WO2020015523A1 - 工艺腔室及热处理炉 - Google Patents

工艺腔室及热处理炉 Download PDF

Info

Publication number
WO2020015523A1
WO2020015523A1 PCT/CN2019/094393 CN2019094393W WO2020015523A1 WO 2020015523 A1 WO2020015523 A1 WO 2020015523A1 CN 2019094393 W CN2019094393 W CN 2019094393W WO 2020015523 A1 WO2020015523 A1 WO 2020015523A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulation
flange
process chamber
tube
annular
Prior art date
Application number
PCT/CN2019/094393
Other languages
English (en)
French (fr)
Inventor
李旭刚
陈志兵
姜艳杰
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Publication of WO2020015523A1 publication Critical patent/WO2020015523A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • F27B17/0016Chamber type furnaces
    • F27B17/0025Especially adapted for treating semiconductor wafers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D5/00Supports, screens, or the like for the charge within the furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D5/00Supports, screens, or the like for the charge within the furnace
    • F27D5/0037Supports specially adapted for semi-conductors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D5/00Supports, screens, or the like for the charge within the furnace
    • F27D5/0068Containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/02Supplying steam, vapour, gases, or liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0073Seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D5/00Supports, screens, or the like for the charge within the furnace
    • F27D2005/0081Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/02Supplying steam, vapour, gases, or liquids
    • F27D2007/023Conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • F27D2009/0002Cooling of furnaces
    • F27D2009/001Cooling of furnaces the cooling medium being a fluid other than a gas
    • F27D2009/0013Cooling of furnaces the cooling medium being a fluid other than a gas the fluid being water

