이 F38 잔기 앞에서 절단되고, 표 6에서와 같이 C-말단은 F468 또는 K470 잔기 다음에서 절단되었다.
Figure PCTKR2019009215-appb-T000006
놀랍게도, 성숙된 야생형 PH20보다 효소 활성이 약 2배 높은 HM21을 주형으로 알파나선 8 및 알파나선 7과 알파나선 8 연결 부위의 T341~I361 구간의 아미노산 치환을 포함하고, N-말단이 F38 잔기 앞에서 절단되고, C-말단이 F468 또는 K470 다음에서 절단된 변이체들은 C-말단 절단 위치와 상관없이 HM21의 높은 효소 활성을 유지하였다.
Frost 등의 연구에서는 PH20의 C-말단이 477에 비해 앞에서 절단되어 더 짧을 때는 C-말단이 477 다음에서 절단된 변이체에 비해 효소 활성이 10%대로 감소하였으나 (Frost, 2007), 본 발명에서는 PH20의 알파나선 8과 그 연결 부위의 아미노산을 치환할 경우 단백질의 안정성 증가로 인하여 C-말단 절단위치와 상관없이 효소 활성이 유지되었다. 이 결과는 야생형 PH20의 C-말단 절단으로 인한 효소 활성의 감소 문제를 해결한 점에서 의의가 크다.
또한 본 발명에서는 기존 연구에서 알려지지 않았던 PH20의 N-말단 부위 아미노산의 영향을 연구하였다.
야생형 PH20의 알파나선 8 부위 및 알파나선 7과 알파나선 8 연결 부위(M345~I361)의 일부 아미노산 잔기를 Hyal1의 대응되는 알파나선 8 부위 및 알파나선 7과 알파나선 8 연결 부위의 아미노산 잔기로 치환한 HM6 변이체 (서열번호 1에서 M345T, S347T, M348K, K349E, L352Q, L353A, L354I, D355K, N356E, E359D, I361T로 치환되고, 추가적인 C-말단 절단은 포함하지 않음)에서 N-말단 절단 아미노산의 효과를 알아보기 위해 HM6를 주형으로 서열번호 1의 아미노산 서열에서 L36 내지 V47의 아미노산 잔기들이 FRGPLLPNR로 치환되거나, L36 내지 A52의 아미노산 잔기들이 FRGPLLPNRPFTTV로 치환된 변이체를 제작하였다. 또한 HM6를 주형으로 서열번호 1의 아미노산 서열에서 N-말단이 N37, F38, R39, A40, P41, 또는 P42 잔기의 앞에서 절단된 변이체 HM40, HM13, HM41, HM24, HM42 및 HM25를 제작하였다(표 7 참조).
Figure PCTKR2019009215-appb-T000007
그 결과, HM6의 N-말단이 N37, F38, R39, A40 또는 P41 잔기의 앞에서 절단될 경우에는 효소 활성에 큰 영향을 주지 않았으나, N-말단이 P42 잔기의 앞에서 절단될 경우에는 효소 활성이 현저히 감소하여 P41 이후의 PH20의 N-말단 부분이 단백질 발현과 효소 활성에 중요함을 보였다. 또한, HM6의 N-말단 L36~V47 또는 L36~A52 구간의 아미노산을 Hyal1의 아미노산으로 치환하였을 때는 ExpiCHO 세포에서 발현되지 않아 N-말단 부분이 단백질 발현에 중요함을 보였다.
또한, 본 발명에서는 PH20의 고유한 신호 펩티드가 아닌 동물세포에서 단백질 발현량이 많은 다른 단백질의 신호 펩티드를 이용하여 재조합 PH20 단백질의 발현을 향상시키고자 하였다.
이에 따라 또 다른 측면에서, 본 발명에 따른 신규 PH20 변이체는 M1 내지 T35의 야생형 PH20의 신호 펩티드를 대신하여, 추가적으로 N-말단에 표 8에 기재된 바와 같은 서열번호 3에 따른 MATGSRTSLLLAFGLLCLPWLQEGSA의 아미노산 서열을 갖는 인간 성장호르몬 유래의 신호 펩티드, 서열번호 4에 따른 MKWVTFISLLFLFSSAYS의 아미노산 서열을 갖는 인간 혈청 알부민 유래의 신호 펩티드, 또는 서열번호 5에 따른 MAAHLLPICALFLTLLDMAQG의 아미노산 서열을 갖는 인간 Hyal1 유래의 신호 펩티드를 포함하는 것을 특징으로 하지만, 이에 한정되는 것은 아니다.
상기 “M1 내지 T35의 야생형 PH20의 신호 펩티드를 대신”한다는 의미는 야생형 PH20의 신호 펩티드의 일부 또는 전부가 결실되어 야생형 PH20의 신호 펩티드의 기능을 수행하지 못하는 경우를 의미하며, 추가적으로 N-말단의 일부가 더 결실된 경우, 예를 들어 N37, F38, R39, A40, P41 또는 P42 잔기 앞에서의 절단이 일어나 야생형 PH20의 신호 펩티드와 함께 추가적인 N-말단의 결실이 일어난 경우를 포함하는 의미로 사용된다.
Figure PCTKR2019009215-appb-T000008
본 발명은 다른 측면에서, 본 발명에 따른 신규 PH20 변이체를 포함하는 암 치료용 조성물 및 이를 이용한 암 치료방법을 제공한다.
본 발명에 따른 신규 PH20 변이체로 치료가능한 암 또는 암종은 특별히 제한되지 않으며, 고형암 및 혈액암을 모두 포함한다. 이러한 암의 예로는 흑색종 등의 피부암, 간암, 간세포암(hepatocellular carcinoma), 위암, 유방암, 폐암, 난소암, 기관지암, 비인두암, 후두암, 췌장암, 방광암, 대장암, 결장암, 자궁경부암, 뇌암, 전립선암, 골암, 갑상선암, 부갑상선암, 신장암, 식도암, 담도암, 고환암, 직장암, 두경부암, 경추암, 요관암, 골육종, 신경아세포종, 섬유육종, 횡문근육종, 성상세포종, 신경모세포종 및 신경교종으로 이루어진 군에서 선택될 수 있지만, 이에 한정되는 것은 아니다. 바람직하게는 본 발명의 조성물로 치료할 수 있는 암은 대장암, 유방암, 폐암 및 신장암으로 구성된 군에서 선택될 수 있지만, 이에 한정되는 것은 아니다.
상기 조성물은 약학 조성물일 수 있다. 상기 약학 조성물은 약학적으로 허용 가능한 담체를 추가로 포함할 수 있으며, 상기 담체는 약물의 제제화에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘, 미네랄 오일 등으로 이루어진 군에서 선택된 1종 이상일 수 있으나, 이에 한정되는 것은 아니다. 상기 약학 조성물은 또한 약학 조성물 제조에 통상적으로 사용되는 희석제, 부형제, 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제로 이루어진 군에서 선택된 1종 이상을 추가로 포함할 수 있다.
상기 약학 조성물은 경구 또는 비경구로 투여할 수 있다. 비경구 투여인 경우에는 정맥내 주입, 피하 주입, 근육 주입, 복강 주입, 내피 투여, 국소 투여, 비내 투여, 폐내 투여 및 직장내 투여 등으로 투여할 수 있다. 경구 투여 시, 단백질 또는 펩타이드는 소화가 되기 때문에 경구용 조성물은 활성 약제를 코팅하거나 위에서의 분해로부터 보호되도록 제형화될 수 있다. 또한, 상기 조성물은 활성 물질이 표적 세포로 이동할 수 있는 임의의 장치에 의해 투여될 수 있다.
상기 약학적 조성물은 오일 또는 수성 매질중의 용액, 현탁액, 시럽제 또는 유화액 형태이거나 엑스제, 산제, 분말제, 과립제, 정제 또는 캅셀제 등의 형태로 제형화될 수 있으며, 제형화를 위하여 분산제 또는 안정화제를 추가적으로 포함할 수 있다.
특히, 본 발명에 따른 암 치료용 조성물은 다른 항암제와의 병용 치료 용도로 사용되는 것을 특징으로 한다.
본 발명에 따른 신규 PH20 변이체와 병용 치료 용도로 사용가능한 항암제는 화학항암제, 항체 형태의 항암제, RNAi, 세포 치료제 등이 바람직하지만 이에 한정되는 것은 아니다.
바람직하게는 본 발명에 따른 신규 PH20 변이체와 병용 치료 용도로 사용가능한 항암제는 면역항암제, 특히 바람직하게는 면역체크포인트 저해제(immune checkpoint inhibitor)이지만 이에 한정되는 것은 아니다.
본 발명은 다른 관점에서, 본 발명에 따른 PH20 변이체 또는 이의 변이체를 코딩하는 핵산에 관한 것이다.
본 명세서에서 사용되는 핵산은 세포, 세포 용해물(lysate) 중에 존재하거나, 또는 부분적으로 정제된 형태 또는 실질적으로 순수한 형태로 존재할 수도 있다. 핵산은 알칼리/SDS 처리, CsCl 밴드화(banding), 컬럼 크로마토그래피, 아가로스 겔 전기 영동 및 해당 기술분야에 잘 알려진 기타의 것을 포함하는 표준 기술에 의해 다른 세포 성분 또는 기타 오염 물질, 예를 들어 다른 세포의 핵산 또는 단백질로부터 정제되어 나올 경우 "단리"되거나 "실질적으로 순수하게 된" 것이다. 본 발명의 핵산은 예를 들어 DNA 또는 RNA일 수 있다.
본 발명은 또 다른 관점에서, 상기 핵산을 포함하는 벡터에 관한 것이다. 본 발명에 따른 PH20 변이체 또는 이의 절편의 발현을 위하여, PH20 변이체를 코딩하는 DNA를 표준 분자 생물학 기술(예를 들어 PCR 증폭 또는 PH20 변이체 를 발현하는 하이브리도마를 사용한 cDNA 클로닝)로 수득할 수 있으며, DNA가 전사 및 번역 제어 서열에 "작동되도록 결합"되어 발현 벡터 내로 삽입될 수 있다.
본 명세서에서 사용되는 용어 "작동되도록 결합"은 벡터 내의 전사 및 번역 제어 서열이 PH20 변이체 또는 이의 절편을 코딩하는 유전자의 전사 및 번역을 조절하는 의도된 기능을 하도록 PH20 변이체 또는 이의 절편을 코딩하는 유전자가 벡터 내로 라이게이션된다는 것을 의미할 수 있다. 발현 벡터 및 발현 제어 서열은 사용되는 발현용 숙주세포와 적합하도록 선택된다. PH20 변이체를 코딩하는 유전자는 표준 방법(예를 들어 PH20 변이체 또는 이의 절편을 코딩하는 유전자 단편 및 벡터 상의 상보성 제한 효소 부위의 라이게이션, 또는 제한 효소 부위가 전혀 존재하지 않을 경우 블런트(blunt) 말단 라이게이션)으로 발현 벡터 내로 삽입된다.
또한, 상기 재조합 발현 벡터는 숙주세포에서 PH20 변이체를 코딩하는 유전자의 발현을 제어하는 조절서열을 지닌다. "조절서열"은 PH20 변이체 또는 이의 절편을 코딩하는 유전자의 전사 또는 번역을 제어하는 프로모터, 인핸서 및 기타 발현 제어 요소(예를 들어 폴리아데닐화 신호)를 포함할 수 있다. 통상의 기술자는 형질전환시킬 숙주세포의 선택, 단백질의 발현 수준 등과 같은 인자에 따라 조절 서열을 달리 선택하여, 발현 벡터의 디자인이 달라질 수 있음을 인식할 수 있다.
본 발명은 또 다른 관점에서, 상기 핵산 또는 상기 벡터를 포함하는 숙주세포에 관한 것이다. 본 발명에 따른 숙주 세포는 동물세포, 식물세포, 효모, 대장균 및 곤충세포로 구성된 군에서 선택되는 것이 바람직하지만, 이에 한정되는 것은 아니다.
구체적으로는 본 발명에 따른 숙주세포는 대장균, 바실러스 서브틸리스(Bacillus subtilis), 스트렙토마이세스 속 (Streptomyces sp.), 슈도모나스 속(Pseudomonas sp.), 프로테우스 미라빌리스(Proteus mirabilis) 또는 스타필로코쿠스 속(Staphylococcus sp.)과 같은 원핵 세포일 수 있다. 또한, 아스페르길러스 속(Aspergillus sp.)과 같은 진균, 피치아 파스토리스(Pichia pastoris), 사카로마이세스 세레비지애(Saccharomyces cerevisiae), 쉬조사카로마세스 속(Schizosaccharomyces sp.) 및 뉴로스포라 크라사(Neurospora crassa)와 같은 효모, 그 밖의 하등진핵 세포, 및 곤충으로부터의 세포와 같은 고등 진핵생물의 세포와 같은 진핵 세포일 수 있다.
또한 식물이나 포유동물로부터 유래할 수 있다. 바람직하게는, 원숭이 신장 세포7(COS7: monkey kidney cells)세포, NSO 세포, SP2/0, 차이니즈 햄스터 난소(CHO: Chinese hamster ovary) 세포, W138, 어린 햄스터 신장(BHK: baby hamster kidney)세포, MDCK, 골수종 세포주, HuT 78 세포 및 HEK293 세포 등이 이용가능하지만 이에 한정되지 않는다. 특히 바람직하게는 CHO 세포가 사용될 수 있다.
상기 핵산 또는 상기 벡터는 숙주세포에 형질주입 또는 트랜스펙션(transfection)된다. "형질주입" 또는 "트랜스펙션시키기 위해 원핵 또는 진핵 숙주세포 내로 외인성 핵산(DNA 또는 RNA)을 도입하는 데에 통상 사용되는 여러 종류의 다양한 기술, 예를 들어 전기 영동법, 인산칼슘 침전법, DEAE-덱스트란 트랜스펙션 또는 리포펙션(lipofection) 등을 사용할 수 있다. 본 발명에 따른 PH20 변이체 또는 이의 절편을 발현시키기 위해 다양한 발현 숙주/벡터 조합이 이용될 수 있다. 진핵숙주에 적합한 발현 벡터로는 이들로 한정되는 것은 아니지만 SV40, 소 유두종바이러스, 아데노바이러스, 아데노-연관 바이러스(adeno-associated virus), 시토메갈로바이러스 및 레트로바이러스로부터 유래된 발현 조절 서열이 포함된다. 세균 숙주에 사용할 수 있는 발현 벡터에는 pET, pRSET, pBluescript, pGEX2T, pUC벡터, col E1, pCR1, pBR322, pMB9 및 이들의 유도체와 같이 대장균(Escherichia coli)에서 얻어지는 세균성 플라스미드, RP4와 같이 보다 넓은 숙주 범위를 갖는 플라스미드, λgt10과 λgt11, NM989와 같은 매우 다양한 파지 람다(phage lambda) 유도체로 예시될 수 있는 파지 DNA, 및 M13과 필라멘트성 단일가닥의 DNA 파지와 같은 기타 다른 DNA 파지가 포함된다. 효모 세포에 유용한 발현 벡터는 2℃ 플라스미드 및 그의 유도체이다. 곤충 세포에 유용한 벡터는 pVL941이다.
본 발명은 또 다른 관점에서, 숙주세포를 배양하여 본 발명에 따른 PH20 변이체 또는 이의 절편을 발현시키는 단계를 포함하는 본 발명에 따른 PH20 변이체 또는 이의 절편의 제조방법에 관한 것이다.
상기 PH20 변이체 또는 이의 절편을 발현할 수 있는 재조합 발현 벡터가 포유류 숙주세포 내로 도입될 경우, PH20 변이체 또는 이의 변이체는 숙주세포에서 발현되기에 충분한 기간 동안, 또는 더 바람직하게는 숙주세포가 배양되는 배양 배지 내로 PH20 변이체가 분비되게 하기에 충분한 기간 동안 숙주세포를 배양함으로써 제조될 수 있다.
