WO2020017106A1 - フッ素樹脂成形体の成形方法、医療用ダイヤフラムの製造方法、及び半導体用ダイヤフラムの製造方法 - Google Patents

フッ素樹脂成形体の成形方法、医療用ダイヤフラムの製造方法、及び半導体用ダイヤフラムの製造方法 Download PDF

Info

Publication number
WO2020017106A1
WO2020017106A1 PCT/JP2019/014515 JP2019014515W WO2020017106A1 WO 2020017106 A1 WO2020017106 A1 WO 2020017106A1 JP 2019014515 W JP2019014515 W JP 2019014515W WO 2020017106 A1 WO2020017106 A1 WO 2020017106A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluororesin
diaphragm
molding
molded article
producing
Prior art date
Application number
PCT/JP2019/014515
Other languages
English (en)
French (fr)
Inventor
淳一 樋口
Original Assignee
Jasi株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jasi株式会社 filed Critical Jasi株式会社
Priority to CN201980048283.8A priority Critical patent/CN112469546B/zh
Priority to JP2019537852A priority patent/JP6634574B1/ja
Priority to US17/261,186 priority patent/US20210237315A1/en
Priority to EP19837294.8A priority patent/EP3825089B1/en
Publication of WO2020017106A1 publication Critical patent/WO2020017106A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/20Making multilayered or multicoloured articles
    • B29C43/203Making multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/06Making preforms by moulding the material
    • B29B11/12Compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/006Pressing and sintering powders, granules or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/14Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/14Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles in several steps
    • B29C43/146Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles in several steps for making multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/52Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/02Moulding by agglomerating
    • B29C67/04Sintering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J3/00Diaphragms; Bellows; Bellows pistons
    • F16J3/02Diaphragms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • B29C2043/181Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles encapsulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/251Particles, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/755Membranes, diaphragms