Definitions

  • the present invention relates to the field of semiconductor manufacturing, and in particular, to a process chamber and a heat treatment furnace.
  • SiC materials have outstanding advantages such as wide bandgap, high saturation drift speed, high thermal conductivity, and high critical breakdown electric field. They belong to the third generation of semiconductor materials and are suitable for preparing high-power, high-frequency, high-voltage, high-temperature, and radiation-resistant electronic devices. Moreover, SiC material is the only wide band gap semiconductor that can be directly oxidized to grow SiO2 films.
  • SiO2 film growth methods is a high temperature dry or wet oxygen thermal oxidation method. This thermal oxidation process is the best for obtaining the quality of SiO2 films and interface characteristics.
  • the temperature of the high temperature oxidation process of SiC is as high as 1500 ° C, conventional high temperature equipment cannot meet the process requirements.
  • the industry uses a high-temperature oxidation furnace to perform a high-temperature oxidation process on the SiC wafer.
  • the high-temperature oxidation furnace is a key process equipment of a SiC device integrated circuit production line.
  • the highest temperature of the existing high-temperature annealing furnace is usually 1950 ° C, and the use temperature is low, which is not conducive to ion activation, and it is not easy to improve the electrical performance of the device.
  • the use temperature is low, which is not conducive to ion activation, and it is not easy to improve the electrical performance of the device.
  • a large number of heat insulation baffles need to be installed in the process chamber, and a large volume chamber must be equipped, which is not conducive to the control of key indicators such as process temperature uniformity, air tightness, and cleanliness.
  • the transition structure for cooling the air intake pipeline is lengthy, which is not conducive to the overall optimization of the equipment.
  • the present invention aims to solve at least one of the technical problems in the prior art, and proposes a process chamber and a heat treatment furnace, which can not only increase the use temperature of the area where the process boat is located, but also do not need to be equipped with a chamber with a large volume. Reduced device size.
  • a process chamber including:
  • Thermal insulation device with closed thermal insulation space inside;
  • a heat insulation panel assembly including a plurality of heat insulation panels arranged in a vertical direction; the heat insulation panel assembly is disposed adjacent to the heat insulation device;
  • a process boat is used to carry the workpiece to be processed; the process boat is disposed adjacent to the heat insulation plate assembly.
  • the thermal insulation device includes:
  • Insulation tube the upper and lower ends of the insulation tube are closed ends to form the insulation space inside the insulation tube, and the insulation tube is provided with a penetrating upper end wall and a lower end wall thereof. perforation;
  • a heat-insulating pipe that is hermetically inserted in the perforation of the heat-insulating tube and has an annular space between the heat-insulating tube and the heat-insulating tube;
  • a heat insulating material is filled in the annular space.
  • the process chamber further includes a boat loading and unloading flange, and the boat loading and unloading flange is sealed against the lower end of the heat insulation cylinder for supporting the heat insulation cylinder, the heat insulation pipe,
  • the heat insulation plate assembly and the craft boat are capable of lifting and moving;
  • the process chamber further includes an air inlet pipe which is sealingly threaded on the boat loading and unloading flange and communicates with the inside of the heat insulation pipe.
  • the process chamber further includes a first air extraction device
  • a filter hole is provided in the lower end wall of the heat insulation cylinder, the filter hole communicates the heat insulation space with the outside of the heat insulation cylinder, and a filter is provided in the filter hole; the boat loading and unloading method
  • An interlayer pipeline is provided in the blue, one end of the interlayer pipeline is in communication with the filtering hole, and the other end of the interlayer pipeline is in communication with the first air extraction device.
  • a first seal ring is provided between the lower end of the heat insulation cylinder and the boat loading and unloading flange, and the first seal ring surrounds the filter hole.
  • a second seal ring is further provided between the lower end of the heat insulation tube and the boat loading and unloading flange, and the lower end opening of the heat insulation tube, the filter hole and the second seal ring are all It is located in a sealing area surrounded by the first sealing ring.
  • each of the heat insulation plates is provided with a ventilation hole penetrating through its thickness, and the ventilation holes in all the heat insulation plates communicate to form a central air passage communicating with the interior of the heat insulation pipe. Is used to transport the process gas to the area where the process boat is located.
  • the process chamber further includes:
  • a process pipe body wherein the upper end of the process pipe body is closed and the lower end thereof is open; the axial direction of the process pipe body is vertically arranged;
  • An inner cylinder the upper and lower ends of which are open and arranged inside the process pipe; an annular gap is formed between the outer peripheral wall of the inner cylinder and the inner peripheral wall of the process pipe; The heat insulation device, the heat insulation plate assembly and the process boat can be lifted into the inner cylinder body;
  • the process pipe flange has a ring structure; the process pipe flange is sealedly connected to the lower end of the process pipe body and the lower end of the inner cylinder; the top surface of the process pipe flange is provided with a recessed annular gas
  • the annular air groove is in butt communication with the annular gap; a transverse air passage communicating with the annular air groove is provided in the process pipe flange, and the transverse air passage is in communication with the second air extraction device .
  • the process chamber further includes a ring-shaped furnace tube flange, the furnace tube flange is stacked on the process tube flange, and surrounds the outer periphery of the process tube body;
  • the top surface of the process tube flange is provided with a protruding annular flange that surrounds the outer periphery of the process tube body; and an annular groove is provided on the lower surface of the furnace tube flange. , The annular flange projects into the annular groove;
  • the upper surface of the annular flange, the surface of the annular groove opposite to the upper surface of the annular flange, and the outer peripheral wall of the process pipe body collectively constitute an annular space, and a third space is provided in the annular space. Sealing ring.
  • annular cooling water channel is provided in the process pipe flange and the furnace barrel flange.
  • a temperature measuring sleeve is provided in the furnace barrel flange, a detection end of the temperature measuring sleeve is located on an inner peripheral wall of the furnace barrel flange, and the other end of the temperature measuring sleeve is penetrated Extending through the furnace flange; and a temperature sensor is provided in the temperature measuring sleeve.
  • the process pipe body, the inner cylinder body, the heat insulation plate assembly, and the heat insulation device are all cylindrical, and are arranged coaxially;
  • the present invention further provides a heat treatment furnace for performing a SiC high-temperature oxidation process, and the heat treatment furnace includes the foregoing process chamber provided by the present invention.
