WO2020019589A1 - 柔性有机发光二极管显示器及其制作方法 - Google Patents

柔性有机发光二极管显示器及其制作方法 Download PDF

Info

Publication number
WO2020019589A1
WO2020019589A1 PCT/CN2018/115894 CN2018115894W WO2020019589A1 WO 2020019589 A1 WO2020019589 A1 WO 2020019589A1 CN 2018115894 W CN2018115894 W CN 2018115894W WO 2020019589 A1 WO2020019589 A1 WO 2020019589A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
planarization layer
organic light
uneven surface
light emitting
Prior art date
Application number
PCT/CN2018/115894
Other languages
English (en)
French (fr)
Inventor
邬可荣
崔昇圭
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/640,352 priority Critical patent/US20200358038A1/en
Publication of WO2020019589A1 publication Critical patent/WO2020019589A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/231Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
    • H10K71/233Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers by photolithographic etching
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention relates to the technical field of displays, in particular to a flexible organic light emitting diode display and a manufacturing method thereof.
  • organic light emitting diodes organic light emitting diodes
  • OLEDs light-emitting diodes
  • VR virtual reality
  • the biggest advantage of OLED is that it can be made into a foldable ⁇ rollable product.
  • a flexible OLED screen is subjected to external force, or multiple bending / curling processes / laser peeling (LLO), the screen is easily subject to uneven stress, which causes local peeling in the OLED light-emitting layer, such as As shown in FIG. 1, even the peeling of the entire screen, as shown in FIG. 2, this greatly limits the applicable range and bending method of the flexible OLED screen.
  • LLO laser peeling
  • the film structure of the OLED product includes a thin film encapsulation 170 (thin film encapsulation, TFE), a cathode 160, and an OLED light emitting layer 150 (including an electron transport layer, an organic light emitting layer, and a hole). Transmission layer, etc.), anode layer 140 (anode), planarization layer 130 (planarization layer (PLN), array layer 120 (array layer, or thin-film transistor layer) and flexible substrate 110.
  • the OLED light emitting layer 150 is usually formed layer by layer by vacuum deposition or inkjet printing.
  • the electron transport layer, organic light emitting layer, and hole transport layer of the OLED light emitting layer 150 are all organic materials, a small molecule OLED element is formed by a vacuum deposition method, and inkjet printing is more suitable for a large molecule OLED element. But whether it is a small or large molecule component, the adhesion between organics is stronger than the adhesion between organics and metals. So when folding, curling or laser peeling (laser In the case of lift-off (LLO), the first peeling position or the easier peeling position is the interface between the cathode layer 160 and the OLED emitting layer 150 and the interface between the OLED emitting layer 150 and the anode layer 140. Therefore, it is quite necessary and important to effectively enhance the adhesion between the OLED light emitting layer 150 and the upper and lower layers (cathode layer 160 / anode layer 140) structure, and to prevent peeling of the OLED light emitting layer.
  • LLO laser peeling
  • the purpose of the present invention is to provide a flexible organic light emitting diode display and a manufacturing method thereof, which can improve the peeling phenomenon occurring in the OLED light emitting layer, and improve the impact resistance and bending resistance of the flexible screen. At the same time, the solution can be better compatible with the existing technology.
  • the present invention provides a method for manufacturing a flexible organic light emitting diode display.
  • the method includes:
  • Step S10 forming an active array layer on a flexible substrate, wherein a gate, a source, and a drain are formed on the active array layer;
  • Step S20 forming a planarization layer on the active array layer
  • Step S30 performing photo-etching on the planarization layer, so that at least a part of an upper surface of the planarization layer forms an uneven surface;
  • Step S40 forming an anode layer on the uneven surface of the planarization layer
  • Step S50 forming an organic light emitting display layer on the anode
  • Step S60 forming a cathode layer on the organic light emitting display layer
  • Step S70 A protective layer is formed on the cathode layer and the planarization layer to cover the cathode layer and the planarization layer.
  • step S30 includes step S31: using a photomask having a semi-transparent array structure to perform photo-etching on the planarization layer, so that an upper surface of the planarization layer is At least a portion forms the uneven surface.
  • the photomask having a semi-transparent array structure is a half-tone photomask.
  • a diameter of the translucent array structure is 1 to 2 microns.
  • step S30 includes step 32: performing photoetching on the planarization layer, so that an entire upper surface of the planarization layer forms the uneven surface.
  • step S30 includes: step 33: photoetching the planarization layer, so that at least a part of an upper surface of the planarization layer forms the uneven surface
  • step 33 photoetching the planarization layer, so that at least a part of an upper surface of the planarization layer forms the uneven surface
  • a through hole is defined in the pair of planarization layers, and the through hole penetrates the planarization layer to reach the source electrode or the drain electrode.
  • the present invention provides a flexible organic light emitting diode display, which is characterized in that the flexible organic light emitting diode display includes:
  • An active array layer disposed on the flexible substrate, wherein the active array layer includes a gate, a source, and a drain;
  • An anode layer disposed on a first uneven surface of the planarization layer, wherein an upper surface of the anode layer is formed with a second uneven surface;
  • An organic light emitting display layer disposed on a second uneven surface of the anode layer, wherein a third uneven surface is formed on an upper surface of the organic light emitting layer;
  • a protective layer is disposed on the cathode layer and the planarization layer.
  • only a part of an upper surface of the planarization layer is formed with a first uneven surface.
  • all of an upper surface of the planarization layer is formed with a first uneven surface.
  • the diameters of the first uneven surface, the second uneven surface, the third uneven surface, and the fourth uneven surface are approximately about 0.4 mm in diameter. It is 1 to 2 microns.
  • a through hole is defined in the planarization layer, wherein the through hole penetrates the planarization layer and reaches the source electrode or the drain electrode.
  • the present invention provides a method for manufacturing a flexible organic light emitting diode display.
  • the method includes:
  • Step S10 forming an active array layer on a flexible substrate, wherein a gate, a source, and a drain are formed on the active array layer;
  • Step S20 forming a planarization layer on the active array layer
  • Step S30 performing photo-etching on the planarization layer, so that at least a part of an upper surface of the planarization layer forms an uneven surface; step S30 includes:
  • Step S31 photo-etch the planarization layer using a photomask having a semi-transparent array structure, so that at least a part of an upper surface of the planarization layer forms the uneven surface.
  • Step S40 forming an anode layer on the uneven surface of the planarization layer
  • Step S50 forming an organic light emitting display layer on the anode layer
  • Step S60 forming a cathode layer on the organic light emitting display layer
  • Step S70 A protective layer is formed on the cathode layer and the planarization layer to cover the cathode layer and the planarization layer.
  • the photomask having a semi-transparent array structure is a half-tone photomask.
  • a diameter of the translucent array structure is 1 to 2 microns.
  • step S30 includes step 32: performing photoetching on the planarization layer, so that an entire upper surface of the planarization layer forms the uneven surface.