Definitions

  • the present invention forms a preform by pressing a powder of a fluororesin with a primary mold, fills the preform into a secondary mold after firing, and cools the pressed compact while pressing the preform.
  • the present invention relates to a method for molding a fluororesin molded body for molding a body. Further, the present invention relates to a method for producing a medical diaphragm used for producing a serum or a vaccine using the method for molding a fluororesin molded article, and a method for producing a semiconductor diaphragm used for cleaning a semiconductor product.
  • Fluororesins such as polytetrafluoroethylene (hereinafter, referred to as “PTFE”) are excellent in heat resistance, chemical resistance and the like, and are therefore suitably used as materials for diaphragms and bellows, for example.
  • PTFE polytetrafluoroethylene
  • a compression molding method has been known as a method for molding a fluororesin molded article.
  • the compression molding method is suitable as a method for molding a precision molded body.
  • a powder of fluororesin is formed by a primary mold.
  • a hot coining method is used in which a preform is formed by compressing a preform, and after firing, the preform is cooled while being compressed by a secondary mold to obtain a desired shape.
  • a preformed body is first formed by pressing a fluororesin, then the preformed body is fired into a fired body, and the fired body is further heated by heating.
  • a heat-treated body is pressed at a high temperature and quenched at the end to produce a final product (see, for example, Patent Document 1).
  • crystallization of a fluororesin can be suppressed, and a diaphragm free from cracks due to repeated deformation during use can be manufactured.
  • a diaphragm that has a valve portion or the like that is a non-deformed portion in addition to a membrane portion that is repeatedly deformed during use, thereby realizing a different function for each portion.
  • required specifications are different depending on parts, such as a film portion requiring bending resistance and a valve portion requiring wear resistance.
  • Patent Document 1 In the manufacturing method of Patent Document 1, it is not assumed that a different degree of crystallinity is realized for each part of the diaphragm.
  • parts such as a repetitively deformed part and a non-deformed part are molded as separate fluororesin molded bodies, and these are combined after molding, so that diaphragms having different characteristics for each part are formed. Had been manufactured. However, there is a possibility that the diaphragm obtained by such a manufacturing method may have insufficient strength at the joint. Further, since different quality control is required for each part, there is a problem that the manufacturing cost is increased.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a method of forming a fluororesin molded body that can be molded as an integral molded article having different characteristics for each site. I do. It is another object of the present invention to provide a method for producing a medical diaphragm used for producing serum or vaccine using the method for molding a fluororesin molded article, and a method for producing a semiconductor diaphragm used for cleaning semiconductor products.
  • the feature configuration of the method for forming a fluororesin molded body according to the present invention for solving the above-mentioned problems is as follows.
  • a preform is formed by pressing the fluororesin powder with a primary mold, and the preform is fired to fill a secondary mold after firing and then cooled while pressed to form a fluororesin body.
  • a method of forming a fluororesin molded body The molding of the preform is performed by filling the primary mold with a laminate in which at least two types of fluororesin powders having different average particle sizes are laminated.
  • the molding of the pre-molded article is performed by filling a primary mold with a laminate in which at least two types of fluororesin powders having different average particle sizes are laminated.
  • characteristics such as crystallinity can be made different for each portion derived from fluororesin powders having different average particle diameters.
  • a fluororesin molded body having different characteristics for each part can be molded as an integral molded product.
  • the laminate has a first layer and a second layer formed from two types of fluororesin powders having different average particle sizes,
  • the two types of fluororesins are selected so that the functions of the first portion corresponding to the first layer and the second portion corresponding to the second layer are different. Is preferred.
  • the first layer and the second layer of the laminate are formed from two kinds of fluororesin powders having different average particle diameters, and the molded fluororesin article is formed. Since two types of fluororesins are selected so that the functions of the first portion corresponding to the first layer and the second portion corresponding to the second layer are different, the first portion and the second portion having different required specifications are selected. Can be integrally formed.
  • the first portion is a non-deformable portion formed from a powder of fluororesin having an average particle size of 300 ⁇ m or more
  • the second portion is a repeatedly deformed portion formed from a powder of a fluororesin having an average particle size of 100 ⁇ m or less.
  • the first portion is formed from a fluororesin powder having an average particle diameter of 300 ⁇ m or more, so that the non-deformable portion has excellent wear resistance.
  • the second portion is formed from a fluororesin powder having an average particle diameter of 100 ⁇ m or less, the second portion has excellent bending resistance required for a repeatedly deformed portion that is repeatedly deformed during use.
  • the fluororesin is preferably polytetrafluoroethylene.
  • a molded article of polytetrafluoroethylene having excellent heat resistance, chemical resistance, and the like can be obtained.
  • the volume of the cavity formed inside the secondary mold is set to 0.80 to 0.95 times the volume of the cavity formed inside the primary mold.
  • the preform is molded using the primary mold, and then the secondary mold having a slightly smaller volume of the cavity formed therein than the primary mold. Since the fluororesin molded body is molded using the mold, the fluororesin molded body can be precisely molded only by compression molding. Therefore, there is no need to perform cutting using a milling machine or the like after molding, and the yield can be improved.
  • the repeated deformation portion is formed as a membrane portion of a diaphragm having a curved cross section
  • the non-deformable portion is provided integrally with a columnar connecting portion extending from the film portion on the convex surface side of the curved shape, and on a distal end side of the connecting portion, and in a direction orthogonal to the extending direction of the connecting portion.
  • It is formed as a valve part having a shape wider than the connecting part, A metal member whose one end is wider than the other end, the one end is arranged inside the valve portion, and the other end is formed from the film portion on the concave side of the curved shape. Is preferably embedded by insert molding so that is exposed.
  • the repeatedly deformed portion is formed as a membrane portion of the diaphragm having a curved cross section, and the non-deformed portion extends from the membrane portion on the convex surface side of the curved shape.
  • the metal member In order to embed the metal member by insert molding so that the other end is exposed from the film on the concave side of the curved shape, the metal member is formed on the concave side of the film in the molded fluororesin molded body. Even when the metal member is pulled down, it is possible to reliably prevent the metal member from falling off from the fluororesin molded body. Therefore, when the metal member is attached to the driving device and the diaphragm is repeatedly driven, a fluororesin molded body having excellent durability can be formed.
  • the preform is formed in a state where the metal member is wrapped with a fluororesin powder.
  • the preform is molded in a state where the metal member is wrapped with the fluororesin powder, so that the adhesion between the molded fluororesin molded article and the metal member is reduced. It is possible to increase. Therefore, it is possible to use a stainless metal member which has low compatibility with the fluororesin material and which is difficult to insert-mold into the fluororesin molded body by the conventional technique.
  • the medical diaphragm manufactured by the method for manufacturing a medical diaphragm of the present configuration has an interface in an inactive state by being made of a fluororesin, the contamination of bacteria and the like from the surface of the medical diaphragm is suppressed.
  • a highly safe serum or vaccine can be produced.
  • the medical diaphragm having characteristics suitable for each of the membrane portion and the valve portion can be molded as an integrated product, so that serum or vaccine due to contamination of the joint portion can be formed. It is possible to manufacture a medical diaphragm that does not cause contamination of various bacteria and the like into the medical diaphragm. Further, since the medical diaphragm manufactured by the method for manufacturing a medical diaphragm of the present configuration has an interface in an inactive state by being made of a fluororesin, the contamination of bacteria and the like from the surface of the medical diaphragm is suppressed. A highly safe serum or vaccine can be produced.
  • the semiconductor diaphragm manufactured by the method for manufacturing a semiconductor diaphragm having this configuration has an interface in an inactive state because it is made of a fluororesin, the contamination of impurities and contamination from the surface of the semiconductor diaphragm is suppressed. As a result, the semiconductor product can be highly cleaned.
  • the semiconductor diaphragm having characteristics suitable for each of the film portion and the valve portion can be formed as an integrally molded product, so that impurities and contamination due to contamination of the joint portion can be formed. It is possible to manufacture a semiconductor diaphragm that does not cause mixing of the like.
  • the semiconductor diaphragm manufactured by the method for manufacturing a semiconductor diaphragm having this configuration has an interface in an inactive state because it is made of a fluororesin, the contamination of impurities and contamination from the surface of the semiconductor diaphragm is suppressed. As a result, the semiconductor product can be highly cleaned.
  • FIG. 1A and 1B are explanatory diagrams of a method of forming a fluororesin molded body, wherein FIG. 1A is a cross-sectional view of a primary mold, and FIG. 1B is a cross-sectional view of a state where the primary mold is filled with a laminate.
  • FIG. 2 is a cross-sectional view of the preform.
  • 3A and 3B are explanatory diagrams of a method of forming a fluororesin molded body, wherein FIG. 3A is a cross-sectional view of a secondary mold, and FIG. 3B is a cross-sectional view of a state where a fired body is attached to the secondary mold. is there.
  • FIG. 4 is a cross-sectional view of the diaphragm.
  • the fluororesin molded article developed by the inventor is an integral molded article of a fluororesin composed of powders of at least two kinds of fluororesins having different average particle diameters as raw materials and having different properties for each part.
  • FIG. 1 is an explanatory view of a method for forming a fluororesin molded body, and illustrates steps A and B.
  • FIG. 1A is a cross-sectional view of the primary mold 100
  • FIG. 1B is a cross-sectional view of a state where the primary mold 100 is filled with the laminate 10.
  • the primary mold 100 is composed of molds 101, 102, and 103 serving as lower molds and a mold 104 serving as an upper mold, and as shown in FIG.
  • the cavity 105 is formed in the inside in the state.
  • the cavity 105 has a shape of a preformed body (shown in FIG. 2 described later) that is thicker than a diaphragm (shown in FIG. 4 described later) as a final product.
  • the mold 102 is divided into molds 102a and 102b, and in a state before pressing, the molds 102a and 102b are separated from each other as shown in FIG.
  • the side molds are combined.
  • the mold 104 serving as the upper mold has a through hole 104A into which the jig 20A shown in FIG. 1B is inserted.
  • the first layer 10a is formed by depositing a fluororesin powder having an average particle diameter of 300 ⁇ m or more in a lower mold of the primary mold 100 in which the molds 101, 102, and 103 are combined.
  • a second layer 10b is formed by depositing a fluororesin powder having an average particle size of 100 ⁇ m or less on the first layer 10a, and the first layer 10a and the second layer 10b are laminated.
  • the average particle size of the fluororesin powder is defined as an average value of the effective diameter measured by a dry method using a laser diffraction method.
  • the average particle size of the fluororesin powder can be measured, for example, using a particle size distribution measuring device.