  • the process chamber includes a heat insulation device with a closed heat insulation space inside; a heat insulation plate assembly includes a plurality of heat insulation plates arranged in a vertical direction; And the craft boat is disposed adjacent to the heat shield assembly. Because the heat insulation device has a closed heat insulation space inside, the heat insulation space has a better heat insulation effect. Using the heat insulation device with a heat insulation plate assembly can more effectively block high temperature radiation in the area where the craft boat is located. Therefore, the heat loss in the area where the craft boat is located can be reduced, and the operating temperature in the area can be increased, so that it can reach above 2000 ° C., thereby meeting the process requirements of high-performance devices.
  • FIG. 1 is a cross-sectional view of a process chamber for a high temperature oxidation process of SiC according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of a thermal insulation device used in an embodiment of the present invention.
  • FIG. 3 is an enlarged view of an area I in FIG. 1; FIG.
  • FIG. 4 is a structural diagram of a temperature measuring sleeve used in an embodiment of the present invention.
  • a process chamber includes a heat insulation device 5, a heat insulation plate assembly, and a process boat 3, wherein the inside of the heat insulation device 5 has a closed heat insulation space.
  • the heat insulation panel assembly includes a plurality of heat insulation panels 4 arranged in a vertical direction.
  • the heat insulation panel assembly is disposed adjacent to the heat insulation device 5.
  • the process boat 3 is used to carry the workpiece to be processed.
  • the process boat 3 is disposed adjacent to the heat insulation plate assembly.
  • the heat insulation space has a better heat insulation effect.
  • Using the heat insulation device 5 and the heat insulation plate assembly together can more effectively block the area A where the process boat is located.
  • High-temperature radiation which can reduce the heat loss in the area A where the craft boat is located, increase the use temperature of this area, so that it can reach above 2000 ° C., and then meet the process requirements of high-performance devices.
  • the reduction of heat loss can also improve heating efficiency, which can reduce process costs.
  • the temperature in the chamber can be distributed in a stepwise manner in the vertical direction, that is, gradually lowered from top to bottom, so that the chamber can be located at the most
  • the temperature of the area below the lower heat insulation plate 4 is lowered to 1300 ° C. or less, so that the influence of the high temperature on the outer space of the cavity can be reduced.
  • this makes it possible to achieve a sufficient heat insulation effect without providing more heat insulation plates 4, and the overall occupied area of the heat insulation device 5 and the heat insulation plate assembly is relatively small. It is small, so that it does not need to be equipped with a larger volume chamber, which reduces the size of the device.
  • the heat insulation device 5 includes a heat insulation tube 51, a heat insulation tube 52, and a heat insulation material 53, wherein the upper end and the lower end of the heat insulation tube 51 are closed ends so that The inside of the heat cylinder 51 forms a closed heat insulation space, and the heat insulation cylinder 51 is provided with a perforation penetrating the upper end wall and the lower end wall thereof.
  • the perforation is located on the vertical axis of the heat insulation cylinder 51; the heat insulation pipe 52 is sealed Passed in the perforation of the heat insulation tube 51 as an air inlet pipe through which the process gas passes, and the air inlet of the heat insulation tube 52 is connected to an external air source pipe.
  • Both the heat insulation tube 51 and the heat insulation tube 52 may be made of a material with good heat insulation performance such as quartz, ceramics, and the like.
  • a ring-shaped space is provided between the heat-insulating tube 52 and the heat-insulating tube 51, and the heat-insulating material 53 is filled in the ring-shaped space.
  • the heat insulating material 53 is, for example, thermal insulation cotton.
  • the above-mentioned annular interval can also be brought to a certain degree of vacuum. At this time, it is not necessary to fill the heat insulation material 53, and the heat insulation effect can also be achieved.
  • each heat insulation plate 4 is provided with a vent hole 41 penetrating its thickness, and the vent holes 41 in all the heat insulation plates 41 communicate with each other to form a central air passage communicating with the inside of the heat insulation tube 52. , Used to transport the process gas to the area where the process boat 3 is located.
  • the ventilation holes 41 in all the heat insulation plates 41 are coaxially arranged, and the axis of each ventilation hole is parallel to the vertical direction.
  • adjacent heat insulation plates 41 are stacked on top of each other, so that all the vent holes 41 communicate with each other to form a continuous middle air passage.
  • annular gap between the edge of each heat insulation plate 4 and the inner wall of the chamber, and the annular gaps corresponding to all the heat insulation plates 4 communicate to form an edge air passage for conveying process gas to the process boat. 3 area.
  • the process gas enters the area where the process boat 3 is located simultaneously through the middle air passage formed by all the air holes 41 and the edge air passage formed by all annular gaps. Thereby, the process gas can be more uniformly entered into the area where the process boat 3 is located, so that the process uniformity can be improved.
  • the temperature of the chamber in the area below the area where the process boat 3 is located can be stepwise distributed in a vertical direction, so that the process gas can be passed through the partition in order from bottom to top
  • the heat pipe 52 and the process air in the central and edge air passages can be preheated during the process of reaching the area where the process boat 3 is located, and the preheating temperature gradually increases from bottom to top, so that the process gas reaches the process boat 3
  • the temperature in the zone is close to the temperature required by the process, which can improve the process efficiency.
  • the process boat 3 is adjacently disposed above the heat insulation plate assembly 5 and is configured to carry a workpiece to be processed.
  • the craft boat 3 includes a bracket, and the bracket is provided with fixing grooves arranged at intervals in the vertical direction, and each fixing groove is used to carry a workpiece to be processed.
  • the number of fixed grooves can reach 50, and the process boat 3 can be used to load a variety of processed workpieces, such as 6-inch or 4-inch SiC wafers.
  • the process chamber further includes a boat loading and unloading flange 10 which is sealed against the lower end of the heat insulation tube 51 and is used to support the heat insulation tube 51, the heat insulation tube 52, and the heat insulation plate.
  • the assembly and the craft boat 3 can move up and down, and the air inlet pipe 22 is hermetically provided on the boat loading and unloading flange 10 and communicates with the inside of the heat insulation pipe 52.
  • a filter hole is provided in the lower end wall of the heat insulation tube 51, the filter hole communicates the above heat insulation space with the outside of the heat insulation tube 51, and a filter is provided in the filter hole 14. It is used to filter impurities in the gas discharged from the heat insulation cylinder 51.
  • the boat loading and unloading flange 10 is provided with a sandwich pipeline 13. One end of the sandwich pipeline 13 is in communication with the filter hole, and the other end of the sandwich pipeline 13 is in communication with a first air extraction device (not shown).
  • the gas in the heat insulation cylinder 51 can be extracted and filtered to ensure that the gas released from the heat insulation material 53 filled in the heat insulation cylinder 51 can be extracted in time without spreading to the process boat.
  • the area where 3 is located causes pollution, which can improve the cleanliness of the chamber.