  • step S30 includes step 33: photoetching the planarization layer so that at least a part of an upper surface of the planarization layer forms the uneven surface, At the same time, a through hole is defined in the pair of planarization layers, and the through hole penetrates the planarization layer to reach the source electrode or the drain electrode.
  • the flexible organic light emitting diode display and the manufacturing method thereof of the present invention pass through the uneven surface between the planarization layer and the anode layer, the uneven surface between the anode layer and the organic light emitting display layer, and the cathode layer and the organic light emitting display layer.
  • the uneven surface replaces the normal flat surface, and improves the contact area between the planarization layer and the anode layer and the contact area between the OLED light-emitting layer and the cathode layer and the anode layer, thereby effectively enhancing the planarization layer and the anode layer.
  • the adhesion between the OLED light-emitting layer and the cathode layer and the anode layer can improve the peeling phenomenon of the OLED light-emitting layer, and improve the impact resistance and bending resistance of the flexible screen.
  • the invention is better compatible with the prior art.
  • FIG 1 shows the OLED (organic light-emitting diode) A local peeling phenomenon occurs in the light-emitting layer.
  • FIG. 2 shows the OLED (organic light-emitting diode) A phenomenon of overall peeling occurs in the light-emitting layer.
  • step S10 is a schematic diagram of step S10 in a method for manufacturing a flexible organic light emitting diode display according to an embodiment of the present invention
  • step S20 is a schematic diagram of step S20 in a method for manufacturing a flexible organic light emitting diode display according to the same embodiment of the present invention
  • step S31 is a schematic diagram of step S31 in a method for manufacturing a flexible organic light emitting diode display according to the same embodiment of the present invention.
  • step S40 is a schematic diagram of step S40 in a method for manufacturing a flexible organic light emitting diode display according to the same embodiment of the present invention.
  • step S50 is a schematic diagram of step S50 in a method for manufacturing a flexible organic light emitting diode display according to the same embodiment of the present invention.
  • step S60 is a schematic diagram of step S60 in a method for manufacturing a flexible organic light emitting diode display according to the same embodiment of the present invention.
  • step S70 is a schematic diagram of step S70 in a method for manufacturing a flexible organic light emitting diode display according to the same embodiment of the present invention.
  • step S32 is a schematic diagram of step S32 in a method for manufacturing a flexible organic light emitting diode display according to another embodiment of the present invention.
  • FIG. 11 is an example of a pixel design in a method for manufacturing a flexible organic light emitting diode display according to the same embodiment of the present invention.
  • FIG. 12 is an example of a photomask used in step S31 in a method for manufacturing a flexible organic light emitting diode display according to the same embodiment of the present invention, corresponding to the pixel design of FIG. 12.
  • FIG. 13 is a side view of a flexible organic light emitting diode display according to the same embodiment of the present invention.
  • a manufacturing method of a flexible organic light emitting diode display 1 includes:
  • Step S10 forming an active array layer 220 on a flexible substrate 210, wherein a gate (not shown), a source 221, and a drain 222 are formed on the active array layer 220;
  • Step S20 forming a planarization layer 230 on the active array layer 220;
  • Step S30 performing photo-etching on the planarization layer 230 so that at least a part of an upper surface of the planarization layer 230 forms an uneven surface 231;
  • Step S40 forming an anode layer 240 on the uneven surface 231 of the planarization layer 230;
  • Step S50 forming an organic light emitting display layer 250 on the anode layer 240;
  • Step S60 forming a cathode layer 260 on the organic light-emitting display layer 250;
  • Step S70 A protective layer 270 is formed on the cathode layer 260 and the planarization layer 230 to cover the cathode layer 260 and the planarization layer 230.
  • FIG. 3 is a schematic diagram of step S10 in a method for manufacturing a flexible organic light emitting diode display 1 according to an embodiment of the present invention.
  • Step S10 forming an active array layer 220 on a flexible substrate 210, wherein a gate (not shown), a source electrode 221, and a drain electrode 222 are formed on the active array layer.
  • an active array layer 220 is sequentially formed on the flexible substrate 210.
  • the active array layer 12 (also referred to as a thin-film transistor layer) has a plurality of thin-film transistors.
  • the thin-film thin-film transistor includes a gate (not shown), a source 221 and a drain 222.
  • the active array layer 220 includes an active layer for forming a channel, a gate insulating layer, a first metal layer, an interlayer insulating layer, and a second metal layer.
  • FIG. 4 is a schematic diagram of step S20 in a method for manufacturing a flexible organic light emitting diode display 1 according to the same embodiment of the present invention.
  • Step S20 forming a planarization layer 230 on the active array layer 220;
  • the materials of the planarization layer mainly include: (1) inorganic materials: electrical insulators such as silicon dioxide (Si02) or silicon nitride (SiNx), which are mainly used on the top of a conductive metal substrate. (2) organic polymers, such as acrylic, melamine, or polyurethane polymers; or (3) other organic-inorganic hybrid composites.
  • FIG. 5 is a schematic diagram of step S31 in a method for manufacturing a flexible organic light emitting diode display 1 according to the same embodiment of the present invention.
  • Step S30 performing photo-etching on the planarization layer 230, so that at least a part of an upper surface of the planarization layer 230 forms an uneven surface 231. More precisely, in this embodiment, step S30 includes steps S31 and S33: photo-etching the planarization layer 230 using a photomask 280 having a semi-transparent array structure 281, so that the planarization layer At least a part of an upper surface of the surface forms the uneven surface 231, and a through hole 234 is defined in the pair of planarization layers, and the through hole penetrates the planarization layer 230 to the source. Pole 221 or the drain 222.
  • the through hole 234 shown in FIG. 5 penetrates the planarization layer 230 and reaches the drain electrode 222. However, the through hole 234 shown in the figure may be selected to penetrate the planarization layer 230 to reach the source electrode 221, which should not be used to limit the protection scope of the present invention.
  • a halftone mask is used as the photomask 280.
  • a semi-transparent array structure 281 of a mask) 280 is used to form the uneven surface on the planarization layer 230, and a halftone mask 280 also has a fully-transmissive area 282 for use on the plane.
  • the formation layer 230 forms a through hole 234.
  • the pixels of the flexible organic light emitting diode display 1 to be manufactured are designed as diamond array pixels (diamond pixels), as shown in FIG. 11, where the largest pixel is a blue pixel (B), the next largest pixel is a red pixel (R), and the smallest pixel is a green pixel (G), the corresponding mask 280 design can be used.
  • the pixel region corresponds to the semi-transparent array structure 281 for forming the uneven surface 231 on the planarization layer 230, and one end of the pixel region corresponds to the fully-transmissive region 282.
  • a through hole 234 is formed in the planarization layer 230.
  • the diameter of the semi-transparent array structure and the pixel region is about 1 to 2 microns.
  • other types of pixel designs are also applicable to the manufacturing method of the flexible organic light emitting diode display 1 of the present invention, and the protection scope of the present invention should not be limited by this.
  • FIG. 6 is a schematic diagram of step S40 in a method for manufacturing a flexible organic light emitting diode display 1 according to the same embodiment of the present invention.