  • the fluororesin molded body has higher abrasion resistance as the average particle size of the fluororesin powder as the raw material is larger, and has higher flex resistance as the average particle size of the fluororesin powder as the raw material is smaller. Therefore, it is preferable that the laminated body 10 is formed of a fluororesin powder having a large average particle size, such as a valve portion of a diaphragm after molding, which is a non-deformed portion that is in contact with another member without being deformed during use. It is preferable that a layer that becomes a repetitively deformed portion that is repeatedly deformed during use, such as a membrane portion of a diaphragm after molding, is formed of a fluororesin powder having a small average particle size.
  • FIG. 1 (b) by sequentially stacking two types of fluororesin powder inside the lower mold while sieving above the lower mold of the primary mold 100, as shown in FIG. It is possible to form a laminate 10 composed of 10a and the second layer 10b.
  • the production of the laminate 10 and the filling of the laminate 10 into the primary mold 100 are simultaneously performed.
  • the procedure may be such that the two-layered laminate 10 is formed in advance before filling the primary mold 100, and the completed laminate 10 is arranged in the lower mold of the primary mold 100. Absent.
  • the laminate 10 is constituted by two layers of the first layer 10a and the second layer 10b, but may be constituted by three or more layers.
  • the laminate 10 is formed of three or more layers, it is not always necessary to make the average particle diameter of the fluororesin powder different in all the layers.
  • fluororesin powder examples include polytetrafluoroethylene (hereinafter, referred to as “PTFE”), tetrafluoroethylene / hexafluoropropylene copolymer, tetrafluoroethylene / perfluoroalkylvinyl ether copolymer, and polychlorotrifluoroethylene. Powder such as polyvinylidene fluoride, polyvinyl fluoride, ethylene / tetrafluoroethylene copolymer, and ethylene / chlorotrifluoroethylene copolymer, and PTFE powder is particularly preferable.
  • PTFE polytetrafluoroethylene
  • the metal member 20 to be the insert of the diaphragm shown in FIG. 1B is set in the mold 104 to be the upper mold while being attached to the jig 20A, and then the mold 104 is driven downward.
  • the molds 102a and 102b are driven inward to press the laminate 10.
  • the pressing force on the laminate 10 in the step B is preferably set to 50 to 150 kgf / cm 2 .
  • the pressing of the laminate 10 is preferably performed at room temperature. When the laminate 10 is pressed, the fine voids between the fluororesin powders are filled, and the apparent volume of the laminate 10 is compressed to ⁇ to 4. In this way, the laminate 10 is formed into a preform having the shape of the cavity 105.
  • FIG. 2 is a cross-sectional view of the preform 30.
  • the preformed body 30 includes first preformed portions 31a and 31b formed by pressing the first layer 10a of the laminated body 10 and second preformed parts formed by pressing the second layer 10b of the laminated body 10 And a part 32.
  • the metal member 20 made of stainless steel (for example, SUS316L) is insert-molded in the preform 30.
  • Stainless steel has low compatibility with resin materials, and it has been difficult to perform insert molding with the conventional technology.
  • fluororesin powder particularly PTFE powder, is used. Since the preforming is performed in a state where the metal member 20 is wrapped, the adhesion between the fluororesin and the stainless steel can be increased, and as a result, the metal member 20 can be insert-molded in the fluororesin.
  • step C the preform 30 is taken out of the primary mold 100 and fired in a heating furnace at a temperature equal to or higher than the melting point of the fluororesin powder.
  • PTFE melting point: 327 ° C.
  • the firing temperature is preferably set to 360 to 380 ° C.
  • FIG. 3 is an explanatory view of a method for forming a fluororesin molded body, and illustrates step D.
  • FIG. 3A is a cross-sectional view of the secondary mold 200
  • FIG. 3B is a cross-sectional view of a state where the fired body 40 is attached to the secondary mold 200.
  • the secondary mold 200 is composed of molds 201, 202, and 203 serving as lower molds and a mold 204 serving as an upper mold.
  • the cavity 205 is formed inside in the combined state.
  • the cavity 205 has a shape of a diaphragm (shown in FIG. 4 described later) that is a final product.
  • the mold 202 is divided into molds 202a and 202b.
  • the molds 202a and 202b are separated from each other as shown in FIG.
  • the side molds are combined.
  • the mold 204 serving as the upper mold has a through hole 204A into which the jig 20A shown in FIG. 3B is inserted.
  • step D the fired body 40 is set in a mold 204 serving as an upper mold with the jig 20A attached to the metal member 20 shown in FIG. 3B.
  • the mold 204 is driven downward, and the molds 202a and 202b are driven inward to press the fired body 40 while heating to a temperature equal to or higher than the melting point of the fluororesin powder.
  • the pressing force on the fired body 40 in the step D is preferably set to 150 to 250 kgf / cm 2 .
  • the heating temperature is preferably set to 360 to 380 ° C.
  • the fired body 40 When the fired body 40 is heated while being pressed, the fired body 40 plastically deforms and is formed into the shape of the cavity 205. Thereafter, the secondary mold 200 is cooled while maintaining the pressed state, and the pressing of the secondary mold 200 is released.
  • the cooling temperature in step D is preferably set to 110 to 130 ° C. When the fluororesin is cooled to 110 to 130 ° C., it becomes difficult to deform. After the cooling is completed, when the secondary mold 200 is removed, a diaphragm formed in the shape of the cavity 205 is obtained.
  • the volume of the cavity 205 formed inside the secondary mold 200 is preferably set to 0.80 to 0.95 times the volume of the cavity 105 formed inside the primary mold 100.
  • the preform 30 is formed as a prototype of the diaphragm by pressing with the primary mold 100, and then pressed with the secondary mold 200 having a slightly smaller cavity volume than the primary mold 100 to perform compression molding. Only with this, the diaphragm can be precisely formed. Therefore, there is no need to perform cutting using a milling machine or the like after molding, and the yield can be improved.
  • FIG. 4 is a sectional view of the diaphragm 50.
  • the diaphragm 50 has a valve part 51a, a connecting part 51b, and a film part 52, which are integrally formed, and the metal member 20, which is an insert.
  • the valve portion 51a and the connecting portion 51b are non-deformable portions that do not deform during use.
  • the film portion 52 is a repetitively deformed portion that is repeatedly deformed during use.
  • the non-deformed portion and the repeatedly deformed portion are both made of fluororesin, but have different degrees of crystallinity of the resin.
  • the degree of crystallinity is a ratio of a portion (crystal portion) where the molecular chains are regularly arranged in the resin (polymer) to the entire polymer (crystal portion + amorphous portion).
  • the crystallinity can be in the range of 30 to 70%.
  • the valve portion 51a and the connecting portion 51b are a sintered body of a fluororesin powder having an average particle size of 300 ⁇ m or more and constituting the first layer 10a of the laminate 10, and have a crystallinity of 50% or more and 70%. % And excellent wear resistance.
  • the film portion 52 is a sintered body of a fluororesin powder having an average particle size of 100 ⁇ m or less and constituting the second layer 10 b of the laminate 10, and has a crystallinity of 30% or more and less than 50%. It has excellent flexibility.
  • the crystallinity of each part of the diaphragm 50 can be measured using, for example, a wide-angle X-ray diffraction method.
  • the film section 52 is formed so that the cross section has a curved shape.
  • the connecting portion 51b is formed to have a columnar shape extending from the convex side of the film portion 52.
  • the valve portion 51a is provided integrally with the distal end side of the connecting portion 51b, and is formed so as to be wider than the connecting portion 51b in a direction orthogonal to the extending direction of the connecting portion 51b.
  • the metal member 20 has a shape in which one end is wider than the other end, the wider end is disposed inside the valve portion 51a, and the other end is the concave side of the film portion 52. It is embedded in the diaphragm 50 by insert molding so that the diaphragm 50 is exposed.
  • the crystallinity of the fluororesin can be controlled by the cooling rate in the step D. Further, the crystallinity of the fluororesin has a correlation with the friction coefficient of the fluororesin, and the smaller the crystallinity, the larger the friction coefficient. For example, by increasing the cooling rate in step D, the degree of crystallinity of the fluororesin decreases, and the friction coefficient of the surface of the diaphragm 50 can be increased. Conversely, by decreasing the cooling rate in step D, the crystallinity of the fluororesin increases, and the coefficient of friction of the surface of the diaphragm 50 can be reduced.
  • a laminate 10 in which fluororesin powders having different average particle diameters are laminated is generated, and the laminate 10 is formed into a primary mold 100.
  • the secondary mold 200 to sequentially press to form a fluororesin molded body, the resulting fluororesin molded body, for each site derived from a fluororesin powder having a different average particle size, Characteristics such as crystallinity are different.
  • a fluororesin molded article having different characteristics for each portion can be molded as an integrated molded article.
  • the method for molding a fluororesin molded article of the present invention can be used for molding (manufacturing) a medical diaphragm used for producing serum or vaccine.
  • a medical diaphragm used for producing serum or vaccine.
  • the membrane portion, the valve portion, etc. having different characteristics are molded as a separate fluororesin molded body, and these are combined after molding to produce a diaphragm.
  • a diaphragm is used for the production of serum or vaccine, there is a risk that bacteria or the like may enter the serum or vaccine from the contaminated joint.
  • the film portion having excellent flex resistance and the valve portion having excellent wear resistance can be molded as an integral molded product. It is possible to produce a medical diaphragm that has different characteristics depending on the function and does not have a risk of contamination of serum or vaccine with various bacteria and the like due to contamination of the joint, which has been a problem in the prior art. Further, since the fluororesin molded article has an interface in an inactive state, if a serum or vaccine is produced using the medical diaphragm molded by the molding method of the fluororesin molded article of the present invention, various bacteria can be produced from the surface of the medical diaphragm. Thus, a highly safe serum or vaccine can be produced by suppressing contamination of the serum or vaccine.
  • the method of molding a fluororesin molded article of the present invention can be used for molding (manufacturing) a semiconductor diaphragm used for cleaning semiconductor products.
  • a semiconductor diaphragm having different characteristics for each portion can be molded as an integrally molded product, contamination or contamination due to contamination of a joint portion may be prevented. No semiconductor diaphragm can be manufactured.
  • the semiconductor diaphragm manufactured by the method for manufacturing a semiconductor diaphragm of the present invention has an interface in an inactive state by being made of a fluororesin, the contamination of impurities and contamination from the surface of the semiconductor diaphragm is suppressed. As a result, the semiconductor product can be highly cleaned.
  • step A in the iron primary mold 100 shown in FIG. 1A, PTFE powder having an average particle diameter of 20 ⁇ m is deposited in a lower mold combining the molds 101, 102, and 103. To form a first layer 10a, and a second layer 10b is formed by depositing PTFE having an average particle size of 480 ⁇ m on the first layer 10a. A laminate 10 composed of two layers was produced.
  • step B as shown in FIG. 1B, the metal member 20 to which the jig 20A is attached is set in the mold 104, and the mold 104 is lowered while the lower mold is filled with the laminate 10.
  • Step C the preformed body 30 was taken out of the primary mold 100 and fired at 373 ° C. in a heating furnace to obtain a fired body 40.
  • step D as shown in FIG. 3B, the fired body 40 in which the jig 20A is attached to the metal member 20 is set in a mold 204, and the mold 204 is driven downward, and the molds 202a and 202b are driven.
  • the secondary mold 200 was removed to obtain the diaphragm 50 according to the example.
  • the crystallinity of the valve portion 51a, the connection portion 51b, and the film portion 52 of the diaphragm 50 according to the example was measured by a wide-angle X-ray diffraction method.
  • the valve portion 51a and the connecting portion 51b had a crystallinity of 30% and had high wear resistance.
  • the characteristics of the valve portion 51a and the connecting portion 51b satisfy the required specifications as a non-deformed portion.
  • the film portion 52 had a crystallinity of 70% and had excellent bending resistance.
  • the characteristics of the film portion 52 satisfy the required specifications as the repeatedly deformed portion.
  • the molding method of the fluororesin molded article of the present invention is particularly suitable for manufacturing a medical or semiconductor diaphragm, but is suitable for industrial, agricultural, research, food, etc. It can also be used when manufacturing a diaphragm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Diaphragms And Bellows (AREA)