  • a first seal ring 18 is provided between the lower end of the heat insulation cylinder 51 and the boat loading and unloading flange 10, and the first seal ring 18 surrounds the filter hole for sealing the filter hole, thereby ensuring separation Sealing of hot space.
  • the first seal ring 18 is a V-shaped seal ring.
  • a second seal ring 19 is further provided between the lower end of the heat insulation tube 51 and the boat loading and unloading flange 10, and the lower end opening of the heat insulation tube 51, the filter hole, and the second seal ring 19 are located at the first In the sealing area surrounded by the sealing ring 18.
  • the second seal ring 19 is a star-shaped seal ring.
  • the process chamber further includes a process pipe body 1, an inner cylinder 2, a second air extraction device 8, and a process pipe flange 9.
  • the upper end of the process pipe body 1 is closed, and the lower end is open; and the axial direction of the process pipe body 1 is vertically arranged.
  • the upper and lower ends of the inner cylinder body 2 are both open, and are disposed inside the process pipe body 1.
  • the inner cylinder body 2 is coaxially disposed with the process pipe body 1.
  • an annular gap 11 is formed between the outer peripheral wall of the inner cylinder 2 and the inner peripheral wall of the process pipe body 1.
  • the heat insulation device 5, the heat insulation plate assembly and the craft boat 3 can be moved up and down relative to the inner cylinder 2 so as to be able to rise into the inner cylinder 2 or move out of the inner cylinder 2. In this way, the process boat 3 can be replaced more easily, and parts such as the heat insulation device 5, the heat insulation plate assembly and the process boat 3 can be maintained.
  • both the process pipe body 1 and the inner cylinder body 2 are made of ultra-pure graphite, and a pyrolytic carbon coating is formed on the inner and outer surfaces of the two to ensure the airtightness of the interior of the chamber.
  • the process tube flange 9 has a ring structure, and the process tube flange 9 is hermetically connected to the lower end of the process tube body 1 and the lower end of the inner cylinder body 2; A recessed annular air groove 91 is provided on the top surface, and the annular air groove 91 is in abutment communication with the annular gap 11.
  • the process pipe flange 9 is provided with a lateral air passage 92 communicating with the annular air groove 91.
  • the two air extraction devices 8 communicate.
  • the annular gap 11, the annular air groove 91, and the lateral air passage 92 constitute an exhaust passage that communicates with the inside of the inner cylinder 2, and the gas that has completed the reaction is discharged through the exhaust passage.
  • the process chamber further includes a ring-shaped furnace tube flange 7 which is stacked on the process tube flange 9 and surrounds the outer periphery of the process tube body 1.
  • the top surface of the process tube flange 9 is provided with a protruding annular flange 94 that surrounds the outer periphery of the process tube body 1; and an annular groove is provided on the lower surface of the furnace tube flange 7.
  • An annular flange 94 projects into the annular groove.
  • the upper surface of the annular flange 94, the surface of the annular groove opposite the upper surface of the annular flange 94, and the outer peripheral wall of the process pipe body 1 collectively constitute an annular space.
  • a third sealing ring 6 is provided in the annular space for The gap between the process pipe flange 9 and the process pipe body 1 is sealed to ensure the tightness in the process pipe body 1.
  • the third sealing ring 6 is a perfluoro rubber ring.
  • a fourth sealing ring 16 is provided between the boat loading and unloading flange 10 and the process pipe flange 9 to seal the gap between the two, thereby ensuring that the process pipe body 1 and the inner cylinder body 2 Between the annular gap and the tightness of the interior of the inner cylinder 2.
  • the air outlet end 131 of the interlayer pipeline 13 is located between the boat loading and unloading flange 10 and the process tube flange 9; and the fourth seal ring 16 is located inside the air outlet end 131 of the interlayer pipeline 13; and, A fifth sealing ring 17 is provided between the boat loading and unloading flange 10 and the process tube flange 9, and the fifth sealing ring 17 is located outside the air outlet end 131 of the sandwich pipe 13.
  • the fifth seal ring 17 is a V-shaped seal ring.
  • This kind of sealing ring has a large amount of deformation and a good sealing effect.
  • the fourth sealing ring 16 may be an O-ring.
  • the sealing system composed of the first to fifth sealing rings, the airtightness of the chamber can be improved, and the amount of gas leakage in the entire system can be effectively reduced.
  • a ring-shaped first cooling channel 93 is provided in the process tube flange 9, and the process tube flange 9 is cooled by passing a cooling medium (such as cooling water) into the first cooling channel 93, thereby indirectly Cool parts near process tube flange 9.
  • a ring-shaped second cooling channel 71 is provided in the furnace flange 7. The furnace tube flange 7 is cooled by passing a cooling medium into the second cooling channel 71, thereby indirectly cooling the components near the furnace tube flange 7.
  • first cooling channel 93 and second cooling channel 71 With the above-mentioned first cooling channel 93 and second cooling channel 71, the influence of the high temperature on the seal ring can be effectively reduced, so that the failure of the seal ring under high temperature conditions can be avoided. It was found through experiments that the above-mentioned first cooling channel 93 and second cooling channel 71 can control the temperature change of the seal ring below 200 ° C.
  • a temperature measuring sleeve 20 is provided in the furnace flange 7, and a detection end of the temperature measuring sleeve 20 is located on an inner peripheral wall of the furnace flange 7 so as to be able to approach Process tube body 1.
  • the other end of the temperature measuring sleeve 20 extends out through the furnace flange 7; and a temperature sensor 21 is provided in the temperature measuring sleeve 20.
  • the temperature measuring sleeve 20 is a bellows.
  • the outer diameter of the bellows is small to meet the use in an ultra-high temperature environment.
  • the maximum temperature of the process chamber provided by the present invention in the region A where the process boat is located is above 2000 ° C; the gas leakage rate of the chamber is less than 1E-7mbar.l / s; and the metal pollution rate of the chamber is less than 1E + 11atoms / cm2.
  • the process chamber provided by the present invention can be applied to a high-temperature vacuum heat treatment process such as a SiC wafer.
  • the process chamber provided by the present invention can also be applied to a lower temperature heat treatment process such as a silicon wafer.
  • the process chamber provided by the present invention has a closed heat insulation space inside the heat insulation device, the heat insulation space has a better heat insulation effect.
  • the heat insulation device is used in conjunction with a heat insulation plate assembly. It can more effectively block the high temperature radiation in the area where the craft boat is located, so that it can reduce the heat loss in the area where the craft boat is located, increase the use temperature of the area, and make it reach 2000 ° C or higher, which can meet the process requirements of high-performance devices.
  • the present invention further provides a heat treatment furnace, which includes the foregoing process chamber provided by the present invention.
  • the heat treatment furnace provided by the present invention by using the above-mentioned process chamber provided by the present invention, can not only increase the use temperature of the area where the process boat is located, but also does not need to be equipped with a chamber with a larger volume, thereby reducing the volume of the equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