경우에 따라서, 발현된 PH20 변이체는 숙주세포로부터 분리하여 균일하도록 정제할 수 있다. 상기 PH20 변이체의 분리 또는 정제는 통상의 단백질에서 사용되고 있는 분리, 정제 방법, 예를 들어 크로마토그래피에 의해 수행될 수 있다. 상기 크로마토그래피는 예를 들어, 친화성 크로마토그래피, 이온교환 크로마토그래피 또는 소수성 크로마토그래피에서 선택된 하나 이상의 조합일 수 있지만, 이에 한정되지는 않는다. 상기 크로마토그래피 이외에, 추가로 여과, 초여과, 염석, 투석 등을 조합되어 사용될 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 해당 기술분야에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실시예
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1. PH20 변이체 제작
PH20 변이체 제작을 위해 야생형 PH20의 cDNA (clone ID: hMU002604)를 한국인간유전자은행에서 구입하였다. 야생형 PH20은 아미노산 L36부터 S490까지를 암호화한다. 중합효소 연쇄반응(polymerase chain reaction, 이하 PCR이라고 함)을 이용하여 PH20의 유전자를 증폭하고 pcDNA3.4-TOPO vector의 Xho I과 Not I 제한효소 자리에 삽입하였다. ExpiCHO 세포에서의 발현을 위해 PH20의 고유한 신호 펩티드 대신 인간 성장호르몬, 인간 혈청 알부민, 또는 인간 Hyal1의 신호 펩티드 중 하나를 신호 펩티드로 사용하였다. HisTrap 컬럼을 이용한 단백질 정제를 위해 PH20 cDNA의 3'-말단에 6xHis-tag의 DNA 서열이 위치하게 하였다. PH20 변이체의 아미노산 치환은 PCR 방법을 이용하였고, 아미노산의 치환 확인은 DNA sequencing을 이용하였다.
PH20 변이체의 클로닝에 사용한 프라이머의 목록은 표 9에 정리되어 있고, 이의 구체적 서열은 표 10에 정리되어 있다.
Figure PCTKR2019009215-appb-T000009
Figure PCTKR2019009215-appb-I000002
Figure PCTKR2019009215-appb-I000003
Figure PCTKR2019009215-appb-T000010
Figure PCTKR2019009215-appb-I000004
Figure PCTKR2019009215-appb-I000005
Figure PCTKR2019009215-appb-I000006
Figure PCTKR2019009215-appb-I000007
효소 활성과 열 안정성이 증가한 PH20 변이체를 찾은 후, 6xHis-tag이 없는 형태로도 PH20 변이체의 cDNA를 제작하였다.
ExpiCHO 세포의 세포수가 6x106/mL이 되었을 때 야생형 또는 변이체 PH20의 cDNA가 pcDNA3.4-TOPO 벡터에 삽입된 플라스미드로 ExpiFectamine CHO Reagent를 이용하여 ExpiCHO 세포를 형질주입 시켰다. 세포배양액은 ExpiCHO Expression Medium (100~500 mL)을 이용하였다. 형질주입 후 ExpiCHO 세포를 총 6일간 130 rpm에서 진탕 배양하였으며, 이 기간 동안 37 ℃에서 1일 배양하고, 온도를 32 ℃로 낮추어서 5일간 더 배양하였다. 배양 완료 시 10,000 rpm에서 30분간 원심 분리하여 세포 상등액을 회수하였다.
ExpiCHO 세포에서 생산한 C-말단 6xHis이 붙은 야생형 및 변이체 PH20의 재조합단백질은 AKTA prime 장비를 이용하여 HisTrap 컬럼, Q Sepharose 컬럼, Phenyl 컬럼의 3 단계로 정제하였다.
HisTrap 컬럼을 이용한 단백질 정제를 위해서 버퍼 A (20 mM sodium phosphate, pH 7.5, 0.5 M NaCl)와 버퍼 B (20 mM sodium phosphate, pH 7.5, 0.5 M NaCl, 0.5 M imidazole)을 제조하였다. 단백질을 HisTrap 컬럼에 결합시키고, 비 특이적(non-specific)하게 결합한 단백질을 제거하기 위해 버퍼 A를 5 column volume (CV) 흘려주고, conductivity가 일정하게 유지되는 것을 확인한 후 20%의 버퍼 B를 5 CV 흘려 단백질을 용출하였다. 용출된 단백질을 Dialysis buffer (20 mM sodium phosphate, pH 7.5, 50 mM NaCl)를 이용하여 투석하였다. Q Sepharose 컬럼을 이용한 단백질 정제를 위해서 버퍼 A (20 mM sodium phosphate, pH 7.5)와 버퍼 B (20 mM sodium phosphate, pH 7.5, 0.5 M NaCl)를 제조하였다. 단백질을 Q Sepharose 컬럼에 결합시키고, 버퍼 A를 5 CV 흘려주어 비 특이적으로 결합한 단백질을 제거한 후, 0~100%의 농도 기울기로 버퍼 B를 5 CV 흘려주어 단백질을 용출하였다.
Phenyl 컬럼을 이용한 단백질 정제를 위해 버퍼 A (20 mM sodium phosphate, pH 7.0, 1.5 M (NH4)2SO4)와 버퍼 B (20 mM sodium phosphate, pH 7.0)를 제조하였다. 단백질을 Phenyl 컬럼에 결합시키고, 버퍼 A를 5 CV 흘려주어 비 특이적으로 결합한 단백질을 제거한 후, 0~100%의 농도 기울기로 버퍼 B를 5 CV 흘려주어 단백질을 용출하였다.
야생형과 변이체 PH20의 효소 활성을 turbidimetric assay와 substrate-gel assay, Morgan-Elson assay를 이용하여 측정하였다.
Turbidimetric assay는 히알루론산과 알부민(BSA) 혼합 시 생성되는 침전을 흡광도를 이용하여 측정하는 방법으로, PH20에 의해 히알루론산이 가수분해되면 알부민과 혼합 시 흡광도가 감소한다. 히알루로니다제 PH20 (Sigma)를 1, 2, 5, 7.5, 10, 15, 20, 30, 50, 60 Unit/mL되게 희석하여 각 튜브에 준비한다. 정제된 단백질 샘플을 enzyme diluent buffer (20 mM Tris·HCl, pH 7.0, 77 mM NaCl, 0.01% (w/v) bovine serum albumin)에 용해하여 100X, 300X, 600X, 1200X, 2400X 되게 희석하여 각 튜브에 준비한다. 새로운 튜브에 3 mg/mL인 히알루로니다제 용액의 농도가 0.3 mg/mL 되게 10배 희석하여 각 튜브의 부피가 180 ㎕가 되게 한다. 희석한 히알루로니다제 용액에 효소를 60 ㎕ 넣고 혼합하여 37℃에서 45분간 반응시킨다. 반응이 끝나면 96-well plate에 반응시킨 효소 50 ㎕와 acidic albumin solution 250 ㎕를 각 well에 넣고 10분간 진탕한 후 600 nm에서 분광 광도계로 흡광도를 측정한다.
Substrate-gel assay는 단백질을 10% SDS gel (0.17 mg/mL 히알루론산 포함)에서 1시간 동안 전기영동을 하고, 2.5% Triton X-100 (w/v)을 이용해서 4 ℃에서 2시간 동안 SDS를 제거한다. 이후 50 mM sodium phosphate, pH 7.0, 150 mM NaCl 버퍼에서 PH20의 최적 온도인 37 ℃에서 1~4 시간 동안 효소 반응을 하고, 0.5% Alcian Blue 시약을 이용해서 단백질을 염색하였다. 히알루론산과 결합하지 않은 Alcian Blue 시약은 de-staining solution을 이용하여 제거하였다. Alcian Blue에 염색된 SDS gel의 사진을 찍은 후, 밴드를 정량 하였다.
단백질의 열 안정성을 dynamic light scattering(DLS) 를 이용한 응집온도 측정, Sypro-Orange dye를 이용하여 real-time PCR에서 측정한 melting temperature (Tm), 특정 온도에서 일정 시간 방치 후 효소 활성을 측정하는 방법 등으로 측정하였다. DLS를 이용한 응집온도 측정은 빛의 산란을 이용하여 분자의 응집 현상을 측정하기 때문에 민감도가 높으며 일반적으로 단백질의 녹는점(Tm)보다 온도가 낮다.
본 발명에서 제작한 PH20 변이체에서 치환 또는 절단한 아미노산의 서열은 아래의 표 11과 같다.
본 발명에 따른 변이체 중에서, C-말단에 6xHis-tag이 부착된 변이체는 HM으로 명명하였고, 6xHis-tag이 없는 변이체는 HP로 명명하였으며, C-말단에 6xHis-tag이 부착된 성숙된 야생형 PH20 (L36-S490)은 WT로 명명하였고, 6xHis-tag이 없으면서 C-말단이 Y482 다음에서 절단된 성숙된 야생형 PH20 (L36~Y482)은 HW2로 명명하였다.
Figure PCTKR2019009215-appb-T000011
Figure PCTKR2019009215-appb-I000008
Figure PCTKR2019009215-appb-I000009
Figure PCTKR2019009215-appb-I000010
Figure PCTKR2019009215-appb-I000011
Figure PCTKR2019009215-appb-I000012
Figure PCTKR2019009215-appb-I000013
Figure PCTKR2019009215-appb-I000014
Figure PCTKR2019009215-appb-I000015
Figure PCTKR2019009215-appb-I000016
Figure PCTKR2019009215-appb-I000017
Figure PCTKR2019009215-appb-I000018
Figure PCTKR2019009215-appb-I000019
Figure PCTKR2019009215-appb-I000020
Figure PCTKR2019009215-appb-I000021
Figure PCTKR2019009215-appb-I000022
Figure PCTKR2019009215-appb-I000023
Figure PCTKR2019009215-appb-I000024
Figure PCTKR2019009215-appb-I000025
Figure PCTKR2019009215-appb-I000026
Figure PCTKR2019009215-appb-I000027
Figure PCTKR2019009215-appb-I000028
Figure PCTKR2019009215-appb-I000029
Figure PCTKR2019009215-appb-I000030
Figure PCTKR2019009215-appb-I000031
Figure PCTKR2019009215-appb-I000032
Figure PCTKR2019009215-appb-I000033
Figure PCTKR2019009215-appb-I000034
Figure PCTKR2019009215-appb-I000035
Figure PCTKR2019009215-appb-I000036
Figure PCTKR2019009215-appb-I000037
Figure PCTKR2019009215-appb-I000038
Figure PCTKR2019009215-appb-I000039
Figure PCTKR2019009215-appb-I000040
실시예 2. PH20의 변이체 HM1과 HM6의 제작
PH20의 아미노산 서열 M345~N363은 <도 1B>에 나타낸 것과 같이 단백질 3차구조 모델에서 알파나선 8 부위 및 알파나선 7과 알파나선 8 연결 부위에 해당한다. 알파나선 8의 아미노산 중 C351은 알파나선 1의 C60과 이황화결합을, Y357은 알파나선 7의 F315와 소수성 상호작용을, N363은 알파나선 1의 D69와 수소결합을 형성하여 알파나선 8과 이웃한 2차구조를 안정화 시키고 있다(도 1C).
PH20의 알파나선 8 부위 및 알파나선 7과 알파나선 8 연결 부위에 위치한 아미노산을 치환하여 WT보다 효소 활성과 열 안정성이 높은 변이체를 제작하기 위하여 M345~N363 구간에서 12개의 아미노산을 치환한 변이체 HM1과 Y365~V379 구간에서 7개의 아미노산을 치환한 HM2, M345~V379 구간의 아미노산 19개를 치환한 HM3를 각각 제작하였다. PH20의 알파나선 8에 위치한 아미노산 중 이황화 결합에 관여하는 C351과 소수성 상호작용에 관여하는 Y357은 치환하지 않았다. 변이체 HM1, HM2, HM3에서 치환한 아미노산의 서열은 표11에 표시되어 있다. 변이체 HM1, HM2, HM3의 유전자가 포함된 pcDNA3.4-TOPO 플라스미드로 ExpiCHO 세포에 형질주입 하였을 때, 변이체 HM1은 ExpiCHO 세포에서 발현되었고(도 3A), 변이체 HM2와 HM3는 발현되지 않았다. 단백질 발현 여부는 효소 활성 측정뿐만 아니라 인간 PH20에 대한 항체(Abcam, ab193009)를 이용하여 웨스턴 블롯(Western blot)으로도 확인하였다. 항체의 epitope은 Q173~P222 구간이다. 이 실험결과는 알파나선 8의 아미노산 서열 중에서도 변이체 HM2, HM3 제작에 사용한 Y365~V379 구간의 아미노산 치환은 단백질 구조에 심각한 영향을 초래하여 변이체 HM2, HM3의 단백질 발현이 되지 않은 것으로 여겨진다. 변이체 HM1은 야생형 WT보다 발현량이 3.4배 높았다 (도 2). 변이체 HM1은 N363을 글리신으로 치환하여 알파나선 8의 N363과 알파나선 1의 D69 사이의 수소결합을 제거한 것이다 (도 1C). N363과 D69 사이의 수소결합을 복원하기 위해 HM1에서 G363을 아스파라진으로 치환한 변이체 HM6를 제작하였다. 변이체 HM6에서 치환한 아미노산은 표 11에 표시되어 있다.