  • Step S40 An anode layer 240 is formed on the uneven surface 231 of the planarization layer 230. Specifically, the anode layer 240 covers the surface of the unevenness 231 of the planarization layer and the through hole 234, and is electrically connected to the source electrode 221 or the drain electrode 222 through the through hole 234.
  • anode layer 240 is formed on the uneven surface 231 of the planarization layer 230 (also referred to as a first uneven surface 231), an upper surface of the anode layer 240 (relative to the adjacent surface One side of the planarization layer 230 is formed with another uneven surface 241 (also referred to as a second uneven surface 241).
  • FIG. 7 is a schematic diagram of step S50 in a method for manufacturing a flexible organic light emitting diode display 1 according to the same embodiment of the present invention.
  • Step S50 An organic light emitting display layer 250 is formed on the anode layer 240.
  • the organic light emitting display layer 250 includes an electron transport layer, an organic light emitting layer, a hole transport layer, and the like. Since the organic light emitting display layer 250 is formed on the uneven surface 241 of the anode layer 240 (also referred to as a second uneven surface 241), an upper surface of the organic light emitting display layer 250 (relative to A side adjacent to the anode layer 240 is formed with another uneven surface 251 (also referred to as a third uneven surface 251).
  • FIG. 8 is a schematic diagram of step S60 in a method for manufacturing a flexible organic light emitting diode display 1 according to the same embodiment of the present invention.
  • Step S60 A cathode layer 260 is formed on the organic light-emitting display layer 250. Since the cathode layer 260 is formed on the uneven surface 251 (also referred to as a third uneven surface 251) of the organic light-emitting display layer 250, an upper surface of the cathode layer 260 (relative to an adjacent surface) One side of the organic light emitting display layer 250 is formed with another uneven surface 261 (also referred to as a fourth uneven surface 261).
  • FIG. 9 is a schematic diagram of step S70 in a method for manufacturing a flexible organic light emitting diode display 1 according to the same embodiment of the present invention.
  • Step S70 A protective layer 270 is formed on the cathode layer 260 and the planarization layer 230 to cover the cathode layer 260 and the planarization layer 230, so as to cover the interior of the flexible organic light emitting diode display 1.
  • the components are isolated from the external environment.
  • the invention discloses a method for manufacturing a flexible organic light emitting diode display 1 to solve the problem that the flexible organic light emitting diode display 1 is prone to peeling when it is bent.
  • a halftone mask as a photomask when etching the planarization layer
  • an uneven surface is formed between the planarization layer and the anode layer, and between the anode layer and the organic light-emitting display layer
  • the uneven surface and the uneven surface formed between the cathode layer and the organic light emitting display layer replace the normal flat surface, and improve the contact area between the planarization layer and the anode layer and the contact between the OLED light emitting layer and the cathode layer and the anode layer Area, thereby effectively enhancing the adhesion between the planarization layer and the anode layer and the adhesion between the OLED light emitting layer and the cathode layer and the anode layer, improving the peeling phenomenon occurring in the OLED light emitting layer, and improving the impact resistance of the flexible screen
  • Embodiment 2 a method for manufacturing a flexible organic light emitting diode display 1 is provided.
  • the manufacturing method of Embodiment 2 is substantially the same as the manufacturing method of Embodiment 1. The only difference is that in step S30, it is implemented in step S32: the planarization layer is photo-etched to make one of the planarization layers All of the upper surfaces form the uneven surface, as shown in FIG. 10.
  • step S30 includes steps S32 and S33: performing photo-etching on the planarization layer 230, for example, by a photolithography process or an ashing process of the planarization layer, so that All of an upper surface of the planarization layer forms the uneven surface 231.
  • a through hole 234 is defined in the pair of planarization layers, and the through hole penetrates the planarization layer 230 to reach the The source electrode 221 or the drain electrode 222.
  • the through hole 234 shown in FIG. 10 penetrates the planarization layer 230 and reaches the drain electrode 222.
  • the through hole 234 shown in the figure may be selected to penetrate the planarization layer 230 to reach the source electrode 221, which should not be used to limit the protection scope of the present invention.
  • the remaining steps of the second embodiment are the same as those of the first embodiment.
  • Embodiment 3 provides a flexible organic light emitting diode display 1.
  • FIG. 13 is a side view of a flexible organic light emitting diode display 1 according to the same embodiment of the present invention.
  • the flexible organic light emitting diode display 1 includes:
  • a flexible substrate 210 A flexible substrate 210;
  • An active array layer 220 is disposed on the flexible substrate 210, wherein the active array layer 210 includes a gate (not shown), a source 221, and a drain 222;
  • a planarization layer 230 is disposed on the active array layer 220. At least a part of an upper surface of the planarization layer 230 is formed with a first uneven surface 231, and a through hole 234 is defined in the first array surface 230. In the planarization layer 230, the through hole 234 penetrates the planarization layer 230 to reach the source electrode 221 or the drain electrode 222;
  • An anode layer 240 is disposed on the first uneven surface 231 of the planarization layer, wherein an upper surface of the anode layer 240 is formed with a second uneven surface 241;
  • An organic light emitting display layer 250 is disposed on the second uneven surface 241 of the anode layer, wherein a third uneven surface 251 is formed on an upper surface of the organic light emitting layer 250;
  • a cathode layer 260 is disposed on the third uneven surface 251 of the organic light-emitting display layer 250, wherein a fourth uneven surface 261 is formed on an upper surface of the cathode layer 260;
  • a protective layer 270 is disposed on the cathode layer 260 and the planarization layer 230.
  • Only a part of an upper surface of the planarization layer 230 of the flexible organic light emitting diode display 1 shown in FIG. 13 is formed with a first uneven surface 231.
  • only a part of the upper surface of the planarization layer 230 may be formed with the first uneven surface 231, or all of the upper surface of the planarization layer 230 may be formed with the first uneven surface 231.
  • the diameters of the first uneven surface 231, the second uneven surface 241, the third uneven surface 251, and the fourth uneven surface 261 are about 1 in diameter. Up to 2 micrometers, but why its diameter can be adjusted according to requirements, this should not limit the scope of protection of the present invention.
  • the flexible organic light emitting diode display and the manufacturing method thereof of the present invention pass through the uneven surface between the planarization layer and the anode layer, the uneven surface between the anode layer and the organic light emitting display layer, and the cathode layer and the organic light emitting display layer.
  • the uneven surface replaces the normal flat surface, and improves the contact area between the planarization layer and the anode layer and the contact area between the OLED light emitting layer and the cathode layer and the anode layer, thereby effectively enhancing the
  • the adhesion between the OLED light-emitting layer and the cathode layer and the anode layer can improve the peeling phenomenon of the OLED light-emitting layer, and improve the impact resistance and bending resistance of the flexible screen.
  • the invention is better compatible with the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