Abstract

部位毎に特性が異なるフッ素樹脂成形体を一体成形物として成形することができるフッ素樹脂成形体の成形方法を提供する。 フッ素樹脂の粉体を一次金型100で押圧することにより予備成形体を成形し、予備成形体を焼成後に二次金型に充填して押圧した状態で冷却することによりフッ素樹脂成形体を成形するフッ素樹脂成形体の成形方法であって、予備成形体の成形は、平均粒径の異なる少なくとも二種類のフッ素樹脂の粉体を積層した積層体10を一次金型100に充填して実施される。

Description

フッ素樹脂成形体の成形方法、医療用ダイヤフラムの製造方法、及び半導体用ダイヤフラムの製造方法
 本発明は、フッ素樹脂の粉体を一次金型で押圧することにより予備成形体を成形し、予備成形体を焼成後に二次金型に充填して押圧した状態で冷却することによりフッ素樹脂成形体を成形するフッ素樹脂成形体の成形方法に関する。さらに、本発明は、当該フッ素樹脂成形体の成形方法を利用した血清又はワクチンの製造に用いる医療用ダイヤフラムの製造方法、並びに半導体製品の洗浄に用いる半導体用ダイヤフラムの製造方法に関する。
 ポリテトラフルオロエチレン(以下、「PTFE」と称する。)等のフッ素樹脂は、耐熱性、耐薬品性等に優れるため、例えば、ダイヤフラム、ベローズ等の素材として好適に使用されている。
 従来、フッ素樹脂成形体の成形方法として、圧縮成形法が知られている。圧縮成形法は、精密な成形体を成形する方法として好適であり、例えば、高い寸法精度が要求されるダイヤフラムを成形する場合には、圧縮成形法の一種として、一次金型によりフッ素樹脂の粉体を圧縮して予備成形体を形成し、予備成形体を焼成後に二次金型で圧縮しながら冷却することで所望の形状に仕上げるホットコイニング法が用いられている。
 ホットコイニング法を用いたダイヤフラムの製造方法の一例として、初めにフッ素樹脂を押圧して予備成形体を形成し、次に予備成形体を焼成して焼成体とし、さらに焼成体を加熱して加熱処理体とし、最後に加熱処理体を高温プレスするとともに急冷することで最終製品とする技術があった(例えば、特許文献1を参照)。特許文献1のダイヤフラムの製造方法では、フッ素樹脂の結晶化を抑え、使用時に反復変形によりクラックが生じることのないダイヤフラムを製造することができるとされている。
特開平5-10444号公報
 ところで、ダイヤフラムには、使用時に反復変形する膜部の他に、非変形部である弁部等を有することで、部位毎に異なる機能を実現する製品がある。このようなダイヤフラムでは、例えば、膜部に耐屈曲性が求められ、弁部に耐摩耗性が求められる等、部位によって要求仕様が異なる。そのような要求仕様を実現するためには、部位毎に樹脂の結晶化度を変える等、部位の要求仕様に応じた製品設計が必要となる。
 しかしながら、特許文献1の製造方法では、ダイヤフラムの部位毎に異なる結晶化度を実現することは想定されていない。特許文献1を初めとする従来技術では、反復変形部、及び非変形部等の部品を別体のフッ素樹脂成形体として成形し、これらを成形後に結合させることで、部位毎に特性の異なるダイヤフラムを製造していた。しかしながら、このような製造方法で得られたダイヤフラムは、結合部の強度が不十分となる可能性があった。また、部位毎に異なる品質管理が必要となるため、製造コストの増大を招くという問題があった。
 本発明は、上記問題点に鑑みてなされたものであり、部位毎に特性が異なるフッ素樹脂成形体を一体成形物として成形することができるフッ素樹脂成形体の成形方法を提供することを目的とする。また、当該フッ素樹脂成形体の成形方法を利用した血清又はワクチンの製造に用いる医療用ダイヤフラムの製造方法、並びに半導体製品の洗浄に用いる半導体用ダイヤフラムの製造方法を提供することを目的とする。
 上記課題を解決するための本発明にかかるフッ素樹脂成形体の成形方法の特徴構成は、
 フッ素樹脂の粉体を一次金型で押圧することにより予備成形体を成形し、前記予備成形体を焼成後に二次金型に充填して押圧した状態で冷却することによりフッ素樹脂成形体を成形するフッ素樹脂成形体の成形方法であって、
 前記予備成形体の成形は、平均粒径の異なる少なくとも二種類のフッ素樹脂の粉体を積層した積層体を前記一次金型に充填して実施されることにある。
 本構成のフッ素樹脂成形体の成形方法は、予備成形体の成形が、平均粒径の異なる少なくとも二種類のフッ素樹脂の粉体を積層した積層体を一次金型に充填して実施されるため、得られるフッ素樹脂成形体では、平均粒径の異なるフッ素樹脂の粉体に由来する部位毎に、結晶化度等の特性を相違させることができる。その結果、部位毎に特性の異なるフッ素樹脂成形体を一体成形物として成形することができる。
 本発明に係るフッ素樹脂成形体の成形方法において、
 前記積層体は、平均粒径が異なる二種類のフッ素樹脂の粉体から形成される第一層と第二層とを有し、
 成形後の前記フッ素樹脂成形体において、前記第一層に相当する第一部位と前記第二層に相当する第二部位との機能が異なるように、前記二種類のフッ素樹脂が選択されることが好ましい。
 本構成のフッ素樹脂成形体の成形方法によれば、積層体の第一層と第二層とが平均粒径が異なる二種類のフッ素樹脂の粉体から形成され、成形後のフッ素樹脂成形体において第一層に相当する第一部位と第二層に相当する第二部位との機能が異なるように、二種類のフッ素樹脂が選択されるため、要求仕様の異なる第一部位と第二部位とを一体に成形することができる。
 本発明に係るフッ素樹脂成形体の成形方法において、
 前記第一部位は、平均粒径が300μm以上であるフッ素樹脂の粉体から形成された非変形部であり、
 前記第二部位は、平均粒径が100μm以下であるフッ素樹脂の粉体から形成された反復変形部であることが好ましい。
 本構成のフッ素樹脂成形体の成形方法によれば、第一部位は平均粒径が300μm以上であるフッ素樹脂の粉体から形成されるため、非変形部に求められる耐摩耗性に優れる特性を有するものとなり、第二部位は平均粒径が100μm以下であるフッ素樹脂の粉体から形成されるため、使用時に繰り返し変形する反復変形部に求められる耐屈曲性に優れる特性を有するものとなる。
 本発明に係るフッ素樹脂成形体の成形方法において、
 前記フッ素樹脂は、ポリテトラフルオロエチレンであることが好ましい。
 本構成のフッ素樹脂成形体の成形方法によれば、耐熱性、耐薬品性等に優れるポリテトラフルオロエチレンの成形体を得ることができる。
 本発明に係るフッ素樹脂成形体の成形方法において、
 前記二次金型の内部に形成されるキャビティーの容積は、前記一次金型の内部に形成されるキャビティーの容積の0.80~0.95倍に設定されることが好ましい。
 本構成のフッ素樹脂成形体の成形方法によれば、一次金型を用いて予備成形体を成形し、その後、一次金型よりも内部に形成されるキャビティーの容積が僅かに小さい二次金型を用いてフッ素樹脂成形体を成形するため、圧縮成形のみでフッ素樹脂成形体を精密に成形することが可能となる。そのため、成形後にフライス盤等を用いた切削加工等を実施する必要がなく、歩留まりを向上させることができる。
 本発明に係るフッ素樹脂成形体の成形方法において、
 前記反復変形部は、断面が湾曲形状をなすダイヤフラムの膜部として形成され、
 前記非変形部は、前記湾曲形状の凸面側において前記膜部から延在する柱状の連結部、及び当該連結部の先端側に一体に設けられ、前記連結部の延在方向と直交する方向において前記連結部よりも幅広な形状をなす弁部として形成され、
 一方の端部が他方の端部より幅広な形状をなす金属部材を、前記弁部の内部に前記一方の端部を配し、前記湾曲形状の凹面側において前記膜部から前記他方の端部を露出させるように、インサート成形により埋め込むことが好ましい。
 本構成のフッ素樹脂成形体の成形方法によれば、反復変形部が、断面が湾曲形状をなすダイヤフラムの膜部として形成され、非変形部が、湾曲形状の凸面側において膜部から延在する柱状の連結部、及び連結部の先端側に一体に設けられた連結部より幅広な弁部として形成され、一方の端部が他方の端部より幅広な金属部材を、弁部の内部に幅広な側の端部を配し、湾曲形状の凹面側において膜部から他方の端部を露出させるように、インサート成形により埋め込むため、成形後のフッ素樹脂成形体において金属部材を膜部の凹面側へ引いた場合にも、金属部材がフッ素樹脂成形体から脱落することを確実に防ぐことができる。そのため、金属部材を駆動装置に取り付けてダイヤフラムを反復駆動させる場合に、優れた耐久性を有するフッ素樹脂成形体を成形することができる。
 本発明に係るフッ素樹脂成形体の成形方法において、
 前記金属部材をフッ素樹脂の粉体で包んだ状態で前記予備成形体を成形することが好ましい。
 本構成のフッ素樹脂成形体の成形方法によれば、金属部材をフッ素樹脂の粉体で包んだ状態で予備成形体を成形するため、成形後のフッ素樹脂成形体と金属部材との密着性を高めることが可能となる。そのため、フッ素樹脂材料との適合性が低く、従来の技術ではフッ素樹脂成形体にインサート成形することが困難であったステンレスの金属部材を利用することができる。
 上記課題を解決するための本発明にかかる医療用ダイヤフラムの製造方法の特徴構成は、
 上記何れか一つに記載のフッ素樹脂成形体の成形方法を利用した血清又はワクチンの製造に用いる医療用ダイヤフラムの製造方法であることにある。
 従来技術において、複数の部品を別体のフッ素樹脂成形体として成形し、これらを成形後に結合させてダイヤフラムを製造すると、結合部が汚染される可能性があり、この様なダイヤフラムを血清又はワクチンの製造に用いると、血清又はワクチンに雑菌等が混入する虞があった。本構成の医療用ダイヤフラムの製造方法によれば、部位毎に特性の異なる医療用ダイヤフラムを一体成形物として成形することができるため、結合部の汚染による血清又はワクチンへの雑菌等の混入が発生することのない医療用ダイヤフラムを製造することができる。また、本構成の医療用ダイヤフラムの製造方法により製造される医療用ダイヤフラムは、フッ素樹脂からなることで非活性状態の界面を有するため、医療用ダイヤフラムの表面からの雑菌等の混入を抑制して安全性の高い血清又はワクチンを製造することができる。