一种工艺腔室及热处理炉,该工艺腔室包括:隔热装置(5),内部具有封闭的隔热空间;隔热板组件,包括多个沿竖直方向叠置排布的隔热板(4);隔热板组件邻接设置在隔热装置(5)的上方;以及工艺舟(3),用于承载被加工工件;工艺舟(3)邻接设置在隔热板组件的上方。这种工艺腔室,其不仅可以提高工艺舟(3)所在区域的使用温度,而且无需配备较大容积的腔室,减小了设备的体积。

Description

工艺腔室及热处理炉 技术领域
本发明涉及半导体制造领域,具体地,涉及一种工艺腔室及热处理炉。
背景技术
SiC材料具有宽带隙、高饱和漂移速度、高热导率、高临界击穿电场等突出优点,属于第三代半导体材料,适合制备高功率、高频、高压、高温、抗辐射的电子器件。而且,SiC材料是唯一可以直接氧化生长SiO2薄膜的宽禁带半导体。
最常用的一种SiO2薄膜生长方法是高温干氧或湿氧的热氧化方法,该热氧化工艺获得SiO2薄膜和界面特性的质量是最好的。但是,由于SiC高温氧化工艺的温度高达1500℃,常规高温设备无法满足工艺要求。目前业内利用高温氧化炉对SiC片进行高温氧化工艺,该高温氧化炉是SiC器件集成电路生产线的关键工艺设备。
但是,现有的高温退火炉的最高温度通常为1950℃,使用温度较低,不利于离子激活,器件电学性能不易提高。同时,为了保证隔热效果,需要在工艺腔内设置大量的隔热挡板,必须配备较大容积的腔室,不利于腔室工艺温度均匀性、气密性、洁净度等关键指标控制。此外,冷却进气管路的过渡结构冗长,不利于设备整体优化。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提出了一种工艺腔室及热处理炉,其不仅可以提高工艺舟所在区域的使用温度,而且无需配备较大容积的腔室,减小了设备的体积。
为实现本发明的目的而提供一种工艺腔室,包括:
隔热装置,内部具有封闭的隔热空间;
隔热板组件,包括多个沿竖直方向排布的隔热板;所述隔热板组件邻接设置在所述隔热装置的上方;以及
工艺舟,用于承载被加工工件;所述工艺舟邻接设置在所述隔热板组件的上方。
可选的,所述隔热装置包括:
隔热筒,所述隔热筒的上端和下端均为封闭端,以在所述隔热筒的内部形成所述隔热空间,且所述隔热筒设有贯穿其上端壁和下端壁的穿孔;
隔热管,所述隔热管密封穿设在所述隔热筒的所述穿孔内,且在所述隔热管与所述隔热筒之间具有环形间隔;以及
隔热材料,填充在所述环形间隔内。
可选的,所述工艺腔室还包括舟装卸法兰,所述舟装卸法兰密封抵靠在所述隔热筒的下端,用于支撑所述隔热筒、所述隔热管、所述隔热板组件和所述工艺舟并能升降移动;
所述工艺腔室还包括进气管,所述进气管密封穿设在所述舟装卸法兰上并与所述隔热管的内部连通。
可选的,所述工艺腔室还包括第一抽气装置;
所述隔热筒的下端壁中设有过滤孔,所述过滤孔将所述隔热空间与所述隔热筒的外部连通,且所述过滤孔内设有过滤器;所述舟装卸法兰内设有夹层管路,所述夹层管路的一端与所述过滤孔连通,所述夹层管路的另一端与所述第一抽气装置连通。
可选的,所述隔热筒的下端与所述舟装卸法兰之间设置有第一密封圈,所述第一密封圈环绕在所述过滤孔周围。
可选的,所述隔热筒的下端与所述舟装卸法兰之间还设置有第二密封 圈,并且所述隔热管的下端开口、所述过滤孔和所述第二密封圈均位于所述第一密封圈所环绕的密封区域内。
可选的,每个所述隔热板中设置有贯穿其厚度的通气孔,且所有的所述隔热板中的所述通气孔连通构成与所述隔热管的内部连通的中部通气道,用于将工艺气体输送至所述工艺舟所在区域。
可选的,所述工艺腔室还包括:
工艺管体,所述工艺管体的上端封闭,下端敞开;所述工艺管体的轴向竖直设置;
内筒体,所述内筒体的上端和下端均敞开,且设置在所述工艺管体内部;所述内筒体的外周壁与所述工艺管体的内周壁之间形成环形间隙;所述隔热装置、所述隔热板组件和所述工艺舟能升入到所述内筒体内部;
第二抽气装置;以及
工艺管法兰,为环形结构;所述工艺管法兰与所述工艺管体的下端和所述内筒体的下端均密封连接;所述工艺管法兰的顶面设有凹陷的环形气槽,所述环形气槽与所述环形间隙对接连通;所述工艺管法兰内设有与所述环形气槽连通的横向气道,所述横向气道与所述第二抽气装置连通。
可选的,所述工艺腔室还包括环形的炉筒法兰,所述炉筒法兰叠置在所述工艺管法兰上,且围绕在所述工艺管体的外侧周围;
所述工艺管法兰的顶面设有突出的环形凸缘,所述环形凸缘环绕在所述工艺管体的外侧周围;并且,在所述炉筒法兰的下表面设置有环形凹槽,所述环形凸缘伸入到所述环形凹槽中;
所述环形凸缘的上表面、所述环形凹槽的与所述环形凸缘的上表面相对的表面以及所述工艺管体的外周壁共同构成环形空间,所述环形空间内设有第三密封圈。
可选的,所述工艺管法兰与所述炉筒法兰内均设有环形冷却水道。
可选的,在所述炉筒法兰中设置有测温套管,所述测温套管的检测端位于所述炉筒法兰的内周壁上,所述测温套管的另一端穿过所述炉筒法兰延伸出去;并且,在所述测温套管中设置有温度传感器。
可选的,所述工艺管体、所述内筒体、所述隔热板组件以及所述隔热装置均为圆柱体状,并且同轴线设置;
每个所述隔热板的边缘与所述内筒体的内周壁之间具有间隙,且所有的所述隔热板对应的所述间隙连通构成边缘通气道,用于将工艺气体输送至所述工艺舟所在区域。
作为另一个技术方案,本发明还提供一种热处理炉,用于进行SiC高温氧化工艺,所述热处理炉包括本发明提供的上述工艺腔室。
本发明具有以下有益效果:
本发明提供的工艺腔室及热处理炉的技术方案中,工艺腔室包括隔热装置,内部具有封闭的隔热空间;隔热板组件,包括多个沿竖直方向排布的隔热板;以及工艺舟,邻接设置在隔热板组件的上方。由于隔热装置内部具有封闭的隔热空间,该隔热空间具有较佳的隔热效果,将该隔热装置与隔热板组件配合使用,可以更有效地阻隔工艺舟所在区域内的高温辐射,从而可以减少工艺舟所在区域的热量损失,提高该区域的使用温度,使之能够达到2000℃以上,进而可以满足高性能器件的工艺要求。同时,由于隔热装置和隔热板组件配合使用,这使得无需配备较多的隔热板也能够达到足够的隔热效果,而且隔热装置和隔热板组件的整体占用面积较小,从而无需配备较大容积的腔室,减小了设备的体积。
附图说明
图1为本发明实施例提供的用于SiC高温氧化工艺的工艺腔室的剖视图;
图2为本发明实施例采用的隔热装置的剖视图;
图3为图1中I区域的放大图;
图4为本发明实施例采用的测温套管的结构图。
具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图来对本发明提供的工艺腔室及热处理炉进行详细描述。
请参阅图1,本发明实施例提供的工艺腔室,其包括隔热装置5、隔热板组件和工艺舟3,其中,隔热装置5的内部具有封闭的隔热空间。隔热板组件包括多个沿竖直方向排布的隔热板4,该隔热板组件邻接设置在隔热装置5的上方。工艺舟3用于承载被加工工件,该工艺舟3邻接设置在隔热板组件的上方。
由于隔热装置5内部具有封闭的隔热空间,该隔热空间具有较佳的隔热效果,将该隔热装置5和隔热板组件配合使用,可以更有效地阻隔工艺舟所在区域A内的高温辐射,从而可以减少工艺舟所在区域A的热量损失,提高该区域的使用温度,使之能够达到2000℃以上,进而可以满足高性能器件的工艺要求。同时,热量损失的减少还可以提高加热效率,从而可以降低工艺成本。
而且,通过将该隔热装置5和隔热板组件配合使用,还可以使腔室内的温度在竖直方向上呈阶梯分布,即,由上而下逐渐降低,从而可以将腔室的位于最下层的隔热板4以下的区域的温度降低至1300℃以下,进而可以减小高温对腔室外界的影响。同时,由于隔热装置5和隔热板组件配合使用,这使得无需配备较多的隔热板4也能够达到足够的隔热效果,而且隔热装置5和隔热板组件的整体占用面积较小,从而无需配备较大容积的腔室,减小了设备的体积。
在本实施例中,如图2所示,隔热装置5包括隔热筒51、隔热管52和隔热材料53,其中,隔热筒51的上端和下端均为封闭端,以在隔热筒51的内部形成封闭的隔热空间,且隔热筒51设有贯穿其上端壁和下端壁的穿孔,优选的,该穿孔位于隔热筒51的竖向轴线上;隔热管52密封穿设在隔热筒51的该穿孔内,作为供工艺气体通过的进气管道,该隔热管52的进气口与外部的气源管路连接。隔热筒51和隔热管52均可以采用诸如石英、陶瓷等的隔热性能好的材料制作。并且,在隔热管52与隔热筒51之间具有环形间隔,隔热材料53填充在该环形间隔内。该隔热材料53例如为保温棉。当然,在实际应用中,也可以使上述环形间隔达到一定的真空度,此时无需填充隔热材料53,同样可以达到隔热效果。