提供一种柔性有机发光二极管显示器的制作方法。所述制作方法包括:在一柔性衬底上形成一主动阵列层;在所述主动阵列层上形成一平面化层;对所述平面化层进行光蚀刻,使得所述平面化层的一上表面的至少一部份形成一不平整的表面;在所述平面化层的不平整的表面上成一阳极层;在所述阳极上形成一有机发光显示层;在所述有机发光显示层上形成一阴极层;在所述阴极层与所述平面化层上形成一保护层,以覆盖所述阴极层与所述平面化层。

Description

柔性有机发光二极管显示器及其制作方法 技术领域
涉及显示器技术领域,特别是涉及一种柔性有机发光二极管显示器及其制作方法。
背景技术
随着显示技术的发展,尽管薄膜晶体管液晶显示器(thin film transistor liquid crystal display,TFT-LCD)技术依旧占据主流显示市场,有机发光二极管(organic light-emitting diode,OLED)的新一代显示技术的开发与应用化进行得如火如荼并且逐渐被应用到多个领域,例如可穿戴设备如智能手环、智能手表、VR(Virtual Reality,即虚拟现实)设备、移动电话机、电子书、电子报纸、电视机、个人便携电脑等。
相较于传统的TFT-LCD技术,OLED最大的优势在于其可做成可折叠\可卷曲的产品。当柔性OLED屏幕在受到外力冲击,或者多次的弯折/卷曲过程/激光剥离(LLO)中,屏幕内部很容易受到应力不均,从而在OLED发光层中发生局部剥离(peeling)现象,如图1所述,甚至是整个屏幕的剥离问题,如图2所述,这极大地限制了柔性OLED屏幕的适用范围和弯折方式。如图1所述,OLED产品的膜层结构从上往下包括封装薄膜170 (thin film encapsulation,TFE)、阴极160(cathode)、OLED发光层150(包括电子传输层、有机发光层、空穴传输层等)、阳极层140(anode)、平坦化层130(planarization layer,PLN)、阵列层120 (array layer,或称薄膜晶体管层,thin-film transistor layer)以及柔性衬底110。OLED发光层150通常是利用真空沉积或者喷墨打印方式逐层堆叠而形成的。由于OLED发光层150的电子传输层、有机发光层以及空穴传输层均为有机物材料,通过真空沉积的方法形成的是小分子OLED元件,喷墨打印更适合大分子OLED元件。但是无论小分子或大分子元件,有机物之间的粘附力相比于有机物和金属之间的粘附力更强。所以在折叠、卷曲或者激光剥离(laser lift- off,LLO)情况下,最先剥离的位置或者更容易剥离的位置是阴极层160和OLED发光层150的界面以及OLED发光层150和阳极层140之间的界面。因此有效增强OLED发光层150与上下层(阴极层160/阳极层140)结构之间的附着力,防止在OLED发光层的剥离是相当必要和至关重要的。
因此,有必要提供一种柔性有机发光二极管显示器及其制作方法,以解决现有技术所存在的问题。
技术问题
本发明的目的在于提供一种柔性有机发光二极管显示器及其制作方法,改善在OLED发光层所发生的剥离现象,提升柔性屏幕的耐冲击和耐弯折性能。同时所述方案能够较好地与现有技术兼容。
技术解决方案
为解决上述技术问题,本发明提供一种柔性有机发光二极管显示器的制作方法,所述制作方法包括:
步骤S10: 在一柔性衬底上形成一主动阵列层,其中所述主动阵列层上形成有一栅极、一源极和一漏极;
步骤S20: 在所述主动阵列层上形成一平面化层;
步骤S30: 对所述平面化层进行光蚀刻,使得所述平面化层的一上表面的至少一部份形成一不平整的表面;
步骤S40: 在所述平面化层的不平整的表面上成一阳极层;
步骤S50: 在所述阳极上形成一有机发光显示层;
步骤S60: 在所述有机发光显示层上形成一阴极层;
步骤S70: 在所述阴极层与所述平面化层上形成一保护层,以覆盖所述阴极层与所述平面化层。
依据本发明所提供的一实施例中,步骤S30包括步骤S31:使用一具有半透光阵列结构的光罩,对所述平面化层进行光蚀刻,使得所述平面化层的一上表面的至少一部份形成所述不平整的表面。
依据本发明所提供的一实施例的进一步特征中,所述具有半透光阵列结构的光罩为半调式光罩。
依据本发明所提供的一实施例的进一步特征中,所述半透光阵列结构的直径为1至2微米。
依据本发明所提供的另一实施例中,步骤S30包括步骤32:对所述平面化层进行光蚀刻,使得所述平面化层的一上表面的全部形成所述不平整的表面。
依据本发明所提供的一实施例中,步骤S30包括:步骤33:对所述平面化层进行光蚀刻,使得所述平面化层的一上表面的至少一部份形成所述不平整的表面,同时在所述对所述平面化层上定限定一通孔,所述通孔贯穿所述平面化层到达所述源极或所述漏极。
为解决上述技术问题,本发明提供一种柔性有机发光二极管显示器,其特征在于:所述柔性有机发光二极管显示器包括:
一柔性衬底;
一主动阵列层,设置于所述柔性衬底上,其中所述主动阵列层包括一栅极、一源极和一漏极;
一平面化层,设置于所述主动阵列层上,其中所述平面化层的一上表面的至少一部份形成有一第一不平整的表面;
一阳极层,设置在所述平面化层的第一不平整的表面上,其中所述阳极层的一上表面形成有一第二不平整的表面;
一有机发光显示层,设置在所述阳极层的第二不平整的表面上,其中所述有机发光层的一上表面形成有一第三不平整的表面;
一阴极层,设置在所述有机发光显示层的第三不平整的表面上,其中所述阴极层的一上表面形成有一第四不平整的表面;
一保护层,设置在所述阴极层与所述平面化层上。
依据本发明所提供的一实施例中,所述平面化层的一上表面只有一部份形成有一第一不平整的表面。
依据本发明所提供的一实施例中,所述平面化层的一上表面的全部形成有一第一不平整的表面。
依据本发明所提供的一实施例中,所述第一不平整的表面、所述第二不平整的表面、所述第三不平整的表面以及所述第四不平整的表面的直径分別约为1至2微米。
依据本发明所提供的一实施例的进一步特征中,一通孔限定在所述平面化层中,其中所述通孔贯穿所述平面化层到达所述源极或所述漏极。
为解决上述技术问题,本发明提供一种柔性有机发光二极管显示器的制作方法,所述制作方法包括:
步骤S10: 在一柔性衬底上形成一主动阵列层,其中所述主动阵列层上形成有一栅极、一源极和一漏极;
步骤S20: 在所述主动阵列层上形成一平面化层;
步骤S30: 对所述平面化层进行光蚀刻,使得所述平面化层的一上表面的至少一部份形成一不平整的表面;其中步骤S30包括:
步骤S31:使用一具有半透光阵列结构的光罩,对所述平面化层进行光蚀刻,使得所述平面化层的一上表面的至少一部份形成所述不平整的表面。