변이체 HM6는 ExpiCHO 세포에서 발현되었으며 발현량은 변이체 HM1과 유사하였다 (WT보다 3.4배 발현량 많음) (도 2). Turbidimetric assay 방법으로 효소 활성을 측정하였을 때 변이체 HM6는 WT보다 효소 활성이 1.3배 증가하였다 (도 3B). Substrate-gel assay는 일반적으로 SDS-PAGE 후 2.5% Triton X-100 (w/v)을 이용해서 SDS를 제거하고 37 ℃에서 1~4 시간 동안 반응하면서 히알루로니다제가 히알루론산을 가수분해하는 정도를 Alcian blue 염색약을 이용해서 측정한다. Substrate gel에서 SDS가 제거되면 단백질의 접힘(refolding)이 바로 일어나며, substrate이 단백질 접힘에는 영향을 주지 않는 것으로 알려져 있다. WT와 변이체 HM1, HM6의 효소 활성을 substrate-gel assay 방법으로 37 ℃에서 1~4시간 동안 측정하였을 때 HM6는 WT 및 변이체 HM1보다 높은 효소 활성을 나타내었다 (도 3C). 이 결과는 변이체 HM1과 HM6의 단백질 접힘(refolding)과 이로 인한 renaturation이 WT보다 빠르며, 제작한 변이체들이 WT보다 높은 효소 활성을 나타낸다는 것을 제시한다. PH20 자체의 신호 펩티드를 이용했을 때는 ExpiCHO 세포에서 단백질 발현량이 낮았으며, 이를 해결하기 위해 인간 혈청 알부민 또는 인간 Hyal1의 신호 펩티드 서열을 사용하였다. 도 3C에서 나타낸 것과 같이 변이체 HM1의 신호 펩티드로 인간 혈청 알부민과 인간 Hyal1의 신호 펩티드를 사용했을 때 단백질 발현이 증가하였으며, 두 종류의 신호 펩티드 사이에 큰 차이는 없었다. Substrate-gel assay 방법으로 효소 활성을 측정하였을 때 인간 혈청 알부민 신호펩티드를 가진 WT와 인간 혈청 알부민 또는 Hyal1의 신호 펩티드를 가진 변이체 HM1은 pH 5~8 구간에서 효소 활성을 나타내었다 (도 3D). 본 발명에서 HM1 이후에 제작한 변이체의 신호 펩티드로 인간 혈청 알부민의 신호 펩티드를 사용하였다.
WT와 변이체 HM1, HM6의 열 안정성을 응집온도로 비교하면 각각 46.5 ℃, 53.0 ℃, 50.5 ℃로 변이체 HM1과 HM6의 응집온도가 WT보다 각각 6.5 ℃와 4.0 ℃ 더 높다 (도 10). 응집온도 측정 결과는 substrate-gel assay에서 나타낸 단백질 refolding 결과와 일치한다. 이 결과들은 알파나선 8의 N363 잔기가 이루는 수소결합이 단백질 구조의 열 안정성과 효소 활성에 중요한 역할을 함을 처음으로 제시한다.
또한 Phenyl 컬럼을 이용하여 WT와 변이체 HM1, HM6의 친수성/소수성 특성을 비교하였을 때, HM1과 HM6는 모두 WT보다 더 앞쪽에서 용출되었으며 이는 변이체 HM1과 HM6가 아미노산의 치환으로 인해 WT보다 더 친수성 성질을 가짐을 제시한다. 그렇지만 Phenyl 컬럼에서 용출된 변이체 HM1과 HM6는 WT와는 달리 2개의 피크가 존재하며 PNGase F를 처리하였을때 동일한 분자량을 나타내었다. 이는 N-당화에 의한 차이로 사료된다 (도 3E).
실시예 3. PH20 변이체 HM4, HM7, HM8, HM9, HM 10, HM11, HM12의 제작
실시예 2에서 변이체 HM1과 HM6의 제작으로 M345~N363과 M345~I361 구간의 아미노산 치환이 PH20의 효소 활성과 열 안정성을 모두 증가시킨 것은 단백질 공학 관점에서 큰 진전을 이룬 것으로 여겨진다. 따라서 변이체 HM1과 HM6를 기반으로 N-말단과 C-말단 방향으로 더 확장하여 추가적으로 아미노산을 치환하였다.
먼저, 변이체 HM1과 HM6에서 치환한 아미노산을 포함하고 추가적으로 G340~I344 사이의 아미노산을 G340V, T341S, L342W, S343E, I344N으로 치환한 변이체 HM4, HM7을 각각 제작하였다. 변이체 HM4와 HM7에서 치환한 아미노산의 서열은 표11에 표시되어 있다. 변이체 HM4와 HM7은 ExpiCHO 세포에서 발현되었다. HM7에 대한 단백질 정제 결과는 도 5A에 나타나 있다. HM4, HM7은 단백질 발현이 WT보다 모두 6.3배 증가하였고, 응집온도는 각각 10 ℃와 11.5 ℃ 증가하였다. 그렇지만 turbidimetric assay 방법으로 측정한 HM4와 HM7의 효소 활성은 WT와 비교하여 대략 15%에 불과하였다 (도 5B). 일반적으로 효소 활성과 열 안정성은 교환(trade-off)의 관계가 성립하지만, 본 발명에서는 변이체 HM1과 HM6에서 도입한 치환에 의해서는 효소 활성은 유지되면서 열 안정성이 증가하였고, 변이체 HM4와 HM7에서는 과도한 열 안정성 증가로 인해 효소 활성이 감소한 것으로 여겨진다. 단백질 공학 관점에서 변이체 HM4, HM7에서 나타난 11.5 ℃의 응집온도 증가는 매우 의미 있는 결과이다. Stern-Volmer plot으로 단백질의 구조 유연성을 분석하였을 때 알파나선 8과 그 연결 부위를 치환한 HM1, HM6, HM4, HM7은 모두 WT보다 구조 유연성이 높았다(도 11A). 이 결과는 국소적 열 안정성의 증가가 단백질 구조 전체의 유연성을 증가 시켰음을 제시한다.
변이체 HM6와 HM7의 차이점은 G340~I344 사이의 아미노산이다. 변이체 HM7의 열 안정성 증가에 관여하는 아미노산을 알아보기 위해 변이체 HM6를 기반으로 I344N이 치환된 HM8, S343과 I344N이 치환된 HM9, L342W, S343E, I344N이 치환된 HM10, T341S, L342W, S343E 및 I344N이 치환된 HM21을 각각 제작하였다. 변이체 HM8, HM9, HM10, HM21에서 치환한 아미노산의 서열은 표11에 표시되어 있다. 변이체 HM8, HM9, HM10, HM21은 ExpiCHO 세포에서 발현되었다 (도 5A). 변이체 HM6를 기반으로 알파나선 8의 N-말단 방향으로 I344N, S343E, L342W 돌연변이를 도입할수록 변이체 HM8, HM9, HM10의 응집온도가 각각 52.5 ℃, 53 ℃, 55.5 ℃로 증가하였다 (도 10). 그렇지만 변이체 HM8, HM9, HM10에서는 WT와 유사한 효소 활성이 유지되었다 (도 5B). 이 결과는 변이체 HM8, HM9, HM10에서 도입된 아미노산 치환이 효소의 열 안정성에는 국소적인 영향을 주었지만, 효소 활성에는 큰 영향을 주지 않음을 제시한다. 그렇지만 HM21은 HM10보다 열 안정성이 감소하였지만, pH 7.0에서 WT보다 2배 높은 특성을 나타내었다. Substrate-gel assay에서 1 시간 동안 WT와 각 변이체를 기질과 반응시켰을 때 효소 활성은 HM21 > HM10 > HM9 > HM8 > HM6 > WT순으로 나타났다 (도 5C).
Phenyl 컬럼을 이용하여 변이체 HM7, HM8, HM9, HM10, HM21을 물성을 조사하였을 때, 이들 PH20 변이체들은 WT보다 더 빨리 용출되어 모두 친수성 성질이 있음을 제시한다. 그렇지만 아미노산 치환 위치에 주 피크의 패턴이 다르게 나타나는 특성을 보였다 (도 5D).
변이체 HM7의 경우에도 변이체 HM1, HM6와 마찬가지로 Phenyl 컬럼에서 2개의 피크로 나타나 2종류의 형태가 존재함을 제시한다.
등전점에 따른 WT와 변이체의 이동 양상을 알아보기 위해 등전위점 초점화(Isoelectric focusing, 이하 IEF라고 함) 분석을 실시하였다 (도 5E). IEF gel에서 WT와 변이체 HM6, HM8은 비슷한 이동 양상을 보이고, S343E 돌연변이가 포함된 변이체 HM9, HM10, HM21, HM7은 더 산성(acidic)쪽으로 이동하였다. 이 결과는 G340~I344 사이의 아미노산 중 S344E 치환에 의한 글루탐산의 도입으로 인해 단백질의 등전점에 변화가 일어남을 보인다.
그리고 변이체 HM6를 기반으로 알파나선 8의 C-말단 방향으로 확장하여 아미노산을 치환하여 변이체 HM11, HM12를 제작하였다. 변이체 HM11과 HM12에서 치환한 아미노산의 서열은 표 11에 표시되어 있다. 변이체 HM11는 ExpiCHO 세포에서 발현되었으나 발현량이 야생형 WT보다 낮았으며 (도 2), 변이체 HM12는 ExpiCHO 세포에서 발현되지 않았다. 변이체 HM11은 WT와 비교하여 32%의 활성을 나타내었다 (도 6B).
실시예 4. N-말단이 절단된 HM6 기반의 변이체 제작
PH20의 C-말단 부위는 PH20의 발현과 효소 활성에 중요한 역할을 하는 것으로 이미 알려져 있지만, PH20의 N-말단 부위 아미노산의 역할은 잘 알려져 있지 않다. PH20의 N-말단 부위 아미노산의 절단이 효소 활성에 어떤 영향을 주는지를 알아보기 위해 변이체 HM6를 기반으로, N-말단이 N37, F38, R39, A40, P41, P42에서 절단된 변이체 HM40, HM13, HM41, HM24, HM42 및 HM25을 제작하였다 (표 11). 그리고, 추가적으로 N-말단의 아미노산에 변형을 가한 HP61, HP62를 제작하였다.
HM40, HM13, HM41, HM24, HM42, HP61, HP62는 ExpiCHO 세포에서 발현되었으나 HM25는 발현되지 않았다(도 7A 및 도 7B). N-말단이 절단된 PH20 변이체들은 N 말단 시작하는 위치에 따라 효소 활성의 차이를 나타내었다. 아미노산 1~3개가 절단된 변이체 HM40, HM13, HM41은 주형인 HM6와 비교하여 효소 활성이 유사하지만, 아미노산의 4~5개 절단된 HM24와 HM42는 활성이 HM6 보다 조금 감소하였다 (도 7C). 그렇지만 6개의 아미노산이 절단된 HM25는 ExpiCHO에서 발현이 거의 안되었을 뿐만 아니라 효소 활성도 3.5 U/μg으로 현저히 낮았다. N-말단의 아미노산에 변형을 가한 HP61과 HP62에서는 효소 활성의 변화가 크지 않은 것으로 보인다.
Substrate-gel assay 방법(1시간 반응)으로 측정한 N-말단 절단 변이체의 효소 활성은 HM40, HM13, HM41의 경우 주형인 HM6의 효소 활성과 유사하였지만, HM24, HM42는 HM6의 효소 활성 보다 감소하였다 (도 7D). 6개의 아미노산이 절단된 HM25는 단백질량이 적어 분석하지 못하였다.
Phenyl 컬럼을 이용하여 변이체 HM40, HM13, HM41, HM24, HM42의 물성을 분석하였을 때, 이들 변이체들은 WT보다 먼저 컬럼에서 용출되어 친수성 성질을 나타내었다 (도 7E). 이 결과는 변이체 HM40, HM13, HM41, HM24, HM42이 변이체 HM6에 기반하여 제작되었고 L36~A40 잔기의 특성을 고려할 때, HM6의 친수성 특성을 따른 것으로 여겨진다.
DLS로 측정한 N-말단 절단 변이체의 응집온도는 아미노산이 시작하는 위치에 따라 변이체 간의 차이가 나타났다 (도 7F). 변이체 HM40, HM13, HM41, HM42는 N-말단이 절단되었음에도 50℃ 이상의 응집온도를 나타내어 주형인 HM6의 특성이 그대로 유지되었다. 그 중에서도 HM40과 HM42는 HM6 보다 3~4℃ 높은 응집온도를 나타내어 열 안정성이 증가한 것으로 사료된다. 또한, PH20의 N-말단 부위에 위치한 아미노산을 치환하였을 때 단백질 발현과 효소 활성에 미치는 영향을 알아보기 위해 PH20의 N-말단 아미노산 서열 36~47 (LNFRAPPVIPNV)를 FRGPLLPNR로 치환한 변이체 HM17과 PH20의 N-말단 아미노산 서열 36~52 (LNFRAPPVIPNVPFLWA)를 FRGPLLPNRPFTTV로 치환한 변이체 HM18을 제작하였다. 변이체 HM17와 HM18에서 치환한 아미노산의 서열은 표 11에 표시되어 있다. 변이체 HM17과 HM18은 ExpiCHO 세포에서 발현되지 않았다. N-말단에 위치한 5개 아미노산까지 절단되더라도 단백질 발현과 효소 활성을 보였으나 36~47 또는 36~52와 같이 더 많은 아미노산 서열의 치환은 단백질 접힘에 영향을 준다는 것을 제시한다.
실시예 5. PH20의 C-말단이 절단된 HM6 기반의 변이체 HM14, HM15, HM16 제작
PH20의 C-말단은 단백질 발현과 효소 활성에 중요한 부위로 알려져 있다. 본 발명에서는 변이체 HM6를 기반으로 C-말단의 아미노산을 각각 I465, F468, K471에서 절단한 변이체 HM14, HM15, HM16을 제작하였다. 변이체 HM14, HM15, HM16에서 치환한 아미노산의 서열은 표11에 표시되어 있다. 변이체 HM14, HM15, HM16은 ExpiCHO 세포에서 발현되었으며 (도 8A), 단백질 발현량은 HM16 > HM15 > HM14 순서로 C-말단의 아미노산이 많이 절단될수록 단백질 발현량이 감소하였다 (도 8A). 그렇지만 변이체 HM14, HM15, HM16의 효소 활성은 HM16 > HM14 (≡WT) > HM15 순서이었다(도 8B). Frost 등에 의하면 PH20의 C-말단 477-483 부위는 soluble expression에 필요하고, C-말단이 C467에서 절단될 경우 효소 활성은 C-말단이 477-483에서 절단된 PH20 변이체에 비해 10%에 불과하고, C-말단이 467보다 앞에서 절단될 경우 효소 활성이 없었다. 그렇지만 본 발명에서 제작한 C-말단이 절단된 변이체(HM14, HM15, HM16)들은 변이체 HM6를 기반으로 제작하여 M345~I361 구간의 아미노산 치환으로 인해 단백질 접힘이 증가하고, 이로 인해 열 안정성이 증가하였기 때문에 C-말단의 I465, F468, P471 다음에서 절단되더라도 WT와 효소 활성이 유사하였고, 현저한 효소 활성의 감소는 없었다.
WT와 변이체 HM14, HM15, HM16의 구조 유연성을 아크릴아마이드를 이용한 형광 quenching으로 조사하였다(도 11B). 변이체 HM14, HM15, HM16은 모두 WT보다 구조가 유연하였다. 이 결과는 변이체 HM6를 기반으로 제작한 C-말단 절단 변이체의 경우에도 구조 유연성을 유지함을 알 수 있다.
Turbidimetric assay 방법으로 측정한 변이체 HM14, HM15, HM16의 효소 활성은 substrate-gel assay에서도 확인되었다(도 8C).
Phenyl 컬럼을 이용하여 C-말단이 절단된 변이체의 물성을 분석하였을 때 변이체 HM14, HM15, HM16은 모두 WT보다 먼저 용출되어 친수성 성질을 나타내며 변이체들 사이의 친수성은 변이체 HM16 > HM14 > HM15 순이다(도 8D).