在本实施例中,每个隔热板4中设置有贯穿其厚度的通气孔41,且所有的隔热板41中的通气孔41连通构成与上述隔热管52的内部连通的中部通气道,用于将工艺气体输送至工艺舟3所在区域。可选的,所有的隔热板41中的通气孔41同轴设置,且每个通气孔的轴线与竖直方向相互平行。优选的,相邻的隔热板41相互叠置,以使所有的通气孔41连通构成连续的中部通气道。
在本实施例中,每个隔热板4的边缘与腔室内壁之间具有环形间隙,且所有的隔热板4对应的环形间隙连通构成边缘通气道,用于将工艺气体输送至工艺舟3所在区域。这样,工艺气体同时通过由所有通气孔41构成的中部通气道和由所有环形间隙构成的边缘通气道进入工艺舟3所在区域。由此,可以使工艺气体更均匀地进入工艺舟3所在区域,从而可以提高工艺均匀性。
另外,借助隔热装置5和隔热板组件,可以使腔室在工艺舟3所在区域以下的区域的温度在竖直方向上呈阶梯分布,从而可以使工艺气体在由下而上依次通过隔热管52及中部通气道和边缘通气道的工艺气体能够在到达工艺舟3所在区域的过程中被预热,且预热温度由下而上逐渐增加,从而使工 艺气体在到达工艺舟3所在区域时的温度接近工艺所需温度,可以提高工艺效率。
在本实施例中,工艺舟3邻接设置在隔热板组件5的上方,用于承载被加工工件。具体地,工艺舟3包括支架,在该支架上设置有沿竖直方向间隔排布的固定槽,每个固定槽用于承载一个被加工工件。在实际应用中,固定槽的数量可以达到50个,且工艺舟3可以用于装载多种规格的被加工工件,例如直径为6寸或者4寸的SiC晶圆。
在本实施例中,工艺腔室还包括舟装卸法兰10,该舟装卸法兰10密封抵靠在隔热筒51的下端,用于支撑隔热筒51、隔热管52、隔热板组件和工艺舟3并能作升降移动,进气管22密封穿设在舟装卸法兰10上并与隔热管52的内部连通。
在本实施例中,如图3所示,隔热筒51的下端壁中设有过滤孔,该过滤孔将上述隔热空间与隔热筒51的外部连通,且过滤孔内设有过滤器14,用于过滤自隔热筒51排出的气体中的杂质。并且,舟装卸法兰10内设有夹层管路13,该夹层管路13的一端与过滤孔连通,夹层管路13的另一端与第一抽气装置(图中未示出)连通。借助过滤器14和夹层管路13,可以抽取并过滤隔热筒51内的气体,保证填充在隔热筒51内的隔热材料53放出的气体可以被及时抽出,而不会扩散至工艺舟3所在区域造成污染,从而可以提高腔室内的洁净度。
在本实施例中,隔热筒51的下端与舟装卸法兰10之间设置有第一密封圈18,该第一密封圈18环绕在上述过滤孔周围,用于密封过滤孔,从而保证隔热空间的密封性。可选的,第一密封圈18为V型密封圈。
在本实施例中,隔热筒51的下端与舟装卸法兰10之间还设置有第二密封圈19,并且隔热管51的下端开口、过滤孔和第二密封圈19均位于第一密封圈18环绕的密封区域内。可选的,第二密封圈19为星型密封圈。
在本实施例中,工艺腔室还包括工艺管体1、内筒体2、第二抽气装置8和工艺管法兰9。其中,工艺管体1的上端封闭,下端敞开;并且,工艺管体1的轴向竖直设置。内筒体2的上端和下端均敞开,且设置在工艺管体1内部,可选的,内筒体2与工艺管体1同轴设置。并且,内筒体2的外周壁与工艺管体1的内周壁之间形成环形间隙11。并且,隔热装置5、隔热板组件和工艺舟3能够相对于内筒体2作升降运动,以能升入到内筒体2内部,或者自内筒体2移出。这样,可以更方便地对工艺舟3进行更换,以及对隔热装置5、隔热板组件和工艺舟3等的零件进行维护。
可选的,工艺管体1和内筒体2均采用超纯石墨制作,且在二者的内、外表面形成热解碳涂层,以保证腔室内部的气密性。
如图1和图3所示,工艺管法兰9为环形结构,该工艺管法兰9与工艺管体1的下端和内筒体2的下端均密封连接;并且,工艺管法兰9的顶面设有凹陷的环形气槽91,该环形气槽91与环形间隙11对接连通;工艺管法兰9内设有与环形气槽91连通的横向气道92,该横向气道92与第二抽气装置8连通。环形间隙11、环形气槽91和横向气道92,构成与内筒体2内部连通的排气通道,完成反应的气体经由该排气通道排出。
在本实施例中,工艺腔室还包括环形的炉筒法兰7,该炉筒法兰7叠置在工艺管法兰9上,且围绕在工艺管体1的外侧周围。并且,工艺管法兰9的顶面设有突出的环形凸缘94,该环形凸缘94环绕在工艺管体1的外侧周围;并且,在炉筒法兰7的下表面设置有环形凹槽,环形凸缘94伸入到该环形凹槽中。环形凸缘94的上表面、环形凹槽的与环形凸缘94的上表面相对的表面以及工艺管体1的外周壁共同构成环形空间,该环形空间内设有第三密封圈6,用于对工艺管法兰9与工艺管体1之间的间隙进行密封,从而保证工艺管体1内的封闭性。可选的,该第三密封圈6为全氟橡胶圈。
可选的,在舟装卸法兰10与工艺管法兰9之间设置有第四密封圈16, 用于对二者之间的间隙进行密封,从而保证工艺管体1与内筒体2之间的环形间隙以及内筒体2内部的封闭性。
在本实施例中,夹层管路13的出气端131位于舟装卸法兰10与工艺管法兰9之间;并且,第四密封圈16位于夹层管路13的出气端131的内侧;并且,在舟装卸法兰10与工艺管法兰9之间设置有第五密封圈17,该第五密封圈17位于夹层管路13的出气端131的外侧。借助上述第四密封圈16和第五密封圈17,可以对舟装卸法兰10与工艺管法兰9之间的间隙进行双重密封,同时对夹层管路13的出气端131进行密封。
可选的,第五密封圈17为V型密封圈。这种密封圈的变形量较大,密封效果较好。第四密封圈16可以为O型密封圈。
综上所述,借助由上述第一至第五密封圈构成的密封系统,可以提高腔室的气密性,有效降低整个系统的气体泄漏量。
在本实施例中,工艺管法兰9内设置有环形的第一冷却通道93,通过向该第一冷却通道93中通入冷却媒介(例如冷却水)来冷却工艺管法兰9,进而间接冷却工艺管法兰9附近的零件。同样的,炉筒法兰7内设有环形的第二冷却通道71。通过向第二冷却通道71中通入冷却媒介来冷却炉筒法兰7,从而间接冷却炉筒法兰7附近的零件。
借助上述第一冷却通道93和第二冷却通道71,可以有效降低高温对密封圈的影响,从而可以避免密封圈在高温条件下失效。通过实验发现,上述第一冷却通道93和第二冷却通道71可以将密封圈的温度变化控制在200℃以下。
在本实施例中,如图4所示,在炉筒法兰7中设置有测温套管20,该测温套管20的检测端位于炉筒法兰7的内周壁上,以能够靠近工艺管体1。测温套管20的另一端穿过炉筒法兰7延伸出去;并且,在测温套管20中设置有温度传感器21。
可选的,测温套管20为波纹管。优选的,该波纹管的外径很小,以满足超高温环境的使用。
通过实验发现,本发明提供的工艺腔室,其工艺舟所在区域A内的最高温度达到2000℃以上;腔室的气体泄漏率小于1E-7mbar.l/s;腔室的金属污染率小于1E+11atoms/cm2。
需要说明的是,本发明提供的工艺腔室可以应用在例如SiC晶圆的高温真空热处理工艺中。或者,通过更换热处理炉的相应零件(例如工艺管体)的材料,而无需改变结构,本发明提供的工艺腔室还可以应用在温度较低的诸如硅片的热处理工艺中。
综上所述,本发明提供的工艺腔室,由于隔热装置内部具有封闭的隔热空间,该隔热空间具有较佳的隔热效果,将该隔热装置与隔热板组件配合使用,可以更有效地阻隔工艺舟所在区域内的高温辐射,从而可以减少工艺舟所在区域的热量损失,提高该区域的使用温度,使之能够达到2000℃以上,进而可以满足高性能器件的工艺要求。同时,由于隔热装置和隔热板组件配合使用,这使得无需配备较多的隔热板也能够达到足够的隔热效果,而且隔热装置和隔热板组件的整体占用面积较小,从而无需配备较大容积的腔室,减小了设备的体积。
作为另一个技术方案,本发明还提供一种热处理炉,其包括本发明提供的上述工艺腔室。
本发明提供的热处理炉,其通过采用本发明提供的上述工艺腔室,不仅可以提高工艺舟所在区域的使用温度,而且无需配备较大容积的腔室,减小了设备的体积。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这 些变型和改进也视为本发明的保护范围。