 上記課題を解決するための本発明にかかる医療用ダイヤフラムの製造方法の特徴構成は、
 上記何れか一つに記載のフッ素樹脂成形体の成形方法を利用した血清又はワクチンの製造に用いる医療用ダイヤフラムの製造方法であって、
 前記非変形部は、ダイヤフラムの弁部として形成され、
 前記反復変形部は、ダイヤフラムの膜部として形成されることにある。
 本構成の医療用ダイヤフラムの製造方法によれば、膜部と弁部とで夫々に適した特性を有する医療用ダイヤフラムを一体成形物として成形することができるため、結合部の汚染による血清又はワクチンへの雑菌等の混入が発生することのない医療用ダイヤフラムを製造することができる。また、本構成の医療用ダイヤフラムの製造方法により製造される医療用ダイヤフラムは、フッ素樹脂からなることで非活性状態の界面を有するため、医療用ダイヤフラムの表面からの雑菌等の混入を抑制して安全性の高い血清又はワクチンを製造することができる。
 上記課題を解決するための本発明にかかる半導体用ダイヤフラムの製造方法の特徴構成は、
 上記何れか一つに記載のフッ素樹脂成形体の成形方法を利用した半導体製品の洗浄に用いる半導体用ダイヤフラムの製造方法であることにある。
 従来技術において、複数の部品を別体のフッ素樹脂成形体として成形し、これらを成形後に結合させてダイヤフラムを製造すると、結合部が汚染される可能性があり、この様なダイヤフラムを半導体製品の洗浄に用いると、不純物やコンタミ等が混入する虞があった。本構成の半導体用ダイヤフラムの製造方法によれば、部位毎に特性の異なる半導体用ダイヤフラムを一体成形物として成形することができるため、結合部の汚染による不純物やコンタミ等の混入が発生することのない半導体用ダイヤフラムを製造することができる。また、本構成の半導体用ダイヤフラムの製造方法により製造される半導体用ダイヤフラムは、フッ素樹脂からなることで非活性状態の界面を有するため、半導体用ダイヤフラムの表面からの不純物やコンタミ等の混入を抑制して半導体製品を高度に洗浄することができる。
 上記課題を解決するための本発明にかかる半導体用ダイヤフラムの製造方法の特徴構成は、
 上記何れか一つに記載のフッ素樹脂成形体の成形方法を利用した半導体製品の洗浄に用いる半導体用ダイヤフラムの製造方法であって、
 前記非変形部は、ダイヤフラムの弁部として形成され、
 前記反復変形部は、ダイヤフラムの膜部として形成されることにある。
 本構成の半導体用ダイヤフラムの製造方法によれば、膜部と弁部とで夫々に適した特性を有する半導体用ダイヤフラムを一体成形物として成形することができるため、結合部の汚染による不純物やコンタミ等の混入が発生することのない半導体用ダイヤフラムを製造することができる。また、本構成の半導体用ダイヤフラムの製造方法により製造される半導体用ダイヤフラムは、フッ素樹脂からなることで非活性状態の界面を有するため、半導体用ダイヤフラムの表面からの不純物やコンタミ等の混入を抑制して半導体製品を高度に洗浄することができる。
図1は、フッ素樹脂成形体の成形方法の説明図であり、(a)は一次金型の断面図であり、(b)は一次金型に積層体を充填した状態の断面図である。 図2は、予備成形体の断面図である。 図3は、フッ素樹脂成形体の成形方法の説明図であり、(a)は二次金型の断面図であり、(b)は二次金型に焼成体を取り付けた状態の断面図である。 図4は、ダイヤフラムの断面図である。
 本発明者が開発したフッ素樹脂成形体は、平均粒径の異なる少なくとも二種類のフッ素樹脂の粉体を原材料とし、部位毎に特性が異なるように構成したフッ素樹脂の一体成形物であり、以下の工程A~Dを実施することにより得られる。すなわち、本発明のフッ素樹脂成形体の成形方法では、平均粒径の異なる少なくとも二種類のフッ素樹脂の粉体を積層することにより積層体を準備する工程A、積層体を一次金型に充填して押圧することにより予備成形体を成形する工程B、予備成形体を焼成することにより焼成体を得る工程C、及び焼成体を二次金型に充填して押圧した状態で冷却する工程Dを実施する。以下、本発明のフッ素樹脂成形体の成形方法に関する実施形態として、特性が異なる複数の部位が一体に成形されたダイヤフラムの製造方法について説明する。ただし、本発明は、以下に説明する実施形態や図面に記載される構成に限定されることを意図しない。
 図1は、フッ素樹脂成形体の成形方法の説明図であり、工程A及び工程Bを説明するものである。図1(a)は一次金型100の断面図であり、図1(b)は一次金型100に積層体10を充填した状態の断面図である。一次金型100は、下側金型となる金型101、102、及び103と、上側金型となる金型104とから構成されており、図1(a)に示すように、両者を組み合わせた状態で内部にキャビティー105を形成する。キャビティー105は、最終製品となるダイヤフラム(後述の図4に示す)よりも肉厚な予備成形体(後述の図2に示す)の形状をなす。本実施形態において金型102は、金型102a、及び102bに分割されており、押圧前の状態では、図1(b)に示すように、金型102a、及び102bを離間させた状態で下側金型が組み合わされる。上側金型となる金型104には、図1(b)に示す冶具20Aを挿入する貫通孔104Aが形成されている。
 工程Aでは、金型101、102、及び103を組み合わせた一次金型100の下側金型内に、平均粒径が300μm以上であるフッ素樹脂粉体を堆積させることにより第一層10aを形成し、第一層10aの上に、平均粒径が100μm以下であるフッ素樹脂粉体を堆積させることで第二層10bを形成し、第一層10aと第二層10bとが積層した積層体10を生成する。ここで、フッ素樹脂粉体の平均粒径は、レーザー回折法によって乾式で測定される有効径の平均値と規定される。フッ素樹脂粉体の平均粒径は、例えば、粒子径分布測定装置を用いて測定することができる。フッ素樹脂成形体は、原材料となるフッ素樹脂粉体の平均粒径が大きい程、耐摩耗性が高くなり、原材料となるフッ素樹脂粉体の平均粒径が小さい程、耐屈曲性が高くなる。そこで、積層体10は、成形後にダイヤフラムの弁部等、使用時に変形することなく他の部材に接触する非変形部となる層を、平均粒径が大きいフッ素樹脂粉体で形成することが好ましく、成形後にダイヤフラムの膜部等、使用時に繰り返し変形する反復変形部となる層を、平均粒径の小さいフッ素樹脂粉体で形成することが好ましい。例えば、一次金型100の下側金型の上方で篩にかけながら下側金型の内部に二種類のフッ素樹脂粉体を順次積み上げることで、図1(b)に示すように、第一層10aと第二層10bとから構成される積層体10を形成することができる。本実施形態では、一次金型100の下側金型内にフッ素樹脂粉体を直接積層させることで、積層体10の生成と、一次金型100内への積層体10の充填とを同時に実施しているが、二層の積層体10を一次金型100に充填する前に予め形成しておき、出来上がった積層体10を一次金型100の下側金型内に配置する手順としても構わない。また、本実施形態では、積層体10を第一層10aと第二層10bとの二層で構成したが、積層体10を三層以上で構成してもよい。積層体10を三層以上で形成する場合、必ずしも全ての層でフッ素樹脂粉体の平均粒径を異ならせる必要はない。例えば、一層目及び三層目を平均粒径が300μm以上である同じフッ素樹脂粉体で形成し、二層目を平均粒径が100μm以下のフッ素樹脂粉体で形成した三層構造の積層体とすることも可能である。
 フッ素樹脂粉体としては、ポリテトラフルオロエチレン(以下、「PTFE」と称する。)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニル、エチレン・テトラフルオロエチレン共重合体、及びエチレン・クロロトリフルオロエチレン共重合体等の粉体が挙げられ、特に、PTFEの粉体が好ましい。
 工程Bでは、図1(b)に示すダイヤフラムのインサート物となる金属部材20を、冶具20Aに取り付けた状態で上側金型となる金型104にセットし、次いで、金型104を下方に駆動するとともに、金型102a、及び102bを内方に駆動することで、積層体10を押圧する。工程Bにおける積層体10に対する押圧力は、50~150kgf/cmに設定することが好ましい。積層体10の押圧は、常温で実施することが好ましい。積層体10を押圧すると、フッ素樹脂粉体間の微細な空隙が埋まるため、積層体10の見かけの容積が1/2~1/4に圧縮される。このようにして、積層体10は、キャビティー105の形状を有する予備成形体へと成形される。
 図2は、予備成形体30の断面図である。予備成形体30は、積層体10の第一層10aが押圧されて成形された第一予備成形部位31a、31bと、積層体10の第二層10bが押圧されて成形された第二予備成形部位32とを有する。予備成形体30には、ステンレス(例えば、SUS316L)製の金属部材20がインサート成形されている。ステンレスは、樹脂材料との適合性が低く、従来の技術ではインサート成形することが困難であったが、本発明のフッ素樹脂成形体の成形方法では、フッ素樹脂粉体、特に、PTFEの粉体で金属部材20を包んだ状態で予備成形を行うため、フッ素樹脂とステンレスとの密着性を高めることが可能となり、その結果、金属部材20をフッ素樹脂中にインサート成形することができる。
 工程Cでは、予備成形体30を一次金型100から取り出して、加熱炉にてフッ素樹脂粉体の融点以上の温度で焼成する。焼成温度は、フッ素樹脂粉体としてPTFE(融点327℃)の粉体を使用する場合、360~380℃に設定することが好ましい。フッ素樹脂粉体を焼成することにより、予備成形体30の内部応力が除去され、フッ素樹脂粉体同士が溶着して焼成体となる。