실시예 6. N-말단과 C-말단 아미노산 절단을 포함하는 HM10 기반의 변이체 HM19, HM20 제작.
본 발명에서 제작한 PH20 변이체들은 HM6를 기반으로 하고 G340~I344의 아미노산 추가 치환한 HM8, HM9, HM10이 WT보다 단백질 발현량, 효소 활성, 열 안정성 면에서 우수한 성능을 보였다. HM8, HM9, HM10 중에서 효소 활성과 열 안정성이 높은 HM10을 기반으로 N-말단이 F38에서 절단되고, C-말단이 K470 또는 F468에서 절단된 변이체 HM19와 HM20을 제작하였다. HM19와 HM20은 모두 ExpiCHO 세포에서 발현되었고, HisTrap 컬럼을 이용하여 정제되었다(도 9A). Turbidimetric assay 방법으로 효소 활성을 측정하였을 때, HM19와 HM20은 WT보다 10% 높은 효소 활성을 나타내었다(도 9B). Substrate-gel assay에서도 HM19와 HM20은 WT보다 높은 효소 활성을 나타내었다(도 9C).
실시예 7. HM10 기반의 PH20 변이체 특성 분석
HM10 기반의 C-말단 절단 변이체들은 C-말단의 길이가 짧아질 수록 ExpiCHO 세포에서 발현량이 감소하는 경향을 보였으며, C-말단의 길이가 C464 이하인 경우 발현 되지 않았다 (도 12). C464는 C437과 이황화 결합을 형성하여 단백질 구조 유지에 중요하기 때문에 반드시 필요하다.
C-말단이 464에서 절단되거나 또는 더 짧은 경우 ExpiCHO에서 발현이 되지 않는지를 확인하기 위해 Western blot 실험을 하였다. 도 13과 같이 HM30, HM31, HM32, HM33 변이체는 Western blot에서 탐지되지 않았다.
Turbidimetric assay 방법으로 측정한 HM10 기반의 C-말단 절단 변이체의 효소 활성은 도 14A와 도 14B에 나타나 있다. C-말단 절단 변이체들은 WT과 비교하여 ±20%의 효소 활성을 나타내었다. C-말단이 I480 이후에서 절단될 경우 효소 활성은 전반적으로 증가하였다. 그리고 HM19와 HM20에서 6xHis-tag을 제거한 변이체인 HP19와 HP20은 6xHis-tag이 있을 때 보다 효소 활성이 각각 23%, 9.6% 감소하는 것으로 나타나 6His-tag이 효소 활성에 영향을 주는 것으로 사료된다.
Substrate-gel assay 방법으로 HM10 기반의 C-말단 절단 변이체에 대한 효소 활성을 측정하였을 때 이들 변이체들은 WT 보다 높은 효소 활성을 나타내었으며, 주형인 HM10의 효소 활성과 유사하여 C-말단 길이에 따른 차이는 크지 않았다 (도 14C).
실시예 8. HM21 기반의 PH20 변이체 특성 분석
변이체 HP34는 4 단계의 컬럼을 거쳐 정제하였고 (도 15A), HP46은 3 단계의 컬럼을 거쳐 정제하였다 (도 15B). HP34와 HP46의 생산량은 각각 1.73 mg/L와 25.6 mg/L이었다. HP34와 HP46은 6xHis-tag이 없는 변이체로 6xHis-tag이 있는 변이체들과는 정제 과정이 달라 단백질의 발현량을 비교하는 것은 어렵다.
Turbidimetric assay에서 HP34와 HP46의 활성은 각각 45.6 U/μg과 47.2 U/μg으로 WT 보다 약 2배 높은 활성을 보였으며, 주형인 HM21 보다도 대략 10% 정도 활성이 증가하였다 (도 16A).
Morgan-Elson assay로 각 변이체의 kinetics를 측정하여 도 16B에 나타내었다. HP34와 HP46 촉매효율(k cat/K m)은 야생형 HW2 보다 1.7~2배 높아 specific activity가 WT 보다 높은 결과와 상통한다. Michaelis 상수(K m)는 이들 변이체가 HW2 보다 낮아 기질에 대한 친화도가 증가한 것으로 사료된다. 이 결과들로부터 HM21, HP34, HP46 변이체들은 기질과 강하게 결합할 뿐만 아니라 기질을 생성물로 바꾸는 효율 또한 높은 특성을 지닌 것으로 결론 내릴 수 있다. 이런 특성은 T341을 세린으로 치환한 효과이다. 341번에 위치한 트레오닌을 알라닌, 글리신, 아스파르트산 등의 아미노산으로 치환 할 경우 효소 활성에 영향을 미치는 것을 예측할 수 있다.
DLS로 측정한 HP34와 HP46의 응집온도는 각각 51.5℃와 51.0℃으로 나타나 주형인 HM21과 유사하였으며, HW2 보다 대략 5℃ 높은 열 안정성을 나타내었다 (도 17A). Substrate-gel assay로 측정한 변이체 HP34의 활성은 HP20와 유사하게 나타난 반면, HP46은 HP20 보다 높은 효소 활성을 나타내어 주형으로 HM10 보다 HM21의 단백질 접힘이 더 뛰어난 것으로 여겨진다 (도 17B).
야생형 HW2와 변이체 HP46를 pH 7.0과 pH 3.0 조건에서 하룻밤 동안 방치한 후 substrate-gel assay로 효소 활성을 비교하였을 때 HP46는 pH 7.0 뿐만 아니라 pH 3.0에서도 높은 활성을 나타내어 뛰어난 안정성을 보여 주었다 (도 17C).
HM53, HM54, HM55, HM56, HP59, HP60은 HM21 기반의 변이체 중 341번 위치의 아미노산에 대해 변이를 갖고 있는 변이체이다. 341번 위치의 아미노산이 변이됨에 따라 그 발현 정도와 활성에 다양한 영향을 미치는 것을 확인하였다 (도 17D, 도 17E).
실시예 9. PH20 변이체의 in vitro 면역 원성 분석
저분자 화학합성물질에 비해 큰 분자량을 갖는 바이오의약품은 인체내로 들어갔을 때 의도하지 않은 면역반응을 일으킬 위험성을 가지고 있다. 큰 분자량 바이오물질의 2차 구조나, 3차구조에서 접힘이나 인접 도메인과의 상호작용에 의해 만들어지는 외부와의 접촉면은 인체내의 면역작용계에 항원결정기(epitope)을 제공함으로써 바이오 물질에 대한 면역반응을 촉진시킬 수 있다. 이러한 면역반응은 약물에 대한 항체(anti-drug antibody: ADA)를 생성시킬 수 있으며, 이러한 반응에 의해 약물의 유효성을 저해시키거나, 약물에 대한 과민반응을 유발하거나, 약물의 인체내에서의 제거(clearance)를 촉진할 수 있다. 약물에 대한 면역반응은 따라서 임상 시험에서의 결과에 영향을 미칠 수 있으며, 장기간 사용시에 중대한 이상 반응을 유발할 수 있다. 이러한 면역 반응에는 여러 가지 요인들이 영향을 미칠 수 있는데, 약물 자체나 질병에 특이적 반응, 또는 투약 방법이나 개개인의 환자에 따른 요인에 의해 유발될 수 있다. 약물 자체에 의한 요인으로는 바이오 의약품의 인체내 펩타이드와의 유사/비유사성, posttranslational modification, 불순물, 응집체 형성, 제형의 특성 등이 있다. 환자 개개인에 따른 요인으로는 성별이나, 복용하고 있는 타 약물과의 반응성, HLA (human leukocyte antigen) type에 따른 유전적 요인 등이 있다.
이러한 면역원성 반응은 면역반응의 생성 원인에 관계없이 항원결정기를 인식하는 CD4+ T cell이나 CD8+ T cell에 의해 진행된다. 개개인에 있어서의 HLA class II 유전자 다양성 때문에, CD4+ T cell의 항원결정기는 개개인간에 차이가 있고, 따라서 건강한 기증자에 의해 제공된 각각의 혈액내 CD4+ T cell에서의 바이오 약물에 반응성은 임상과정에서 생겨날 수 있는 면역 반응성을 평가하는데 있어서 매우 중요한 판단기준이 될 수 있다. CD4+ T cell은 항원제시세포(antigen presenting cell; APC)가 자신의 II형 MHC(major histocompatibility complex)를 통해 제시된 항원을 인식하여 활성화된다. 활성화된 CD4+ T cell은 사이토카인을 방출하여 대식세포, 세포독성 T 세포, B 세포를 활성화시켜, 결과적으로 항체가 많이 생산되도록 한다. 이와는 달리 CD8+ T cell은 직접적인 세포독성을 가지고 있으며 항원에 감염된 세포, 손상되거나 제 기능을 상실한 세포를 직접 제거한다. CD8+ T cell은 T 세포 수용체를 가지고 있어, 모든 세포의 표면에 위치한 I형 MHC 분자에 붙어있는 특정한 항원의 펩타이드를 인식할 수 있다. CD8+ T cell은 또한 항원제시세포에 의해서 제시된 항원을 인식하여 활성화될 수 있으며, 이러한 활성화는 CD4+ T cell의 사이토카인에 더욱 증진될 수 있다. 따라서 in vitro에서 신규 바이오물질의 CD4+ T cell과 CD8+ T cell의 활성화 정도를 측정함으로써 임상과정에서 유발될 수 있는 면역원성 반응을 예측할 수 있다. 본 실시예에서는 PBMC로부터 CD4+ T cell과 CD8+ T cell을 분리한 후, 대조물질인 PH20과 PH20변이체 (HP46)를 각각 1.5 ng/mL과 15 ng/mL로 처리한 후, 활성화된 CD4+ T cell과 CD8+ T cell의 분포를 측정함으로써 대조물질과 비교하여 PH20변이체의 면역원성을 예측하고자 하였다. 각 T cell의 활성화 정도는 Stimulating Index를 이용하여 측정하였으며, Stimulating Index (SI)는 아래와 같이 정의된다. SI 값이 2 이상인 경우에 유의적 수준에서 활성화되었다고 판단할 수 있다.
Stimulating Index (SI) = (시험시료를 처리 후의 T cell 활성화도) /
(vehicle 처리 후의 T cell 활성화도)
면역원성 반응은 HLA type에 따라 달라질 수 있으며, 따라서 보다 다양한 HLA type에서의 반응을 측정하기 위해 실험은 10명의 healthy donor로부터 받은 PBMC에서 분리한 T cell을 이용하여 수행하였다. 사용된 10개 PBMC의 HLA type은 아래의 표 12 와 같다.
Figure PCTKR2019009215-appb-T000012
PH20과 PH20변이체에서의 CD4+와 CD8+ T cell의 활성화도 측정 결과는 표 13에 정리된 것과 같다. CD4+과 CD8+ T cell의 활성화도 측정 결과를 보면, PH20과 PH20 변이체 모두, 활성화도가 비교적 낮은 수준으로 판단된다. PH20의 경우, 2개의 실험에서 CD4+ T cell의 활성화도가 2 이상으로 측정되었으며, PH20변이체의 경우는 CD4+ T cell의 활성화가 측정되지 않았다. CD8+ T cell의 경우는 PH20에서 1개의 실험에서 활성화가 측정되었으며, PH20변이체의 경우도 1개의 실험에서 활성화가 측정되었다. 그러나 PH20의 경우는 1.5 ng/mL과 15 ng/mL 모두에서 SI값이 2 이상으로 측정되었으나 PH20변이체의 경우는 1.5 ng/mL에서의 2 이하의 SI값이, 15 ng/mL에서는 2 이상의 SI 값이 측정되었다(도 18 및 도 19 참조).
따라서 낮은 농도에서는 CD8+ T cell의 활성화도가 PH20변이체에서는 낮은 것으로 관찰되며, PH20변이체에 비해 PH20에서의 CD8+ T cell의 활성화도가 높은 것으로 판단된다. 위와 같은 결과에서 도출되는 결론은,
1) PH20과 PH20변이체의 CD4+ T cell 및 CD8+ T cell의 활성화도가 비교적 낮으며
2) PH20보다 PH20변이체에서의 CD4+ T cell과 CD8+ T cell의 활성화 가능성이 낮은 것으로 판단된다.
이와 같은 결과에서 PH20변이체의 임상에서의 면역원성 반응을 유발할 가능성은 PH20보다 낮을 것으로 예상된다.
Figure PCTKR2019009215-appb-T000013
본 발명에 따른 PH20 변이체 또는 이의 절편들은 성숙된 야생형 PH20과 비교하여 ExpiCHO 세포에서 발현되었을 때 단백질 발현량이 증가하였으며, 단백질 응집온도는 4~11.5 ℃ 정도 증가하여, 높은 열 안정성을 가지면서 또한 효율적으로 생산될 수 있는 효과가 있다.
또한, 본 발명에 따른 PH20 변이체 또는 이의 절편들은 히알루로니다제의 활성을 측정하는 실험 중의 하나인 substrate-gel assay의 결과에서 단백질의 접힘(refolding)이 향상되어 성숙된 야생형 PH20보다 빨리 renaturation이 되는 효과가 있으며, C-말단의 절단위치에 상관없이 원래의 효소 활성을 유지하는 효과가 있다.
나아가 본 발명에 따른 PH20 변이체 또는 이의 절편들은 낮은 면역원성을 가지고 있어, 인체에 반복 투여하는 것이 가능하다.
참고문헌
Arming, S., Strobl, B., Wechselberger, C., and Kreil, G. (1997). In vitro mutagenesis of PH-20 hyaluronidase from human sperm. Eur J Biochem 247, 810-814.
Bookbinder, L.H., Hofer, A., Haller, M.F., Zepeda, M.L., Keller, G.A., Lim, J.E., Edgington, T.S., Shepard, H.M., Patton, J.S., and Frost, G.I. (2006). A recombinant human enzyme for enhanced interstitial transport of therapeutics. J Control Release 114, 230-241.
Chao, K.L., Muthukumar, L., and Herzberg, O. (2007). Structure of human hyaluronidase-1, a hyaluronan hydrolyzing enzyme involved in tumor growth and angiogenesis. Biochemistry 46, 6911-6920.
Frost, G.I. (2007). Recombinant human hyaluronidase (rHuPH20): an enabling platform for subcutaneous drug and fluid administration. Expert Opin Drug Deliv 4, 427-440.
전자파일 첨부하였음.