Claims (13)

  1. 一种工艺腔室,其特征在于,包括:
    隔热装置,内部具有封闭的隔热空间;
    隔热板组件,包括多个沿竖直方向排布的隔热板;所述隔热板组件邻接设置在所述隔热装置的上方;以及
    工艺舟,用于承载被加工工件;所述工艺舟邻接设置在所述隔热板组件的上方。
  2. 根据权利要求1所述的工艺腔室,其特征在于,所述隔热装置包括:
    隔热筒,所述隔热筒的上端和下端均为封闭端,以在所述隔热筒的内部形成所述隔热空间,且所述隔热筒设有贯穿其上端壁和下端壁的穿孔;
    隔热管,所述隔热管密封穿设在所述隔热筒的所述穿孔内,且在所述隔热管与所述隔热筒之间具有环形间隔;以及
    隔热材料,填充在所述环形间隔内。
  3. 根据权利要求2所述的工艺腔室,其特征在于,所述工艺腔室还包括舟装卸法兰,所述舟装卸法兰密封抵靠在所述隔热筒的下端,用于支撑所述隔热筒、所述隔热管、所述隔热板组件和所述工艺舟并能升降移动;
    所述工艺腔室还包括进气管,所述进气管密封穿设在所述舟装卸法兰上并与所述隔热管的内部连通。
  4. 根据权利要求3所述的工艺腔室,其特征在于,所述工艺腔室还包括第一抽气装置;
    所述隔热筒的下端壁中设有过滤孔,所述过滤孔将所述隔热空间与所述隔热筒的外部连通,且所述过滤孔内设有过滤器;所述舟装卸法兰内设有夹层管路,所述夹层管路的一端与所述过滤孔连通,所述夹层管路的另一端与 所述第一抽气装置连通。
  5. 根据权利要求4所述的工艺腔室,其特征在于,所述隔热筒的下端与所述舟装卸法兰之间设置有第一密封圈,所述第一密封圈环绕在所述过滤孔周围。
  6. 根据权利要求5所述的工艺腔室,其特征在于,所述隔热筒的下端与所述舟装卸法兰之间还设置有第二密封圈,并且所述隔热管的下端开口、所述过滤孔和所述第二密封圈均位于所述第一密封圈所环绕的密封区域内。
  7. 根据权利要求2所述的工艺腔室,其特征在于,每个所述隔热板中设置有贯穿其厚度的通气孔,且所有的所述隔热板中的所述通气孔连通构成与所述隔热管的内部连通的中部通气道,用于将工艺气体输送至所述工艺舟所在区域。
  8. 根据权利要求3所述的工艺腔室,其特征在于,所述工艺腔室还包括:
    工艺管体,所述工艺管体的上端封闭,下端敞开;所述工艺管体的轴向竖直设置;
    内筒体,所述内筒体的上端和下端均敞开,且设置在所述工艺管体内部;所述内筒体的外周壁与所述工艺管体的内周壁之间形成环形间隙;所述隔热装置、所述隔热板组件和所述工艺舟能升入到所述内筒体内部;
    第二抽气装置;以及
    工艺管法兰,为环形结构;所述工艺管法兰与所述工艺管体的下端和所述内筒体的下端均密封连接;所述工艺管法兰的顶面设有凹陷的环形气槽,所述环形气槽与所述环形间隙对接连通;所述工艺管法兰内设有与所述环形气槽连通的横向气道,所述横向气道与所述第二抽气装置连通。
  9. 根据权利要求8所述的工艺腔室,其特征在于,所述工艺腔室还包括环形的炉筒法兰,所述炉筒法兰叠置在所述工艺管法兰上,且围绕在所述工艺管体的外侧周围;
    所述工艺管法兰的顶面设有突出的环形凸缘,所述环形凸缘环绕在所述工艺管体的外侧周围;并且,在所述炉筒法兰的下表面设置有环形凹槽,所述环形凸缘伸入到所述环形凹槽中;
    所述环形凸缘的上表面、所述环形凹槽的与所述环形凸缘的上表面相对的表面以及所述工艺管体的外周壁共同构成环形空间,所述环形空间内设有第三密封圈。
  10. 根据权利要求9所述的工艺腔室,其特征在于,所述工艺管法兰与所述炉筒法兰内均设有环形冷却水道。
  11. 根据权利要求9所述的工艺腔室,其特征在于,在所述炉筒法兰中设置有测温套管,所述测温套管的检测端位于所述炉筒法兰的内周壁上,所述测温套管的另一端穿过所述炉筒法兰延伸出去;并且,在所述测温套管中设置有温度传感器。
  12. 根据权利要求8至11任一项所述的工艺腔室,其特征在于,所述工艺管体、所述内筒体、所述隔热板组件以及所述隔热装置均为圆柱体状,并且同轴线设置;
    每个所述隔热板的边缘与所述内筒体的内周壁之间具有间隙,且所有的所述隔热板对应的所述间隙连通构成边缘通气道,用于将工艺气体输送至所述工艺舟所在区域。
  13. 一种热处理炉,用于进行SiC高温氧化工艺,其特征在于,所述热 处理炉包括权利要求1至12任一项所述的工艺腔室。
PCT/CN2019/094393 2018-07-18 2019-07-02 工艺腔室及热处理炉 WO2020015523A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810791938.8A CN110736345B (zh) 2018-07-18 2018-07-18 用于SiC高温氧化工艺的工艺腔室及热处理炉
CN201810791938.8 2018-07-18

Publications (1)

Publication Number Publication Date
WO2020015523A1 true WO2020015523A1 (zh) 2020-01-23