 図3は、フッ素樹脂成形体の成形方法の説明図であり、工程Dを説明するものである。図3(a)は二次金型200の断面図であり、図3(b)は二次金型200に焼成体40を取り付けた状態の断面図である。二次金型200は、下側金型となる金型201、202、及び203と、上側金型となる金型204とから構成されており、図3(a)に示すように、両者を組み合わせた状態で内部にキャビティー205を形成する。キャビティー205は、最終製品となるダイヤフラム(後述の図4に示す)の形状をなす。本実施形態において金型202は、金型202a、及び202bに分割されており、押圧前の状態では、図3(b)に示すように、金型202a、及び202bを離間させた状態で下側金型が組み合わされる。上側金型となる金型204には、図3(b)に示す冶具20Aを挿入する貫通孔204Aが形成されている。
 工程Dでは、図3(b)に示す金属部材20に冶具20Aを取り付けた状態で、上側金型となる金型204に焼成体40をセットする。次いで、金型204を下方へ駆動するとともに、金型202a、及び202bを内方へ駆動することで焼成体40を押圧しながら、フッ素樹脂粉体の融点以上の温度まで加熱する。工程Dにおける焼成体40に対する押圧力は、150~250kgf/cmに設定することが好ましい。工程Dにおける加熱温度は、フッ素樹脂粉体としてPTFE(融点327℃)の粉体を使用する場合、360~380℃に設定することが好ましい。焼成体40を押圧しながら加熱すると、焼成体40は可塑変形し、キャビティー205の形状に成形される。その後、二次金型200の押圧状態を維持したまま冷却し、二次金型200の押圧を解除する。工程Dにおける冷却温度は、110~130℃に設定することが好ましい。フッ素樹脂は110~130℃まで冷却すると、変形しにくくなる。冷却の完了後、二次金型200を取り外すと、キャビティー205の形状に成形されたダイヤフラムが得られる。
 二次金型200の内部に形成されるキャビティー205の容積は、一次金型100の内部に形成されるキャビティー105の容積の0.80~0.95倍に設定することが好ましい。一次金型100での押圧によりダイヤフラムの原型となる予備成形体30を成形し、その後、一次金型100よりもキャビティーの容積が僅かに小さい二次金型200で押圧することにより、圧縮成形のみでダイヤフラムを精密に成形することが可能となる。そのため、成形後にフライス盤等を用いた切削加工等の必要がなく、歩留まりを向上させることができる。
 図4は、ダイヤフラム50の断面図である。ダイヤフラム50は、一体成形物である弁部51a、連結部51b、及び膜部52と、インサート物である金属部材20とを有する。弁部51a及び連結部51bは、使用時に変形しない非変形部である。膜部52は、使用時に繰り返し変形する反復変形部である。非変形部及び反復変形部は、何れもフッ素樹脂で構成されるが、樹脂の結晶化度が異なる。ここで、結晶化度とは、樹脂(高分子)において、分子鎖が規則的に並んでいる部位(結晶部)の当該高分子全体(結晶部+非晶部)に占める割合である。結晶性高分子であるフッ素樹脂の場合、結晶化度は30~70%の範囲となり得る。弁部51a及び連結部51bは、積層体10の第一層10aを構成していた平均粒径が300μm以上であるフッ素樹脂粉体の焼結体であり、結晶化度が50%以上、70%以下の耐摩耗性に優れる特性を有する。膜部52は、積層体10の第二層10bを構成していた平均粒径が100μm以下であるフッ素樹脂粉体の焼結体であり、結晶化度が30%以上、50%未満の耐屈曲性に優れる特性を有する。ダイヤフラム50の各部の結晶化度は、例えば、広角X線回折法を用いて測定することができる。図4において、膜部52は、断面が湾曲形状をなすように形成されている。連結部51bは、膜部52の凸面側から延在する柱状の形状をなすように形成されている。弁部51aは、連結部51bの先端側に一体に設けられ、連結部51bの延在方向と直交する方向において、連結部51bよりも幅広な形状をなすように形成されている。また、金属部材20は、一方の端部が他方の端部より幅広な形状をなし、幅広な側の端部が弁部51aの内部に配され、他方の端部が膜部52の凹面側から露出するように、ダイヤフラム50にインサート成形により埋め込まれている。
 フッ素樹脂の結晶化度は、工程Dにおける冷却速度によりコントロールすることができる。また、フッ素樹脂の結晶化度は、フッ素樹脂の摩擦係数との間に相関があり、結晶化度が小さい程、摩擦係数は大きくなる。例えば、工程Dにおける冷却速度を大きくすることで、フッ素樹脂の結晶化度が小さくなり、ダイヤフラム50の表面の摩擦係数を大きくすることができる。逆に、工程Dにおける冷却速度を小さくすることで、フッ素樹脂の結晶化度が大きくなり、ダイヤフラム50の表面の摩擦係数を小さくすることができる。
 以上、説明したように、本発明のフッ素樹脂成形体の成形方法によれば、平均粒径の異なるフッ素樹脂の粉体を積層した積層体10を生成し、この積層体10を一次金型100及び二次金型200を用いて順に押圧してフッ素樹脂成形体を成形するものであるため、得られるフッ素樹脂成形体は、平均粒径の異なるフッ素樹脂の粉体に由来する部位毎に、結晶化度等の特性が相違したものとなる。このように、本発明のフッ素樹脂成形体の成形方法を実施すれば、部位毎に特性の異なるフッ素樹脂成形体を一体成形物として成形することができる。
 また、本発明のフッ素樹脂成形体の成形方法は、血清又はワクチンの製造に用いる医療用ダイヤフラムを成形(製造)するために利用することができる。医療用ダイヤフラムでは、膜部、弁部等の部位に機能に応じて異なる特性を付与することが必要とされている。しかし、従来技術は、特性の異なる膜部、弁部等を別体のフッ素樹脂成形体として成形し、これらを成形後に結合させてダイヤフラムを製造するものであるため、製造中に結合部が汚染される可能性があり、この様なダイヤフラムを血清又はワクチンの製造に用いると、汚染された結合部から血清又はワクチンに雑菌等が混入する虞があった。本発明のフッ素樹脂成形体の成形方法では、耐屈曲性に優れる膜部と、耐摩耗性に優れる弁部とを一体成形物として成形することができるため、膜部、弁部等の部位に機能に応じて異なる特性を付与しつつ、従来技術において問題となっていた結合部の汚染による血清又はワクチンへの雑菌等の混入が発生する虞がない医療用ダイヤフラムを製造することができる。また、フッ素樹脂成形体は非活性状態の界面を有するため、本発明のフッ素樹脂成形体の成形方法により成形した医療用ダイヤフラムを用いて血清又はワクチンを製造すれば、医療用ダイヤフラムの表面から雑菌等の混入が抑制されることで、安全性の高い血清又はワクチンを製造することができる。
 さらに、本発明のフッ素樹脂成形体の成形方法は、半導体製品の洗浄に用いる半導体用ダイヤフラムを成形(製造)するために利用することができる。本発明の半導体用ダイヤフラムの製造方法によれば、部位毎に特性の異なる半導体用ダイヤフラムを一体成形物として成形することができるため、結合部の汚染による不純物やコンタミ等の混入が発生することのない半導体用ダイヤフラムを製造することができる。また、本発明の半導体用ダイヤフラムの製造方法により製造される半導体用ダイヤフラムは、フッ素樹脂からなることで非活性状態の界面を有するため、半導体用ダイヤフラムの表面からの不純物やコンタミ等の混入を抑制して半導体製品を高度に洗浄することができる。
 次に、具体的実施例に基づいて、本発明のフッ素樹脂成形体の成形方法をさらに説明する。
 工程Aとして、図1(a)に示す鉄製の一次金型100において、金型101、102、及び103を組み合わせた下側金型内に、平均粒径が20μmであるPTFEの粉体を堆積させることにより第一層10aを形成し、第一層10aの上に、平均粒径が480μmであるPTFEを堆積させることで第二層10bを形成し、第一層10a及び第二層10bの二層からなる積層体10を生成した。工程Bとして、図1(b)に示すように、冶具20Aを取り付けた金属部材20を金型104にセットし、下側金型内に積層体10を充填した状態で、金型104を下方に駆動するとともに、金型102a、及び102bを内方に駆動することで、堆積体10を常温において100kgf/cmの圧力で押圧して予備成形体30を得た。工程Cとして、予備成形体30を一次金型100から取り出して、加熱炉にて373℃で焼成し、焼成体40を得た。工程Dとして、図3(b)に示ように、金属部材20に冶具20Aを取り付けた焼成体40を金型204にセットし、金型204を下方へ駆動するとともに、金型202a、及び202bを内方へ駆動することで焼成体40を200kgf/cmの圧力で押圧しながら373℃まで加熱し、その後、120℃まで冷却した。冷却後に二次金型200を取り外し、実施例にかかるダイヤフラム50を得た。
 実施例にかかるダイヤフラム50の弁部51a、連結部51b、及び膜部52における結晶化度を、広角X線回折法で測定した。弁部51a及び連結部51bは、結晶化度が30%であり、高い耐摩耗性を有していた。このような弁部51a及び連結部51bにおける特性は、非変形部としての要求仕様を満たすものであった。また、膜部52は、結晶化度が70%であり、優れた耐屈曲性を有していた。このような膜部52における特性は、反復変形部としての要求仕様を満たすものであった。
 本発明のフッ素樹脂成形体の成形方法は、特に、医療用又は半導体用のダイヤフラムを製造するにあたって好適に利用可能であるが、工業用、農業用、研究用、食品用等、他の用途のダイヤフラムを製造する場合においても利用可能である。
 10       積層体
 10a      第一層
 10b      第二層
 30       予備成形体
 50       ダイヤフラム(フッ素樹脂成形体)
 51a      弁部(第一部位)
 51b      連結部(第一部位)
 52       膜部(第二部位)
 100      一次金型
 105      キャビティー
 200      二次金型
 205      キャビティー