Claims (29)

  1. 서열번호 1의 서열을 갖는 야생형 PH20에 있어,
    T341A, T341C, T341G, S343E, M345T, K349E, L353A, L354I, N356E 및 I361T로 구성된 군에서 선택된 하나 이상의 아미노산 잔기의 치환을 포함하는 것을 특징으로 하는 PH20 변이체 또는 이의 절편.
  2. 제1항에 있어서, T341A, T341C, L354I 및 N356E로 구성된 군에서 선택된 하나 이상의 아미노산 잔기의 치환을 포함하는 것을 특징으로 하는 PH20 변이체 또는 이의 절편.
  3. 제1항에 있어서, 서열번호 1의 야생형 PH20의 알파나선 부위 및/또는 그 연결부위에 해당하는 부위에서 하나 이상의 아미노산 잔기의 치환을 더 포함하는 것을 특징으로 하는 PH20 변이체 또는 이의 절편.
  4. 제3항에 있어서, 상기 알파나선 부위는 알파나선 8 부위(S347~C381)이고, 그 연결부위는 알파나선 7과 알파나선 8 연결 부위(A333~R346)인 것을 특징으로 하는 PH20 변이체 또는 이의 절편.
  5. 제4항에 있어서, 상기 알파나선 부위 및 그 연결부위에 해당하는 부위는 T341~N363, T341~I361, L342~I361, S343~I361, I344~I361, M345~I361 또는 M345~N363인 것을 특징으로 하는 PH20 변이체 또는 이의 절편.
  6. 제4항에 있어서, 알파나선 8 부위(S347~C381) 및/또는, 알파나선 7과 알파나선 8 연결 부위(A333~R346)가 Hyal1의 대응되는 부위의 아미노산 서열의 일부 아미노산 잔기로 치환된 것을 특징으로 하는 PH20 변이체 또는 이의 절편.
  7. 제1항에 있어서,
    L354I 및/또는 N356E의 아미노산 잔기의 치환을 포함하고,
    추가적으로 T341, L342, S343, I344, M345, S347, M348, K349, L352, L353, D355, E359, I361 및 N363로 구성된 군에서 선택된 하나 이상의 위치에서의 아미노산 잔기의 치환을 포함하는 것을 특징으로 하는 PH20 변이체 또는 이의 절편.
  8. 제7항에 있어서,
    L354I 및/또는 N356E의 아미노산 잔기 치환을 포함하고,
    추가적으로 T341A, T341C, T341D, T341G, T341S, L342W, S343E, I344N, M345T, S347T, M348K, K349E, L352Q, L353A, D355K, E359D, I361T 및 N363G로 구성된 군에서 선택된 하나 이상의 아미노산 잔기의 치환을 포함하는 것을 특징으로 하는 PH20 변이체 또는 이의 절편.
  9. 제7항에 있어서, M345T, S347T, M348K, K349E, L352Q, L353A, L354I, D355K, N356E, E359D 및 I361T의 아미노산 잔기의 치환을 포함하는 것을 특징으로 하는 PH20 변이체 또는 이의 절편.
  10. 제9항에 있어서, 추가적으로 T341A, T341C, T341D, T341G, T341S, L342W, S343E, I344N 및 N363G로 구성된 군에서 선택된 하나 이상의 아미노산 잔기의 치환을 포함하는 것을 특징으로 하는 PH20 변이체 또는 이의 절편.
  11. 제10항에 있어서, 다음으로 구성된 군에서 선택된 어느 하나의 아미노산 치환을 포함하는 것을 특징으로 하는 PH20 변이체 또는 이의 절편:
    (a) T341S, L342W, S343E, I344N, M345T, S347T, M348K, K349E, L352Q,
    L353A, L354I, D355K, N356E, E359D 및 I361T;
    (b) L342W, S343E, I344N, M345T, S347T, M348K, K349E, L352Q, L353A,
    L354I, D355K, N356E, E359D 및 I361T;
    (c) M345T, S347T, M348K, K349E, L352Q, L353A, L354I, D355K, N356E, E359D, I361T 및 N363G;
    (d) T341G, L342W, S343E, I344N, M345T, S347T, M348K, K349E, L352Q, L353A, L354I, D355K, N356E, E359D 및 I361T;
    (e) T341A, L342W, S343E, I344N, M345T, S347T, M348K, K349E, L352Q, L353A, L354I, D355K, N356E, E359D 및 I361T;
    (f) T341C, L342W, S343E, I344N, M345T, S347T, M348K, K349E, L352Q, L353A, L354I, D355K, N356E, E359D 및 I361T;
    (g) T341D, L342W, S343E, I344N, M345T, S347T, M348K, K349E, L352Q, L353A, L354I, D355K, N356E, E359D 및 I361T;
    (h) I344N, M345T, S347T, M348K, K349E, L352Q, L353A, L354I, D355K, N356E, E359D 및 I361T; 및
    (i) S343E, I344N, M345T, S347T, M348K, K349E, L352Q, L353A, L354I, D355K, N356E, E359D 및 I361T
  12. 제1항 내지 제11항 중 어느 한 항에 있어서, 추가적으로 C-말단 및/또는 N-말단에서의 일부 아미노산 잔기가 결실된 것을 특징으로 하는 PH20 변이체 또는 이의 절편.
  13. 제12항에 있어서, N-말단의 M1 내지 P42로 구성된 군에서 선택된 아미노산 잔기 앞에서 절단되어 일부 아미노산 잔기가 결실된 것을 특징으로 하는 PH20 변이체 또는 이의 절편.
  14. 제13항에 있어서, N-말단의 L36, N37, F38, R39, A40, P41 또는 P42 잔기 앞에서 절단되어 일부 아미노산 잔기가 결실된 것을 특징으로 하는 PH20 변이체 또는 이의 절편.
  15. 제12항에 있어서, C-말단의 V455 내지 L509로 구성된 군에서 선택된 아미노산 잔기 다음에서 절단되어 일부 아미노산 잔기가 결실된 것을 특징으로 하는 PH20 변이체 또는 이의 절편.
  16. 제15항에 있어서, C-말단의 V455 내지 S490로 구성된 군에서 선택된 아미노산 잔기 다음에서 절단되어 일부 아미노산 잔기가 결실된 것을 특징으로 하는 PH20 변이체 또는 이의 절편.
  17. 제16항에 있어서, C-말단의 V455, C458, D461, C464, I465, D466, A467, F468, K470, P471, P472, M473, E474, T475, E476, P478, I480, Y482, A484, P486, T488 또는 S490 잔기 다음에서 절단되어 일부 아미노산 잔기가 결실된 것을 특징으로 하는 PH20 변이체 또는 이의 절편.
  18. 제1항 내지 제17항 중 어느 한 항에 있어서, N-말단에 서열번호 3에 따른 MATGSRTSLLLAFGLLCLPWLQEGSA의 아미노산 서열을 갖는 인간 성장호르몬 유래의 신호 펩티드, 서열번호 4에 따른 MKWVTFISLLFLFSSAYS의 아미노산 서열을 갖는 인간 혈청 알부민 유래의 신호펩티드, 또는 서열번호 5에 따른 MAAHLLPICALFLTLLDMAQG의 아미노산 서열을 갖는 인간 Hyal1 유래의 신호 펩티드를 포함하는 것을 특징으로 하는 PH20 변이체 또는 이의 절편.
  19. 제1항 내지 제11항 중 어느 한 항에 있어서, 서열번호 60 내지 서열번호 115의 아미노산 서열로 구성된 군에서 선택되는 것을 특징으로 하는 PH20 변이체 또는 이의 절편.
  20. 제19항에 있어서, 서열번호 99의 서열을 갖는 PH20 변이체 또는 이의 절편.
  21. 제1항 내지 제20항 중 어느 한 항의 PH20 변이체 또는 이의 절편을 포함하는 암 치료용 조성물.
  22. 제21항에 있어서, 다른 항암제와의 병용 치료 용도로 사용되는 것을 특징으로 하는 암 치료용 조성물.
  23. 제22항에 있어서, 상기 다른 항암제는 면역항암제인 것을 특징으로 하는 암치료용 조성물.
  24. 제22항에 있어서, 상기 면역항암제는 면역체크포인트 저해제(immune checkpoint inhibitor)인 것을 특징으로 하는 암 치료용 조성물.
  25. 제1항 내지 제20항 중 어느 한 항의 PH20 변이체 또는 이의 절편을 코딩하는 핵산.
  26. 제25항에 따른 핵산을 포함하는 재조합 발현 벡터.
  27. 제26항에 따른 재조합 발현 벡터로 형질전환된 숙주세포.
  28. 제27항에 있어서, 동물세포, 식물세포, 효모, 대장균 및 곤충세포로 구성된 군에서 선택된 것임을 특징으로 하는 숙주세포.
  29. 제28항에 따른 숙주세포를 배양하는 단계를 포함하는 PH20 변이체 또는 이의 절편의 제조방법.
PCT/KR2019/009215 2018-07-25 2019-07-25 신규 히알루론산 가수분해 효소 변이체 및 이를 포함하는 약제학적 조성물 WO2020022791A1 (ko)