步骤S40: 在所述平面化层的不平整的表面上成一阳极层;
步骤S50: 在所述阳极层上形成一有机发光显示层;
步骤S60: 在所述有机发光显示层上形成一阴极层;
步骤S70: 在所述阴极层与所述平面化层上形成一保护层,以覆盖所述阴极层与所述平面化层。
依据本发明所提供的一实施例中,所述具有半透光阵列结构的光罩为半调式光罩。
依据本发明所提供的一实施例中,所述半透光阵列结构的直径为1至2微米。
依据本发明所提供的一实施例中,步骤S30包括步骤32:对所述平面化层进行光蚀刻,使得所述平面化层的一上表面的全部形成所述不平整的表面。
依据本发明所提供的一实施例中,步骤S30包括步骤33:对所述平面化层进行光蚀刻,使得所述平面化层的一上表面的至少一部份形成所述不平整的表面,同时在所述对所述平面化层上定限定一通孔,所述通孔贯穿所述平面化层到达所述源极或所述漏极。
有益效果
本发明的柔性有机发光二极管显示器及其制作方法,通过于平面化层与阳极层之间的不平整表面、阳极层和有机发光显示层之间的不平整表面以及阴极层和有机发光显示层之间的不平整表面取代正常的平整表面,提升平面化层与阳极层之间的接触面积和OLED发光层与阴极层和阳极层之间的接触面积,从而有效地增强平面化层与阳极层之间的黏附力和OLED发光层与阴极层和阳极层之间的粘附力,改善在OLED发光层发生的剥离现象,提升柔性屏幕的耐冲击和耐弯折性能。同时本发明能够较好地与现有技术兼容。
附图说明
本文所述的本发明,仅作为示例,参考附图,其中:
图1为先前技术中,OLED(organic light-emitting diode)发光层中发生局部剥离(peeling)现象。
图2为先前技术中,OLED(organic light-emitting diode)发光层中发生整体剥离(peeling)现象。
图3为根据本发明的一实施例,一种柔性有机发光二极管显示器的制作方法中,步骤S10的示意图;
图4为根据本发明的同一实施例,一种柔性有机发光二极管显示器的制作方法中,步骤S20的示意图;
图5为根据本发明的同一实施例,一种柔性有机发光二极管显示器的制作方法中,步骤S31的示意图;
图6为根据本发明的同一实施例,一种柔性有机发光二极管显示器的制作方法中,步骤S40的示意图;
图7为根据本发明的同一实施例,一种柔性有机发光二极管显示器的制作方法中,步骤S50的示意图;
图8为根据本发明的同一实施例,一种柔性有机发光二极管显示器的制作方法中,步骤S60的示意图;
图9为根据本发明的同一实施例,一种柔性有机发光二极管显示器的制作方法中,步骤S70的示意图;
图10为根据本发明的另一实施例,一种柔性有机发光二极管显示器的制作方法中,步骤S32的示意图;
图11为根据本发明的同一实施例,一种柔性有机发光二极管显示器的制作方法中,一像素设计的示例。
图12为根据本发明的同一实施例,一种柔性有机发光二极管显示器的制作方法中,步骤S31的所使用的光罩的示例,对应图12的像素设计。
图13为根据本发明的同一实施例,一种柔性有机发光二极管显示器的侧视图。
本发明的实施方式
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是以相同标号表示。
实施例1:
在实施例1中,提供一种柔性有机发光二极管显示器1的制作方法,所述制作方法包括:
步骤S10: 在一柔性衬底210上形成一主动阵列层220,其中所述主动阵列层220上形成有一栅极(图未示)、一源极221和一漏极222;
步骤S20: 在所述主动阵列层220上形成一平面化层230;
步骤S30: 对所述平面化层230层进行光蚀刻,使得所述平面化层230的一上表面的至少一部份形成一不平整的表面231;
步骤S40: 在所述平面化层230的不平整的表面231上成一阳极层240;
步骤S50: 在所述阳极层上240形成一有机发光显示层250;
步骤S60: 在所述有机发光显示层250上形成一阴极层260;
步骤S70: 在所述阴极层260与所述平面化层230上形成一保护层270,以覆盖所述阴极层260与所述平面化层230。
请参照图3,图3为为根据本发明的一实施例,一种柔性有机发光二极管显示器1的制作方法中,步骤S10的示意图。
步骤S10:在一柔性衬底210上形成一主动阵列层220,其中所述主动阵列层上形成有一栅极(图未示)、一源极221和一漏极222。
如图3所示,在柔性衬底基板210上依次形成主动阵列层220。所述主动阵列层12 (array layer,或称薄膜晶体管层,thin-film transistor layer)具有多个薄膜晶体管,所述薄膜薄膜晶体管包括栅极(图未示)、源极221和漏极222。所述主动阵列层220包括用于形成沟道的主动层、栅绝缘层、第一金属层、层间绝缘层以及第二金属层。
请参照图4,图4为为根据本发明的同一实施例,一种柔性有机发光二极管显示器1的制作方法中,步骤S20的示意图。
步骤S20: 在所述主动阵列层220上形成一平面化层230;
所述平面化层的材料主要包括:(1)无机材料:例如二氧化硅(Si02)或氮化硅(SiNx)等电绝缘体,主要用于导电金属基材顶部。(2)有机聚合物,例如丙烯酸类、三聚氰胺或聚氨酯类聚合物;或是(3)其他有机-无机杂化复合材料。
图5为根据本发明的同一实施例,一种柔性有机发光二极管显示器1的制作方法中,步骤S31的示意图。
步骤S30: 对所述平面化层230层进行光蚀刻,使得所述平面化层230的一上表面的至少一部份形成一不平整的表面231。更确切而言,在本实施例中,步骤S30包括步骤S31与步骤S33:使用一具有半透光阵列结构281的光罩280对所述平面化层230进行光蚀刻,使得所述平面化层的一上表面的至少一部份形成所述不平整的表面231,同时在所述对所述平面化层上定限定一通孔234,所述通孔贯穿所述平面化层230到达所述源极221或所述漏极222。在图5中所显示的通孔234贯穿所述平面化层230到达所述漏极222。然而也可选择所显示的通孔234贯穿所述平面化层230到达所述源极221,不应以此限制本发明的保护范围。
对所述平面化层230进行光蚀刻时,采用半调式光罩(halftone mask)作为所述光罩280。半调式光罩(halftone mask)280的半透光阵列结构281用于在所述平面化层230形成所述不平整的表面,而半调式光罩(halftone mask)280也具有全透光区域282用于在所述平面化层230形成通孔234。