Claims (11)

  1.  フッ素樹脂の粉体を一次金型で押圧することにより予備成形体を成形し、前記予備成形体を焼成後に二次金型に充填して押圧した状態で冷却することによりフッ素樹脂成形体を成形するフッ素樹脂成形体の成形方法であって、
     前記予備成形体の成形は、平均粒径の異なる少なくとも二種類のフッ素樹脂の粉体を積層した積層体を前記一次金型に充填して実施されるフッ素樹脂成形体の成形方法。
  2.  前記積層体は、平均粒径が異なる二種類のフッ素樹脂の粉体から形成される第一層と第二層とを有し、
     成形後の前記フッ素樹脂成形体において、前記第一層に相当する第一部位と前記第二層に相当する第二部位との機能が異なるように、前記二種類のフッ素樹脂が選択される請求項1に記載のフッ素樹脂成形体の成形方法。
  3.  前記第一部位は、平均粒径が300μm以上であるフッ素樹脂の粉体から形成された非変形部であり、
     前記第二部位は、平均粒径が100μm以下であるフッ素樹脂の粉体から形成された反復変形部である請求項2に記載のフッ素樹脂成形体の成形方法。
  4.  前記フッ素樹脂は、ポリテトラフルオロエチレンである請求項1~3の何れか一項に記載のフッ素樹脂成形体の成形方法。
  5.  前記二次金型の内部に形成されるキャビティーの容積は、前記一次金型の内部に形成されるキャビティーの容積の0.80~0.95倍に設定される請求項1~4の何れか一項に記載のフッ素樹脂成形体の成形方法。
  6.  前記反復変形部は、断面が湾曲形状をなすダイヤフラムの膜部として形成され、
     前記非変形部は、前記湾曲形状の凸面側において前記膜部から延在する柱状の連結部、及び当該連結部の先端側に一体に設けられ、前記連結部の延在方向と直交する方向において前記連結部よりも幅広な形状をなす弁部として形成され、
     一方の端部が他方の端部より幅広な形状をなす金属部材を、前記弁部の内部に前記一方の端部を配し、前記湾曲形状の凹面側において前記膜部から前記他方の端部を露出させるように、インサート成形により埋め込む請求項3~5の何れか一項に記載のフッ素樹脂成形体の成形方法。
  7.  前記金属部材をフッ素樹脂の粉体で包んだ状態で前記予備成形体を成形する請求項6に記載のフッ素樹脂成形体の成形方法。
  8.  請求項1~7の何れか一項に記載のフッ素樹脂成形体の成形方法を利用した血清又はワクチンの製造に用いる医療用ダイヤフラムの製造方法。
  9.  請求項3~7の何れか一項に記載のフッ素樹脂成形体の成形方法を利用した血清又はワクチンの製造に用いる医療用ダイヤフラムの製造方法であって、
     前記非変形部は、ダイヤフラムの弁部として形成され、
     前記反復変形部は、ダイヤフラムの膜部として形成される医療用ダイヤフラムの製造方法。
  10.  請求項1~7の何れか一項に記載のフッ素樹脂成形体の成形方法を利用した半導体製品の洗浄に用いる半導体用ダイヤフラムの製造方法。
  11.  請求項3~7の何れか一項に記載のフッ素樹脂成形体の成形方法を利用した半導体製品の洗浄に用いる半導体用ダイヤフラムの製造方法であって、
     前記非変形部は、ダイヤフラムの弁部として形成され、
     前記反復変形部は、ダイヤフラムの膜部として形成される半導体用ダイヤフラムの製造方法。
PCT/JP2019/014515 2018-07-20 2019-04-01 フッ素樹脂成形体の成形方法、医療用ダイヤフラムの製造方法、及び半導体用ダイヤフラムの製造方法 WO2020017106A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980048283.8A CN112469546B (zh) 2018-07-20 2019-04-01 氟树脂成形体的成形方法、医疗用隔膜的制造方法、以及半导体用隔膜的制造方法
JP2019537852A JP6634574B1 (ja) 2018-07-20 2019-04-01 フッ素樹脂成形体の成形方法、医療用ダイヤフラムの製造方法、及び半導体用ダイヤフラムの製造方法
US17/261,186 US20210237315A1 (en) 2018-07-20 2019-04-01 Molding method for fluororesin molded article, production method for medical diaphragm, and production method for diaphragm for semiconductor
EP19837294.8A EP3825089B1 (en) 2018-07-20 2019-04-01 Molding method for fluororesin molded article, production method for medical diaphragm, and production method for diaphragm for semiconductor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018136881 2018-07-20
JP2018-136881 2018-07-20