Priority Applications (13)

Application Number Priority Date Filing Date Title
BR112020019041-1A BR112020019041A2 (pt) 2018-07-25 2019-07-25 variantes de ph20 ou fragmento da mesma, ácido nucleico, vetor de expressão recombinante, célula hospedeira e composição para tratamento de câncer
US16/628,258 US20210155913A1 (en) 2018-07-25 2019-07-25 Novel hyaluronidase variants and pharmaceutical composition comprising the same
CN201980023392.4A CN111971387A (zh) 2018-07-25 2019-07-25 新型透明质酸水解酶突变体和包含其的药物组合物
RU2020130922A RU2766680C1 (ru) 2018-07-25 2019-07-25 Новые варианты гиалуронидазы и содержащая их фармацевтическая композиция
MX2020009824A MX2020009824A (es) 2018-07-25 2019-07-25 Nuevas variantes de hialuronidasa y composicion farmaceutica que comprende la misma.
JP2020500863A JP7204729B2 (ja) 2018-07-25 2019-07-25 新規なヒアルロン酸加水分解酵素変異体およびそれを含む薬学組成物
AU2019311658A AU2019311658B2 (en) 2018-07-25 2019-07-25 Novel hyaluronidase variants and pharmaceutical composition comprising the same
EP19827585.1A EP3636752A4 (en) 2018-07-25 2019-07-25 NEW HYALURONIC ACID HYDROLYZING ENZYMUTANTS AND THE PHARMACEUTICAL COMPOSITION CONTAINING THIS
CA3093885A CA3093885A1 (en) 2018-07-25 2019-07-25 Novel hyaluronidase variants and pharmaceutical composition comprising the same
KR1020207002955A KR102151388B1 (ko) 2018-07-25 2019-07-25 효소 활성과 열 안정성이 증가한 새로운 히알루론산 가수분해 효소 및 이의 제조방법
KR1020207024813A KR20210023798A (ko) 2018-07-25 2019-07-25 신규 히알루론산 가수분해 효소 변이체 및 이를 포함하는 약제학적 조성물
JP2022211105A JP2023052142A (ja) 2018-07-25 2022-12-28 新規なヒアルロン酸加水分解酵素変異体およびそれを含む薬学組成物
AU2023200324A AU2023200324A1 (en) 2018-07-25 2023-01-20 Novel hyaluronidase variants and pharmaceutical composition comprising the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0086308 2018-07-25
KR20180086308 2018-07-25
KR10-2019-0029758 2019-03-15
KR20190029758 2019-03-15