在此提供一示例,若所欲制造的柔性有机发光二极管显示器1的像素设计为钻石排列像素(diamond pixels),如图11所示,其中最大的像素为蓝像素(B),次大像素为红像素(R),最小像素为绿像素(G),则所对应地使用的光罩280设计可以如图12所示,其中像素区域对应半透光阵列结构281,用以于所述平面化层230形成所述不平坦的表面231,而于像素区域的一端点对应全透光区域282,用以于所述平面化层230形成通孔234。所述半透光阵列结构与与所述像素区域的直径约为1至2微米。然而其他类型的像素设计同样适用本发明的柔性有机发光二极管显示器1的制造方法,不应以此限制本发明的保护范围。
图6为根据本发明的同一实施例,一种柔性有机发光二极管显示器1的制作方法中,步骤S40的示意图。
步骤S40: 在所述平面化层230的不平整的表面231上成一阳极层240。具体而言,阳极层240覆盖于所述平面化层的不平整231的表面以及所述通孔234,通过所述通孔234与所述源极221或所述漏极222电性连接。
由于所述阳极层240形成在所述平面化层230的所述不平整的表面231上(也称第一不平整的表面231),所述阳极层240的一上表面(相对于邻近所述所述平面化层230的一侧)形成有另一不平整的表面241(也称第二不平整的表面241)。
图7为根据本发明的同一实施例,一种柔性有机发光二极管显示器1的制作方法中,步骤S50的示意图。
步骤S50: 在所述阳极层240上形成一有机发光显示层250。一般而言,所述有机发光显示层250包括电子传输层、有机发光层、空穴传输层等。由于所述有机发光显示层250形成在所述阳极层240的所述不平整的表面241上(也称第二不平整的表面241),所述有机发光显示层250的一上表面(相对于邻近所述阳极层240的一侧)形成有另一不平整的表面251(也称第三不平整的表面251)。
图8为根据本发明的同一实施例,一种柔性有机发光二极管显示器1的制作方法中,步骤S60的示意图。
步骤S60: 在所述有机发光显示层250上形成一阴极层260。由于所述阴极层260形成在所述有机发光显示层250的所述不平整的表面251上(也称第三不平整的表面251),所述阴极层260的一上表面(相对于邻近所述有机发光显示层250的一侧)形成有另一不平整的表面261(也称第四不平整的表面261)。
图9为根据本发明的同一实施例,一种柔性有机发光二极管显示器1的制作方法中,步骤S70的示意图。
步骤S70: 在所述阴极层260与所述平面化层230上形成一保护层270,以覆盖所述阴极层260与所述平面化层230,以将所述柔性有机发光二极管显示器1的内部元件与外界环境隔离。
本发明公开一种柔性有机发光二极管显示器1的制作方法,用以解决柔所述性有机发光二极管显示器1弯折时容易产生剥离的问题。在本实施例中,通过使用半调式光罩(halftone mask)作为蚀刻平面化层时的光罩,于平面化层与阳极层之间形成不平整表面、阳极层和有机发光显示层之间形成不平整表面以及阴极层和有机发光显示层之间形成不平整表面,取代正常的平整表面,提升平面化层与阳极层之间的接触面积和OLED发光层与阴极层和阳极层之间的接触面积,从而有效地增强平面化层与阳极层之间的黏附力和OLED发光层与阴极层和阳极层之间的粘附力,改善在OLED发光层发生的剥离现象,提升柔性屏幕的耐冲击和耐弯折性能。同时本发明能够较好地与现有技术兼容。
实施例2:
在实施例2中,提供一种柔性有机发光二极管显示器1的制作方法。实施例2的制作方法与实施例1的制作方法大致相同,唯一的差别是在步骤S30中,是以步骤S32来实施:对所述平面化层进行光蚀刻,使得所述平面化层的一上表面的全部形成所述不平整的表面,如图10所示。
更确切而言,在本实施例中,步骤S30包括步骤S32与步骤S33:对所述平面化层230进行光蚀刻,例如通过平面化层的光刻工艺或者灰化工艺(ashing),使得所述平面化层的一上表面的全部形成所述不平整的表面231,同时在所述对所述平面化层上定限定一通孔234,所述通孔贯穿所述平面化层230到达所述源极221或所述漏极222。在图10中所显示的通孔234贯穿所述平面化层230到达所述漏极222。然而也可选择所显示的通孔234贯穿所述平面化层230到达所述源极221,不应以此限制本发明的保护范围。而实施例2的其余步骤皆与实施例1的步骤相同。
实施例3:
实施例3提供一种柔性有机发光二极管显示器1。
图13为根据本发明的同一实施例,一种柔性有机发光二极管显示器1的侧视图。
如图13所示,所述柔性有机发光二极管显示器1包括:
一柔性衬底210;
一主动阵列层220,设置于所述柔性衬底210上,其中所述主动阵列层210包括一栅极(图未示)、一源极221和一漏极222;
一平面化层230,设置于所述主动阵列层220上,其中所述平面化层230的一上表面的至少一部份形成有一第一不平整的表面231,并且一通孔234限定在所述平面化层230中,其中所述通孔234贯穿所述平面化层230到达所述源极221或所述漏极222;
一阳极层240,设置在所述平面化层的第一不平整的表面231上,其中所述阳极层240的一上表面形成有一第二不平整241的表面;
一有机发光显示层250,设置在所述阳极层的第二不平整的表面241上,其中所述有机发光层250的一上表面形成有一第三不平整的表面251;
一阴极层260,设置在所述有机发光显示层250的第三不平整的表面251上,其中所述阴极层260的一上表面形成有一第四不平整的表面261;
一保护层270,设置在所述阴极层260与所述平面化层230上。
在图13中所示的柔性有机发光二极管显示器1的平面化层230的一上表面只有一部份形成有第一不平整的表面231。然而在本实施例中,所述平面化层230的一上表面可以只有一部份形成有第一不平整的表面231,也可以全部形成有第一不平整的表面231,不应以此限制本发明的保护范围。
在本实施例中,所述第一不平整的表面231、所述第二不平整的表面241、所述第三不平整的表面251、所述第四不平整的表面261的直径约为1至2微米,然而其直径大小为何可以根据需求进行调整,不应以此限制本发明的保护范围。
本发明的柔性有机发光二极管显示器及其制作方法,通过于平面化层与阳极层之间的不平整表面、阳极层和有机发光显示层之间的不平整表面以及阴极层和有机发光显示层之间的不平整表面取代正常的平整表面,提升平面化层与阳极层之间的接触面积和OLED发光层与阴极层和阳极层之间的接触面积,从而有效地增强平面化层与阳极层之间的黏附力和OLED发光层与阴极层和阳极层之间的粘附力,改善在OLED发光层发生的剥离现象,提升柔性屏幕的耐冲击和耐弯折性能。同时本发明能够较好地与现有技术兼容。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (16)