Publications (1)

Publication Number Publication Date
WO2020017106A1 true WO2020017106A1 (ja) 2020-01-23

Family

ID=69164399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014515 WO2020017106A1 (ja) 2018-07-20 2019-04-01 フッ素樹脂成形体の成形方法、医療用ダイヤフラムの製造方法、及び半導体用ダイヤフラムの製造方法

Country Status (5)

Country Link
US (1) US20210237315A1 (ja)
EP (1) EP3825089B1 (ja)
JP (1) JP6634574B1 (ja)
CN (1) CN112469546B (ja)
WO (1) WO2020017106A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510444A (ja) 1991-06-26 1993-01-19 Yodogawa Kasei Kk フツ素系樹脂製ダイヤフラムの製造法
JP2003311763A (ja) * 2002-04-25 2003-11-05 Daikin Ind Ltd Ptfe中実成形体製造方法
JP2007320267A (ja) * 2006-06-02 2007-12-13 Du Pont Mitsui Fluorochem Co Ltd フッ素樹脂成形方法及びフッ素樹脂成形品
WO2008069196A1 (ja) * 2006-12-04 2008-06-12 Daikin Industries, Ltd. ポリテトラフルオロエチレン成形体及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5234751A (en) * 1989-09-12 1993-08-10 Sumitomo Electric Industries, Ltd. Porous material of polytetrafluoroethylene and process for producing the same
US5399307A (en) * 1993-06-18 1995-03-21 Dalton; Robert E. Methods of compression molding two or more polytetrafluoroethylene resin layers
WO2003013821A1 (en) * 2001-08-03 2003-02-20 Coltec Industrial Products Llc Method of manufacturing a pfte preform compression moulding
JPWO2003035724A1 (ja) * 2001-10-24 2005-02-10 ダイキン工業株式会社 Ptfe粉末及びptfe成形用粉末製造方法
JP2010260216A (ja) * 2009-04-30 2010-11-18 Nippon Valqua Ind Ltd フッ素樹脂成形体およびその製造方法
CN103889719B (zh) * 2011-10-18 2016-09-07 大金工业株式会社 含氟层积体及其制造方法
US9261089B2 (en) * 2013-03-06 2016-02-16 Dino Technology Co., Ltd. Pump and check ring thereof
AT514955B1 (de) * 2014-01-31 2015-05-15 Miba Gleitlager Gmbh Verfahren zur Herstellung eines Zweistoff-Gleitlagers
CN107322944A (zh) * 2017-05-24 2017-11-07 青岛海信电器股份有限公司 一种聚四氟乙烯管材、其制备方法及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510444A (ja) 1991-06-26 1993-01-19 Yodogawa Kasei Kk フツ素系樹脂製ダイヤフラムの製造法
JP2003311763A (ja) * 2002-04-25 2003-11-05 Daikin Ind Ltd Ptfe中実成形体製造方法
JP2007320267A (ja) * 2006-06-02 2007-12-13 Du Pont Mitsui Fluorochem Co Ltd フッ素樹脂成形方法及びフッ素樹脂成形品
WO2008069196A1 (ja) * 2006-12-04 2008-06-12 Daikin Industries, Ltd. ポリテトラフルオロエチレン成形体及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3825089A4

Also Published As

Publication number Publication date
CN112469546A (zh) 2021-03-09
EP3825089A1 (en) 2021-05-26
EP3825089A4 (en) 2022-04-13
JP6634574B1 (ja) 2020-01-22
EP3825089B1 (en) 2023-06-07
US20210237315A1 (en) 2021-08-05
JPWO2020017106A1 (ja) 2020-07-27
CN112469546B (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
US6743511B2 (en) Method of manufacturing a PTFE preform using thermal fusion
US4863330A (en) Composite fastener and method of manufacture
JP3564132B2 (ja) 二つ又はいくつか重ね合わせたシート状成形部材の接合方法,前記方法を遂行する装置及び前記方法による接合物
JP6559541B2 (ja) アルミニウムと炭素粒子との複合体の製造方法
JP6634574B1 (ja) フッ素樹脂成形体の成形方法、医療用ダイヤフラムの製造方法、及び半導体用ダイヤフラムの製造方法
JP6630932B1 (ja) フッ素樹脂成形体、医療用ダイヤフラム、及び半導体用ダイヤフラム
WO2020017107A1 (ja) フッ素樹脂成形体、医療用ダイヤフラム、及び半導体用ダイヤフラム
CN102695571B (zh) 使用粉末冶金制造齿式环齿轮的方法
TW200932472A (en) Polytetrafluoroethylene bellows, process for manufacturing the same, apparatus therefor and fluid pressure feed equipment utilizing the bellows
EP2401131B1 (de) Mikrostrukturiertes verbundbauteil sowie verfahren und vorrichtung zu dessen herstellung
US20050079919A1 (en) Molding method for geared member with boss and geared member with boss
JP2023103481A (ja) 金属製の複合部材、金属製の複合部材の製造方法
JP7223064B2 (ja) シャフトの製造方法
JP5170753B2 (ja) マイクロ化学プラントの製造方法
KR102415577B1 (ko) 니어 넷 형상 분말-기반 금속 부품의 크랙 프리 제조
US20130186265A1 (en) Self-retracting actuator
JP5084614B2 (ja) マイクロ化学プラント及びその製造方法
Premarathna et al. A novel fabrication method for rapid prototyping of soft structures with embedded pneumatic channels
JP2005324532A (ja) ポリテトラフルオルエチレン燒結物の製造方法及びその方法で製造したポリテトラフルオルエチレン燒結物
JPH11322428A (ja) ガラス状炭素製パイプ及びその製造方法
KR100723279B1 (ko) 다층구조성형재의 제조를 위한 금형
JP5207844B2 (ja) マイクロ化学プラント及びその製造方法
KR20210041920A (ko) 케이블 베이어 제조장치 및 방법
JP2003033974A (ja) 貫通孔を有するフッ素樹脂製成形物及びその製法
JPH03134377A (ja) ガスケット及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019537852

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19837294

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019837294

Country of ref document: EP

Effective date: 20210222