Publications (1)

Publication Number Publication Date
WO2020022791A1 true WO2020022791A1 (ko) 2020-01-30

Family

ID=69182377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/009215 WO2020022791A1 (ko) 2018-07-25 2019-07-25 신규 히알루론산 가수분해 효소 변이체 및 이를 포함하는 약제학적 조성물

Country Status (11)

Country Link
US (1) US20210155913A1 (ko)
EP (1) EP3636752A4 (ko)
JP (2) JP7204729B2 (ko)
KR (2) KR102151388B1 (ko)
CN (1) CN111971387A (ko)
AU (2) AU2019311658B2 (ko)
BR (1) BR112020019041A2 (ko)
CA (1) CA3093885A1 (ko)
MX (1) MX2020009824A (ko)
RU (1) RU2766680C1 (ko)
WO (1) WO2020022791A1 (ko)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021150079A1 (ko) 2020-01-23 2021-07-29 (주)알테오젠 안정성이 향상된 신규 히알루론산 가수분해 효소 변이체 및 이를 포함하는 약제학적 조성물
WO2022031093A1 (ko) 2020-08-07 2022-02-10 (주)알테오젠 재조합 히알루로니다제의 생산 방법
WO2022066832A1 (en) * 2020-09-24 2022-03-31 Merck Sharp & Dohme Corp. Stable formulations of programmed death receptor 1 (pd-1) antibodies and hyaluronidase variants and fragments thereof and methods of use thereof
WO2022146947A1 (en) 2020-12-28 2022-07-07 Bristol-Myers Squibb Company Antibody compositions and methods of use thereof
WO2022146948A1 (en) 2020-12-28 2022-07-07 Bristol-Myers Squibb Company Subcutaneous administration of pd1/pd-l1 antibodies
WO2023012515A2 (en) 2021-08-02 2023-02-09 argenx BV Subcutaneous unit dosage forms
WO2023042096A1 (en) 2021-09-14 2023-03-23 Takeda Pharmaceutical Company Limited Facilitated delivery of concentrated antibody formulations using hyaluronidase
AU2020248612B2 (en) * 2019-03-25 2023-11-23 Alteogen Inc. Pharmaceutical composition, comprising human hyaluronidase PH20 variant and drug, for subcutaneous injection
WO2023235847A1 (en) 2022-06-02 2023-12-07 Bristol-Myers Squibb Company Antibody compositions and methods of use thereof
WO2024025989A1 (en) * 2022-07-28 2024-02-01 Merck Sharp & Dohme Llc Pharmaceutical compositions of programmed death receptor 1 (pd-1) antibodies and rhuph20 or variants or fragments thereof
WO2024025986A1 (en) * 2022-07-28 2024-02-01 Merck Sharp & Dohme Llc Pharmaceutical compositions of programmed death receptor 1 (pd-1) antibodies and ph20 variants or fragments thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2405015T3 (pl) 2003-03-05 2016-09-30 Rozpuszczalna glikoproteina o aktywności hialuronizady (sHASEGP), sposób jej wytwarzania, jej zastosowania i zawierające ją kompozycje farmaceutyczne
RS59703B1 (sr) 2011-12-30 2020-01-31 Halozyme Inc Varijante ph20 polipeptida, njihove formulacije i upotrebe
CN115671267A (zh) 2021-07-23 2023-02-03 上海宝济药业有限公司 一种皮下抗生素药物组合物
AU2022376750A1 (en) * 2021-10-29 2024-05-16 Alteogen Inc. Pharmaceutical composition comprising human hyaluronidase ph20 and drug
WO2023168305A1 (en) 2022-03-01 2023-09-07 Exuma Biotech Corp. Viral particles with membrane-bound hyaluronidase
CN114573715A (zh) * 2022-03-14 2022-06-03 江苏雅酶医药科技有限公司 一种重组长效人透明质酸酶及其生产方法和应用
KR20230168902A (ko) * 2022-06-08 2023-12-15 (주)한국비엠아이 히알루로니다제 폴리펩티드 및 이의 용도
KR102621518B1 (ko) * 2022-06-29 2024-01-10 주식회사 오디스젠 중성 pH에서 활성을 나타내는 히알루로니다제 Hyal1변이체
WO2024005502A1 (ko) * 2022-06-29 2024-01-04 주식회사 오디스젠 중성 ph에서 활성을 나타내는 히알루로니다제 hyal1 변이체
KR20240038901A (ko) * 2022-09-16 2024-03-26 (주)피앤피바이오팜 신규한 히알루로니다제 ph-20 변이체 및 그 용도