Family

ID=69164221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094393 WO2020015523A1 (zh) 2018-07-18 2019-07-02 工艺腔室及热处理炉

Country Status (3)

Country Link
CN (1) CN110736345B (zh)
TW (1) TWI710658B (zh)
WO (1) WO2020015523A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111520999B (zh) * 2020-04-14 2022-02-22 北京北方华创微电子装备有限公司 一种立式炉设备
CN112461393B (zh) * 2020-12-04 2021-06-15 中国科学院力学研究所 同轴热电偶瞬态热流传感器氧化式绝缘层加工制作装置
CN112795988A (zh) * 2020-12-29 2021-05-14 浙江中电环境科技有限公司 一种碳化硅半导体生产用的单晶炉
CN115573035A (zh) * 2021-07-06 2023-01-06 中国电子科技集团公司第四十八研究所 一种碳化硅高温氧化炉装置
CN116499251B (zh) * 2023-06-25 2023-09-29 苏州小牛自动化设备有限公司 一种炉管

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5048800A (en) * 1988-12-27 1991-09-17 Kabushiki Kaisha Toshiba Vertical heat treatment apparatus
US5772757A (en) * 1992-01-07 1998-06-30 Fujitsu Limited Apparatus and method for growing semiconductor crystal
US6444940B1 (en) * 1999-11-30 2002-09-03 Tokyo Electron Limited Heat treating device and heat treating method
CN1397985A (zh) * 2001-07-12 2003-02-19 株式会社日立国际电气 衬底处理装置和半导体器件的制造方法
FR2970977A1 (fr) * 2011-01-27 2012-08-03 Acerde Reacteur de depot sur un substrat d'un materiau issu de la decomposition d'un gaz a haute temperature
CN102653883A (zh) * 2011-02-28 2012-09-05 株式会社日立国际电气 衬底处理装置及衬底的制造方法
CN103836950A (zh) * 2014-03-24 2014-06-04 朱建新 高效固体电热储能炉
CN105097604A (zh) * 2014-05-05 2015-11-25 北京北方微电子基地设备工艺研究中心有限责任公司 工艺腔室

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3073627B2 (ja) * 1993-06-14 2000-08-07 東京エレクトロン株式会社 熱処理装置
US6902395B2 (en) * 2002-03-15 2005-06-07 Asm International, N.V. Multilevel pedestal for furnace
CN101395705B (zh) * 2007-02-09 2011-08-10 株式会社日立国际电气 隔热构造体、加热装置、基板处理设备以及半导体器件的制造方法
JP2008169487A (ja) * 2008-01-25 2008-07-24 Tokyo Electron Ltd W系膜の成膜方法
JP5043776B2 (ja) * 2008-08-08 2012-10-10 株式会社日立国際電気 基板処理装置及び半導体装置の製造方法
JP5477955B2 (ja) * 2010-02-25 2014-04-23 株式会社日立国際電気 熱処理装置および半導体装置の製造方法
CN101969021A (zh) * 2010-08-05 2011-02-09 北京七星华创电子股份有限公司 保温桶及具有该保温桶的立式热处理装置
US8866271B2 (en) * 2010-10-07 2014-10-21 Hitachi Kokusai Electric Inc. Semiconductor device manufacturing method, substrate processing apparatus and semiconductor device
CN106505016B (zh) * 2016-10-21 2020-02-14 北京北方华创微电子装备有限公司 具有工艺管压力控制装置的半导体热处理设备及控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5048800A (en) * 1988-12-27 1991-09-17 Kabushiki Kaisha Toshiba Vertical heat treatment apparatus
US5772757A (en) * 1992-01-07 1998-06-30 Fujitsu Limited Apparatus and method for growing semiconductor crystal
US6444940B1 (en) * 1999-11-30 2002-09-03 Tokyo Electron Limited Heat treating device and heat treating method
CN1397985A (zh) * 2001-07-12 2003-02-19 株式会社日立国际电气 衬底处理装置和半导体器件的制造方法
FR2970977A1 (fr) * 2011-01-27 2012-08-03 Acerde Reacteur de depot sur un substrat d'un materiau issu de la decomposition d'un gaz a haute temperature
CN102653883A (zh) * 2011-02-28 2012-09-05 株式会社日立国际电气 衬底处理装置及衬底的制造方法
CN103836950A (zh) * 2014-03-24 2014-06-04 朱建新 高效固体电热储能炉
CN105097604A (zh) * 2014-05-05 2015-11-25 北京北方微电子基地设备工艺研究中心有限责任公司 工艺腔室

Also Published As

Publication number Publication date
TW202006172A (zh) 2020-02-01
CN110736345A (zh) 2020-01-31
TWI710658B (zh) 2020-11-21
CN110736345B (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
WO2020015523A1 (zh) 工艺腔室及热处理炉
US8444926B2 (en) Processing chamber with heated chamber liner
KR101456894B1 (ko) 챔버로 가스를 방사상으로 전달하기 위한 장치 및 그 이용 방법들
CN109983566A (zh) 用于有效率的气体分配组件冷却的具有同心或螺旋通道的双区流动冷却板设计
JP5058727B2 (ja) 天板構造及びこれを用いたプラズマ処理装置
CN102468208B (zh) 卡盘和半导体处理装置
KR20110094021A (ko) 처리 챔버용 밀봉 장치
CN102691109B (zh) 一种垂直式碳化硅高温氧化装置
WO2002056357A1 (fr) Dispositif de traitement a feuilles
US20190360102A1 (en) Isolator for a substrate processing chamber
WO2020151542A1 (zh) 内衬冷却组件、反应腔室及半导体加工设备
CN104233225A (zh) 反应腔室以及设置有该反应腔室的半导体处理设备
WO2020078147A1 (zh) 腔室密封组件及生长炉
JP4063661B2 (ja) 半導体製造装置及び半導体の製造法
CN203429246U (zh) 密封结构、反应腔室和半导体处理设备
JP7105180B2 (ja) プラズマ処理装置及びプラズマ処理方法
CN102747425B (zh) 一种水平式碳化硅高温氧化装置
CN110579105B (zh) 氧化炉
CN105575873B (zh) 压环机构及半导体加工设备
JP2001234346A (ja) 反応性ガスを利用する真空処理装置
CN207338295U (zh) 一种上电极组件
KR20100045246A (ko) 고온 퍼니스
CN109341343A (zh) 一种适用于碳化硅半导体的高温加热炉体
TWI817174B (zh) 等離子體處理裝置及其等離子體處理方法
CN114754585B (zh) 烧结设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19838722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19838722

Country of ref document: EP

Kind code of ref document: A1