  1. 一种柔性有机发光二极管显示器的制作方法,包括:
    步骤S10: 在一柔性衬底上形成一主动阵列层,其中所述主动阵列层上形成有一栅极、一源极和一漏极;
    步骤S20: 在所述主动阵列层上形成一平面化层;
    步骤S30: 对所述平面化层进行光蚀刻,使得所述平面化层的一上表面的至少一部份形成一不平整的表面;
    步骤S40: 在所述平面化层的不平整的表面上成一阳极层;
    步骤S50: 在所述阳极层上形成一有机发光显示层;
    步骤S60: 在所述有机发光显示层上形成一阴极层;
    步骤S70: 在所述阴极层与所述平面化层上形成一保护层,以覆盖所述阴极层与所述平面化层。
  2. 如权利要求1所述的制作方法,其中:步骤S30包括:
    步骤S31:使用一具有半透光阵列结构的光罩,对所述平面化层进行光蚀刻,使得所述平面化层的一上表面的至少一部份形成所述不平整的表面。
  3. 如权利要求2所述的制作方法,其中:
    所述具有半透光阵列结构的光罩为半调式光罩。
  4. 如权利要求2所述的制作方法,其中:
    所述半透光阵列结构的直径为1至2微米。
  5. 如权利要求1所述的制作方法,其中:步骤S30包括:
    步骤32:对所述平面化层进行光蚀刻,使得所述平面化层的一上表面的全部形成所述不平整的表面。
  6. 如权利要求1所述的制作方法,其中:步骤S30包括:
    步骤33:对所述平面化层进行光蚀刻,使得所述平面化层的一上表面的至少一部份形成所述不平整的表面,同时在所述对所述平面化层上定限定一通孔,所述通孔贯穿所述平面化层到达所述源极或所述漏极。
  7. 一种柔性有机发光二极管显示器,包括:
    一柔性衬底;
    一主动阵列层,设置于所述柔性衬底上,其中所述主动阵列层包括一栅极、一源极和一漏极;
    一平面化层,设置于所述主动阵列层上,其中所述平面化层的一上表面的至少一部份形成有一第一不平整的表面;
    一阳极层,设置在所述平面化层的第一不平整的表面上,其中所述阳极层的一上表面形成有一第二不平整的表面;
    一有机发光显示层,设置在所述阳极层的第二不平整的表面上,其中所述有机发光层的一上表面形成有一第三不平整的表面;
    一阴极层,设置在所述有机发光显示层的第三不平整的表面上,其中所述阴极层的一上表面形成有一第四不平整的表面;
    一保护层,设置在所述阴极层与所述平面化层上。
  8. 如权利要求7所述的柔性有机发光二极管显示器,其中:
    所述平面化层的一上表面只有一部份形成有一第一不平整的表面。
  9. 如权利要求7所述的柔性有机发光二极管显示器,其中:
    所述平面化层的一上表面的全部形成有一第一不平整的表面。
  10. 如权利要求7所述的柔性有机发光二极管显示器,其中:
    所述第一不平整的表面、所述第二不平整的表面、所述第三不平整的表面以及所述第四不平整的表面的直径分別为1至2微米。
  11. 如权利要求7所述的柔性有机发光二极管显示器,其中:
    一通孔限定在所述平面化层中,其中所述通孔贯穿所述平面化层到达所述源极或所述漏极。
  12. 一种柔性有机发光二极管显示器的制作方法,包括:
    步骤S10: 在一柔性衬底上形成一主动阵列层,其中所述主动阵列层上形成有一栅极、一源极和一漏极;
    步骤S20: 在所述主动阵列层上形成一平面化层;
    步骤S30: 对所述平面化层进行光蚀刻,使得所述平面化层的一上表面的至少一部份形成一不平整的表面;其中步骤S30包括:
    步骤S31:使用一具有半透光阵列结构的光罩,对所述平面化层进行光蚀刻,使得所述平面化层的一上表面的至少一部份形成所述不平整的表面。
    步骤S40: 在所述平面化层的不平整的表面上成一阳极层;
    步骤S50: 在所述阳极层上形成一有机发光显示层;
    步骤S60: 在所述有机发光显示层上形成一阴极层;
    步骤S70: 在所述阴极层与所述平面化层上形成一保护层,以覆盖所述阴极层与所述平面化层。
  13. 如权利要求12所述的制作方法,其中:
    所述具有半透光阵列结构的光罩为半调式光罩。
  14. 如权利要求12所述的制作方法,其中:
    所述半透光阵列结构的直径为1至2微米。
  15. 如权利要求12所述的制作方法,其中:步骤S30包括:
    步骤32:对所述平面化层进行光蚀刻,使得所述平面化层的一上表面的全部形成所述不平整的表面。
  16. 如权利要求12所述的制作方法,其中:步骤S30包括:
    步骤33:对所述平面化层进行光蚀刻,使得所述平面化层的一上表面的至少一部份形成所述不平整的表面,同时在所述对所述平面化层上定限定一通孔,所述通孔贯穿所述平面化层到达所述源极或所述漏极。
PCT/CN2018/115894 2018-07-24 2018-11-16 柔性有机发光二极管显示器及其制作方法 WO2020019589A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/640,352 US20200358038A1 (en) 2018-07-24 2018-11-16 Flexible organic light emitting diode display and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810816005.XA CN109065573A (zh) 2018-07-24 2018-07-24 柔性有机发光二极管显示器及其制作方法
CN201810816005.X 2018-07-24