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100143457A1 (en) * 2008-12-09 2010-06-10 Ge Wei Extended soluble PH20 polypeptides and uses thereof
WO2013102144A2 (en) * 2011-12-30 2013-07-04 Halozyme, Inc. Ph20 polypeptede variants, formulations and uses thereof
KR20130116386A (ko) * 2008-04-14 2013-10-23 할로자임, 아이엔씨 히알루로난 관련 질환 및 상태 치료용 변형된 히알루로니다제 및 그 용도
US20150010529A1 (en) * 2013-07-03 2015-01-08 Ge Wei Thermally stable ph20 hyaluronidase variants and uses thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2405015T3 (pl) * 2003-03-05 2016-09-30 Rozpuszczalna glikoproteina o aktywności hialuronizady (sHASEGP), sposób jej wytwarzania, jej zastosowania i zawierające ją kompozycje farmaceutyczne
AU2006320858A1 (en) 2005-11-10 2007-06-07 Receptor Biologix, Inc. Methods for production of receptor and ligand isoforms
DK2477603T3 (en) * 2009-09-17 2016-06-13 Baxalta Inc STABLE CO-DEVELOPMENT OF hyaluronidase and Immunoglobulin, AND METHODS OF USE THEREOF
PT3186281T (pt) * 2014-08-28 2019-07-10 Halozyme Inc Terapia de combinação com uma enzima de degradação de hialuronano e um inibidor de pontos de verificação imunológica
KR20230037691A (ko) * 2019-03-25 2023-03-16 (주)알테오젠 인간 히알루로니다제 ph20의 변이체와 약물을 포함하는 피하투여용 약학 조성물

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130116386A (ko) * 2008-04-14 2013-10-23 할로자임, 아이엔씨 히알루로난 관련 질환 및 상태 치료용 변형된 히알루로니다제 및 그 용도
US20100143457A1 (en) * 2008-12-09 2010-06-10 Ge Wei Extended soluble PH20 polypeptides and uses thereof
WO2013102144A2 (en) * 2011-12-30 2013-07-04 Halozyme, Inc. Ph20 polypeptede variants, formulations and uses thereof
US20150010529A1 (en) * 2013-07-03 2015-01-08 Ge Wei Thermally stable ph20 hyaluronidase variants and uses thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ARMING, S.STROBL, B.WECHSELBERGER, C.KREIL, G.: "In vitro mutagenesis of PH-20 hyaluronidase from human sperm", EUR J BIOCHEM, vol. 247, 1997, pages 810 - 814, XP002661048
BOOKBINDER, L.H.HOFER, A.HALLER, M.F.ZEPEDA, M.L.KELLER, G.A.LIM, J.E.EDGINGTON, T.S.SHEPARD, H.M.PATTON, J.S.FROST, G.I.: "A recombinant human enzyme for enhanced interstitial transport of therapeutics", J CONTROL RELEASE, vol. 114, 2006, pages 230 - 241, XP024957594, DOI: 10.1016/j.jconrel.2006.05.027
CHAO, K.L.MUTHUKUMAR, L.HERZBERG, O.: "Structure of human hyaluronidase-1, a hyaluronan hydrolyzing enzyme involved in tumor growth and angiogenesis", BIOCHEMISTRY, vol. 46, 2007, pages 6911 - 6920
FROST, G.I.: "Recombinant human hyaluronidase (rHuPH20): an enabling platform for subcutaneous drug and fluid administration", EXPERT OPIN DRUG DELIV, vol. 4, 2007, pages 427 - 440, XP008177677, DOI: 10.1517/17425247.4.4.427
MCATEE, CAITLIN O: "Emerging roles for hyaluronidase in cancer metastasis and therapy", ADVANCES IN CANCER RESEARCH, vol. 123, 2014, pages 1 - 27, XP055681774, DOI: 10.1016/B978-0-12-800092-2.00001-0 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2020248612B2 (en) * 2019-03-25 2023-11-23 Alteogen Inc. Pharmaceutical composition, comprising human hyaluronidase PH20 variant and drug, for subcutaneous injection
AU2020248612B9 (en) * 2019-03-25 2023-11-30 Alteogen Inc. Pharmaceutical composition, comprising human hyaluronidase PH20 variant and drug, for subcutaneous injection
WO2021150079A1 (ko) 2020-01-23 2021-07-29 (주)알테오젠 안정성이 향상된 신규 히알루론산 가수분해 효소 변이체 및 이를 포함하는 약제학적 조성물
WO2022031093A1 (ko) 2020-08-07 2022-02-10 (주)알테오젠 재조합 히알루로니다제의 생산 방법
CN115427562A (zh) * 2020-08-07 2022-12-02 阿特根公司 制备重组玻尿酸酶的方法
WO2022066832A1 (en) * 2020-09-24 2022-03-31 Merck Sharp & Dohme Corp. Stable formulations of programmed death receptor 1 (pd-1) antibodies and hyaluronidase variants and fragments thereof and methods of use thereof
WO2022146947A1 (en) 2020-12-28 2022-07-07 Bristol-Myers Squibb Company Antibody compositions and methods of use thereof
WO2022146948A1 (en) 2020-12-28 2022-07-07 Bristol-Myers Squibb Company Subcutaneous administration of pd1/pd-l1 antibodies
WO2023012515A2 (en) 2021-08-02 2023-02-09 argenx BV Subcutaneous unit dosage forms
WO2023042096A1 (en) 2021-09-14 2023-03-23 Takeda Pharmaceutical Company Limited Facilitated delivery of concentrated antibody formulations using hyaluronidase
WO2023235847A1 (en) 2022-06-02 2023-12-07 Bristol-Myers Squibb Company Antibody compositions and methods of use thereof
WO2024025989A1 (en) * 2022-07-28 2024-02-01 Merck Sharp & Dohme Llc Pharmaceutical compositions of programmed death receptor 1 (pd-1) antibodies and rhuph20 or variants or fragments thereof
WO2024025986A1 (en) * 2022-07-28 2024-02-01 Merck Sharp & Dohme Llc Pharmaceutical compositions of programmed death receptor 1 (pd-1) antibodies and ph20 variants or fragments thereof

Also Published As

Publication number Publication date
AU2019311658B2 (en) 2022-10-20
JP7204729B2 (ja) 2023-01-16
AU2023200324A1 (en) 2023-03-02
CN111971387A (zh) 2020-11-20
AU2019311658A1 (en) 2021-02-11
EP3636752A4 (en) 2021-04-28
US20210155913A1 (en) 2021-05-27
KR102151388B1 (ko) 2020-09-04
JP2021507676A (ja) 2021-02-25
EP3636752A1 (en) 2020-04-15
JP2023052142A (ja) 2023-04-11
BR112020019041A2 (pt) 2021-02-09
KR20210023798A (ko) 2021-03-04
AU2019311658A8 (en) 2021-03-25
CA3093885A1 (en) 2020-01-30
MX2020009824A (es) 2021-01-15
RU2766680C1 (ru) 2022-03-15
KR20200017538A (ko) 2020-02-18

Similar Documents

Publication Publication Date Title
WO2020022791A1 (ko) 신규 히알루론산 가수분해 효소 변이체 및 이를 포함하는 약제학적 조성물
WO2021150079A1 (ko) 안정성이 향상된 신규 히알루론산 가수분해 효소 변이체 및 이를 포함하는 약제학적 조성물
WO2020197230A1 (ko) 인간 히알루로니다제 ph20의 변이체와 약물을 포함하는 피하투여용 약학 조성물
WO2018062866A2 (en) CELL-PERMEABLE (CP)-Cas9 RECOMBINANT PROTEIN AND USES THEREOF
WO2017116205A1 (ko) 글루카곤, glp-1 및 gip 수용체 모두에 활성을 갖는 삼중 활성체의 지속형 결합체
WO2019125059A1 (ko) 신규한 구조를 갖는 치료학적 효소 융합단백질 및 이의 용도
WO2010123290A2 (ko) 체내 지속성을 유지함으로 체내 반감기가 증가된 단백질 또는 펩티드 융합체, 및 이를 이용하여 체내 반감기를 증가시키는 방법
WO2015108398A1 (ko) 지속형 인슐린 및 그 용도
WO2016028036A1 (en) Advanced macromolecule transduction domain (amtd) sequences for improvement of cell-permeability, polynucleotides encoding the same, method to identify the unique features of amtds comprising the same, method to develop the amtd sequences comprising the same
WO2018194380A2 (ko) Lrig-1 단백질에 특이적인 결합 분자 및 이의 용도
WO2017116207A1 (ko) Fgf21 아날로그, fgf21 결합체, 및 이의 용도
WO2019190293A1 (ko) 뇌 표적 지속성 단백질 결합체, 이의 제조 방법, 및 이를 포함하는 조성물
WO2019066570A1 (ko) 지속형 단쇄 인슐린 아날로그 및 이의 결합체
WO2022065913A1 (ko) 요산산화효소-알부민 접합체, 그 제조방법 및 용도
WO2020130749A1 (ko) 글루카곤, glp-1 및 gip 수용체 모두에 활성을 갖는 삼중 활성체 및 인슐린을 포함하는 약학 조성물
WO2020080853A1 (ko) Lrig-1 단백질에 특이적인 결합 분자 및 이의 용도
WO2016195394A1 (ko) 효모 세포벽 만노단백질 유래의 당사슬을 이용한 만노스-6-인산 당사슬이 부가된 당단백질의 제조방법
WO2019132579A2 (ko) 세포질 침투 항체에 융합된 rna 분해효소를 포함하는 면역독소
WO2022035201A1 (ko) Il-12 및 항-fap 항체를 포함하는 융합단백질 및 이의 용도
WO2019190291A1 (ko) 뇌 표적 지속형 치료학적 효소 결합체
WO2022010273A1 (ko) 보체 경로 억제제를 포함하는 융합단백질 및 이의 용도
WO2023121254A1 (ko) 인터류킨-2 융합단백질, 이의 제조방법 및 이를 포함하는 약학 조성물
WO2022103221A1 (ko) 치료학적 효소 융합단백질의 파브리병에 기인하거나 동반되는 신장질환 예방 및 치료 용도
WO2023224429A1 (ko) Light 단백질 및 항-fap 항체를 포함하는 융합단백질 및 이의 용도
WO2023282556A1 (ko) Arthrobacter globiformis 유래 요산산화효소-알부민 접합체, 그 제조방법 및 그 용도

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020500863

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207002955

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019827585

Country of ref document: EP

Effective date: 20200106

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19827585

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3093885

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020019041

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112020019041

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200923

ENP Entry into the national phase

Ref document number: 2019311658

Country of ref document: AU

Date of ref document: 20190725

Kind code of ref document: A