Publications (1)

Publication Number Publication Date
WO2020019589A1 true WO2020019589A1 (zh) 2020-01-30

Family

ID=64835196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115894 WO2020019589A1 (zh) 2018-07-24 2018-11-16 柔性有机发光二极管显示器及其制作方法

Country Status (3)

Country Link
US (1) US20200358038A1 (zh)
CN (1) CN109065573A (zh)
WO (1) WO2020019589A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1444426A (zh) * 2002-03-04 2003-09-24 三洋电机株式会社 电致发光显示装置及其制造方法
CN103996694A (zh) * 2014-04-25 2014-08-20 京东方科技集团股份有限公司 一种oled显示器及其制备方法
US20150380466A1 (en) * 2014-06-27 2015-12-31 Lg Display Co., Ltd. Organic light emitting display device and method for manufacturing the same
CN108155300A (zh) * 2016-12-05 2018-06-12 三星显示有限公司 显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1444426A (zh) * 2002-03-04 2003-09-24 三洋电机株式会社 电致发光显示装置及其制造方法
CN103996694A (zh) * 2014-04-25 2014-08-20 京东方科技集团股份有限公司 一种oled显示器及其制备方法
US20150380466A1 (en) * 2014-06-27 2015-12-31 Lg Display Co., Ltd. Organic light emitting display device and method for manufacturing the same
CN108155300A (zh) * 2016-12-05 2018-06-12 三星显示有限公司 显示装置

Also Published As

Publication number Publication date
CN109065573A (zh) 2018-12-21
US20200358038A1 (en) 2020-11-12

Similar Documents

Publication Publication Date Title
TWI671898B (zh) 有機發光二極體顯示器
WO2018227750A1 (zh) 柔性tft基板的制作方法
US9842934B2 (en) Array substrate and method of fabricating the same
US7985609B2 (en) Light-emitting apparatus and production method thereof
JP5642142B2 (ja) 薄膜トランジスタ、薄膜トランジスタアレイ基板及びそれらの製造方法
WO2016176886A1 (zh) 柔性oled及其制作方法
US8877534B2 (en) Display device and method for manufacturing the same
CN112490272B (zh) 一种显示基板及其制备方法、显示装置
US10249652B2 (en) Manufacturing method of flexible TFT substrate
US20200043996A1 (en) Display substrate and display apparatus
CN107845739B (zh) 一种oled器件、oled显示面板及制备方法
WO2020062410A1 (zh) 有机发光二极管显示器及其制作方法
US9048458B2 (en) Method of fabricating pixel structure for organic light-emitting display
JP2008070874A (ja) 可撓性表示装置の製造装置及び製造方法
WO2022111087A1 (zh) 显示基板及其制作方法、显示装置
KR20130005550A (ko) 이중 게이트 구조를 갖는 평판 표시장치용 박막 트랜지스터 기판 및 그 제조 방법
WO2020077785A1 (zh) 柔性显示装置
US9842883B2 (en) Flexible array substrate structure and manufacturing method for the same
KR20160060835A (ko) 유기발광다이오드 표시장치 및 그 제조방법
WO2020019589A1 (zh) 柔性有机发光二极管显示器及其制作方法
KR102119572B1 (ko) 박막 트랜지스터 어레이 기판 및 그 제조 방법
US11494019B2 (en) Touch display device, touch display panel and manufacturing method thereof
US20240040866A1 (en) Display substrate and display device
US20150129842A1 (en) Method For Manufacturing Organic Electroluminescence Device And Organic Electroluminescence Device Manufactured With Same
JP2009009821A (ja) 有機発光装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18927509

Country of ref document: EP

Kind code of ref document: A1